WO2009118948A1 - 深穴切削装置制御システム - Google Patents
深穴切削装置制御システム Download PDFInfo
- Publication number
- WO2009118948A1 WO2009118948A1 PCT/JP2008/070909 JP2008070909W WO2009118948A1 WO 2009118948 A1 WO2009118948 A1 WO 2009118948A1 JP 2008070909 W JP2008070909 W JP 2008070909W WO 2009118948 A1 WO2009118948 A1 WO 2009118948A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- deep hole
- hole cutting
- cutting device
- coolant
- deep
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B41/00—Boring or drilling machines or devices specially adapted for particular work; Accessories specially adapted therefor
- B23B41/02—Boring or drilling machines or devices specially adapted for particular work; Accessories specially adapted therefor for boring deep holes; Trepanning, e.g. of gun or rifle barrels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q11/00—Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
- B23Q11/10—Arrangements for cooling or lubricating tools or work
- B23Q11/1084—Arrangements for cooling or lubricating tools or work specially adapted for being fitted to different kinds of machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2250/00—Compensating adverse effects during turning, boring or drilling
- B23B2250/12—Cooling and lubrication
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B51/00—Tools for drilling machines
- B23B51/06—Drills with lubricating or cooling equipment
- B23B51/063—Deep hole drills, e.g. ejector drills
Definitions
- the present invention relates to a deep hole cutting device control system.
- the cutting efficiency of deep hole machining is more dependent on the discharge capability of chips generated inside the cutting hole during machining than the capability of the tool system.
- a hollow boring bar is used, a discharging opening is provided in the boring head, and the chip is passed through the inside of the boring bar from the discharging opening together with the coolant supplied to the cutting edge. It discharges to the outside. Accordingly, the coolant is supplied to the cutting edge portion between an internal supply system through the inside of the hollow boring bar 10 and the outer peripheral surface of the hollow boring bar 10 and the inner peripheral surface of the cutting hole H as shown in FIG. There is an external supply method performed through the gap T.
- the boring bar 10 side is rotated and a case where the work material W side is rotated.
- the external supply method will be described with reference to FIG. 1.
- a coolant supply jacket 11 that oil-tightly surrounds the hollow boring bar 10 is used, and this jacket 11 is connected to a work material via a seal ring 12.
- the coolant C is supplied from the inlet 13 into the jacket 11 at a high pressure.
- the coolant C supplied at the high pressure is supplied to the cutting blade 15 side of the boring head 14 through the gap T between the outer peripheral surface of the boring bar 10 and the inner peripheral surface of the cutting hole H.
- the coolant C thus supplied flows into the hollow portion 17 of the boring bar 10 from the discharge opening 16 facing the cutting edge 15 of the boring head 14 together with the generated chips S, and is discharged to the outside. Yes.
- the boring bar 10 is connected to the spindle unit 5 and a motor (not shown) in the spindle unit 5 is driven to rotate.
- the boring bar 10 rotates, and the workpiece W is cut by the cutting edge 15 of the boring head 14 by the rotation.
- the feed mechanism 6 provided at the lower part of the spindle unit 5 is moved in the direction of arrow F by the rotational drive of the feed motor 6 a provided at one end of the feed mechanism 6.
- the deep hole cutting device 1 moves in the direction of the arrow F so that the deep hole cutting of the work material W is performed.
- a safety device for stopping deep hole cutting of the deep hole cutting device 1 is known as means for preventing the above-described problems.
- a safety device there is known a method for monitoring the amount of torque when the boring bar 10 is connected to the spindle unit 5 and driven to rotate, the amount of torque representing the thrust of the feed motor 6a, or the supply pressure of the coolant C. Yes.
- the deep hole cutting device 1 If the diameter of the deep hole that cuts the workpiece W is 12 mm or less, the diameter is small, so the difference between the amount of torque operating in the normal state and the amount of torque operating in the abnormal state is small. There was a problem that it was difficult.
- a safety device that monitors the supply pressure of the coolant C in which the difference between the normal state and the abnormal state of the deep hole cutting device 1 clearly appears when the diameter is small.
- the supply pressure of the coolant C becomes abnormally high.
- the deep hole cutting of the deep hole cutting device 1 is to be stopped by monitoring the pressure.
- the operator is concerned with the safety device and manually operates the safety device in accordance with the processing depth, which is very dependent on the operator's ability.
- the gun drill method is adopted for such small diameter deep hole cutting.
- the gun drill method uses a hollow drill with a V-groove for chip discharge, and sends high-pressure coolant to the tip of the cutting blade through the drill shank. Chip generated by the cutting blade Can be drilled with a high-pressure coolant and forcibly discharged from the V-groove, so that a deep hole with a small diameter can be accurately formed.
- the chip discharging V-groove is formed in the side surface of the gun drill shank, the rigidity of the entire drill is low and it is weak against torsion and bending moments. As a result, there is a problem that the working efficiency is very bad.
- the present invention monitors the coolant supply pressure and reliably stops the deep hole cutting of the deep hole cutting device when an abnormality occurs in the deep hole cutting device, thereby reducing the depth of the deep hole.
- An object of the present invention is to provide a system capable of improving work efficiency by using a deep hole cutting device in cutting.
- the deep hole cutting device control system provides a deep hole cutting device 1 for processing the workpiece W, and The pump mechanism 2 for supplying the coolant C to the deep hole cutting device 1, the pressure sensor 4 for monitoring the supply pressure of the coolant C supplied from the pump mechanism 2, and the deep hole cutting device 1
- the pressure of the supply pressure of the coolant C monitored by the pressure sensor 4 is set to an abnormal value
- the coolant C monitored by the pressure sensor 4 is set in advance.
- a control device 7 for generating an abnormal signal for stopping the processing of the work material W when an abnormality has occurred in the deep hole cutting device 1 when the pressure value of the supply pressure exceeds.
- the deep hole cutting device control system according to claim 1 is further provided with the spindle unit 5 and the feed mechanism 6, and the spindle unit 5 includes the deep hole cutting device.
- a motor connected to the rear end of the cutting device 1 and rotating the connected deep hole cutting device 1 is provided, and a function of stopping the rotation of the motor by an abnormal signal output from the control device 7 is provided.
- the feed mechanism 6 is provided at the lower part of the spindle unit 5, and a feed motor 6 a is provided at one end of the feed mechanism 6, and the feed mechanism 6 is controlled by the abnormal signal output from the control device 7.
- the motor 6a is provided with a function of stopping the rotational drive.
- the pump mechanism 2 causes the coolant C to be detected by the abnormal signal output from the control device 7. It is further provided with a function of stopping the supply of.
- the control device 7 controls the supply pressure of the coolant C monitored by the pressure sensor 4.
- An abnormal signal tower 8 for notifying whether the pressure value is normal or abnormal is further provided.
- the supply pressure of the coolant C supplied from the pump mechanism 2 to the deep hole cutting device 1 is constantly monitored by the pressure sensor 4. If the pressure value indicated by 4 is any, an abnormal value is set in advance. After the setting, the control device 7 determines that the deep hole cutting device 1 is abnormal if the pressure value of the pressure sensor 4 exceeds the abnormal value set in advance in the control device 7, and outputs an abnormal signal. Generate. And since the processing of the work material W in the deep hole cutting device 1 should be stopped by the abnormal signal, there is no place depending on the operator's ability like the conventional safety device, and the deep hole cutting device 1 is surely connected. Deep hole cutting can be stopped. For this reason, the deep hole cutting device 1 can be used even in small diameter deep hole cutting, and the work efficiency can be improved.
- the spindle unit 5 includes a motor for rotating the deep hole cutting device 1 inside, and the motor is stopped by an abnormal signal output from the control device 7. Since it has the function to make it cut, cutting of the workpiece W can be stopped.
- the feed mechanism 6 is provided at the lower part of the spindle unit 5, and a feed motor 6a is provided at one end of the feed mechanism 6, so that the feed mechanism 6 is moved by the rotational drive of the feed motor 6a. Then, along with the movement, the spindle unit 5 provided on the upper part also moves, and the deep hole cutting device 1 connected to the spindle unit also moves, so that deep hole cutting of the work material W can be performed. .
- the feed motor 6a has a function of stopping the rotational drive of the feed motor 6a by an abnormal signal output from the control device 7. Therefore, the feed mechanism 6 is stopped by the abnormal signal. Since the deep hole cutting device 1 is also stopped, the deep hole cutting of the work material W can be stopped. Therefore, the deep hole cutting of the deep hole cutting apparatus 1 can be stopped more reliably.
- the pump mechanism 2 can stop the supply of the coolant C after stopping the deep hole cutting of the work material W. Can be suppressed.
- an operator can immediately determine whether or not an abnormality has occurred in the deep hole cutting device 1. .
- FIG. 1 It is a figure which shows schematic structure showing one Embodiment of this invention. It is a block diagram of a control device concerning the present invention. It is the figure which represented the relationship between the processing pressure of a deep hole cutting device, and an abnormal high pressure setting value in the graph.
- FIG. 1 is a diagram showing a schematic configuration representing an embodiment of the invention.
- the deep hole cutting device control system includes a deep hole cutting device 1 for processing a workpiece W, a pump mechanism 2, a coolant tank 3 in which a coolant C is stored, a pressure sensor 4, and a spindle unit 5. And a feed mechanism 6, a feed motor 6 a, a control device 7, and an abnormal signal tower 8.
- the pump mechanism 2 supplies a fixed amount of coolant C from the coolant tank 3 to the inlet 13 of the deep hole cutting device 1. Furthermore, when an abnormal signal is output from the control device 7, a function of stopping supplying the coolant C to the introduction port 13 of the deep hole cutting device 1 is provided.
- the amount of coolant C supplied varies depending on the diameter of the deep hole that cuts the work material W. For example, when the diameter of the deep hole for cutting the work material W is 20 mm, a supply amount of the coolant C of 80 liters per second is required.
- the pressure sensor 4 monitors the supply pressure of the coolant C discharged from the pump mechanism 2 and outputs the pressure value to the control device 7. For example, when the diameter of the deep hole for cutting the workpiece W is 20 mm, the pressure value requires a supply amount of the coolant C of 80 liters per second. For this reason, when the workpiece W is deep hole cut with the deep hole cutting device 1, the resistance in the pipe gradually increases as the hole depth increases. Therefore, when the processing depth becomes 200 mm, every second In order to supply 80 liters of coolant C, the pressure of the pump mechanism 2 changes to a pressure of 20 KPA. When the processing depth reaches 400 mm, the pipe resistance further increases. Therefore, to supply 80 liters of coolant C per second, the pressure of the pump mechanism 2 becomes higher than 20 KPA and becomes 50 KPA. Such a pressure value is monitored by a pressure sensor and output to the control device 7.
- the spindle unit 5 has a function capable of connecting the boring bar 10 of the deep hole cutting apparatus 1 and rotates the boring bar 10 by rotating a motor (not shown) in the spindle unit 5. It can be made to. In addition, when an abnormal signal is output from the control device 7, a function of stopping the rotational drive of a motor (not shown) in the spindle unit 5 is provided.
- the feed mechanism 6 is provided at the lower part of the spindle unit 5, and a feed motor 6a is provided at one end.
- a feed motor 6a is provided at one end.
- the feed mechanism 6 is moved in the arrow F direction, and the deep hole cutting device 1 is also moved in the arrow F direction.
- the feed motor 6a has a function of stopping the rotation of the motor when an abnormal signal is output from the control device 7.
- the control device 7 analyzes whether or not the pressure value output from the pressure sensor 4 is normal. If the control device 7 determines that the pressure value is abnormal, the cutting blade 15 of the deep hole cutting device 1 is damaged. It is considered that an abnormality has occurred in the deep hole cutting device 1 because the chips S are clogged. Therefore, an abnormal signal is output to the feed motor 6a and the spindle unit 5 in order to stop the feed motor 6a and the motor (not shown) in the spindle unit 5. Due to this abnormal signal, the rotational drive of the feed motor 6a and the motor (not shown) in the spindle unit 5 is stopped, so that the deep hole cutting of the work material W of the deep hole cutting apparatus 1 can be stopped reliably. it can. Further, if an abnormal signal is output to the pump mechanism 2, the pump mechanism 2 stops supplying the coolant C to the introduction port 13 of the deep hole cutting device 1, so that useless energy loss can be suppressed.
- the abnormal signal tower 8 includes an abnormal lamp 8a and a normal lamp 8b.
- the normal lamp 8b When the pressure value output from the pressure sensor 4 is normal, the normal lamp 8b is lit, and when the pressure value is abnormal, the abnormal lamp 8a is lit and an abnormality has occurred in the deep hole cutting device 1. It is possible to notify the worker promptly.
- FIG. 2 is a block diagram of the control device 7.
- the control device 7 includes an input unit 70, a storage unit 71, a comparison unit 72, an abnormal signal generation unit 73, and an output unit 74.
- the input unit 70 is provided with an input key, and an abnormal high pressure set value can be set by operating the input key.
- the abnormal high pressure set value is a pressure corresponding to a certain machining depth, that is, when the supply pressure of the coolant C discharged from the pump mechanism 2 exceeds a certain value, an abnormality occurs in the deep hole cutting device 1. It is the value that is judged to have been. For example, when the processing depth reaches 200 mm, the pressure of the pump mechanism 2 becomes 20 KPA in order to supply 80 liters of coolant C per second. Then, 25 KPA is set, and when it exceeds 25 KPA, it is determined that an abnormality has occurred in the deep hole cutting apparatus 1. Since the input abnormal high pressure set value is displayed on the monitor of the output unit 74, the operator who inputs the abnormal high pressure set value inputs the abnormal high pressure set value while checking the input value. It is possible to prevent erroneous input.
- the storage unit 71 is composed of a RAM (Random Access Memory), a ROM (Read Only Memory) or the like, and stores an abnormal high pressure set value set by the input unit 70.
- the comparison unit 72 compares the abnormal high pressure set value stored in the storage unit 71 with the pressure value output from the pressure sensor 4, and compares whether or not the value exceeds the abnormal high pressure set value. The result is output to the abnormal signal generation unit 73.
- the abnormal signal generation unit 73 generates an abnormal signal (for example, “1” signal) when the pressure value output from the pressure sensor 4 exceeds the abnormal high pressure set value, and outputs it to the output unit 74. By outputting, it is displayed on the monitor of the output unit 74 that an abnormality has occurred. Then, the abnormal lamp 8 a is turned on by outputting the abnormal signal to the abnormal signal tower 8 separately from the output unit 74. Furthermore, in order to stop the feed motor 6a and the motor (not shown) in the spindle unit 5, an abnormal signal is output to the feed motor 6a and the spindle unit 5, thereby reliably cutting the deep hole cutting apparatus 1 by cutting. Deep hole cutting of the material W can be stopped. Further, by outputting an abnormal signal to the pump mechanism 2, the pump mechanism 2 stops supplying the coolant C to the inlet 13 of the deep hole cutting device 1.
- an abnormal signal for example, “1” signal
- a normal signal for example, a “0” signal
- the normal signal tower 8 By outputting, it is displayed on the monitor of the output unit 74 that it is operating normally. Then, by outputting the normal signal to the abnormal signal tower 8 separately from the output unit 74, the normal lamp 8b is turned on. Further, by outputting to a feed motor 6a and a motor (not shown) in the spindle unit 5, the deep hole cutting of the work material W of the deep hole cutting device 1 is continued without stopping, and the pump mechanism 2 is caused to stop. If output, the pump mechanism 2 is not stopped and the coolant C is supplied to the introduction port 13 of the deep hole cutting device 1 by a certain amount.
- FIG. 3 is a graph showing the relationship between the working pressure of the deep hole cutting device 1 and the abnormal high pressure set value.
- A represents that the deep hole cutting device 1 is in a normal state
- (b) represents that the deep hole cutting device 1 is in an abnormal state.
- the abnormal high pressure set value is represented by a linear function
- the working pressure of the deep hole cutting device 1 is represented by a curve.
- the processing depth reaches 200 mm
- the abnormal high pressure set value is set to 25 KPA
- the processing pressure of the deep hole cutting device 1 does not exceed 25 KPA, so that the control device 7 is normal operation.
- the abnormal signal generation unit 73 determines that the abnormal signal tower 8 is in a state in which the normal lamp 8b is lit. For this reason, the feed motor 6a and the motor (not shown) in the spindle unit 5 do not stop, and the deep hole cutting apparatus 1 performs deep hole cutting of the work material W. Further, the pump mechanism 2 continues to supply a certain amount of the coolant C to the introduction port 13 of the deep hole cutting device 1.
- the processing pressure of the deep hole cutting device 1 exceeds 55 KPA.
- the abnormal signal generator 73 determines that the abnormal signal tower 8 is in a state in which the abnormal lamp 8a is lit. Therefore, the feed motor 6a and the motor (not shown) in the spindle unit 5 are stopped, and the deep hole cutting of the work material W by the deep hole cutting device 1 is stopped. Moreover, also about the pump mechanism 2, supply of the coolant C to the inlet 13 of the deep hole cutting device 1 will be stopped.
- the supply pressure of the coolant C supplied from the pump mechanism 2 to the deep hole cutting device 1 is constantly monitored by the pressure sensor 4.
- the pressure value monitored by the pressure sensor 4 exceeds the abnormal high pressure set value stored in the storage unit 71 in the control device 7, an abnormal signal is output from the abnormal signal generation unit 73 in the control device 7. Since the processing of the work material W in the deep hole cutting device 1 is stopped by the signal, there is no place depending on the operator's ability like the conventional safety device, and the deep hole cutting of the deep hole cutting device 1 is surely performed. Can be stopped. For this reason, the deep hole cutting device 1 can be used even in small diameter deep hole cutting, and the work efficiency can be improved.
- the pump mechanism 2 since the pump mechanism 2 has a function of stopping the supply of the coolant C to the deep hole cutting device 1 by the abnormal signal, it is possible to suppress useless energy loss.
- the operator can immediately determine whether or not an abnormality has occurred in the deep hole cutting apparatus 1.
- system of the present invention can be applied to an internal supply type deep hole cutting apparatus.
- present invention can also be applied to deep hole machining that rotates the work material W side.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Auxiliary Devices For Machine Tools (AREA)
- Drilling And Boring (AREA)
Abstract
クーラントの供給圧を監視し、深穴切削装置に異常が発生した場合に、確実に深穴切削装置の深穴切削を停止させることで、小径の深穴切削においても深穴切削装置を使用することで作業能率を向上させることができるシステムを提供することを目的としている。 深穴切削装置制御システムは、被削材Wを加工する深穴切削装置1と、該深穴切削装置1にクーラントCを供給するポンプ機構2と、該ポンプ機構2から供給されるクーラントCの供給圧を監視する圧力センサー4と、前記深穴切削装置1が被削材Wを加工する際に、前記圧力センサー4で監視したクーラントCの供給圧の圧力値が幾らであれば異常値でないかをあらかじめ設定させ、該設定させた値を前記圧力センサー4で監視したクーラントCの供給圧の圧力値が超えた場合に前記深穴切削装置1に異常が発生したとして被削材Wの加工を停止させる異常信号を生成する制御装置7とを備えてなるものとしている。
Description
本発明は、深穴切削装置制御システムに関する。
一般的に、深穴加工の切削能率は、工具系の能力よりも、加工中に切削穴内部に発生する切り屑の外部への排出能力に大きく依存する。このため、深穴切削装置では、中空状ボーリングバーを用いると共に、ボーリングヘッドに排出用開口部を設け、切り屑を切刃部へ供給されるクーラントと共に排出用開口部から該ボーリングバーの内部を通して外部へ排出するようにしている。しかして、切刃部へのクーラントの供給は、中空状ボーリングバー10の内部を通して行う内部供給方式と、図1のように中空状ボーリングバー10の外周面と切削穴Hの内周面との間隙Tを通して行う外部供給方式とがある。なお、切削加工は、ボーリングバー10側を回転させる場合と、被削材W側を回転させる場合とがある。
前記外部供給方式について図1を用いて説明すると、外部供給方式では、中空状ボーリングバー10を油密に包囲するクーラント供給ジャケット11を用い、このジャケット11を、シールリング12を介して被削材Wに押接した状態で、導入口13から該ジャケット11内にクーラントCを高圧で供給する。そして、該高圧で供給されたクーラントCをボーリングバー10の外周面と切削穴Hの内周面との間隙Tよりボーリングヘッド14の切刃15側へ供給する。このように供給したクーラントCは、発生する切り屑Sと共にボーリングヘッド14の切刃15に臨む排出用開口部16からボーリングバー10の中空部17内に流入し、外部へ排出するようになっている。
そして、このような外部供給方式を用いて被削材Wを切削するには、ボーリングバー10を主軸ユニット5に連結し、該主軸ユニット5内のモータ(図示せず)を回転駆動させることによって、ボーリングバー10が回転し、その回転によってボーリングヘッド14の切刃15で被削材Wの切削が行われるようになっている。そしてさらに、主軸ユニット5の下部に設けられた送り機構6が、該送り機構6の一端部に設けられた送り用モータ6aの回転駆動によって矢印F方向に移動し、該送り機構6の移動によって、深穴切削装置1が矢印F方向に移動することで、被削材Wの深穴切削が行われるようになっている。
ところで、上記のような深穴切削を行っていた場合、切削進行により穴の深さが深くなるにつれて管内抵抗が次第に大きくなり、深穴切削中に深穴切削装置1の切刃15が欠損したり、また、切り屑Sが詰まったりというような不具合が発生する場合がある。このような不具合が発生した場合に、主軸ユニット5内のモータ(図示せず)と送り用モータ6aを停止させずにいると、不具合が発生した深穴切削装置1が送り機構6とともに矢印F方向に移動し、不具合が発生した深穴切削装置1で被削材Wの深穴切削が行われるようになるから、被削材Wが実用に耐えうるようなものでなくなり破棄しなければならなくなり、それによって莫大な損害を生じるという問題が生じていた。
そのため、上記のような問題点を防止する手段として、深穴切削装置1の深穴切削を停止させる安全装置が知られている。安全装置としては、ボーリングバー10を主軸ユニット5に連結して回転駆動させる際のトルク量、送り用モータ6aの推力を表すトルク量、又は、クーラントCの供給圧力を監視する方法が知られている。
しかし、上記の安全装置において、ボーリングバー10を主軸ユニット5に連結して回転駆動させる際のトルク量、送り用モータ6aの推力を表すトルク量を監視する安全装置では、深穴切削装置1で被削材Wを切削する深穴の直径が12mm以下の場合、径が小径であるため正常状態で動作しているトルク量と、異常状態で動作しているトルク量の差が少ないため検出しにくいという問題が生じていた。
そこで、径が小径の場合は、深穴切削装置1の正常状態と異常状態との違いが明確に表れるクーラントCの供給圧力を監視する安全装置が知られている。つまり、深穴切削中に深穴切削装置1の切刃15が欠損したり、また、切り屑Sが詰まったりというような不具合が発生する場合、クーラントCの供給圧が異常に高くなるため、その圧力を監視することで深穴切削装置1の深穴切削を停止させようとするものである。しかし、この安全装置では、オペレーターが、安全装置につきっきりで、加工深さに応じて手動で安全装置を操作することとなり、それがために、オペレーターの力量によるところが非常に大きい。そのため、安全装置を操作するオペレーターによっては深穴切削装置1が異常状態であっても、深穴切削装置1の深穴切削を停止させることができず、被削材Wを破棄しなければならないということが多々あり、安全装置としての役割を果たしていないという問題が生じていた。なお、内部供給方式も、外部供給方式と、クーラントの供給方法が異なるだけであるため、上述したような、同様の問題が生じていた。
そのため、このような小径の深穴切削にはガンドリル方式が採用されている。ガンドリル方式とは、図示は省略するが、切屑排出用のV溝部を形成した中空状のドリルを使用し、ドリルシャンク内部を通して高圧のクーラントを切刃先端部に送り込み、切刃で生成された切屑を高圧のクーラントで破断し、V溝部から強制的に排出する方法で、径が細くて深い穴を精度良く明けることができるものである。しかし、このガンドリル方式では、ガンドリルシャンクの側面部に切屑排出用V溝部を形成しているため、ドリル全体の剛性が低く、捩れ及び曲げモーメントに対して弱く、それがために切削加工速度を上記のような深穴切削装置1の約1/3程度迄落とさざるを得ず、作業能率が非常に悪いという問題が生じていた。
本発明は、上記の点に鑑み、クーラントの供給圧を監視し、深穴切削装置に異常が発生した場合に、確実に深穴切削装置の深穴切削を停止させることで、小径の深穴切削においても深穴切削装置を使用することで作業能率を向上させることができるシステムを提供することを目的としている。
上記目的を達成するための手段を図面の参照符号を付して示せば、請求項1の発明に係る深穴切削装置制御システムによれば、被削材Wを加工する深穴切削装置1と、該深穴切削装置1にクーラントCを供給するポンプ機構2と、該ポンプ機構2から供給されるクーラントCの供給圧を監視する圧力センサー4と、前記深穴切削装置1が被削材Wを加工する際に、前記圧力センサー4で監視したクーラントCの供給圧の圧力値が幾らであれば異常値でないかをあらかじめ設定させ、該設定させた値を前記圧力センサー4で監視したクーラントCの供給圧の圧力値が超えた場合に前記深穴切削装置1に異常が発生したとして被削材Wの加工を停止させる異常信号を生成する制御装置7とを備えてなるものとしている。
請求項2の発明に係る深穴切削装置制御システムによれば、請求項1に記載の深穴切削装置制御システムに主軸ユニット5と送り機構6をさらに備え、前記主軸ユニット5は、前記深穴切削装置1の後端部と連結され、該連結された深穴切削装置1を回転駆動させるモータを備え、前記制御装置7から出力した異常信号によって前記モータの回転駆動を停止させる機能を備えてなり、前記送り機構6は、前記主軸ユニット5の下部に設けられ、該送り機構6の一端部には送り用モータ6aを設けてなり、前記制御装置7から出力した異常信号によって、前記送り用モータ6aの回転駆動を停止させる機能を備えてなるものとしている。
請求項3の発明に係る深穴切削装置制御システムによれば、請求項1に記載の深穴切削装置制御システムにおいて、前記ポンプ機構2は、前記制御装置7から出力した異常信号によって、クーラントCの供給を停止させる機能をさらに備えてなるものとしている。
請求項4の発明に係る深穴切削装置制御システムによれば、請求項1に記載の深穴切削装置制御システムにおいて、前記制御装置7は、前記圧力センサー4で監視したクーラントCの供給圧の圧力値が正常であるか異常であるかを知らせる異常シグナルタワー8をさらに備えてなるものとしている。
請求項1の発明に係る深穴切削装置制御システムによれば、ポンプ機構2から深穴切削装置1に供給するクーラントCの供給圧を圧力センサー4で常に監視し、制御装置7では、圧力センサー4で示される圧力値が幾らであれば異常値であるかをあらかじめ設定させる。その設定後、前記制御装置7は、圧力センサー4の圧力値が、該制御装置7にあらかじめ設定させておいた異常値を超えれば深穴切削装置1が異常であると判断し、異常信号を生成する。そして、その異常信号によって、深穴切削装置1での被削材Wの加工を停止させればよいから、従来の安全装置のようにオペレーターの力量によるところがなく、確実に深穴切削装置1の深穴切削を停止させることができる。それがために、小径の深穴切削においても深穴切削装置1を使用することでき、作業能率を向上させることができる。
請求項2の発明に係る深穴切削装置制御システムによれば、主軸ユニット5は内部に深穴切削装置1を回転駆動させるモータを備え、そのモータを前記制御装置7から出力した異常信号によって停止させる機能を備えていることから、被削材Wの切削を停止させることができる。そしてさらに、送り機構6は前記主軸ユニット5の下部に設けられ、該送り機構6の一端部には送り用モータ6aを設けてなるから、該送り用モータ6aの回転駆動によって送り機構6が移動し、その移動と共に上部に設けられてなる主軸ユニット5も移動し、さらに主軸ユニットに連結された深穴切削装置1も移動することとなるから、被削材Wの深穴切削が可能となる。そして、前記送り用モータ6aには、前記制御装置7から出力した異常信号によって、前記送り用モータ6aの回転駆動を停止させる機能を備えているから、異常信号によって送り機構6が停止することで深穴切削装置1も停止するため、被削材Wの深穴切削を停止させることができる。それがために、より確実に深穴切削装置1の深穴切削を停止させることができる。
請求項3の発明に係る深穴切削装置制御システムによれば、ポンプ機構2は、被削材Wの深穴切削を停止後、クーラントCの供給を停止させることができるため、無駄なエネルギー損失を抑えることができる。
請求項4の発明に係る深穴切削装置制御システムによれば、異常シグナルタワー8を備えることによって、深穴切削装置1に異常が発生したか否かを作業員がすぐに判断することができる。
W 被削材
1 深穴切削装置
2 ポンプ機構
4 圧力センサー
5 主軸ユニット
6 送り機構
6a 送り用モータ
7 制御装置
8 異常シグナルタワー
1 深穴切削装置
2 ポンプ機構
4 圧力センサー
5 主軸ユニット
6 送り機構
6a 送り用モータ
7 制御装置
8 異常シグナルタワー
以下に本発明の好適な実施形態を図面に基づいて説明すると、図1は本発明の一実施形態を表す概略構成を示す図である。図において、深穴切削装置制御システムは、被削材Wを加工する深穴切削装置1と、ポンプ機構2と、クーラントCが蓄えられているクーラントタンク3と、圧力センサー4と、主軸ユニット5と、送り機構6と、送り用モータ6aと、制御装置7と、異常シグナルタワー8と、からなる。
ポンプ機構2は、深穴切削装置1の導入口13へ、クーラントタンク3からクーラントCを一定量供給するものである。そしてさらに、制御装置7から異常信号が出力された場合には、クーラントCを深穴切削装置1の導入口13へ供給するのを停止する機能を備えているものである。なお、クーラントCを供給する量は、被削材Wを切削する深穴の直径によって変化する。例えば、被削材Wを切削する深穴の直径が20mmである場合は、毎秒80リットルのクーラントCの供給量を必要とする。
圧力センサー4は、ポンプ機構2から一定量吐出されるクーラントCの供給圧力を監視し、その圧力値を制御装置7に出力する。この圧力値は、例えば、被削材Wを切削する深穴の直径が20mmである場合に、毎秒80リットルのクーラントCの供給量が必要となる。それがために、被削材Wを深穴切削装置1で深穴切削していくと穴の深さが深くなるにつれて管内抵抗が次第に高くなるから、加工深さが200mmになったときには、毎秒80リットルのクーラントCを供給するために、ポンプ機構2の圧力が20KPAの圧力へ変化する。そして、加工深さが400mmになったときには、さらに、管内抵抗が高くなるため、毎秒80リットルのクーラントCを供給するには、ポンプ機構2の圧力が20KPAよりも高くなり50KPAの圧力となる。このような圧力値が圧力センサーで監視され、制御装置7に出力される。
主軸ユニット5は、深穴切削装置1のボーリングバー10を連結することができる機能を備え、そして、該主軸ユニット5内のモータ(図示せず)を回転駆動させることによって、ボーリングバー10を回転させることができるものである。そしてさらに、制御装置7から異常信号が出力された場合には、前記主軸ユニット5内のモータ(図示せず)の回転駆動を停止させる機能を備えているものである。
送り機構6は、主軸ユニット5の下部に設けられ、一端部に送り用モータ6aが設けられている。この送り機構6の一端部に設けられた送り用モータ6aが回転駆動することによって、送り機構6が矢印F方向に移動することとなり、深穴切削装置1も矢印F方向に移動することとなる。そしてさらに、送り用モータ6aには、制御装置7から異常信号が出力された場合に、モータの回転駆動を停止させる機能が備えられている。
制御装置7は、前記圧力センサー4から出力された圧力値が正常であるか否かを解析し、異常な圧力値であると判断した場合には、深穴切削装置1の切刃15が破損しているか、切り屑Sが詰まっていることから深穴切削装置1に異常が発生したと考えられる。そのため、送り用モータ6aと主軸ユニット5内のモータ(図示せず)を停止させるべく、異常信号を送り用モータ6a及び主軸ユニット5に出力する。この異常信号によって、送り用モータ6a及び主軸ユニット5内のモータ(図示せず)の回転駆動が停止するから、確実に深穴切削装置1の被削材Wの深穴切削を停止させることができる。また、異常信号をポンプ機構2に出力すれば、ポンプ機構2はクーラントCを深穴切削装置1の導入口13へ供給するのを停止させるため、無駄なエネルギー損失を抑えることができる。
異常シグナルタワー8は、異常ランプ8aと正常ランプ8bを備えている。前記圧力センサー4から出力された圧力値が正常であれば正常ランプ8bが点灯し、異常な圧力値であった場合には異常ランプ8aが点灯し、深穴切削装置1に異常が発生したことを迅速に作業員に知らせることが可能となる。
さらに詳しく、図2を用いて制御装置7について説明すると、図2は、制御装置7のブロック図である。図において、制御装置7は、入力部70と、記憶部71と、比較部72と、異常信号生成部73と、出力部74とからなる。
入力部70は、入力キーが設けられており、該入力キーの操作によって異常高圧設定値を設定することができる。異常高圧設定値とは、ある加工深さに対応する圧力、つまり、ポンプ機構2から一定量吐出されるクーラントCの供給圧力がある値を超えたときは、深穴切削装置1に異常が発生したと判断される値のことである。例えば、加工深さが200mmになったときは、毎秒80リットルのクーラントCを供給するために、ポンプ機構2の圧力が20KPAの圧力となるから、異常高圧設定値としては、多少の誤差を考慮して25KPAを設定しておき、25KPAを超えたときには、深穴切削装置1に異常が発生したと判断することとなる。なお、入力された異常高圧設定値は、出力部74のモニターに入力値が表示されるため、異常高圧設定値を入力する作業者は、入力値を確認しながら異常高圧設定値を入力することができ誤入力の防止を図ることができる。
記憶部71は、RAM(ランダムアクセスメモリ)やROM(リードオンリーメモリ)等からなるもので、前記入力部70で設定された異常高圧設定値が格納されている。比較部72は、記憶部71に格納された異常高圧設定値と、圧力センサー4から出力された圧力値とを比較し、異常高圧設定値を超えた値となっているか否かを比較し、その結果を異常信号生成部73に出力する。
異常信号生成部73は、圧力センサー4から出力された圧力値が異常高圧設定値を超えた値となっていた場合には、異常信号(例えば「1」信号)を生成し、出力部74に出力することで、出力部74のモニターに異常が発生したことを表示させる。そして、前記異常信号を、出力部74とは別に異常シグナルタワー8に出力することで異常ランプ8aを点灯させることとなる。さらに、送り用モータ6aと主軸ユニット5内のモータ(図示せず)を停止させるべく、異常信号を送り用モータ6a及び主軸ユニット5に出力することで、確実に深穴切削装置1の被削材Wの深穴切削を停止させることができる。また、異常信号をポンプ機構2に出力することで、ポンプ機構2は、クーラントCを深穴切削装置1の導入口13へ供給するのを停止させる。
また、異常信号生成部73で、異常高圧設定値より圧力センサー4から出力された圧力値が低い値と判断した場合には、正常信号(例えば「0」信号)を生成し、出力部74に出力することで、出力部74のモニターに正常動作していることを表示させる。そして、前記正常信号を、出力部74とは別に異常シグナルタワー8に出力することで正常ランプ8bを点灯させることとなる。さらに、送り用モータ6aと主軸ユニット5内のモータ(図示せず)に出力することで、深穴切削装置1の被削材Wの深穴切削を停止させずに続行させ、ポンプ機構2に出力すれば、ポンプ機構2を停止させず、クーラントCを深穴切削装置1の導入口13へ一定量供給させることとなる。
さらに、図3を用いて、詳細に異常高圧設定値について説明すると、図3は深穴切削装置1の加工時圧力と異常高圧設定値との関係をグラフに表したものである。(a)は、深穴切削装置1が正常状態であることを表し、(b)は深穴切削装置1が異常状態であることを表す。異常高圧設定値は、表から明らかなように、一次関数で表わされており、深穴切削装置1の加工時圧力は曲線で表わされている。
例えば、加工深さが200mmになったとき、異常高圧設定値を25KPAと設定していた場合、深穴切削装置1の加工時圧力が25KPAを超えていないため、正常動作であると制御装置7内の異常信号生成部73が判断し、異常シグナルタワー8は正常ランプ8bが点灯する状態となる。それがために、送り用モータ6aと主軸ユニット5内のモータ(図示せず)は停止せず、深穴切削装置1によって被削材Wの深穴切削が行われることとなる。また、ポンプ機構2についても、引き続きクーラントCを深穴切削装置1の導入口13へ一定量供給することとなる。
加工深さが400mmになったとき、異常高圧設定値を55KPAと設定していた場合、深穴切削装置1の加工時圧力が55KPAを超えているため、異常動作であると制御装置7内の異常信号生成部73が判断し、異常シグナルタワー8は異常ランプ8aが点灯する状態となる。それがために、送り用モータ6aと主軸ユニット5内のモータ(図示せず)は停止し、深穴切削装置1による被削材Wの深穴切削が停止することとなる。また、ポンプ機構2についても、クーラントCを深穴切削装置1の導入口13へ供給するのを停止することとなる。
以上のように、本発明の実施形態によれば、ポンプ機構2から深穴切削装置1に供給するクーラントCの供給圧を圧力センサー4で常に監視する。そして、圧力センサー4で監視した圧力値が、制御装置7内の記憶部71に格納された異常高圧設定値を超えた場合に
、制御装置7内の異常信号生成部73から異常信号が出力され、その信号によって深穴切削装置1での被削材Wの加工を停止させているから、従来の安全装置のようにオペレーターの力量によるところがなく、確実に深穴切削装置1の深穴切削を停止させることができる。それがために、小径の深穴切削においても深穴切削装置1を使用することでき、作業能率を向上させることができる。
、制御装置7内の異常信号生成部73から異常信号が出力され、その信号によって深穴切削装置1での被削材Wの加工を停止させているから、従来の安全装置のようにオペレーターの力量によるところがなく、確実に深穴切削装置1の深穴切削を停止させることができる。それがために、小径の深穴切削においても深穴切削装置1を使用することでき、作業能率を向上させることができる。
さらに、前記異常信号を使用して深穴切削装置1を停止させるために、主軸ユニット5内のモータを停止させる機能と、送り機構6を移動させることができる送り用モータ6aを停止させる機能とを備えているから、それがために、より確実に深穴切削装置1の深穴切削を停止させることができる。
さらに、ポンプ機構2は、前記異常信号によって深穴切削装置1へのクーラントCの供給を停止させる機能を備えているから、無駄なエネルギー損失を抑えることができる。
さらに、異常シグナルタワー6を備えているから、深穴切削装置1に異常が発生したか否かを作業員がすぐに判断することができる。
なお、他の実施形態として本発明のシステムは、内部供給方式の深穴切削装置にも適用が可能である。さらに、被削材W側を回転させる深穴加工に対しても適用が可能である。
また、小径の深穴切削に限らず、穴の直径が12mm以上の深穴を切削する場合に使用しても有効である。
Claims (4)
- 被削材を加工する深穴切削装置と、
該深穴切削装置にクーラントを供給するポンプ機構と、
該ポンプ機構から供給されるクーラントの供給圧を監視する圧力センサーと、
前記深穴切削装置が被削材を加工する際に、前記圧力センサーで監視したクーラントの供給圧の圧力値が幾らであれば異常値でないかをあらかじめ設定させ、該設定させた値を前記圧力センサーで監視したクーラントの供給圧の圧力値が超えた場合に前記深穴切削装置に異常が発生したとして被削材の加工を停止させる異常信号を生成する制御装置とを備えてなる深穴切削装置制御システム。 - 請求項1に記載の深穴切削装置制御システムに主軸ユニットと送り機構をさらに備え、
前記主軸ユニットは、前記深穴切削装置の後端部と連結され、該連結された深穴切削装置を回転駆動させるモータを備え、前記制御装置から出力した異常信号によって前記モータの回転駆動を停止させる機能を備えてなり、
前記送り機構は、前記主軸ユニットの下部に設けられ、該送り機構の一端部には送り用モータを設けてなり、前記制御装置から出力した異常信号によって、前記送り用モータの回転駆動を停止させる機能を備えてなる深穴切削装置制御システム。 - 請求項1に記載の深穴切削装置制御システムにおいて、前記ポンプ機構は、前記制御装置から出力した異常信号によって、クーラントの供給を停止させる機能をさらに備えてなる深穴切削装置制御システム。
- 請求項1に記載の深穴切削装置制御システムにおいて、前記制御装置は、前記圧力センサーで監視したクーラントの供給圧の圧力値が正常であるか異常であるかを知らせる異常シグナルタワーをさらに備えてなる深穴切削装置制御システム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-081268 | 2008-03-26 | ||
JP2008081268A JP5243073B2 (ja) | 2008-03-26 | 2008-03-26 | 深穴切削装置制御システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009118948A1 true WO2009118948A1 (ja) | 2009-10-01 |
Family
ID=41113170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/070909 WO2009118948A1 (ja) | 2008-03-26 | 2008-11-18 | 深穴切削装置制御システム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5243073B2 (ja) |
WO (1) | WO2009118948A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101850520A (zh) * | 2010-03-10 | 2010-10-06 | 无锡桥联数控机床有限公司 | 一种深孔加工工装结构 |
CN103286339A (zh) * | 2013-06-18 | 2013-09-11 | 哈电集团(秦皇岛)重型装备有限公司 | 一种镗铣床深孔加工的方法及装置 |
CN103801731A (zh) * | 2014-02-25 | 2014-05-21 | 诸城昌达机电科技有限公司 | 一种轮胎膜具钻孔装置 |
WO2015197669A1 (de) * | 2014-06-25 | 2015-12-30 | Hilti Aktiengesellschaft | Vorzeitige signalisierung der bevorstehenden unterbrechung der wasserversorgung durch eine wasserversorgungsanlage |
CN111215664A (zh) * | 2019-12-10 | 2020-06-02 | 湘潭市汇丰设备制造有限公司 | 一种加工超长孔数控专用镗床 |
US20220314343A1 (en) * | 2020-03-24 | 2022-10-06 | The Boeing Company | Tool bit, a tooling assembly for applying a fluid to a surface, and a method |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6466232B2 (ja) * | 2015-04-10 | 2019-02-06 | 東芝機械株式会社 | Bta深穴加工機 |
JP6722153B2 (ja) * | 2017-07-28 | 2020-07-15 | 株式会社Subaru | ドリル、穿孔ユニット及び穿孔方法 |
JP7207983B2 (ja) | 2018-12-10 | 2023-01-18 | 株式会社Subaru | ドリル、穿孔ユニット及び被穿孔品を製作する方法 |
JP7267766B2 (ja) | 2019-02-14 | 2023-05-02 | 株式会社Subaru | 回転切削工具、回転切削ユニット及び被切削加工品を製作する方法 |
CN110421186B (zh) * | 2019-08-07 | 2020-07-24 | 武汉重工铸锻有限责任公司 | 纠正镗细长深孔偏斜的方法 |
JP7545789B2 (ja) | 2020-05-27 | 2024-09-05 | 株式会社Subaru | 孔の仕上げ加工工具及び孔の仕上げ加工品の製造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0373249A (ja) * | 1989-08-11 | 1991-03-28 | Mitsui Seiki Kogyo Co Ltd | 切削油圧力チェック回路構造 |
JPH08221135A (ja) * | 1995-02-16 | 1996-08-30 | Toyota Motor Corp | 圧力設定装置 |
JP2003062711A (ja) * | 2001-08-21 | 2003-03-05 | Nippon Kokan Light Steel Kk | Uリブ自動孔明け装置 |
-
2008
- 2008-03-26 JP JP2008081268A patent/JP5243073B2/ja active Active
- 2008-11-18 WO PCT/JP2008/070909 patent/WO2009118948A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0373249A (ja) * | 1989-08-11 | 1991-03-28 | Mitsui Seiki Kogyo Co Ltd | 切削油圧力チェック回路構造 |
JPH08221135A (ja) * | 1995-02-16 | 1996-08-30 | Toyota Motor Corp | 圧力設定装置 |
JP2003062711A (ja) * | 2001-08-21 | 2003-03-05 | Nippon Kokan Light Steel Kk | Uリブ自動孔明け装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101850520A (zh) * | 2010-03-10 | 2010-10-06 | 无锡桥联数控机床有限公司 | 一种深孔加工工装结构 |
CN103286339A (zh) * | 2013-06-18 | 2013-09-11 | 哈电集团(秦皇岛)重型装备有限公司 | 一种镗铣床深孔加工的方法及装置 |
CN103801731A (zh) * | 2014-02-25 | 2014-05-21 | 诸城昌达机电科技有限公司 | 一种轮胎膜具钻孔装置 |
WO2015197669A1 (de) * | 2014-06-25 | 2015-12-30 | Hilti Aktiengesellschaft | Vorzeitige signalisierung der bevorstehenden unterbrechung der wasserversorgung durch eine wasserversorgungsanlage |
EP2960013A1 (de) * | 2014-06-25 | 2015-12-30 | HILTI Aktiengesellschaft | Vorzeitige Signalisierung der bevorstehenden Unterbrechung der Wasserversorgung durch eine Wasserversorgungsanlage |
CN111215664A (zh) * | 2019-12-10 | 2020-06-02 | 湘潭市汇丰设备制造有限公司 | 一种加工超长孔数控专用镗床 |
US20220314343A1 (en) * | 2020-03-24 | 2022-10-06 | The Boeing Company | Tool bit, a tooling assembly for applying a fluid to a surface, and a method |
Also Published As
Publication number | Publication date |
---|---|
JP5243073B2 (ja) | 2013-07-24 |
JP2009233780A (ja) | 2009-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5243073B2 (ja) | 深穴切削装置制御システム | |
JP5292045B2 (ja) | 深穴切削装置 | |
US5895177A (en) | Machine tool with fault detection | |
JP3788277B2 (ja) | 深穴切削装置 | |
JP2001079733A (ja) | Nc工作機械の数値制御装置 | |
KR101742945B1 (ko) | 재사용 가공물 가공용 절삭공구장치 | |
JP5086151B2 (ja) | ワーク検知装置及びワーク検知方法並びにワーク検知装置を備えた工作機械 | |
JP3215951B2 (ja) | 切削油圧力チェック回路構造 | |
JP2012106292A (ja) | クーラント供給装置及びクーラント供給方法 | |
JP6466804B2 (ja) | 工作機械の加工異常検出装置及び加工異常検出方法 | |
JP5350131B2 (ja) | 穿孔装置及び穿孔方法 | |
CN212351229U (zh) | 一种机加工工作头 | |
US20110079445A1 (en) | Drill Head for Deep-Hole Drilling | |
JP3676568B2 (ja) | ドリルの異常判定装置 | |
JPH07276146A (ja) | ワイヤ放電加工機におけるワイヤ送り装置 | |
JP2000158295A (ja) | 工作機械用切削工具の切粉詰まり検出装置 | |
CN215545765U (zh) | 检测与反馈温度变化的搅拌摩擦焊系统 | |
KR100970556B1 (ko) | 주축 쿨런트 침투 방지를 위한 공기압력 제어방법 및 그장치 | |
JP2001277075A (ja) | 工作機械における切削工具の負荷検出方法および装置 | |
JP2005238415A (ja) | ドリル加工機能付き工作機械 | |
KR100381209B1 (ko) | 공작기계의 주축관통절삭유 비산제어방법 | |
JP2008055536A (ja) | 深穴切削加工方法およびこの方法に用いられる加工装置 | |
KR200345525Y1 (ko) | 공작기계의 자동원점복귀 장치 | |
KR101742947B1 (ko) | 자동 토출수단을 갖는 재사용 가공물 가공용 절삭공구장치 | |
KR20180036480A (ko) | 절삭유량 자동 조절 장치 및 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08873579 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08873579 Country of ref document: EP Kind code of ref document: A1 |