WO2009119469A1 - エポキシ化合物およびその製造方法 - Google Patents

エポキシ化合物およびその製造方法 Download PDF

Info

Publication number
WO2009119469A1
WO2009119469A1 PCT/JP2009/055576 JP2009055576W WO2009119469A1 WO 2009119469 A1 WO2009119469 A1 WO 2009119469A1 JP 2009055576 W JP2009055576 W JP 2009055576W WO 2009119469 A1 WO2009119469 A1 WO 2009119469A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
epoxy compound
formula
hydrogen atom
Prior art date
Application number
PCT/JP2009/055576
Other languages
English (en)
French (fr)
Inventor
良和 新井
内田 博
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to CN200980110402.4A priority Critical patent/CN101977919B/zh
Priority to US12/933,828 priority patent/US8426614B2/en
Priority to EP09724479.2A priority patent/EP2270020B1/en
Priority to JP2010505608A priority patent/JP5325206B2/ja
Publication of WO2009119469A1 publication Critical patent/WO2009119469A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/21Cyclic compounds having at least one ring containing silicon, but no carbon in the ring

Definitions

  • the present invention relates to a novel epoxy compound and a method for producing the same, and more particularly useful as a raw material for sealing materials and coating materials for electrical / electronic / optical components, or adhesives, paints, silane coupling agents, modified silicones and the like.
  • the present invention relates to an epoxy compound useful as a resist for a semiconductor manufacturing process, a patterned media magnetic recording medium manufacturing process, and the like, and a manufacturing method thereof.
  • Epoxy compounds are cured with various curing agents to give cured products with excellent mechanical properties, moisture resistance, electrical properties, etc., sealing materials, molding materials, and casting materials for electrical, electronic, and optical components. It is used in a wide range of fields such as laminated materials, composite materials, adhesives and powder coatings. In recent years, with the advancement of technology, high performances related to curability, processability, etc. have been required as epoxy compounds. In particular, etching selectivity is also required for resist materials for semiconductor manufacturing processes.
  • a siloxane skeleton into an epoxy compound for the purpose of imparting etching selectivity such as high resistance to a specific gas in various etching gases, and as an organopolysiloxane having an epoxy group-containing organic group, the molecular chain terminal
  • organopolysiloxanes and cyclic siloxanes having a 3-glycidoxypropyl group or 2- (3,4-epoxycyclohexyl) ethyl group in the side chain of the molecular chain have been proposed (see Patent Document 1).
  • the two steps of the siloxane epoxidation step and the polymerization step are required, and further, the treatment of the basic catalyst is essential, so that the production is complicated. It is accompanied by.
  • an epoxy compound having a glycidyl group requires a relatively long curing time as compared with other curable functional groups, and therefore, it is desirable that the epoxy compound has a property of curing in a shorter time.
  • a siloxane compound having a curable functional group there is a so-called sol-gel method in which an alkoxysilane is synthesized by a hydrolysis reaction, but the resulting product is a mixture and it is difficult to control components.
  • the epoxy compound is liquid at room temperature, that is, about 10 to 30 ° C. in order to be applied to such applications.
  • the present application aims to solve the above problems and provide an epoxy compound having excellent curability and etching selectivity. Furthermore, it aims at providing a liquid epoxy compound at normal temperature in addition to the said characteristic from a viewpoint of workability.
  • n Y (p is a natural number of n or less) represents a group represented by any of the following formulas (1a) to (5a), and (np) Y represents a hydrogen atom or —OSiR 1 2 H, and n represents an integer of 2 to 500.
  • Each R 1 independently represents an alkyl group having 1 to 5 carbon atoms.);
  • R 2 and R 3 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a trialkylsilyl group having 1 to 4 carbon atoms.
  • R 4 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a trialkylsilyl group having 1 to 4 carbon atoms, and R 5 to R 11 are each independently a hydrogen atom, 1 to 6 carbon atoms. Or a trialkylsilyl group having 1 to 4 carbon atoms.
  • R 12 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a trialkylsilyl group having 1 to 4 carbon atoms, or an aryl group.
  • * Represents a bonding portion with Si shown in the formula (I), and -X- * represents-* in which X is a single bond, or a group represented by the following formula (x). );
  • R 1 represents an alkyl group having 1 to 5 carbon atoms.
  • R 2 to R 11 are each independently a hydrogen atom or a methyl group
  • R 12 is a hydrogen atom, a methyl group or a phenyl group.
  • q out of 8 Zs (q is a natural number of 8 or less) represents —OSiR 1 2 Y 1 , and (8-q) Zs represent a hydrogen atom or —OSiR 1 2 H.
  • R 1 represents an alkyl group having 1 to 5 carbon atoms
  • Y 1 represents a group represented by any one of the following formulas (1b) to (5b)):
  • R 2 and R 3 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a trialkylsilyl group having 1 to 4 carbon atoms.
  • R 4 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a trialkylsilyl group having 1 to 4 carbon atoms, and R 5 to R 11 are each independently a hydrogen atom, 1 to 6 carbon atoms. Or a trialkylsilyl group having 1 to 4 carbon atoms.
  • R 12 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a trialkylsilyl group having 1 to 4 carbon atoms, or an aryl group. ).
  • R 1 is a methyl group or an ethyl group.
  • R 2 to R 11 are each independently a hydrogen atom or a methyl group
  • R 12 is a hydrogen atom, a methyl group or a phenyl group.
  • Y 1 represents a hydrogen atom or —OSiR 1 2 H
  • R 1 represents an alkyl group having 1 to 5 carbon atoms
  • n represents an integer of 2 to 500.
  • Z 1 represents —OSiR 1 2 H, R 1 represents an alkyl group having 1 to 5 carbon atoms
  • R 2 and R 3 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a trialkylsilyl group having 1 to 4 carbon atoms.
  • R 4 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a trialkylsilyl group having 1 to 4 carbon atoms, and R 5 to R 11 are each independently a hydrogen atom, 1 to 6 carbon atoms. Or a trialkylsilyl group having 1 to 4 carbon atoms.
  • R 12 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a trialkylsilyl group having 1 to 4 carbon atoms, or an aryl group.
  • the polysilicon compound is a polysilicon compound represented by the formula (III), and the polysilicon compound is a polysilicon compound having a cage-like silsesquioxane structure or a ladder-like silsesquioxane structure.
  • the manufacturing method of the epoxy compound of description is a polysilicon compound represented by the formula (III), and the polysilicon compound is a polysilicon compound having a cage-like silsesquioxane structure or a ladder-like silsesquioxane structure.
  • R 2 to R 11 are each independently a hydrogen atom or a methyl group
  • R 12 is a hydrogen atom, a methyl group or a phenyl group.
  • Z 1 represents —OSiR 1 2 H, R 1 represents an alkyl group having 1 to 5 carbon atoms
  • R 2 and R 3 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a trialkylsilyl group having 1 to 4 carbon atoms.
  • R 4 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a trialkylsilyl group having 1 to 4 carbon atoms, and R 5 to R 11 are each independently a hydrogen atom, 1 to 6 carbon atoms. Or a trialkylsilyl group having 1 to 4 carbon atoms.
  • R 12 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a trialkylsilyl group having 1 to 4 carbon atoms, or an aryl group.
  • R 12 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a trialkylsilyl group having 1 to 4 carbon atoms, or an aryl group.
  • R 1 is a methyl group of the formula (IV) polysilicic containing compound represented by, according to the above [14], wherein the epoxy compound is the formula (6) or (9) Epoxy compound.
  • the epoxy compound of the present invention is a so-called alicyclic epoxy compound having an alicyclic epoxy group, has higher storage stability than a glycidyl type epoxy compound, and is easy for industrial use. Moreover, the alicyclic epoxy group which the epoxy compound of this invention has has high cationic polymerizability with an epoxy group compared with a normal glycidyl group. Therefore, the epoxy compound is very suitable as an electronic material that is required to be cured at a lower temperature and in a shorter time.
  • the epoxy compound of the present invention exhibits excellent etching resistance as a resist used in a dry etching process such as a semiconductor manufacturing process or a patterned media magnetic recording medium manufacturing process. That is, the epoxy compound is useful in a wide range of fields such as molding materials and sealing materials for electric / electronic / optical components, as well as casting materials, laminated materials, composite materials, adhesives, and powder paints.
  • the method for producing an epoxy compound according to the present invention includes a step of reacting a specific polysilicon compound and a specific epoxy compound under predetermined conditions, and therefore, compared with a generally known method using a sol-gel method. An epoxy compound having high stability can be obtained.
  • the method for producing an epoxy compound of the present invention uses a so-called alicyclic epoxy compound having a functional group such as limonene oxide or allyl 3,4-epoxycyclohexane-1-carboxylate as the specific epoxy compound.
  • the resulting epoxy compound can be easily liquefied. Therefore, the epoxy compound is also suitable for uses such as UV nanoimprints that are required to be liquid.
  • FIG. 1 is a 1 H-NMR spectrum of the product obtained in Example 3.
  • 3 is a 13 C-NMR spectrum of the product obtained in Example 3.
  • 3 is an IR spectrum of the product obtained in Example 3.
  • 1 is a 1 H-NMR spectrum of the product obtained in Example 4.
  • 3 is a 13 C-NMR spectrum of the product obtained in Example 4.
  • 4 is an IR spectrum of the product obtained in Example 4.
  • Example 5 1 is a 1 H-NMR spectrum of the product obtained in Example 5.
  • 3 is a 13 C-NMR spectrum of the product obtained in Example 5.
  • 4 is an IR spectrum of the product obtained in Example 5.
  • 1 is a 1 H-NMR spectrum of the product obtained in Example 6.
  • 3 is a 13 C-NMR spectrum of the product obtained in Example 6.
  • 2 is an IR spectrum of the product obtained in Example 6.
  • the epoxy compound of the present invention is represented by the formula (I).
  • p of Y (p is a natural number of n or less) represents a group represented by any of the following formulas (1a) to (5a), and (np) Y is a hydrogen atom Or -OSiR 1 2 H, and n is an integer of 2 to 500, preferably an even number of 6 to 18, more preferably 8.
  • R 2 and R 3 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a trialkylsilyl group having 1 to 4 carbon atoms.
  • R 2 and R 3 include a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tertiary butyl group, a pentyl group, a hexyl group, a trimethylsilyl group, and a triethylsilyl group.
  • R 2 and R 3 may be the same or different from each other, but are preferably the same.
  • R 4 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a trialkylsilyl group having 1 to 4 carbon atoms.
  • R 4 include a hydrogen atom, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tertiary butyl group, pentyl group, hexyl group, trimethylsilyl group, triethylsilyl group, and tertiary group.
  • a butyl dimethyl silyl group is mentioned, it is not limited to these.
  • a hydrogen atom, a methyl group, a trimethylsilyl group, and a tertiary butyldimethylsilyl group are preferable, and a hydrogen atom and a methyl group are more preferable.
  • R 5 to R 11 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a trialkylsilyl group having 1 to 4 carbon atoms.
  • R 5 and R 11 include a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tertiary butyl group, a pentyl group, a hexyl group, a trimethylsilyl group, and a triethylsilyl group.
  • Group, and tertiary butyldimethylsilyl group but are not limited thereto.
  • R 5 to R 11 may be the same or different from each other, but are preferably the same.
  • R 12 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a trialkylsilyl group having 1 to 4 carbon atoms, or an aryl group.
  • R 12 include a hydrogen atom, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tertiary butyl group, pentyl group, hexyl group, trimethylsilyl group, triethylsilyl group, and tertiary group. Examples include, but are not limited to, a butyldimethylsilyl group and a phenyl group.
  • a hydrogen atom, a methyl group, a trimethylsilyl group, a tertiary butyldimethylsilyl group, and a phenyl group are preferable, and a hydrogen atom, a methyl group, and a phenyl group are more preferable.
  • R 1 represents an alkyl group having 1 to 5 carbon atoms, and is preferably an alkyl group having 1 or 2 carbon atoms.
  • R 1 include, but are not limited to, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and a pentyl group. Of these, a methyl group and an ethyl group are preferable.
  • the epoxy compound represented by the formula (I) has n Y. At least one of them, that is, p (p is a natural number of n or less) Y is a group represented by any one of the above formulas (1a) to (5a) as described above. Among these, Y is preferably a group represented by any one of formulas (1a), (4a), and (5a), and more preferably a group represented by formula (4a).
  • an epoxy compound in which R 1 is a methyl group or an ethyl group is preferable.
  • an epoxy compound in which R 2 to R 11 are each independently a hydrogen atom or a methyl group, and R 12 is a hydrogen atom, a methyl group, or a phenyl group is preferable.
  • an epoxy compound in which R 1 is a methyl group or an ethyl group, R 2 to R 11 are each independently a hydrogen atom or a methyl group, and R 12 is a hydrogen atom, a methyl group or a phenyl group Is more preferable.
  • the epoxy compound of the present invention is a so-called alicyclic epoxy compound having an alicyclic epoxy group as represented by the formula (I). Furthermore, the epoxy compound of the present invention is desirably an epoxy compound having a cage-like silsesquioxane structure or a ladder-like silsesquioxane structure.
  • n Y of the epoxy compound represented by the formula (I) is a group represented by any one of the above formulas (1a) to (5a), that is, p is a natural number smaller than n.
  • the epoxy compound represented by the formula (I) has (np) Y other than the groups represented by the formulas (1a) to (5a).
  • This (np) Y is a hydrogen atom or —OSiR 1 2 H.
  • R 1 represents an alkyl group having 1 to 5 same number of carbon atoms as R 1 in the formula (x).
  • the (np) Ys are derived from a polysilicon compound that is a raw material for producing the epoxy compound represented by the formula (I). Residue.
  • Epoxy compound having caged silsesquioxane structure includes an epoxy compound represented by the following formula (II), that is, an epoxy compound in which n is 8 in the above formula (I).
  • q out of 8 Zs (q is a natural number of 8 or less) represents —OSiR 1 2 Y 1 , R 1 represents an alkyl group having 1 to 5 carbon atoms, and the above formula It is synonymous with R 1 in (x), and Y 1 represents a group represented by any of the following formulas (1b) to (5b).
  • R 2 and R 3 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a trialkylsilyl group having 1 to 4 carbon atoms, It is synonymous with R 2 and R 3 in (1a) to (5a).
  • R 4 is a hydrogen atom, a trialkylsilyl group of the alkyl group having 1 to 6 carbon atoms or from 1 carbon atoms, up to 4, the same meaning as R 4 in the formula (1a) ⁇ (5a).
  • R 5 ⁇ R 11 are each independently a hydrogen atom, a trialkylsilyl group of the alkyl group having 1 to 6 carbon atoms or from 1 carbon atoms, up to 4, R 5 in the formula (1a) ⁇ (5a) it is synonymous with ⁇ R 11.
  • R 12 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a trialkylsilyl group having 1 to 4 carbon atoms, or an aryl group, and has the same meaning as R 12 in the above formulas (1a) to (5a). is there.
  • Y 1 is a group represented by any one of the following formulas (1b) to (5b) as described above, and among them, a group represented by any one of the formulas (1b), (4b), and (5b) It is preferable that it is a group represented by the formula (4b).
  • an epoxy compound in which R 1 is a methyl group or an ethyl group is preferable.
  • an epoxy compound in which R 2 to R 11 are each independently a hydrogen atom or a methyl group, and R 12 is a hydrogen atom, a methyl group, or a phenyl group is preferable.
  • an epoxy compound in which R 1 is a methyl group or an ethyl group, R 2 to R 11 are each independently a hydrogen atom or a methyl group, and R 12 is a hydrogen atom, a methyl group or a phenyl group Is more preferable.
  • the epoxy compound represented by the above formula (II) has (8-q) Z other than the groups represented by the formulas (1b) to (5b).
  • the (8-q) pieces of Z are —OSiR 1 2 H.
  • R 1 represents an alkyl group having 1 to 5 same number of carbon atoms as R 1 in the formula (x).
  • the (8-q) Z is derived from a polysilicon compound which is a raw material for producing the epoxy compound represented by the formula (II). Residue.
  • Epoxy compound having ladder-like silsesquioxane structure >> Preferred examples of the epoxy compound having a ladder-like silsesquioxane structure include, but are not limited to, an epoxy compound represented by the following formula (II ′).
  • m represents an integer of 2 to 125, preferably 2 to 50, more preferably 2 to 30.
  • Z is synonymous with the above formula (II). That is, the epoxy compound represented by the above formula (II ′) is an epoxy compound in which n is 8 to 500 in the above formula (I).
  • the formula (II ′) has 4 m of Z, but the epoxy represented by the above formula (II ′) except that all 4 m of Z are groups represented by any of the above formulas (1b) to (5b)
  • the compound will have Z other than the groups represented by formulas (1b) to (5b). At this time, Z other than the groups represented by the formulas (1b) to (5b) is —OSiR 1 2 H.
  • R 1 represents an alkyl group having 1 to 5 same number of carbon atoms as R 1 in the formula (x).
  • Z other than the groups represented by the formulas (1b) to (5b) represents the production of the epoxy compound represented by the formula (II ′). It is a residue derived from a polysilicon compound that is a raw material for use.
  • the epoxy compound of the present invention is a so-called alicyclic epoxy compound having an alicyclic epoxy group
  • the storage stability is higher than that of a glycidyl type epoxy compound, and industrial use is easy.
  • this alicyclic epoxy group has higher cationic polymerizability with a carboxyl group than a normal glycidyl group, it can be cured at a lower temperature and in a shorter time.
  • the epoxy compound of the present invention is liquid at about room temperature, that is, 10 to 30 ° C. Therefore, it can be suitably used for applications such as UV nanoimprints that are required to be liquid.
  • being liquid means that the viscosity (mPa ⁇ s) can be measured using a viscosity measuring instrument (VISCOMETER DV-II + Pro, manufactured by BROOKFIELD) after removing the solvent.
  • the viscosity is usually 1000 to 30000 mPa ⁇ s, and preferably 5000 to 20000 mPa ⁇ s.
  • the method for producing an epoxy compound of the present invention comprises a polysilicon compound represented by formula (III) or a polysilicon compound represented by formula (IV), and an epoxy compound represented by any of the following formulas (6) to (10): And a step of reacting at a temperature of 10 to 200 ° C. This reaction is a hydrosilylation reaction, and can be sufficiently performed even at room temperature.
  • Y 1 represents a hydrogen atom or —OSiR 1 2 H, and R 1 is an alkyl group having 1 to 5 carbon atoms.
  • n represents an integer of 2 to 500, preferably an even number of 6 to 18, more preferably 8.
  • Z 1 represents —OSiR 1 2 H, and R 1 represents an alkyl group having 1 to 5 carbon atoms.
  • R 2 and R 3 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a trialkylsilyl group having 1 to 4 carbon atoms, It is synonymous with R 2 and R 3 in (1a) to (5a).
  • R 4 is a hydrogen atom, a trialkylsilyl group of the alkyl group having 1 to 6 carbon atoms or from 1 carbon atoms, up to 4, the same meaning as R 4 in the formula (1a) ⁇ (5a).
  • R 5 ⁇ R 11 are each independently a hydrogen atom, a trialkylsilyl group of the alkyl group having 1 to 6 carbon atoms or from 1 carbon atoms, up to 4, R 5 in the formula (1a) ⁇ (5a) it is synonymous with ⁇ R 11.
  • R 12 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a trialkylsilyl group having 1 to 4 carbon atoms, or an aryl group, and has the same meaning as R 12 in the above formulas (1a) to (5a). is there.
  • Polysilicon compound As the polysilicon compound represented by the above formula (III), a polysilicon compound having a cage-like silsesquioxane structure or a ladder-like silsesquioxane structure is desirable.
  • Preferred examples of the polysilicon compound having a ladder-shaped silsesquioxane structure include, but are not limited to, a polysilicon compound represented by the following formula (III ′).
  • m represents an integer of 2 to 125, preferably 2 to 50, more preferably 2 to 30. That is, it is a polysilicon compound in which n is 8 to 500 in the above formula (III).
  • Examples of the polysilicon compound having a cage silsesquioxane structure other than the polysilicon compound having a cage silsesquioxane structure represented by the above formula (III) include a polysilicon compound represented by the following formula (IV): Preferably mentioned.
  • Z 1 represents —OSiR 1 2 H
  • R 1 represents an alkyl group having 1 to 5 carbon atoms, and preferably an alkyl group having 1 or 2 carbon atoms.
  • Specific examples of R 1 include, but are not limited to, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and a pentyl group. Of these, a methyl group and an ethyl group are preferable.
  • Epoxy compound is a compound having a double bond represented by any one of the above formulas (6) to (10), among which is represented by any one of the formulas (6), (9), and (10). It is preferable that it is an epoxy compound, and it is more preferable that it is an epoxy compound represented by Formula (9).
  • an epoxy compound in which R 2 to R 11 are each independently a hydrogen atom or a methyl group, and R 12 is a hydrogen atom, a methyl group, or a phenyl group is preferable.
  • a combination with a polysilicon compound which is an atom or a methyl group and R 12 is a hydrogen atom, a methyl group or a phenyl group is preferred.
  • the compounding ratio of the polysilicon compound represented by the above formula (III) or (IV) and the epoxy compound having a double bond represented by any of the above formulas (6) to (10) is arbitrary and is particularly limited.
  • the —SiH group in the polysilicon compound is usually 0.3 to 1.5 times the equivalent, preferably 0.8, to 1 equivalent of the ethylenic double bond in the epoxy compound. It is blended in an equivalent of 5 to 1.1 times. If the blending amount is outside the above range, one compound remains unreacted, which may be economically disadvantageous.
  • an addition reaction catalyst composed of transition metals such as platinum, rhodium, palladium, nickel, iridium, ruthenium or the compounds thereof. it can. Specifically, chloroplatinic acid, various platinum complexes, platinum and vinylsiloxane complexes excluding chlorine, Karsted catalyst, various solutions of platinum compounds (alcohols, ketones, ethers, esters, aromatic hydrocarbons, etc. Dispersed type), Speier catalyst, catalyst supported on various solids (silica gel, activated carbon, etc.), Rh catalyst such as Wilkinson complex, and various complex catalysts of palladium, and the type or form is not particularly limited.
  • platinum atoms when using a platinum catalyst, its amount is not particularly limited, relative to the number of moles of the hydroalkoxysilane, platinum atoms are usually 1 ⁇ 10 -2 ⁇ 10 -8 moles, preferably 1 ⁇ 10 - The amount is 3 to 10 ⁇ 6 times mole. If the platinum atom is less than the lower limit, the reaction rate may extremely decrease, and if the upper limit is exceeded, the reaction rate may be improved, but epoxy ring-opening polymerization may occur, economically. May also be disadvantageous.
  • a solvent may be used as a reaction solvent or as a catalyst solution medium as necessary.
  • a solvent can be used.
  • Such a solvent include saturated hydrocarbons such as pentane, hexane, isooctane, decane, and cyclohexane, aromatic hydrocarbons such as toluene, xylene, mesitylene, ethylbenzene, decalin, and tetralin, diethyl ether, Examples include ethers such as THF, various silicones such as esters and polydimethylsiloxanes, and the like can be arbitrarily selected from these, and the amount used may be arbitrarily determined. These solvents may be used alone or in combination of two or more.
  • a reactor filled with an inert gas such as a dry nitrogen gas is first filled with the above formula (6) to An epoxy compound represented by any one of (10) and a catalyst are charged. At this time, a solvent may be charged as necessary. Next, after stirring, the temperature is raised to a predetermined temperature, and then the polysilicon compound represented by the formula (III) or (IV) is dropped into the mixture to cause an addition reaction, and after completion of the dropping, the reaction is completed. Aging is performed.
  • a method may be used in which a polysilicon compound represented by formula (III) or (IV) is first charged into the reactor, and then an epoxy compound represented by any one of formulas (6) to (10) is added. Also, a method of adding a mixed liquid of a polysilicon compound represented by the formula (III) or (IV) and an epoxy compound represented by any one of the formulas (6) to (10) to the catalyst and / or solvent. A method of raising the temperature after all the raw materials are charged all at once may be used. In addition, the production method of the present invention can be applied to any of reaction modes of batch, continuous and semi-continuous.
  • the reaction temperature is preferably in the range of 10 to 200 ° C, particularly 10 to 150 ° C. If the reaction temperature is less than the above lower limit, the reaction rate decreases and the reaction may not be completed within a practical process time. Further, when the reaction temperature exceeds the above upper limit, the reaction rate is improved, but the ring opening polymerization of the epoxy group of the epoxy compound represented by any one of the formulas (6) to (10) or the target epoxy compound is performed. May occur.
  • the atmosphere in the reactor is preferably an inert gas atmosphere such as nitrogen gas. Incorporation of moisture (or air containing moisture) not only adversely affects the reaction, but also the yield of the target epoxy compound decreases due to hydrolysis of the polysilicon compound represented by formula (III). There is a risk.
  • a known technique of introducing dry air or an inert gas containing oxygen into the reaction atmosphere may be applied.
  • the reaction time may vary depending on the reaction temperature, pressure conditions, catalyst concentration, and concentration of the raw material in the reaction system, but is usually 0.1 to 100 hours, and the reaction time is arbitrarily selected within the above range. Can do.
  • the epoxy compound of the present invention represented by the formula (I) or the formula (II) includes the polysilicon compound represented by the formula (III) or the polysilicon compound represented by the formula (IV), and the formula (6) to It can be obtained by subjecting the epoxy compound represented by any one of (10) to a hydrosilylation reaction at 10 to 200 ° C.
  • the epoxy compound represented by the formula (I) obtained by this reaction has n Y, but all the n Y are groups derived from the compound represented by any one of the formulas (6) to (10). Including cases other than certain cases. That is, in the epoxy compound obtained by this reaction, p (p is a natural number of n or less, that is, a natural number of 1 to n) of n Y contained in the compound is represented by the above formulas (1a) to (5a). One or two or more of the compounds that are groups represented by any of the above, are often obtained as a mixture of the above epoxy compounds having different p.
  • this epoxy compound has (np) It has Y other than the groups represented by formulas (1a) to (5a).
  • the (np) Y atoms are hydrogen atoms of the polysilicon compound represented by the formula (III) which is a raw material of the reaction, and are unreacted hydrogen atoms.
  • the epoxy compound represented by the formula (II) obtained by this reaction has 8 Z, but all 8 Zs are compounds represented by any one of the formulas (6) to (10). Including. That is, in the epoxy compound obtained by this reaction, q out of 8 Z contained in this compound (q is a natural number of 8 or less, that is, a natural number of 1 to 8) is represented by the above formulas (1a) to (5a). In many cases, a mixture of the above epoxy compounds having a different q is obtained, which is one or more of the compounds represented by any of the above.
  • a general method can be used for purification of the product.
  • an adsorption separation method can be mentioned, and specifically, a method using an adsorbent such as activated carbon, acid clay, activated clay or the like can be mentioned.
  • an adsorbent such as activated carbon, acid clay, activated clay or the like
  • there are adsorption and removal methods for impurities and colored substances column chromatography, and thin layer chromatography.
  • Specific examples of the adsorption removal method include adsorption removal methods using silica gel, hydrous silica gel, alumina, activated carbon, titania, and zirconia.
  • Examples of column chromatography include column chromatography using these silica gel, hydrous silica gel, and alumina as a filler.
  • distillation such as vacuum distillation and molecular distillation.
  • distillation a small amount of amines, sulfur-containing compounds and the like are added together with the reaction solution before the distillation, and the epoxy compound of the present invention during distillation and any one of the formulas (6) to (10) as raw materials are used.
  • the reaction vessel in the present invention is not particularly limited, but preferably includes a stirring device, a thermometer, a reflux condenser, a dropping device, and the like.
  • Etching rate (nm / sec) step difference (nm) ⁇ processing time (sec)
  • the mixture was heated using an oil bath maintained at 90 ° C., 80 ml of 30% aqueous hydrogen peroxide was dropped over 180 minutes through a dropping funnel, and aged for 4 hours. After cooling in an ice bath, excess hydrogen peroxide was removed with 300 ml of a saturated aqueous sodium thiosulfate solution, and then extracted twice with 200 ml of ethyl acetate. The obtained ethyl acetate solution was dried over anhydrous sodium sulfate overnight, the solvent ethyl acetate was removed using a rotary evaporator, and then purified by column chromatography packed with 25% hydrous silica gel to obtain 3,4-epoxy. 79.6 g of allyl cyclohexane-1-carboxylate were obtained.
  • Example 1 A 50 ml three-necked flask equipped with a reflux condenser, a thermometer, a stirrer, and a serum cap is a polysilicon compound in which R 1 of eight Z 1 in formula (IV) is a methyl group PSS-octakis (dimethylsilyloxy) substituted ( 1,3,5,7,9,11,13,15- octakis (di methylsiloxy) f ° Ntashikuro [9.5.1.1 3,9 .1 5,15 .1 7,13] oct-siloxane 1.04 g (0.98 mmol) from Aldrich), 1.432 g (7.84 mmol) of allyl 3,4-epoxycyclohexane-1-carboxylate obtained in Preparation Example 1, and 5.0 ml of toluene.
  • R 1 of eight Z 1 in formula (IV) is a methyl group PSS-octakis (dimethylsily
  • PSS-octakis (dimethylsilyloxy) substituted is contained for one equivalent of the ethylenic double bond of allyl 3,4-epoxycyclohexane-1-carboxylate stirred at room temperature (25 ° C.) under an argon stream -SiH group corresponds to 1 equivalent).
  • 0.00093 g (0.02 mol%) of a 2% divinyltetramethyldisiloxane platinum complex xylene solution was slowly added dropwise using a syringe and stirred at room temperature (25 ° C.).
  • epoxy compound (V) Assuming that all of A in the reaction had reacted, a theoretical molecular weight of 2474.4) was obtained.
  • Example 1 ⁇ Measurement and Evaluation of Reactive Ion Etching Rate; ⁇ Example 1 and Comparative Example 1 >> The epoxy compound (V) obtained in Example 1 was dissolved in propylene glycol monomethyl ether acetate so as to have a nonvolatile component concentration of 10% by mass, and the photocationic polymerization initiator triphenylsulfonium hexafluoroantimonate was added to the solution in a nonvolatile manner. After adding 1 part by mass to 100 parts by mass of the sexual component and dissolving, it was filtered through a 0.2 ⁇ m filter, and 0.5 ml was dropped onto a glass substrate set in a spin coater.
  • epoxy compound (VI) an epoxy compound represented by the following formula (hereinafter also referred to as “epoxy compound (VI)”) as a non-volatile component. It was.
  • Example 1 and Comparative Example 2 DSC measurement was performed by adding 1 part by mass of the photocationic polymerization initiator triphenylsulfonium hexafluoroantimonate to 100 parts by mass of the epoxy compound (V) obtained in Example 1.
  • the UV illuminance was 6.0 mw / cm 2 .
  • the obtained DSC and DDSC chart are shown in FIG.
  • FIG. 3 shows a comparative chart in which the charts of FIGS. 1 and 2 are overlapped.
  • the end point of the exothermic peak is faster in the DSC curve of the epoxy compound (V) obtained in Example 1 than in the DSC curve of the epoxy compound (VI) obtained in Comparative Example 2. It can be seen that the polymerization reaction was completed earlier with the epoxy compound (V).
  • the end point of the exothermic change is faster in the DDSC curve of the epoxy compound (V) obtained in Example 1 than in the DDSC curve of the epoxy compound (VI) obtained in Comparative Example 2. This also shows that the epoxy compound (V) completed the polymerization reaction earlier.
  • the epoxy compound (V) having an alicyclic epoxy group of the present invention is faster to cure by UV than the epoxy compound (VI) having a glycidyl type epoxy group.
  • Example 2 In a 100 ml three-necked flask equipped with a reflux condenser, a thermometer, a stirrer, and a serum cap, 1.0 g (0.98 mmol) of PSS-octakis (dimethylsilyloxy) substituted, 1.1966 g (7.84 mmol) of limonene oxide, toluene 5.0 ml was added, and the mixture was stirred at room temperature (25 ° C.) under an argon stream (one equivalent of PSi-octakis (dimethylsilyloxy) substituted is equivalent to one equivalent of the ethylenic double bond of limonene oxide) Equivalent).
  • Example 2 ⁇ Measurement and Evaluation of Reactive Ion Etching Rate; ⁇ Example 2 >> The epoxy compound (VII) obtained in Example 2 was dissolved in propylene glycol monomethyl ether acetate so as to have a nonvolatile component concentration of 10% by mass, and the photocationic polymerization initiator triphenylsulfonium hexafluoroantimonate was added to the solution in a nonvolatile manner. After adding 1 part by mass to 100 parts by mass of the sexual component and dissolving, it was filtered through a 0.2 ⁇ m filter, and 0.5 ml was dropped onto a glass substrate set in a spin coater.
  • an epoxy compound (VII) thin film was formed on the glass substrate.
  • the glass substrate on which the epoxy compound (VII) thin film was formed was irradiated with ultraviolet rays in a nitrogen stream.
  • the cured film of the resulting epoxy compound (VII) was measured reactive ion etching rate with a CF 4 gas and oxygen. The results are shown in Table 2.
  • DSC measurement and evaluation was performed by adding 1 part by mass of the photocationic polymerization initiator triphenylsulfonium hexafluoroantimonate to 100 parts by mass of the epoxy compound (VII) obtained in Example 2.
  • the UV illuminance was 7.8 mw / cm 2 .
  • the obtained DSC chart is shown in FIG.
  • the epoxy compounds of Examples 1 and 2 are liquid at about room temperature, which is suitable for use as a resist for UV nanoimprint.
  • Example 3 1.429 g (7.84 mmol) of allyl 3,4-epoxycyclohexane-1-carboxylate, 2% divinyltetramethyldisiloxane in a 100 ml three-necked flask equipped with a reflux condenser, thermometer, stirrer, and serum cap 0.00093 g (0.02 mol%) of a platinum complex xylene solution was added, and the mixture was stirred at 60 ° C. under an argon stream.
  • PSS-octakis (dimethylsilyloxy) substituted dissolved in 5.0 ml of toluene was slowly added using a dropping funnel (the ethylenic property of allyl 3,4-epoxycyclohexane-1-carboxylate).
  • the -SiH group of PSS-octakis (dimethylsilyloxy) substituted is equivalent to 1 equivalent with respect to 1 equivalent of the double bond), and the mixture was stirred for 12 hours while maintaining the temperature.
  • peaks with (a) to (d) are peaks corresponding to the portions indicated by (a) to (d) in the structural formula, respectively.
  • the peak marked with (x) is a peak corresponding to H of an unreacted Si—H group
  • the peak marked with (y) is a peak corresponding to H other than the above.
  • the characteristic peaks of the non-volatile component obtained in FIG. 6 are the carbon peak of the carbonyl group near 175.8 ppm, the peak of methylene carbon adjacent to the oxygen atom near 67.2 ppm, and the epoxy group near 50 ppm.
  • a carbon peak adjacent to oxygen, a methylene carbon peak adjacent to a silicon atom near 14.0 ppm, and a methyl group carbon peak adjacent to a silicon atom near 0 ppm were observed.
  • the nonvolatile component obtained from these results is a mixture obtained by reacting 1 to 8 of 8 A of the epoxy compound represented by the following formula (V) (hereinafter also referred to as “epoxy compound (V)”). I understood it.
  • Example 4 In a 100 ml three-necked flask equipped with a reflux condenser, a thermometer, a stirrer, and a serum cap, 0.897 g (5.88 mmol) of limonene oxide, 0.00093 g of a 2% divinyltetramethyldisiloxane platinum complex xylene solution (0. 02 mol%) was added, and the mixture was stirred at 110 ° C. under an argon stream.
  • the 1 H-NMR spectrum, 13 C-NMR spectrum and IR spectrum of the obtained nonvolatile component are shown in FIGS. 8, 9 and 10, respectively.
  • the peak attached with (x) is a peak corresponding to H of the unreacted Si—H group
  • the peak attached with (y) is 2 bonded to Si of the unreacted Si—H group. It is a peak corresponding to one CH 3 H.
  • the peak of the unreacted Si—H group is present at 4.74 ppm.
  • the characteristic peak of the non-volatile component obtained in FIG. 9 is a carbon peak adjacent to the oxygen atom of the epoxy group at 60.9 ppm, a carbon having a methyl group adjacent to the oxygen atom of the epoxy group around 57 ppm. And a methyl carbon peak adjacent to the silicon atom was observed near 0 ppm.
  • Example 5 In a 100 ml three-necked flask equipped with a reflux condenser, a thermometer, a stirrer, and a serum cap, 0.598 g (3.92 mmol) of limonene oxide, 0.00093 g of a 2% divinyltetramethyldisiloxane platinum complex xylene solution (0. 02 mol%) was added, and the mixture was stirred at 110 ° C. under an argon stream.
  • FIGS. 11, 12 and 13 The 1 H-NMR spectrum, 13 C-NMR spectrum and IR spectrum of the obtained non-volatile component are shown in FIGS. 11, 12 and 13, respectively.
  • the peak marked with (x) is a peak corresponding to H of the unreacted Si—H group
  • the peak marked with (y) is 2 bonded to Si of the unreacted Si—H group. It is a peak corresponding to one CH 3 H.
  • the peak of the unreacted Si—H group is present at 4.73 ppm.
  • the characteristic peak of the non-volatile component obtained in FIG. 12 is a carbon peak adjacent to the oxygen atom of the epoxy group at 61.0 ppm, a carbon having a methyl group adjacent to the oxygen atom of the epoxy group around 57 ppm. And a methyl carbon peak adjacent to the silicon atom was observed near 0 ppm.
  • Example 6 In a 100 ml three-necked flask equipped with a reflux condenser, a thermometer, a stirring device, and a serum cap, 1.196 g (7.84 mmol) of limonene oxide, 0.00093 g of a 2% divinyltetramethyldisiloxane platinum complex xylene solution (0. 02 mol%) was added, and the mixture was stirred at 110 ° C. under an argon stream.
  • the characteristic peak of the non-volatile component obtained in FIG. 15 is a carbon peak adjacent to the oxygen atom of the epoxy group at 61.0 ppm, and a carbon having a methyl group adjacent to the oxygen atom of the epoxy group around 57 ppm. And a methyl carbon peak adjacent to the silicon atom was observed near 0 ppm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Silicon Polymers (AREA)
  • Epoxy Compounds (AREA)

Abstract

 本発明は、硬化速度が速いとともにエッチング耐性および選択性にも優れ、室温下において液状であるエポキシ化合物およびその製造方法を提供することを目的とする。本発明のエポキシ化合物は、式(I)で表される; (YSiO3/2・・・(I)(式(I)中、n個のYのうちp個(pはn以下の自然数)は下記式(1a)~(5a)のいずれかで表される基を示し、(n−p)個のYは水素原子または−OSiR1 2Hを示し、nは2~500の整数を示す。R1 はそれぞれ独立にアルキル基を示し、R2~12 はそれぞれ独立に水素原子またはアルキル基などを示し、Xは単結合などを示し、*は(Ⅰ)に示されるSi との結合部分を示す。)。

Description

エポキシ化合物およびその製造方法
 本発明は、新規なエポキシ化合物およびその製造方法に関し、さらに詳しくは電気・電子・光学部品の封止材料やコーティング材料、または接着剤、塗料、シランカップリング剤、変性シリコーン等の原料として有用であり、例えば半導体製造プロセスやパターンドメディアの磁気記録媒体製造プロセス等のレジストとして有用なエポキシ化合物およびその製造方法に関する。
 エポキシ化合物は種々の硬化剤で硬化させることにより、機械的性質、耐湿性、電気的性質などに優れた硬化物を与えるため、電気・電子・光学部品の封止材料、成形材料、注型材料、積層材料、複合材料、接着剤及び粉体塗料等などの幅広い分野に利用されている。近年、技術の進歩に伴って、エポキシ化合物として硬化性、加工容易性等に関する高い性能が要求されてきた。特に半導体製造プロセスのレジスト材については、エッチング選択性も要求されている。
 例えば、各種エッチングガス中の特定ガスに対する耐性が高いといったエッチング選択性を付与する目的でエポキシ化合物にシロキサン骨格を導入することが考えられ、エポキシ基含有有機基を有するオルガノポリシロキサンとして、分子鎖末端または分子鎖側鎖に3-グリシドキシプロピル基または2-(3,4-エポキシシクロヘキシル)エチル基を有するオルガノポリシロキサンおよび環状シロキサンが提案されている(特許文献1参照)。しかしながら、該文献に記載の製造方法の場合には、シロキサンのエポキシ化工程と高分子化工程との二段工程を要する上、さらに塩基性触媒の処理も必須であるため、製造上の煩雑さを伴うものである。
 また、例えばグリシジル基を有するエポキシ化合物は、他の硬化性官能基に比べて比較的多くの硬化時間を要するため、より短時間で硬化する特性を有するエポキシ化合物であることが望まれる。さらに、硬化性官能基を有するシロキサン化合物の一般的な方法としては、アルコキシシランを加水分解反応により合成するいわゆるゾルゲル法が挙げられるが、得られる生成物が混合物であり成分制御が困難であることや、特に長期に保管する時にはゲル化するおそれがあるため、これらの問題が生じないエポキシ化合物およびその製造方法であることを要する。
 さらに、例えば篭状水素化シルセスキオキサンを4-ビニルシクロヘキセンオキサイドを用いてヒドロシリル化反応させた場合、生成物が固体となるため、UVレジストなどの用途としては好適ではない。したがって、こうした用途にも適用させるためには、室温、すなわち約10~30℃において液状であるエポキシ化合物であるのが望ましい。
特開平3-255130号公報
 本願は、上記の問題を解決し、硬化性およびエッチング選択性に優れたエポキシ化合物を提供することを目的とする。さらには加工容易性の観点から、前記特性に加えて、常温で液状のエポキシ化合物を提供することを目的とする。
 本発明者らは前記課題を解決するために鋭意検討を行った結果、本発明を見出すに至った。すなわち、本発明は以下の[1]~[15]に関する。
 [1] 式(I)で表されるエポキシ化合物;
Figure JPOXMLDOC01-appb-C000011
 (式(I)中、n個のYのうちp個(pはn以下の自然数)は下記式(1a)~(5a)のいずれかで表わされる基を示し、(n-p)個のYは水素原子または-OSiR1 2Hを示し、nは2~500の整数を示す。前記R1は、それぞれ独立に炭素数が1から5のアルキル基を示す。);
Figure JPOXMLDOC01-appb-C000012
 (式(1a)~(5a)中、R2およびR3は、それぞれ独立に水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示す。
 R4は、水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示し、R5~R11は、それぞれ独立に水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示す。
 R12は、水素原子、炭素数1から6までのアルキル基、炭素数1から4までのトリアルキルシリル基、またはアリール基を示す。
 *は式(I)に示されるSiとの結合部分を示し、-X-*は、Xが単結合である-*、ま
たは下記式(x)で表わされる基を示す。);
Figure JPOXMLDOC01-appb-C000013
(式(x)中、R1は、炭素数が1から5のアルキル基を示す。)。
 [2] 前記エポキシ化合物が、篭状シルセスキオキサン構造または梯子状シルセスキオキサン構造を有するエポキシ化合物であることを特徴とする上記[1]に記載のエポキシ化合物。
 [3] 前記式(1a)~(5a)中、-X-*が、前記式(x)で表わされる基であり、前記式(x)中、R1が、メチル基またはエチル基であることを特徴とする上記[1]または[2]に記載のエポキシ化合物。
 [4]前記式(1a)~(5a)中、R2~R11が、それぞれ独立に水素原子またはメチル基であり、かつR12が、水素原子、メチル基またはフェニル基であることを特徴とする上記[1]または[3]のいずれかに記載のエポキシ化合物。
 [5]下記式(II)で表わされることを特徴とするエポキシ化合物;
Figure JPOXMLDOC01-appb-C000014
 (式(II)中、8つのZのうちq個(qは8以下の自然数)は、-OSiR1 21を示し、(8-q)個のZは水素原子または-OSiR1 2Hを示し、R1は炭素数が1から5のアルキル基を示し、Y1は下記式(1b)~(5b)のいずれかで表わされる基を示す。);
Figure JPOXMLDOC01-appb-C000015
 (式(1b)~(5b)中、R2およびR3は、それぞれ独立に水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示す。
 R4は、水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示し、R5~R11は、それぞれ独立に水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示す。
 R12は、水素原子、炭素数1から6までのアルキル基、炭素数1から4までのトリアルキルシリル基、またはアリール基を示す。)。
 [6]前記式(II)中、R1が、メチル基またはエチル基であることを特徴とする上記[5]に記載のエポキシ化合物。
 [7]前記式(1b)~(5b)中、R2~R11が、それぞれ独立に水素原子またはメチル基であり、かつR12が、水素原子、メチル基またはフェニル基であることを特徴とする上記[5]または[6]に記載のエポキシ化合物。
 [8]10~30℃において液状であることを特徴とする上記[1]~[7]のいずれかに記載のエポキシ化合物。
 [9]式(III)または式(IV)で表わされるポリケイ素化合物;
Figure JPOXMLDOC01-appb-C000016
 (式(III)中、Y1は水素原子または-OSiR1 2Hを示し、R1は、炭素数が1から5のアルキル基であり、nは2~500の整数を示す。)
Figure JPOXMLDOC01-appb-C000017
 (式(IV)中、Z1は、-OSiR1 2Hを示し、R1は、炭素数が1から5のアルキル基を示す。)と、
 下記式(6)~(10)のいずれかで表わされるエポキシ化合物;
Figure JPOXMLDOC01-appb-C000018
 (式(6)~(10)中、R2およびR3は、それぞれ独立に水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示す。
 R4は、水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示し、R5~R11は、それぞれ独立に水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示す。
 R12は、水素原子、炭素数1から6までのアルキル基、炭素数1から4までのトリアルキルシリル基、またはアリール基を示す。)とを、
 10~200℃で反応させる工程を含むことを特徴とする上記[1]に記載のエポキシ化合物の製造方法。
 [10]前記ポリケイ素化合物が前記式(III)で表わされるポリケイ素化合物であり、該ポリケイ素化合物が、篭状シルセスキオキサン構造または梯子状シルセスキオキサン構造を有するポリケイ素化合物であることを特徴とする上記[9]に記載のエポキシ化合物の製造方法。
[11]前記ポリケイ素化合物が前記式(IV)で表わされるポリケイ素化合物であり、前記式(IV)中、R1が、メチル基またはエチル基であることを特徴とする上記[9]に記載のエポキシ化合物の製造方法。
[12]前記式(6)~(10)中、R2~R11が、それぞれ独立に水素原子またはメチル基であり、かつR12が、水素原子、メチル基またはフェニル基であることを特徴とする上記[9]~[11]のいずれかに記載のエポキシ化合物の製造方法。
 [13]前記エポキシ化合物が有するエチレン性二重結合の1当量に対し、前記ポリケイ素化合物が有する-SiH基の当量が0.3~1.5となるように配合することを特徴とする上記[9]~[12]のいずれかに記載のエポキシ化合物の製造方法。
 [14]式(IV)で表わされるポリケイ素化合物;
Figure JPOXMLDOC01-appb-C000019
 (式(IV)中、Z1は、-OSiR1 2Hを示し、R1は、炭素数が1から5のアルキル基を示す。)と、
 下記式(6)~(10)のいずれかで表わされるエポキシ化合物;
Figure JPOXMLDOC01-appb-C000020
 (式(6)~(10)中、R2およびR3は、それぞれ独立に水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示す。
 R4は、水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示し、R5~R11は、それぞれ独立に水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示す。
 R12は、水素原子、炭素数1から6までのアルキル基、炭素数1から4までのトリアルキルシリル基、またはアリール基を示す。)とを、
 前記エポキシ化合物が有するエチレン性二重結合の1当量に対し、前記ポリケイ素化合物が有する-SiH基の当量が0.3~1.5となるように配合し、
 10~200℃でヒドロシリル化反応させて得られることを特徴とするエポキシ化合物。
 [15]前記式(IV)で表わされるポリケイ素化合物のR1がメチル基であり、前記エポキシ化合物が前記式(6)または(9)であることを特徴とする上記[14]に記載のエポキシ化合物。
 本発明のエポキシ化合物は、脂環式エポキシ基を有するいわゆる脂環式エポキシ化合物であり、グリシジルタイプのエポキシ化合物に比べて貯蔵安定性が高く、工業的使用が容易である。また、本発明のエポキシ化合物が有する脂環式エポキシ基は、通常のグリシジル基に比べ、エポキシ基とのカチオン重合性が高い。そのため、該エポキシ化合物は、より低温かつ短時間での硬化を要求される電子材料として、非常に好適である。
 したがって、本発明のエポキシ化合物は、例えば、半導体製造プロセスやパターンドメディアの磁気記録媒体製造プロセス等のドライエッチング工程に用いられるレジストとして、優れたエッチング耐性を発揮する。すなわち、該エポキシ化合物は、電気・電子・光学部品の成形材料や封止材料、さらには注型材料、積層材料、複合材料、接着剤または粉体塗料等の幅広い分野に有用である。
 本発明のエポキシ化合物の製造方法は、特定のポリケイ素化合物と特定のエポキシ化合物とを所定の条件下で反応させる工程を含むものであるため、一般的に知られているゾルゲル法による製造方法に比べて、安定性が高いエポキシ化合物を得ることができる。
 また、本発明のエポキシ化合物の製造方法は、特定のエポキシ化合物として、リモネンオキサイドや3,4-エポキシシクロヘキサン-1-カルボン酸アリルのような官能基を有する、いわゆる脂環式エポキシ化合物を用いるため、得られるエポキシ化合物を容易に液状とすることができる。したがって、該エポキシ化合物は、液体状であることを要求されるUVナノインプリントなどの用途にも好適である。
実施例1で得られたエポキシ化合物(V)のDSCおよびDDSCのチャート図である。 比較例2で得られたエポキシ化合物(VI)のDSCおよびDDSCのチャート図である。 図1~図2それぞれのチャートを重ねた比較チャート図である。 実施例2で得られたエポキシ化合物(VII)のDSCのチャート図である。 実施例3で得られた生成物の1H-NMRスペクトルである。 実施例3で得られた生成物の13C-NMRスペクトルである。 実施例3で得られた生成物のIRスペクトルである。 実施例4で得られた生成物の1H-NMRスペクトルである。 実施例4で得られた生成物の13C-NMRスペクトルである。 実施例4で得られた生成物のIRスペクトルである。 実施例5で得られた生成物の1H-NMRスペクトルである。 実施例5で得られた生成物の13C-NMRスペクトルである。 実施例5で得られた生成物のIRスペクトルである。 実施例6で得られた生成物の1H-NMRスペクトルである。 実施例6で得られた生成物の13C-NMRスペクトルである。 実施例6で得られた生成物のIRスペクトルである。
 以下、本発明を詳細に説明する。
 <エポキシ化合物>
 本発明のエポキシ化合物は、式(I)で表されることを特徴としている。
Figure JPOXMLDOC01-appb-C000021
 式(I)中、Yのうちp個(pはn以下の自然数)は下記式(1a)~(5a)のいずれかで表わされる基を示し、(n-p)個のYは水素原子または-OSiR1 2Hを示し、nは2~500の整数、好ましくは6~18の偶数、より好ましくは8を示す。
Figure JPOXMLDOC01-appb-C000022
 式(1a)~(5a)中、R2およびR3は、それぞれ独立に水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示す。R2およびR3としては、具体的には、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ターシャリーブチル基、ペンチル基、ヘキシル基、トリメチルシリル基、トリエチルシリル基、ターシャリーブチルジメチルシリル基が挙げられるが、これらに限定されるものではない。なかでも、水素原子、メチル基、トリメチルシリル基、ターシャリーブチルジメチルシリル基が好ましく、水素原子およびメチル基がより好ましい。R2およびR3は、互いに同一であっても異なっていてもよいが、同一であることが好ましい。
 R4は、水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示す。R4としては、具体的には、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ターシャリーブチル基、ペンチル基、ヘキシル基、トリメチルシリル基、トリエチルシリル基、ターシャリーブチルジメチルシリル基が挙げられるが、これらに限定されるものではない。なかでも、水素原子、メチル基、トリメチルシリル基、ターシャリーブチルジメチルシリル基が好ましく、水素原子およびメチル基がより好ましい。
 R5~R11は、それぞれ独立に水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示す。R5およびR11としては、具体的には、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ターシャリーブチル基、ペンチル基、ヘキシル基、トリメチルシリル基、トリエチルシリル基、ターシャリーブチルジメチルシリル基が挙げられるが、これらに限定されるものではない。なかでも、水素原子、メチル基、トリメチルシリル基、ターシャリーブチルジメチルシリル基が好ましく、水素原子およびメチル基がより好ましい。R5~R11は、互いに同一であっても異なっていてもよいが、同一であることが好ましい。
 R12は、水素原子、炭素数1から6までのアルキル基、炭素数1から4までのトリアルキルシリル基、またはアリール基を示す。R12としては、具体的には、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ターシャリーブチル基、ペンチル基、ヘキシル基、トリメチルシリル基、トリエチルシリル基、ターシャリーブチルジメチルシリル基、フェニル基が挙げられるが、これらに限定されるものではない。なかでも、水素原子、メチル基、トリメチルシリル基、ターシャリーブチルジメチルシリル基、フェニル基が好ましく、水素原子、メチル基、フェニル基がより好ましい。
 *は式(I)に示されるSiとの結合部分を示し、-X-*は、Xが単結合である-*、または下記式(x)で表わされる基を示す。
Figure JPOXMLDOC01-appb-C000023
 式(x)中、R1は、炭素数が1から5のアルキル基を示し、炭素数が1または2のアルキル基であることが好ましい。R1としては、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基が挙げられるが、これらに限定されるものではない。なかでも、メチル基およびエチル基が好ましい。
 式(I)で表されるエポキシ化合物はn個のYを有する。この内少なくとも1つ、すなわちp個(pはn以下の自然数)のYは上述のとおり、上記式(1a)~(5a)のいずれかで表わされる基である。なかでも、Yは、式(1a)、(4a)、(5a)のいずれかで表わされる基であることが好ましく、式(4a)で表わされる基であることがより好ましい。
 上記式(I)で表わされる本発明のエポキシ化合物のうち、R1がメチル基またはエチル基であるエポキシ化合物が好ましい。また、R2~R11が、それぞれ独立に水素原子またはメチル基であり、かつR12が、水素原子、メチル基またはフェニル基であるエポキシ化合物が好ましい。さらに、R1がメチル基またはエチル基であると同時に、R2~R11が、それぞれ独立に水素原子またはメチル基であり、かつR12が、水素原子、メチル基またはフェニル基であるエポキシ化合物がより好ましい。
 このように、本発明のエポキシ化合物は、式(I)で表わされるように脂環式エポキシ基を有するいわゆる脂環式エポキシ化合物である。さらに、本発明のエポキシ化合物は、篭状シルセスキオキサン構造または梯子状シルセスキオキサン構造を有するエポキシ化合物であることが望ましい。
  なお、式(I)で表されるエポキシ化合物のn個のY全てが上記式(1a)~(5a)のいずれかで表わされる基である場合以外、すなわちpがnより小さい自然数である場合には、式(I)で表されるエポキシ化合物は、式(1a)~(5a)で表される基以外のYを(n-p)個有する。この(n-p)個のYは水素原子または-OSiR1 2Hである。ここで、R1は式(x)中のR1と同じ炭素数が1から5のアルキル基を示す。後述する式(I)で表されるエポキシ化合物の製造方法においては、前記(n-p)個のYは、式(I)で表されるエポキシ化合物の製造用原料であるポリケイ素化合物に由来する残基である。
 《篭状シルセスキオキサン構造を有するエポキシ化合物》
 篭状シルセスキオキサン構造を有するエポキシ化合物としては、たとえば下記式(II)で表わされるエポキシ化合物、すなわち上記式(I)において、nが8であるエポキシ化合物が好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000024
 式(II)中、8つのZの内q個(qは8以下の自然数)は、-OSiR1 21を示し、R1は、炭素数が1から5のアルキル基を示し、上記式(x)のR1と同義であり、Y1は下記式(1b)~(5b)のいずれかで表わされる基を示す。
Figure JPOXMLDOC01-appb-C000025
 式(1b)~(5b)中、R2およびR3は、それぞれ独立に水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示し、上記式(1a)~(5a)におけるR2およびR3と同義である。
 R4は、水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示し、上記式(1a)~(5a)におけるR4と同義である。R5~R11は、それぞれ独立に水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示し、上記式(1a)~(5a)におけるR5~R11と同義である。
 R12は、水素原子、炭素数1から6までのアルキル基、炭素数1から4までのトリアルキルシリル基、またはアリール基を示し、上記式(1a)~(5a)におけるR12と同義である。
 Y1は上述のとおり、下記式(1b)~(5b)のいずれかで表わされる基であるが、なかでも、式(1b)、(4b)、(5b)のいずれかで表わされる基であるのが好ましく、式(4b)で表わされる基であるのがより好ましい。
 なお、上記式(II)で表わされる本発明のエポキシ化合物のうち、R1がメチル基またはエチル基であるエポキシ化合物が好ましい。また、R2~R11が、それぞれ独立に水素原子またはメチル基であり、かつR12が、水素原子、メチル基またはフェニル基であるエポキシ化合物が好ましい。さらに、R1がメチル基またはエチル基であると同時に、R2~R11が、それぞれ独立に水素原子またはメチル基であり、かつR12が、水素原子、メチル基またはフェニル基であるエポキシ化合物がより好ましい。
 なお、上記式(II)で表されるエポキシ化合物の8個のZ全てが上記式(1b)~(5b)のいずれかで表わされる基である場合以外、すなわちqが8より小さい自然数である場合には、上記式(II)で表されるエポキシ化合物は、式(1b)~(5b)で表される基以外のZを(8-q)個有する。この(8-q)個のZは-OSiR1 2Hである。ここで、R1は式(x)中のR1と同じ炭素数が1から5のアルキル基を示す。後述する式(II)で表されるエポキシ化合物の製造方法においては、前記(8-q)個のZは式(II)で表されるエポキシ化合物の製造用原料であるポリケイ素化合物に由来する残基である。
 《梯子状シルセスキオキサン構造を有するエポキシ化合物》
 梯子状シルセスキオキサン構造を有するエポキシ化合物としては、たとえば下記式(II')で表わされるエポキシ化合物が好ましく挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000026
 式(II')中、mは2~125、好ましくは2~50、より好ましくは2~30の整数を示す。Zは、上記式(II)と同義である。すなわち上記式(II')で表わされるエポキシ化合物は、上記式(I)において、nが8~500であるエポキシ化合物である。式(II')はZを4m個有するが、4m個のZ全てが上記式(1b)~(5b)のいずれかで表わされる基である場合以外、上記式(II')で表わされるエポキシ化合物は、式(1b)~(5b)で表される基以外のZを有することになる。このときの式(1b)~(5b)で表される基以外のZは-OSiR1 2Hである。ここで、R1は式(x)中のR1と同じ炭素数が1から5のアルキル基を示す。後述する式(II’)で表されるエポキシ化合物の製造方法においては、式(1b)~(5b)で表される基以外のZは、式(II’)で表されるエポキシ化合物の製造用原料であるポリケイ素化合物に由来する残基である。
 上述したように、本発明のエポキシ化合物は、脂環式エポキシ基を有するいわゆる脂環式エポキシ化合物であるため、グリシジルタイプのエポキシ化合物に比べて貯蔵安定性が高く、工業的使用が容易である。また、この脂環式エポキシ基は、通常のグリシジル基に比べてカルボキシル基とのカチオン重合性が高いため、より低温かつ短時間で硬化させることが可能である。
 本発明のエポキシ化合物は、室温程度、すなわち10~30℃において液状である。したがって、液体状であることを要求されるUVナノインプリントなどの用途に好適に用いることができる。液状であるとは、具体的には、溶媒などを除去した後、粘度測定機器(VISCOMETER DV-II+Pro、BROOKFIELD製)を用いて粘度(mPa・s)を測定することができることを意味し、該粘度は、通常1000~30000mPa・sであり、5000~20000mPa・sであることが好ましい。
 <エポキシ化合物の製造方法>
 本発明のエポキシ化合物の製造方法は、式(III)で表わされるポリケイ素化合物または式(IV)で表わされるポリケイ素化合物と、下記式(6)~(10)のいずれかで表わされるエポキシ化合物とを、10~200℃で反応させる工程を含むことを特徴としている。この反応は、すなわちヒドロシリル化反応であり、室温程度でも充分に反応させることができる。
Figure JPOXMLDOC01-appb-C000027
 式(III)中、Y1は水素原子または-OSiR1 2Hを示し、R1は、炭素数が1から5のアルキル基である。
 式(III)中、nは2~500の整数、好ましくは6~18の偶数、より好ましくは8を示す。
Figure JPOXMLDOC01-appb-C000028
 (式(IV)中、Z1は、-OSiR1 2Hを示し、R1は、炭素数が1から5のアルキル基を示す。)
Figure JPOXMLDOC01-appb-C000029
 式(6)~(10)中、R2およびR3は、それぞれ独立に水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示し、上記式(1a)~(5a)におけるR2およびR3と同義である。
 R4は、水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示し、上記式(1a)~(5a)におけるR4と同義である。
 R5~R11は、それぞれ独立に水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示し、上記式(1a)~(5a)におけるR5~R11と同義である。
 R12は、水素原子、炭素数1から6までのアルキル基、炭素数1から4までのトリアルキルシリル基、またはアリール基を示し、上記式(1a)~(5a)におけるR12と同義である。
 《ポリケイ素化合物》
 上記式(III)で表わされるポリケイ素化合物としては、篭状シルセスキオキサン構造または梯子状シルセスキオキサン構造を有するポリケイ素化合物が望ましい。
 梯子状シルセスキオキサン構造を有するであるポリケイ素化合物としては、たとえば下記式(III')で表わされるポリケイ素化合物が好ましく挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000030
 式(III')中、mは2~125、好ましくは2~50、より好ましくは2~30の整数を示す。すなわち上記式(III)において、nが8~500であるポリケイ素化合物である。
 上記式(III)で表わされる篭状シルセスキオキサン構造を有するポリケイ素化合物以外の篭状シルセスキオキサン構造を有するポリケイ素化合物としては、たとえば下記式(IV)で表わされるポリケイ素化合物が好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000031
 式(IV)中、Z1は、-OSiR1 2Hを示し、R1は、炭素数が1から5のアルキル基を示し、炭素数が1または2のアルキル基であるのが好ましい。R1としては、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基が挙げられるが、これらに限定されるものではない。なかでも、メチル基およびエチル基が好ましい。
 《エポキシ化合物》
 上記エポキシ化合物は、上記式(6)~(10)のいずれかで表わされる二重結合を有する化合物であり、なかでも、式(6)、(9)、(10)のいずれかで表わされるエポキシ化合物であるのが好ましく、式(9)で表わされるエポキシ化合物であるのがより好ましい。
 また、R2~R11が、それぞれ独立に水素原子またはメチル基であり、かつR12が、水素原子、メチル基またはフェニル基であるエポキシ化合物が好ましい。
 上記ポリケイ素化合物とポリケイ素化合物との組み合わせとしては、上記式(IV)で表わされ、R1がメチル基またはエチル基であるポリケイ素化合物と、R2~R11が、それぞれ独立に水素原子またはメチル基であり、かつR12が、水素原子、メチル基またはフェニル基であるポリケイ素化合物との組み合わせが好ましい。
 上記式(III)または(IV)で表わされるポリケイ素化合物と、上記式(6)~(10)のいずれかで表わされる二重結合を有するエポキシ化合物との配合比は任意であり、特に限定されるものではないが、上記エポキシ化合物中のエチレン性二重結合1当量に対して、上記ポリケイ素化合物中の-SiH基が、通常0.3~1.5倍の当量、好ましくは0.5~1.1倍の当量で配合される。これらの配合量が上記範囲外であると、一方の化合物が未反応のまま残存するため、経済的に不利になる場合がある。
 上記ポリケイ素化合物とエポキシ化合物との反応、すなわちヒドロシリル化反応に用いる触媒としては、白金、ロジウム、パラジウム、ニッケル、イリジウム、ルテニウムなどの遷移金属類またはその化合物からなる付加反応触媒を選択することができる。具体的には、塩化白金酸、白金の各種錯体、塩素を排した白金とビニルシロキサンの錯体、Karsted触媒、白金化合物の各種溶液(アルコール、ケトン、エーテル、エステル、芳香族炭化水素等に溶解もしくは分散したもの)、Speier触媒、各種固体(シリカゲル、活性炭等)に担持した触媒、Wilkinson錯体等のRh触媒、パラジウムの各種錯体触媒が挙げられ、特にその種類または形態に制限はない。
 たとえば、白金触媒を用いる場合、その使用量は、特に限定されないが、ヒドロアルコキシシランのモル数に対して、白金原子が通常1×10-2~10-8倍モル、好ましくは1×10-3~10-6倍モルの量である。白金原子が上記下限値未満であると、反応速度が極度に低下する場合があり、上記上限値を超えると、反応速度が向上するもののエポキシ基の開環重合が生じるおそれがあり、経済的にも不利となる場合がある。
 本発明の製造方法においては、必ずしも溶媒を用いる必要はないが、必要に応じて反応溶媒として、または触媒溶液の媒体として溶媒を用いてもよい。たとえば、上記ポリケイ素化合物またはエポキシ化合物を溶解または希釈させるため、反応系の温度を制御するため、攪拌に必要な容積を確保するため、触媒の添加をしやすくするため等の必要性に応じて、溶媒を用いることができる。このような溶媒としては、具体的には、ペンタン、ヘキサン、イソオクタン、デカン、シクロヘキサン等の飽和炭化水素類、トルエン、キシレン、メシチレン、エチルベンゼン、デカリン、テトラリン等の芳香族炭化水素類、ジエチルエーテル、THF等のエーテル類、エステル類およびポリジメチルシロキサン類等の各種シリコーン類等が挙げられ、これらの中から任意に選択することができ、その使用量も任意に決定してよい。なお、これらの溶媒は、一種単独で用いても、2種以上混合して用いてもよい。
 上記ポリケイ素化合物とエポキシ化合物との反応、すなわちヒドロシリル化反応を遂行させるためは、通常、まず乾燥した窒素ガスなどの不活性なガスを充分に充満させた反応器に、上記式(6)~(10)のいずれかで表されるエポキシ化合物および触媒を仕込む。この際、必要に応じて溶媒類を仕込んでもよい。次いで、攪拌しながら、所定温度に昇温した後、式(III)または(IV)で表されるポリケイ素化合物を上記混合物中に滴下して付加反応させ、滴下終了後は反応が完了するまで熟成を行う。
 なお、まず式(III)または(IV)で表されるポリケイ素化合物を上記反応器に仕込み、次いで式(6)~(10)のいずれかで表されるエポキシ化合物を加える方法でもよい。また、触媒および/または溶媒に、式(III)または(IV)で表されるポリケイ素化合物と式(6)~(10)のいずれかで表されるエポキシ化合物との混合液を加える方法でもよく、全ての原料を一括して仕込んだ後に昇温する方法でもよい。また、本発明の製造方法は回分式、連続式、半連続式のいずれの反応様式においても適用可能である。
 反応温度は、10~200℃の範囲、特に10~150℃が好ましい。反応温度が上記下限値未満であると反応速度が低下し、実用的な工程時間内に反応が完結しない場合がある。また、反応温度が上記上限値を超えると、反応速度は向上するものの、式(6)~(10)のいずれかで表されるエポキシ化合物または目的物であるエポキシ化合物のエポキシ基の開環重合が生じる場合がある。
 圧力条件は、通常、大気圧下条件で充分であり、この条件が操作性および経済性の点からも好ましい。ただし、必要に応じて、加圧下で実施してもよい。
 反応器内の雰囲気としては、窒素ガス等の不活性ガス雰囲気が好ましい。水分(もしくは水分を含んだ空気)の混入は反応への悪影響を及ぼすだけでなく、式(III)で表されるポリケイ素化合物が加水分解して、目的物であるエポキシ化合物の収率が低下するおそれがある。なお、付加反応の触媒活性を高める目的で、反応雰囲気中へ乾燥空気または酸素含有の不活性ガス等を導入するという公知技術を適用してもよい。
 反応時間に関しては、反応温度、圧力条件、触媒濃度および原料の反応系中の濃度によって変動し得るが、通常、0.1~100時間であり、上記範囲内で反応時間を任意に選択することができる。
 上記の通り式(I)または式(II)で表わされる本発明のエポキシ化合物は、式(III)で表わされるポリケイ素化合物または式(IV)で表わされるポリケイ素化合物と、式(6)~(10)のいずれかで表わされるエポキシ化合物とを、10~200℃でヒドロシリル化反応させることにより得られる。
 この反応により得られる式(I)で表されるエポキシ化合物は、n個のYを有するが、n個のY全てが式(6)~(10)のいずれかで表わされる化合物由来の基である場合以外も含む。すなわち、この反応により得られるエポキシ化合物は、この化合物に含まれるn個のYの内p(pはn以下の自然数、すなわち、1~nの自然数)個が上記式(1a)~(5a)のいずれかで表わされる基である化合物の一種あるいは二種類以上であり、異なるpの上記エポキシ化合物の混合物として得られることが多い。この反応により得られるエポキシ化合物のn個のY全てが式(6)~(10)のいずれかで表わされる化合物由来の基である場合以外は、このエポキシ化合物は、(n-p)個の式(1a)~(5a)で表される基以外のYを有する。このとき、この(n-p)個のYは、この反応の原料である式(III)で表わされるポリケイ素化合物の水素原子であり、未反応の水素原子である。
 同様にこの反応により得られる式(II)で表されるエポキシ化合物は8個のZを有するが、8個のZ全てが式(6)~(10)のいずれかで表わされる化合物である場合以外を含む。すなわち、この反応により得られるエポキシ化合物は、この化合物に含まれる8個のZの内q(qは8以下の自然数、すなわち、1~8の自然数)個が上記式(1a)~(5a)のいずれかで表わされる基である化合物の一種あるいは二種類以上であり、異なるqの上記エポキシ化合物の混合物が得られることが多い。この反応により得られるエポキシ化合物の8個のZ全てが式(6)~(10)のいずれかで表わされる化合物由来の基である場合以外は、(8-q)個の式(1a)~(5a)で表される基以外のZを有する。このとき、この(8-q)個のZはこの反応の原料である式(IV)で表わされるポリケイ素化合物のZ1、すなわち、-OSiR1 2Hであり、未反応のZ1である。
 生成物の精製には、一般的な方法を用いることができる。たとえば、吸着分離方法が挙げられ、具体的には活性炭、酸性白土、活性白土等の吸着剤を用いる方法が挙げられる。そのほか、不純物や着色物質の吸着除去方法、またはカラムクロマトグラフィー、薄層クロマトグラフィーが挙げられる。吸着除去方法としては、具体的にはシリカゲル、含水シリカゲル、アルミナ、活性炭、チタニア、ジルコニアを用いた吸着除去方法が挙げられる。カラムクロマトグラフィーとしては、これらシリカゲル、含水シリカゲル、アルミナを充填剤として用いたカラムクロマトグラフィーが挙げられる。また、減圧蒸留、分子蒸留などの蒸留によって精製することもできる。蒸留するときには、蒸留の前に反応液と共に、アミン類や硫黄含有化合物類等を少量添加して、蒸留中の本発明のエポキシ化合物および原料である式(6)~(10)のいずれかで表されるエポキシ化合物のエポキシ基の開環重合を抑制する公知の手段を実施してもよい。また、本発明のエポキシ化合物の使用目的によっては、必ずしも精製する必要はなく、反応混合物のまま用いてもよい。
 本発明における反応容器は、特に制限はないが、攪拌装置、温度計、還流冷却器、滴下装置等の装置を具備していることが好ましい。
 以下、実施例を用いて本発明を詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 なお、実施例および比較例において、各測定条件および評価項目は、以下の条件および基準にしたがって行った。
 《DSC(示差走査熱量測定)測定条件》
 機器:示差走査熱量計 EXSTAR6000 DSC (SII社製)
 UV照射機:UV-1(SII社製)
 UV照度:6.0mw/cm2、または7.8mw/cm2
 UV照射時間:20分
 《反応性イオンエッチング速度の測定方法》
 硬化した薄膜上にガラス小片を貼り付け、以下の条件にしたがってエッチング処理を実施した。ガラス小片を取り外し、ガラス小片に保護された薄膜部分とエッチングされた薄膜部分との段差を測定した。反応性イオンエッチングの処理時間と段差とから、下記式にしたがって、エッチング速度を求めた。
  エッチング速度(nm/sec)=段差(nm)÷処理時間(sec)
 反応性イオンエッチングの条件
 (フッ素系ガス)
  エッチングガス  : 四フッ化炭素
  圧力       : 0.5Pa
  ガス流量     : 40sccm
  プラズマ電圧   : 200W
  バイアス電圧   : 20W
  処理時間     : 30sec
 (酸素)
  エッチングガス  : 酸素
  圧力       : 0.5Pa
  ガス流量     : 40sccm
  プラズマ電圧   : 200W
  バイアス電圧   : 20W
  処理時間     : 600sec
 《粘度測定》
  測定機器:VISCOMETER DV-II+Pro(BROOKFIELD製)
  測定温度:24.9℃
 [調製例1]
 還流冷却器、温度計、攪拌装置、滴下ロートおよび油浴を備えた500mL三つ口フラスコに、3-シクロヘキセン-1-カルボン酸アリル100.0g、硫酸水素メチルトリオクチルアンモニウム2.34g、タングステン酸ナトリウム二水和物3.96g、アミノメチルホスホン酸0.45gを仕込んだ。90℃に保った油浴を用いて加熱し、滴下ロートを通じて30%過酸化水素水80mlを180分間かけて滴下し、そのまま4時間熟成させた。氷浴で冷却し、飽和チオ硫酸ナトリウム水溶液300mlで余剰の過酸化水素を除去した後、酢酸エチル200mlで2回抽出した。得られた酢酸エチル溶液を無水硫酸ナトリウム上で一晩乾燥させ、ロータリーエバポレーターを用いて溶媒の酢酸エチルを除去した後、25%含水シリカゲルを充填したカラムクロマトグラフィーによって精製し、3,4-エポキシシクロヘキサン-1-カルボン酸アリル79.6gを得た。
 [実施例1]
 還流冷却器、温度計、攪拌装置、およびセラムキャップを備えた50ml三ツ口フラスコに、式(IV)における8つのZ1のR1がメチル基であるポリケイ素化合物である
PSS-octakis(dimethylsilyloxy)substituted(1,3,5,7,9,11,13,15-オクタキス (シ゛メチルシロキシ) ヘ゜ンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン、アルドリッチ社製)を1.0g(0.98 mmol)、調製例1で得られた3,4-エポキシシクロヘキサン-1-カルボン酸アリル1.432g(7.84 mmol)、トルエン5.0mlを加え、アルゴン気流下、室温(25℃)で攪拌した(3,4-エポキシシクロヘキサン-1-カルボン酸アリルが有するエチレン性二重結合の1当量に対して、PSS-octakis(dimethylsilyloxy)substitutedが有する-SiH基は1当量に相当)。その混合溶液に2%ジビニルテトラメチルジシロキサン白金錯体キシレン溶液0.00093g(0.02 mol%)をシリンジを用いてゆっくり滴下し、室温(25℃)で攪拌した。該温度を保持したまま2時間攪拌した後、減圧下でトルエン溶媒を除去し、不揮発性成分として下記式(V)で示されるエポキシ化合物(以下、「エポキシ化合物(V)」ともいう、8個のAが全て反応していると仮定した場合の理論分子量=2474.4)を得た。
Figure JPOXMLDOC01-appb-C000032
 [比較例1]
 エポキシ化合物の代わりに、ビスフェノールA型液状エポキシ樹脂(ジャパンエポキシレジン製:エピコート828US、以下、「エポキシ樹脂X」ともいう)を用いた。
 《反応性イオンエッチング速度の測定および評価;<実施例1および比較例1>》
 実施例1で得られたエポキシ化合物(V)をプロピレングリコールモノメチルエーテルアセテートに不揮発性成分濃度10質量%になるように溶解し、溶液に光カチオン重合開始剤トリフェニルスルホニウムヘキサフルオロアンチモネートを、不揮発性成分100質量部に対して1質量部添加し溶解させた後、0.2μmのフィルターでろ過し、0.5mlをスピンコーター内にセットしたガラス基板上に滴下した。ガラス基板を500rpmで5秒間回転、次いで3000rpmで2秒間、さらに5000rpmで20秒間回転させることにより、ガラス基板上にエポキシ化合物(V)の薄膜を形成した。このエポキシ化合物(V)の薄膜を形成したガラス基板を窒素気流下、紫外線を照射した。得られたエポキシ化合物(V)の硬化薄膜について、CF4ガスおよび酸素による反応性イオンエッチング速度を測定した。結果を表1に示す。
 また、比較例1のエポキシ樹脂Xを100質量部、光カチオン重合開始剤トリフェニルスルホニウムヘキサフルオロアンチモネートを1質量部、プロピレングリコールモノメチルエーテルアセテート900質量部を溶解し、0.2μmのフィルターでろ過し、0.5mlをスピンコーター内にセットしたガラス基板上に滴下した。ガラス基板を500rpmで5秒間回転、次いで3000rpmで2秒間、さらに5000rpmで20秒間回転させることにより、ガラス基板上に薄膜を形成した。そのガラス基板を窒素気流下、紫外線を照射した。得られたエポキシ樹脂Xの硬化薄膜について、CF4ガスおよび酸素による反応性イオンエッチング速度を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000033
 実施例1で得られたエポキシ化合物(V)を用いると、比較例1のエポキシ樹脂Xに比べ、酸素エッチングの速度が低く、フッ素系エッチングの速度が高い。このように、エポキシ化合物(V)は、酸素エッチングに対して高い耐性を有しているため、非常に選択性が高く、レジストとして好適に用いることができることがわかる。
 [比較例2]
還流冷却器、温度計、攪拌装置、セラムキャップを備えた100ml三ツ口フラスコに、PSS-octakis(dimethylsilyloxy)substitutedを1.0g(0.98 mmol)、アリルグリシジルエーテル0.897g(7.84 mmol)、トルエン5.0mlを加え、アルゴン気流下、室温(25℃)で攪拌した。その混合溶液に2%ジビニルテトラメチルジシロキサン白金錯体キシレン溶液0.00093g(0.02 mol%)を、シリンジを用いてゆっくり滴下し、室温(25℃)で攪拌した。該温度を保持したまま2時間攪拌した後、減圧下でトルエン溶媒を除去し、不揮発性成分として下記式(VI)で示されるエポキシ化合物(以下、「エポキシ化合物(VI)」ともいう)を得た。
Figure JPOXMLDOC01-appb-C000034
《DSC測定および評価;<実施例1および比較例2>》
 実施例1で得られたエポキシ化合物(V)100質量部に対して、光カチオン重合開始剤トリフェニルスルホニウムヘキサフルオロアンチモネート1質量部を加え、DSC測定を行った。なお、UV照度は6.0mw/cm2とした。得られたDSCおよびDDSCのチャートを図1に示す。
 また、比較例2で得られたエポキシ化合物(VI)についても、上記エポキシ化合物(V)と同様にして、DSC測定を行った。得られたDSCおよびDDSCのチャートを図2に示す。
 さらに、図1~図2それぞれのチャートを重ねた比較チャートを図3に示す。このように、DSCの場合、実施例1で得られたエポキシ化合物(V)のDSC曲線の方が、比較例2で得られたエポキシ化合物(VI)のDSC曲線よりも発熱ピークの終点が速く、エポキシ化合物(V)の方がより早く重合反応が終了していることがわかる。また、DDSCの場合、実施例1で得られたエポキシ化合物(V)のDDSC曲線の方が、比較例2で得られたエポキシ化合物(VI)のDDSC曲線よりも、発熱変化の終点が速く、このことによってもエポキシ化合物(V)の方がより早く重合反応が終了していることがわかる。
 すなわち、本願発明の脂環式エポキシ基を有するエポキシ化合物(V)の方が、グリシジルタイプのエポキシ基を有するエポキシ化合物(VI)よりも、UVによる硬化が速くなることを示している。
 [実施例2]
 還流冷却器、温度計、攪拌装置、およびセラムキャップを備えた100ml三ツ口フラスコに、PSS-octakis(dimethylsilyloxy)substitutedを1.0g(0.98 mmol)、リモネンオキサイド1.1966g(7.84 mmol)、トルエン5.0mlを加え、アルゴン気流下、室温(25℃)で攪拌した(リモネンオキサイドが有するエチレン性二重結合の1当量に対して、PSS-octakis(dimethylsilyloxy)substitutedが有する-SiH基は1当量に相当)。その混合溶液に2%ジビニルテトラメチルジシロキサン白金錯体キシレン溶液0.00093g(0.02 mol%)を、シリンジを用いてゆっくり滴下し、室温(25℃)で攪拌した。該温度を保持したまま2時間攪拌した後、減圧下でトルエン溶媒を除去し、不揮発性成分として下記式(VII)で示されるエポキシ化合物(以下、「エポキシ化合物(VII)」ともいう、8個のJが全て反応していると仮定した場合の理論分子量=2234.4)を得た。
Figure JPOXMLDOC01-appb-C000035
《反応性イオンエッチング速度の測定および評価;<実施例2>》
 実施例2で得られたエポキシ化合物(VII)をプロピレングリコールモノメチルエーテルアセテートに不揮発性成分濃度10質量%になるように溶解し、溶液に光カチオン重合開始剤トリフェニルスルホニウムヘキサフルオロアンチモネートを、不揮発性成分100質量部に対し、1質量部添加し溶解させた後、0.2μmのフィルターでろ過し、0.5mlをスピンコーター内にセットしたガラス基板上に滴下した。ガラス基板を500rpmで5秒間回転、次いで3000rpmで2秒間、さらに5000rpmで20秒間回転させることにより、ガラス基板上にエポキシ化合物(VII)の薄膜を形成した。このエポキシ化合物(VII)の薄膜を形成したガラス基板を窒素気流下、紫外線を照射した。得られたエポキシ化合物(VII)の硬化薄膜について、CF4ガスおよび酸素による反応性イオンエッチング速度を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000036
 《DSC測定および評価》
 実施例2で得られたエポキシ化合物(VII)100質量部に対して、光カチオン重合開始剤トリフェニルスルホニウムヘキサフルオロアンチモネート1質量部を加え、DSC測定を行った。なお、UV照度は7.8mw/cm2とした。得られたDSCチャートを図4に示す。
 このように、実施例2で得られたエポキシ化合物(VII)を用いると、酸素エッチングに対して優れたエッチング性能を有し、硬化時間が速いことがわかる。
 [比較例3]
 還流冷却器、温度計、攪拌装置、およびセラムキャップを備えた100ml三ツ口フラスコに、PSS-octakis(dimethylsilyloxy)substitutedを1.0g(0.98 mmol)、4-ビニルシクロヘキセンオキサイド0.9759g(7.84 mmol)、トルエン5.0mlを加え、アルゴン気流下、室温(25℃)で攪拌した。その混合溶液に2%ジビニルテトラメチルジシロキサン白金錯体キシレン溶液0.00093g(0.02 mol%)をシリンジを用いてゆっくり滴下し、室温(25℃)で攪拌した。2時間室温で攪拌した後、減圧下でトルエン溶媒を除去し、下記式(VIII)で示されるエポキシ化合物(以下、「エポキシ化合物(VIII)」ともいう)を得た。
Figure JPOXMLDOC01-appb-C000037
 《粘度測定および評価;<実施例1~2および比較例3>》
 実施例1で得られたエポキシ化合物(V)、実施例2で得られたエポキシ化合物(VII)、および比較例3で得られたエポキシ化合物(VIII)を用い、それぞれエバポレーター、真空ポンプで完全に溶媒を除去し、粘度を測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000038
 このように、実施例1、2のエポキシ化合物は室温程度で液状であることが示され、UVナノインプリント用レジストの用途などに好適であることがわかる。
 [実施例3]
還流冷却器、温度計、攪拌装置、およびセラムキャップを備えた100ml三ツ口フラ
スコに、3,4-エポキシシクロヘキサン-1-カルボン酸アリル1.429g(7.84 mmol)、2%ジビニルテトラメチルジシロキサン白金錯体キシレン溶液0.00093g(0.02 mol%)を加え、アルゴン気流下、60℃で攪拌した。その後、トルエン5.0mlに溶解させたPSS-octakis(dimethylsilyloxy)substituted1.0g(0.98 mmol)を滴下ロートを用いてゆっくり加え(3,4-エポキシシクロヘキサン-1-カルボン酸アリルが有するエチレン性二重結合の1当量に対して、PSS-octakis(dimethylsilyloxy)substitutedが有する-SiH基は1当量に相当)、該温度を保持したまま12時間攪拌した後、ガスクロマトグラフィーにより、PSS-octakis(dimethylsilyloxy)substitutedがすべて消費されていることを確認した後、反応を終了させ、減圧下でトルエン溶媒を除去した。その後、薄膜蒸留装置により、未反応の3,4-エポキシシクロヘキサン-1-カルボン酸アリルを除去し、不揮発性成分を得た。
 得られた不揮発性成分の1H-NMRスペクトル、13C-NMRスペクトルおよびIRスペクトルを、それぞれ図5、図6及び図7に示した。図5において、(a)~(d)を付したピークは、それぞれ構造式に付した(a)~(d)が示す部分に対応するピークである。図6以降の図においても同様である。また図5において、(x)を付したピークは、未反応のSi-H基のHに対応するピークであり、(y)を付したピークは、上記以外のHに対応するピークである。
 図5より、未反応のSi-H基のピークが4.73ppmに存在し、このピークと約4ppmに存在する反応部の酸素原子の隣のメチレン部の2Hのピークとを比較すると、反応部8個中、(未反応部(Si-H)の個数): (既反応部の個数)=1.45:6.55であった。
 図6において得られた不揮発性成分の特徴的なピークとしては、175.8ppm付近にカルボニル基の炭素のピーク、67.2ppm付近に酸素原子に隣接するメチレンの炭素のピーク、50ppm付近にエポキシ基の酸素に隣接する炭素のピーク、14.0ppm付近にケイ素原子に隣接するメチレンの炭素ピークおよび0ppm付近にケイ素原子に隣接するメチル基の炭素ピークが認められた。
 また、図7のIRスペクトルにおいて2140cm-1にSi-H基のピークが見られる。また、1728cm-1にカルボニル基のピークが見られた。
 これらの結果から得られた不揮発性成分は下記式(V)で示されるエポキシ化合物(以下、「エポキシ化合物(V)」ともいう)の8個のAの内1~8個反応した混合物であることがわかった。
Figure JPOXMLDOC01-appb-C000039
 [実施例4]
 還流冷却器、温度計、攪拌装置、およびセラムキャップを備えた100ml三ツ口フラスコに、リモネンオキサイド0.897g(5.88 mmol)、2%ジビニルテトラメチルジシロキサン白金錯体キシレン溶液0.00093g(0.02 mol%)を加え、アルゴン気流下、110℃で攪拌した。その後、トルエン5.0mlに溶解させたPSS-octakis(dimethylsilyloxy)substituted1.0g(0.98 mmol)を滴下ロートを用いてゆっくり加え、該温度を保持したまま12時間攪拌した後、ガスクロマトグラフィーにより、リモネンオキサイドがすべて消費されていることを確認した後、反応を終了させ、減圧下でトルエン溶媒を除去し、不揮発性成分として下記式(VII)で示されるエポキシ化合物(以下、「エポキシ化合物(VII)」)を得た。
 得られた不揮発性成分の1H-NMRスペクトル、13C-NMRスペクトルおよびIRスペクトルを、それぞれ図8、図9及び図10に示した。図8において、(x)を付したピークは、未反応のSi-H基のHに対応するピークであり、(y)を付したピークは、未反応Si-H基のSiに結合した2つのCH3のHに対応するピークである。
 図8より、未反応のSi-H基のピークが4.74ppmに存在し、このピークと約3ppmに存在するエポキシ基の酸素原子の隣接炭素上の1Hのピークとを比較すると、反応部8個中、(未反応部(Si-H)の個数): (既反応部の個数)=2:6であり、この結果は、反応の仕込み比と一致した。
 図9において得られた不揮発性成分の特徴的なピークとしては、60.9ppmにエポキシ基の酸素原子に隣接する炭素のピーク、57ppm付近にエポキシ基の酸素原子に隣接し、メチル基を有する炭素のピークおよび0ppm付近にケイ素原子に隣接するメチル基の炭素のピークが認められた。
 また、図10のIRスペクトルにおいて2156cm-1にSi-H基のピークが見られた。
 これらの結果から得られた不揮発性成分は下記式(VII)で示されるエポキシ化合物(以下、「エポキシ化合物(VII)」ともいう)の8個のJの内6個反応したものであることがわかった。
Figure JPOXMLDOC01-appb-C000040
 [実施例5]
 還流冷却器、温度計、攪拌装置、およびセラムキャップを備えた100ml三ツ口フラスコに、リモネンオキサイド0.598g(3.92 mmol)、2%ジビニルテトラメチルジシロキサン白金錯体キシレン溶液0.00093g(0.02 mol%)を加え、アルゴン気流下、110℃で攪拌した。その後、トルエン5.0mlに溶解させたPSS-octakis(dimethylsilyloxy)substituted1.0g(0.98 mmol)を滴下ロートを用いてゆっくり加え、該温度を保持したまま12時間攪拌した後、ガスクロマトグラフィーにより、リモネンオキサイドがすべて消費されていることを確認した後、反応を終了させ、減圧下でトルエン溶媒を除去し、不揮発性成分として下記式(VII)で示されるエポキシ化合物(以下、「エポキシ化合物(VII)」)を得た。
 得られた不揮発性成分の1H-NMRスペクトル、13C-NMRスペクトルおよびIRスペクトルを、それぞれ図11、図12及び図13に示した。図11において、(x)を付したピークは、未反応のSi-H基のHに対応するピークであり、(y)を付したピークは、未反応Si-H基のSiに結合した2つのCH3のHに対応するピークである。

 図11より未反応のSi-H基のピークが4.73ppmに存在し、このピークと約3ppmに存在するエポキシ基の酸素原子の隣接炭素上の1Hのピークとを比較すると、反応部8個中、(未反応部(Si-H)の個数): (既反応部の個数)=4:4であり、この結果は、反応の仕込み比と一致した。
 図12において得られた不揮発性成分の特徴的なピークとしては、61.0ppmにエポキシ基の酸素原子に隣接する炭素のピーク、57ppm付近にエポキシ基の酸素原子に隣接し、メチル基を有する炭素のピークおよび0ppm付近にケイ素原子に隣接するメチル基の炭素のピークが認められた。
 また、図13のIRスペクトルにおいて2140cm-1にSi-H基のピークが見られた。
 これらの結果から得られた不揮発性成分は下記式(VII)で示されるエポキシ化合物(以下、「エポキシ化合物(VII)」ともいう)の8個のJの内4個反応したものであることがわかった。
Figure JPOXMLDOC01-appb-C000041
 [実施例6]
 還流冷却器、温度計、攪拌装置、およびセラムキャップを備えた100ml三ツ口フラスコに、リモネンオキサイド1.196g(7.84 mmol)、2%ジビニルテトラメチルジシロキサン白金錯体キシレン溶液0.00093g(0.02 mol%)を加え、アルゴン気流下、110℃で攪拌した。その後、トルエン5.0mlに溶解させたPSS-octakis(dimethylsilyloxy)substituted1.0g(0.98 mmol)を滴下ロートを用いてゆっくり加え(リモネンオキサイドが有するエチレン性二重結合の1当量に対して、PSS-octakis(dimethylsilyloxy)substitutedが有する-SiH基は1当量に相当)、該温度を保持したまま12時間攪拌した後、ガスクロマトグラフィーにより、リモネンオキサイドがすべて消費されていることを確認した後、反応を終了させ、減圧下でトルエン溶媒を除去し、不揮発性成分として下記式(VII)で示されるエポキシ化合物(以下、「エポキシ化合物(VII)」)を得た。
 得られた不揮発性成分の1H-NMRスペクトル、13C-NMRスペクトルおよびIRスペクトルを、それぞれ図14、図15及び図16に示した。
 図14において未反応のSi-H基に対応する4.7ppm付近にピークが認められなかった。
 図15において得られた不揮発性成分の特徴的なピークとしては、61.0ppmにエポキシ基の酸素原子に隣接する炭素のピーク、57ppm付近にエポキシ基の酸素原子に隣接し、メチル基を有する炭素のピークおよび0ppm付近にケイ素原子に隣接するメチル基の炭素のピークが認められた。
 また、図16のIRスペクトルにおいてSi-H基に帰属するピークは認められなかった。さらに、GC分析より、原料のリモネンオキサイドもすべて消失していることが確認された。
 これらの結果から得られた不揮発性成分は下記式(VII)で示されるエポキシ化合物(以下、「エポキシ化合物(VII)」ともいう)の8個のJの全てが反応したものであることがわかった。
Figure JPOXMLDOC01-appb-C000042

Claims (15)

  1.  式(I)で表されるエポキシ化合物;
    Figure JPOXMLDOC01-appb-C000001
     (式(I)中、n個のYのうちp個(pはn以下の自然数)は下記式(1a)~(5a)のいずれかで表わされる基を示し、(n-p)個のYは水素原子または-OSiR1 2Hを示し、nは2~500の整数を示す。前記R1は、それぞれ独立に炭素数が1から5のアルキル基を示す。);
    Figure JPOXMLDOC01-appb-C000002
     (式(1a)~(5a)中、R2およびR3は、それぞれ独立に水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示す。
     R4は、水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示し、R5~R11は、それぞれ独立に水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示す。
     R12は、水素原子、炭素数1から6までのアルキル基、炭素数1から4までのトリアルキルシリル基、またはアリール基を示す。
     *は式(I)に示されるSiとの結合部分を示し、-X-*は、Xが単結合である-*、または下記式(x)で表わされる基を示す。);
    Figure JPOXMLDOC01-appb-C000003
    (式(x)中、R1は、炭素数が1から5のアルキル基を示す。)。
  2.  前記エポキシ化合物が、篭状シルセスキオキサン構造または梯子状シルセスキオキサン構造を有するエポキシ化合物であることを特徴とする請求項1に記載のエポキシ化合物。
  3.  前記式(1a)~(5a)中、-X-*が、前記式(x)で表わされる基であり、前記式(x)中、R1が、メチル基またはエチル基であることを特徴とする請求項1または2に記載のエポキシ化合物。
  4.  前記式(1a)~(5a)中、R2~R11が、それぞれ独立に水素原子またはメチル基であり、かつR12が、水素原子、メチル基またはフェニル基であることを特徴とする請求項1~3のいずれかに記載のエポキシ化合物。
  5.  下記式(II)で表わされることを特徴とするエポキシ化合物;
    Figure JPOXMLDOC01-appb-C000004
     (式(II)中、8つのZのうちq個(qは8以下の自然数)は、-OSiR1 21を示し、(8-q)個のZは水素原子または-OSiR1 2Hを示し、R1は炭素数が1から5のアルキル基を示し、Y1は下記式(1b)~(5b)のいずれかで表わされる基を示す。);
    Figure JPOXMLDOC01-appb-C000005
     (式(1b)~(5b)中、R2およびR3は、それぞれ独立に水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示す。
     R4は、水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示し、R5~R11は、それぞれ独立に水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示す。
     R12は、水素原子、炭素数1から6までのアルキル基、炭素数1から4までのトリアルキルシリル基、またはアリール基を示す。)。
  6.  前記式(II)中、R1が、メチル基またはエチル基であることを特徴とする請求項5に記載のエポキシ化合物。
  7.  前記式(1b)~(5b)中、R2~R11が、それぞれ独立に水素原子またはメチル基であり、かつR12が、水素原子、メチル基またはフェニル基であることを特徴とする請求項5または6に記載のエポキシ化合物。
  8.  10~30℃において液状であることを特徴とする請求項1~7のいずれかに記載のエポキシ化合物。
  9.  式(III)または式(IV)で表わされるポリケイ素化合物;
    Figure JPOXMLDOC01-appb-C000006
     (式(III)中、Y1は水素原子または-OSiR1 2Hを示し、R1は、炭素数が1から5のアルキル基であり、nは2~500の整数を示す。)
    Figure JPOXMLDOC01-appb-C000007
     (式(IV)中、Z1は、-OSiR1 2Hを示し、R1は、炭素数が1から5のアルキル基を示す。)と、
     下記式(6)~(10)のいずれかで表わされるエポキシ化合物;
    Figure JPOXMLDOC01-appb-C000008
     (式(6)~(10)中、R2およびR3は、それぞれ独立に水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示す。
     R4は、水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示し、R5~R11は、それぞれ独立に水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示す。
     R12は、水素原子、炭素数1から6までのアルキル基、炭素数1から4までのトリアルキルシリル基、またはアリール基を示す。)とを、
     10~200℃で反応させる工程を含むことを特徴とする請求項1に記載のエポキシ化合物の製造方法。
  10.  前記ポリケイ素化合物が前記式(III)で表わされるポリケイ素化合物であり、該ポリケイ素化合物が、篭状シルセスキオキサン構造または梯子状シルセスキオキサン構造を有するポリケイ素化合物であることを特徴とする請求項9に記載のエポキシ化合物の製造方法。
  11.  前記ポリケイ素化合物が前記式(IV)で表わされるポリケイ素化合物であり、前記式(IV)中、R1が、メチル基またはエチル基であることを特徴とする請求項9に記載のエポキシ化合物の製造方法。
  12.  前記式(6)~(10)中、R2~R11が、それぞれ独立に水素原子またはメチル基であり、かつR12が、水素原子、メチル基またはフェニル基であることを特徴とする請求項9~11のいずれかに記載のエポキシ化合物の製造方法。
  13.  前記エポキシ化合物が有するエチレン性二重結合の1当量に対し、前記ポリケイ素化合物が有する-SiH基の当量が0.3~1.5となるように配合することを特徴とする請求項9~12のいずれかに記載のエポキシ化合物の製造方法。
  14.  式(IV)で表わされるポリケイ素化合物;
    Figure JPOXMLDOC01-appb-C000009
     (式(IV)中、Z1は、-OSiR1 2Hを示し、R1は、炭素数が1から5のアルキル基を示す。)と、
     下記式(6)~(10)のいずれかで表わされるエポキシ化合物;
    Figure JPOXMLDOC01-appb-C000010
     (式(6)~(10)中、R2およびR3は、それぞれ独立に水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示す。
     R4は、水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示し、R5~R11は、それぞれ独立に水素原子、炭素数1から6までのアルキル基、または炭素数1から4までのトリアルキルシリル基を示す。
     R12は、水素原子、炭素数1から6までのアルキル基、炭素数1から4までのトリアルキルシリル基、またはアリール基を示す。)とを、
     前記エポキシ化合物が有するエチレン性二重結合の1当量に対し、前記ポリケイ素化合物が有する-SiH基の当量が0.3~1.5となるように配合し、
     10~200℃でヒドロシリル化反応させて得られることを特徴とするエポキシ化合物。
  15.  前記式(IV)で表わされるポリケイ素化合物のR1がメチル基であり、前記エポキシ化合物が前記式(6)または(9)であることを特徴とする請求項14に記載のエポキシ化合物。
PCT/JP2009/055576 2008-03-24 2009-03-23 エポキシ化合物およびその製造方法 WO2009119469A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980110402.4A CN101977919B (zh) 2008-03-24 2009-03-23 环氧化合物及其制造方法
US12/933,828 US8426614B2 (en) 2008-03-24 2009-03-23 Epoxy compound and process for producing the epoxy compound
EP09724479.2A EP2270020B1 (en) 2008-03-24 2009-03-23 Epoxy compound and process for producing the epoxy compound
JP2010505608A JP5325206B2 (ja) 2008-03-24 2009-03-23 エポキシ化合物およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008075344 2008-03-24
JP2008-075344 2008-03-24

Publications (1)

Publication Number Publication Date
WO2009119469A1 true WO2009119469A1 (ja) 2009-10-01

Family

ID=41113662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055576 WO2009119469A1 (ja) 2008-03-24 2009-03-23 エポキシ化合物およびその製造方法

Country Status (6)

Country Link
US (1) US8426614B2 (ja)
EP (1) EP2270020B1 (ja)
JP (1) JP5325206B2 (ja)
KR (1) KR101215736B1 (ja)
CN (1) CN101977919B (ja)
WO (1) WO2009119469A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010013513A (ja) * 2008-07-02 2010-01-21 Fujifilm Corp ナノインプリント用硬化性組成物、これを用いた硬化物、並びに、液晶表示装置用部材
JP2010024229A (ja) * 2008-06-20 2010-02-04 Showa Denko Kk (メタ)アクリロイルオキシ基含有篭状シルセスキオキサン化合物およびその製造方法
JP2010053204A (ja) * 2008-08-27 2010-03-11 Nof Corp 熱硬化性樹脂組成物
JP2010083955A (ja) * 2008-09-30 2010-04-15 Nof Corp 熱硬化性樹脂組成物
WO2012020730A1 (ja) * 2010-08-11 2012-02-16 昭和電工株式会社 エポキシシリコーン縮合物、該縮合物を含む硬化性組成物およびその硬化物
WO2012144480A1 (ja) * 2011-04-20 2012-10-26 セントラル硝子株式会社 シロキサン化合物およびその硬化物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160006403A (ko) * 2014-07-09 2016-01-19 동우 화인켐 주식회사 접착제 조성물 및 이를 포함하는 편광판

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03255130A (ja) 1990-03-05 1991-11-14 Shin Etsu Chem Co Ltd エポキシ基含有オルガノポリシロキサンの製造方法
US5484867A (en) * 1993-08-12 1996-01-16 The University Of Dayton Process for preparation of polyhedral oligomeric silsesquioxanes and systhesis of polymers containing polyhedral oligomeric silsesqioxane group segments
JP2006104325A (ja) * 2004-10-05 2006-04-20 Shin Etsu Chem Co Ltd かご状オリゴシロキサン構造を有する一官能性モノマー及びその製造方法
JP2008013544A (ja) * 2006-06-07 2008-01-24 Showa Denko Kk 新規エポキシ化合物とその製造方法
WO2008020637A1 (fr) * 2006-08-15 2008-02-21 Showa Denko K.K. Nouveau composé époxy et son procédé de fabrication

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206328A (en) 1990-02-08 1993-04-27 Shin-Etsu Chemical Co., Ltd. Process for the production of an organopolysiloxane
US5484950A (en) * 1992-12-21 1996-01-16 Polyset Company, Inc. Process for selective monoaddition to silanes containing two silicon-hydrogen bonds and products thereof
US5468826A (en) * 1994-05-10 1995-11-21 Dow Corning Corporation Adhesion promoting additives and curable organosiloxane compositions containing same
US5516823A (en) * 1994-05-10 1996-05-14 Dow Corning Corporation Adhesion promoting compositions and curable organosiloxane compositions containing same
SG48462A1 (en) 1995-10-26 1998-04-17 Ibm Lead protective coating composition process and structure thereof
US6790473B2 (en) 1995-10-26 2004-09-14 International Business Machines Corporation Lead protective coating composition, process and structure thereof
US5863970A (en) * 1995-12-06 1999-01-26 Polyset Company, Inc. Epoxy resin composition with cycloaliphatic epoxy-functional siloxane
JP3505889B2 (ja) 1995-12-18 2004-03-15 東洋インキ製造株式会社 紫外線硬化型樹脂組成物およびこれを含む被覆剤
US6210790B1 (en) * 1998-07-15 2001-04-03 Rensselaer Polytechnic Institute Glass-like composites comprising a surface-modified colloidal silica and method of making thereof
US6265459B1 (en) 1998-12-31 2001-07-24 3M Innovative Properties Company Accelerators useful for energy polymerizable compositions
US6482868B1 (en) 1998-12-31 2002-11-19 3M Innovative Properties Company Accelerators useful for energy polymerizable compositions
FR2818989B1 (fr) 2000-12-29 2004-03-19 Rhodia Chimie Sa Utilisation d'un polyorganosiloxane fonctionnalise epoxy et/ou carboxy, a titre de matiere active dans une composition silicone liquide d'hydrofugation de materiaux de construction
US7049044B2 (en) * 2002-12-19 2006-05-23 The University Of North Carolina At Charlotte Nanocomposite negative resists for next generation lithographies
JP2004029126A (ja) * 2002-06-21 2004-01-29 Toyo Metallizing Co Ltd 帯電防止性反射防止フィルム
AU2003275534A1 (en) 2002-09-26 2004-04-19 Toagosei Co., Ltd. Hardening accelerator for cationic polymerization type composition
US7034089B2 (en) * 2002-12-20 2006-04-25 National Starch And Chemical Investment Holding Corporation Epoxy-functional hybrid copolymers
US6962948B2 (en) * 2003-08-07 2005-11-08 Polyset Company, Inc. Solventless, non-polluting radiation and thermal curable coatings
JP4491283B2 (ja) * 2004-06-10 2010-06-30 信越化学工業株式会社 反射防止膜形成用組成物を用いたパターン形成方法
US7732552B2 (en) * 2006-01-27 2010-06-08 Momentive Performance Materials Inc. Low VOC epoxy silane oligomer and compositions containing same
WO2007142248A1 (en) 2006-06-07 2007-12-13 Showa Denko K.K. Novel epoxy compounds and process for their production
US8653294B2 (en) * 2011-02-17 2014-02-18 Gelest Technologies, Inc. Silicones derived from 2-propenyl functional cyclic terpenes and methods of preparation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03255130A (ja) 1990-03-05 1991-11-14 Shin Etsu Chem Co Ltd エポキシ基含有オルガノポリシロキサンの製造方法
US5484867A (en) * 1993-08-12 1996-01-16 The University Of Dayton Process for preparation of polyhedral oligomeric silsesquioxanes and systhesis of polymers containing polyhedral oligomeric silsesqioxane group segments
JP2006104325A (ja) * 2004-10-05 2006-04-20 Shin Etsu Chem Co Ltd かご状オリゴシロキサン構造を有する一官能性モノマー及びその製造方法
JP2008013544A (ja) * 2006-06-07 2008-01-24 Showa Denko Kk 新規エポキシ化合物とその製造方法
WO2008020637A1 (fr) * 2006-08-15 2008-02-21 Showa Denko K.K. Nouveau composé époxy et son procédé de fabrication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHOI J. ET AL.: "Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes. Epoxy Resins of Octa (dimethylsiloxyethylcyclohexylepoxide) Silsesquioxane", MACROMOLECULES, vol. 36, no. 15, 2003, pages 5666 - 5682, XP008140836 *
See also references of EP2270020A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024229A (ja) * 2008-06-20 2010-02-04 Showa Denko Kk (メタ)アクリロイルオキシ基含有篭状シルセスキオキサン化合物およびその製造方法
JP2010013513A (ja) * 2008-07-02 2010-01-21 Fujifilm Corp ナノインプリント用硬化性組成物、これを用いた硬化物、並びに、液晶表示装置用部材
JP2010053204A (ja) * 2008-08-27 2010-03-11 Nof Corp 熱硬化性樹脂組成物
JP2010083955A (ja) * 2008-09-30 2010-04-15 Nof Corp 熱硬化性樹脂組成物
WO2012020730A1 (ja) * 2010-08-11 2012-02-16 昭和電工株式会社 エポキシシリコーン縮合物、該縮合物を含む硬化性組成物およびその硬化物
KR101408006B1 (ko) 2010-08-11 2014-06-17 쇼와 덴코 가부시키가이샤 에폭시 실리콘 축합물, 그 축합물을 포함하는 경화성 조성물 및 그 경화물
US8957136B2 (en) 2010-08-11 2015-02-17 Showa Denko K.K. Epoxysilicone condensate, curable composition comprising condensate, and cured product thereof
JP5855001B2 (ja) * 2010-08-11 2016-02-09 昭和電工株式会社 エポキシシリコーン縮合物、該縮合物を含む硬化性組成物およびその硬化物
WO2012144480A1 (ja) * 2011-04-20 2012-10-26 セントラル硝子株式会社 シロキサン化合物およびその硬化物
JP2012233174A (ja) * 2011-04-20 2012-11-29 Central Glass Co Ltd シロキサン化合物およびその硬化物

Also Published As

Publication number Publication date
JPWO2009119469A1 (ja) 2011-07-21
EP2270020A1 (en) 2011-01-05
EP2270020B1 (en) 2014-03-19
US20110021788A1 (en) 2011-01-27
US8426614B2 (en) 2013-04-23
JP5325206B2 (ja) 2013-10-23
KR20100125438A (ko) 2010-11-30
CN101977919A (zh) 2011-02-16
CN101977919B (zh) 2014-04-23
KR101215736B1 (ko) 2012-12-26
EP2270020A4 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
JP5325206B2 (ja) エポキシ化合物およびその製造方法
CN106866722B (zh) 一种含苯并环丁烯官能化的有机硅化合物及其制备方法
JP5821761B2 (ja) シロキサン化合物およびその硬化物
JP4948813B2 (ja) ケチミン構造含有アルコキシシランの製造方法
JP5153635B2 (ja) 新規エポキシ化合物およびその製造方法
JP5611544B2 (ja) (メタ)アクリロイルオキシ基含有篭状シルセスキオキサン化合物およびその製造方法
CN107987278A (zh) 一种苯并环丁烯官能化有机硅树脂及其制备方法
JP2014201534A (ja) ケイ素化合物
JP5861618B2 (ja) オルガノポリシロキサン及びその製造方法
JP5438447B2 (ja) ヒドロシリル化合物の製造方法
US7402648B2 (en) Method for producing cyclic organic silicon compound and organic silicon resin having alcoholic hydroxyl group
JP5503963B2 (ja) 有機ケイ素化合物、その製造方法、及びその有機ケイ素化合物を接着性付与剤として含む硬化性シリコーン組成物
JP6048380B2 (ja) オキセタン環を有する有機珪素化合物及びその製造方法
WO2007007598A1 (ja) アルコ-ル性水酸基を有する有機ケイ素樹脂及びその製造方法
KR101064063B1 (ko) 알코올성 수산기를 갖는 규소계 수지 및 그의 제조 방법
JP5052209B2 (ja) 新規エポキシ化合物とその製造方法
JP2016204287A (ja) 加水分解性シリル基含有環状オルガノハイドロジェンシロキサン
JP2015059108A (ja) チオール化合物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980110402.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724479

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505608

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009724479

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12933828

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107023613

Country of ref document: KR

Kind code of ref document: A