WO2009122968A1 - 樹脂成形物及びポリマーフィルム - Google Patents

樹脂成形物及びポリマーフィルム Download PDF

Info

Publication number
WO2009122968A1
WO2009122968A1 PCT/JP2009/055814 JP2009055814W WO2009122968A1 WO 2009122968 A1 WO2009122968 A1 WO 2009122968A1 JP 2009055814 W JP2009055814 W JP 2009055814W WO 2009122968 A1 WO2009122968 A1 WO 2009122968A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
het
compound represented
atom
polymer film
Prior art date
Application number
PCT/JP2009/055814
Other languages
English (en)
French (fr)
Inventor
一路 尼崎
桂三 木村
洋一郎 竹島
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020107024293A priority Critical patent/KR101536797B1/ko
Priority to US12/934,094 priority patent/US8541488B2/en
Priority to CN200980111583.2A priority patent/CN101981095B/zh
Priority to EP09727779.2A priority patent/EP2270076B1/en
Publication of WO2009122968A1 publication Critical patent/WO2009122968A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/04Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds
    • C09K15/30Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing heterocyclic ring with at least one nitrogen atom as ring member
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/35Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
    • C08K5/357Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring

Definitions

  • the present invention relates to a light-resistant polymer film and a resin molded product that block ultraviolet rays.
  • Thermoplastic resin films are highly versatile and are used in a wide range of fields and conditions.
  • Thermoplastic resins such as polyesters, polyamides, polyolefins, polyethers, and polystyrene resins can be deteriorated or decomposed by the action of ultraviolet rays, causing discoloration and lowering of mechanical strength, which may hinder long-term use. . Therefore, various ultraviolet absorbers have been conventionally used to prevent deterioration.
  • Thermoplastic resin films containing such ultraviolet absorbers are widely used for window pasting, greenhouses, insect protection and the like.
  • the present invention solves the above-described problems, and an object of the present invention is to provide a polymer film and a resin molded article containing an ultraviolet absorbing compound capable of maintaining long wave ultraviolet absorbing ability for a long time.
  • the present inventors have found a compound having a conventionally unknown structure that has high light fastness and can absorb ultraviolet rays in a long wavelength region that could not be covered so far.
  • the inventors have found that a film containing this is effective as a light-resistant film and have completed the present invention.
  • ⁇ 1> A resin molded product containing a compound having a maximum absorption wavelength of 400 nm or less in a solution in a polymer substance of 5 g / m 2 or less, and having a light transmittance of 5% or less at a wavelength of 410 nm. Characteristic resin molding.
  • ⁇ 2> The resin molded article according to ⁇ 1>, wherein the light transmittance at a wavelength of 440 nm is 80% or more.
  • ⁇ 3> The resin molded product according to ⁇ 1> or ⁇ 2>, wherein the light transmittance at a wavelength of 430 nm is 70% or more.
  • ⁇ 4> The resin molded article according to any one of ⁇ 1> to ⁇ 3>, wherein the compound is a compound represented by the following general formula (1).
  • Het 1 represents a divalent 5- or 6-membered aromatic heterocyclic residue.
  • the aromatic heterocyclic residue may have a substituent.
  • X a , X b , X c and X d each independently represent a hetero atom.
  • X a to X d may have a substituent.
  • Y a , Y b , Y c , Y d , Y e and Y f each independently represent a hetero atom or a carbon atom.
  • Y a to Y f may have a substituent.
  • the ring bonded to Het 1 may have a double bond at any position.
  • Het 2 is synonymous with Het 1 in the general formula (1).
  • X 2a , X 2b , X 2c and X 2d have the same meanings as X a , X b , X c and X d in the general formula (1), respectively.
  • Y 2b , Y 2c , Y 2e and Y 2f have the same meanings as Y b , Y c , Y e and Y f in the general formula (1), respectively.
  • L 1 and L 2 each independently represents an oxygen atom, a sulfur atom or ⁇ NR a (R a represents a hydrogen atom or a monovalent substituent).
  • Z 1 and Z 2 each independently represents an atomic group necessary for forming a 4- to 8-membered ring together with Y 2b and Y 2c or Y 2e and Y 2f .
  • Het 3 is synonymous with Het 2 in the general formula (2).
  • X 3a , X 3b , X 3c and X 3d have the same meanings as X 2a , X 2b , X 2c and X 2d in the general formula (2), respectively.
  • R 3a , R 3b , R 3c , R 3d , R 3e , R 3f , R 3g and R 3h each independently represent a hydrogen atom or a monovalent substituent.
  • Het 4 is synonymous with Het 2 in the general formula (2).
  • R 4a , R 4b , R 4c , R 4d , R 4e , R 4f , R 4g and R 4h are R 3a , R 3b , R 3c , R 3d , R 3e , R 3f in the general formula (3), respectively. , R 3g and R 3h .
  • ⁇ 8> A film in which a compound having a maximum absorption wavelength of 400 nm or less in a solution is contained in a polymer substance in an amount of 5 g / m 2 or less, wherein the light transmittance at a wavelength of 410 nm is 5% or less. Polymer film.
  • ⁇ 9> The polymer film according to ⁇ 8>, wherein the light transmittance at a wavelength of 440 nm is 80% or more.
  • ⁇ 10> The polymer film according to ⁇ 8> or ⁇ 9>, wherein the light transmittance at a wavelength of 430 nm is 70% or more.
  • ⁇ 11> The polymer film according to any one of ⁇ 8> to ⁇ 10>, wherein the compound is a compound represented by the following general formula (1).
  • Het 1 represents a divalent 5- or 6-membered aromatic heterocyclic residue.
  • the aromatic heterocyclic residue may have a substituent.
  • X a , X b , X c and X d each independently represent a hetero atom.
  • X a to X d may have a substituent.
  • Y a , Y b , Y c , Y d , Y e and Y f each independently represent a hetero atom or a carbon atom.
  • Y a to Y f may have a substituent.
  • the ring bonded to Het 1 may have a double bond at any position.
  • ⁇ 13> A ring formed by X a , X b , Y a to Y c and a carbon atom and a ring formed by X c , X d , Y d to Y f and a carbon atom in the general formula (1)
  • ⁇ 14> The polymer film according to any one of ⁇ 11> to ⁇ 13>, wherein the compound represented by the general formula (1) is a compound represented by the following general formula (2).
  • Het 2 is synonymous with Het 1 in the general formula (1).
  • X 2a , X 2b , X 2c and X 2d have the same meanings as X a , X b , X c and X d in the general formula (1), respectively.
  • Y 2b , Y 2c , Y 2e and Y 2f have the same meanings as Y b , Y c , Y e and Y f in the general formula (1), respectively.
  • L 1 and L 2 each independently represents an oxygen atom, a sulfur atom or ⁇ NR a (R a represents a hydrogen atom or a monovalent substituent).
  • Z 1 and Z 2 each independently represents an atomic group necessary for forming a 4- to 8-membered ring together with Y 2b and Y 2c or Y 2e and Y 2f .
  • Het 3 is synonymous with Het 2 in the general formula (2).
  • X 3a , X 3b , X 3c and X 3d have the same meanings as X 2a , X 2b , X 2c and X 2d in the general formula (2), respectively.
  • R 3a , R 3b , R 3c , R 3d , R 3e , R 3f , R 3g and R 3h each independently represent a hydrogen atom or a monovalent substituent.
  • Het 4 is synonymous with Het 3 in the general formula (3).
  • R 4a , R 4b , R 4c , R 4d , R 4e , R 4f , R 4g and R 4h are R 3a , R 3b , R 3c , R 3d , R 3e , R 3f in the general formula (3), respectively. , R 3g and R 3h .
  • ⁇ 17> The polymer film according to ⁇ 16>, wherein the compound represented by the general formula (4) is a compound represented by the following general formula (5).
  • R 5a , R 5b , R 5c , R 5d , R 5e , R 5f , R 5g and R 5h are R 4a , R 4b , R 4c , R 4d , R 4e , R in the general formula (4), respectively. It is synonymous with 4f , R4g and R4h .
  • R 5i and R 5j each independently represent a hydrogen atom or a monovalent substituent.
  • ⁇ 19> The polymer film according to any one of ⁇ 8> to ⁇ 18>, wherein the polymer substance is polyethylene terephthalate, polyethylene naphthalate, polycarbonate, or polymethyl methacrylate.
  • a solar cell comprising the polymer film according to any one of ⁇ 8> to ⁇ 19>.
  • An intermediate film comprising the polymer film described in any one of ⁇ 8> to ⁇ 19>.
  • a resin composition comprising a polymer material containing a compound represented by the following general formula (1).
  • Het 1 represents a divalent 5- or 6-membered aromatic heterocyclic residue.
  • the aromatic heterocyclic residue may have a substituent.
  • X a , X b , X c and X d each independently represent a hetero atom.
  • X a to X d may have a substituent.
  • Y a , Y b , Y c , Y d , Y e and Y f each independently represent a hetero atom or a carbon atom.
  • Y a to Y f may have a substituent.
  • the ring bonded to Het 1 may have a double bond at any position.
  • the resin molded product of the present invention is excellent in light resistance and can be used for various applications requiring ultraviolet absorption.
  • the polymer film of the present invention can be used as an ultraviolet filter.
  • the polymer film can be protected by being attached to a container.
  • the resin composition in the present invention may be any resin composition as long as it maintains a shape for a certain time at room temperature.
  • the resin molded product in the present invention may be a molded product containing a resin, and the form thereof is not particularly limited. Specific examples include polymer films, tubes, cups, plates, bottles, pellets, bulk resins, and the like.
  • the resin molded product of the present invention contains a compound (ultraviolet absorbing compound) having a maximum absorption wavelength of 400 nm or less in a solution in a polymer substance of 5 g / m 2 or less, and has a light transmittance at a wavelength of 410 nm. It is characterized by being 5% or less.
  • the solution for measuring the maximum absorption wavelength in the present invention is a solution obtained by dissolving the compound used in the present invention in an organic or inorganic solvent or water alone or a mixture thereof.
  • organic solvent examples include, for example, amide solvents (for example, N, N-dimethylformamide, N, N-dimethylacetamide, 1-methyl-2-pyrrolidone), sulfone solvents (for example, sulfolane), sulfoxide solvents (for example, Dimethyl sulfoxide), ureido solvents (eg tetramethylurea), ether solvents (eg dioxane, tetrahydrofuran, cyclopentylmethyl ether), ketone solvents (eg acetone, cyclohexanone), hydrocarbon solvents (eg toluene, xylene, n- Decane), halogenated solvents (eg tetrachloroethane, chlorobenzene, chloronaphthalene), alcoholic solvents (eg methanol, ethanol, isopropyl alcohol, ethylene glycol, cyclohexanol, phenol) Pyridine
  • amide solvents In consideration of solubility, amide solvents, sulfone solvents, sulfoxide solvents, ureido solvents, ether solvents, ketone solvents, halogen solvents, alcohol solvents, ester solvents, and nitrile solvents are preferable. More preferably, it is an amide solvent, ether solvent, ketone solvent, halogen solvent, alcohol solvent, ester solvent, nitrile solvent, more preferably ether solvent, halogen solvent, ester solvent, Particularly preferred are ester solvents. Of the ester solvents, ethyl acetate is most preferable.
  • the concentration is not particularly limited as long as the maximum absorption wavelength of spectral absorption can be confirmed, and is preferably in the range of 1 ⁇ 10 ⁇ 8 to 1M.
  • the temperature is not particularly limited, but is preferably 0 ° C. to 80 ° C.
  • the maximum absorption wavelength in the solution of the compound is preferably 350 nm or more and 400 nm or less, more preferably 360 nm or more and 400 nm or less, and most preferably 370 nm or more and 400 nm or less.
  • the content of the ultraviolet absorbing compound is preferably 3 g / m 2 or less, more preferably 2 g / m 2 or less, and particularly preferably 1 g / m 2 or less.
  • the ultraviolet absorbing compound is preferably contained in an amount of 0.05 to 30% by mass based on the total mass of the compound and the polymer substance from the viewpoint of exhibiting an ultraviolet absorbing effect and uniformly dispersing the ultraviolet absorbing compound. More preferably, it is contained in an amount of ⁇ 20% by mass.
  • the resin molded product of the present invention preferably has a light transmittance of 5% or less at a wavelength of 410 nm and a light transmittance of 80% or more at a wavelength of 440 nm. More preferably, the light transmittance at a wavelength of 410 nm is 4% or less, and the light transmittance at a wavelength of 440 nm is 80% or more, more preferably, the light transmittance at a wavelength of 410 nm is 3% or less, and at a wavelength of 440 nm.
  • the light transmittance is 80% or more, particularly preferably the light transmittance at a wavelength of 410 nm is 2% or less, and the light transmittance at a wavelength of 440 nm is 80% or more.
  • the resin molded product of the present invention has a light transmittance of 5% or less at a wavelength of 410 nm, a light transmittance of 70% or more at a wavelength of 430 nm, and a light transmittance of 80% or more at a wavelength of 440 nm.
  • the light transmittance at a wavelength of 410 nm is 4% or less
  • the light transmittance at a wavelength of 430 nm is 70% or more
  • the light transmittance at a wavelength of 440 nm is 80% or more, more preferably at a wavelength of 410 nm.
  • the light transmittance is 3% or less, the light transmittance at a wavelength of 430 nm is 70% or more, and the light transmittance at a wavelength of 440 nm is 80% or more. Particularly preferably, the light transmittance at a wavelength of 410 nm is 2% or less.
  • the light transmittance at a wavelength of 430 nm is 70% or more, and the light transmittance at a wavelength of 440 nm is 80% or more.
  • the light transmittance at wavelengths of 410 nm, 430 nm, and 440 nm can be measured using, for example, a spectrophotometer UV-3600 (trade name, manufactured by Shimadzu Corporation).
  • the ultraviolet absorbing compound contained in the resin molded product of the present invention is preferably a compound represented by the general formula (1).
  • Het 1 represents a divalent 5- or 6-membered aromatic heterocyclic residue having at least one hetero atom. Het 1 may be condensed.
  • the hetero atom include a boron atom, a nitrogen atom, an oxygen atom, a silicon atom, a phosphorus atom, a sulfur atom, a selenium atom, and a tellurium atom.
  • a hetero atom is preferably a nitrogen atom, an oxygen atom, or a sulfur atom. More preferably, they are a nitrogen atom and a sulfur atom. Particularly preferred is a sulfur atom. When two or more hetero atoms are present, they may be the same atom or different atoms.
  • Examples of the aromatic heterocyclic ring in which two hydrogen atoms are added to a divalent aromatic heterocyclic residue include pyrrole, pyrazole, imidazole, 1,2,3-triazole, 1,2,4-triazole, pyridine, pyridazine, Examples include pyrimidine, pyrazine, 1,3,5-triazine, furan, thiophene, oxazole, isoxazole, thiazole, isothiazole, 1,2,3-oxadiazole, 1,3,4-thiadiazole and the like.
  • Preferred examples of the aromatic heterocycle include pyrrole, pyridine, furan and thiophene. More preferred are pyridine and thiophene.
  • thiophene Any position for removing the hydrogen atom of the aromatic heterocycle may be used.
  • the bonding positions in the hetero 5-membered ring compound pyrrole include the 2,3-position, 2,4-position, 2,5-position, 3,4-position, and 3,5-position.
  • examples of the bonding position in thiophene include 2,3-position, 2,4-position, 2,5-position, 3,4-position, and 3,5-position.
  • the 2,5th, 2,4th and 3,4th positions are preferred, the 2,5th, 3rd and 4th positions are more preferred, and the 2,5th place is particularly preferred.
  • the bonding positions in the hetero 6-membered ring compound pyridine include the 2,3 position, 2,4 position, 2,5 position, 2,6 position, 3,4 position, 3,5 position and 3,6 position. It is done. Of these, preferred are the 2,5th, 2,6th and 3,5th positions, more preferred are the 2,5th and 2,6th positions, and particularly preferred are the 2,5th positions.
  • the aromatic heterocyclic residue Het 1 may have a substituent.
  • a monovalent substituent is mentioned as a substituent.
  • R examples include a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom), an alkyl group having 1 to 20 carbon atoms (for example, methyl, ethyl), a carbon number of 6 ⁇ 20 aryl groups (eg phenyl, naphthyl), cyano groups, carboxyl groups, alkoxycarbonyl groups (eg methoxycarbonyl), aryloxycarbonyl groups (eg phenoxycarbonyl), substituted or unsubstituted carbamoyl groups (eg carbamoyl, N- Phenylcarbamoyl, N, N-dimethylcarbamoyl), alkylcarbonyl group (eg acety
  • the substituent may be further substituted, and when there are a plurality of substituents, they may be the same or different.
  • the above-mentioned monovalent substituent R can be mentioned as an example of a substituent.
  • Preferred examples of the substituent include an alkyl group, an alkoxy group, and an aryl group. An alkyl group and an aryl group are more preferable, and an alkyl group is particularly preferable.
  • X a , X b , X c and X d each independently represent a hetero atom.
  • the hetero atom include a boron atom, a nitrogen atom, an oxygen atom, a silicon atom, a phosphorus atom, a sulfur atom, a selenium atom, and a tellurium atom.
  • a hetero atom is preferably a nitrogen atom, an oxygen atom, or a sulfur atom. More preferably, they are a nitrogen atom and an oxygen atom.
  • X a to X d may have a substituent. Examples of the substituent include the examples of the monovalent substituent R described above.
  • Y a , Y b , Y c , Y d , Y e and Y f each independently represent a hetero atom or a carbon atom.
  • the atoms constituting Y a to Y f include a carbon atom, a nitrogen atom, an oxygen atom, and a sulfur atom.
  • the atoms constituting Y a to Y f are preferably a carbon atom, a nitrogen atom and an oxygen atom, and more preferably a carbon atom and a nitrogen atom. More preferred is a carbon atom, and particularly preferred is a case where all represent a carbon atom.
  • the atoms may be substituted, the substituents may be bonded to each other to form a ring, or may be further condensed. Examples of the substituent include the examples of the monovalent substituent R described above.
  • the two rings bonded to the aromatic heterocyclic residue may have a double bond at any position. At least one of the two rings is preferably condensed. Moreover, it is preferable that at least one of the two rings is not a perimidine ring.
  • the ring formed by X a , X b , Y a to Y c and the carbon atom is A
  • the aromatic heterocyclic residue represented by Het 1 is Het
  • Specific examples of each ring are shown by assuming that the ring formed by X c , X d , Y d to Y f and carbon atom is B.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Ph represents a phenyl group.
  • the compound represented by the general formula (1) is preferably a compound represented by the general formula (2).
  • the compound represented by the general formula (2) will be described.
  • Het 2 has the same meaning as Het 1 in the general formula (1). The same applies to the preferred case.
  • X 2a , X 2b , X 2c and X 2d are the same as X a , X b , X c and X d in the general formula (1), respectively, and are the same when preferred.
  • X 2a , X 2b , X 2c and X 2d may be different from each other, but it is more preferable that X 2a and X 2b , and X 2c and X 2d each represent the same combination, particularly preferably X In this case, 2a and X 2c represent an oxygen atom, and X 2b and X 2d represent a nitrogen atom.
  • Y 2b , Y 2c , Y 2e and Y 2f have the same meanings as Y b , Y c , Y e and Y f in the general formula (1), respectively. The same applies to the preferred case.
  • L 1 and L 2 each independently represents an oxygen atom, a sulfur atom or ⁇ NR a (R a represents a hydrogen atom or a monovalent substituent.
  • the substituent is the above-described monovalent substituent R.
  • the oxygen atom is preferably ⁇ NR a . More preferred is an oxygen atom.
  • L 1 and L 2 may be different from each other, but are preferably the same. Among these, it is particularly preferable that both L 1 and L 2 are oxygen atoms.
  • Z 1 and Z 2 each independently represents an atomic group necessary for forming a 4- to 8-membered ring together with Y 2b and Y 2c or Y 2e and Y 2f . These rings may have a substituent and may further be condensed.
  • the ring to be formed include aliphatic hydrocarbon rings such as cyclohexane and cyclopentane, aromatic hydrocarbon rings such as benzene ring and naphthalene ring, pyridine, pyrrole, pyridazine, thiophene, imidazole, furan, pyrazole, oxazole, triazole, thiazo Or heterocyclic rings such as benzo-condensed ring thereof.
  • An aromatic hydrocarbon ring and a hetero ring are preferable.
  • An aromatic hydrocarbon ring is more preferable, and a benzene ring is particularly preferable.
  • the compound represented by the general formula (2) is preferably a compound represented by the general formula (3).
  • the compound represented by the general formula (3) will be described.
  • Het 3 has the same meaning as Het 2 in the general formula (2). The same applies to the preferred case.
  • X 3a , X 3b , X 3c and X 3d have the same meanings as X 2a , X 2b , X 2c and X 2d in the general formula (2), respectively, and are the same when preferred.
  • X 3a , X 3b , X 3c and X 3d may be different from each other, but it is more preferable that X 3a and X 3b , and X 3c and X 3d each represent the same combination, particularly preferably X In this case, 3a and X 3c represent an oxygen atom, and X 3b and X 3d represent a nitrogen atom.
  • R 3a , R 3b , R 3c , R 3d , R 3e , R 3f , R 3g and R 3h each independently represent a hydrogen atom or a monovalent substituent.
  • substituents include the examples of the monovalent substituent R described above. Any two substituents of R 3a to R 3d and R 3e to R 3h may be bonded to each other to form a ring, and may further be condensed.
  • R 3a to R 3h are preferably a hydrogen atom, an alkyl group having 10 or less carbon atoms, an alkoxy group having 10 or less carbon atoms, and a hydroxy group, and more preferably a hydrogen atom and an alkoxy group having 10 or less carbon atoms. More preferred is a hydrogen atom, and particularly preferred is a case where all of R 3a to R 3h represent a hydrogen atom.
  • the compound represented by the general formula (3) is preferably a compound represented by the general formula (4).
  • the compound represented by the general formula (4) will be described.
  • Het 4 has the same meaning as Het 3 in the general formula (3). The same applies to the preferred case.
  • R 4a , R 4b , R 4c , R 4d , R 4e , R 4f , R 4g and R 4h are R 3a , R 3b , R 3c , R 3d , R 3e , R 3f in the general formula (3), respectively. , R 3g and R 3h . The same applies to the preferred case.
  • the compound represented by the general formula (4) is preferably a compound represented by the general formula (5).
  • the compound represented by the general formula (5) will be described.
  • Het 5 has the same meaning as Het 4 in the general formula (4). The same applies to the preferred case.
  • R 5a , R 5b , R 5c , R 5d , R 5e , R 5f , R 5g and R 5h are R 4a , R 4b , R 4c , R 4d , R 4e , R 4f in the general formula (4), respectively. , R 4g and R 4h . The same applies to the preferred case.
  • R 5i and R 5j each independently represent a hydrogen atom or a monovalent substituent.
  • the monovalent substituent include the examples of the monovalent substituent R described above.
  • R 5i and R 5j may be bonded to each other to form a ring or may be further condensed.
  • R 5i and R 5j are preferably a hydrogen atom, an alkyl group having 10 or less carbon atoms, an alkoxy group having 10 or less carbon atoms, and a hydroxy group, and more preferably a hydrogen atom and an alkoxy group having 10 or less carbon atoms. More preferred is a hydrogen atom, and particularly preferred is a case where R 5i and R 5j both represent a hydrogen atom.
  • the compound represented by any one of the general formulas (1) to (5) can be synthesized by any method.
  • publicly known patent documents and non-patent documents for example, the example of page 4 left 43rd line to right 8th line of JP-A-2000-264879, page 4 right column 5th line 30 to 30 of JP-A-2003-155375. It can be synthesized with reference to the example of the line, “Bioorganic & Medicinal Chemistry”, 2000, Vol. 8, pp. 2095-2103, “Bioorganic & Medicinal Chemistry Letters”, 2003, Vol. 13, pages 4077-4080.
  • Exemplified Compound (15) can be synthesized by reacting 3,5-pyrazole dicarbonyl dichloride with anthranilic acid.
  • the exemplified compound (32) can be synthesized by reacting 2,5-thiophene dicarbonyl dichloride with 4,5-dimethoxyanthranilic acid.
  • the compound represented by any one of the general formulas (1) to (5) can take a tautomer depending on the structure and the environment in which the compound is placed. Although the present invention is described in one of representative forms, tautomers different from those described in the present invention are also included in the compounds used in the present invention.
  • the compound represented by any one of the general formulas (1) to (5) may contain an isotope (for example, 2 H, 3 H, 13 C, 15 N, 17 O, 18 O, etc.). Good.
  • the compound represented by any one of the general formulas (1) to (5) is particularly suitable for stabilizing an organic material against damage caused by light, oxygen, or heat. Among them, it is most suitable for use as a light stabilizer, particularly as an ultraviolet absorber.
  • the polymer substance may be either a natural or synthetic polymer.
  • Polyolefin for example, polyethylene, polypropylene, polyisobutylene, poly (1-butene), poly-4-methylpentene, polyvinylcyclohexane, polystyrene, poly (p-methylstyrene), poly ( ⁇ -methylstyrene), polyisoprene, polybutadiene, Polycyclopentene, polynorbornene, etc.
  • copolymers of vinyl monomers eg, ethylene / propylene copolymers, ethylene / methylpentene copolymers, ethylene / heptene copolymers, ethylene / vinylcyclohexane copolymers, ethylene / cycloolefin copolymers (eg, ethylene / norbornene)
  • COC cycloolefin copolymer
  • the polymer substance used in the present invention is preferably a synthetic polymer, more preferably polyolefin, acrylic polymer, polyester, polycarbonate, polyvinyl butyral, ethylene vinyl acetate, polyethersulfone, or cellulose ester.
  • polyethylene, polypropylene, poly (4-methylpentene), polymethyl methacrylate (PMMA), polycarbonate, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and triacetyl cellulose are particularly preferable.
  • thermoplastic resins include polyethylene resins, polypropylene resins, poly (meth) acrylic ester resins, polystyrene resins, styrene-acrylonitrile resins, acrylonitrile-butadiene-styrene resins, polyvinyl chloride resins, Polyvinylidene chloride resin, polyvinyl acetate resin, polyvinyl butyral resin (PVB), ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol resin, polyethylene terephthalate resin (PET), polyethylene naphthalate resin (PEN) , Polybutylene terephthalate resin (PBT), ethylene vinyl acetate resin (EVA), polyethersulfone resin (PES), liquid crystal polyester resin (LCP), polyacetal resin (POM), polyamide resin (PA , Polycarbonate resin (PC), polyurethane resins and polyphenylene
  • resins are also used as thermoplastic molding materials in which natural resins contain fillers such as glass fibers, carbon fibers, semi-carbonized fibers, cellulosic fibers, glass beads, flame retardants, and the like.
  • conventionally used additives for resins for example, polyolefin resin fine powder, polyolefin wax, ethylene bisamide wax, metal soap, etc. can be used alone or in combination as required.
  • the polymer substance is preferably transparent.
  • transparent polymer materials include cellulose esters (eg, diacetylcellulose, triacetylcellulose, propionylcellulose, butyrylcellulose, acetylpropionylcellulose, nitrocellulose), polyamides, polycarbonates, polyesters (eg, polyethylene terephthalate, polyethylene naphthalate).
  • Polybutylene terephthalate poly-1,4-cyclohexanedimethylene terephthalate, polyethylene-1,2-diphenoxyethane-4,4′-dicarboxylate, polybutylene terephthalate
  • polystyrene eg, syndiotactic polystyrene
  • Polyolefin eg, polyethylene, polypropylene, polymethylpentene
  • polymethyl methacrylate syndiotactic polystyrene
  • poly Sulfone polyether sulfone
  • polyvinyl butyral ethylene vinyl acetate
  • polyether ketones polyether imides, polyoxyethylene, and the like.
  • Preferred are cellulose ester, polycarbonate, polyester, polyolefin, and acrylic resin, and more preferred are polycarbonate and polyester. Further preferred is polyester, and particularly preferred is polyethylene terephthalate.
  • two or more compounds represented by any one of the general formulas (1) to (5) having different structures may be used in combination, or any one of the general formulas (1) to (5) may be used.
  • a compound represented by the above formula and one or more ultraviolet absorbers having other structures may be used in combination.
  • ultraviolet absorbers When two kinds (preferably three kinds) of ultraviolet absorbers are used in combination, ultraviolet rays in a wide wavelength region can be absorbed.
  • the dispersion state of the ultraviolet absorber is also stabilized. Any ultraviolet absorber having a structure other than those of the general formulas (1) to (5) can be used.
  • Examples of the structure of the ultraviolet absorber include triazine, benzotriazole, benzophenone, merocyanine, cyanine, dibenzoylmethane, cinnamic acid, cyanoacrylate, and benzoate.
  • Triazine May 2004, pages 28-38, published by Toray Research Center, Research Division, “New Development of Functional Additives for Polymers” (Toray Research Center, 1999), pages 96-140, Junichi Okachi UV absorbers described in the supervision of “Development of Polymer Additives and Environmental Countermeasures” (CMC Publishing Co., Ltd., 2003), pages 54 to 64, and the like.
  • a benzotriazole-based, benzophenone-based, salicylic acid-based, cyanoacrylate-based, or triazine-based compound is preferable. More preferred are benzotriazole, benzophenone and triazine compounds. Particularly preferred are benzotriazole compounds.
  • the effective absorption wavelength of benzotriazole compounds is about 270 to 380 nm, and representative examples include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole and 2- (2′-hydroxy-5′-t-butyl).
  • Phenyl) benzotriazole 2- (2′-hydroxy-3′-t-butyl-5′-methylphenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t -Butylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3'-t-butyl-5 '-(2- (octyloxycarbonyl) ethyl) phenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-3′-dodecyl-5′-methylphenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-3 ′, 5 ′ Di-t-amylphenyl) benzo
  • the effective absorption wavelength of benzophenone compounds is about 270 to 380 nm, and representative examples include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octyloxybenzophenone, 2-hydroxy-4- Dodecyloxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2-hydroxy-4- (2-hydroxy-3-methacryloxypropoxy) benzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, 2-hydroxy- 4-methoxy-5-sulfobenzophenone trihydrate, 2-hydroxy-4-methoxy-2'-carboxybenzophenone, 2-hydroxy-4-octadecyloxybenzophenone, 2-hydroxy-4-diethylamino -2'-hexyloxycarbonylbenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, 2,2'-d
  • the effective absorption wavelength of the salicylic acid compound is about 290 to 330 nm, and representative examples include phenyl salicylate, pt-butylphenyl salicylate, p-octylphenyl salicylate and the like.
  • the effective absorption wavelength of the cyanoacrylate compound is about 270 to 350 nm.
  • Typical examples include 2-ethylhexyl 2-cyano-3, 3-diphenyl acrylate, ethyl 2-cyano-3, 3-diphenyl acrylate, hexadecyl 2-cyano- 3- (4-methylphenyl) acrylate, 2-cyano-3- (4-methylphenyl) acrylate, 1,3-bis (2′-cyano-3,3′-diphenylacryloyl) oxy) -2, And 2-bis (((2′-cyano-3,3′-diphenylacryloyl) oxy) methyl) propane.
  • the effective absorption wavelength of the triazine compound is about 270 to 380 nm, and representative examples include 2- (4-hexyloxy-2-hydroxyphenyl) -4,6-diphenyl-1,3,5-triazine, 2- (4- Octyloxy-2-hydroxyphenyl) -4,6-di (2,5-dimethylphenyl) -1,3,5-triazine, 2- (4-butoxy-2-hydroxyphenyl) -4,6-di (4 -Butoxyphenyl) -1,3,5-triazine, 2- (4-butoxy-2-hydroxyphenyl) -4,6-di (2,4-dibutoxyphenyl) -1,3,5-triazine, 2 -(4- (3- (2-ethylhexyloxy) -2-hydroxypropoxy) -2-hydroxyphenyl) -4,6-di (2,4-dimethylphenyl) -1,3,5-triazine, 2 - 4- (3
  • the resin molded product of the present invention comprises an antioxidant, a light stabilizer, a processing stabilizer, an anti-aging agent, a compatibilizing agent, if necessary, in addition to the polymer substance and the ultraviolet absorbing compound (ultraviolet absorber).
  • Arbitrary arbitrary additives may be contained appropriately.
  • the resin molded product of the present invention has a practically sufficient ultraviolet shielding effect due to the ultraviolet absorbing compound, but when a more strict ultraviolet shielding effect is required, it has a strong white hiding power.
  • a pigment such as titanium oxide may be used in combination.
  • a trace amount (0.05% by mass or less) of a colorant can be used in combination.
  • a fluorescent brightening agent may be used in combination. Examples of the optical brightener include those commercially available, general formula [1] described in JP-A-2002-53824, and specific compound examples 1 to 35.
  • the compound represented by any one of the general formulas (1) to (5) can be contained in the polymer substance by various methods.
  • the compound When the compound is compatible with the polymer material, the compound can be added directly to the polymer material.
  • the compound may be dissolved in an auxiliary solvent having compatibility with the polymer substance, and the solution may be added to the polymer substance.
  • the compound may be dispersed in a high-boiling organic solvent or polymer, and the dispersion may be added to the polymer substance.
  • the boiling point of the high-boiling organic solvent is preferably 180 ° C. or higher, and more preferably 200 ° C. or higher.
  • the melting point of the high-boiling organic solvent is preferably 150 ° C. or lower, and more preferably 100 ° C. or lower.
  • the high boiling point organic solvent include phosphate ester, phosphonate ester, benzoate ester, phthalate ester, fatty acid ester, carbonate ester, amide, ether, halogenated hydrocarbon, alcohol and paraffin. Phosphate esters, phosphonate esters, phthalate esters, benzoate esters and fatty acid esters are preferred.
  • JP-A-58-209735, JP-A-63-264748, JP-A-4-191185, JP-A-8-272058, and British Patent No. 2011017A Can be referred to.
  • the compound (ultraviolet absorber) represented by any one of the general formulas (1) to (5) may be added during the polymerization of the polymer substance or may be added after the polymerization.
  • the ultraviolet absorber When added in a molten state to the polymer substance after polymerization, the ultraviolet absorber may be added alone or in a state dispersed in a solvent or the like.
  • the solvent used at this time is not particularly limited as long as it does not deteriorate the resin to be kneaded and disperses the ultraviolet absorber. Examples of such solvents include the high boiling point organic solvents described above.
  • Such melt mixing can be performed by adding an ultraviolet absorber at a temperature equal to or higher than the melting temperature of the polymer using a melt mixing facility such as a single screw or twin screw extruder.
  • a melt mixing facility such as a single screw or twin screw extruder.
  • the ultraviolet absorber may be added to the molten state of the thermoplastic resin during film formation and kneaded. This method is preferable because the deterioration of the thermoplastic resin can be suppressed by reducing the heat history.
  • thermoplastic polymer capable of melt polymerization for example, a thermoplastic polyester such as polyethylene terephthalate or polyethylene naphthalate
  • a dispersion of an ultraviolet absorber may be added before or during the polymerization.
  • the ultraviolet absorber may be added alone or may be added in a state dispersed in a solvent in advance.
  • the solvent in this case is preferably a polymer raw material.
  • the polymerization reaction may be carried out according to the usual polymer polymerization conditions.
  • thermoplastic resin containing an ultraviolet absorber at a relatively high concentration of 0.5 to 50% by mass obtained by the above method can be used as a master batch and further kneaded with a thermoplastic resin to which no ultraviolet absorber is added.
  • a target ultraviolet absorber-containing polymer can be obtained.
  • the polymer film of the present invention is formed by molding the above-mentioned resin molded product of the present invention into a film shape.
  • the content of the UV-absorbing compound in the polymer film of the present invention, the light transmittance at a wavelength of 410 nm, the light transmittance at 440 nm, the light transmittance at 430 nm and preferred ranges thereof are explained for the resin molded product of the present invention. It is the same as that.
  • a thermoplastic resin containing an ultraviolet absorber can be formed into a film by melt film formation.
  • the melt film forming temperature is preferably not less than 450 ° C., more preferably not more than 400 ° C., and still more preferably not more than 350 ° C., the flow starting temperature of the thermoplastic resin (the glass transition temperature for amorphous resins, the melting point for crystalline resins). . If the temperature is lower than the flow start temperature, melt molding becomes difficult, which is not preferable. If the temperature is too high, the thermoplastic resin may be thermally deteriorated, which is not preferable.
  • the stretching method include conventionally known methods, for example, a method of stretching sequentially or simultaneously in a uniaxial or biaxial direction.
  • the stretching temperature is preferably not less than the glass transition point of the resin composition and not more than 90 ° C., more preferably not less than the glass transition point of the resin composition and not more than 70 ° C., more preferably not less than the glass transition point and not less than 60 ° C. It is as follows. If the stretching temperature is too low or too high, it is difficult to produce a uniform film, which is not preferable. Further, the draw ratio is preferably 1.5 times or more and 100 times or less as a surface magnification. The draw ratio in the present invention is represented by (area of film after stretching) / (area of film before stretching). It is preferable because the polymer is oriented by stretching and becomes more elastic.
  • thermoplastic resin when the thermoplastic resin is crystalline, it is preferable to heat-treat after stretching and orientation of the film.
  • the temperature of the heat treatment is preferably not less than the glass transition point of the polyester and not more than the melting point. Further suitable temperature is determined taking into account the crystallization temperature of the obtained film and the physical properties of the obtained film.
  • the thickness of the film of the present invention is preferably 1 to 500 ⁇ m, more preferably 5 to 400 ⁇ m, and particularly preferably 10 to 300 ⁇ m. If it is this range, it will fully absorb ultraviolet rays and is effective as a light-resistant film.
  • the resin composition of the present invention is characterized in that the polymer material contains the compound represented by the general formula (1).
  • Preferred substituents, specific examples, and polymer substances of the compound represented by the general formula (1) are the same as those described in the description of the resin molded product.
  • the resin composition of the present invention can be used for the production of the resin molded product (various materials and molded products) of the present invention and a polymer film.
  • the resin molded body and composition of the present invention can be used for all applications in which a synthetic resin is used, but can be particularly suitably used for applications that may be exposed to sunlight or light including ultraviolet rays.
  • surface coating materials for glass substitutes, housing, facilities, window glass for transportation equipment, coating materials for daylighting glass and light source protection glass, housing, facilities, window films for transportation equipment, housing, facilities, etc.
  • Interior / exterior materials for transportation equipment fluorescent light sources, mercury lamps and other light source materials, precision machinery, electronic and electrical equipment materials, shielding materials for electromagnetic waves generated from various displays, foods, chemicals, chemicals, etc.
  • the intermediate film in the present invention may be any film as long as it is sandwiched between substrates, and specific examples thereof include a polymer film that is sandwiched between laminated glasses.
  • Example 1 A pellet of polyethylene terephthalate (PET) having an intrinsic viscosity of 0.78 dried at 170 ° C. for 6 hours was mixed with Exemplified Compound (1) and charged into an extruder. Melt kneading was performed at a melting temperature of 280 ° C. to obtain ultraviolet absorber-containing pellets. The pellets and polyethylene terephthalate were mixed so that the ultraviolet absorber was 0.5 g / m 2 and melt kneaded at 280 ° C. to obtain a film having a thickness of 100 ⁇ m.
  • PET polyethylene terephthalate
  • the maximum absorption wavelength in a solution of Exemplified Compound (1) include ethyl acetate as solvent, to prepare a concentration of 2 ⁇ 10 -5 M solution, using a spectrophotometer UV-3600 (trade name, manufactured by Shimadzu Corporation) Measurement As a result, it was 375 nm.
  • Example 2 A film was produced in the same manner as in Example 1 except that the amount of the exemplified compound (1) added in Example 1 was changed to 1.0 g / m 2 .
  • Example 3 A film was produced in the same manner as in Example 1 except that the addition amount of the exemplified compound (1) in Example 1 was changed to 4.0 g / m 2 .
  • Example 4 A film was produced in the same manner as in Example 1 except that Example Compound (1) was changed to Example Compound (5) in Example 1.
  • the maximum absorption wavelength in the solution of the exemplary compound (5) was measured in the same manner as in Example 1, it was 392 nm.
  • Example 5 A film was produced in the same manner as in Example 1 except that Example Compound (1) was changed to Example Compound (17) in Example 1.
  • the maximum absorption wavelength in the solution of the exemplary compound (17) was measured in the same manner as in Example 1, it was 361 nm.
  • Example 6 A film was produced in the same manner as in Example 1 except that the exemplified compound (1) was changed to the exemplified compound (21) in Example 1.
  • the maximum absorption wavelength in the solution of the exemplary compound (21) was measured in the same manner as in Example 1, it was 357 nm.
  • Example 7 A film was produced in the same manner as in Example 1 except that the exemplified compound (1) was changed to the exemplified compound (31) in Example 1.
  • the maximum absorption wavelength in the solution of the exemplary compound (31) was measured in the same manner as in Example 1, it was 383 nm.
  • Example 8 Polycarbonate (PC) pellets and exemplary compound (1) were mixed and charged into an extruder. Melt kneading was performed at a melting temperature of 300 ° C. to obtain ultraviolet absorber-containing pellets. Pellets and polycarbonate were mixed so that the ultraviolet absorbent was 0.5 g / m 2 and melt kneaded at 300 ° C. to obtain a film having a thickness of 100 ⁇ m.
  • Example 9 Polyethylene naphthalate (PEN) pellets and exemplary compound (1) were mixed and charged into an extruder. Melt kneading was performed at a melting temperature of 305 ° C. to obtain ultraviolet absorber-containing pellets. Pellets and polyethylene naphthalate were mixed so that the ultraviolet absorber was 0.5 g / m 2 and melt kneaded at 305 ° C. to obtain a film having a thickness of 100 ⁇ m.
  • PEN Polyethylene naphthalate
  • Example 10 Polyethersulfone (PES) pellets and exemplary compound (1) were mixed and charged into an extruder. Melt kneading was performed at a melting temperature of 350 ° C. to obtain ultraviolet absorber-containing pellets. Pellets and polyethersulfone were mixed so that the ultraviolet absorber was 0.5 g / m 2 and melt kneaded at 350 ° C. to obtain a film having a thickness of 100 ⁇ m.
  • PES Polyethersulfone
  • Example 11 Polymethylmethacrylate (PMMA) pellets and exemplary compound (1) were mixed and charged into an extruder. Melt kneading was performed at a melting temperature of 240 ° C. to obtain ultraviolet absorber-containing pellets. The pellets and polymethyl methacrylate were mixed so that the ultraviolet absorber was 0.5 g / m 2 and melt kneaded at 240 ° C. to obtain a film having a thickness of 100 ⁇ m.
  • PMMA Polymethylmethacrylate
  • Example 12 A film was produced in the same manner as in Example 1 except that the amount of Example Compound (1) added in Example 1 was changed to 5.0 g / m 2 .
  • Example 13 A film was produced in the same manner as in Example 1 except that the thickness of the film in Example 1 was changed to 25 ⁇ m.
  • Example 14 A film was produced in the same manner as in Example 1 except that the thickness of the film in Example 1 was changed to 200 ⁇ m.
  • Example 15 The pellets of polybutylene terephthalate (PBT) and exemplary compound (1) were mixed and charged into an extruder. Melt kneading was performed at a melting temperature of 280 ° C. to obtain ultraviolet absorber-containing pellets. The pellets and polybutylene terephthalate were mixed so that the ultraviolet absorber was 0.5 g / m 2 and melt kneaded at 350 ° C. to obtain a film having a thickness of 100 ⁇ m.
  • PBT polybutylene terephthalate
  • exemplary compound (1) Example 15 The pellets of polybutylene terephthalate (PBT) and exemplary compound (1) were mixed and charged into an extruder. Melt kneading was performed at a melting temperature of 280 ° C. to obtain ultraviolet absorber-containing pellets. The pellets and polybutylene terephthalate were mixed so that the ultraviolet absorber was 0.5 g / m 2 and melt kneaded at 350 °
  • Comparative Example 1 A film was produced in the same manner as in Example 1 except that Example Compound (1) was not added in Example 1.
  • Comparative Example 2 A film was produced in the same manner as in Example 1 except that the amount of Example Compound (1) added in Example 1 was changed to 8.0 g / m 2 .
  • Comparative Example 3 20% by mass of polymethyl methacrylate (PMMA) was dissolved in tetrahydrofuran to prepare a binder solution. Next, the following comparative compound A (Me represents a methyl group) was dissolved in the binder solution to prepare a coating solution. A polyethylene terephthalate film having a thickness of 100 ⁇ m was used as a base material, and the coating solution was applied thereon by a coater and dried at 70 ° C. for 1 hour to form a film having a thickness of 50 ⁇ m, thereby producing a film. The content of the comparative compound A in the film was 10.8 g / m 2 . When measured in the same manner as in Example 1, the maximum absorption wavelength in the solution of Comparative Compound A was 352 nm.
  • PMMA polymethyl methacrylate
  • Comparative Example 4 A film was produced in the same manner as in Comparative Example 3 except that the thickness of the film was changed to 5 ⁇ m in Comparative Example 3.
  • Comparative Example 5 A film was produced in the same manner as in Example 12 except that Comparative Compound B was added instead of Illustrative Compound (1) in Example 12. When measured in the same manner as in Example 1, the maximum absorption wavelength in the solution of Comparative Compound B was 346 nm.
  • Each light-resistant film was irradiated with a xenon lamp so that the illuminance was 170,000 lux, and each film after 1000 hours of irradiation was subjected to a wavelength of 410 nm using a spectrophotometer UV-3600 (trade name, manufactured by Shimadzu Corporation). The light transmittance at 430 nm and 440 nm was measured. After irradiation, the haze value of the film was measured using a haze measuring device, and the difference from the haze value before irradiation was evaluated according to the following criteria.
  • haze value after irradiation / haze value before irradiation ⁇ 2.0: extremely good light resistance ⁇ : 2.0 ⁇ haze value after irradiation / haze value before irradiation ⁇ 3.0 ... good light resistance ⁇ : 3.0 ⁇ irradiation Post haze value / pre-irradiation haze value: poor light resistance The color of the produced film was visually observed and the yellow color was evaluated. ⁇ : Almost colorless and good color ⁇ : There is a problem of yellowing. Table 7 shows the results.
  • the film of Comparative Example 1 containing no UV absorber was inferior in light resistance.
  • the ultraviolet absorber bleeded out and the film surface became white and soiled, so that it was not suitable as a film.
  • the films of Comparative Examples 3 and 4 containing Comparative Compound A are not so problematic in terms of light resistance, but have a light transmittance at wavelengths of 430 nm and 440 nm. It was low.
  • the film of Comparative Example 5 containing Comparative Compound B could hardly cut light at 410 nm, and was inferior in light resistance.
  • the film of the present invention has low transmittance at a wavelength of 410 nm and high transmittance at wavelengths of 430 nm and 440 nm and is difficult to be decomposed by light irradiation.
  • Example 16 Polycarbonate (PC) pellets and exemplary compound (1) were mixed and charged into an extruder. Melt kneading was performed at a melting temperature of 300 ° C. to obtain ultraviolet absorber-containing pellets. Pellets and polycarbonate were mixed so that the ultraviolet absorber was 0.5 g / m 2 and injection molded at 300 ° C. to obtain a molded body having a thickness of 1 mm.
  • Example 17 A molded body was produced in the same manner as in Example 16 except that the thickness of the molded body was changed to 5 mm in Example 16.
  • Example 18 A molded body was produced in the same manner as in Example 16 except that the thickness of the molded body was changed to 10 mm in Example 16.
  • Example 19 Polymethylmethacrylate (PMMA) pellets and exemplary compound (1) were mixed and charged into an extruder. Melt kneading was performed at a melting temperature of 240 ° C. to obtain ultraviolet absorber-containing pellets. The pellets and polymethylmethacrylate were mixed so that the ultraviolet absorbent was 0.5 g / m 2 and injection molded at 240 ° C. to obtain a molded body having a thickness of 1 mm.
  • PMMA Polymethylmethacrylate
  • Example 20 A molded body was produced in the same manner as in Example 19 except that the thickness of the molded body was changed to 5 mm in Example 19.
  • Example 21 A molded body was prepared in the same manner as in Example 19 except that the thickness of the molded body was changed to 10 mm in Example 20.
  • the molded article of the present invention had a low transmittance at a wavelength of 410 nm and a high transmittance at a wavelength of 430 nm and 440 nm and was not easily decomposed by light irradiation.
  • the resin molded product of the present invention has a low transmittance at a wavelength of 410 nm, a high transmittance at a wavelength of 430 nm and 440 nm, and is not easily decomposed by light irradiation. It seems to be effective for use in Japan.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 溶液における最大吸収波長が400nm以下である化合物を高分子物質に5g/m2以下含有してなる樹脂成形物であって、波長410nmでの光線透過率が5%以下である樹脂成形物。  

Description

樹脂成形物及びポリマーフィルム
 本発明は、紫外線を遮断する耐光性ポリマーフィルムと樹脂成形物に関する。
 熱可塑性樹脂フィルムは、汎用性が高く幅広い分野、条件下で使用されている。ポリエステル、ポリアミド、ポリオレフィン、ポリエーテル、ポリスチレン系樹脂などの熱可塑性樹脂は紫外線の作用により劣化あるいは分解を引き起こし、変色したり機械強度が低下したりするため、長期の使用に支障をきたすことがある。そこで、劣化を防止するために、従来から種々の紫外線吸収剤が用いられている。こうした紫外線吸収剤を含有する熱可塑性樹脂フィルムは、窓貼り用、ビニールハウス、防虫用途など幅広く使用されている。
 インク、医療、食品の分野では、これらの物品が紫外領域(380nm以下)や、可視光短波長領域(380nm~410nm)の光により劣化してしまうことが知られている。しかし、これまで特定の波長をカットするフィルムという課題自体、周知のものではなかった。
 従来、ベンゾフェノン系やベンゾトリアゾール系の紫外線吸収剤、および酸化金属を含有させたフィルムは存在した。しかし、これらのフィルムは380nm以下までの紫外線吸収能しか有しておらず、380nm~410nmの可視光短波長領域の光は吸収できないため、その効果が乏しい場合があった。また、これらのフィルムの中には、熱によって紫外線吸収剤の析出や分解が生じるために、加熱成形した際にその効果が半減したり、更には加熱成形に適さないものもあった。
 また、長波長領域までカットしようとするとかなり高濃度に紫外線吸収剤を添加する必要があるが、単に高濃度に添加しただけでは紫外線吸収剤の析出や長期使用によるブリードアウトが生じるという問題があった。また、ベンゾフェノン系やベンゾトリアゾール系の紫外線吸収剤の中には、皮膚刺激性や生体内への蓄積性を有するものがあり、使用にあたっては細心の注意が必要であった。
特開平7-11231号公報 特開平7-11232号公報 特開2006-188578号公報
 本発明は、上記の問題点を解決するものであり、長波紫外線吸収能を長時間維持することができる紫外線吸収性化合物を含むポリマーフィルムと樹脂成形物を提供することを課題とする。
 本発明者らは、ヘテロ環化合物について詳細に検討した結果、光堅牢性が高く、これまでカバーすることができなかった長波長領域の紫外線を吸収できる従来知られていない構造を有する化合物を見出し、これを含むフィルムが耐光性フィルムとして有効であることを見出し、本発明を完成するに至った。
 本発明によれば、以下の手段が提供される:
<1>溶液における最大吸収波長が400nm以下である化合物を高分子物質に5g/m2以下含有してなる樹脂成形物であって、波長410nmでの光線透過率が5%以下であることを特徴とする樹脂成形物。
<2>波長440nmでの光線透過率が80%以上である、<1>記載の樹脂成形物。
<3>波長430nmでの光線透過率が70%以上である、<1>または<2>記載の樹脂成形物。
<4>前記化合物が下記一般式(1)で表される化合物である、<1>~<3>のいずれか1項に記載の樹脂成形物。
Figure JPOXMLDOC01-appb-C000011
[Het1は、2価の5あるいは6員環の芳香族ヘテロ環残基を表す。また、該芳香族ヘテロ環残基は置換基を有していても良い。
 Xa、Xb、Xc及びXdは、互いに独立してヘテロ原子を表す。また、Xa~Xdは置換基を有していても良い。
 Ya、Yb、Yc、Yd、Ye及びYfは、互いに独立してヘテロ原子または炭素原子を表す。また、Ya~Yfは置換基を有していても良い。
 Het1に結合している環は、任意の位置に二重結合を有していても良い。]
<5>前記一般式(1)で表される化合物が下記一般式(2)で表される化合物である、<4>に記載の樹脂成形物。
Figure JPOXMLDOC01-appb-C000012
[Het2は、前記一般式(1)のHet1と同義である。
 X2a、X2b、X2c及びX2dは、それぞれ前記一般式(1)のXa、Xb、Xc及びXdと同義である。
 Y2b、Y2c、Y2e及びY2fは、それぞれ前記一般式(1)のYb、Yc、Ye及びYfと同義である。
 L1及びL2は、それぞれ独立して酸素原子、硫黄原子または=NRaを表す(Raは、水素原子または1価の置換基を表す。)。
 Z1及びZ2はそれぞれ独立して、Y2b及びY2cまたはY2e及びY2fと一緒になって4~8員環を形成するのに必要な原子群を表す。]
<6>前記一般式(2)で表される化合物が下記一般式(3)で表される化合物である、<5>記載の樹脂成形物。
Figure JPOXMLDOC01-appb-C000013
[Het3は、前記一般式(2)のHet2と同義である。
 X3a、X3b、X3c及びX3dは、それぞれ前記一般式(2)のX2a、X2b、X2c及びX2dと同義である。
 R3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hは互いに独立して、水素原子または1価の置換基を表す。]
<7>前記一般式(3)で表される化合物が下記一般式(4)で表される化合物である、<6>記載の樹脂成形物。
Figure JPOXMLDOC01-appb-C000014
[Het4は、前記一般式(2)のHetと同義である。
 R4a、R4b、R4c、R4d、R4e、R4f、R4g及びR4hは、それぞれ前記一般式(3)のR3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hと同義である。]
<8>溶液における最大吸収波長が400nm以下である化合物を高分子物質に5g/m2以下含有してなるフィルムであって、波長410nmでの光線透過率が5%以下であることを特徴とするポリマーフィルム。
<9>波長440nmでの光線透過率が80%以上である、<8>記載のポリマーフィルム。
<10>波長430nmでの光線透過率が70%以上である、<8>または<9>記載のポリマーフィルム。
<11>前記化合物が下記一般式(1)で表される化合物である、<8>~<10>のいずれか1項に記載のポリマーフィルム。
Figure JPOXMLDOC01-appb-C000015
[Het1は、2価の5あるいは6員環の芳香族ヘテロ環残基を表す。また、該芳香族ヘ
テロ環残基は置換基を有していても良い。
 Xa、Xb、Xc及びXdは、互いに独立してヘテロ原子を表す。また、Xa~Xdは置換基を有していても良い。
 Ya、Yb、Yc、Yd、Ye及びYfは、互いに独立してヘテロ原子または炭素原子を表す。また、Ya~Yfは置換基を有していても良い。
 Het1に結合している環は、任意の位置に二重結合を有していても良い。]
<12>前記一般式(1)におけるXa、Xb、Ya~Yc及び炭素原子によって形成される環並びにXc、Xd、Yd~Yf及び炭素原子によって形成される環の少なくとも一方が縮環している、<11>記載のポリマーフィルム。
<13>前記一般式(1)におけるXa、Xb、Ya~Yc及び炭素原子によって形成される環並びにXc、Xd、Yd~Yf及び炭素原子によって形成される環の少なくとも一方がペリミジン環ではない、<11>又は<12>に記載のポリマーフィルム。
<14>前記一般式(1)で表される化合物が下記一般式(2)で表される化合物である、<11>~<13>のいずれか1項に記載のポリマーフィルム。
Figure JPOXMLDOC01-appb-C000016
[Het2は、前記一般式(1)のHet1と同義である。
 X2a、X2b、X2c及びX2dは、それぞれ前記一般式(1)のXa、Xb、Xc及びXdと同義である。
 Y2b、Y2c、Y2e及びY2fは、それぞれ前記一般式(1)のYb、Yc、Ye及びYfと同義である。
 L1及びL2は、それぞれ独立して酸素原子、硫黄原子または=NRaを表す(Raは、水素原子または1価の置換基を表す。)。
 Z1及びZ2はそれぞれ独立して、Y2b及びY2cまたはY2e及びY2fと一緒になって4~8員環を形成するのに必要な原子群を表す。]
<15>前記一般式(2)で表される化合物が下記一般式(3)で表される化合物である、<14>に記載のポリマーフィルム。
Figure JPOXMLDOC01-appb-C000017
[Het3は、前記一般式(2)のHet2と同義である。
 X3a、X3b、X3c及びX3dは、それぞれ前記一般式(2)のX2a、X2b、X2c及びX2dと同義である。
 R3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hは互いに独立して、水素原子または1価の置換基を表す。]
<16>前記一般式(3)で表される化合物が下記一般式(4)で表される化合物である、<15>記載のポリマーフィルム。
Figure JPOXMLDOC01-appb-C000018
[Het4は、前記一般式(3)のHet3と同義である。
 R4a、R4b、R4c、R4d、R4e、R4f、R4g及びR4hは、それぞれ前記一般式(3)のR3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hと同義である。]
<17>前記一般式(4)で表される化合物が下記一般式(5)で表される化合物である、<16>記載のポリマーフィルム。
Figure JPOXMLDOC01-appb-C000019
[R5a、R5b、R5c、R5d、R5e、R5f、R5g及びR5hは、それぞれ前記一般式(4)のR4a、R4b、R4c、R4d、R4e、R4f、R4g及びR4hと同義である。R5i及びR5jは互いに独立して、水素原子または1価の置換基を表す。]
<18>前記高分子物質がポリエステル、ポリカーボネートまたはアクリル樹脂である、<8>~<17>のいずれか1項に記載のポリマーフィルム。
<19>前記高分子物質がポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリメチルメタクリレートである、<8>~<18>のいずれか1項に記載のポリマーフィルム。
<20><8>~<19>のいずれか1項に記載のポリマーフィルムを含む太陽電池。
<21><8>~<19>のいずれか1項に記載のポリマーフィルムを含む中間膜。
<22>高分子物質に下記一般式(1)で表される化合物を含有してなる樹脂組成物。
Figure JPOXMLDOC01-appb-C000020
[Het1は、2価の5あるいは6員環の芳香族ヘテロ環残基を表す。また、該芳香族ヘ
テロ環残基は置換基を有していても良い。
 Xa、Xb、Xc及びXdは、互いに独立してヘテロ原子を表す。また、Xa~Xdは置換基を有していても良い。
 Ya、Yb、Yc、Yd、Ye及びYfは、互いに独立してヘテロ原子または炭素原子を表す。また、Ya~Yfは置換基を有していても良い。
 Het1に結合している環は、任意の位置に二重結合を有していても良い。]
 本発明の樹脂成形物は耐光性に優れ、紫外線吸収を要する種々の用途に用いることができる。一例として本発明のポリマーフィルムは紫外線フィルタとして用いることができ、例えば容器に貼り付けることで紫外線に弱い内容物を保護することができる。
 本発明の上記及び他の特徴及び利点は、下記の記載からより明らかになるであろう。
 以下、本発明について詳細に説明する。
 本発明における樹脂組成物とは、樹脂を含んでなるもので、室温で一定時間形を保っているものであればよい。
 本発明における樹脂成形物とは、樹脂を含んでなる成形物であればよく、その形態は特に制限するものではない。具体例として、ポリマーフィルム、チューブ、カップ、プレート、ボトル、ペレット、塊状樹脂などを挙げることができる。
 本発明の樹脂成形物は、溶液における最大吸収波長が400nm以下である化合物(紫外線吸収性化合物)を高分子物質に5g/m2以下含有してなり、かつ、波長410nmでの光線透過率が5%以下であることを特徴とする。
 本発明における最大吸収波長を測定するための溶液とは、本発明で用いる化合物を有機もしくは無機の溶媒または水を単独あるいはそれぞれの混合物を用いて溶解したものである。
 有機溶媒の例としては、例えば、アミド系溶媒(例えばN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1-メチル-2-ピロリドン)、スルホン系溶媒(例えばスルホラン)、スルホキシド系溶媒(例えばジメチルスルホキシド)、ウレイド系溶媒(例えばテトラメチルウレア)、エーテル系溶媒(例えばジオキサン、テトラヒドロフラン、シクロペンチルメチルエーテル)、ケトン系溶媒(例えばアセトン、シクロヘキサノン)、炭化水素系溶媒(例えばトルエン、キシレン、n-デカン)、ハロゲン系溶媒(例えばテトラクロロエタン、クロロベンゼン、クロロナフタレン)、アルコール系溶媒(例えばメタノール、エタノール、イソプロピルアルコール、エチレングリコール、シクロヘキサノール、フェノール)、ピリジン系溶媒(例えばピリジン、γ-ピコリン、2,6-ルチジン)、エステル系溶媒(例えば酢酸エチル、酢酸ブチル)、カルボン酸系溶媒(例えば酢酸、プロピオン酸)、ニトリル系溶媒(例えばアセトニトリル)、スルホン酸系溶媒(例えばメタンスルホン酸)、アミン系溶媒(例えばトリエチルアミン、トリブチルアミン)が挙げられる。無機溶媒の例としては、例えば、硫酸、リン酸が挙げられる。
 溶解性を考慮すると、好ましくはアミド系溶媒、スルホン系溶媒、スルホキシド系溶媒、ウレイド系溶媒、エーテル系溶媒、ケトン系溶媒、ハロゲン系溶媒、アルコール系溶媒、エステル系溶媒、ニトリル系溶媒である。より好ましくはアミド系溶媒、エーテル系溶媒、ケトン系溶媒、ハロゲン系溶媒、アルコール系溶媒、エステル系溶媒、ニトリル系溶媒であり、さらに好ましくはエーテル系溶媒、ハロゲン系溶媒、エステル系溶媒であり、特に好ましくはエステル系溶媒である。エステル系溶媒の中でも酢酸エチルを溶媒とすることが最も好ましい。
 濃度は、分光吸収の最大吸収波長が確認できる濃度であればよく、好ましくは1×10-8~1Mの範囲である。温度は、特に限定しないが、好ましくは0℃~80℃である。
 前記化合物の溶液における最大吸収波長は、好ましくは350nm以上400nm以下であり、さらに好ましくは360nm以上400nm以下であり、最も好ましくは370nm以上400nm以下である。
 紫外線吸収性化合物の含有量は、好ましくは3g/m2以下であり、さらに好ましくは2g/m2以下であり、特に好ましくは1g/m2以下である。また、紫外線吸収性化合物は、紫外線吸収効果を発揮させかつ均一に分散させる観点から、当該化合物と高分子物質との合計質量あたり、0.05~30質量%含有させることが好ましく、0.1~20質量%含有させることがさらに好ましい。
 本発明の樹脂成形物は、波長410nmでの光線透過率が5%以下、かつ波長440nmでの光線透過率が80%以上であることが好ましい。より好ましくは波長410nmでの光線透過率が4%以下、かつ波長440nmでの光線透過率が80%以上であり、さらに好ましくは波長410nmでの光線透過率が3%以下、かつ波長440nmでの光線透過率が80%以上であり、特に好ましくは波長410nmでの光線透過率が2%以下、かつ波長440nmでの光線透過率が80%以上である。
 さらに、本発明の樹脂成形物は、波長410nmでの光線透過率が5%以下、波長430nmでの光線透過率が70%以上、かつ波長440nmでの光線透過率が80%以上であることが好ましい。より好ましくは波長410nmでの光線透過率が4%以下、かつ波長430nmでの光線透過率が70%以上、かつ波長440nmでの光線透過率が80%以上であり、さらに好ましくは波長410nmでの光線透過率が3%以下、かつ波長430nmでの光線透過率が70%以上、かつ波長440nmでの光線透過率が80%以上であり、特に好ましくは波長410nmでの光線透過率が2%以下、かつ波長430nmでの光線透過率が70%以上、かつ波長440nmでの光線透過率が80%以上である。
 波長410nm、430nm及び440nmでの光線透過率は、例えば分光光度計UV-3600(商品名、島津製作所製)を用いて測定することができる。
 本発明の樹脂成形物に含有される紫外線吸収性化合物は、前記一般式(1)で表される化合物であることが好ましい。
 前記一般式(1)において、Het1は、少なくとも一つのヘテロ原子を有する2価の5あるいは6員環の芳香族ヘテロ環残基を表す。また、Het1は、縮環していても良い。
 ヘテロ原子としては例えば、ホウ素原子、窒素原子、酸素原子、ケイ素原子、リン原子、硫黄原子、セレン原子、テルル原子などを挙げることができる。ヘテロ原子として好ましくは、窒素原子、酸素原子、硫黄原子である。より好ましくは、窒素原子、硫黄原子である。特に好ましくは、硫黄原子である。ヘテロ原子を二つ以上有する場合は、同一原子であっても異なる原子であっても良い。
 2価の芳香族ヘテロ環残基に2つの水素原子を付加した芳香族ヘテロ環として例えば、ピロール、ピラゾール、イミダゾール、1,2,3-トリアゾール、1,2,4-トリアゾール、ピリジン、ピリダジン、ピリミジン、ピラジン、1,3,5-トリアジン、フラン、チオフェン、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、1,2,3-オキサジアゾール、1,3,4-チアジアゾールなどを挙げることができる。芳香族ヘテロ環として好ましくは、ピロール、ピリジン、フラン、チオフェンである。より好ましくは、ピリジン、チオフェンである。特に好ましくは、チオフェンである。芳香族ヘテロ環の水素原子を取り除く位置はいずれでも良い。例えばヘテロ5員環化合物ピロールでの結合位置は、2,3位、2,4位、2,5位、3,4位、3,5位が挙げられる。また、チオフェンでの結合位置は、2,3位、2,4位、2,5位、3,4位、3,5位が挙げられる。これらのうち好ましくは、2,5位、2,4位、3,4位であり、より好ましくは2,5位、3,4位であり、特に好ましくは2,5位である。また、ヘテロ6員環化合物ピリジンでの結合位置は、2,3位、2,4位、2,5位、2,6位、3,4位、3,5位、3,6位が挙げられる。これらのうち好ましくは、2,5位、2,6位、3,5位であり、より好ましくは2,5位、2,6位であり、特に好ましくは2,5位である。
 また、芳香族ヘテロ環残基Het1は、置換基を有していても良い。置換基として1価の置換基が挙げられる。1価の置換基(以下Rとする)の例として、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素数1~20のアルキル基(例えばメチル、エチル)、炭素数6~20のアリール基(例えばフェニル、ナフチル)、シアノ基、カルボキシル基、アルコキシカルボニル基(例えばメトキシカルボニル)、アリールオキシカルボニル基(例えばフェノキシカルボニル)、置換又は無置換のカルバモイル基(例えばカルバモイル、N-フェニルカルバモイル、N,N-ジメチルカルバモイル)、アルキルカルボニル基(例えばアセチル)、アリールカルボニル基(例えばベンゾイル)、ニトロ基、置換または無置換のアミノ基(例えばアミノ、ジメチルアミノ、アニリノ)、アシルアミノ基(例えばアセトアミド、エトキシカルボニルアミノ)、スルホンアミド基(例えばメタンスルホンアミド)、イミド基(例えばスクシンイミド、フタルイミド)、イミノ基(例えばベンジリデンアミノ)、ヒドロキシ基、炭素数1~20のアルコキシ基(例えばメトキシ)、アリールオキシ基(例えばフェノキシ)、アシルオキシ基(例えばアセトキシ)、アルキルスルホニルオキシ基(例えばメタンスルホニルオキシ)、アリールスルホニルオキシ基(例えばベンゼンスルホニルオキシ)、スルホ基、置換または無置換のスルファモイル基(例えばスルファモイル、N-フェニルスルファモイル)、アルキルチオ基(例えばメチルチオ)、アリールチオ基(例えばフェニルチオ)、アルキルスルホニル基(例えばメタンスルホニル)、アリールスルホニル基(例えばベンゼンスルホニル)、炭素数6~20のヘテロ環基(例えばピリジル、モルホリノ)などを挙げることができる。また、置換基は更に置換されていても良く、置換基が複数ある場合は、同じでも異なっても良い。その際、置換基の例としては、上述の1価の置換基Rを挙げることができる。また置換基同士で結合して環を形成しても良い。
 置換基として好ましくは、アルキル基、アルコキシ基、アリール基がある。より好ましくは、アルキル基、アリール基であり、特に好ましくは、アルキル基である。
 Xa、Xb、Xc及びXdは、互いに独立してヘテロ原子を表す。ヘテロ原子としては例えば、ホウ素原子、窒素原子、酸素原子、ケイ素原子、リン原子、硫黄原子、セレン原子、テルル原子などを挙げることができる。ヘテロ原子として好ましくは、窒素原子、酸素原子、硫黄原子である。より好ましくは、窒素原子、酸素原子である。また、Xa~Xdは置換基を有していても良い。置換基としては上述した1価の置換基Rの例が挙げられる。
 Ya、Yb、Yc、Yd、Ye及びYfは、互いに独立してヘテロ原子または炭素原子を表す。Ya~Yfを構成する原子としては例えば、炭素原子、窒素原子、酸素原子、硫黄原子などが挙げられる。Ya~Yfを構成する原子として好ましくは、炭素原子、窒素原子、酸素原子であり、より好ましくは、炭素原子、窒素原子である。さらに好ましくは、炭素原子であり、特に好ましくは、全て炭素原子を表す場合である。また、原子は置換されていても良く、置換基同士で結合して環を形成しても良く、さらに縮環していても良い。置換基としては上述した1価の置換基Rの例が挙げられる。
 前記のXa、Xb、Ya~Yc及び炭素原子によって形成される環並びにXc、Xd、Yd~Yf及び炭素原子によって形成される環(前記のHet1で表される芳香族ヘテロ環残基に結合している2つの環)は、任意の位置に二重結合を有していても良い。該2つの環の少なくとも一方は、縮環していることが好ましい。また、該2つの環の少なくとも一方はペリミジン環ではないことが好ましい。
 下記表1~6に、前記のXa、Xb、Ya~Yc及び炭素原子によって形成される環をA、前記のHet1で表される芳香族ヘテロ環残基をHet、前記のXc、Xd、Yd~Yf及び炭素原子によって形成される環をBとして、それぞれの具体例を示す。
 表1~6においてMeはメチル基、Etはエチル基、Phはフェニル基を表す。
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
 前記一般式(1)で表される化合物は前記一般式(2)で表される化合物であることが好ましい。以下、前記一般式(2)で表される化合物について説明する。
 Het2は、前記一般式(1)のHet1と同義である。好ましい場合も同じである。
 X2a、X2b、X2c及びX2dは、それぞれ前記一般式(1)のXa、Xb、Xc及びXdと同義であり、好ましい場合も同じである。X2a、X2b、X2c及びX2dはそれぞれ異なっていても良いが、X2a及びX2b、並びにX2c及びX2dの組は、それぞれ同じ組み合わせを表す場合がより好ましく、特に好ましくはX2a及びX2cが酸素原子、X2b及びX2dが窒素原子を表す場合である。
 Y2b、Y2c、Y2e及びY2fは、それぞれ前記一般式(1)のYb、Yc、Ye及びYfと同義である。好ましい場合も同じである。
 L1及びL2は、それぞれ独立して酸素原子、硫黄原子または=NRaを表す(Raは、水素原子または1価の置換基を表す。置換基としては上述の1価の置換基Rの例が挙げられる。)好ましくは酸素原子、=NRaである。より好ましくは酸素原子である。L1及びL2はそれぞれ異なっていても良いが、同じであることが好ましい。中でもL1及びL2はいずれも酸素原子であることが特に好ましい。
 Z1及びZ2はそれぞれ独立して、Y2b及びY2cまたはY2e及びY2fと一緒になって4~8員環を形成するのに必要な原子群を表す。これらの環は置換基を有していても良く、さらに縮環していても良い。形成する環として例えば、シクロヘキサン、シクロペンタンなどの脂肪族炭化水素環、ベンゼン環、ナフタレン環などの芳香族炭化水素環、ピリジン、ピロール、ピリダジン、チオフェン、イミダゾール、フラン、ピラゾール、オキサゾール、トリアゾール、チアゾ-ルまたはこれらのベンゾ縮環体などのヘテロ環が挙げられる。好ましくは芳香族炭化水素環、ヘテロ環である。より好ましくは芳香族炭化水素環であり、特に好ましくはベンゼン環である。
 さらに、前記一般式(2)で表される化合物は、前記一般式(3)で表される化合物であることが好ましい。以下、前記一般式(3)で表される化合物について説明する。
 Het3は、前記一般式(2)のHet2と同義である。好ましい場合も同じである。
 X3a、X3b、X3c及びX3dは、それぞれ前記一般式(2)のX2a、X2b、X2c及びX2dと同義であり、好ましい場合も同じである。X3a、X3b、X3c及びX3dはそれぞれ異なっていても良いが、X3a及びX3b、並びにX3c及びX3dの組は、それぞれ同じ組み合わせを表す場合がより好ましく、特に好ましくはX3a及びX3cが酸素原子、X3b及びX3dが窒素原子を表す場合である。
 R3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hは互いに独立して、水素原子または1価の置換基を表す。置換基としては上述の1価の置換基Rの例を挙げることができる。R3a~R3d及びR3e~R3hのうち任意の2つの置換基は互いに結合して環を形成しても良く、さらに縮環していても良い。R3a~R3hとして好ましくは、水素原子、炭素数10以下のアルキル基、炭素数10以下のアルコキシ基、ヒドロキシ基であり、より好ましくは、水素原子、炭素数10以下のアルコキシ基である。さらに好ましくは、水素原子であり、特に好ましくは、R3a~R3hの全てが水素原子を表す場合である。
 さらに、前記一般式(3)で表される化合物は、前記一般式(4)で表される化合物であることが好ましい。以下、前記一般式(4)で表される化合物について説明する。
 Het4は、前記一般式(3)のHet3と同義である。好ましい場合も同じである。
 R4a、R4b、R4c、R4d、R4e、R4f、R4g及びR4hは、それぞれ前記一般式(3)のR3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hと同義である。好ましい場合も同じである。
 さらに、前記一般式(4)で表される化合物は、前記一般式(5)で表される化合物であることが好ましい。以下、前記一般式(5)で表される化合物について説明する。
 Het5は、前記一般式(4)のHet4と同義である。好ましい場合も同じである。
 R5a、R5b、R5c、R5d、R5e、R5f、R5g及びR5hは、それぞれ前記一般式(4)のR4a、R4b、R4c、R4d、R4e、R4f、R4g及びR4hと同義である。好ましい場合も同じである。
 R5i及びR5jは互いに独立して、水素原子または1価の置換基を表す。1価の置換基としては上述の1価の置換基Rの例を挙げることができる。R5i及びR5jは互いに結合して環を形成しても良く、さらに縮環していても良い。R5i及びR5jとして好ましくは、水素原子、炭素数10以下のアルキル基、炭素数10以下のアルコキシ基、ヒドロキシ基であり、より好ましくは、水素原子、炭素数10以下のアルコキシ基である。さらに好ましくは、水素原子であり、特に好ましくは、R5i及びR5jが共に水素原子を表す場合である。
 前記一般式(1)~(5)のいずれかで表される化合物の具体例を以下に示すが、本発明はこれに限定されない。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 前記一般式(1)~(5)のいずれかで表される化合物は、任意の方法で合成することができる。例えば、公知の特許文献や非特許文献、例えば特開2000-264879号公報の4ページ左43行目~右8行目の実施例、特開2003-155375の4ページ右欄5行目~30行目の実施例、「Bioorganic & Medicinal Chemistry」,2000年,8巻,2095-2103ページ、「Bioorganic & Medicinal Chemistry Letters」,2003年,13巻,4077-4080ページなどを参考にして合成できる。例えば、例示化合物(15)は3,5-ピラゾールジカルボニルジクロリドとアントラニル酸とを反応させることにより合成できる。また、例示化合物(32)は2,5-チオフェンジカルボニルジクロリドと4,5-ジメトキアントラニル酸とを反応させることにより合成できる。
 前記一般式(1)~(5)のいずれかで表される化合物は、構造とその置かれた環境によって互変異性体を取り得る。本発明においては代表的な形の一つで記述しているが、本発明の記述と異なる互変異性体も本発明に用いられる化合物に含まれる。
 前記一般式(1)~(5)のいずれかで表される化合物は、同位元素(例えば、2H、3H、13C、15N、17O、18Oなど)を含有していてもよい。
 前記一般式(1)~(5)のいずれかで表される化合物は、有機材料を光・酸素または熱による損傷に対して安定化させるのに特に適している。中でも光安定剤、とりわけ紫外線吸収剤として用いることに最も適している。
 続いて、本発明に用いられる高分子物質について説明する。
 高分子物質としては、天然あるいは合成ポリマーのいずれであってもよい。ポリオレフィン(例えば、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリ(1-ブテン)、ポリ4-メチルペンテン、ポリビニルシクロヘキサン、ポリスチレン、ポリ(p-メチルスチレン)、ポリ(α-メチルスチレン)、ポリイソプレン、ポリブタジエン、ポリシクロペンテン、ポリノルボルネンなど)、ビニルモノマーのコポリマー(例えば、エチレン/プロピレンコポリマー、エチレン/メチルペンテンコポリマー、エチレン/ヘプテンコポリマー、エチレン/ビニルシクロヘキサンコポリマー、エチレン/シクロオレフィンコポリマー(例えば、エチレン/ノルボルネンのようなシクロオレフィンコポリマー(COC:Cyclo-Olefin Copolymer))、プロピレン/ブタジエンコポリマー、イソブチレン/イソプレンコポリマー、エチレン/ビニルシクロヘキセンコポリマー、エチレン/アルキルアクリレートコポリマー、エチレン/アルキルメタクリレートコポリマーなど)、アクリル系ポリマー(例えば、ポリメタクリレート、ポリアクリレート、ポリアクリルアミド、ポリアクリロニトリルなど)、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニル、ポリフッ化ビニリデン、塩化ビニル/酢酸ビニルコポリマー、ポリエーテル(例えば、ポリアルキレングリコール、ポリエチレンオキシド、ポリプロピレンオキシドなど)、ポリアセタール(例えば、ポリオキシメチレン)、ポリアミド、ポリイミド、ポリウレタン、ポリ尿素、ポリエステル(例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)など)、ポリカーボネート(PC)、ポリケトン、ポリスルホンポリエーテルケトン、フェノール樹脂、メラミン樹脂、セルロースエステル(例えば、ジアセチルセルロース、トリアセチルセルロース(TAC)、プロピオニルセルロース、ブチリルセルロース、アセチルプロピオニルセルロース、ニトロセルロース)、ポリビニルブチラール(PVB)、エチレンビニルアセテート(EVA)、ポリエーテルスルホン(PES)、ポリシロキサン、天然ポリマー(例えば、セルロース、ゴム、ゼラチンなど)、などが例として挙げられる。
 本発明に用いられる高分子物質は、合成ポリマーである場合が好ましく、ポリオレフィン、アクリル系ポリマー、ポリエステル、ポリカーボネート、ポリビニルブチラール、エチレンビニルアセテート、ポリエーテルスルホン、セルロースエステルがより好ましい。中でも、ポリエチレン、ポリプロピレン、ポリ(4-メチルペンテン)、ポリメタクリル酸メチル(PMMA)、ポリカーボネート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、トリアセチルセルロースが特に好ましい。
 また、本発明に用いられる高分子物質は、熱可塑性樹脂であることが好ましい。
 熱可塑性樹脂としては、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリ(メタ)アクリル酸エステル系樹脂、ポリスチレン系樹脂、スチレン-アクリロニトリル系樹脂、アクリロニトリル-ブタジエン-スチレン系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリ酢酸ビニル系樹脂、ポリビニルブチラール系樹脂(PVB)、エチレン-酢酸ビニル系共重合体、エチレン-ビニルアルコール系樹脂、ポリエチレンテレフタレート樹脂(PET)、ポリエチレンナフタレート樹脂(PEN)、ポリブチレンテレフタレート樹脂(PBT)、エチレンビニルアセテート樹脂(EVA)、ポリエーテルスルホン樹脂(PES)、液晶ポリエステル樹脂(LCP)、ポリアセタール樹脂(POM)、ポリアミド樹脂(PA)、ポリカーボネート樹脂(PC)、ポリウレタン樹脂およびポリフェニレンサルファイド樹脂(PPS)等が挙げられ、これらは一種または二種以上のポリマーブレンドあるいはポリマーアロイとして使用される。また、これらの樹脂は、ナチュラル樹脂にガラス繊維、炭素繊維、半炭化繊維、セルロース系繊維、ガラスビーズ等のフィラーや難燃剤等を含有させた熱可塑性成形材料としても使用される。また、必要に応じて従来使用されている樹脂用の添加剤、例えば、ポリオレフィン系樹脂微粉末、ポリオレフィン系ワックス、エチレンビスアマイド系ワックス、金属石鹸等を単独であるいは組み合わせて使用することもできる。
 本発明のポリマーフィルムを紫外線吸収フィルタや紫外線吸収膜として用いる場合、高分子物質は透明であることが好ましい。透明高分子材料の例としては、セルロースエステル(例、ジアセチルセルロース、トリアセチルセルロース、プロピオニルセルロース、ブチリルセルロース、アセチルプロピオニルセルロース、ニトロセルロース)、ポリアミド、ポリカーボネート、ポリエステル(例、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリ-1,4-シクロヘキサンジメチレンテレフタレート、ポリエチレン-1,2-ジフェノキシエタン-4,4’-ジカルボキシレート、ポリブチレンテレフタレート)、ポリスチレン(例、シンジオタクチックポリスチレン)、ポリオレフィン(例、ポリエチレン、ポリプロピレン、ポリメチルペンテン)、ポリメチルメタクリレート、シンジオタクチックポリスチレン、ポリスルホン、ポリエーテルスルホン、ポリビニルブチラール、エチレンビニルアセテート、ポリエーテルケトン、ポリエーテルイミド及びポリオキシエチレンなどが挙げられる。好ましくはセルロースエステル、ポリカーボネート、ポリエステル、ポリオレフィン、アクリル樹脂であり、より好ましくはポリカーボネート、ポリエステルである。さらに好ましくはポリエステルであり、特に好ましくはポリエチレンテレフタレートである。
 本発明では、異なる構造を有する二種類以上の前記一般式(1)~(5)のいずれかで表される化合物を併用してもよいし、前記一般式(1)~(5)のいずれかで表される化合物とそれ以外の構造を有する一種類以上の紫外線吸収剤とを併用してもよい。二種類(好ましくは三種類)の紫外線吸収剤を併用すると、広い波長領域の紫外線を吸収することができる。また、二種類以上の紫外線吸収剤を併用すると、紫外線吸収剤の分散状態が安定化するとの作用もある。前記一般式(1)~(5)以外の構造を有する紫外線吸収剤としては、いずれのものでも使用できる。紫外線吸収剤の構造として知られているトリアジン系、ベンゾトリアゾール系、ベンゾフェノン系、メロシアニン系、シアニン系、ジベンゾイルメタン系、桂皮酸系、シアノアクリレート系、安息香酸エステル系などの化合物が挙げられる。例えば、ファインケミカル、2004年5月号、28~38ページ、東レリサーチセンター調査研究部門発行「高分子用機能性添加剤の新展開」(東レリサーチセンター、1999年)96~140ページ、大勝靖一監修「高分子添加剤の開発と環境対策」(シーエムシー出版、2003年)54~64ページなどに記載されている紫外線吸収剤が挙げられる。
 前記一般式(1)~(5)以外の構造を有する紫外線吸収剤として好ましくは、ベンゾトリアゾール系、ベンゾフェノン系、サリチル酸系、シアノアクリレート系、トリアジン系の化合物である。より好ましくはベンゾトリアゾール系、ベンゾフェノン系、トリアジン系の化合物である。特に好ましくはベンゾトリアゾール系の化合物である。
 ベンゾトリアゾール系化合物の有効吸収波長は約270~380nmで、代表例としては2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-(2-(オクチルオキシカルボニル)エチル)フェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’-ドデシル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-アミルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-(ジメチルベンジル)フェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-4’-オクチルオキシフェニル)ベンゾトリアゾール、2,2’-メチレン-ビス(2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール)2-(2’-ヒドロキシ-3’-(3,4,5,6-テトラヒドロフタルイミジルメチル)-5’-メチルベンジル)フェニル)ベンゾトリアゾール等を挙げることができる。
 ベンゾフェノン系化合物の有効吸収波長は約270~380nmで、代表例としては2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクチルオキシベンゾフェノン、2-ヒドロキシ-4-ドデシルオキシベンゾフェノン、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、2-ヒドロキシ-4-(2-ヒドロキシ-3-メタクリルオキシプロポキシ)ベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノントリヒドレート、2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノン、2-ヒドロキシ-4-オクタデシロキシベンゾフェノン、2-ヒドロキシ-4-ジエチルアミノ-2’-ヘキシルオキシカルボニルベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、1,4-ビス(4-ベンジルオキシ-3-ヒドロキシフェノキシ)ブタン等を挙げることができる。
 サリチル酸系化合物の有効吸収波長は約290~330nmで、代表例としてはフェニルサリシレート、p-t-ブチルフェニルサリシレート、p-オクチルフェニルサリシレートなどを挙げることができる。
 シアノアクリレート系化合物の有効吸収波長は約270~350nmで、代表例としては2-エチルヘキシル 2-シアノ-3、3-ジフェニルアクリレート、エチル 2-シアノ-3、3-ジフェニルアクリレート、ヘキサデシル 2-シアノ-3-(4-メチルフェニル)アクリレート、2-シアノ-3-(4-メチルフェニル)アクリル酸塩、1,3-ビス(2’-シアノ-3,3’-ジフェニルアクリロイル)オキシ)-2,2-ビス(((2’-シアノ-3,3’-ジフェニルアクリロイル)オキシ)メチル)プロパン等を挙げることができる。
 トリアジン系化合物の有効吸収波長は約270~380nmで、代表例としては2-(4-ヘキシロキシ-2-ヒドロキシフェニル)-4,6-ジフェニル-1,3,5-トリアジン、2-(4-オクチロキシ-2-ヒドロキシフェニル)-4,6-ジ(2,5-ジメチルフェニル)-1,3,5-トリアジン、2-(4-ブトキシ-2-ヒドロキシフェニル)-4,6-ジ(4-ブトキシフェニル)-1,3,5-トリアジン、2-(4-ブトキシ-2-ヒドロキシフェニル)-4,6-ジ(2,4-ジブトキシフェニル)-1,3,5-トリアジン、2-(4-(3-(2-エチルヘキシロキシ)-2-ヒドロキシプロポキシ)-2-ヒドロキシフェニル)-4,6-ジ(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-(4-(3-ドデシロキシ-2-ヒドロキシプロポキシ)-2-ヒドロキシフェニル)-4,6-ジ(2,4-ジメチルフェニル)-1,3,5-トリアジン、2,4-ジ(4-ブトキシ-2-ヒドロキシフェニル)-6-(4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジ(4-ブトキシ-2-ヒドロキシフェニル)-6-(2,4-ジブトキシフェニル)-1,3,5-トリアジン等を挙げることができる。
 本発明の樹脂成形物は、上記の高分子物質および紫外線吸収性化合物(紫外線吸収剤)に加えて、必要に応じて酸化防止剤、光安定剤、加工安定剤、老化防止剤、相溶化剤等の任意の添加剤を適宜含有してもよい。
 例えば、本発明の樹脂成形物は、前記紫外線吸収性化合物により実用的には十分な紫外線遮蔽効果を有しているが、更に厳密な紫外線遮蔽効果が要求される場合には隠蔽力の強い白色顔料、例えば酸化チタンなどを併用してもよい。また、外観、色調が問題となる場合、あるいは好みによって、微量(0.05質量%以下)の着色剤を併用することができる。また、透明あるいは白色であることが重要である用途に対しては蛍光増白剤を併用してもよい。蛍光増白剤としては市販のものや特開2002-53824号公報記載の一般式[1]や具体的化合物例1~35などが挙げられる。
 前記一般式(1)~(5)のいずれかで表される化合物は、様々な方法で高分子物質に含有させることができる。前記化合物が高分子物質との相溶性を有する場合は、前記化合物を高分子物質に直接添加することができる。高分子物質との相溶性を有する補助溶媒に、前記化合物を溶解し、その溶液を高分子物質に添加してもよい。前記化合物を高沸点有機溶媒やポリマー中に分散し、その分散物を高分子物質に添加してもよい。
 高沸点有機溶媒の沸点は、180℃以上であることが好ましく、200℃以上であることがさらに好ましい。高沸点有機溶媒の融点は、150℃以下であることが好ましく、100℃以下であることがさらに好ましい。高沸点有機溶媒の例には、リン酸エステル、ホスホン酸エステル、安息香酸エステル、フタル酸エステル、脂肪酸エステル、炭酸エステル、アミド、エーテル、ハロゲン化炭化水素、アルコール及びパラフィンが含まれる。リン酸エステル、ホスホン酸エステル、フタル酸エステル、安息香酸エステル及び脂肪酸エステルが好ましい。
 高分子物質への前記化合物の添加方法については、特開昭58-209735号、同63-264748号、特開平4-191851号、同8-272058号の各公報および英国特許第2016017A号明細書を参考にできる。
 また、前記一般式(1)~(5)のいずれかで表される化合物(紫外線吸収剤)は、高分子物質の重合過程で添加してもよく、重合後に添加しても良い。重合後の高分子物質に溶融状態で添加する場合、紫外線吸収剤は単体で添加してもよく、また溶媒等に分散した状態で添加しても良い。この際使用する溶媒は混練する樹脂を劣化させず、紫外線吸収剤を分散させるものであれば特に限定されない。このような溶媒の例としては、上述した高沸点有機溶媒が挙げられる。
 こうした溶融混合は、一軸あるいは二軸押し出し機などの溶融混合設備を使用して、重合体の溶融温度以上の温度で、紫外線吸収剤を添加することにより可能である。分散液を使用した場合は分散液を加圧下で添加した後、有機溶媒を除去することにより、実行可能である。
 紫外線吸収剤は製膜時に熱可塑性樹脂の溶融状態に添加し混練してもよい。この方法は、熱履歴を少なくすることで熱可塑性樹脂の劣化を抑えることができるため好ましい。
 溶融重合可能な熱可塑性樹脂、例えばポリエチレンテレフタレート、ポリエチレンナフタレートといった熱可塑性ポリエステルの場合には、紫外線吸収剤の分散液を重合前、もしくは重合中に添加しても良い。紫外線吸収剤は単体で添加してもよくまたあらかじめ溶媒で分散した状態で添加してもよい。この場合の溶媒は重合体の原料であるものが好ましい。重合反応は通常の重合体の重合条件に準じて実施すればよい。
 上記の方法で得られた0.5~50質量%の比較的高い濃度で紫外線吸収剤を含有する熱可塑性樹脂をマスターバッチとして、さらに紫外線吸収剤未添加の熱可塑性樹脂に混練させることでも、目的とする紫外線吸収剤含有ポリマーを得ることができる。
 本発明のポリマーフィルムは、上記の本発明の樹脂成形物において、フィルム形状に成形してなるものである。本発明のポリマーフィルムの紫外線吸収性化合物の含有量、波長410nmでの光透過率、440nmでの光透過率、430nmでの光透過率やその好ましい範囲は、上記本発明の樹脂成形物について説明したと同様である。
 紫外線吸収剤を含有する熱可塑性樹脂は、溶融製膜によりフィルム化することができる。溶融製膜温度としては、熱可塑性樹脂の流動開始温度(非晶性樹脂ではガラス転移温度、結晶性樹脂では融点)以上450℃以下が好ましく、400℃以下がより好ましく、350℃以下がさらに好ましい。温度が流動開始温度より低すぎると溶融成形が困難になるため好ましくなく、また、温度が高すぎると熱可塑性樹脂の熱劣化が起きる恐れがあり好ましくない。
 高弾性のフィルムを製造する場合には、さらに延伸を行うことが好ましい。延伸方法としては、従来公知の方法、例えば、一軸または二軸方向に逐次または同時に延伸する方法を挙げることができる。延伸温度は好ましくは樹脂組成物のガラス転移点以上ガラス転移点+90℃以下、より好ましくは樹脂組成物のガラス転移点以上ガラス転移点+70℃以下、さらに好ましくはガラス転移点以上ガラス転移点+60℃以下である。延伸温度が低すぎても高すぎても均一なフィルムを製造することが困難であり好ましくない。また、延伸倍率は、面倍率として、好ましくは1.5倍以上100倍以下である。本発明における延伸倍率は(延伸後のフィルムの面積)/(延伸前のフィルムの面積)で表されるものである。延伸することでポリマーが配向し、より高弾性化するため好ましい。
 また、熱可塑性樹脂が結晶性の場合にはフィルムの延伸配向後、熱処理することが好ましい。熱処理の温度としてはポリエステルのガラス転移点以上、融点以下が好ましい。さらに好適な温度は得られたフィルムの結晶化温度と得られたフィルムの物性などを勘定して決定される。
 本発明のフィルムの厚みは、好ましくは1~500μm、さらに好ましくは5~400μm、特に好ましくは10~300μmである。この範囲であれば十分に紫外線を吸収し、耐光性フィルムとして有効である。
 本発明の樹脂組成物は、高分子物質に上記一般式(1)で表わされる化合物を含有することを特徴とする。一般式(1)で表わされる化合物の好ましい置換基、具体例、及び高分子物質については、樹脂成形物の説明において述べたと同様である。本発明の樹脂組成物は、本発明の樹脂成形物(種々の材料や成形体)及びポリマーフィルムの製造に使用できる。本発明の樹脂成形体及び組成物は、合成樹脂が使用される全ての用途に使用可能であるが、特に日光又は紫外線を含む光に晒される可能性のある用途に特に好適に使用できる。具体例としては、例えばガラス代替品の表面コーティング材、住居、施設、輸送機器等の窓ガラス、採光ガラス及び光源保護ガラス用のコーティング材、住居、施設、輸送機器等のウインドウフィルム、住居、施設、輸送機器等の内外装材、蛍光灯、水銀灯等の紫外線を発する光源用部材、精密機械、電子電気機器用部材、各種ディスプレイから発生する電磁波等の遮断用材、食品、化学品、薬品等の容器又は包装材、ボトル、ボックス、ブリスター、カップ、特殊包装用、コンパクトディスクコート、農工業用シート又はフィルム材、ポリマー支持体用(例えば、機械及び自動車部品のようなプラスチック製部品用)の保護膜、印刷物オーバーコート、インクジェット媒体被膜、積層艶消し、オプティカルライトフィルム、安全ガラス/フロントガラス中間層、エレクトロクロミック/フォトクロミック用途、オーバーラミネートフィルム、太陽熱制御膜、光学フィルタ、バックライトディスプレーフィルム、プリズム、鏡、写真材料等の光学用品、金型膜、転写式ステッカー、落書き防止膜、テープ等の文房具、標示板、標示器等の表面コーティング材、太陽電池用基材等を挙げることができる。
 本発明における中間膜とは、基板と基板の間に挟まれているものであれば良く、具体例として、合わせガラスに挟んで用いるポリマーフィルムなどを挙げることができる。
 以下、本発明を実施例に基づき更に詳細に説明するが、本発明はこれらに限定されるものではない。
実施例1
 固有粘度が0.78のポリエチレンテレフタレート(PET)のペレットを170℃で6時間乾燥したものと例示化合物(1)を混合し、押し出し機に投入した。溶融温度280℃で溶融混練し、紫外線吸収剤含有ペレットを得た。ペレットとポリエチレンテレフタレートを紫外線吸収剤が0.5g/m2となるように混合し、280℃で溶融混練を行い、厚み100μmのフィルムを得た。
 例示化合物(1)の溶液における最大吸収波長は、酢酸エチルを溶媒として、濃度2×10-5Mの溶液を調製し、分光光度計UV-3600(商品名、島津製作所製)を用いて測定したところ、375nmであった。
実施例2
 実施例1において例示化合物(1)の添加量を1.0g/m2に変更したこと以外は実施例1と同様にして、フィルムを作製した。
実施例3
 実施例1において例示化合物(1)の添加量を4.0g/m2に変更したこと以外は実施例1と同様にして、フィルムを作製した。
実施例4
 実施例1において例示化合物(1)を例示化合物(5)に変更したこと以外は実施例1と同様にして、フィルムを作製した。
 実施例1と同様にして、例示化合物(5)の溶液における最大吸収波長を測定したところ、392nmであった。
実施例5
 実施例1において例示化合物(1)を例示化合物(17)に変更したこと以外は実施例1と同様にして、フィルムを作製した。
 実施例1と同様にして、例示化合物(17)の溶液における最大吸収波長を測定したところ、361nmであった。
実施例6
 実施例1において例示化合物(1)を例示化合物(21)に変更したこと以外は実施例1と同様にして、フィルムを作製した。
 実施例1と同様にして、例示化合物(21)の溶液における最大吸収波長を測定したところ、357nmであった。
実施例7
 実施例1において例示化合物(1)を例示化合物(31)に変更したこと以外は実施例1と同様にして、フィルムを作製した。
 実施例1と同様にして、例示化合物(31)の溶液における最大吸収波長を測定したところ、383nmであった。
実施例8
 ポリカーボネート(PC)のペレットと例示化合物(1)を混合し、押し出し機に投入した。溶融温度300℃で溶融混練し、紫外線吸収剤含有ペレットを得た。ペレットとポリカーボネートを紫外線吸収剤が0.5g/m2となるように混合し、300℃で溶融混練を行い、厚み100μmのフィルムを得た。
実施例9
 ポリエチレンナフタレート(PEN)のペレットと例示化合物(1)を混合し、押し出し機に投入した。溶融温度305℃で溶融混練し、紫外線吸収剤含有ペレットを得た。ペレットとポリエチレンナフタレートを紫外線吸収剤が0.5g/m2となるように混合し、305℃で溶融混練を行い、厚み100μmのフィルムを得た。
実施例10
 ポリエーテルスルホン(PES)のペレットと例示化合物(1)を混合し、押し出し機に投入した。溶融温度350℃で溶融混練し、紫外線吸収剤含有ペレットを得た。ペレットとポリエーテルスルホンを紫外線吸収剤が0.5g/m2となるように混合し、350℃で溶融混練を行い、厚み100μmのフィルムを得た。
実施例11
 ポリメチルメタクリレート(PMMA)のペレットと例示化合物(1)を混合し、押し出し機に投入した。溶融温度240℃で溶融混練し、紫外線吸収剤含有ペレットを得た。ペレットとポリメチルメタクリレートを紫外線吸収剤が0.5g/m2となるように混合し、240℃で溶融混練を行い、厚み100μmのフィルムを得た。
実施例12
 実施例1において例示化合物(1)の添加量を5.0g/m2に変更したこと以外は実施例1と同様にして、フィルムを作製した。
実施例13
 実施例1においてフィルムの厚みを25μmに変更したこと以外は実施例1と同様にして、フィルムを作製した。
実施例14
 実施例1においてフィルムの厚みを200μmに変更したこと以外は実施例1と同様にして、フィルムを作製した。
実施例15
 ポリブチレンテレフタレート(PBT)のペレットと例示化合物(1)を混合し、押し出し機に投入した。溶融温度280℃で溶融混練し、紫外線吸収剤含有ペレットを得た。ペレットとポリブチレンテレフタレートを紫外線吸収剤が0.5g/m2となるように混合し、350℃で溶融混練を行い、厚み100μmのフィルムを得た。
比較例1
 実施例1において例示化合物(1)を添加しなかったこと以外は実施例1と同様にして、フィルムを作製した。
比較例2
 実施例1において例示化合物(1)の添加量を8.0g/m2に変更したこと以外は実施例1と同様にして、フィルムを作製した。
比較例3
 テトラヒドロフランにポリメチルメタクリレート(PMMA)を20質量%溶解し、バインダー溶液を調製した。次に、当該バインダー溶液に下記比較化合物A(Meはメチル基を表す)を溶解させ、塗布液を調製した。厚さ100μmのポリエチレンテレフタレートフィルムを基材とし、その上に上記塗布液をコーターにより塗布し、1時間70℃で乾燥させ、膜厚50μmの被膜を形成して、フィルムを作製した。フィルムにおける比較化合物Aの含有量は、10.8g/m2であった。
 比較化合物Aの溶液における最大吸収波長は、実施例1と同様にして測定したところ、352nmであった。
Figure JPOXMLDOC01-appb-C000033
比較例4
 比較例3においてフィルムの厚みを5μmに変更した以外は比較例3と同様にして、フィルムを作製した。
比較例5
 実施例12において例示化合物(1)の代わりに比較化合物Bを添加したこと以外は実施例12と同様にして、フィルムを作製した。
 比較化合物Bの溶液における最大吸収波長は、実施例1と同様にして測定したところ、346nmであった。
Figure JPOXMLDOC01-appb-C000034
<評価>
耐光性
 作製したフィルムについて、それぞれキセノンランプで照度17万ルクスになるように光照射し、1000時間照射後の各フィルムを分光光度計UV-3600(商品名、島津製作所製)を用いて波長410nm、430nm及び440nmでの光線透過率を測定した。照射後、ヘーズ測定器を使用してフィルムのヘーズ値を測定し、照射前のヘーズ値との差を下記の基準で評価した。
○:    照射後ヘーズ値/照射前ヘーズ値≦2.0 … 耐光性極めて良好
△:2.0<照射後ヘーズ値/照射前ヘーズ値≦3.0 … 耐光性良好
×:3.0<照射後ヘーズ値/照射前ヘーズ値     … 耐光性不良
フィルム色味
 作製したフィルムの色味を目視で観察し、その黄色味を評価した。
○:ほぼ無色で良好な色味
×:黄色着色の問題有り
 結果を表7に示す。
Figure JPOXMLDOC01-appb-T000035
 表7の結果から明らかなように、紫外線吸収剤を全く含まない比較例1のフィルムは、耐光性に劣るものであった。また、比較例2のフィルムは、紫外線吸収剤がブリードアウトし、フィルム表面が白くなって汚れており、フィルムとしての適性がなかった。また、比較化合物A(UV-A領域に吸収を有する既存の紫外線吸収剤)を含む比較例3及び4のフィルムは、耐光性に関してはそれほど問題とならないものの、波長430nm及び440nmにおける光線透過率が低いものであった。また、比較化合物Bを含む比較例5のフィルムは、410nmにおける光をほとんどカットできていない、また、耐光性も劣っていた。
 これらに対し、本発明のフィルムは、波長410nmの透過率が低く、かつ波長430nm及び440nmの透過率が高いものであり、光照射によって分解しにくいことがわかった。
実施例16
 ポリカーボネート(PC)のペレットと例示化合物(1)を混合し、押し出し機に投入した。溶融温度300℃で溶融混練し、紫外線吸収剤含有ペレットを得た。ペレットとポリカーボネートを紫外線吸収剤が0.5g/m2となるように混合し、300℃で射出成形を行い、厚み1mmの成形体を得た。
実施例17
 実施例16において成形体の厚みを5mmに変更した以外は実施例16と同様にして、成形体を作成した。
実施例18
 実施例16において成形体の厚みを10mmに変更した以外は実施例16と同様にして、成形体を作成した。
実施例19
 ポリメチルメタクリレート(PMMA)のペレットと例示化合物(1)を混合し、押し出し機に投入した。溶融温度240℃で溶融混練し、紫外線吸収剤含有ペレットを得た。ペレットとポリメチルメタクリレートを紫外線吸収剤が0.5g/m2となるように混合し、240℃で射出成形を行い、厚み1mmの成形体を得た。
実施例20
 実施例19において成形体の厚みを5mmに変更した以外は実施例19と同様にして、成形体を作成した。
実施例21
 実施例20において成形体の厚みを10mmに変更した以外は実施例19と同様にして、成形体を作成した。
<評価>
耐光性
 作製した成形体について、それぞれキセノンランプで照度17万ルクスになるように光照射し、1000時間照射後の各フィルムを分光光度計UV-3600(商品名、島津製作所製)を用いて波長410nm、430nm及び440nmでの光線透過率を測定した。照射後、ヘーズ測定器を使用して成形体のヘーズ値を測定し、照射前のヘーズ値との差を下記の基準で評価した。
○:    照射後ヘーズ値/照射前ヘーズ値≦2.0 … 耐光性極めて良好
△:2.0<照射後ヘーズ値/照射前ヘーズ値≦3.0 … 耐光性良好
×:3.0<照射後ヘーズ値/照射前ヘーズ値     … 耐光性不良
成形体色味
 作製した成形体の色味を目視で観察し、その黄色味を評価した。
○:ほぼ無色で良好な色味
×:黄色着色の問題有り
 結果を表8に示す。
Figure JPOXMLDOC01-appb-T000036
 表8の結果から明らかなように、本発明の成形体は、波長410nmの透過率が低く、かつ波長430nm及び440nmの透過率が高いものであり、光照射によって分解しにくいことがわかった。
 表7および8の結果から明らかなように、本発明の樹脂成形物は、波長410nmの透過率が低く、かつ波長430nm及び440nmの透過率が高く、光照射によって分解しにくいことから、太陽電池での利用において効果的であると思われる。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2008年3月30日に日本国で特許出願された特願2008-088954、2008年11月5日に日本国で特許出願された特願2008-284545、及び2009年2月6日に日本国で特許出願された特願2009-026031に基づく優先権を主張するものであり、これらはいずれもここに参照してその内容を本明細書の記載の一部として取り込む。

Claims (22)

  1.  溶液における最大吸収波長が400nm以下である化合物を高分子物質に5g/m2以下含有してなる樹脂組成物であって、波長410nmでの光線透過率が5%以下であることを特徴とする樹脂成形物。
  2.  波長440nmでの光線透過率が80%以上である、請求項1記載の樹脂成形物。
  3.  波長430nmでの光線透過率が70%以上である、請求項1または2記載の樹脂成形物。
  4.  前記化合物が下記一般式(1)で表される化合物である、請求項1~3のいずれか1項に記載の樹脂成形物。
    Figure JPOXMLDOC01-appb-C000001
    [Het1は、2価の5あるいは6員環の芳香族ヘテロ環残基を表す。また、該芳香族ヘテロ環残基は置換基を有していても良い。
     Xa、Xb、Xc及びXdは、互いに独立してヘテロ原子を表す。また、Xa~Xdは置換基を有していても良い。
     Ya、Yb、Yc、Yd、Ye及びYfは、互いに独立してヘテロ原子または炭素原子を表す。また、Ya~Yfは置換基を有していても良い。
     Het1に結合している環は、任意の位置に二重結合を有していても良い。]
  5.  前記一般式(1)で表される化合物が下記一般式(2)で表される化合物である、請求項4に記載の樹脂成形物。
    Figure JPOXMLDOC01-appb-C000002
    [Het2は、前記一般式(1)のHet1と同義である。
     X2a、X2b、X2c及びX2dは、それぞれ前記一般式(1)のXa、Xb、Xc及びXdと同義である。
     Y2b、Y2c、Y2e及びY2fは、それぞれ前記一般式(1)のYb、Yc、Ye及びYfと同義である。
     L1及びL2は、それぞれ独立して酸素原子、硫黄原子または=NRaを表す(Raは、水素原子または1価の置換基を表す。)。
     Z1及びZ2はそれぞれ独立して、Y2b及びY2cまたはY2e及びY2fと一緒になって4~8員環を形成するのに必要な原子群を表す。]
  6.  前記一般式(2)で表される化合物が下記一般式(3)で表される化合物である、請求項5記載の樹脂成形物。
    Figure JPOXMLDOC01-appb-C000003
    [Het3は、前記一般式(2)のHet2と同義である。
     X3a、X3b、X3c及びX3dは、それぞれ前記一般式(2)のX2a、X2b、X2c及びX2dと同義である。
     R3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hは互いに独立して、水素原子または1価の置換基を表す。]
  7.  前記一般式(3)で表される化合物が下記一般式(4)で表される化合物である、請求項6記載の樹脂成形物。
    Figure JPOXMLDOC01-appb-C000004
    [Het4は、前記一般式(2)のHetと同義である。
     R4a、R4b、R4c、R4d、R4e、R4f、R4g及びR4hは、それぞれ前記一般式(3)のR3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hと同義である。]
  8.  溶液における最大吸収波長が400nm以下である化合物を高分子物質に5g/m2以下含有してなるフィルムであって、波長410nmでの光線透過率が5%以下であることを特徴とするポリマーフィルム。
  9.  波長440nmでの光線透過率が80%以上である、請求項8記載のポリマーフィルム。
  10.  波長430nmでの光線透過率が70%以上である、請求項8または9記載のポリマーフィルム。
  11.  前記化合物が下記一般式(1)で表される化合物である、請求項8~10のいずれか1項に記載のポリマーフィルム。
    Figure JPOXMLDOC01-appb-C000005
    [Het1は、2価の5あるいは6員環の芳香族ヘテロ環残基を表す。また、該芳香族ヘ
    テロ環残基は置換基を有していても良い。
     Xa、Xb、Xc及びXdは、互いに独立してヘテロ原子を表す。また、Xa~Xdは置換基を有していても良い。
     Ya、Yb、Yc、Yd、Ye及びYfは、互いに独立してヘテロ原子または炭素原子を表す。また、Ya~Yfは置換基を有していても良い。
     Het1に結合している環は、任意の位置に二重結合を有していても良い。]
  12.  前記一般式(1)におけるXa、Xb、Ya~Yc及び炭素原子によって形成される環並びにXc、Xd、Yd~Yf及び炭素原子によって形成される環の少なくとも一方が縮環している、請求項11記載のポリマーフィルム。
  13.  前記一般式(1)におけるXa、Xb、Ya~Yc及び炭素原子によって形成される環並びにXc、Xd、Yd~Yf及び炭素原子によって形成される環の少なくとも一方がペリミジン環ではない、請求項11又は12に記載のポリマーフィルム。
  14.  前記一般式(1)で表される化合物が下記一般式(2)で表される化合物である、請求項11~13のいずれか1項に記載のポリマーフィルム。
    Figure JPOXMLDOC01-appb-C000006
    [Het2は、前記一般式(1)のHet1と同義である。
     X2a、X2b、X2c及びX2dは、それぞれ前記一般式(1)のXa、Xb、Xc及びXdと同義である。
     Y2b、Y2c、Y2e及びY2fは、それぞれ前記一般式(1)のYb、Yc、Ye及びYfと同義である。
     L1及びL2は、それぞれ独立して酸素原子、硫黄原子または=NRaを表す(Raは、水素原子または1価の置換基を表す。)。
     Z1及びZ2はそれぞれ独立して、Y2b及びY2cまたはY2e及びY2fと一緒になって4~8員環を形成するのに必要な原子群を表す。]
  15.  前記一般式(2)で表される化合物が下記一般式(3)で表される化合物である、請求項14に記載のポリマーフィルム。
    Figure JPOXMLDOC01-appb-C000007
    [Het3は、前記一般式(2)のHet2と同義である。
     X3a、X3b、X3c及びX3dは、それぞれ前記一般式(2)のX2a、X2b、X2c及びX2dと同義である。
     R3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hは互いに独立して、水素原子または1価の置換基を表す。]
  16.  前記一般式(3)で表される化合物が下記一般式(4)で表される化合物である、請求項15記載のポリマーフィルム。
    Figure JPOXMLDOC01-appb-C000008
    [Het4は、前記一般式(3)のHet3と同義である。
     R4a、R4b、R4c、R4d、R4e、R4f、R4g及びR4hは、それぞれ前記一般式(3)のR3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hと同義である。]
  17.  前記一般式(4)で表される化合物が下記一般式(5)で表される化合物である、請求項16記載のポリマーフィルム。
    Figure JPOXMLDOC01-appb-C000009
    [R5a、R5b、R5c、R5d、R5e、R5f、R5g及びR5hは、それぞれ前記一般式(4)のR4a、R4b、R4c、R4d、R4e、R4f、R4g及びR4hと同義である。R5i及びR5jは互いに独立して、水素原子または1価の置換基を表す。]
  18.  前記高分子物質がポリエステル、ポリカーボネートまたはアクリル樹脂である、請求項8~17のいずれか1項に記載のポリマーフィルム。
  19.  前記高分子物質がポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリメチルメタクリレートである、請求項8~18のいずれか1項に記載のポリマーフィルム。
  20.  請求項8~19のいずれか1項に記載のポリマーフィルムを含む太陽電池。
  21.  請求項8~19のいずれか1項に記載のポリマーフィルムを含む中間膜。
  22.  高分子物質に下記一般式(1)で表される化合物を含有してなる樹脂組成物。
    Figure JPOXMLDOC01-appb-C000010
    [Het1は、2価の5あるいは6員環の芳香族ヘテロ環残基を表す。また、該芳香族ヘ
    テロ環残基は置換基を有していても良い。
     Xa、Xb、Xc及びXdは、互いに独立してヘテロ原子を表す。また、Xa~Xdは置換基を有していても良い。
     Ya、Yb、Yc、Yd、Ye及びYfは、互いに独立してヘテロ原子または炭素原子を表す。また、Ya~Yfは置換基を有していても良い。
     Het1に結合している環は、任意の位置に二重結合を有していても良い。]
PCT/JP2009/055814 2008-03-30 2009-03-24 樹脂成形物及びポリマーフィルム WO2009122968A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020107024293A KR101536797B1 (ko) 2008-03-30 2009-03-24 수지 성형물 및 폴리머 필름
US12/934,094 US8541488B2 (en) 2008-03-30 2009-03-24 Formed resin article and polymer film
CN200980111583.2A CN101981095B (zh) 2008-03-30 2009-03-24 树脂成型体和聚合物膜
EP09727779.2A EP2270076B1 (en) 2008-03-30 2009-03-24 Resin molded product and polymer film

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008088954 2008-03-30
JP2008-088954 2008-03-30
JP2008284545 2008-11-05
JP2008-284545 2008-11-05
JP2009-026031 2009-02-06
JP2009026031A JP2010132846A (ja) 2008-03-30 2009-02-06 樹脂成形物及びポリマーフィルム

Publications (1)

Publication Number Publication Date
WO2009122968A1 true WO2009122968A1 (ja) 2009-10-08

Family

ID=41135348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055814 WO2009122968A1 (ja) 2008-03-30 2009-03-24 樹脂成形物及びポリマーフィルム

Country Status (7)

Country Link
US (1) US8541488B2 (ja)
EP (1) EP2270076B1 (ja)
JP (1) JP2010132846A (ja)
KR (1) KR101536797B1 (ja)
CN (1) CN101981095B (ja)
TW (1) TWI481654B (ja)
WO (1) WO2009122968A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029926A1 (ja) * 2008-09-10 2010-03-18 富士フイルム株式会社 照明カバー
WO2010038743A1 (ja) * 2008-09-30 2010-04-08 富士フイルム株式会社 固体高分子材料
EP2272935A1 (en) * 2008-03-31 2011-01-12 FUJIFILM Corporation Ultraviolet absorbent compositions
WO2018180929A1 (ja) * 2017-03-31 2018-10-04 富士フイルム株式会社 樹脂成形体、及びブルーライトカット積層体

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5250289B2 (ja) * 2008-03-31 2013-07-31 富士フイルム株式会社 紫外線吸収剤組成物
JP6780636B2 (ja) * 2015-12-08 2020-11-04 東レ株式会社 積層フィルム
JP6753118B2 (ja) * 2016-04-06 2020-09-09 東レ株式会社 光学フィルム
CA3042886C (en) * 2016-11-23 2021-05-18 Ppg Industries Ohio, Inc. Ultraviolet protective transparency
US10759916B2 (en) * 2017-02-23 2020-09-01 Sumitomo Chemical Company, Limited Lamp cover
JPWO2021251433A1 (ja) * 2020-06-10 2021-12-16

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2016017A (en) 1978-02-13 1979-09-19 Konishiroku Photo Ind Process for preparing impregnated polymer latex composition
JPS58209735A (ja) 1982-06-01 1983-12-06 Konishiroku Photo Ind Co Ltd カラ−写真感光材料
JPS63264748A (ja) 1987-04-22 1988-11-01 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPH04191851A (ja) 1990-11-27 1992-07-10 Fuji Photo Film Co Ltd ハロゲン化銀カラー写真感光材料
JPH0711231A (ja) 1993-06-29 1995-01-13 Teijin Ltd 紫外線吸収剤及びこれを含む高分子材料組成物
JPH0711232A (ja) 1993-06-29 1995-01-13 Teijin Ltd 紫外線吸収剤及びこれを含む高分子材料組成物
JPH08272058A (ja) 1995-03-31 1996-10-18 Fuji Photo Film Co Ltd ハロゲン化銀カラー写真感光材料
JP2000264879A (ja) 1999-03-18 2000-09-26 Nippon Paper Industries Co Ltd ビスベンゾオキサジノン化合物の製造方法
JP2002053824A (ja) 2000-06-02 2002-02-19 Fuji Photo Film Co Ltd 紫外線吸収粘着フイルム
JP2002225195A (ja) * 2000-11-29 2002-08-14 Fuji Photo Film Co Ltd 紫外赤外線吸収フイルム
JP2003155375A (ja) 2001-11-20 2003-05-27 Takemoto Oil & Fat Co Ltd 熱可塑性高分子用紫外線吸収剤
JP2006188578A (ja) 2005-01-05 2006-07-20 Teijin Dupont Films Japan Ltd 耐光性フィルム
JP2007119613A (ja) * 2005-10-28 2007-05-17 Tsutsunaka Plast Ind Co Ltd 透明樹脂シート
JP2008088954A (ja) 2006-10-05 2008-04-17 Toyota Motor Corp 排気管の接続装置
JP2008195830A (ja) * 2007-02-13 2008-08-28 Fujifilm Corp 紫外線吸収フィルムおよびこれを用いたパネル用フィルター
JP2008273927A (ja) * 2007-03-30 2008-11-13 Fujifilm Corp ヘテロ環化合物
JP2008284545A (ja) 2007-04-19 2008-11-27 Kurita Water Ind Ltd アニオン交換樹脂の製造方法、アニオン交換樹脂、混床樹脂および電子部品・材料洗浄用超純水の製造方法
JP2009026031A (ja) 2007-07-19 2009-02-05 Hitachi Ltd シンクライアントシステム、情報処理方法、及び、情報処理プログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1515766A (en) * 1976-01-30 1978-06-28 British Petroleum Co Polymeric films having selective light transmissive properties
JPS57209979A (en) * 1981-06-19 1982-12-23 Teijin Ltd Ultraviolet light absorber and method for using same
US6352783B1 (en) * 1999-12-13 2002-03-05 Eastman Kodak Company Copolyester containing 4,4'-biphenyldicarboxylic acid, 1,4-cyclohexanedimethanol and an ultraviolet light absorbing compound and articles made therefrom
US6774232B2 (en) * 2001-10-22 2004-08-10 Cytec Technology Corp. Low color, low sodium benzoxazinone UV absorbers and process for making same

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2016017A (en) 1978-02-13 1979-09-19 Konishiroku Photo Ind Process for preparing impregnated polymer latex composition
JPS58209735A (ja) 1982-06-01 1983-12-06 Konishiroku Photo Ind Co Ltd カラ−写真感光材料
JPS63264748A (ja) 1987-04-22 1988-11-01 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPH04191851A (ja) 1990-11-27 1992-07-10 Fuji Photo Film Co Ltd ハロゲン化銀カラー写真感光材料
JPH0711231A (ja) 1993-06-29 1995-01-13 Teijin Ltd 紫外線吸収剤及びこれを含む高分子材料組成物
JPH0711232A (ja) 1993-06-29 1995-01-13 Teijin Ltd 紫外線吸収剤及びこれを含む高分子材料組成物
JPH08272058A (ja) 1995-03-31 1996-10-18 Fuji Photo Film Co Ltd ハロゲン化銀カラー写真感光材料
JP2000264879A (ja) 1999-03-18 2000-09-26 Nippon Paper Industries Co Ltd ビスベンゾオキサジノン化合物の製造方法
JP2002053824A (ja) 2000-06-02 2002-02-19 Fuji Photo Film Co Ltd 紫外線吸収粘着フイルム
JP2002225195A (ja) * 2000-11-29 2002-08-14 Fuji Photo Film Co Ltd 紫外赤外線吸収フイルム
JP2003155375A (ja) 2001-11-20 2003-05-27 Takemoto Oil & Fat Co Ltd 熱可塑性高分子用紫外線吸収剤
JP2006188578A (ja) 2005-01-05 2006-07-20 Teijin Dupont Films Japan Ltd 耐光性フィルム
JP2007119613A (ja) * 2005-10-28 2007-05-17 Tsutsunaka Plast Ind Co Ltd 透明樹脂シート
JP2008088954A (ja) 2006-10-05 2008-04-17 Toyota Motor Corp 排気管の接続装置
JP2008195830A (ja) * 2007-02-13 2008-08-28 Fujifilm Corp 紫外線吸収フィルムおよびこれを用いたパネル用フィルター
JP2008273927A (ja) * 2007-03-30 2008-11-13 Fujifilm Corp ヘテロ環化合物
JP2008284545A (ja) 2007-04-19 2008-11-27 Kurita Water Ind Ltd アニオン交換樹脂の製造方法、アニオン交換樹脂、混床樹脂および電子部品・材料洗浄用超純水の製造方法
JP2009026031A (ja) 2007-07-19 2009-02-05 Hitachi Ltd シンクライアントシステム、情報処理方法、及び、情報処理プログラム

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Kobunshi-tenkazai no Kaihatsu to Kankyo-taisaku", 2003, CMC PUBLISHING, pages: 54 - 64
"Kobunshi-yo Kinousei-Tenkazai no Shintenkai", 1999, TORAY RESEARCH CENTER INC., pages: 96 - 140
"Survey and Research Dept.", TORAY RESEARCH CENTER INC.
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 13, 2003, pages 4077 - 4080
BIOORGANIC & MEDICINAL CHEMISTRY, vol. 8, 2000, pages 2095 - 2103
FINE CHEMICAL, May 2004 (2004-05-01), pages 28 - 38

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2272935A1 (en) * 2008-03-31 2011-01-12 FUJIFILM Corporation Ultraviolet absorbent compositions
EP2272935A4 (en) * 2008-03-31 2012-05-23 Fujifilm Corp COMPOSITIONS ABSORBING ULTRAVIOLET RAYS
WO2010029926A1 (ja) * 2008-09-10 2010-03-18 富士フイルム株式会社 照明カバー
JP2010092842A (ja) * 2008-09-10 2010-04-22 Fujifilm Corp 照明カバー
WO2010038743A1 (ja) * 2008-09-30 2010-04-08 富士フイルム株式会社 固体高分子材料
JP2010083980A (ja) * 2008-09-30 2010-04-15 Fujifilm Corp 固体高分子材料
WO2018180929A1 (ja) * 2017-03-31 2018-10-04 富士フイルム株式会社 樹脂成形体、及びブルーライトカット積層体
JPWO2018180929A1 (ja) * 2017-03-31 2019-11-07 富士フイルム株式会社 樹脂成形体、及びブルーライトカット積層体

Also Published As

Publication number Publication date
CN101981095A (zh) 2011-02-23
EP2270076A4 (en) 2012-01-04
TW200948882A (en) 2009-12-01
US8541488B2 (en) 2013-09-24
EP2270076A1 (en) 2011-01-05
TWI481654B (zh) 2015-04-21
CN101981095B (zh) 2014-09-17
KR20100139111A (ko) 2010-12-31
KR101536797B1 (ko) 2015-07-14
EP2270076B1 (en) 2018-05-23
US20110092619A1 (en) 2011-04-21
JP2010132846A (ja) 2010-06-17

Similar Documents

Publication Publication Date Title
WO2009122968A1 (ja) 樹脂成形物及びポリマーフィルム
JP5236297B2 (ja) ヘテロ環化合物
JP5422269B2 (ja) 紫外線吸収剤組成物及び樹脂組成物
JP2008273950A (ja) 紫外線吸収剤およびヘテロ環化合物
US20110024701A1 (en) Ultraviolet Absorbent Composition
JP5244437B2 (ja) 紫外線吸収剤組成物
WO2010038743A1 (ja) 固体高分子材料
KR20110056538A (ko) 조명 커버
JP5719528B2 (ja) 新規なトリアジン誘導体、紫外線吸収剤及び樹脂組成物
WO2010095602A1 (ja) ヘテロ環化合物
WO2010029927A1 (ja) 芳香族化合物
EP4144729A1 (en) Composition and compound
JP2010059122A (ja) 芳香族化合物
JP2009242640A (ja) ポリマーフィルム
JP2010059123A (ja) 芳香族化合物
JP5600408B2 (ja) トリアジン化合物を含有するポリカーボネート樹脂組成物及びそれを用いた成形品
JP5129597B2 (ja) 紫外線吸収剤、並びに縮合環化合物およびその製造方法
JP2010064979A (ja) 芳香族化合物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111583.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09727779

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12934094

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009727779

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 6868/CHENP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107024293

Country of ref document: KR

Kind code of ref document: A