WO2009122968A1 - 樹脂成形物及びポリマーフィルム - Google Patents
樹脂成形物及びポリマーフィルム Download PDFInfo
- Publication number
- WO2009122968A1 WO2009122968A1 PCT/JP2009/055814 JP2009055814W WO2009122968A1 WO 2009122968 A1 WO2009122968 A1 WO 2009122968A1 JP 2009055814 W JP2009055814 W JP 2009055814W WO 2009122968 A1 WO2009122968 A1 WO 2009122968A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- general formula
- het
- compound represented
- atom
- polymer film
- Prior art date
Links
- 0 CC(C(C(*)=C1*)C(*2)=*)(*=C2*(C(C2)=*c3c(*)c(*)c(*)c(*)c3C2=*)=I)C(*)=C1O Chemical compound CC(C(C(*)=C1*)C(*2)=*)(*=C2*(C(C2)=*c3c(*)c(*)c(*)c(*)c3C2=*)=I)C(*)=C1O 0.000 description 2
- OHHBMLCSBFYRJW-UHFFFAOYSA-N COc(cc1)cc(O)c1C(c(ccc([O]=C)c1)c1O)=O Chemical compound COc(cc1)cc(O)c1C(c(ccc([O]=C)c1)c1O)=O OHHBMLCSBFYRJW-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K15/00—Anti-oxidant compositions; Compositions inhibiting chemical change
- C09K15/04—Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds
- C09K15/30—Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing heterocyclic ring with at least one nitrogen atom as ring member
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/35—Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
- C08K5/357—Six-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/36—Sulfur-, selenium-, or tellurium-containing compounds
- C08K5/45—Heterocyclic compounds having sulfur in the ring
Definitions
- the present invention relates to a light-resistant polymer film and a resin molded product that block ultraviolet rays.
- Thermoplastic resin films are highly versatile and are used in a wide range of fields and conditions.
- Thermoplastic resins such as polyesters, polyamides, polyolefins, polyethers, and polystyrene resins can be deteriorated or decomposed by the action of ultraviolet rays, causing discoloration and lowering of mechanical strength, which may hinder long-term use. . Therefore, various ultraviolet absorbers have been conventionally used to prevent deterioration.
- Thermoplastic resin films containing such ultraviolet absorbers are widely used for window pasting, greenhouses, insect protection and the like.
- the present invention solves the above-described problems, and an object of the present invention is to provide a polymer film and a resin molded article containing an ultraviolet absorbing compound capable of maintaining long wave ultraviolet absorbing ability for a long time.
- the present inventors have found a compound having a conventionally unknown structure that has high light fastness and can absorb ultraviolet rays in a long wavelength region that could not be covered so far.
- the inventors have found that a film containing this is effective as a light-resistant film and have completed the present invention.
- ⁇ 1> A resin molded product containing a compound having a maximum absorption wavelength of 400 nm or less in a solution in a polymer substance of 5 g / m 2 or less, and having a light transmittance of 5% or less at a wavelength of 410 nm. Characteristic resin molding.
- ⁇ 2> The resin molded article according to ⁇ 1>, wherein the light transmittance at a wavelength of 440 nm is 80% or more.
- ⁇ 3> The resin molded product according to ⁇ 1> or ⁇ 2>, wherein the light transmittance at a wavelength of 430 nm is 70% or more.
- ⁇ 4> The resin molded article according to any one of ⁇ 1> to ⁇ 3>, wherein the compound is a compound represented by the following general formula (1).
- Het 1 represents a divalent 5- or 6-membered aromatic heterocyclic residue.
- the aromatic heterocyclic residue may have a substituent.
- X a , X b , X c and X d each independently represent a hetero atom.
- X a to X d may have a substituent.
- Y a , Y b , Y c , Y d , Y e and Y f each independently represent a hetero atom or a carbon atom.
- Y a to Y f may have a substituent.
- the ring bonded to Het 1 may have a double bond at any position.
- Het 2 is synonymous with Het 1 in the general formula (1).
- X 2a , X 2b , X 2c and X 2d have the same meanings as X a , X b , X c and X d in the general formula (1), respectively.
- Y 2b , Y 2c , Y 2e and Y 2f have the same meanings as Y b , Y c , Y e and Y f in the general formula (1), respectively.
- L 1 and L 2 each independently represents an oxygen atom, a sulfur atom or ⁇ NR a (R a represents a hydrogen atom or a monovalent substituent).
- Z 1 and Z 2 each independently represents an atomic group necessary for forming a 4- to 8-membered ring together with Y 2b and Y 2c or Y 2e and Y 2f .
- Het 3 is synonymous with Het 2 in the general formula (2).
- X 3a , X 3b , X 3c and X 3d have the same meanings as X 2a , X 2b , X 2c and X 2d in the general formula (2), respectively.
- R 3a , R 3b , R 3c , R 3d , R 3e , R 3f , R 3g and R 3h each independently represent a hydrogen atom or a monovalent substituent.
- Het 4 is synonymous with Het 2 in the general formula (2).
- R 4a , R 4b , R 4c , R 4d , R 4e , R 4f , R 4g and R 4h are R 3a , R 3b , R 3c , R 3d , R 3e , R 3f in the general formula (3), respectively. , R 3g and R 3h .
- ⁇ 8> A film in which a compound having a maximum absorption wavelength of 400 nm or less in a solution is contained in a polymer substance in an amount of 5 g / m 2 or less, wherein the light transmittance at a wavelength of 410 nm is 5% or less. Polymer film.
- ⁇ 9> The polymer film according to ⁇ 8>, wherein the light transmittance at a wavelength of 440 nm is 80% or more.
- ⁇ 10> The polymer film according to ⁇ 8> or ⁇ 9>, wherein the light transmittance at a wavelength of 430 nm is 70% or more.
- ⁇ 11> The polymer film according to any one of ⁇ 8> to ⁇ 10>, wherein the compound is a compound represented by the following general formula (1).
- Het 1 represents a divalent 5- or 6-membered aromatic heterocyclic residue.
- the aromatic heterocyclic residue may have a substituent.
- X a , X b , X c and X d each independently represent a hetero atom.
- X a to X d may have a substituent.
- Y a , Y b , Y c , Y d , Y e and Y f each independently represent a hetero atom or a carbon atom.
- Y a to Y f may have a substituent.
- the ring bonded to Het 1 may have a double bond at any position.
- ⁇ 13> A ring formed by X a , X b , Y a to Y c and a carbon atom and a ring formed by X c , X d , Y d to Y f and a carbon atom in the general formula (1)
- ⁇ 14> The polymer film according to any one of ⁇ 11> to ⁇ 13>, wherein the compound represented by the general formula (1) is a compound represented by the following general formula (2).
- Het 2 is synonymous with Het 1 in the general formula (1).
- X 2a , X 2b , X 2c and X 2d have the same meanings as X a , X b , X c and X d in the general formula (1), respectively.
- Y 2b , Y 2c , Y 2e and Y 2f have the same meanings as Y b , Y c , Y e and Y f in the general formula (1), respectively.
- L 1 and L 2 each independently represents an oxygen atom, a sulfur atom or ⁇ NR a (R a represents a hydrogen atom or a monovalent substituent).
- Z 1 and Z 2 each independently represents an atomic group necessary for forming a 4- to 8-membered ring together with Y 2b and Y 2c or Y 2e and Y 2f .
- Het 3 is synonymous with Het 2 in the general formula (2).
- X 3a , X 3b , X 3c and X 3d have the same meanings as X 2a , X 2b , X 2c and X 2d in the general formula (2), respectively.
- R 3a , R 3b , R 3c , R 3d , R 3e , R 3f , R 3g and R 3h each independently represent a hydrogen atom or a monovalent substituent.
- Het 4 is synonymous with Het 3 in the general formula (3).
- R 4a , R 4b , R 4c , R 4d , R 4e , R 4f , R 4g and R 4h are R 3a , R 3b , R 3c , R 3d , R 3e , R 3f in the general formula (3), respectively. , R 3g and R 3h .
- ⁇ 17> The polymer film according to ⁇ 16>, wherein the compound represented by the general formula (4) is a compound represented by the following general formula (5).
- R 5a , R 5b , R 5c , R 5d , R 5e , R 5f , R 5g and R 5h are R 4a , R 4b , R 4c , R 4d , R 4e , R in the general formula (4), respectively. It is synonymous with 4f , R4g and R4h .
- R 5i and R 5j each independently represent a hydrogen atom or a monovalent substituent.
- ⁇ 19> The polymer film according to any one of ⁇ 8> to ⁇ 18>, wherein the polymer substance is polyethylene terephthalate, polyethylene naphthalate, polycarbonate, or polymethyl methacrylate.
- a solar cell comprising the polymer film according to any one of ⁇ 8> to ⁇ 19>.
- An intermediate film comprising the polymer film described in any one of ⁇ 8> to ⁇ 19>.
- a resin composition comprising a polymer material containing a compound represented by the following general formula (1).
- Het 1 represents a divalent 5- or 6-membered aromatic heterocyclic residue.
- the aromatic heterocyclic residue may have a substituent.
- X a , X b , X c and X d each independently represent a hetero atom.
- X a to X d may have a substituent.
- Y a , Y b , Y c , Y d , Y e and Y f each independently represent a hetero atom or a carbon atom.
- Y a to Y f may have a substituent.
- the ring bonded to Het 1 may have a double bond at any position.
- the resin molded product of the present invention is excellent in light resistance and can be used for various applications requiring ultraviolet absorption.
- the polymer film of the present invention can be used as an ultraviolet filter.
- the polymer film can be protected by being attached to a container.
- the resin composition in the present invention may be any resin composition as long as it maintains a shape for a certain time at room temperature.
- the resin molded product in the present invention may be a molded product containing a resin, and the form thereof is not particularly limited. Specific examples include polymer films, tubes, cups, plates, bottles, pellets, bulk resins, and the like.
- the resin molded product of the present invention contains a compound (ultraviolet absorbing compound) having a maximum absorption wavelength of 400 nm or less in a solution in a polymer substance of 5 g / m 2 or less, and has a light transmittance at a wavelength of 410 nm. It is characterized by being 5% or less.
- the solution for measuring the maximum absorption wavelength in the present invention is a solution obtained by dissolving the compound used in the present invention in an organic or inorganic solvent or water alone or a mixture thereof.
- organic solvent examples include, for example, amide solvents (for example, N, N-dimethylformamide, N, N-dimethylacetamide, 1-methyl-2-pyrrolidone), sulfone solvents (for example, sulfolane), sulfoxide solvents (for example, Dimethyl sulfoxide), ureido solvents (eg tetramethylurea), ether solvents (eg dioxane, tetrahydrofuran, cyclopentylmethyl ether), ketone solvents (eg acetone, cyclohexanone), hydrocarbon solvents (eg toluene, xylene, n- Decane), halogenated solvents (eg tetrachloroethane, chlorobenzene, chloronaphthalene), alcoholic solvents (eg methanol, ethanol, isopropyl alcohol, ethylene glycol, cyclohexanol, phenol) Pyridine
- amide solvents In consideration of solubility, amide solvents, sulfone solvents, sulfoxide solvents, ureido solvents, ether solvents, ketone solvents, halogen solvents, alcohol solvents, ester solvents, and nitrile solvents are preferable. More preferably, it is an amide solvent, ether solvent, ketone solvent, halogen solvent, alcohol solvent, ester solvent, nitrile solvent, more preferably ether solvent, halogen solvent, ester solvent, Particularly preferred are ester solvents. Of the ester solvents, ethyl acetate is most preferable.
- the concentration is not particularly limited as long as the maximum absorption wavelength of spectral absorption can be confirmed, and is preferably in the range of 1 ⁇ 10 ⁇ 8 to 1M.
- the temperature is not particularly limited, but is preferably 0 ° C. to 80 ° C.
- the maximum absorption wavelength in the solution of the compound is preferably 350 nm or more and 400 nm or less, more preferably 360 nm or more and 400 nm or less, and most preferably 370 nm or more and 400 nm or less.
- the content of the ultraviolet absorbing compound is preferably 3 g / m 2 or less, more preferably 2 g / m 2 or less, and particularly preferably 1 g / m 2 or less.
- the ultraviolet absorbing compound is preferably contained in an amount of 0.05 to 30% by mass based on the total mass of the compound and the polymer substance from the viewpoint of exhibiting an ultraviolet absorbing effect and uniformly dispersing the ultraviolet absorbing compound. More preferably, it is contained in an amount of ⁇ 20% by mass.
- the resin molded product of the present invention preferably has a light transmittance of 5% or less at a wavelength of 410 nm and a light transmittance of 80% or more at a wavelength of 440 nm. More preferably, the light transmittance at a wavelength of 410 nm is 4% or less, and the light transmittance at a wavelength of 440 nm is 80% or more, more preferably, the light transmittance at a wavelength of 410 nm is 3% or less, and at a wavelength of 440 nm.
- the light transmittance is 80% or more, particularly preferably the light transmittance at a wavelength of 410 nm is 2% or less, and the light transmittance at a wavelength of 440 nm is 80% or more.
- the resin molded product of the present invention has a light transmittance of 5% or less at a wavelength of 410 nm, a light transmittance of 70% or more at a wavelength of 430 nm, and a light transmittance of 80% or more at a wavelength of 440 nm.
- the light transmittance at a wavelength of 410 nm is 4% or less
- the light transmittance at a wavelength of 430 nm is 70% or more
- the light transmittance at a wavelength of 440 nm is 80% or more, more preferably at a wavelength of 410 nm.
- the light transmittance is 3% or less, the light transmittance at a wavelength of 430 nm is 70% or more, and the light transmittance at a wavelength of 440 nm is 80% or more. Particularly preferably, the light transmittance at a wavelength of 410 nm is 2% or less.
- the light transmittance at a wavelength of 430 nm is 70% or more, and the light transmittance at a wavelength of 440 nm is 80% or more.
- the light transmittance at wavelengths of 410 nm, 430 nm, and 440 nm can be measured using, for example, a spectrophotometer UV-3600 (trade name, manufactured by Shimadzu Corporation).
- the ultraviolet absorbing compound contained in the resin molded product of the present invention is preferably a compound represented by the general formula (1).
- Het 1 represents a divalent 5- or 6-membered aromatic heterocyclic residue having at least one hetero atom. Het 1 may be condensed.
- the hetero atom include a boron atom, a nitrogen atom, an oxygen atom, a silicon atom, a phosphorus atom, a sulfur atom, a selenium atom, and a tellurium atom.
- a hetero atom is preferably a nitrogen atom, an oxygen atom, or a sulfur atom. More preferably, they are a nitrogen atom and a sulfur atom. Particularly preferred is a sulfur atom. When two or more hetero atoms are present, they may be the same atom or different atoms.
- Examples of the aromatic heterocyclic ring in which two hydrogen atoms are added to a divalent aromatic heterocyclic residue include pyrrole, pyrazole, imidazole, 1,2,3-triazole, 1,2,4-triazole, pyridine, pyridazine, Examples include pyrimidine, pyrazine, 1,3,5-triazine, furan, thiophene, oxazole, isoxazole, thiazole, isothiazole, 1,2,3-oxadiazole, 1,3,4-thiadiazole and the like.
- Preferred examples of the aromatic heterocycle include pyrrole, pyridine, furan and thiophene. More preferred are pyridine and thiophene.
- thiophene Any position for removing the hydrogen atom of the aromatic heterocycle may be used.
- the bonding positions in the hetero 5-membered ring compound pyrrole include the 2,3-position, 2,4-position, 2,5-position, 3,4-position, and 3,5-position.
- examples of the bonding position in thiophene include 2,3-position, 2,4-position, 2,5-position, 3,4-position, and 3,5-position.
- the 2,5th, 2,4th and 3,4th positions are preferred, the 2,5th, 3rd and 4th positions are more preferred, and the 2,5th place is particularly preferred.
- the bonding positions in the hetero 6-membered ring compound pyridine include the 2,3 position, 2,4 position, 2,5 position, 2,6 position, 3,4 position, 3,5 position and 3,6 position. It is done. Of these, preferred are the 2,5th, 2,6th and 3,5th positions, more preferred are the 2,5th and 2,6th positions, and particularly preferred are the 2,5th positions.
- the aromatic heterocyclic residue Het 1 may have a substituent.
- a monovalent substituent is mentioned as a substituent.
- R examples include a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom), an alkyl group having 1 to 20 carbon atoms (for example, methyl, ethyl), a carbon number of 6 ⁇ 20 aryl groups (eg phenyl, naphthyl), cyano groups, carboxyl groups, alkoxycarbonyl groups (eg methoxycarbonyl), aryloxycarbonyl groups (eg phenoxycarbonyl), substituted or unsubstituted carbamoyl groups (eg carbamoyl, N- Phenylcarbamoyl, N, N-dimethylcarbamoyl), alkylcarbonyl group (eg acety
- the substituent may be further substituted, and when there are a plurality of substituents, they may be the same or different.
- the above-mentioned monovalent substituent R can be mentioned as an example of a substituent.
- Preferred examples of the substituent include an alkyl group, an alkoxy group, and an aryl group. An alkyl group and an aryl group are more preferable, and an alkyl group is particularly preferable.
- X a , X b , X c and X d each independently represent a hetero atom.
- the hetero atom include a boron atom, a nitrogen atom, an oxygen atom, a silicon atom, a phosphorus atom, a sulfur atom, a selenium atom, and a tellurium atom.
- a hetero atom is preferably a nitrogen atom, an oxygen atom, or a sulfur atom. More preferably, they are a nitrogen atom and an oxygen atom.
- X a to X d may have a substituent. Examples of the substituent include the examples of the monovalent substituent R described above.
- Y a , Y b , Y c , Y d , Y e and Y f each independently represent a hetero atom or a carbon atom.
- the atoms constituting Y a to Y f include a carbon atom, a nitrogen atom, an oxygen atom, and a sulfur atom.
- the atoms constituting Y a to Y f are preferably a carbon atom, a nitrogen atom and an oxygen atom, and more preferably a carbon atom and a nitrogen atom. More preferred is a carbon atom, and particularly preferred is a case where all represent a carbon atom.
- the atoms may be substituted, the substituents may be bonded to each other to form a ring, or may be further condensed. Examples of the substituent include the examples of the monovalent substituent R described above.
- the two rings bonded to the aromatic heterocyclic residue may have a double bond at any position. At least one of the two rings is preferably condensed. Moreover, it is preferable that at least one of the two rings is not a perimidine ring.
- the ring formed by X a , X b , Y a to Y c and the carbon atom is A
- the aromatic heterocyclic residue represented by Het 1 is Het
- Specific examples of each ring are shown by assuming that the ring formed by X c , X d , Y d to Y f and carbon atom is B.
- Me represents a methyl group
- Et represents an ethyl group
- Ph represents a phenyl group.
- the compound represented by the general formula (1) is preferably a compound represented by the general formula (2).
- the compound represented by the general formula (2) will be described.
- Het 2 has the same meaning as Het 1 in the general formula (1). The same applies to the preferred case.
- X 2a , X 2b , X 2c and X 2d are the same as X a , X b , X c and X d in the general formula (1), respectively, and are the same when preferred.
- X 2a , X 2b , X 2c and X 2d may be different from each other, but it is more preferable that X 2a and X 2b , and X 2c and X 2d each represent the same combination, particularly preferably X In this case, 2a and X 2c represent an oxygen atom, and X 2b and X 2d represent a nitrogen atom.
- Y 2b , Y 2c , Y 2e and Y 2f have the same meanings as Y b , Y c , Y e and Y f in the general formula (1), respectively. The same applies to the preferred case.
- L 1 and L 2 each independently represents an oxygen atom, a sulfur atom or ⁇ NR a (R a represents a hydrogen atom or a monovalent substituent.
- the substituent is the above-described monovalent substituent R.
- the oxygen atom is preferably ⁇ NR a . More preferred is an oxygen atom.
- L 1 and L 2 may be different from each other, but are preferably the same. Among these, it is particularly preferable that both L 1 and L 2 are oxygen atoms.
- Z 1 and Z 2 each independently represents an atomic group necessary for forming a 4- to 8-membered ring together with Y 2b and Y 2c or Y 2e and Y 2f . These rings may have a substituent and may further be condensed.
- the ring to be formed include aliphatic hydrocarbon rings such as cyclohexane and cyclopentane, aromatic hydrocarbon rings such as benzene ring and naphthalene ring, pyridine, pyrrole, pyridazine, thiophene, imidazole, furan, pyrazole, oxazole, triazole, thiazo Or heterocyclic rings such as benzo-condensed ring thereof.
- An aromatic hydrocarbon ring and a hetero ring are preferable.
- An aromatic hydrocarbon ring is more preferable, and a benzene ring is particularly preferable.
- the compound represented by the general formula (2) is preferably a compound represented by the general formula (3).
- the compound represented by the general formula (3) will be described.
- Het 3 has the same meaning as Het 2 in the general formula (2). The same applies to the preferred case.
- X 3a , X 3b , X 3c and X 3d have the same meanings as X 2a , X 2b , X 2c and X 2d in the general formula (2), respectively, and are the same when preferred.
- X 3a , X 3b , X 3c and X 3d may be different from each other, but it is more preferable that X 3a and X 3b , and X 3c and X 3d each represent the same combination, particularly preferably X In this case, 3a and X 3c represent an oxygen atom, and X 3b and X 3d represent a nitrogen atom.
- R 3a , R 3b , R 3c , R 3d , R 3e , R 3f , R 3g and R 3h each independently represent a hydrogen atom or a monovalent substituent.
- substituents include the examples of the monovalent substituent R described above. Any two substituents of R 3a to R 3d and R 3e to R 3h may be bonded to each other to form a ring, and may further be condensed.
- R 3a to R 3h are preferably a hydrogen atom, an alkyl group having 10 or less carbon atoms, an alkoxy group having 10 or less carbon atoms, and a hydroxy group, and more preferably a hydrogen atom and an alkoxy group having 10 or less carbon atoms. More preferred is a hydrogen atom, and particularly preferred is a case where all of R 3a to R 3h represent a hydrogen atom.
- the compound represented by the general formula (3) is preferably a compound represented by the general formula (4).
- the compound represented by the general formula (4) will be described.
- Het 4 has the same meaning as Het 3 in the general formula (3). The same applies to the preferred case.
- R 4a , R 4b , R 4c , R 4d , R 4e , R 4f , R 4g and R 4h are R 3a , R 3b , R 3c , R 3d , R 3e , R 3f in the general formula (3), respectively. , R 3g and R 3h . The same applies to the preferred case.
- the compound represented by the general formula (4) is preferably a compound represented by the general formula (5).
- the compound represented by the general formula (5) will be described.
- Het 5 has the same meaning as Het 4 in the general formula (4). The same applies to the preferred case.
- R 5a , R 5b , R 5c , R 5d , R 5e , R 5f , R 5g and R 5h are R 4a , R 4b , R 4c , R 4d , R 4e , R 4f in the general formula (4), respectively. , R 4g and R 4h . The same applies to the preferred case.
- R 5i and R 5j each independently represent a hydrogen atom or a monovalent substituent.
- the monovalent substituent include the examples of the monovalent substituent R described above.
- R 5i and R 5j may be bonded to each other to form a ring or may be further condensed.
- R 5i and R 5j are preferably a hydrogen atom, an alkyl group having 10 or less carbon atoms, an alkoxy group having 10 or less carbon atoms, and a hydroxy group, and more preferably a hydrogen atom and an alkoxy group having 10 or less carbon atoms. More preferred is a hydrogen atom, and particularly preferred is a case where R 5i and R 5j both represent a hydrogen atom.
- the compound represented by any one of the general formulas (1) to (5) can be synthesized by any method.
- publicly known patent documents and non-patent documents for example, the example of page 4 left 43rd line to right 8th line of JP-A-2000-264879, page 4 right column 5th line 30 to 30 of JP-A-2003-155375. It can be synthesized with reference to the example of the line, “Bioorganic & Medicinal Chemistry”, 2000, Vol. 8, pp. 2095-2103, “Bioorganic & Medicinal Chemistry Letters”, 2003, Vol. 13, pages 4077-4080.
- Exemplified Compound (15) can be synthesized by reacting 3,5-pyrazole dicarbonyl dichloride with anthranilic acid.
- the exemplified compound (32) can be synthesized by reacting 2,5-thiophene dicarbonyl dichloride with 4,5-dimethoxyanthranilic acid.
- the compound represented by any one of the general formulas (1) to (5) can take a tautomer depending on the structure and the environment in which the compound is placed. Although the present invention is described in one of representative forms, tautomers different from those described in the present invention are also included in the compounds used in the present invention.
- the compound represented by any one of the general formulas (1) to (5) may contain an isotope (for example, 2 H, 3 H, 13 C, 15 N, 17 O, 18 O, etc.). Good.
- the compound represented by any one of the general formulas (1) to (5) is particularly suitable for stabilizing an organic material against damage caused by light, oxygen, or heat. Among them, it is most suitable for use as a light stabilizer, particularly as an ultraviolet absorber.
- the polymer substance may be either a natural or synthetic polymer.
- Polyolefin for example, polyethylene, polypropylene, polyisobutylene, poly (1-butene), poly-4-methylpentene, polyvinylcyclohexane, polystyrene, poly (p-methylstyrene), poly ( ⁇ -methylstyrene), polyisoprene, polybutadiene, Polycyclopentene, polynorbornene, etc.
- copolymers of vinyl monomers eg, ethylene / propylene copolymers, ethylene / methylpentene copolymers, ethylene / heptene copolymers, ethylene / vinylcyclohexane copolymers, ethylene / cycloolefin copolymers (eg, ethylene / norbornene)
- COC cycloolefin copolymer
- the polymer substance used in the present invention is preferably a synthetic polymer, more preferably polyolefin, acrylic polymer, polyester, polycarbonate, polyvinyl butyral, ethylene vinyl acetate, polyethersulfone, or cellulose ester.
- polyethylene, polypropylene, poly (4-methylpentene), polymethyl methacrylate (PMMA), polycarbonate, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and triacetyl cellulose are particularly preferable.
- thermoplastic resins include polyethylene resins, polypropylene resins, poly (meth) acrylic ester resins, polystyrene resins, styrene-acrylonitrile resins, acrylonitrile-butadiene-styrene resins, polyvinyl chloride resins, Polyvinylidene chloride resin, polyvinyl acetate resin, polyvinyl butyral resin (PVB), ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol resin, polyethylene terephthalate resin (PET), polyethylene naphthalate resin (PEN) , Polybutylene terephthalate resin (PBT), ethylene vinyl acetate resin (EVA), polyethersulfone resin (PES), liquid crystal polyester resin (LCP), polyacetal resin (POM), polyamide resin (PA , Polycarbonate resin (PC), polyurethane resins and polyphenylene
- resins are also used as thermoplastic molding materials in which natural resins contain fillers such as glass fibers, carbon fibers, semi-carbonized fibers, cellulosic fibers, glass beads, flame retardants, and the like.
- conventionally used additives for resins for example, polyolefin resin fine powder, polyolefin wax, ethylene bisamide wax, metal soap, etc. can be used alone or in combination as required.
- the polymer substance is preferably transparent.
- transparent polymer materials include cellulose esters (eg, diacetylcellulose, triacetylcellulose, propionylcellulose, butyrylcellulose, acetylpropionylcellulose, nitrocellulose), polyamides, polycarbonates, polyesters (eg, polyethylene terephthalate, polyethylene naphthalate).
- Polybutylene terephthalate poly-1,4-cyclohexanedimethylene terephthalate, polyethylene-1,2-diphenoxyethane-4,4′-dicarboxylate, polybutylene terephthalate
- polystyrene eg, syndiotactic polystyrene
- Polyolefin eg, polyethylene, polypropylene, polymethylpentene
- polymethyl methacrylate syndiotactic polystyrene
- poly Sulfone polyether sulfone
- polyvinyl butyral ethylene vinyl acetate
- polyether ketones polyether imides, polyoxyethylene, and the like.
- Preferred are cellulose ester, polycarbonate, polyester, polyolefin, and acrylic resin, and more preferred are polycarbonate and polyester. Further preferred is polyester, and particularly preferred is polyethylene terephthalate.
- two or more compounds represented by any one of the general formulas (1) to (5) having different structures may be used in combination, or any one of the general formulas (1) to (5) may be used.
- a compound represented by the above formula and one or more ultraviolet absorbers having other structures may be used in combination.
- ultraviolet absorbers When two kinds (preferably three kinds) of ultraviolet absorbers are used in combination, ultraviolet rays in a wide wavelength region can be absorbed.
- the dispersion state of the ultraviolet absorber is also stabilized. Any ultraviolet absorber having a structure other than those of the general formulas (1) to (5) can be used.
- Examples of the structure of the ultraviolet absorber include triazine, benzotriazole, benzophenone, merocyanine, cyanine, dibenzoylmethane, cinnamic acid, cyanoacrylate, and benzoate.
- Triazine May 2004, pages 28-38, published by Toray Research Center, Research Division, “New Development of Functional Additives for Polymers” (Toray Research Center, 1999), pages 96-140, Junichi Okachi UV absorbers described in the supervision of “Development of Polymer Additives and Environmental Countermeasures” (CMC Publishing Co., Ltd., 2003), pages 54 to 64, and the like.
- a benzotriazole-based, benzophenone-based, salicylic acid-based, cyanoacrylate-based, or triazine-based compound is preferable. More preferred are benzotriazole, benzophenone and triazine compounds. Particularly preferred are benzotriazole compounds.
- the effective absorption wavelength of benzotriazole compounds is about 270 to 380 nm, and representative examples include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole and 2- (2′-hydroxy-5′-t-butyl).
- Phenyl) benzotriazole 2- (2′-hydroxy-3′-t-butyl-5′-methylphenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t -Butylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3'-t-butyl-5 '-(2- (octyloxycarbonyl) ethyl) phenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-3′-dodecyl-5′-methylphenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-3 ′, 5 ′ Di-t-amylphenyl) benzo
- the effective absorption wavelength of benzophenone compounds is about 270 to 380 nm, and representative examples include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octyloxybenzophenone, 2-hydroxy-4- Dodecyloxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2-hydroxy-4- (2-hydroxy-3-methacryloxypropoxy) benzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, 2-hydroxy- 4-methoxy-5-sulfobenzophenone trihydrate, 2-hydroxy-4-methoxy-2'-carboxybenzophenone, 2-hydroxy-4-octadecyloxybenzophenone, 2-hydroxy-4-diethylamino -2'-hexyloxycarbonylbenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, 2,2'-d
- the effective absorption wavelength of the salicylic acid compound is about 290 to 330 nm, and representative examples include phenyl salicylate, pt-butylphenyl salicylate, p-octylphenyl salicylate and the like.
- the effective absorption wavelength of the cyanoacrylate compound is about 270 to 350 nm.
- Typical examples include 2-ethylhexyl 2-cyano-3, 3-diphenyl acrylate, ethyl 2-cyano-3, 3-diphenyl acrylate, hexadecyl 2-cyano- 3- (4-methylphenyl) acrylate, 2-cyano-3- (4-methylphenyl) acrylate, 1,3-bis (2′-cyano-3,3′-diphenylacryloyl) oxy) -2, And 2-bis (((2′-cyano-3,3′-diphenylacryloyl) oxy) methyl) propane.
- the effective absorption wavelength of the triazine compound is about 270 to 380 nm, and representative examples include 2- (4-hexyloxy-2-hydroxyphenyl) -4,6-diphenyl-1,3,5-triazine, 2- (4- Octyloxy-2-hydroxyphenyl) -4,6-di (2,5-dimethylphenyl) -1,3,5-triazine, 2- (4-butoxy-2-hydroxyphenyl) -4,6-di (4 -Butoxyphenyl) -1,3,5-triazine, 2- (4-butoxy-2-hydroxyphenyl) -4,6-di (2,4-dibutoxyphenyl) -1,3,5-triazine, 2 -(4- (3- (2-ethylhexyloxy) -2-hydroxypropoxy) -2-hydroxyphenyl) -4,6-di (2,4-dimethylphenyl) -1,3,5-triazine, 2 - 4- (3
- the resin molded product of the present invention comprises an antioxidant, a light stabilizer, a processing stabilizer, an anti-aging agent, a compatibilizing agent, if necessary, in addition to the polymer substance and the ultraviolet absorbing compound (ultraviolet absorber).
- Arbitrary arbitrary additives may be contained appropriately.
- the resin molded product of the present invention has a practically sufficient ultraviolet shielding effect due to the ultraviolet absorbing compound, but when a more strict ultraviolet shielding effect is required, it has a strong white hiding power.
- a pigment such as titanium oxide may be used in combination.
- a trace amount (0.05% by mass or less) of a colorant can be used in combination.
- a fluorescent brightening agent may be used in combination. Examples of the optical brightener include those commercially available, general formula [1] described in JP-A-2002-53824, and specific compound examples 1 to 35.
- the compound represented by any one of the general formulas (1) to (5) can be contained in the polymer substance by various methods.
- the compound When the compound is compatible with the polymer material, the compound can be added directly to the polymer material.
- the compound may be dissolved in an auxiliary solvent having compatibility with the polymer substance, and the solution may be added to the polymer substance.
- the compound may be dispersed in a high-boiling organic solvent or polymer, and the dispersion may be added to the polymer substance.
- the boiling point of the high-boiling organic solvent is preferably 180 ° C. or higher, and more preferably 200 ° C. or higher.
- the melting point of the high-boiling organic solvent is preferably 150 ° C. or lower, and more preferably 100 ° C. or lower.
- the high boiling point organic solvent include phosphate ester, phosphonate ester, benzoate ester, phthalate ester, fatty acid ester, carbonate ester, amide, ether, halogenated hydrocarbon, alcohol and paraffin. Phosphate esters, phosphonate esters, phthalate esters, benzoate esters and fatty acid esters are preferred.
- JP-A-58-209735, JP-A-63-264748, JP-A-4-191185, JP-A-8-272058, and British Patent No. 2011017A Can be referred to.
- the compound (ultraviolet absorber) represented by any one of the general formulas (1) to (5) may be added during the polymerization of the polymer substance or may be added after the polymerization.
- the ultraviolet absorber When added in a molten state to the polymer substance after polymerization, the ultraviolet absorber may be added alone or in a state dispersed in a solvent or the like.
- the solvent used at this time is not particularly limited as long as it does not deteriorate the resin to be kneaded and disperses the ultraviolet absorber. Examples of such solvents include the high boiling point organic solvents described above.
- Such melt mixing can be performed by adding an ultraviolet absorber at a temperature equal to or higher than the melting temperature of the polymer using a melt mixing facility such as a single screw or twin screw extruder.
- a melt mixing facility such as a single screw or twin screw extruder.
- the ultraviolet absorber may be added to the molten state of the thermoplastic resin during film formation and kneaded. This method is preferable because the deterioration of the thermoplastic resin can be suppressed by reducing the heat history.
- thermoplastic polymer capable of melt polymerization for example, a thermoplastic polyester such as polyethylene terephthalate or polyethylene naphthalate
- a dispersion of an ultraviolet absorber may be added before or during the polymerization.
- the ultraviolet absorber may be added alone or may be added in a state dispersed in a solvent in advance.
- the solvent in this case is preferably a polymer raw material.
- the polymerization reaction may be carried out according to the usual polymer polymerization conditions.
- thermoplastic resin containing an ultraviolet absorber at a relatively high concentration of 0.5 to 50% by mass obtained by the above method can be used as a master batch and further kneaded with a thermoplastic resin to which no ultraviolet absorber is added.
- a target ultraviolet absorber-containing polymer can be obtained.
- the polymer film of the present invention is formed by molding the above-mentioned resin molded product of the present invention into a film shape.
- the content of the UV-absorbing compound in the polymer film of the present invention, the light transmittance at a wavelength of 410 nm, the light transmittance at 440 nm, the light transmittance at 430 nm and preferred ranges thereof are explained for the resin molded product of the present invention. It is the same as that.
- a thermoplastic resin containing an ultraviolet absorber can be formed into a film by melt film formation.
- the melt film forming temperature is preferably not less than 450 ° C., more preferably not more than 400 ° C., and still more preferably not more than 350 ° C., the flow starting temperature of the thermoplastic resin (the glass transition temperature for amorphous resins, the melting point for crystalline resins). . If the temperature is lower than the flow start temperature, melt molding becomes difficult, which is not preferable. If the temperature is too high, the thermoplastic resin may be thermally deteriorated, which is not preferable.
- the stretching method include conventionally known methods, for example, a method of stretching sequentially or simultaneously in a uniaxial or biaxial direction.
- the stretching temperature is preferably not less than the glass transition point of the resin composition and not more than 90 ° C., more preferably not less than the glass transition point of the resin composition and not more than 70 ° C., more preferably not less than the glass transition point and not less than 60 ° C. It is as follows. If the stretching temperature is too low or too high, it is difficult to produce a uniform film, which is not preferable. Further, the draw ratio is preferably 1.5 times or more and 100 times or less as a surface magnification. The draw ratio in the present invention is represented by (area of film after stretching) / (area of film before stretching). It is preferable because the polymer is oriented by stretching and becomes more elastic.
- thermoplastic resin when the thermoplastic resin is crystalline, it is preferable to heat-treat after stretching and orientation of the film.
- the temperature of the heat treatment is preferably not less than the glass transition point of the polyester and not more than the melting point. Further suitable temperature is determined taking into account the crystallization temperature of the obtained film and the physical properties of the obtained film.
- the thickness of the film of the present invention is preferably 1 to 500 ⁇ m, more preferably 5 to 400 ⁇ m, and particularly preferably 10 to 300 ⁇ m. If it is this range, it will fully absorb ultraviolet rays and is effective as a light-resistant film.
- the resin composition of the present invention is characterized in that the polymer material contains the compound represented by the general formula (1).
- Preferred substituents, specific examples, and polymer substances of the compound represented by the general formula (1) are the same as those described in the description of the resin molded product.
- the resin composition of the present invention can be used for the production of the resin molded product (various materials and molded products) of the present invention and a polymer film.
- the resin molded body and composition of the present invention can be used for all applications in which a synthetic resin is used, but can be particularly suitably used for applications that may be exposed to sunlight or light including ultraviolet rays.
- surface coating materials for glass substitutes, housing, facilities, window glass for transportation equipment, coating materials for daylighting glass and light source protection glass, housing, facilities, window films for transportation equipment, housing, facilities, etc.
- Interior / exterior materials for transportation equipment fluorescent light sources, mercury lamps and other light source materials, precision machinery, electronic and electrical equipment materials, shielding materials for electromagnetic waves generated from various displays, foods, chemicals, chemicals, etc.
- the intermediate film in the present invention may be any film as long as it is sandwiched between substrates, and specific examples thereof include a polymer film that is sandwiched between laminated glasses.
- Example 1 A pellet of polyethylene terephthalate (PET) having an intrinsic viscosity of 0.78 dried at 170 ° C. for 6 hours was mixed with Exemplified Compound (1) and charged into an extruder. Melt kneading was performed at a melting temperature of 280 ° C. to obtain ultraviolet absorber-containing pellets. The pellets and polyethylene terephthalate were mixed so that the ultraviolet absorber was 0.5 g / m 2 and melt kneaded at 280 ° C. to obtain a film having a thickness of 100 ⁇ m.
- PET polyethylene terephthalate
- the maximum absorption wavelength in a solution of Exemplified Compound (1) include ethyl acetate as solvent, to prepare a concentration of 2 ⁇ 10 -5 M solution, using a spectrophotometer UV-3600 (trade name, manufactured by Shimadzu Corporation) Measurement As a result, it was 375 nm.
- Example 2 A film was produced in the same manner as in Example 1 except that the amount of the exemplified compound (1) added in Example 1 was changed to 1.0 g / m 2 .
- Example 3 A film was produced in the same manner as in Example 1 except that the addition amount of the exemplified compound (1) in Example 1 was changed to 4.0 g / m 2 .
- Example 4 A film was produced in the same manner as in Example 1 except that Example Compound (1) was changed to Example Compound (5) in Example 1.
- the maximum absorption wavelength in the solution of the exemplary compound (5) was measured in the same manner as in Example 1, it was 392 nm.
- Example 5 A film was produced in the same manner as in Example 1 except that Example Compound (1) was changed to Example Compound (17) in Example 1.
- the maximum absorption wavelength in the solution of the exemplary compound (17) was measured in the same manner as in Example 1, it was 361 nm.
- Example 6 A film was produced in the same manner as in Example 1 except that the exemplified compound (1) was changed to the exemplified compound (21) in Example 1.
- the maximum absorption wavelength in the solution of the exemplary compound (21) was measured in the same manner as in Example 1, it was 357 nm.
- Example 7 A film was produced in the same manner as in Example 1 except that the exemplified compound (1) was changed to the exemplified compound (31) in Example 1.
- the maximum absorption wavelength in the solution of the exemplary compound (31) was measured in the same manner as in Example 1, it was 383 nm.
- Example 8 Polycarbonate (PC) pellets and exemplary compound (1) were mixed and charged into an extruder. Melt kneading was performed at a melting temperature of 300 ° C. to obtain ultraviolet absorber-containing pellets. Pellets and polycarbonate were mixed so that the ultraviolet absorbent was 0.5 g / m 2 and melt kneaded at 300 ° C. to obtain a film having a thickness of 100 ⁇ m.
- Example 9 Polyethylene naphthalate (PEN) pellets and exemplary compound (1) were mixed and charged into an extruder. Melt kneading was performed at a melting temperature of 305 ° C. to obtain ultraviolet absorber-containing pellets. Pellets and polyethylene naphthalate were mixed so that the ultraviolet absorber was 0.5 g / m 2 and melt kneaded at 305 ° C. to obtain a film having a thickness of 100 ⁇ m.
- PEN Polyethylene naphthalate
- Example 10 Polyethersulfone (PES) pellets and exemplary compound (1) were mixed and charged into an extruder. Melt kneading was performed at a melting temperature of 350 ° C. to obtain ultraviolet absorber-containing pellets. Pellets and polyethersulfone were mixed so that the ultraviolet absorber was 0.5 g / m 2 and melt kneaded at 350 ° C. to obtain a film having a thickness of 100 ⁇ m.
- PES Polyethersulfone
- Example 11 Polymethylmethacrylate (PMMA) pellets and exemplary compound (1) were mixed and charged into an extruder. Melt kneading was performed at a melting temperature of 240 ° C. to obtain ultraviolet absorber-containing pellets. The pellets and polymethyl methacrylate were mixed so that the ultraviolet absorber was 0.5 g / m 2 and melt kneaded at 240 ° C. to obtain a film having a thickness of 100 ⁇ m.
- PMMA Polymethylmethacrylate
- Example 12 A film was produced in the same manner as in Example 1 except that the amount of Example Compound (1) added in Example 1 was changed to 5.0 g / m 2 .
- Example 13 A film was produced in the same manner as in Example 1 except that the thickness of the film in Example 1 was changed to 25 ⁇ m.
- Example 14 A film was produced in the same manner as in Example 1 except that the thickness of the film in Example 1 was changed to 200 ⁇ m.
- Example 15 The pellets of polybutylene terephthalate (PBT) and exemplary compound (1) were mixed and charged into an extruder. Melt kneading was performed at a melting temperature of 280 ° C. to obtain ultraviolet absorber-containing pellets. The pellets and polybutylene terephthalate were mixed so that the ultraviolet absorber was 0.5 g / m 2 and melt kneaded at 350 ° C. to obtain a film having a thickness of 100 ⁇ m.
- PBT polybutylene terephthalate
- exemplary compound (1) Example 15 The pellets of polybutylene terephthalate (PBT) and exemplary compound (1) were mixed and charged into an extruder. Melt kneading was performed at a melting temperature of 280 ° C. to obtain ultraviolet absorber-containing pellets. The pellets and polybutylene terephthalate were mixed so that the ultraviolet absorber was 0.5 g / m 2 and melt kneaded at 350 °
- Comparative Example 1 A film was produced in the same manner as in Example 1 except that Example Compound (1) was not added in Example 1.
- Comparative Example 2 A film was produced in the same manner as in Example 1 except that the amount of Example Compound (1) added in Example 1 was changed to 8.0 g / m 2 .
- Comparative Example 3 20% by mass of polymethyl methacrylate (PMMA) was dissolved in tetrahydrofuran to prepare a binder solution. Next, the following comparative compound A (Me represents a methyl group) was dissolved in the binder solution to prepare a coating solution. A polyethylene terephthalate film having a thickness of 100 ⁇ m was used as a base material, and the coating solution was applied thereon by a coater and dried at 70 ° C. for 1 hour to form a film having a thickness of 50 ⁇ m, thereby producing a film. The content of the comparative compound A in the film was 10.8 g / m 2 . When measured in the same manner as in Example 1, the maximum absorption wavelength in the solution of Comparative Compound A was 352 nm.
- PMMA polymethyl methacrylate
- Comparative Example 4 A film was produced in the same manner as in Comparative Example 3 except that the thickness of the film was changed to 5 ⁇ m in Comparative Example 3.
- Comparative Example 5 A film was produced in the same manner as in Example 12 except that Comparative Compound B was added instead of Illustrative Compound (1) in Example 12. When measured in the same manner as in Example 1, the maximum absorption wavelength in the solution of Comparative Compound B was 346 nm.
- Each light-resistant film was irradiated with a xenon lamp so that the illuminance was 170,000 lux, and each film after 1000 hours of irradiation was subjected to a wavelength of 410 nm using a spectrophotometer UV-3600 (trade name, manufactured by Shimadzu Corporation). The light transmittance at 430 nm and 440 nm was measured. After irradiation, the haze value of the film was measured using a haze measuring device, and the difference from the haze value before irradiation was evaluated according to the following criteria.
- ⁇ haze value after irradiation / haze value before irradiation ⁇ 2.0: extremely good light resistance ⁇ : 2.0 ⁇ haze value after irradiation / haze value before irradiation ⁇ 3.0 ... good light resistance ⁇ : 3.0 ⁇ irradiation Post haze value / pre-irradiation haze value: poor light resistance The color of the produced film was visually observed and the yellow color was evaluated. ⁇ : Almost colorless and good color ⁇ : There is a problem of yellowing. Table 7 shows the results.
- the film of Comparative Example 1 containing no UV absorber was inferior in light resistance.
- the ultraviolet absorber bleeded out and the film surface became white and soiled, so that it was not suitable as a film.
- the films of Comparative Examples 3 and 4 containing Comparative Compound A are not so problematic in terms of light resistance, but have a light transmittance at wavelengths of 430 nm and 440 nm. It was low.
- the film of Comparative Example 5 containing Comparative Compound B could hardly cut light at 410 nm, and was inferior in light resistance.
- the film of the present invention has low transmittance at a wavelength of 410 nm and high transmittance at wavelengths of 430 nm and 440 nm and is difficult to be decomposed by light irradiation.
- Example 16 Polycarbonate (PC) pellets and exemplary compound (1) were mixed and charged into an extruder. Melt kneading was performed at a melting temperature of 300 ° C. to obtain ultraviolet absorber-containing pellets. Pellets and polycarbonate were mixed so that the ultraviolet absorber was 0.5 g / m 2 and injection molded at 300 ° C. to obtain a molded body having a thickness of 1 mm.
- Example 17 A molded body was produced in the same manner as in Example 16 except that the thickness of the molded body was changed to 5 mm in Example 16.
- Example 18 A molded body was produced in the same manner as in Example 16 except that the thickness of the molded body was changed to 10 mm in Example 16.
- Example 19 Polymethylmethacrylate (PMMA) pellets and exemplary compound (1) were mixed and charged into an extruder. Melt kneading was performed at a melting temperature of 240 ° C. to obtain ultraviolet absorber-containing pellets. The pellets and polymethylmethacrylate were mixed so that the ultraviolet absorbent was 0.5 g / m 2 and injection molded at 240 ° C. to obtain a molded body having a thickness of 1 mm.
- PMMA Polymethylmethacrylate
- Example 20 A molded body was produced in the same manner as in Example 19 except that the thickness of the molded body was changed to 5 mm in Example 19.
- Example 21 A molded body was prepared in the same manner as in Example 19 except that the thickness of the molded body was changed to 10 mm in Example 20.
- the molded article of the present invention had a low transmittance at a wavelength of 410 nm and a high transmittance at a wavelength of 430 nm and 440 nm and was not easily decomposed by light irradiation.
- the resin molded product of the present invention has a low transmittance at a wavelength of 410 nm, a high transmittance at a wavelength of 430 nm and 440 nm, and is not easily decomposed by light irradiation. It seems to be effective for use in Japan.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
従来、ベンゾフェノン系やベンゾトリアゾール系の紫外線吸収剤、および酸化金属を含有させたフィルムは存在した。しかし、これらのフィルムは380nm以下までの紫外線吸収能しか有しておらず、380nm~410nmの可視光短波長領域の光は吸収できないため、その効果が乏しい場合があった。また、これらのフィルムの中には、熱によって紫外線吸収剤の析出や分解が生じるために、加熱成形した際にその効果が半減したり、更には加熱成形に適さないものもあった。
また、長波長領域までカットしようとするとかなり高濃度に紫外線吸収剤を添加する必要があるが、単に高濃度に添加しただけでは紫外線吸収剤の析出や長期使用によるブリードアウトが生じるという問題があった。また、ベンゾフェノン系やベンゾトリアゾール系の紫外線吸収剤の中には、皮膚刺激性や生体内への蓄積性を有するものがあり、使用にあたっては細心の注意が必要であった。
<1>溶液における最大吸収波長が400nm以下である化合物を高分子物質に5g/m2以下含有してなる樹脂成形物であって、波長410nmでの光線透過率が5%以下であることを特徴とする樹脂成形物。
<2>波長440nmでの光線透過率が80%以上である、<1>記載の樹脂成形物。
<3>波長430nmでの光線透過率が70%以上である、<1>または<2>記載の樹脂成形物。
<4>前記化合物が下記一般式(1)で表される化合物である、<1>~<3>のいずれか1項に記載の樹脂成形物。
Xa、Xb、Xc及びXdは、互いに独立してヘテロ原子を表す。また、Xa~Xdは置換基を有していても良い。
Ya、Yb、Yc、Yd、Ye及びYfは、互いに独立してヘテロ原子または炭素原子を表す。また、Ya~Yfは置換基を有していても良い。
Het1に結合している環は、任意の位置に二重結合を有していても良い。]
<5>前記一般式(1)で表される化合物が下記一般式(2)で表される化合物である、<4>に記載の樹脂成形物。
X2a、X2b、X2c及びX2dは、それぞれ前記一般式(1)のXa、Xb、Xc及びXdと同義である。
Y2b、Y2c、Y2e及びY2fは、それぞれ前記一般式(1)のYb、Yc、Ye及びYfと同義である。
L1及びL2は、それぞれ独立して酸素原子、硫黄原子または=NRaを表す(Raは、水素原子または1価の置換基を表す。)。
Z1及びZ2はそれぞれ独立して、Y2b及びY2cまたはY2e及びY2fと一緒になって4~8員環を形成するのに必要な原子群を表す。]
<6>前記一般式(2)で表される化合物が下記一般式(3)で表される化合物である、<5>記載の樹脂成形物。
X3a、X3b、X3c及びX3dは、それぞれ前記一般式(2)のX2a、X2b、X2c及びX2dと同義である。
R3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hは互いに独立して、水素原子または1価の置換基を表す。]
<7>前記一般式(3)で表される化合物が下記一般式(4)で表される化合物である、<6>記載の樹脂成形物。
R4a、R4b、R4c、R4d、R4e、R4f、R4g及びR4hは、それぞれ前記一般式(3)のR3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hと同義である。]
<8>溶液における最大吸収波長が400nm以下である化合物を高分子物質に5g/m2以下含有してなるフィルムであって、波長410nmでの光線透過率が5%以下であることを特徴とするポリマーフィルム。
<9>波長440nmでの光線透過率が80%以上である、<8>記載のポリマーフィルム。
<10>波長430nmでの光線透過率が70%以上である、<8>または<9>記載のポリマーフィルム。
<11>前記化合物が下記一般式(1)で表される化合物である、<8>~<10>のいずれか1項に記載のポリマーフィルム。
テロ環残基は置換基を有していても良い。
Xa、Xb、Xc及びXdは、互いに独立してヘテロ原子を表す。また、Xa~Xdは置換基を有していても良い。
Ya、Yb、Yc、Yd、Ye及びYfは、互いに独立してヘテロ原子または炭素原子を表す。また、Ya~Yfは置換基を有していても良い。
Het1に結合している環は、任意の位置に二重結合を有していても良い。]
<12>前記一般式(1)におけるXa、Xb、Ya~Yc及び炭素原子によって形成される環並びにXc、Xd、Yd~Yf及び炭素原子によって形成される環の少なくとも一方が縮環している、<11>記載のポリマーフィルム。
<13>前記一般式(1)におけるXa、Xb、Ya~Yc及び炭素原子によって形成される環並びにXc、Xd、Yd~Yf及び炭素原子によって形成される環の少なくとも一方がペリミジン環ではない、<11>又は<12>に記載のポリマーフィルム。
<14>前記一般式(1)で表される化合物が下記一般式(2)で表される化合物である、<11>~<13>のいずれか1項に記載のポリマーフィルム。
X2a、X2b、X2c及びX2dは、それぞれ前記一般式(1)のXa、Xb、Xc及びXdと同義である。
Y2b、Y2c、Y2e及びY2fは、それぞれ前記一般式(1)のYb、Yc、Ye及びYfと同義である。
L1及びL2は、それぞれ独立して酸素原子、硫黄原子または=NRaを表す(Raは、水素原子または1価の置換基を表す。)。
Z1及びZ2はそれぞれ独立して、Y2b及びY2cまたはY2e及びY2fと一緒になって4~8員環を形成するのに必要な原子群を表す。]
<15>前記一般式(2)で表される化合物が下記一般式(3)で表される化合物である、<14>に記載のポリマーフィルム。
X3a、X3b、X3c及びX3dは、それぞれ前記一般式(2)のX2a、X2b、X2c及びX2dと同義である。
R3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hは互いに独立して、水素原子または1価の置換基を表す。]
<16>前記一般式(3)で表される化合物が下記一般式(4)で表される化合物である、<15>記載のポリマーフィルム。
R4a、R4b、R4c、R4d、R4e、R4f、R4g及びR4hは、それぞれ前記一般式(3)のR3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hと同義である。]
<17>前記一般式(4)で表される化合物が下記一般式(5)で表される化合物である、<16>記載のポリマーフィルム。
<18>前記高分子物質がポリエステル、ポリカーボネートまたはアクリル樹脂である、<8>~<17>のいずれか1項に記載のポリマーフィルム。
<19>前記高分子物質がポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリメチルメタクリレートである、<8>~<18>のいずれか1項に記載のポリマーフィルム。
<20><8>~<19>のいずれか1項に記載のポリマーフィルムを含む太陽電池。
<21><8>~<19>のいずれか1項に記載のポリマーフィルムを含む中間膜。
<22>高分子物質に下記一般式(1)で表される化合物を含有してなる樹脂組成物。
テロ環残基は置換基を有していても良い。
Xa、Xb、Xc及びXdは、互いに独立してヘテロ原子を表す。また、Xa~Xdは置換基を有していても良い。
Ya、Yb、Yc、Yd、Ye及びYfは、互いに独立してヘテロ原子または炭素原子を表す。また、Ya~Yfは置換基を有していても良い。
Het1に結合している環は、任意の位置に二重結合を有していても良い。]
本発明の上記及び他の特徴及び利点は、下記の記載からより明らかになるであろう。
本発明における樹脂組成物とは、樹脂を含んでなるもので、室温で一定時間形を保っているものであればよい。
本発明における樹脂成形物とは、樹脂を含んでなる成形物であればよく、その形態は特に制限するものではない。具体例として、ポリマーフィルム、チューブ、カップ、プレート、ボトル、ペレット、塊状樹脂などを挙げることができる。
濃度は、分光吸収の最大吸収波長が確認できる濃度であればよく、好ましくは1×10-8~1Mの範囲である。温度は、特に限定しないが、好ましくは0℃~80℃である。
前記化合物の溶液における最大吸収波長は、好ましくは350nm以上400nm以下であり、さらに好ましくは360nm以上400nm以下であり、最も好ましくは370nm以上400nm以下である。
ヘテロ原子としては例えば、ホウ素原子、窒素原子、酸素原子、ケイ素原子、リン原子、硫黄原子、セレン原子、テルル原子などを挙げることができる。ヘテロ原子として好ましくは、窒素原子、酸素原子、硫黄原子である。より好ましくは、窒素原子、硫黄原子である。特に好ましくは、硫黄原子である。ヘテロ原子を二つ以上有する場合は、同一原子であっても異なる原子であっても良い。
置換基として好ましくは、アルキル基、アルコキシ基、アリール基がある。より好ましくは、アルキル基、アリール基であり、特に好ましくは、アルキル基である。
表1~6においてMeはメチル基、Etはエチル基、Phはフェニル基を表す。
高分子物質としては、天然あるいは合成ポリマーのいずれであってもよい。ポリオレフィン(例えば、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリ(1-ブテン)、ポリ4-メチルペンテン、ポリビニルシクロヘキサン、ポリスチレン、ポリ(p-メチルスチレン)、ポリ(α-メチルスチレン)、ポリイソプレン、ポリブタジエン、ポリシクロペンテン、ポリノルボルネンなど)、ビニルモノマーのコポリマー(例えば、エチレン/プロピレンコポリマー、エチレン/メチルペンテンコポリマー、エチレン/ヘプテンコポリマー、エチレン/ビニルシクロヘキサンコポリマー、エチレン/シクロオレフィンコポリマー(例えば、エチレン/ノルボルネンのようなシクロオレフィンコポリマー(COC:Cyclo-Olefin Copolymer))、プロピレン/ブタジエンコポリマー、イソブチレン/イソプレンコポリマー、エチレン/ビニルシクロヘキセンコポリマー、エチレン/アルキルアクリレートコポリマー、エチレン/アルキルメタクリレートコポリマーなど)、アクリル系ポリマー(例えば、ポリメタクリレート、ポリアクリレート、ポリアクリルアミド、ポリアクリロニトリルなど)、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニル、ポリフッ化ビニリデン、塩化ビニル/酢酸ビニルコポリマー、ポリエーテル(例えば、ポリアルキレングリコール、ポリエチレンオキシド、ポリプロピレンオキシドなど)、ポリアセタール(例えば、ポリオキシメチレン)、ポリアミド、ポリイミド、ポリウレタン、ポリ尿素、ポリエステル(例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)など)、ポリカーボネート(PC)、ポリケトン、ポリスルホンポリエーテルケトン、フェノール樹脂、メラミン樹脂、セルロースエステル(例えば、ジアセチルセルロース、トリアセチルセルロース(TAC)、プロピオニルセルロース、ブチリルセルロース、アセチルプロピオニルセルロース、ニトロセルロース)、ポリビニルブチラール(PVB)、エチレンビニルアセテート(EVA)、ポリエーテルスルホン(PES)、ポリシロキサン、天然ポリマー(例えば、セルロース、ゴム、ゼラチンなど)、などが例として挙げられる。
熱可塑性樹脂としては、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリ(メタ)アクリル酸エステル系樹脂、ポリスチレン系樹脂、スチレン-アクリロニトリル系樹脂、アクリロニトリル-ブタジエン-スチレン系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリ酢酸ビニル系樹脂、ポリビニルブチラール系樹脂(PVB)、エチレン-酢酸ビニル系共重合体、エチレン-ビニルアルコール系樹脂、ポリエチレンテレフタレート樹脂(PET)、ポリエチレンナフタレート樹脂(PEN)、ポリブチレンテレフタレート樹脂(PBT)、エチレンビニルアセテート樹脂(EVA)、ポリエーテルスルホン樹脂(PES)、液晶ポリエステル樹脂(LCP)、ポリアセタール樹脂(POM)、ポリアミド樹脂(PA)、ポリカーボネート樹脂(PC)、ポリウレタン樹脂およびポリフェニレンサルファイド樹脂(PPS)等が挙げられ、これらは一種または二種以上のポリマーブレンドあるいはポリマーアロイとして使用される。また、これらの樹脂は、ナチュラル樹脂にガラス繊維、炭素繊維、半炭化繊維、セルロース系繊維、ガラスビーズ等のフィラーや難燃剤等を含有させた熱可塑性成形材料としても使用される。また、必要に応じて従来使用されている樹脂用の添加剤、例えば、ポリオレフィン系樹脂微粉末、ポリオレフィン系ワックス、エチレンビスアマイド系ワックス、金属石鹸等を単独であるいは組み合わせて使用することもできる。
例えば、本発明の樹脂成形物は、前記紫外線吸収性化合物により実用的には十分な紫外線遮蔽効果を有しているが、更に厳密な紫外線遮蔽効果が要求される場合には隠蔽力の強い白色顔料、例えば酸化チタンなどを併用してもよい。また、外観、色調が問題となる場合、あるいは好みによって、微量(0.05質量%以下)の着色剤を併用することができる。また、透明あるいは白色であることが重要である用途に対しては蛍光増白剤を併用してもよい。蛍光増白剤としては市販のものや特開2002-53824号公報記載の一般式[1]や具体的化合物例1~35などが挙げられる。
高分子物質への前記化合物の添加方法については、特開昭58-209735号、同63-264748号、特開平4-191851号、同8-272058号の各公報および英国特許第2016017A号明細書を参考にできる。
紫外線吸収剤を含有する熱可塑性樹脂は、溶融製膜によりフィルム化することができる。溶融製膜温度としては、熱可塑性樹脂の流動開始温度(非晶性樹脂ではガラス転移温度、結晶性樹脂では融点)以上450℃以下が好ましく、400℃以下がより好ましく、350℃以下がさらに好ましい。温度が流動開始温度より低すぎると溶融成形が困難になるため好ましくなく、また、温度が高すぎると熱可塑性樹脂の熱劣化が起きる恐れがあり好ましくない。
本発明における中間膜とは、基板と基板の間に挟まれているものであれば良く、具体例として、合わせガラスに挟んで用いるポリマーフィルムなどを挙げることができる。
固有粘度が0.78のポリエチレンテレフタレート(PET)のペレットを170℃で6時間乾燥したものと例示化合物(1)を混合し、押し出し機に投入した。溶融温度280℃で溶融混練し、紫外線吸収剤含有ペレットを得た。ペレットとポリエチレンテレフタレートを紫外線吸収剤が0.5g/m2となるように混合し、280℃で溶融混練を行い、厚み100μmのフィルムを得た。
例示化合物(1)の溶液における最大吸収波長は、酢酸エチルを溶媒として、濃度2×10-5Mの溶液を調製し、分光光度計UV-3600(商品名、島津製作所製)を用いて測定したところ、375nmであった。
実施例1において例示化合物(1)の添加量を1.0g/m2に変更したこと以外は実施例1と同様にして、フィルムを作製した。
実施例1において例示化合物(1)の添加量を4.0g/m2に変更したこと以外は実施例1と同様にして、フィルムを作製した。
実施例1において例示化合物(1)を例示化合物(5)に変更したこと以外は実施例1と同様にして、フィルムを作製した。
実施例1と同様にして、例示化合物(5)の溶液における最大吸収波長を測定したところ、392nmであった。
実施例1において例示化合物(1)を例示化合物(17)に変更したこと以外は実施例1と同様にして、フィルムを作製した。
実施例1と同様にして、例示化合物(17)の溶液における最大吸収波長を測定したところ、361nmであった。
実施例1において例示化合物(1)を例示化合物(21)に変更したこと以外は実施例1と同様にして、フィルムを作製した。
実施例1と同様にして、例示化合物(21)の溶液における最大吸収波長を測定したところ、357nmであった。
実施例1において例示化合物(1)を例示化合物(31)に変更したこと以外は実施例1と同様にして、フィルムを作製した。
実施例1と同様にして、例示化合物(31)の溶液における最大吸収波長を測定したところ、383nmであった。
ポリカーボネート(PC)のペレットと例示化合物(1)を混合し、押し出し機に投入した。溶融温度300℃で溶融混練し、紫外線吸収剤含有ペレットを得た。ペレットとポリカーボネートを紫外線吸収剤が0.5g/m2となるように混合し、300℃で溶融混練を行い、厚み100μmのフィルムを得た。
ポリエチレンナフタレート(PEN)のペレットと例示化合物(1)を混合し、押し出し機に投入した。溶融温度305℃で溶融混練し、紫外線吸収剤含有ペレットを得た。ペレットとポリエチレンナフタレートを紫外線吸収剤が0.5g/m2となるように混合し、305℃で溶融混練を行い、厚み100μmのフィルムを得た。
ポリエーテルスルホン(PES)のペレットと例示化合物(1)を混合し、押し出し機に投入した。溶融温度350℃で溶融混練し、紫外線吸収剤含有ペレットを得た。ペレットとポリエーテルスルホンを紫外線吸収剤が0.5g/m2となるように混合し、350℃で溶融混練を行い、厚み100μmのフィルムを得た。
ポリメチルメタクリレート(PMMA)のペレットと例示化合物(1)を混合し、押し出し機に投入した。溶融温度240℃で溶融混練し、紫外線吸収剤含有ペレットを得た。ペレットとポリメチルメタクリレートを紫外線吸収剤が0.5g/m2となるように混合し、240℃で溶融混練を行い、厚み100μmのフィルムを得た。
実施例1において例示化合物(1)の添加量を5.0g/m2に変更したこと以外は実施例1と同様にして、フィルムを作製した。
実施例1においてフィルムの厚みを25μmに変更したこと以外は実施例1と同様にして、フィルムを作製した。
実施例1においてフィルムの厚みを200μmに変更したこと以外は実施例1と同様にして、フィルムを作製した。
ポリブチレンテレフタレート(PBT)のペレットと例示化合物(1)を混合し、押し出し機に投入した。溶融温度280℃で溶融混練し、紫外線吸収剤含有ペレットを得た。ペレットとポリブチレンテレフタレートを紫外線吸収剤が0.5g/m2となるように混合し、350℃で溶融混練を行い、厚み100μmのフィルムを得た。
実施例1において例示化合物(1)を添加しなかったこと以外は実施例1と同様にして、フィルムを作製した。
実施例1において例示化合物(1)の添加量を8.0g/m2に変更したこと以外は実施例1と同様にして、フィルムを作製した。
テトラヒドロフランにポリメチルメタクリレート(PMMA)を20質量%溶解し、バインダー溶液を調製した。次に、当該バインダー溶液に下記比較化合物A(Meはメチル基を表す)を溶解させ、塗布液を調製した。厚さ100μmのポリエチレンテレフタレートフィルムを基材とし、その上に上記塗布液をコーターにより塗布し、1時間70℃で乾燥させ、膜厚50μmの被膜を形成して、フィルムを作製した。フィルムにおける比較化合物Aの含有量は、10.8g/m2であった。
比較化合物Aの溶液における最大吸収波長は、実施例1と同様にして測定したところ、352nmであった。
比較例3においてフィルムの厚みを5μmに変更した以外は比較例3と同様にして、フィルムを作製した。
実施例12において例示化合物(1)の代わりに比較化合物Bを添加したこと以外は実施例12と同様にして、フィルムを作製した。
比較化合物Bの溶液における最大吸収波長は、実施例1と同様にして測定したところ、346nmであった。
耐光性
作製したフィルムについて、それぞれキセノンランプで照度17万ルクスになるように光照射し、1000時間照射後の各フィルムを分光光度計UV-3600(商品名、島津製作所製)を用いて波長410nm、430nm及び440nmでの光線透過率を測定した。照射後、ヘーズ測定器を使用してフィルムのヘーズ値を測定し、照射前のヘーズ値との差を下記の基準で評価した。
○: 照射後ヘーズ値/照射前ヘーズ値≦2.0 … 耐光性極めて良好
△:2.0<照射後ヘーズ値/照射前ヘーズ値≦3.0 … 耐光性良好
×:3.0<照射後ヘーズ値/照射前ヘーズ値 … 耐光性不良
フィルム色味
作製したフィルムの色味を目視で観察し、その黄色味を評価した。
○:ほぼ無色で良好な色味
×:黄色着色の問題有り
結果を表7に示す。
これらに対し、本発明のフィルムは、波長410nmの透過率が低く、かつ波長430nm及び440nmの透過率が高いものであり、光照射によって分解しにくいことがわかった。
ポリカーボネート(PC)のペレットと例示化合物(1)を混合し、押し出し機に投入した。溶融温度300℃で溶融混練し、紫外線吸収剤含有ペレットを得た。ペレットとポリカーボネートを紫外線吸収剤が0.5g/m2となるように混合し、300℃で射出成形を行い、厚み1mmの成形体を得た。
実施例16において成形体の厚みを5mmに変更した以外は実施例16と同様にして、成形体を作成した。
実施例16において成形体の厚みを10mmに変更した以外は実施例16と同様にして、成形体を作成した。
ポリメチルメタクリレート(PMMA)のペレットと例示化合物(1)を混合し、押し出し機に投入した。溶融温度240℃で溶融混練し、紫外線吸収剤含有ペレットを得た。ペレットとポリメチルメタクリレートを紫外線吸収剤が0.5g/m2となるように混合し、240℃で射出成形を行い、厚み1mmの成形体を得た。
実施例19において成形体の厚みを5mmに変更した以外は実施例19と同様にして、成形体を作成した。
実施例20において成形体の厚みを10mmに変更した以外は実施例19と同様にして、成形体を作成した。
耐光性
作製した成形体について、それぞれキセノンランプで照度17万ルクスになるように光照射し、1000時間照射後の各フィルムを分光光度計UV-3600(商品名、島津製作所製)を用いて波長410nm、430nm及び440nmでの光線透過率を測定した。照射後、ヘーズ測定器を使用して成形体のヘーズ値を測定し、照射前のヘーズ値との差を下記の基準で評価した。
○: 照射後ヘーズ値/照射前ヘーズ値≦2.0 … 耐光性極めて良好
△:2.0<照射後ヘーズ値/照射前ヘーズ値≦3.0 … 耐光性良好
×:3.0<照射後ヘーズ値/照射前ヘーズ値 … 耐光性不良
成形体色味
作製した成形体の色味を目視で観察し、その黄色味を評価した。
○:ほぼ無色で良好な色味
×:黄色着色の問題有り
結果を表8に示す。
Claims (22)
- 溶液における最大吸収波長が400nm以下である化合物を高分子物質に5g/m2以下含有してなる樹脂組成物であって、波長410nmでの光線透過率が5%以下であることを特徴とする樹脂成形物。
- 波長440nmでの光線透過率が80%以上である、請求項1記載の樹脂成形物。
- 波長430nmでの光線透過率が70%以上である、請求項1または2記載の樹脂成形物。
- 前記一般式(1)で表される化合物が下記一般式(2)で表される化合物である、請求項4に記載の樹脂成形物。
X2a、X2b、X2c及びX2dは、それぞれ前記一般式(1)のXa、Xb、Xc及びXdと同義である。
Y2b、Y2c、Y2e及びY2fは、それぞれ前記一般式(1)のYb、Yc、Ye及びYfと同義である。
L1及びL2は、それぞれ独立して酸素原子、硫黄原子または=NRaを表す(Raは、水素原子または1価の置換基を表す。)。
Z1及びZ2はそれぞれ独立して、Y2b及びY2cまたはY2e及びY2fと一緒になって4~8員環を形成するのに必要な原子群を表す。] - 溶液における最大吸収波長が400nm以下である化合物を高分子物質に5g/m2以下含有してなるフィルムであって、波長410nmでの光線透過率が5%以下であることを特徴とするポリマーフィルム。
- 波長440nmでの光線透過率が80%以上である、請求項8記載のポリマーフィルム。
- 波長430nmでの光線透過率が70%以上である、請求項8または9記載のポリマーフィルム。
- 前記一般式(1)におけるXa、Xb、Ya~Yc及び炭素原子によって形成される環並びにXc、Xd、Yd~Yf及び炭素原子によって形成される環の少なくとも一方が縮環している、請求項11記載のポリマーフィルム。
- 前記一般式(1)におけるXa、Xb、Ya~Yc及び炭素原子によって形成される環並びにXc、Xd、Yd~Yf及び炭素原子によって形成される環の少なくとも一方がペリミジン環ではない、請求項11又は12に記載のポリマーフィルム。
- 前記一般式(1)で表される化合物が下記一般式(2)で表される化合物である、請求項11~13のいずれか1項に記載のポリマーフィルム。
X2a、X2b、X2c及びX2dは、それぞれ前記一般式(1)のXa、Xb、Xc及びXdと同義である。
Y2b、Y2c、Y2e及びY2fは、それぞれ前記一般式(1)のYb、Yc、Ye及びYfと同義である。
L1及びL2は、それぞれ独立して酸素原子、硫黄原子または=NRaを表す(Raは、水素原子または1価の置換基を表す。)。
Z1及びZ2はそれぞれ独立して、Y2b及びY2cまたはY2e及びY2fと一緒になって4~8員環を形成するのに必要な原子群を表す。] - 前記高分子物質がポリエステル、ポリカーボネートまたはアクリル樹脂である、請求項8~17のいずれか1項に記載のポリマーフィルム。
- 前記高分子物質がポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリメチルメタクリレートである、請求項8~18のいずれか1項に記載のポリマーフィルム。
- 請求項8~19のいずれか1項に記載のポリマーフィルムを含む太陽電池。
- 請求項8~19のいずれか1項に記載のポリマーフィルムを含む中間膜。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020107024293A KR101536797B1 (ko) | 2008-03-30 | 2009-03-24 | 수지 성형물 및 폴리머 필름 |
US12/934,094 US8541488B2 (en) | 2008-03-30 | 2009-03-24 | Formed resin article and polymer film |
CN200980111583.2A CN101981095B (zh) | 2008-03-30 | 2009-03-24 | 树脂成型体和聚合物膜 |
EP09727779.2A EP2270076B1 (en) | 2008-03-30 | 2009-03-24 | Resin molded product and polymer film |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008088954 | 2008-03-30 | ||
JP2008-088954 | 2008-03-30 | ||
JP2008284545 | 2008-11-05 | ||
JP2008-284545 | 2008-11-05 | ||
JP2009-026031 | 2009-02-06 | ||
JP2009026031A JP2010132846A (ja) | 2008-03-30 | 2009-02-06 | 樹脂成形物及びポリマーフィルム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009122968A1 true WO2009122968A1 (ja) | 2009-10-08 |
Family
ID=41135348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/055814 WO2009122968A1 (ja) | 2008-03-30 | 2009-03-24 | 樹脂成形物及びポリマーフィルム |
Country Status (7)
Country | Link |
---|---|
US (1) | US8541488B2 (ja) |
EP (1) | EP2270076B1 (ja) |
JP (1) | JP2010132846A (ja) |
KR (1) | KR101536797B1 (ja) |
CN (1) | CN101981095B (ja) |
TW (1) | TWI481654B (ja) |
WO (1) | WO2009122968A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010029926A1 (ja) * | 2008-09-10 | 2010-03-18 | 富士フイルム株式会社 | 照明カバー |
WO2010038743A1 (ja) * | 2008-09-30 | 2010-04-08 | 富士フイルム株式会社 | 固体高分子材料 |
EP2272935A1 (en) * | 2008-03-31 | 2011-01-12 | FUJIFILM Corporation | Ultraviolet absorbent compositions |
WO2018180929A1 (ja) * | 2017-03-31 | 2018-10-04 | 富士フイルム株式会社 | 樹脂成形体、及びブルーライトカット積層体 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5250289B2 (ja) * | 2008-03-31 | 2013-07-31 | 富士フイルム株式会社 | 紫外線吸収剤組成物 |
JP6780636B2 (ja) * | 2015-12-08 | 2020-11-04 | 東レ株式会社 | 積層フィルム |
JP6753118B2 (ja) * | 2016-04-06 | 2020-09-09 | 東レ株式会社 | 光学フィルム |
CA3042886C (en) * | 2016-11-23 | 2021-05-18 | Ppg Industries Ohio, Inc. | Ultraviolet protective transparency |
US10759916B2 (en) * | 2017-02-23 | 2020-09-01 | Sumitomo Chemical Company, Limited | Lamp cover |
JPWO2021251433A1 (ja) * | 2020-06-10 | 2021-12-16 |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2016017A (en) | 1978-02-13 | 1979-09-19 | Konishiroku Photo Ind | Process for preparing impregnated polymer latex composition |
JPS58209735A (ja) | 1982-06-01 | 1983-12-06 | Konishiroku Photo Ind Co Ltd | カラ−写真感光材料 |
JPS63264748A (ja) | 1987-04-22 | 1988-11-01 | Fuji Photo Film Co Ltd | ハロゲン化銀カラ−写真感光材料 |
JPH04191851A (ja) | 1990-11-27 | 1992-07-10 | Fuji Photo Film Co Ltd | ハロゲン化銀カラー写真感光材料 |
JPH0711231A (ja) | 1993-06-29 | 1995-01-13 | Teijin Ltd | 紫外線吸収剤及びこれを含む高分子材料組成物 |
JPH0711232A (ja) | 1993-06-29 | 1995-01-13 | Teijin Ltd | 紫外線吸収剤及びこれを含む高分子材料組成物 |
JPH08272058A (ja) | 1995-03-31 | 1996-10-18 | Fuji Photo Film Co Ltd | ハロゲン化銀カラー写真感光材料 |
JP2000264879A (ja) | 1999-03-18 | 2000-09-26 | Nippon Paper Industries Co Ltd | ビスベンゾオキサジノン化合物の製造方法 |
JP2002053824A (ja) | 2000-06-02 | 2002-02-19 | Fuji Photo Film Co Ltd | 紫外線吸収粘着フイルム |
JP2002225195A (ja) * | 2000-11-29 | 2002-08-14 | Fuji Photo Film Co Ltd | 紫外赤外線吸収フイルム |
JP2003155375A (ja) | 2001-11-20 | 2003-05-27 | Takemoto Oil & Fat Co Ltd | 熱可塑性高分子用紫外線吸収剤 |
JP2006188578A (ja) | 2005-01-05 | 2006-07-20 | Teijin Dupont Films Japan Ltd | 耐光性フィルム |
JP2007119613A (ja) * | 2005-10-28 | 2007-05-17 | Tsutsunaka Plast Ind Co Ltd | 透明樹脂シート |
JP2008088954A (ja) | 2006-10-05 | 2008-04-17 | Toyota Motor Corp | 排気管の接続装置 |
JP2008195830A (ja) * | 2007-02-13 | 2008-08-28 | Fujifilm Corp | 紫外線吸収フィルムおよびこれを用いたパネル用フィルター |
JP2008273927A (ja) * | 2007-03-30 | 2008-11-13 | Fujifilm Corp | ヘテロ環化合物 |
JP2008284545A (ja) | 2007-04-19 | 2008-11-27 | Kurita Water Ind Ltd | アニオン交換樹脂の製造方法、アニオン交換樹脂、混床樹脂および電子部品・材料洗浄用超純水の製造方法 |
JP2009026031A (ja) | 2007-07-19 | 2009-02-05 | Hitachi Ltd | シンクライアントシステム、情報処理方法、及び、情報処理プログラム |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1515766A (en) * | 1976-01-30 | 1978-06-28 | British Petroleum Co | Polymeric films having selective light transmissive properties |
JPS57209979A (en) * | 1981-06-19 | 1982-12-23 | Teijin Ltd | Ultraviolet light absorber and method for using same |
US6352783B1 (en) * | 1999-12-13 | 2002-03-05 | Eastman Kodak Company | Copolyester containing 4,4'-biphenyldicarboxylic acid, 1,4-cyclohexanedimethanol and an ultraviolet light absorbing compound and articles made therefrom |
US6774232B2 (en) * | 2001-10-22 | 2004-08-10 | Cytec Technology Corp. | Low color, low sodium benzoxazinone UV absorbers and process for making same |
-
2009
- 2009-02-06 JP JP2009026031A patent/JP2010132846A/ja active Pending
- 2009-03-24 CN CN200980111583.2A patent/CN101981095B/zh active Active
- 2009-03-24 KR KR1020107024293A patent/KR101536797B1/ko active IP Right Grant
- 2009-03-24 US US12/934,094 patent/US8541488B2/en active Active
- 2009-03-24 EP EP09727779.2A patent/EP2270076B1/en active Active
- 2009-03-24 WO PCT/JP2009/055814 patent/WO2009122968A1/ja active Application Filing
- 2009-03-27 TW TW098110030A patent/TWI481654B/zh active
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2016017A (en) | 1978-02-13 | 1979-09-19 | Konishiroku Photo Ind | Process for preparing impregnated polymer latex composition |
JPS58209735A (ja) | 1982-06-01 | 1983-12-06 | Konishiroku Photo Ind Co Ltd | カラ−写真感光材料 |
JPS63264748A (ja) | 1987-04-22 | 1988-11-01 | Fuji Photo Film Co Ltd | ハロゲン化銀カラ−写真感光材料 |
JPH04191851A (ja) | 1990-11-27 | 1992-07-10 | Fuji Photo Film Co Ltd | ハロゲン化銀カラー写真感光材料 |
JPH0711231A (ja) | 1993-06-29 | 1995-01-13 | Teijin Ltd | 紫外線吸収剤及びこれを含む高分子材料組成物 |
JPH0711232A (ja) | 1993-06-29 | 1995-01-13 | Teijin Ltd | 紫外線吸収剤及びこれを含む高分子材料組成物 |
JPH08272058A (ja) | 1995-03-31 | 1996-10-18 | Fuji Photo Film Co Ltd | ハロゲン化銀カラー写真感光材料 |
JP2000264879A (ja) | 1999-03-18 | 2000-09-26 | Nippon Paper Industries Co Ltd | ビスベンゾオキサジノン化合物の製造方法 |
JP2002053824A (ja) | 2000-06-02 | 2002-02-19 | Fuji Photo Film Co Ltd | 紫外線吸収粘着フイルム |
JP2002225195A (ja) * | 2000-11-29 | 2002-08-14 | Fuji Photo Film Co Ltd | 紫外赤外線吸収フイルム |
JP2003155375A (ja) | 2001-11-20 | 2003-05-27 | Takemoto Oil & Fat Co Ltd | 熱可塑性高分子用紫外線吸収剤 |
JP2006188578A (ja) | 2005-01-05 | 2006-07-20 | Teijin Dupont Films Japan Ltd | 耐光性フィルム |
JP2007119613A (ja) * | 2005-10-28 | 2007-05-17 | Tsutsunaka Plast Ind Co Ltd | 透明樹脂シート |
JP2008088954A (ja) | 2006-10-05 | 2008-04-17 | Toyota Motor Corp | 排気管の接続装置 |
JP2008195830A (ja) * | 2007-02-13 | 2008-08-28 | Fujifilm Corp | 紫外線吸収フィルムおよびこれを用いたパネル用フィルター |
JP2008273927A (ja) * | 2007-03-30 | 2008-11-13 | Fujifilm Corp | ヘテロ環化合物 |
JP2008284545A (ja) | 2007-04-19 | 2008-11-27 | Kurita Water Ind Ltd | アニオン交換樹脂の製造方法、アニオン交換樹脂、混床樹脂および電子部品・材料洗浄用超純水の製造方法 |
JP2009026031A (ja) | 2007-07-19 | 2009-02-05 | Hitachi Ltd | シンクライアントシステム、情報処理方法、及び、情報処理プログラム |
Non-Patent Citations (6)
Title |
---|
"Kobunshi-tenkazai no Kaihatsu to Kankyo-taisaku", 2003, CMC PUBLISHING, pages: 54 - 64 |
"Kobunshi-yo Kinousei-Tenkazai no Shintenkai", 1999, TORAY RESEARCH CENTER INC., pages: 96 - 140 |
"Survey and Research Dept.", TORAY RESEARCH CENTER INC. |
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 13, 2003, pages 4077 - 4080 |
BIOORGANIC & MEDICINAL CHEMISTRY, vol. 8, 2000, pages 2095 - 2103 |
FINE CHEMICAL, May 2004 (2004-05-01), pages 28 - 38 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2272935A1 (en) * | 2008-03-31 | 2011-01-12 | FUJIFILM Corporation | Ultraviolet absorbent compositions |
EP2272935A4 (en) * | 2008-03-31 | 2012-05-23 | Fujifilm Corp | COMPOSITIONS ABSORBING ULTRAVIOLET RAYS |
WO2010029926A1 (ja) * | 2008-09-10 | 2010-03-18 | 富士フイルム株式会社 | 照明カバー |
JP2010092842A (ja) * | 2008-09-10 | 2010-04-22 | Fujifilm Corp | 照明カバー |
WO2010038743A1 (ja) * | 2008-09-30 | 2010-04-08 | 富士フイルム株式会社 | 固体高分子材料 |
JP2010083980A (ja) * | 2008-09-30 | 2010-04-15 | Fujifilm Corp | 固体高分子材料 |
WO2018180929A1 (ja) * | 2017-03-31 | 2018-10-04 | 富士フイルム株式会社 | 樹脂成形体、及びブルーライトカット積層体 |
JPWO2018180929A1 (ja) * | 2017-03-31 | 2019-11-07 | 富士フイルム株式会社 | 樹脂成形体、及びブルーライトカット積層体 |
Also Published As
Publication number | Publication date |
---|---|
CN101981095A (zh) | 2011-02-23 |
EP2270076A4 (en) | 2012-01-04 |
TW200948882A (en) | 2009-12-01 |
US8541488B2 (en) | 2013-09-24 |
EP2270076A1 (en) | 2011-01-05 |
TWI481654B (zh) | 2015-04-21 |
CN101981095B (zh) | 2014-09-17 |
KR20100139111A (ko) | 2010-12-31 |
KR101536797B1 (ko) | 2015-07-14 |
EP2270076B1 (en) | 2018-05-23 |
US20110092619A1 (en) | 2011-04-21 |
JP2010132846A (ja) | 2010-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009122968A1 (ja) | 樹脂成形物及びポリマーフィルム | |
JP5236297B2 (ja) | ヘテロ環化合物 | |
JP5422269B2 (ja) | 紫外線吸収剤組成物及び樹脂組成物 | |
JP2008273950A (ja) | 紫外線吸収剤およびヘテロ環化合物 | |
US20110024701A1 (en) | Ultraviolet Absorbent Composition | |
JP5244437B2 (ja) | 紫外線吸収剤組成物 | |
WO2010038743A1 (ja) | 固体高分子材料 | |
KR20110056538A (ko) | 조명 커버 | |
JP5719528B2 (ja) | 新規なトリアジン誘導体、紫外線吸収剤及び樹脂組成物 | |
WO2010095602A1 (ja) | ヘテロ環化合物 | |
WO2010029927A1 (ja) | 芳香族化合物 | |
EP4144729A1 (en) | Composition and compound | |
JP2010059122A (ja) | 芳香族化合物 | |
JP2009242640A (ja) | ポリマーフィルム | |
JP2010059123A (ja) | 芳香族化合物 | |
JP5600408B2 (ja) | トリアジン化合物を含有するポリカーボネート樹脂組成物及びそれを用いた成形品 | |
JP5129597B2 (ja) | 紫外線吸収剤、並びに縮合環化合物およびその製造方法 | |
JP2010064979A (ja) | 芳香族化合物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980111583.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09727779 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12934094 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009727779 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 6868/CHENP/2010 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20107024293 Country of ref document: KR Kind code of ref document: A |