WO2009119085A1 - 新規光増感剤および光起電力素子 - Google Patents

新規光増感剤および光起電力素子 Download PDF

Info

Publication number
WO2009119085A1
WO2009119085A1 PCT/JP2009/001324 JP2009001324W WO2009119085A1 WO 2009119085 A1 WO2009119085 A1 WO 2009119085A1 JP 2009001324 W JP2009001324 W JP 2009001324W WO 2009119085 A1 WO2009119085 A1 WO 2009119085A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
photosensitizer
carbon atoms
cooh
oxide semiconductor
Prior art date
Application number
PCT/JP2009/001324
Other languages
English (en)
French (fr)
Inventor
山中紀代
南昌樹
中村勉
増田秀樹
金正哲
Original Assignee
新日本石油株式会社
国立大学法人名古屋工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本石油株式会社, 国立大学法人名古屋工業大学 filed Critical 新日本石油株式会社
Priority to CN200980113227.4A priority Critical patent/CN102007637B/zh
Priority to US12/934,447 priority patent/US8471018B2/en
Priority to EP09725121.9A priority patent/EP2262049A4/en
Publication of WO2009119085A1 publication Critical patent/WO2009119085A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/36Radicals substituted by singly-bound nitrogen atoms
    • C07D213/38Radicals substituted by singly-bound nitrogen atoms having only hydrogen or hydrocarbon radicals attached to the substituent nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed systems contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a novel photosensitizer, and more particularly to a novel photosensitizer that is suitably used for a dye-sensitized solar cell.
  • ruthenium complex dye absorbs visible light but hardly absorbs infrared light having a wavelength longer than 700 nm, and thus has a low photoelectric conversion ability in the infrared region. Therefore, in order to further increase the conversion efficiency, development of a dye having absorption not only in the visible light but also in the infrared region has been desired.
  • the black die can absorb light up to 920 nm. However, since the absorption coefficient is small, it is necessary to increase the amount adsorbed on the titanium oxide porous thin film in order to obtain a high current value.
  • Non-Patent Document 2 Although there are various methods for increasing the amount of adsorption to the titanium oxide porous thin film, it is generally possible to increase the thickness of the thin film (see Non-Patent Document 2). When the thickness of the thin film is increased, the conversion efficiency cannot be increased greatly because the open-circuit voltage value is decreased and the FF is decreased due to an increase in reverse electron transfer and a decrease in the electron density in the thin film. There is also a report of using a complex using an imidazophenanthroline ligand as a solar cell, but sufficient efficiency has not been achieved (see Patent Document 1). B. O'Regan, M. Gratzel, "Nature” (UK), 1991, 353, p. 737 M. Gratzel, “Journal of American Chemical Society” (USA), 2001, 123, p. 1613 International Patent Publication No. 2007/006026
  • the present invention provides a novel photosensitizer having a large extinction coefficient that absorbs light in a wide range of visible light and increases the light absorption efficiency even in an extremely thin thin film.
  • the present invention has the general formula is a metal oxide semiconductor electrode photosensitizer comprising a metal complex represented by the formula (I), adsorbed on a metal oxide semiconductor electrode via ligand L 1 or L 2
  • the present invention relates to a photosensitizer characterized in that the difference ⁇ L between the energy levels of the respective excited states, calculated using the GAUSSIAN03 quantum chemistry program calculation of L 1 and L 2 , is 0.25 eV or more.
  • M represents a Group 8 transition metal in the periodic table
  • X is independently a halogen atom, a cyano group, a thiocinanate group, an isothiocyanate group, an isocyanate group, an isocyanide group, a hydroxy group, or when X is bonded to each other
  • L 1 and L 2 are ligands containing an aromatic ring, and a COOH group or a functional group having PO (OH) 2 or COOH connected by ⁇ conjugation to either L 1 or L 2 Having a functional group with a group or PO (OH) 2 .
  • R 1 to R 3 may be the same or different, and each represents hydrogen, an alkyl group having 1 to 30 carbon atoms, an alkoxyalkyl group having 2 to 30 carbon atoms, or an alkyl group having 1 to 30 carbon atoms.
  • R 4 and R 5 may combine to form a ring.
  • L 1 is a ligand represented by the following formula (II) and L 2 is a ligand represented by the following formula (III). It is related with the photosensitizer characterized by these.
  • R 6 to R 11 , R 12 to R 16 , R 17 to R 19 , R 20 to R 23 , R 24 to R 29 , R 30 to R 34 , R 35 to R 37 , R 38 to R 39 , R 40 to R 43 , and R 44 to R 45 may be the same or different from each other, and may be a COOH group or a functional group having PO (OH) 2 , a COOH group or PO connected by ⁇ conjugation.
  • R 114 ⁇ R 128 are each independently, a COOH group or PO (OH) functional group having a 2, a functional group having a COOH group or PO (OH) 2 is bonded via ⁇ -conjugated, (Indicates hydrogen, OH group, methoxy group, halogen, alkyl group having 1 to 30 carbon atoms, alkoxy group, amino group, cyano group, or nitro group.)
  • the present invention is such that L 1 is a functional group having at least one COOH group or PO (OH) 2 therein, or a COOH group or PO (OH) connected by ⁇ conjugation. includes a functional group having a 2, L 2 does not contain a COOH group and PO (OH) 2 therein, and, when adsorbed via L 1 to the metal oxide semiconductor electrode, the energy of the excited state of the L 2
  • the present invention relates to a photosensitizer characterized in that the level is at least 0.25 eV higher than the energy level of the excited state of L 1 .
  • the present invention also relates to a photovoltaic device having at least one metal oxide semiconductor layer, wherein the metal oxide semiconductor layer contains the photosensitizer described above.
  • the novel photosensitizer of the present invention can absorb light widely in the visible region and increase the conversion efficiency of the photovoltaic device.
  • the photosensitizer of the present invention is a metal complex represented by the following general formula (I). ML 1 L 2 X 2 (I)
  • M represents a Group 8 transition metal in the periodic table, and examples thereof include Ru, Os, and Fe. Among them, Ru is preferable.
  • X is independently represented by the general formula (A) when a halogen atom, a cyano group, a thiocyanate group, an isothiocyanate group, an isocyanate group, an isocyanide group, a hydroxy group, or X is bonded to each other. Represents a bidentate ligand.
  • R 1 to R 3 may be the same or different and each represents hydrogen, an alkyl group having 1 to 30 carbon atoms, an alkoxyalkyl group having 2 to 30 carbon atoms, or a par group having 1 to 30 carbon atoms.
  • a fluoroalkyl group, an aryl group having 6 to 30 carbon atoms, or an aralkyl group having 7 to 30 carbon atoms is represented.
  • R 4 and R 5 are each independently hydrogen, a cyano group, an alkyl group having 1 to 20 carbon atoms, perfluoroalkyl group having 1 to 20 carbon atoms, or an aryl group having a carbon number of 6 ⁇ 15, R 4 And R 5 may combine to form a ring.
  • Examples of the ligand L 1 include compounds represented by the following general formula (II).
  • R 6 to R 11 , R 12 to R 16 , R 17 to R 19 , R 20 to R 23 , R 24 to R 29 , R 30 to R 34 , R 35 to R 37 , R 38 R 39 , R 40 to R 43 , and R 44 to R 45 may be the same or different from each other, and may be a COOH group or a functional group having PO (OH) 2 , a COOH group or PO ( OH) 2 represents a functional group having hydrogen, an alkyl group having 1 to 30 carbon atoms, an alkenyl group, an aryl group, an alkoxy group, or an amino group.
  • Examples of the ligand L 2 include compounds represented by the following general formula (III).
  • R 114 ⁇ R 128 are each independently, a COOH group or PO (OH) functional group having a 2, a functional group having a COOH group or PO (OH) 2 is bonded via ⁇ -conjugated, hydrogen OH group, methoxy group, halogen, alkyl group having 1 to 30 carbon atoms, alkoxy group, amino group, cyano group, or nitro group.
  • L 1 and L 2 in the general formula (I) must satisfy the following conditions. is there. That is, the ligands L 1 and L 2 are adsorbed on the metal oxide semiconductor electrode via a ligand having a low energy level in the excited state among the ligands L 1 and L 2. It is in a position higher than the energy level of the conduction band of the metal oxide semiconductor electrode.
  • the energies of the respective excited states calculated using the GAUSSIAN 03 quantum chemistry program calculation of L 1 and L 2 The level difference ⁇ L needs to be 0.25 eV or more, and preferably 0.3 eV or more.
  • the difference ⁇ L between the excited state energy levels is less than 0.25 eV, the electrons excited to the higher excited state energy of the ligands L 1 and L 2 are adsorbed on the metal oxide. Since it cannot move to the lower ligand, it is difficult to inject it into the metal oxide semiconductor electrode, and the conversion efficiency is lowered.
  • the program calculation of GAUSSIAN03 quantum chemistry is not particularly limited, but is usually performed with reference to “Information Chemistry / Computational Chemistry Experiment” (written by Kenji Hori et al., Maruzen Co., Ltd.). That is, the DFT / TD-DFT calculation is performed using the supercomputer HP2500 in consideration of the solvent (ethanol) using the CPCM solvent model. For the structure optimization and the energy level of the electronic structure / molecular orbital, calculation is performed by applying DFT / B3LYP as the calculation method and LANL2DZ as the basis function.
  • the following compounds can be exemplified as the compounds (photosensitizers) represented by the general formula (I) that satisfy the above conditions, but are not limited thereto.
  • L 2 does not contain a COOH group and PO (OH) 2 , and the energy level of L 2 is at least 0.25 eV higher than the energy level of L 1 , so that a more preferable effect can be obtained.
  • the following compounds can be exemplified as the compounds (photosensitizers) represented by the general formula (I) that satisfy the above conditions, but are not limited thereto.
  • a method for synthesizing the photosensitizer of the present invention will be described.
  • the case where ruthenium is used as M in the general formula (I) will be described below as an example.
  • a method of introducing X after sequentially reacting ligands L 1 and L 2 with a ruthenium precursor is preferably used.
  • the ruthenium precursor ruthenium chloride, dichloro (p-cymene) ruthenium dimer, diiodo (p-cymene) ruthenium dimer, or the like can be used.
  • the reactions of L 1 and L 2 may be added sequentially to carry out the reaction, or may be carried out by adding at the same time.
  • L 1 or L 2 When performing the reaction sequentially, either L 1 or L 2 may be added first.
  • a general organic solvent, water or the like can be used.
  • an alcohol solvent such as ethanol, methanol or butanol
  • an amide solvent such as dimethylformamide or dimethylacetamide, dimethyl sulfoxide, propylene carbonate, N -A polar solvent such as methylpyrrolidone is used.
  • the reaction temperature is not particularly limited, but in order to proceed with the reaction, heating is preferable, and it is particularly preferable to carry out in the range of 50 to 250 ° C.
  • the reaction temperature of the first stage reaction and the second stage reaction can be changed.
  • an oil bath, a water bath, a microwave heating device, or the like can be used.
  • the reaction time is not particularly limited, but is usually 1 minute to several days, preferably 5 minutes to 1 day, and it is preferable to change the time by a heating device.
  • About X it can introduce
  • the reaction time and reaction temperature are not particularly limited.
  • the photovoltaic element of the present invention will be described.
  • a metal oxide semiconductor layer 3 on which a photosensitizer of the present invention is adsorbed is disposed on a transparent conductive substrate 1, and an electrolyte layer 4 is interposed between the metal oxide semiconductor layer 3 and the counter electrode substrate 2.
  • the periphery is sealed with a sealing material 5.
  • the lead wire is connected to the conductive portions of the transparent conductive substrate 1 and the counter electrode substrate 2 so that electric power can be taken out.
  • a transparent conductive substrate is usually manufactured by laminating a transparent conductive layer on a transparent substrate.
  • the transparent substrate is not particularly limited, and the material, thickness, dimensions, shape, and the like can be appropriately selected according to the purpose. For example, colorless or colored glass, meshed glass, glass block, etc. are used, and colorless.
  • a colored transparent resin may be used. Specific examples of the resin include polyesters such as polyethylene terephthalate, polyamide, polysulfone, polyether sulfone, polyether ether ketone, polyphenylene sulfide, polycarbonate, polyimide, polymethyl methacrylate, polystyrene, cellulose triacetate, and polymethylpentene. Etc.
  • “transparent” means having a transmittance of 10 to 100%
  • “substrate” in the present invention has a smooth surface at room temperature, and the surface is flat or curved. It may be deformed by stress.
  • the transparent conductive layer that forms the conductive layer of the electrode is not particularly limited as long as the object of the present invention can be achieved.
  • the transparent conductive layer is made of a metal thin film such as gold, silver, chromium, copper, tungsten, or a metal oxide. Examples thereof include a conductive film.
  • the metal oxide include Indium Tin Oxide (ITO (In 2 O 3 : Sn)), Fluorine doped Tin Oxide (FTO (SnO 2 : F)) in which tin oxide or zinc oxide is slightly doped with another metal element. ), Aluminum doped Zinc Oxide (AZO (ZnO: Al)) and the like are preferably used.
  • the film thickness is usually 10 nm to 10 ⁇ m, preferably 100 nm to 2 ⁇ m.
  • the surface resistance (resistivity) is appropriately selected depending on the use of the substrate of the present invention, but is usually 0.5 to 500 ⁇ / sq, preferably 2 to 50 ⁇ / sq.
  • the counter electrode can usually be a platinum, carbon electrode or the like.
  • the material of the substrate is not particularly limited, and the material, thickness, dimensions, shape and the like can be appropriately selected according to the purpose.
  • colorless or colored glass, meshed glass, glass block, etc. are used,
  • a colored transparent resin may be used.
  • Specific examples of the resin include polyesters such as polyethylene terephthalate, polyamide, polysulfone, polyether sulfone, polyether ether ketone, polyphenylene sulfide, polycarbonate, polyimide, polymethyl methacrylate, polystyrene, cellulose triacetate, and polymethylpentene. Etc.
  • a metal plate or the like can also be used as the substrate.
  • the metal oxide semiconductor layer used in the photovoltaic device of the present invention for example, TiO 2, ZnO, such as a layer made of SnO 2, Nb 2 O 5, and among others, TiO 2, ZnO A layer consisting of
  • the metal oxide semiconductor used in the present invention may be single crystal or polycrystalline.
  • As the crystal system anatase type, rutile type, brookite type and the like are mainly used, and anatase type is preferable.
  • a method for forming the metal oxide semiconductor layer a known method can be used.
  • the metal oxide semiconductor layer can be obtained by applying the above-described metal oxide semiconductor nanoparticle dispersion, sol solution, or the like on a substrate by a known method.
  • the coating method in this case is not particularly limited, and examples include a method of obtaining a thin film by a casting method, a spin coating method, a dip coating method, a bar coating method, and various printing methods including a screen printing method.
  • the thickness of the metal oxide semiconductor layer is arbitrary, but is usually 0.5 ⁇ m to 50 ⁇ m, preferably 1 ⁇ m to 20 ⁇ m.
  • a solution in which the photosensitizer is dissolved in a solvent is applied on the metal oxide semiconductor layer by spray coating or spin coating. Then, it can be formed by a drying method. In this case, the substrate may be heated to an appropriate temperature.
  • a method in which a metal oxide semiconductor layer is immersed and adsorbed in a solution in which a photosensitizer is dissolved can also be used.
  • the immersion time is not particularly limited as long as the photosensitizer is sufficiently adsorbed, but is preferably 10 minutes to 30 hours, more preferably 1 to 20 hours.
  • the concentration of the photosensitizer in the case of the solution is about 0.01 to 100 mmol / L, preferably about 0.1 to 50 mmol / L.
  • the solvent alcohols, ethers, nitriles, esters, hydrocarbons and the like can be used.
  • a colorless compound having properties as a surfactant may be added and co-adsorbed on the metal oxide semiconductor layer.
  • colorless compounds include steroid compounds such as cholic acid having a carboxyl group or sulfo group, deoxycholic acid, chenodeoxycholic acid, taurodeoxycholic acid, sulfonates, and the like.
  • the unadsorbed photosensitizer is preferably removed by washing immediately after the adsorption step. Washing is preferably performed using acetonitrile, an alcohol solvent or the like in a wet washing tank.
  • the adsorption amount of the photosensitizer is calculated from the light absorption amount of the alkaline solution after desorbing the photosensitizer from the metal oxide semiconductor layer with a strong alkaline solution. Further, the adsorption amount can be adsorbed in the range of 1.0 ⁇ 10 ⁇ 8 mol / cm 2 to 1.0 ⁇ 10 ⁇ 6 mol / cm 2 with respect to the metal oxide semiconductor surface area.
  • amines After adsorbing the photosensitizer, amines, quaternary ammonium salts, ureido compounds having at least one ureido group, silyl compounds having at least one silyl group, alkali metal salts, alkaline earth metal salts, etc. are used. Then, the surface of the metal oxide semiconductor layer may be treated.
  • preferred amines include pyridine, 4-t-butylpyridine, polyvinylpyridine and the like.
  • preferred quaternary ammonium salts include tetrabutylammonium iodide, tetrahexylammonium iodide and the like. These may be used by dissolving in an organic solvent, or may be used as they are in the case of a liquid.
  • the electrolyte used in the photovoltaic device of the present invention is not particularly limited, and may be either a liquid system or a solid system, and desirably exhibits reversible electrochemical redox characteristics.
  • showing reversible electrochemical redox characteristics means that an electrochemical redox reaction can occur reversibly in the potential region where the photovoltaic element acts.
  • NHE hydrogen reference electrode
  • the ionic conductivity of the electrolyte is usually 1 ⁇ 10 ⁇ 7 S / cm or more at room temperature, preferably 1 ⁇ 10 ⁇ 6 S / cm or more, more preferably 1 ⁇ 10 ⁇ 5 S / cm or more.
  • the thickness of the electrolyte layer is not particularly limited, but is preferably 1 ⁇ m or more, more preferably 10 ⁇ m or more, and preferably 3 mm or less, more preferably 1 mm or less.
  • the electrolyte is not particularly limited as long as the above-described conditions are satisfied, and those known in this technical field can be used for both liquid and solid systems.
  • Example 1 ⁇ Synthesis of Compound 1> 1,10-phenanthroline-5,6-dione (10 mmol: 2.10 g), ammonium acetate (200 mmol: 14.4 g), and salicylaldehyde (12 mmol: 1.45 g) were dissolved in 100 ml of acetic acid for 4 hours. Stirring was performed with heating under reflux. After completion of the reaction, the mixture was allowed to cool and neutralized with aqueous ammonia. The deposited precipitate was separated by filtration, washed with water, and dried under reduced pressure to obtain Compound 1 in a yield of 65%. Compound 1 was identified by NMR.
  • Example 3 ⁇ Synthesis of Compound 3> Dipyridylamine (5.84 mmol: 1 g), 4-bromoanisole (8.76 mmol: 1.64 g), potassium hydroxide (8.75 mmol: 0.5 g), and copper sulfate (0.18 as catalyst) Mmol: 30 mg), and the mixture was stirred with heating at 180 ° C. for 6 hours. After completion of the reaction, the mixture was allowed to cool, chloroform and water were added, washed with water, and the solvent was distilled off under reduced pressure on magnesium sulfate to obtain the desired product. The target product was dissolved in chloroform and purified by column MeOH / CHCl 3 (1/10) to obtain Compound 3 in a yield of 65%. Identification was based on NMR.
  • thiocyanammonium (1.5 g) was added, and the mixture was heated and stirred for 4 hours. After completion of the reaction, the reaction mixture was concentrated under reduced pressure, and the resulting residue was dispersed in water and filtered to obtain the desired product as a crude product. An aqueous solution of n-butylammonium hydroxide in methanol was added to dissolve the target compound, followed by column purification (Sephadex LH-20). The main component is obtained, concentrated under reduced pressure, diluted with water, adjusted to pH 2 with dilute nitric acid aqueous solution, and the resulting dark red precipitate is recovered by filtration, dried under reduced pressure, and the desired photosensitizer 4 is obtained. Obtained in a yield of 70%. The complex was identified by MS spectrum and 1 H-NMR spectrum.
  • a photovoltaic cell based on sensitization of a titanium dioxide film supported on a conductive substrate was produced as follows. Colloidal TiO 2 particles (particle size: 20 to 30 nm) are applied on conductive glass (fluorine-doped SnO 2 , 10 ⁇ ), baked at 450 ° C. for 30 minutes (film thickness: 10 ⁇ m), and light is irradiated on it. In order to scatter, TiO 2 particles (particle size: 300 to 400 nm) were applied and baked at 520 ° C. for 1 hour (film thickness: 6 to 8 ⁇ m). These two layers were immersed in a TiCl 4 solution for 30 minutes and then heated at 450 ° C.
  • the obtained film was immersed in the photosensitizer / ethanol solution (3.0 ⁇ 10 4 to 4 mol / L) for 15 hours to form a dye layer.
  • the obtained substrate and the Pt surface of the glass with the Pt thin film are combined, and an acetonitrile solution containing 0.3 mol / L lithium iodide and 0.03 mol / L iodine is infiltrated by capillary action, and the periphery is an epoxy adhesive. Sealed with.
  • a lead wire was connected to the conductive layer portion of the transparent conductive substrate and the counter electrode.
  • the cells thus obtained were irradiated with simulated sunlight, and the photoelectric conversion characteristics were measured.
  • the results of measuring the short-circuit current value (Jsc) and incident photons to current conversion efficiency (IPCE) are shown in Table 1 and FIG. 4, respectively.
  • the photosensitizers 1 to 4 of the present invention have a larger short-circuit current value than the photosensitizer 5 of Comparative Example 1, and from FIG. 4, the photosensitizer of the present invention It can be seen that the current conversion efficiency of incident photons is superior to that of the photosensitizer 5 of Comparative Example 1 at 400 to 700 nm, and the current conversion efficiency of incident photons is superior in the region of 780 nm.
  • the novel photosensitizer of the present invention is extremely useful industrially because it can absorb light widely in the visible region and increase the conversion efficiency of the photovoltaic device.
  • FIG. 4 is a diagram showing incident photon-current conversion efficiency (IPCE) of Examples 1 to 4 and Comparative Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 可視光の広い範囲で光を吸収し、極薄い薄膜においても、光吸収効率が高くなる吸光係数の大きな新規光増感剤として、一般式ML(Mは周期表第8族遷移金属、Xはハロゲン原子、シアノ基、チオシナネート基、イソチオシアネート基、イソシアネート基、イソシアニド基、ヒドロキシ基、またはX同士が結合した2座配位子を表す。L、Lは芳香環を含む配位子であり、LまたはLのいずれかにCOOH基またはPO(OH)を有する官能基を有する。)で表される金属錯体からなる金属酸化物半導体電極用光増感剤であり、配位子LまたはLを介して金属酸化物半導体電極に吸着したとき、LとLのGAUSSIAN03量子化学のプログラム計算を用いて算出した、それぞれの励起状態のエネルギーレベルの差ΔLが0.25eV以上であることを特徴とする光増感剤が提供される。

Description

新規光増感剤および光起電力素子
 本発明は新規光増感剤に関し、特に色素増感型太陽電池に好適に用いられる新規光増感剤に関する。
 1991年にグレッツェルらが発表した色素増感型太陽電池素子は、ルテニウム錯体によって分光増感された酸化チタン多孔質薄膜を作用電極とする湿式太陽電池であり、シリコン太陽電池並みの性能が得られることが報告されている(非特許文献1参照)。この方法は、チタニア等の安価な酸化物半導体を高純度に精製することなく用いることができるため、安価な色素増感型太陽電池素子を提供でき、しかも色素の吸収がブロードであるため、可視光線のほぼ全波長領域の光を電気に変換できるという利点があり、注目を集めている。しかしながら、公知のルテニウム錯体色素は、可視光は吸収するものの700nmより長波長の赤外光はほとんど吸収しないため赤外域での光電変換能は低い。したがって更に変換効率を上げるためには可視光のみならず赤外域に吸収を有する色素の開発が望まれていた。
 一方、ブラックダイに関して、920nmまで光を吸収することができるが、吸光係数が小さいため、高電流値を得るためには、酸化チタン多孔質薄膜に吸着する量を多くする必要があった。酸化チタン多孔質薄膜への吸着量を増加する方法は、種々の方法があるが、一般的には、薄膜の厚みを増加することで可能である(非特許文献2参照)。薄膜の厚みを増加すると、逆電子移動の増加、薄膜中の電子密度の減少などによって、開放電圧値の減少、FFの低下などが生ずるため、変換効率は大きく増加することはできない。
 またイミダゾフェナントロリン配位子を用いた錯体を用いて、太陽電池とした報告もあるが、十分な効率を得るに至っていない(特許文献1参照)。
オレガン(B. O’Regan)、グレツェル(M.Gratzel),「ネイチャー(Nature)」,(英国),1991年,353巻,p.737 グレツェル(M.Gratzel),「ジャーナル オブ アメリカン ケミカルソサイアティー」,(米国),2001年,123巻,p.1613 国際公開特許第2007/006026号
 本発明は、可視光の広い範囲で光を吸収し、極薄い薄膜においても、光吸収効率が高くなる吸光係数の大きな新規光増感剤を提供するものである。
 本発明者らは、金属錯体色素について幅広く検討した結果、本発明に到達した。
 すなわち、本発明は、一般式(I)で表される金属錯体からなる金属酸化物半導体電極用光増感剤であり、配位子LまたはLを介して金属酸化物半導体電極に吸着したとき、LとLのGAUSSIAN03量子化学のプログラム計算を用いて算出した、それぞれの励起状態のエネルギーレベルの差ΔLが0.25eV以上であることを特徴とする光増感剤に関する。
   ML   (I) 
 ここで、Mは周期表第8族遷移金属を示し、Xは、独立にハロゲン原子、シアノ基、チオシナネート基、イソチオシアネート基、イソシアネート基、イソシアニド基、ヒドロキシ基、または、X同士が結合した場合、一般式(A)で示される2座配位子を表す。また、LおよびLは芳香環を含む配位子であり、LまたはLのいずれかに、COOH基またはPO(OH)を有する官能基、もしくは、π共役にて接続したCOOH基またはPO(OH)を有する官能基を有する。
Figure JPOXMLDOC01-appb-C000001
(式(A)中、R~Rは、それぞれ同一でも異なっていても良く、水素、炭素数1~30のアルキル基、炭素数2~30のアルコキシアルキル基、炭素数1~30のパーフルオロアルキル基、炭素数6~30のアリール基、または炭素数7~30のアラルキル基を表す。RおよびRは、それぞれ個別に、水素、シアノ基、炭素数1~20のアルキル基、炭素数1~20のパーフルオロアルキル基、または炭素数6~15のアリール基を表し、RとRが結合して環を形成してもよい。)
 また本発明は、上記一般式(I)において、Lが、下記式(II)で表される配位子であり、Lが下記式(III)で表される配位子であることを特徴とする光増感剤に関する。
Figure JPOXMLDOC01-appb-C000002
(式(II)中、R~R11、R12~R16、R17~R19、R20~R23、R24~R29、R30~R34、R35~R37、R38~R39、R40~R43、R44~R45は、それぞれ同一でも異なっていても良く、COOH基またはPO(OH)を有する官能基、π共役にて接続したCOOH基またはPO(OH)を有する官能基、水素、炭素数1~30のアルキル基、アルケニル基、アリール基、アルコキシ基、またはアミノ基を示す。)
Figure JPOXMLDOC01-appb-C000003
(式(III)中、R114~R128は、それぞれ独立に、COOH基またはPO(OH)を有する官能基、π共役にて接続したCOOH基またはPO(OH)を有する官能基、水素、OH基、メトキシ基、ハロゲン、炭素数1~30のアルキル基、アルコキシ基、アミノ基、シアノ基、またはニトロ基を示す。)
 また本発明は、上記一般式(I)において、Lは、その中に少なくとも一つのCOOH基またはPO(OH)を有する官能基、またはπ共役にて接続したCOOH基またはPO(OH)を有する官能基を含み、Lはその中にCOOH基およびPO(OH)を含まず、かつ、金属酸化物半導体電極にLを介して吸着したとき、Lの励起状態のエネルギーレベルがLの励起状態のエネルギーレベルより少なくとも0.25eV以上高いことを特徴とする光増感剤に関する。
 また本発明は、少なくとも1つの金属酸化物半導体層を有する光起電力素子であって、前記金属酸化物半導体層が前記記載の光増感剤を含むことを特徴とする光起電力素子に関する。
 本発明の新規光増感剤は、可視領域において、幅広く光を吸収し、光起電力素子の変換効率を上げることができる。
 以下、本発明について詳細に説明する。
 本発明の光増感剤は、下記一般式(I)で表される金属錯体である。
   ML   (I)
 一般式(I)中、Mは周期表第8族遷移金属を示し、Ru、OsおよびFe等が挙げられるが、なかでもRuが好ましい。
 一般式(I)中、Xは、独立にハロゲン原子、シアノ基、チオシナネート基、イソチオシアネート基、イソシアネート基、イソシアニド基、ヒドロキシ基、または、X同士が結合した場合、一般式(A)で示される2座配位子を表す。
Figure JPOXMLDOC01-appb-C000004
 式(A)中、R1~Rは、それぞれ同一でも異なっていても良く、水素、炭素数1~30のアルキル基、炭素数2~30のアルコキシアルキル基、炭素数1~30のパーフルオロアルキル基、炭素数6~30のアリール基、または炭素数7~30のアラルキル基を表す。R4およびRは、それぞれ個別に、水素、シアノ基、炭素数1~20のアルキル基、炭素数1~20のパーフルオロアルキル基、または炭素数6~15のアリール基を表し、R4とRが結合して環を形成してもよい。
 式(A)の具体例としては、下記を挙げることができるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000005
 配位子Lとしては、下記の一般式(II)で示される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000006
 式(II)中、R~R11、R12~R16、R17~R19、R20~R23、R24~R29、R30~R34、R35~R37、R38~R39、R40~R43、R44~R45は、それぞれ同一でも異なっていても良く、COOH基またはPO(OH)を有する官能基、π共役にて接続したCOOH基またはPO(OH)を有する官能基、水素、炭素数1~30のアルキル基、アルケニル基、アリール基、アルコキシ基、またはアミノ基を示す。
 以下にこれらの具体例を挙げるが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 配位子Lとしては、下記の一般式(III)で示される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000010
 式(III)中、R114~R128は、それぞれ独立に、COOH基またはPO(OH)を有する官能基、π共役にて接続したCOOH基またはPO(OH)を有する官能基、水素、OH基、メトキシ基、ハロゲン、炭素数1~30のアルキル基、アルコキシ基、アミノ基、シアノ基、またはニトロ基を示す。
 以下にこれらの具体例を挙げるが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000011
 本発明の一般式(I)で示される金属錯体からなる金属酸化物半導体電極用光増感剤においては、一般式(I)中のLおよびLが下記の条件を満たすことが必要である。
 すなわち、配位子L、Lは、配位子L、Lのうち励起状態のエネルギーレベルの低い配位子を介して金属酸化物半導体電極に吸着し、いずれの配位子も金属酸化物半導体電極のコンダクションバンドのエネルギーレベルより高い位置にある。本発明においては、配位子LまたはLを介して金属酸化物半導体電極に吸着したとき、LとLのGAUSSIAN03量子化学のプログラム計算を用いて算出した、それぞれの励起状態のエネルギーレベルの差ΔLが0.25eV以上であることが必要であり、0.3eV以上であることが好ましい。
 励起状態のエネルギーレベルの差ΔLが0.25eV未満の場合には、配位子L、Lのうち励起状態のエネルギーの高い方に励起された電子は、金属酸化物に吸着している低い方の配位子に移動することができないため、金属酸化物半導体電極にも注入されにくく、変換効率が低下するため、好ましくない。
 ここで、GAUSSIAN03量子化学のプログラム計算は特に限定されないが、通常、「情報化学・計算化学実験」(堀憲次ら著・丸善株式会社)を参考に行なわれる。
 すなわち、CPCM溶媒モデルを用いて溶媒(エタノール)を考慮し、DFT/TD-DFT計算をスーパーコンピューターHP2500を用いて行なわれる。構造最適化および電子構造・分子軌道のエネルギーレベルについて、計算法はDFT/B3LYP、基底関数はLANL2DZを適用し、計算が行われる。
 上記の条件を満足する一般式(I)で表される化合物(光増感剤)として、下記の化合物を例示できるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 本発明においては、配位子L中に少なくとも一つのCOOH基またはPO(OH)を有する官能基、またはπ共役にて接続したCOOH基またはPO(OH)を有する官能基を含ませ、L中にCOOH基およびPO(OH)を含ませず、かつ、LのエネルギーレベルがLのエネルギーレベルより少なくとも0.25eV以上高くすることにより、より好ましい効果を奏することができる。
 上記の条件を満足する一般式(I)で表される化合物(光増感剤)として、下記の化合物を例示できるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 本発明の光増感剤の合成方法について説明する。
 一般式(I)におけるMとしてルテニウムを用いた場合を例にとって以下説明する。まず、ルテニウム前駆体に、配位子L、Lを順次反応させた後、Xを導入する方法が好ましく用いられる。ルテニウム前駆体としては、塩化ルテニウム、ジクロロ(p-サイメン)ルテニウム二量体、ジヨード(p-サイメン)ルテニウム二量体等を用いることができる。L、Lの反応は、逐次的に添加し、反応を行なっても良く、また、同時に添加して反応を行なっても良い。逐次的に反応を行なう場合、L、Lどちらを先に添加しても良い。
 反応溶媒としては、一般的な有機溶媒、水などを用いることができ、好ましくはエタノール、メタノール、ブタノール等のアルコール系溶媒、ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒、ジメチルスルホキシド、プロピレンカーボネート、N-メチルピロリドン等の極性溶媒が用いられる。
 反応温度は特に限定されないが、反応を進行させるためには、加温が好ましく、50~250℃の範囲で行なうことが特に好ましい。逐次的に反応を行なう場合は、1段目の反応と2段目の反応の反応温度を変えて行なうこともできる。また、加温については、オイルバス、ウォーターバス、マイクロ波加熱装置等を使用することができる。
 反応時間は特に限定されないが、通常1分~数日、好ましくは5分~1日であり、加熱装置により時間を変更することが好ましい。
 Xについては、対応するアンモニウム塩、金属塩等を添加して、反応を行なうことにより導入することができる。反応時間、反応温度は特に限定されない。
 つぎに本発明の光起電力素子について説明する。
 本発明の光起電力素子の例としては、例えば、図1に示す断面を有する素子を挙げることができる。この素子は、透明導電性基板1上に本発明の光増感剤を吸着させた金属酸化物半導体層3が配置され、金属酸化物半導体層3と対向電極基板2の間に電解質層4が配置され、周辺がシール材5で密封されている。なお、リード線は透明導電性基板1と対向電基板2の導電部分に接続され、電力を取り出すことができる。
 透明導電性基板は、通常、透明基板上に透明導電層を積層させて製造される。透明基板としては特に限定されず、材質、厚さ、寸法、形状等は目的に応じて適宜選択することができ、例えば、無色あるいは有色ガラス、網入りガラス、ガラスブロック等が用いられる他、無色あるいは有色の透明性を有する樹脂でも良い。かかる樹脂としては、具体的には、ポリエチレンテレフタレートなどのポリエステル、ポリアミド、ポリスルホン、ポリエーテルサルホン、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリカーボネート、ポリイミド、ポリメチルメタクリレート、ポリスチレン、トリ酢酸セルロース、ポリメチルペンテンなどが挙げられる。なお、本発明における透明とは、10~100%の透過率を有することであり、また、本発明における基板とは、常温において平滑な面を有するものであり、その面は平面あるいは曲面であってもよく、また応力によって変形するものであってもよい。
 電極の導電層を形成する透明導電層としては、本発明の目的を達成できるものである限り特に限定されず、例えば、金、銀、クロム、銅、タングステンなどの金属薄膜、金属酸化物からなる導電膜などが挙げられる。金属酸化物としては、例えば、酸化錫や酸化亜鉛に、他の金属元素を微量ドープしたIndium Tin Oxide(ITO(In:Sn))、Fluorine doped Tin Oxide(FTO(SnO:F))、Aluminum doped Zinc Oxide(AZO(ZnO:Al))などが好適なものとして用いられる。
 膜厚は、通常10nm~10μm、好ましくは100nm~2μmである。また、表面抵抗(抵抗率)は、本発明の基板の用途により適宜選択されるところであるが、通常0.5~500Ω/sq、好ましくは2~50Ω/sqである。
 対向電極は通常、白金、カーボン電極などを用いることができる。基板の材質は特に限定されず、材質、厚さ、寸法、形状等は目的に応じて適宜選択することができ、例えば無色あるいは有色ガラス、網入りガラス、ガラスブロック等が用いられる他、無色あるいは有色の透明性を有する樹脂でも良い。かかる樹脂としては、具体的には、ポリエチレンテレフタレートなどのポリエステル、ポリアミド、ポリスルホン、ポリエーテルサルホン、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリカーボネート、ポリイミド、ポリメチルメタクリレート、ポリスチレン、トリ酢酸セルロース、ポリメチルペンテンなどが挙げられる。また、金属プレートなどを基板として用いることもできる。
 本発明の光起電力素子において用いられる金属酸化物半導体層としては特に限定されないが、例えば、TiO、ZnO、SnO、Nbからなる層等が挙げられ、なかでもTiO、ZnOからなる層が好ましい。
 本発明に用いられる金属酸化物半導体は単結晶でも多結晶でも良い。結晶系としては、アナターゼ型、ルチル型、ブルッカイト型などが主に用いられるが、好ましくはアナターゼ型である。
 金属酸化物半導体層の形成方法としては公知の方法を用いることができ、例えば、上記金属酸化物半導体のナノ粒子分散液、ゾル溶液等を公知の方法により基板上に塗布することで得ることが出来る。この場合の塗布方法としては特に限定されずキャスト法による薄膜状態で得る方法、スピンコート法、ディップコート法、バーコート法のほか、スクリーン印刷法を初めとした各種の印刷方法を挙げることができる。
 金属酸化物半導体層の厚みは任意であるが、通常0.5μm~50μm、好ましくは1μm~20μmである。
 本発明の光増感剤を金属酸化物半導体層に吸着させる方法としては、例えば、溶媒に光増感剤を溶解させた溶液を、金属酸化物半導体層上にスプレーコートやスピンコートなどにより塗布した後、乾燥する方法により形成することができる。この場合、適当な温度に基板を加熱しても良い。または光増感剤を溶解させた溶液に金属酸化物半導体層を浸漬して吸着させる方法を用いることもできる。浸漬する時間は光増感剤が十分に吸着すれば特に制限されることはないが、好ましくは10分~30時間、より好ましくは1~20時間である。また、必要に応じて浸漬する際に溶媒や基板を加熱しても良い。溶液にする場合の光増感剤の濃度としては、0.01~100mmol/L、好ましくは0.1~50mmol/L程度である。
 溶媒としては、アルコール類、エーテル類、ニトリル類、エステル類、炭化水素など用いることができる。
 また、光増感剤間の凝集等の相互作用を低減するために、界面活性剤としての性質を持つ無色の化合物を添加し、金属酸化物半導体層に共吸着させてもよい。このような無色の化合物の例としては、カルボキシル基やスルホ基を有するコール酸、デオキシコール酸、ケノデオキシコール酸、タウロデオキシコール酸等のステロイド化合物やスルホン酸塩類等が挙げられる。
 未吸着の光増感剤は、吸着工程後、速やかに洗浄により除去するのが好ましい。洗浄は湿式洗浄槽中でアセトニトリル、アルコール系溶媒等を用いて行うのが好ましい。
 光増感剤の吸着量は、強アルカリ溶液にて、金属酸化物半導体層から光増感剤を脱着し、アルカリ溶液の光吸収量から算出される。
 また、吸着量は、金属酸化物半導体表面積に対し、1.0×10-8mol/cm~1.0×10-6mol/cmの範囲で吸着することができる。
 光増感剤を吸着させた後、アミン類、4級アンモニウム塩、少なくとも1つのウレイド基を有するウレイド化合物、少なくとも1つのシリル基を有するシリル化合物、アルカリ金属塩、アルカリ土類金属塩等を用いて、金属酸化物半導体層の表面を処理してもよい。好ましいアミン類の例としては、ピリジン、4-t-ブチルピリジン、ポリビニルピリジン等が挙げられる。好ましい4級アンモニウム塩の例としては、テトラブチルアンモニウムヨージド、テトラヘキシルアンモニウムヨージド等が挙げられる。これらは有機溶媒に溶解して用いてもよく、液体の場合はそのまま用いてもよい。
 本発明の光起電力素子において用いられる電解質としては特に限定されず、液体系でも固体系のいずれでもよく、可逆な電気化学的酸化還元特性を示すものが望ましい。ここで、可逆な電気化学的酸化還元特性を示すということは、光起電力素子の作用する電位領域において、可逆的に電気化学的酸化還元反応を起こし得ることをいう。典型的には、通常、水素基準電極(NHE)に対して-1~+2Vvs
NHEの電位領域で可逆的であることが望ましい。
 電解質のイオン伝導度は、通常室温で1×10-7S/cm以上、好ましくは1×10-6S/cm以上、さらに好ましくは1×10-5S/cm以上であることが望ましい。
 電解質層の厚さは特に制限されないが、1μm以上であることが好ましく、より好ましくは10μm以上であり、また、3mm以下が好ましく、より好ましくは1mm以下である。
 かかる電解質としては、上記の条件を満足すれば特に制限されるものでなく、液体系および固体系とも、本技術分野で公知のものを使用することができる。
 以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこの実施例に限定されるものではない。
[実施例1]
<化合物1の合成>
 1,10-フェナントロリン-5,6-ジオン(10ミリモル:2.10g)、酢酸アンモニウム(200ミリモル:14.4g)、サリチルアルデヒド(12ミリモル:1.45g)を酢酸100mlに溶解し、4時間加熱還流下攪拌を行なった。反応終了後、放冷、アンモニア水にて中和した。析出した沈殿物を濾別し、水にて洗浄し、減圧下乾燥を行なって化合物1を収率65%にて得た。なお化合物1はNMRにて同定した。
<光増感剤1の合成>
 ジクロロ(p-サイメン)ルテニウム二量体(1ミリモル:0.61g)、化合物1(2ミリモル:0.65g)をジメチルホルムアミド(50ml)に溶解し、アルゴン雰囲気下80℃にて2時間攪拌した。続いて、2,2’-ビピリジン-4,4’-カルボン酸(2ミリモル)を加え、アルゴン下にて150℃、5時間加熱攪拌を行なった。さらに、チオシアン酸アンモニウム(1.5g)を加え、4時間加熱攪拌を行なった。
 反応終了後、減圧濃縮を行ない、得られた残渣を水に分散し、ろ過にて粗精製物として目的物を得た。メタノール中水酸化n-ブチルアンモニウム水溶液を添加し、目的物を溶解した後、カラム精製を行った(Sephadex LH-20)。主成分を得、減圧濃縮後、水にて希釈し、希薄HNO水溶液にてpH2とし、生成した濃赤色の沈殿物をろ過にて回収し、減圧乾燥を行ない、目的の光増感剤1を収率70%にて得た。光増感剤1の同定は、MSスペクトル(m/z 386)、H-NMRスペクトルにて行なった。光増感剤1のH-NMRスペクトルを図2に示す。
Figure JPOXMLDOC01-appb-C000020
[実施例2]
<化合物2の合成>
 1,10-フェナントロリン-5,6-ジオン(10ミリモル:2.10g)、酢酸アンモニウム(200ミリモル:14.4g)、3-ヒドロキシベンズアルデヒド(12ミリモル:1.45g)を酢酸100mlに溶解し、4時間加熱還流下攪拌を行なった。反応終了後、放冷、アンモニア水にて中和した。析出した沈殿物を濾別し、水にて洗浄し、減圧下乾燥を行なって化合物2を収率65%にて得た。NMRにて同定した。
<光増感剤2の合成>
 ジクロロ(p-サイメン)ルテニウム二量体(1ミリモル:0.61g)、化合物2(2ミリモル:0.65g)をジメチルホルムアミド(50ml)に溶解し、アルゴン雰囲気下80℃にて2時間攪拌した。続いて、2,2’-ビピリジン-4,4’-カルボン酸(2ミリモル)を加え、アルゴン下にて150℃、5時間加熱攪拌を行なった。さらに、チオシアン酸アンモニウム(1.5g)を加え、4時間加熱攪拌を行なった。
 反応終了後、減圧濃縮を行ない、得られた残渣を水に分散し、ろ過にて粗精製物として目的物を得た。メタノール中水酸化n-ブチルアンモニウム水溶液を添加し、目的物を溶解した後、カラム精製を行った(Sephadex LH-20)。主成分を得、減圧濃縮後、水にて希釈し、希薄HNO水溶液にてpH2とし、生成した濃赤色の沈殿物をろ過にて回収し、減圧乾燥を行ない、目的の光増感剤2を収率70%にて得た。光増感剤2の同定は、MSスペクトル(m/z 386)、H-NMRスペクトルにて行なった。
Figure JPOXMLDOC01-appb-C000021
[実施例3]
<化合物3の合成>
 ジピリジルアミン(5.84ミリモル:1g)、4-ブロモアニソール(8.76ミリモル:1.64g)、水酸化カリウム(8.75ミリモル:0.5g)、および触媒としての硫酸銅(0.18ミリモル:30mg)を混合し、180℃で6時間加熱下で攪拌した。反応終了後、放冷、クロロホルムと水を加え、水で洗浄後、硫酸マグネシウム上で溶媒を減圧留出することにより目的物を得た。目的物をクロロホルムに溶解した後、カラムMeOH/CHCl(1/10)で精製することにより化合物3を収率65%で得た。同定はNMRに拠った。
<光増感剤3の合成>
 p-シメン塩化ルテニウム2量体([RuCl(p-cymene)])(1ミリモル:0.61g)、化合物3(2ミリモル:0.65g)をジメチルホルムアミド(50ml)に溶解し、アルゴン雰囲気下80℃にて2時間攪拌した。続いて、2,2’―ビピリジンー4,4’カルボン酸(2ミリモル)を加え、アルゴン下にて150℃、5時間加熱攪拌を行なった。さらに、チオシアンアンモニウム(1.5g)を加え、4時間加熱攪拌を行なった。
 反応終了後、減圧濃縮を行ない、得られた残渣を水に分散し、ろ過にて粗精製物として目的物を得た。メタノール中水酸化n-ブチルアンモニウム水溶液を添加し、目的物を溶解した後、カラム精製を行った(Sephadex LH-20)。主成分を得、減圧濃縮後、水にて希釈し、希薄硝酸水溶液にてpH2とし、生成した濃赤色の沈殿物をろ過にて回収し、減圧乾燥を行ない、目的の光増感錯体3を収率70%にて得た。光増感剤3の同定は、MSスペクトル、H-NMRスペクトルにて行なった。光増感剤3のH-NMRスペクトルを図3に示す。
Figure JPOXMLDOC01-appb-C000022
[実施例4]
<光増感剤4の合成>
 p-シメン塩化ルテニウム2量体([RuCl(p-cymene)])(1ミリモル:0.61g)、化合物3(2ミリモル:0.65g)をジメチルホルムアミド(50ml)に溶解し、アルゴン雰囲気下80℃にて2時間攪拌した。続いて、4,4’-ビス(カルボキシビニル)-2,2’-ビピリジン(2ミリモル)を加え、アルゴン下にて150℃、5時間加熱攪拌を行なった。さらに、チオシアンアンモニウム(1.5g)を加え、4時間加熱攪拌を行なった。
 反応終了後、減圧濃縮を行ない、得られた残渣を水に分散し、ろ過にて粗精製物として目的物を得た。メタノール中水酸化n-ブチルアンモニウム水溶液を添加し、目的物を溶解した後、カラム精製を行った(Sephadex LH-20)。主成分を得、減圧濃縮後、水にて希釈し、希薄硝酸水溶液にてpH2とし、生成した濃赤色の沈殿物をろ過にて回収し、減圧乾燥を行ない、目的の光増感剤4を収率70%にて得た。錯体の同定は、MSスペクトル、H-NMRスペクトルにて行なった。
Figure JPOXMLDOC01-appb-C000023
<光起電力セルの作製および変換効率の測定>
 導電性基板上に支持された二酸化チタン膜の増感に基づく光起電力セルを以下のように作製した。
 導電性ガラス(フッ素ドープSnO,10Ω)上にコロイド状TiO粒子(粒径:20~30nm)を塗布し、450℃、30分間焼成し(膜厚:10μm)、その上に、光を散乱させるため、TiO粒子(粒径:300~400nm)を塗布し、520℃、1時間焼成した(膜厚:6~8μm)。これら2層の膜を、30分間TiCl溶液に浸漬した後、450℃、30分間加熱した。
 得られた膜を上記光増感剤/エタノール溶液(3.0×10~4mol/L)に15時間浸し、色素層を形成した。得られた基板とPt薄膜のついたガラスのPt面を合わせ、0.3mol/Lのヨウ化リチウムと0.03mol/Lのヨウ素を含むアセトニトリル溶液を毛細管現象によって染み込ませ、周辺をエポキシ接着剤で封止した。なお、透明導電基板の導電層部分と対向電極にはリード線を接続した。
 このようにして得たセルに疑似太陽光を照射し、光電変換特性を測定した。短絡電流値(Jsc)、入射フォトン~電流変換効率(IPCE)を測定した結果を、それぞれ表1、図4に示した。
[比較例1]
 ΔL>0.25eVの効果を示すために、ΔLが0.25eVよりも小さい光増感剤5を用いて、実施例1~4と同様の操作で太陽電池セルを作製した。
 表1より、本発明の光増感剤1~4は、ΔLの小さい光増感剤5と比較して、短絡電流値が大きく、また、780nmの領域において、入射フォトンの電流変換効率が優れていることが分かる。高い変換効率を得るためには、ΔLは、少なくとも0.25eV以上である必要がある。
Figure JPOXMLDOC01-appb-C000024
 表1より、本発明の光増感剤1~4は、比較例1の光増感剤5に比較して、短絡電流値が大きく、また、図4より、本発明の光増感剤は、400-700nmで比較例1の光増感剤5よりも入射フォトンの電流変換効率が優れており、また、780nmの領域において、入射フォトンの電流変換効率が優れていることが分かる。
Figure JPOXMLDOC01-appb-T000001
 
 本発明の新規光増感剤は、可視領域において、幅広く光を吸収し、光起電力素子の変換効率を上げることができるため産業上きわめて有用である。
光起電力素子の断面の例である。 光増感剤1のH-NMRスペクトルである。 光増感剤3のH-NMRスペクトルである。 実施例1~4および比較例1の入射フォトン~電流変換効率(IPCE)を示す図である。
符号の説明
1 透明導電性基板
2 対向電極基板
3 色素を吸着した金属酸化物半導体層
4 電解質層
5 シール材

Claims (4)

  1.  一般式(I)で表される金属錯体からなる金属酸化物半導体電極用光増感剤であり、配位子LまたはLを介して金属酸化物半導体電極に吸着したとき、LとLのGAUSSIAN03量子化学のプログラム計算を用いて算出した、それぞれの励起状態のエネルギーレベルの差ΔLが0.25eV以上であることを特徴とする光増感剤。
       ML   (I) 
     ここで、Mは周期表第8族遷移金属を示し、Xは、独立にハロゲン原子、シアノ基、チオシナネート基、イソチオシアネート基、イソシアネート基、イソシアニド基、ヒドロキシ基、または、X同士が結合した場合、一般式(A)で示される2座配位子を表す。また、LおよびLは芳香環を含む配位子であり、LまたはLのいずれかに、COOH基またはPO(OH)を有する官能基、もしくは、π共役にて接続したCOOH基またはPO(OH)を有する官能基を有する。
    Figure JPOXMLDOC01-appb-C000025
    (式(A)中、R~Rは、それぞれ同一でも異なっていても良く、水素、炭素数1~30のアルキル基、炭素数2~30のアルコキシアルキル基、炭素数1~30のパーフルオロアルキル基、炭素数6~30のアリール基、または炭素数7~30のアラルキル基を表す。RおよびRは、それぞれ個別に、水素、シアノ基、炭素数1~20のアルキル基、炭素数1~20のパーフルオロアルキル基、または炭素数6~15のアリール基を表し、RとRが結合して環を形成してもよい。)
  2.  請求項1において、Lが、下記式(II)で表される配位子であり、Lが下記式(III)で表される配位子であることを特徴とする光増感剤。
    Figure JPOXMLDOC01-appb-C000026
    (式(II)中、R~R11、R12~R16、R17~R19、R20~R23、R24~R29、R30~R34、R35~R37、R38~R39、R40~R43、R44~R45は、それぞれ同一でも異なっていても良く、COOH基またはPO(OH)を有する官能基、π共役にて接続したCOOH基またはPO(OH)を有する官能基、水素、炭素数1~30のアルキル基、アルケニル基、アリール基、アルコキシ基、またはアミノ基を示す。)
    Figure JPOXMLDOC01-appb-C000027
    (式(III)中、R114~R128は、それぞれ独立に、COOH基またはPO(OH)を有する官能基、π共役にて接続したCOOH基またはPO(OH)を有する官能基、水素、OH基、メトキシ基、ハロゲン、炭素数1~30のアルキル基、アルコキシ基、アミノ基、シアノ基、またはニトロ基を示す。)
  3.  請求項1において、Lは、その中に少なくとも一つのCOOH基またはPO(OH)を有する官能基、またはπ共役にて接続したCOOH基またはPO(OH)を有する官能基を含み、Lはその中にCOOH基およびPO(OH)を含まず、かつ、金属酸化物半導体電極にLを介して吸着したとき、Lの励起状態のエネルギーレベルがLの励起状態のエネルギーレベルより少なくとも0.25eV以上高いことを特徴とする光増感剤。
  4.  少なくとも1つの金属酸化物半導体層を有する光起電力素子であって、前記金属酸化物半導体層が請求項1~3のいずれかに記載の光増感剤を含むことを特徴とする光起電力素子。
PCT/JP2009/001324 2008-03-26 2009-03-25 新規光増感剤および光起電力素子 WO2009119085A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980113227.4A CN102007637B (zh) 2008-03-26 2009-03-25 新型光敏剂和光伏器件
US12/934,447 US8471018B2 (en) 2008-03-26 2009-03-25 Photosensitizer and photovoltaic device
EP09725121.9A EP2262049A4 (en) 2008-03-26 2009-03-25 NEW PHOTOSENSIBILIZER AND PHOTOVOLTAIC ITEM

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008080977 2008-03-26
JP2008-080977 2008-03-26
JP2008115831 2008-04-25
JP2008-115831 2008-04-25
JP2008290990A JP5283073B2 (ja) 2008-03-26 2008-11-13 新規光増感剤および光起電力素子
JP2008-290990 2008-11-13

Publications (1)

Publication Number Publication Date
WO2009119085A1 true WO2009119085A1 (ja) 2009-10-01

Family

ID=41113296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001324 WO2009119085A1 (ja) 2008-03-26 2009-03-25 新規光増感剤および光起電力素子

Country Status (6)

Country Link
US (1) US8471018B2 (ja)
EP (1) EP2262049A4 (ja)
JP (1) JP5283073B2 (ja)
KR (1) KR20110013372A (ja)
CN (1) CN102007637B (ja)
WO (1) WO2009119085A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209131A (ja) * 2009-03-06 2010-09-24 Jx Nippon Oil & Energy Corp 新規光増感剤および光起電力素子
CN106317096B (zh) * 2016-08-19 2019-05-28 华南师范大学 一种邻菲罗啉并咪唑型稀土配位分子基探针及其制备方法和应用
US20230125951A1 (en) * 2020-04-30 2023-04-27 The Trustees Of Indiana University Di-nitrogen ligands for supported coordinated platinum hydrosilylation catalysts

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176489A (ja) * 1997-12-10 1999-07-02 Fuji Photo Film Co Ltd 光電変換素子および光再生型光電気化学電池
JP2002100417A (ja) * 2000-09-22 2002-04-05 Fuji Xerox Co Ltd 光半導体電極、および光電変換装置
JP2004363096A (ja) * 2003-05-13 2004-12-24 Asahi Kasei Corp 光電変換素子
JP2006243352A (ja) * 2005-03-03 2006-09-14 Fuji Photo Film Co Ltd 機能性素子、エレクトロクロミック素子、光学デバイス及び撮影ユニット
WO2007006026A1 (en) 2005-06-30 2007-01-11 General Electric Company Compositions and use thereof in dye sensitized solar cells

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1202113C (zh) * 2000-12-21 2005-05-18 中国科学院感光化学研究所 钌多吡啶配合物及其合成方法和用途
WO2004102724A1 (ja) 2003-05-13 2004-11-25 Asahi Kasei Kabushiki Kaisha 光電変換素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176489A (ja) * 1997-12-10 1999-07-02 Fuji Photo Film Co Ltd 光電変換素子および光再生型光電気化学電池
JP2002100417A (ja) * 2000-09-22 2002-04-05 Fuji Xerox Co Ltd 光半導体電極、および光電変換装置
JP2004363096A (ja) * 2003-05-13 2004-12-24 Asahi Kasei Corp 光電変換素子
JP2006243352A (ja) * 2005-03-03 2006-09-14 Fuji Photo Film Co Ltd 機能性素子、エレクトロクロミック素子、光学デバイス及び撮影ユニット
WO2007006026A1 (en) 2005-06-30 2007-01-11 General Electric Company Compositions and use thereof in dye sensitized solar cells

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
B. O'REGANAND; M. GRATZEL, NATURE, vol. 353, pages 737
M. GRATZEL, JOURNAL OF AMERICAN CHEMICAL SOCIETY, vol. 123, pages 1613
See also references of EP2262049A4

Also Published As

Publication number Publication date
CN102007637A (zh) 2011-04-06
CN102007637B (zh) 2013-05-01
EP2262049A4 (en) 2014-10-01
US8471018B2 (en) 2013-06-25
KR20110013372A (ko) 2011-02-09
JP5283073B2 (ja) 2013-09-04
JP2009280789A (ja) 2009-12-03
EP2262049A1 (en) 2010-12-15
US20110108117A1 (en) 2011-05-12

Similar Documents

Publication Publication Date Title
Sarker et al. A near-infrared dye for dye-sensitized solar cell: catecholate-functionalized zinc phthalocyanine
JPWO2011118581A1 (ja) 光電変換素子の製造方法、光電変換素子及び光電気化学電池
JP5620496B2 (ja) 金属錯体色素、光電変換素子及び光電気化学電池
JP2012227015A (ja) 光電変換素子及び光電気化学電池
JP5283073B2 (ja) 新規光増感剤および光起電力素子
JP5702394B2 (ja) 電解質組成物用添加剤及びこの添加剤を用いた電解質組成物並びに色素増感太陽電池
JP5428312B2 (ja) 光電変換素子、及び光化学電池
WO2005100484A1 (ja) 色素および色素増感太陽電池
JP2008138169A (ja) 新規光増感剤および光起電力素子
JP2009064680A (ja) 新規光増感剤および光起電力素子
JP5424246B2 (ja) 新規光増感剤及び光起電力素子
JP5487465B2 (ja) 新規光増感剤および光起電力素子
JP5229881B2 (ja) 色素及びそれを用いた色素増感太陽電池
JP6616907B2 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液及び酸化物半導体電極
JP2010209131A (ja) 新規光増感剤および光起電力素子
JP2011195745A (ja) 色素及びそれを用いた色素増感太陽電池
JP2014181305A (ja) 光増感剤およびこれを用いた光起電力素子
JP2009301940A (ja) 光電極、及び、これを備える色素増感型太陽電池の製造方法、並びに、色素増感型太陽電池
JP2014096301A (ja) 光増感剤およびこれを用いた光起電力素子
JP2009129652A (ja) 光電変換素子、及び光化学電池
WO2016148099A1 (ja) 光電変換素子、色素増感太陽電池、ルテニウム錯体色素および色素溶液
JP5556096B2 (ja) 電子吸引基を置換基として持つ連結分子を有する二核ルテニウム錯体色素を有する光電変換素子、及び光化学電池
JP5838820B2 (ja) 二核ルテニウム錯体色素、当該色素を有する光電変換素子及び光化学電池
JP5446207B2 (ja) 光電変換素子、及び光化学電池
JP2013256550A (ja) 光増感剤およびこれを用いた光起電力素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980113227.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09725121

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009725121

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107023662

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12934447

Country of ref document: US