WO2009116394A1 - 太陽電池モジュールおよび太陽電池モジュールの製造方法 - Google Patents
太陽電池モジュールおよび太陽電池モジュールの製造方法 Download PDFInfo
- Publication number
- WO2009116394A1 WO2009116394A1 PCT/JP2009/054040 JP2009054040W WO2009116394A1 WO 2009116394 A1 WO2009116394 A1 WO 2009116394A1 JP 2009054040 W JP2009054040 W JP 2009054040W WO 2009116394 A1 WO2009116394 A1 WO 2009116394A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solar cell
- wiring
- cell module
- conducting wire
- solar
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000003566 sealing material Substances 0.000 claims abstract description 76
- 239000000463 material Substances 0.000 claims abstract description 72
- 239000000758 substrate Substances 0.000 claims description 77
- 238000007789 sealing Methods 0.000 claims description 23
- 238000005452 bending Methods 0.000 claims description 21
- 229910052782 aluminium Inorganic materials 0.000 claims description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 12
- -1 polyethylene terephthalate Polymers 0.000 claims description 12
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 claims description 10
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 10
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 10
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 8
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 claims description 8
- 239000011112 polyethylene naphthalate Substances 0.000 claims description 8
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 8
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 8
- 229910052709 silver Inorganic materials 0.000 claims description 8
- 239000004332 silver Substances 0.000 claims description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 239000004642 Polyimide Substances 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- 229920001721 polyimide Polymers 0.000 claims description 6
- 239000008393 encapsulating agent Substances 0.000 claims description 5
- 238000002788 crimping Methods 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 230000006835 compression Effects 0.000 claims description 3
- 238000007906 compression Methods 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 19
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 19
- 229910052710 silicon Inorganic materials 0.000 description 19
- 239000010703 silicon Substances 0.000 description 19
- 239000004020 conductor Substances 0.000 description 10
- 239000011521 glass Substances 0.000 description 9
- 238000009413 insulation Methods 0.000 description 9
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 229910000679 solder Inorganic materials 0.000 description 6
- 238000005530 etching Methods 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 238000002161 passivation Methods 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000012141 concentrate Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 239000002390 adhesive tape Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 102100025490 Slit homolog 1 protein Human genes 0.000 description 1
- 101710123186 Slit homolog 1 protein Proteins 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/02016—Circuit arrangements of general character for the devices
- H01L31/02019—Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02021—Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/02002—Arrangements for conducting electric current to or from the device in operations
- H01L31/02005—Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
- H01L31/02008—Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/05—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
- H01L31/0504—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
- H01L31/0516—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G3/00—Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
- H02G3/02—Details
- H02G3/08—Distribution boxes; Connection or junction boxes
- H02G3/16—Distribution boxes; Connection or junction boxes structurally associated with support for line-connecting terminals within the box
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/30—Electrical components
- H02S40/34—Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/18—Printed circuits structurally associated with non-printed electric components
- H05K1/189—Printed circuits structurally associated with non-printed electric components characterised by the use of a flexible or folded printed circuit
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10143—Solar cell
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49204—Contact or terminal manufacturing
- Y10T29/49208—Contact or terminal manufacturing by assembling plural parts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4935—Heat exchanger or boiler making
- Y10T29/49355—Solar energy device making
Definitions
- the present invention relates to a solar cell module and a method for manufacturing the solar cell module, and more particularly to a solar cell module and a method for manufacturing the solar cell module that can easily perform wiring work.
- the present invention also relates to a solar cell module and a method for manufacturing a solar cell module, and more particularly, to a solar cell module that can easily perform insulation treatment of a conductor and a method for manufacturing the solar cell module.
- a mainstream product is one in which a pn junction is formed near the surface, one electrode is disposed on the light receiving surface, and the other electrode is disposed on the front surface (back surface) on the opposite side of the light receiving surface.
- a solar cell string is formed by electrically connecting a plurality of solar cells having the above-described configuration with an interconnector, and the plurality of solar cell strings are electrically connected and then sealed with a sealing material such as a resin.
- the solar cell module is produced by stopping and photovoltaic power generation is performed.
- FIG. 31 shows a schematic cross-sectional view of an example of a conventional solar cell module.
- the light receiving surface side electrode (not shown) is formed together with the antireflection film 812 on the light receiving surface on which the texture structure of the silicon substrate 801 is formed, and the back surface side electrode 807 is formed on the back surface.
- the glass substrate 817 is installed in the upper surface of the sealing material 818 which sealed the solar cell string, and the weather resistant film 819 is installed in the lower surface,
- the outer periphery is surrounded by the aluminum frame 820.
- the interconnector 822 at both ends of the solar cell string is provided with a connection member 816 that is connected to another solar cell string.
- FIG. 32 shows a schematic configuration of part of the back side of the solar cell module shown in FIG.
- the solar cells are arranged in a downward direction on the paper surface of FIG. 32 and connected in series, and each solar cell column constitutes a solar cell string.
- the ends of the interconnectors 822 of adjacent solar cell strings are connected to each other by a connection member 816, and the connection member 816 is drawn around the outer periphery of the solar cell module and collected in one place.
- the connection members 816 collected at one place are connected to a terminal box 802 including a lead wire 803a, a lead wire 803b, and a bypass diode (not shown).
- produced in the solar cell module is taken out outside by lead wire 803a, 803b.
- connection member 816 in order to connect to the terminal box 802, it is necessary to draw the connection member 816 around the outer periphery of the solar cell module and collect it at one place. There was a problem that it took time and effort. Furthermore, the surface of the connecting member 816 needs to be insulated such as covering the surface of the connecting member 816 so that the connecting member 816 and the back electrode of the solar battery cell or the connecting member 816 are not electrically connected to each other. There was a problem that there was. In addition, there is a problem that it takes time to insulate the connecting member 816 that is a conductive wire.
- connection member 816 for connecting the solar cell strings
- power of about several tens to hundreds of solar cells is concentrated on the connection member 816 connected to the terminal box 802.
- this connection operation was a process which requires the skill of an operator.
- the object of the present invention is to reduce the number of materials and to simplify the connection work itself in the wiring work in the production of the solar cell module.
- An object of the present invention is to provide a solar cell module and a method for manufacturing the solar cell module that are reduced and work efficiency is improved.
- Another object of the present invention is to provide a solar cell module and a method for manufacturing the solar cell module, which can easily conduct insulation treatment of the conducting wire.
- the present invention relates to a solar cell structure including a wiring substrate having wiring for electrically connecting solar cells, and a plurality of solar cells that are installed on the wiring of the wiring substrate and electrically connected
- the solar cell structure is installed in the sealing material so that a part of the wiring in at least one of the opposite ends of the solar cell structure is located on the side opposite to the light receiving surface side of the solar cell.
- this solar cell module at least a part of the wiring located on the side opposite to the light receiving surface side of the solar battery cell is exposed from the sealing material.
- At least a part of the wiring contains at least one selected from the group consisting of copper, aluminum, and silver.
- the wiring of the wiring board includes a solar cell string connection wiring to which the solar cell strings are connected to each other and an output terminal connection wiring to which the output terminal is connected.
- a bypass diode connected to the solar cell string connection wiring is included.
- the output terminal connection wiring and the output terminal are connected by at least one of a connection by physical pressure bonding and a connection through a conductive substance.
- the output terminal connection wiring and the output terminal may be connected by physical compression using magnetic force.
- the output terminal connection wiring and the output terminal may be connected by physical pressure bonding by screwing the terminal box to the wiring board.
- the wiring board has an insulating base material on which wiring is installed, and the insulating base material is selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, polyimide, and ethylene vinyl acetate. It is preferable to have flexibility including at least one kind.
- a part of the wiring is placed on the side opposite to the light receiving surface side of the solar cell by folding a part of the wiring substrate at at least one of the opposite ends of the solar cell structure. It is preferable to be positioned.
- the solar cell is a back electrode type solar cell including a p-type electrode and an n-type electrode on the back surface opposite to the light receiving surface side of the solar cell. preferable.
- the present invention is a method for producing any one of the above solar cell modules, the step of forming a solar cell structure by electrically connecting the solar cells to the wiring of the wiring board, Install the solar cell structure in the encapsulant so that at least a part of the wiring in at least one of the opposite ends of the solar cell structure is exposed from the encapsulant on the side opposite to the light receiving surface side of the solar cell
- the manufacturing method of the solar cell module including the process to do.
- the present invention includes an insulating base material on which wiring for electrically connecting solar cells to each other and a plurality of solar cells that are installed on the wiring of the insulating base material and are electrically connected to each other.
- the solar cell structure provided is installed in an insulating sealing material, and one end of a conducting wire for extracting current to the outside is electrically connected to the wiring, and the other end of the conducting wire is externally connected to the sealing material.
- a solar cell module in which at least a part of the surface of the conductive wire between one end of the conductive wire and the other end of the conductive wire is covered with at least one of an insulating base material and a sealing material.
- the solar cell structure is formed by bending a part of the insulating base material at at least one of the opposite ends of the solar cell structure to the side opposite to the light receiving surface side of the solar cell.
- the insulating base material is placed in a sealing material, and at least part of the surface of the conductive wire between one end of the conductive wire and the other end of the conductive wire is sandwiched between the bent portions of the insulating base material. It may be coated.
- the sealing material In the solar cell module of the present invention, at least a part of the surface of the conducting wire between one end of the conducting wire and the other end of the conducting wire is covered with the sealing material, and the other end of the conducting wire is covered with the sealing material. You may be pulled out from the provided cut
- At least a part of the wiring contains at least one selected from the group consisting of copper, aluminum, and silver.
- the insulating base material has flexibility including at least one selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, polyimide, and ethylene vinyl acetate.
- the solar cell is a back electrode type solar cell including a p-type electrode and an n-type electrode on the back surface opposite to the light receiving surface side of the solar cell. Is preferred.
- the present invention is a method for producing any one of the above solar cell modules, wherein the solar cell structure is formed by electrically connecting the solar cells to the wiring of the insulating base material. Electrically connecting one end of the conducting wire to the wiring, and covering at least a part of the surface of the conducting wire with at least one of the insulating base material and the sealing material and the other end of the conducting wire from the sealing material to the outside And a step of sealing the solar cell structure in a sealing material so as to be drawn out to a solar cell module.
- the present invention it is possible to provide a solar cell module and a method for manufacturing the solar cell module that can easily perform wiring work.
- the present invention it is possible to provide a solar cell module and a method for manufacturing the solar cell module, which can easily perform insulation treatment of the conducting wire.
- FIG. 1 It is typical sectional drawing of an example of the solar cell module of this invention. It is a typical top view of an example of the light-receiving surface side before bending of the solar cell structure which comprises the solar cell module shown in FIG. It is a typical top view of an example of the back surface side of the solar cell module produced by folding the solar cell structure which comprises the solar cell module shown in FIG. 1, and sealing in a sealing material. It is a typical top view of the back surface of the back electrode type photovoltaic cell used for the solar cell module shown in FIG. It is a typical top view of the wiring board used for the solar cell module shown in FIG.
- FIG. 10 is a schematic partial cross-section along the short side direction of the solar cell module shown in FIG. 9.
- FIG. 3 is a schematic plan view of another example of the back surface side of the solar cell module produced by bending the solar cell structure constituting the solar cell module shown in FIG. 1 and sealing it in a sealing material.
- FIG. 19 is a schematic plan view of an example of a back surface side of a solar cell module produced by folding the solar cell structure shown in FIG. 18 and sealing it in a sealing material.
- FIG. 19 is a schematic plan view of another example of the back surface side of a solar cell module manufactured by folding the solar cell structure shown in FIG. 18 and sealing it in a sealing material. It is typical sectional drawing of another example of the solar cell module of this invention. It is typical sectional drawing inside further than the cross section of the solar cell module shown by FIG.
- FIG. 30 is a schematic plan view when a part of the solar cell module of FIG. 29 is viewed from the back side. It is typical sectional drawing of an example of the conventional solar cell module.
- FIG. 32 is a schematic configuration diagram of a part of the back side of the solar cell module shown in FIG. 31.
- 100 back electrode type solar cell 101,801 silicon substrate, 102 antireflection film, 103 passivation film, 104 n-type region, 105 p-type region, 106 n-type electrode, 107 p-type electrode, 109 n-type wiring 110 p-type wiring, 111 insulating base material, 112 slit, 113 connecting wiring, 114a, 114b, 114c, 114d, 115a, 115b, 115c wiring end, 117 transparent substrate, 118 sealing material, 119 back surface base Material, 120 frame, 121 bar, 300a, 300b, 300c diode, 301 opening, 302, 302a, 302b terminal box, 303a, 303b, 803a, 803b lead wire, 304 magnetic body, 305 magnet, 310a, 310b output Terminal, 416 Receiving member, 420a, 420b, lead wire fixing member, 421 pin, 422 screw, 423 filler, 425 through hole, 430 terminal box cover
- FIG. 1 typical sectional drawing of an example of the solar cell module of this invention is shown.
- the n-type region 104 and the p-type region 105 are respectively formed on the surface exposed from the passivation film 103 formed on the back surface of the p-type or n-type silicon substrate 101.
- An n-type electrode 106 is formed on the n-type region 104, and a p-type electrode 107 is formed on the p-type region 105.
- An antireflection film 102 is formed on the light receiving surface of the silicon substrate 101.
- the back electrode type solar battery cell 100 having the above configuration is included.
- the light receiving surface of the silicon substrate 101 has a texture structure.
- the n-type electrode 106 and the p-type electrode 107 of the back electrode type solar battery cell 100 are electrically connected to the n-type wiring 109 and the p-type wiring 110 installed on the insulating base 111 of the wiring board, respectively.
- the n-type electrode 106 of one back electrode solar cell 100 and the p-type electrode 107 of the other back electrode solar cell 100 of the adjacent back electrode solar cells 100 are electrically connected, the adjacent back electrode type solar cells 100 are connected in series to form a solar cell structure.
- the wiring board is formed by bonding a metal foil onto the insulating base 111, forming an etching protection resist in a desired shape on the metal foil, and etching the metal foil exposed from the etching protection resist. Later, it can be formed by removing the resist for etching protection.
- the solar cell structure is installed in a sealing material 118 between a transparent substrate 117 made of, for example, glass or the like and a back base material 119 made of a weather resistant film or the like. It is preferable that the insulating base material 111 is installed by bending both ends in the connecting direction of the back electrode type solar cells 100 constituting the solar cell string.
- the sealing material 118 can be used without any particular limitation, and for example, a transparent resin such as EVA (ethylene vinyl acetate) can be used.
- wiring ends 114a and 114b which are wirings installed on the side opposite to the light receiving surface side of the back electrode type solar battery cell 100 by bending both ends of the insulating base material 111 of the wiring substrate of the solar battery structure, and wiring Of the end portion 115b, the wiring end portion 114a is exposed to the outside through an opening 301 provided on the back surface of the sealing material 118, and is electrically connected to an output terminal for taking out the current generated in the solar cell module to the outside.
- a frame body 120 such as aluminum is fitted so as to surround the outer peripheries of the transparent substrate 117, the sealing material 118, and the back surface base material 119 sealing the solar cell structure.
- FIG. 2 shows a schematic plan view of an example of the light receiving surface side before bending of the solar cell structure constituting the solar cell module shown in FIG.
- 24 back electrode type solar cells 100 are arranged in the form of 6 columns ⁇ 4 rows on the wiring of the wiring board to form a solar battery structure, and at the end of the wiring board
- a solar cell module having the configuration shown in FIG. 1 is obtained by being bent along broken lines AA and BB corresponding to the provided slits 112 and sealed in a sealing material.
- the wiring end 114a and the wiring end 115a between the wiring end 114a and the wiring end 115a, between the wiring end 115a and the wiring end 114b, between the wiring end 114b and the wiring end 115b, between the wiring end 115b and the wiring end 114c, and the wiring end.
- the solar cells 100 arranged between 114c and the wiring end 115c and between the wiring end 115c and the wiring end 114d are electrically connected to the adjacent solar cells 100 in series.
- one solar battery string is constituted by four back electrode solar cells 100 connected in series in the direction of L2 shown in FIG. 2 and arranged in a line.
- the wiring end portion 114b, the wiring end portion 114c, the wiring end portion 115a, the wiring end portion 115b, and the wiring end portion 115c correspond to the above-described solar cell string connection wiring.
- the solar cell structure it is preferable to increase the cross-sectional area of the wiring in order to reduce the series resistance of the solar cell structure.
- the width of the wiring is increased in order to sufficiently increase the cross-sectional area of the wiring, for example, the connection direction of the back electrode type solar cells 100 of the solar battery structure shown in FIG. 2 (shown in FIG. 2).
- both end portions of the insulating base 111 of the wiring substrate of the solar battery structure are folded in a direction opposite to the light receiving surface side of the back electrode type solar battery cell 100. Since the solar cell module is produced by sealing, wiring can be designed without depending on the shape of the solar cell module, and the series resistance of the solar cell structure can be sufficiently reduced. F. F. These characteristics can be improved.
- the solar cell module when some solar cells are shaded and become unpowered without being exposed to sunlight, the solar cells in the unpowered state are switched from the solar cells in the power-generated state. There is a possibility that the reverse current flows and the solar battery cell is destroyed. Therefore, in order to prevent this reverse current, a diode (bypass diode) is usually installed in the terminal box. When a current flows through the bypass diode, the bypass diode generates heat. Therefore, a terminal box with improved heat dissipation characteristics has been developed.
- the area of the wiring can be increased by folding back the insulating substrate 111 of the wiring board. Therefore, in order to obtain high heat dissipation characteristics, a bypass diode that has been installed in a conventional terminal box is installed in the wiring. It is preferable to do.
- bypass diode 300a is connected between the wiring end portion 114a and the wiring end portion 114b, and a bypass diode 300b is connected between the wiring end portion 114b and the wiring end portion 114c.
- a bypass diode 300c is connected between the end 114c and the wiring end 114d.
- a conventionally known diode bypass diode can be used as the bypass diode.
- FIG. 3 shows a schematic plan view of an example of the back surface side of the solar cell module produced by folding the solar cell structure constituting the solar cell module shown in FIG. 1 and sealing it in a sealing material.
- a part of the back surface base material 119 at both ends of the solar cell module and a part of the sealing material inside thereof are removed, whereby the wiring end portions 114a at both ends of the solar cell module are removed.
- the surface and the surface of the wiring end portion 114d are exposed to the outside from the circular opening 301, respectively.
- the current can be easily taken out by attaching the output terminal to the wiring end exposed to the outside on the wiring board. It is not necessary to use the dedicated connection member 816 as shown, and it is not necessary to draw a number of connection members for connecting to the terminal box around the outer periphery of the solar cell module as in the conventional case. . Furthermore, it is not necessary to newly insulate the surface of the connecting member so that the connecting members are not electrically connected to each other. Therefore, in the solar cell module of the present invention, the wiring work can be greatly simplified as compared with the conventional case. Moreover, in the solar cell module of this invention, since it is not necessary to form many connection members, manufacturing cost can also be reduced.
- FIG. 4 shows a schematic plan view of the back surface of the back electrode type solar cell 100 used in the solar cell module shown in FIG.
- the n-type electrode 106 and the p-type electrode 107 are each formed in a comb shape on the back surface of the silicon substrate 101, and the n-type electrode 106 and the p-type electrode 107 are engaged with each other. Now it is installed in a staggered manner.
- each of the n-type electrode 106 and the p-type electrode 107 is preferably formed of a metal material, and particularly preferably formed of a material containing silver.
- FIG. 5 shows a schematic plan view of the insulating base 111 of the wiring board used in the solar cell module shown in FIG.
- the insulating substrate 111 is provided with an n-type wiring 109 and a p-type wiring 110 and is electrically connected to the n-type electrode 106 of the back electrode type solar cell 100.
- a connection wiring 113 for electrically connecting the n-type wiring 109 and the p-type wiring 110 electrically connected to the p-type electrode 107 is provided.
- the p-type wiring 110 and the n-type wiring 109 located at the end of the wiring board have a wiring end 114a, a wiring end 114b, a wiring end 114c, a wiring end 114d, a wiring end 115a, and a wiring end. 115b or the wiring end 115c is electrically connected.
- slits 112 serving as positioning openings are formed in the wiring end portions 114a, 114b, 114c, 114d and the wiring end portions 115a, 115b, 115c, respectively.
- the regions of the n-type wiring 109, the p-type wiring 110, the connection wiring 113, the wiring end portions 114a, 114b, 114c, and 114d and the wiring end portions 115a, 115b, and 115c are indicated by broken lines. Although it is divided, it is not limited to the dividing method shown in FIG.
- FIG. 6 shows a schematic schematic cross-sectional view of a solar cell structure configured by electrically connecting the back electrode type solar cell 100 having the back surface shown in FIG. 4 to the wiring substrate shown in FIG.
- the n-type electrode 106 of the back electrode type solar battery cell 100 is in contact with and electrically connected to the n-type wiring 109 of the wiring substrate, and the p-type electrode of the back electrode type solar battery cell 100. 107 is in contact with and electrically connected to the p-type wiring 110 of the wiring board.
- the present invention electrical connection is possible by installing the wiring board on the back surface of the back electrode type solar cell 100, and the interconnector is connected to the light receiving surface as in the conventional solar cell connection. Therefore, the load on the back electrode type solar cell 100 during the production of the solar cell module can be reduced, and the occurrence of cracks in the back electrode type solar cell 100 can be reduced. Therefore, according to the present invention, it is possible to reduce the load on the back electrode type solar battery cell 100 at the time of manufacturing the solar battery module, so that the back electrode type solar battery cell 100 is made thinner (the thickness of the silicon substrate 101). To 200 ⁇ m or less).
- the end portion of the insulating base 111 of the wiring board on which the wiring end portions 114a, 114b, 114c, 114d and the wiring end portions 115a, 115b, 115c are formed is connected to the light receiving surface side of the back electrode type solar cell 100.
- the wiring end portions 114a and 114b that are portions where the connection direction of the back electrode type solar cells 100 is reversed. , 114c, 114d and the wiring end portions 115a, 115b, 115c may be electrically connected.
- the conductive member is not particularly limited as long as it is a member made of a conductive material.
- a conventionally known interconnector used in the solar cell field may be used. .
- FIG. 1 An example of a method for manufacturing the solar cell module shown in FIG. 1 will be described with reference to the schematic cross-sectional views of FIGS. 7 (a) to (c).
- the solar cell structure is manufactured as described above, and the insulating rod 121 is installed below the slits 112 formed at both ends of the solar cell structure.
- the insulating rod 121 a rod having a diameter of about 1 to 2 mm made of an insulating material such as acrylic can be used.
- the rod 121 is disposed at the end in the connection direction of the back electrode type solar battery cell 100, for example, as shown in FIG. It is preferable to be installed on the outside of the back electrode type solar battery cell 100.
- the slit 112 is preferably formed to a size that does not affect the wiring resistance of the wiring board.
- the insulating base 111 portions of the wiring substrate at both ends of the solar cell structure are arranged on the light receiving surface side of the back electrode type solar cell 100 with the rod 121 as an axis. Bend it to the opposite side.
- a portion other than the back surface electrode type solar cells 100 is not exposed as much as possible to the light receiving portion of the solar cell module. It is preferable to be installed.
- the bar 121 is installed with the slit 112 as a bending position, and the insulating base 111 of the wiring substrate at both ends of the solar cell structure is bent with the bar 121 as an axis.
- you may bend in the opposite side to the light-receiving surface side of the back electrode type photovoltaic cell 100 by making the part of the slit 112 into a bending position without installing the bar 121.
- the bar 121 is used and the bar 121 is bent as an axis.
- the bar 121 may be removed when the solar cell structure is sealed, or may be left as it is.
- FIG.7 (c) the state which bent the part of the insulating base material 111 of the wiring board of the both ends of a solar cell structure to the opposite side to the light-receiving surface side of the back electrode type photovoltaic cell 100
- a sealing material 118 such as a transparent resin between a transparent substrate 117 such as glass and a back surface base material 119 such as a weather resistant film.
- an opening 301 is formed by previously removing a part of the sealing material 118 and a part of the back surface base material 119, and the surface of the wiring end part 114a is exposed from the opening 301.
- a frame body 120 made of aluminum or the like is fitted into the outer periphery of the transparent substrate 117, the sealing material 118, and the back surface base material 119, whereby the solar cell module having the configuration shown in FIG.
- the bypass diodes 300a, 300b, and 300c may be attached to the wiring end portion of the wiring board before sealing with the sealing material 118, and sealed so that a portion corresponding to the attachment position of the bypass diode is previously opened.
- the bypass diode may be attached after removing the stopper 118 and part of the back substrate 119 to seal the solar cell structure.
- the insulating substrate 111 of the wiring board has at least one flexibility selected from the group consisting of PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polyimide, and ethylene vinyl acetate.
- PET polyethylene terephthalate
- PEN polyethylene naphthalate
- polyimide polyimide
- ethylene vinyl acetate a non-flexible base material such as a glass substrate, a glass epoxy substrate, a paper phenol substrate, or the like can be used as the insulating base material 111 of the wiring board.
- a non-flexible base material such as a glass substrate, a glass epoxy substrate, a paper phenol substrate, or the like can be used as the insulating base material 111 of the wiring board.
- the insulating base 111 of the wiring board is not flexible, for example, as shown in FIG.
- the wiring end portions 114a, 114b, 114c, 114d and the wiring end portions 115a, 115b, 115c The wiring should just be formed so that it may go around to the back surface of the material 111 (surface on the opposite side to the light-receiving surface side of a photovoltaic cell).
- each of the n-type wiring 109, the p-type wiring 110, the connection wiring 113, the wiring end portions 114a, 114b, 114c, 114d and the wiring end portions 115a, 115b, 115c is a silver member. It is preferable to use a metal material containing at least one selected from the group consisting of copper and aluminum.
- connection between the surface of the wiring end portion 114a and the output terminal 310a in the terminal box 302 and the connection between the surface of the wiring end portion 114d and the output terminal 310b in the terminal box 302 are, for example, physical
- the connection can be made by at least one of a connection by pressure bonding and a connection through a conductive substance.
- the output terminal 310a in the terminal box 302 and the wiring end portion 114a are utilized by using a magnetic force between a magnet 305 and a magnetic body 304 such as an iron plate. There is a method of fixing by contacting the surface.
- the solar cell module having such a configuration can be manufactured, for example, as follows.
- a magnetic body 304 such as an iron plate having a thickness of about 1 mm is sandwiched between folded portions of the insulating base 111 of the wiring board. Then, by removing a part of the sealing material 118 and the back surface base material 119 so that a portion corresponding to the installation location of the terminal box 302 is opened, for connecting output terminals included in the wiring end portions 114a and 114d of the wiring board The solar cell structure is sealed so that the wiring is exposed. Then, by installing the terminal box 302 having the magnet 305 at the bottom in advance on the exposed output terminal connection wiring, the magnet 305 of the terminal box 302 and the magnetic body 304 of the folded portion of the insulating substrate 111 of the wiring board.
- the terminal box 302 is attached to the wiring board by the magnetic force between them. Therefore, according to this configuration, the electrical connection between the output terminals 310a and 310b of the terminal box 302 and the output terminal connection wiring can be performed only by installing the terminal box 302. Therefore, regardless of the skill level of the operator.
- the terminal box 302 can be easily and reliably attached.
- the magnetic body 304 for example, a substance containing at least one selected from the group consisting of iron, nickel, and cobalt can be used.
- the magnet 305 a magnet that maintains its own magnetic field may be used, but it is preferable to use a permanent magnet in consideration of the long-term reliability of the solar cell module.
- the permanent magnet it is particularly preferable to use a ferrite magnet with little demagnetization.
- the terminal box 302 and the back surface base material 119 are preferably fixed using an adhesive or the like.
- FIG. 10 schematically shows a partial cross section along the long side direction of the solar cell module shown in FIG. 9 (direction perpendicular to the short side direction of the solar cell module).
- the solar cell structure is sealed with a sealing material 118 between the insulating base 111 of the wiring substrate and the transparent substrate 117, and the n-type wiring 109 of the wiring substrate is n of the solar cell structure.
- the p-type wiring 110 of the wiring board is electrically connected to the p-type electrode 107 of the solar cell structure.
- both ends of the insulating base 111 of the wiring board are folded back, and the wiring end 114a and the wiring end 114d are located on the back side of the insulating base 111.
- the magnetic body 304 is installed at a position corresponding to the installation position of the terminal box 302 at the folded portion of the insulating base material 111.
- the output terminal 310a of the terminal box 302 is electrically connected to the surface of the wiring end portion 114a corresponding to the output terminal connection wiring of the wiring board by contact with the output terminal connection wiring of the wiring board.
- the output terminal 310b of the terminal box 302 is electrically connected to the surface of the corresponding wiring end portion 114d by contact.
- the output terminal 310a is electrically connected to the lead wire 303a
- the output terminal 310b is electrically connected to the lead wire 303b.
- the output terminal 310 a and the lead wire 303 a are fixed by fixing the lead wire fixing member 420 a to the terminal box 302 with the pins 421 after covering the lead wire fixing member 420 a over the lead wire 303 a.
- the output terminal 310b and the lead wire 303b are fixed by fixing the lead wire fixing member 420b to the terminal box 302 with the pins 421 after the lead wire fixing member 420b is put on the lead wire 303b.
- magnets 305 are installed at both ends of the terminal box 302, and the terminal box 302 is fixed to the wiring board by the magnetic force between the magnet 305 in the terminal box 302 and the magnetic body 304 in the wiring board. Become so.
- connection point of the output terminal 310a that is, output terminal connection wiring
- the connection point of the output terminal 310b of the wiring end 114d that is, output terminal connection wiring
- a back substrate 119 is installed on the sealing material 118.
- the terminal box 302 is attached to the wiring board so that the back surface base material 119 may be contact
- the terminal box 302 and the back substrate 119 are preferably fixed using an adhesive or the like.
- the terminal box cover member 430 is placed on the upper surface of the terminal box 302. From the viewpoint of effectively suppressing deterioration of the output terminal connection wiring due to moisture, the terminal box 302 may be filled with resin. preferable.
- the magnetic body 304 sealed in the sealing material 118 of the wiring board is installed in the terminal box 302 below the insulating base 111 as shown in a schematic perspective view of FIG.
- the magnets 305 are installed so as to correspond to both end portions of the magnetic body 304.
- FIG. 12 schematically shows a partial cross section along the long side direction (direction orthogonal to the short side direction of the solar cell module) of another example of the solar cell module of the present invention.
- This solar cell module is provided with a screw receiving member 416 that is partially sealed in the sealing material 118 of the wiring board and provided with protruding portions at the four corners.
- the terminal box 302 is attached by joining a screw 422 to the projecting portion of the member 416. Further, the terminal box 302 is filled with a filler 423 such as a resin.
- the output terminals 310 a and 310 b in the terminal box 302 and the wiring board are joined by joining the screw 422 and the screw receiving member 416 that penetrates a part of the terminal box 302.
- the output terminals 310a and 310b and the output terminal connection wiring are brought into contact and electrically connected by physical pressure bonding.
- a through hole 425 is provided in a part of the wiring board, and the protruding portion of the screw receiving member 416 is passed through the solar cell module. It can be manufactured by screwing the screw 422 to the projecting portion of the screw receiving member 416 through the hole 425 and through the terminal box lid member 430 and the terminal box 302.
- the terminal box 302 is fixed to the wiring board by screwing, so that the output terminals 310a and 310b in the terminal box 302 are physically crimped to the output terminal connection wiring, respectively. Since it can be electrically connected, the terminal box 302 can be easily and reliably attached regardless of the skill level of the operator.
- the output terminals of the terminal box are exemplified in FIGS. 14 to 16, for example. Further, it preferably has an elastic structure.
- the output terminal configured as shown in FIG. 14 has a configuration in which a U-shaped conductive elastic body 502 is joined to a conductive support 501.
- the elastic body 502 bends to have a shape as shown by the broken line in FIG.
- a stress is generated in the elastic body 502 so that the bent elastic body 502 returns to its original shape. Therefore, the stress causes the output terminal of the terminal box to physically connect with the output terminal connection wiring of the wiring board. Crimp.
- the output terminal having the configuration shown in FIG. 15 includes a cylindrical conductive covering portion 503 bonded on the surface of the conductive support 501 and a conductive portion installed inside the conductive covering portion 503.
- a conductive crimping portion 505 is installed via a spring 504.
- the output terminal configured as shown in FIG. 16 has a configuration in which a conductive elastic body 502 itself bonded on the surface of the conductive support body 501 is formed in a spring shape. With such a configuration, the elastic body 502 is contracted when the output terminal of the terminal box is pressed against the output terminal connection wiring of the wiring board. At this time, since a stress is generated in the contracted elastic body 502 to return to the original shape, the output terminal of the terminal box and the output terminal connection wiring of the wiring board are physically pressed by the stress.
- Such physical pressure bonding is advantageous because a stable contact can be obtained by using a wiring board having less irregularities than conventional wiring materials.
- the wiring end portion 114a is advantageous.
- 114d has a large area, and it is easy to align the positions of the wiring end and the output terminal of the terminal box, and the workability is good.
- connection through the conductive material for example, a conductive material such as solder, conductive adhesive, or ACF (Anisotropic Conductive Film), which is generally used conventionally, is connected to the surface of the wiring end portion 114a and the output terminal. And / or a method of fixing them between the surface of the wiring end portion 114d and the output terminal.
- a conductive material such as solder, conductive adhesive, or ACF (Anisotropic Conductive Film)
- FIG. 17 is a schematic plan view of another example of the back side of the solar cell module produced by bending the solar cell structure constituting the solar cell module shown in FIG. 1 and sealing it in a sealing material. Show.
- a part of each of the wiring end portions 114a, 114b, 114c, and 114d and the bypass diodes 300a, 300b, and 300c are provided so as to be exposed from the rectangular opening 301. Therefore, in this example, since the bypass diodes 300a, 300b, and 300c can be connected to the solar cell string connection wiring after the solar cell structure is sealed with the encapsulant, it is possible to work stably. it can.
- FIG. 18 shows a schematic plan view of another example of the light receiving surface side before bending of the solar cell structure constituting the solar cell module of the present invention.
- FIG. 19 is a schematic diagram showing an example of the back side of a solar cell module manufactured by folding the solar cell structure shown in FIG. 18 along broken lines AA and BB and sealing it in a sealing material. A plan view is shown.
- the terminal box is divided into a positive electrode and a negative electrode, and installed in two places. With such a configuration, the terminal box can be reduced in size, and the wiring to the terminal box does not need to be collected in one place, so that the wiring structure of the wiring board can be simplified. Moreover, the cable for connecting the adjacent solar cell modules can be shortened.
- FIG. 20 shows another example of the back side of the solar cell module produced by folding the solar cell structure shown in FIG. 18 along broken lines AA and BB and sealing it in a sealing material.
- a schematic plan view is shown.
- This example is characterized in that a rectangular opening 301 is provided so as to expose the diodes 300a, 300b, and 300c. Accordingly, in this example, since the bypass diode can be connected to the solar cell string connection wiring at the end of the wiring after the solar cell structure is sealed, the operational stability tends to be improved.
- the output terminal 310a of the terminal box 302a is electrically connected to the output terminal connection wiring of the wiring end 114a exposed from the opening 301, and the bypass diode 300a is provided in the terminal box 302a.
- the bypass diode 300a is protected by housing.
- bypass diode 300b is protected by accommodating the bypass diode 300b exposed from the opening 301 in the diode protection box 302c.
- the output terminal 310b in the terminal box 302b is electrically connected to the wiring end 114d exposed from the opening 301, and the bypass diode 300c is accommodated in the terminal box 302b to bypass the output.
- the diode 300c is protected.
- the surface of the back electrode type solar cell and the solar cell module on which the sunlight is incident is defined as the light receiving surface, and the surface opposite to the light receiving surface is defined as the back surface.
- a back electrode type solar cell in which both the p-type electrode and the n-type electrode are formed on the back surface of the semiconductor substrate such as a silicon substrate. Is preferably used.
- a semiconductor substrate other than a silicon substrate may be used, and p-type and n-type conductivity types may be interchanged.
- bypass diode no bypass diode (diode) is installed in any of the terminal boxes, but a bypass diode (diode) may be built in the terminal box in advance without installing a diode on the wiring board. it can.
- FIG. 21 typical sectional drawing of an example of the solar cell module of this invention is shown.
- the n-type region 1104 and the p-type region 1105 are formed on the surface exposed from the passivation film 1103 formed on the back surface of the p-type or n-type silicon substrate 1101, respectively.
- An n-type electrode 1106 is formed on the n-type region 1104, and a p-type electrode 1107 is formed on the p-type region 1105.
- An antireflection film 1102 is formed on the light receiving surface of the silicon substrate 1101.
- the back electrode type solar battery cell 1100 having the above configuration is included.
- the light receiving surface of the silicon substrate 1101 has a texture structure.
- the n-type electrode 1106 and the p-type electrode 1107 of the back electrode type solar cell 1100 are electrically connected to the n-type wiring 1109 and the p-type wiring 1110 installed on the insulating base material 1111, respectively.
- the n type electrode 1106 of one back electrode type solar cell 1100 and the p type electrode 1107 of the other back electrode type solar cell 1100 are electrically connected.
- adjacent back electrode type solar cells 1100 are connected in series to form a solar cell structure.
- the solar cell structure is installed in a sealing material 1118 between a transparent substrate 1117 made of glass or the like and a back surface base material 1119 made of a weather resistant film or the like, and the wiring substrate of the solar cell structure is It is preferable that both end portions in the connection direction of the back electrode type solar cell 1100 are bent and installed.
- the sealing material 1118 can be used without any particular limitation.
- an insulating transparent resin such as EVA (ethylene vinyl acetate) can be used.
- the wiring end portion 1114d has a solar cell.
- One end 1204a of a conducting wire for taking out the current generated in the module to the outside is electrically connected.
- a frame body 1120 such as aluminum is fitted so as to surround the outer periphery of the transparent substrate 1117, the sealing material 1118, and the back surface base material 1119 sealing the solar cell structure.
- FIG. 22 schematically shows a cross section further inside than the cross section of the solar cell module shown in FIG.
- a conductive wire intermediate portion 1204b between one end 1204a of the conductive wire described above and the other end of the conductive wire (not shown) is shown, and the conductive wire intermediate portion 1204b is disposed so as to be wrapped in the bent portion of the insulating base material 1111.
- the conductive wire intermediate portion 1204b is disposed so as to be wrapped in the bent portion of the insulating base material 1111.
- FIG. 23 shows a schematic plan view of an example of the back surface side after the wiring substrate of the solar cell structure used in the solar cell module of the present invention is bent and before sealing into the sealing material.
- the wiring end portions 1114a, 1114b, 1114c, 1114d and the wiring end portions 1115a, 1115b, 1115c are bent to the back side.
- one end 1200a of the conducting wire 1200 for taking out an electric current outside is temporarily fixed on the wiring end portion 1114a by an adhesive member 1201a such as an adhesive tape, and the one end 1202a of the conducting wire 1202 is placed on the wiring end portion 1114b.
- an adhesive member 1201b such as an adhesive tape.
- an adhesive member 1201b such as an adhesive tape.
- a low temperature solder that melts below the processing temperature at the time of vacuum pressure bonding for sealing to the sealing material 1118
- a conductive adhesive that cures below the processing temperature at the time of vacuum pressure bonding
- a processing temperature and pressure at the time of vacuum pressure bonding By applying at least one selected from the group consisting of conductive materials such as connectable ACF (Anisotropic Conductive Film) to the conductor and / or the end of the wire in advance, the conductor and the end of the wire are simultaneously bonded with the vacuum pressure bonding. Therefore, the connection can be simplified and the connection can be made more reliably.
- the conductor and the wiring end are connected by at least one selected from the group consisting of solder, conductive adhesive, and conductive materials such as ACF.
- solder conductive adhesive
- conductive materials such as ACF.
- the intermediate portions 1200b and 1204b of the conducting wire 1200 following the ends 1200a and 1204a of the conducting wire 1200 enter between the cut portions 1300a and 1300b provided in the insulating base material 1111 between the bent portions of the wiring substrate, respectively. It is sandwiched between the bent parts. As a result, at least a part of the surface of the intermediate portions 1200 b and 1204 b of the conducting wire 1200 is covered with the insulating base material 111.
- the intermediate portions 1200b and 1204b of the conducting wire 1200 are bent at a substantially right angle between the bent portions of the wiring substrate and then pulled out from the end portion of the wiring substrate, and the other ends 1200c and 1204c of the conducting wire 1200 are connected thereto. It continues.
- one end 1202a and 1203a of the conducting wire 1202 are connected to the wiring end portions 1114b and 1114c, respectively, and the other ends 1202b and 1203b are continued to this.
- a space is provided between the other ends 1200 c and 1204 c of the conducting wire 1200 and the other ends 1202 b and 1203 b of the conducting wire 1202, and after the solar cell structure is sealed to the sealing material 1118, the spacing is insulative. Since the sealing material 1118 is filled, it is possible to insulate without contacting each other.
- insulation such as covering the surface of the conductive wire with an insulating film or the like so as not to contact the electrode on the back surface of the back electrode type solar battery cell or other conductive wire. Since it is not necessary to perform the treatment, it is possible to reduce the insulation treatment process and the materials used.
- the other ends 1200c and 1204c of the conducting wire 1200 and the other ends 1202b and 1203b of the conducting wire 1202 are respectively taken out of the solar cell module and connected to a terminal box provided with, for example, a diode.
- FIG. 24 shows a schematic plan view of the back surface of the back electrode type solar cell 1100 used in the above solar cell module.
- the n-type electrode 1106 and the p-type electrode 1107 are each formed in a comb shape on the back surface of the silicon substrate 1101, and the n-type electrode 1106 and the p-type electrode 1107 are meshed with each other. Now it is installed in a staggered manner.
- the n-type electrode 1106 and the p-type electrode 1107 are each preferably formed of a metal material, and particularly preferably formed of a material containing silver.
- FIG. 25 shows a schematic plan view of a wiring board used in the above solar cell module.
- the wiring board is provided with an n-type wiring 1109 and a p-type wiring 1110 on the surface of the insulating base material 1111, and the n-type electrode 1106 of the back electrode type solar cell 1100.
- a connection wiring 1113 for electrically connecting the n-type wiring 1109 to be electrically connected and the p-type wiring 1110 to be electrically connected to the p-type electrode 1107 is provided. Yes.
- any of the wiring end portions 1114a, 1114b, 1114c, 1114d, 1115a, 1115b, and 1115c is electrically connected to the p-type wiring 1110 and the n-type wiring 1109 located at the end of the wiring board.
- the wiring is formed so as to be connected in series as a whole.
- slits 1112 serving as positioning openings are formed in the wiring end portions 1114a, 1114b, 1114c, 1114d and the wiring end portions 1115a, 1115b, 1115c, respectively.
- the insulating base material 1111 between the wiring end portion 1114a and the wiring end portion 1114b is provided with a cut portion 1300a, and the insulating base material 1111 between the wiring end portion 1114c and the wiring end portion 1114d is provided on the insulating base material 1111.
- a notch 1300b is provided.
- the regions of the n-type wiring 1109, the p-type wiring 1110, the connection wiring 1113, the wiring end portions 1114a, 1114b, 1114c, 1114d and the wiring end portions 1115a, 1115b, 1115c are indicated by broken lines. Although it is divided, it is not limited to the dividing method shown in FIG.
- FIG. 26 shows a schematic cross-sectional view of a solar cell structure configured by electrically connecting the back electrode type solar cell 1100 having the back surface shown in FIG. 24 to the wiring substrate shown in FIG.
- the n-type electrode 1106 of the back electrode type solar cell 1100 is in contact with and electrically connected to the n type wire 1109 on the wiring substrate, and the p type for the back electrode type solar cell 1100 is used.
- the electrode 1107 is in contact with and electrically connected to the p-type wiring 1110 on the wiring board.
- the present invention electrical connection is possible by installing a wiring board on the back surface of the back electrode type solar cell 1100, and the interconnector is connected to the light receiving surface as in the conventional solar cell connection. Therefore, the load on the back electrode type solar cell 1100 during the production of the solar cell module can be reduced, and the occurrence of cracks in the back electrode type solar cell 1100 can be reduced. Therefore, according to the present invention, it is possible to reduce the load on the back electrode type solar battery cell 1100 at the time of manufacturing the solar battery module. Therefore, the back electrode type solar battery cell 1100 can be thinned (the thickness of the silicon substrate 101). To 200 ⁇ m or less).
- the end of the wiring substrate on which the wiring end portions 1114a, 1114b, 1114c, 1114d and the wiring end portions 1115a, 1115b, 1115c are formed is bent to the opposite side to the light receiving surface side of the back electrode type solar cell 1100.
- a conductive member may be electrically connected to 1114c and 1114d and the wiring end portions 1115a, 1115b, and 1115c.
- the conductive member is not particularly limited as long as it is a member made of a conductive material.
- a conventionally known interconnector used in the solar cell field may be used. .
- FIG. 27 shows a schematic plan view of an example of the light receiving surface side before bending of the solar cell structure constituting the solar cell module.
- 24 back electrode type solar cells 1100 are arranged in the form of 6 rows ⁇ 4 rows on the wiring of the wiring substrate to form a solar cell structure, and at the end of the wiring substrate.
- the wiring board is bent along the broken lines AA and BB corresponding to the provided slits 1112 and sealed in the sealing material, whereby the solar cell module having the above-described configuration is obtained.
- the back electrode type solar cells 1100 arranged between 1114c and the wiring end 1115c and between the wiring end 1115c and the wiring end 1114d are electrically connected in series with the adjacent back electrode type solar cells 1100, respectively.
- the length L2 before the structure is bent may be longer than the length L1 of the solar cell module in the connecting direction of the back electrode type solar cells 1100 shown in FIG.
- the wiring substrate portions at both ends of the solar cell structure are sealed in a state where the portion is bent to the side opposite to the light receiving surface side of the back electrode type solar cell 1100. Since the solar cell module is manufactured, the filling rate, which is the ratio of the total area of the light receiving surface of the back electrode type solar cell 1100 to the area of the light receiving portion of the solar cell module, can be improved. Power generation efficiency can be improved. In the present invention, the connection resistance can be reduced by widening the wiring width of the wiring board. F. These characteristics can be improved.
- the solar cell structure is manufactured as described above, and the insulating rod 1121 is installed below the slits 1112 respectively formed at both ends of the solar cell structure.
- the insulating bar 1121 a bar made of an insulating material such as acrylic and having a diameter of about 1 to 2 mm can be used.
- the bar 1121 is disposed at the end in the connecting direction of the back electrode type solar cell 1100, for example, as shown in FIG. It is preferable to be installed outside the back electrode type solar battery cell 1100 that has been made.
- the slit 1112 is preferably formed to a size that does not affect the resistance of the wiring on the wiring board.
- the insulating base material at both ends of the solar cell structure with the rod 1121 as an axis is bent to the side opposite to the light receiving surface side of the back electrode type solar battery cell 1100.
- the wiring board is bent so as to wrap around a part of the wiring 1200 extending from the cut portion 1300 b provided in the insulating base material 1111.
- the filling rate which is the ratio of the total area of the light receiving surface of the back electrode type solar cell 1100 to the area of the light receiving portion of the solar cell module, can be improved, so the power generation efficiency of the solar cell module can be improved. Can be improved.
- the connection of the conducting wire 1200 and the conducting wire 1202 may be before the wiring board is bent or after the wiring board is bent.
- the bar 1121 is installed with the slit 1112 as the bending position, and the wiring board portions at both ends of the solar cell structure are bent with the bar 1121 as an axis. May be bent to the side opposite to the light-receiving surface side of the back electrode type solar cell 1100 with the slit 1112 part as the bending position without installing the bar 1121.
- the crease at the bent portion may be acute and the wiring may be disconnected. Therefore, the load on the bent portion is bent by bending the bar 1121 as an axis. Therefore, it is preferable to use the bar 1121 and bend the bar 1121 as an axis.
- the bar 1121 may be removed when the solar cell structure is sealed, or may be left as it is.
- the wiring board portions at both ends of the solar cell structure are bent to the opposite side to the light receiving surface side of the back electrode type solar cell 1100, and transparent such as glass. Sealing is performed in a sealing material 1118 such as a transparent resin between the substrate 1117 and a back surface base material 1119 such as a weather resistant film. Thereafter, a frame 1120 made of aluminum or the like is fitted into the outer periphery of the transparent substrate 1117, the sealing material 1118, and the back surface base material 1119, whereby the solar cell module having the above-described configuration is manufactured.
- a sealing material 1118 such as a transparent resin between the substrate 1117 and a back surface base material 1119 such as a weather resistant film.
- a frame 1120 made of aluminum or the like is fitted into the outer periphery of the transparent substrate 1117, the sealing material 1118, and the back surface base material 1119, whereby the solar cell module having the above-described configuration is manufactured.
- the surfaces of the intermediate portions 1200b and 1204b of the conducting wire 1200 are covered with at least one of the insulating base material 1111 and the sealing material 1118, and the other ends 1200c and 1202b of the conducting wires 1200 and 1202; 1203 b and 1204 c are sealed in the sealing material 1118 so as to be drawn out from the sealing material 1118.
- the insulating base material 1111 can be used without any particular limitation as long as it is an insulating base material. Among them, it is selected from the group consisting of PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polyimide and ethylene vinyl acetate. It is preferable to use an insulating base material such as at least one flexible film. When an insulating base material such as a flexible film as described above is used as the insulating base material 1111, at least one of both end portions of the wiring board can be easily bent.
- each of the n-type wiring 1109, p-type wiring 1110, connection wiring 1113, wiring end portions 1114a, 1114b, 1114c, 1114d and wiring end portions 1115a, 1115b, 1115c is silver. It is preferable to use a metal material containing at least one selected from the group consisting of copper and aluminum.
- a back electrode type solar cell in which both the p-type electrode and the n-type electrode are formed on the back surface of the semiconductor substrate such as a silicon substrate. Is preferably used.
- a semiconductor substrate other than a silicon substrate may be used, and p-type and n-type conductivity types may be interchanged.
- FIG. 29 the typical top view when a part of example of the solar cell module of this invention is seen from the light-receiving surface side is shown.
- FIG. 30 is a schematic plan view when a part of the solar cell module of FIG. 29 is viewed from the back side.
- the solar cell structure is characterized in that its end is sealed in a sealing material without being bent.
- FIGS. 29 and 30 the description of the transparent substrate 1117, the sealing material 1118, and the frame 1120 is omitted for convenience of explanation.
- one end 1200a of a conducting wire 1200 for taking out the current generated in the solar cell module is connected to the wiring end 1114a by solder or the like, and one end 1204a of the conducting wire 1200 is soldered to the wiring end 1114d or the like. Connected by. In addition to the solder, the connection may be made by the same method as described in the first embodiment.
- an intermediate portion 1200b of the conducting wire 1200 following the one end 1200a of the conducting wire 1200 enters the back side of the wiring board from a notch 1300a provided in the insulating base material 1111, and is bent at a substantially right angle on the back side of the wiring board. It has been.
- an intermediate portion 1204b of the conducting wire 1200 following the one end 1204a of the conducting wire 1200 enters the back side of the wiring board from a notch 1300b provided in the insulating base material 1111, and bends at a substantially right angle on the back side of the wiring board. It has been.
- the other end 1200c of the conducting wire 1200 continues to the intermediate portion 1200b of the conducting wire 1200.
- one end 1202a and 1203a of the conducting wire 1202 for taking out an electric current to the outside are fixed on the wiring end 1114b and the wiring end 1114c by solder or the like in the same manner as described above.
- the conductive wire 1202 is bent at a substantially right angle and then proceeds to the back side of the insulating base material 1111 by the cut portion 1300c, and continues to the other ends 1202b and 1203b of the conductive wire 1202, respectively.
- the contact between the conducting wire 1200 and the wiring end portions 1114b and 1114c is caused by connecting the conducting wire 1200 from the cut portions 1300a and 1300b of the insulating base material 1111 to the back side of the wiring board.
- the contact between the lead wires 1200 and 1202 and the back electrode type solar battery cell 1100 can be avoided because the insulating insulating base material 1111 exists between them.
- an interval is provided between the other ends 1200 c and 1204 c of the conducting wire 1200 and the other ends 1202 b and 1203 b of the conducting wire 1202, and after sealing the solar cell structure into the sealing material 1118, an insulating seal is provided. Since the stoppers 1118 are filled in the gaps, they can be insulated without contacting each other.
- the outer surface of each of the conducting wires 1200 and 1202 for extracting the current generated in the solar cell module to the outside is the insulating base material 1111 and the sealing material inside the solar cell module. Since it will be coat
- the present invention it is possible to provide a solar cell module and a method for manufacturing the solar cell module that can easily perform wiring work.
- the present invention it is possible to provide a solar cell module and a method for manufacturing the solar cell module, which can easily perform insulation treatment of the conducting wire.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
太陽電池セル(100,1100)の受光面側とは反対側に位置する配線基板の配線(109,110,1109,1110)の少なくとも一部が封止材(118,1118)から露出している太陽電池モジュールとその製造方法、および外部に電流を取り出すための導線(1200,1202)の一端(1200a,1202a,1203a,1204a)が配線基板の配線(109,110,1109,1110)に電気的に接続されているとともに導線(1200,1202)の他端(1200c,1202b,1203b,1204c)が封止材(118,1118)から外部に引き出されており、導線(1200,1202)の一端(1200a,1202a,1203a,1204a)と導線(1200,1202)の他端(1200c,1202b,1203b,1204c)との間の導線(1200,1202)の表面の少なくとも一部が絶縁性基材(111,1111)および絶縁性の封止材(118,1118)の少なくとも一方で被覆されている太陽電池モジュールとその製造方法である。
Description
本発明は、太陽電池モジュールおよび太陽電池モジュールの製造方法に関し、特に、配線作業を簡便に行なうことができる太陽電池モジュールおよび太陽電池モジュールの製造方法に関する。
また、本発明は、太陽電池モジュールおよび太陽電池モジュールの製造方法に関し、特に、導線の絶縁処理を簡便に行なうことができる太陽電池モジュールおよび太陽電池モジュールの製造方法に関する。
近年、エネルギ資源の枯渇の問題や大気中のCO2の増加のような地球環境問題等からクリーンなエネルギの開発が望まれており、特に、太陽電池セルを用いた太陽光発電が新しいエネルギ源として開発、実用化され、発展の道を歩んでいる。
従来の太陽電池セルにおいては、たとえば単結晶または多結晶のシリコン基板の太陽光が入射する側の表面(受光面)にシリコン基板の導電型と反対の導電型となる不純物を拡散することによって受光面近傍にpn接合を形成するとともに、受光面に一方の電極を配置し、受光面の反対側にある表面(裏面)に他方の電極を配置して製造されたものが主流となっている。
そして、上記の構成の太陽電池セルの複数をインターコネクタで電気的に接続することによって太陽電池ストリングを形成し、その太陽電池ストリングの複数を電気的に接続した後に樹脂等の封止材で封止することによって太陽電池モジュールを作製し、太陽光発電が行なわれている。
図31に、従来の太陽電池モジュールの一例の模式的な断面図を示す。ここで、従来の太陽電池モジュールは、シリコン基板801のテクスチャ構造が形成された受光面上に反射防止膜812と共に受光面側電極(図示せず)を形成し、裏面に裏面側電極807を形成した太陽電池セルをインターコネクタ822で接続した太陽電池ストリングが透明樹脂等の封止材818中に封止された構成を有している。そして、太陽電池ストリングを封止した封止材818の上面にはガラス基板817が設置されるとともに、下面には耐候性フィルム819が設置されており、その外周がアルミニウム枠820で取り囲まれている。また、太陽電池ストリングの両端部のインターコネクタ822には、他の太陽電池ストリングに接続されている接続用部材816が設けられている。
図32に、図31に示す太陽電池モジュールの裏面側の一部の模式的な構成を示す。ここで、図示はしていないが、太陽電池セルは、図32の紙面の下方向に配列されて直列に接続されており、太陽電池セルの列ごとに太陽電池ストリングを構成している。また、隣接する太陽電池ストリングのインターコネクタ822の端部同士が接続用部材816で接続され、接続用部材816は太陽電池モジュールの外周を引き回されて1箇所に集められる。そして、1箇所に集められた接続用部材816は、リード線803a、リード線803bおよびバイパスダイオード(図示せず)を備えた端子ボックス802に接続される。これにより、太陽電池モジュールで発生した電流は、リード線803a、803bによって外部に取り出される。
特開2005-340362号公報
特開2007-115915号公報
しかしながら、上記構造の従来の太陽電池モジュールにおいては、端子ボックス802と接続するために、接続用部材816を太陽電池モジュールの外周を引き回して1箇所に集める必要があるため、配線の接続作業に非常に手間がかかるという問題があった。さらに、接続用部材816と太陽電池セルの裏面電極若しくは接続用部材816同士が電気的に接続しないように、接続用部材816の表面には絶縁性部材を被覆する等の絶縁処理をする必要があるという問題があった。また、導線である接続用部材816の絶縁処理には手間がかかるという問題もあった。
また、太陽電池ストリングを接続する接続用部材816には太陽電池セル10枚前後の電力が集中し、端子ボックス802と接続する接続用部材816には太陽電池セル数十~百枚前後の電力が集中するため、確実に接続を行なう必要があるため、この接続作業は作業者の熟練を要する工程となっていた。
上記の事情に鑑みて、本発明の目的は、太陽電池モジュールの作製の際の配線作業において、材料点数を減らすとともに、接続作業自体を簡便に行なうことができるようにすることで、製造コストの低減と作業効率の向上を図った太陽電池モジュールおよび太陽電池モジュールの製造方法を提供することにある。
また、本発明の別の目的は、導線の絶縁処理を簡便に行なうことができる太陽電池モジュールおよび太陽電池モジュールの製造方法を提供することにある。
本発明は、太陽電池セル同士を電気的に接続するための配線を有する配線基板と、配線基板の配線上に設置されて電気的に接続された複数の太陽電池セルとを備えた太陽電池構造体を含み、太陽電池構造体は、太陽電池構造体の対向する両端部の少なくとも一方における配線の一部が太陽電池セルの受光面側とは反対側に位置するように封止材中に設置されており、太陽電池セルの受光面側とは反対側に位置する配線の少なくとも一部が封止材から露出している太陽電池モジュールである。
ここで、本発明の太陽電池モジュールにおいては、配線の少なくとも一部が、銅、アルミニウムおよび銀からなる群から選択された少なくとも1種を含むことが好ましい。
また、本発明の太陽電池モジュールにおいては、太陽電池セルが直列に接続されて一列に配列されてなる太陽電池ストリングの複数と、太陽電池構造体に発生した電流を外部に取り出すための出力端子を有する端子ボックスとを含み、配線基板の配線は、太陽電池ストリング同士が接続されている太陽電池ストリング接続用配線と、出力端子が接続されている出力端子接続用配線とを含むことが好ましい。
また、本発明の太陽電池モジュールにおいては、太陽電池ストリング接続用配線に接続されたバイパスダイオードが含まれることが好ましい。
また、本発明の太陽電池モジュールにおいては、出力端子接続用配線と出力端子とは、物理的圧着による接続および導電性物質を介した接続の少なくとも一方により接続されていることが好ましい。
また、本発明の太陽電池モジュールにおいては、出力端子接続用配線と出力端子とが磁力を利用した物理的圧着により接続されていてもよい。
また、本発明の太陽電池モジュールにおいては、出力端子接続用配線と出力端子とは端子ボックスを配線基板にネジ止めすることによって物理的圧着により接続されていてもよい。
また、本発明の太陽電池モジュールにおいて、配線基板は配線が設置された絶縁性基材を有し、絶縁性基材は、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリイミドおよびエチレンビニルアセテートからなる群から選択された少なくとも1種を含む可撓性を有することが好ましい。
また、本発明の太陽電池モジュールにおいては、太陽電池構造体の対向する両端部の少なくとも一方における配線基板の一部を折り曲げることによって配線の一部を太陽電池セルの受光面側とは反対側に位置させていることが好ましい。
また、本発明の太陽電池モジュールにおいて、太陽電池セルは太陽電池セルの受光面側とは反対側の裏面にp型用電極およびn型用電極を備えた裏面電極型太陽電池セルであることが好ましい。
さらに、本発明は、上記のいずれかの太陽電池モジュールを製造するための方法であって、配線基板の配線に太陽電池セルを電気的に接続することによって太陽電池構造体を形成する工程と、太陽電池セルの受光面側とは反対側において太陽電池構造体の対向する両端部の少なくとも一方における配線の少なくとも一部が封止材から露出するように太陽電池構造体を封止材中に設置する工程とを含む太陽電池モジュールの製造方法である。
本発明は、太陽電池セル同士を電気的に接続するための配線が設置された絶縁性基材と絶縁性基材の配線上に設置されて電気的に接続された複数の太陽電池セルとを備えた太陽電池構造体が絶縁性の封止材中に設置され、外部に電流を取り出すための導線の一端が配線に電気的に接続されているとともに導線の他端が前記封止材から外部に引き出されており、導線の一端と導線の他端との間の導線の表面の少なくとも一部が絶縁性基材および封止材の少なくとも一方で被覆されている太陽電池モジュールである。
ここで、本発明の太陽電池モジュールにおいて、太陽電池構造体は、太陽電池構造体の対向する両端部の少なくとも一方における絶縁性基材の一部が太陽電池セルの受光面側と反対側に折り曲げられて封止材中に設置されており、導線の一端と導線の他端との間の導線の表面の少なくとも一部は絶縁性基材の折り曲げられた部分に挟まれることにより絶縁性基材に被覆されていてもよい。
また、本発明の太陽電池モジュールにおいて、導線の一端と導線の他端との間の導線の表面の少なくとも一部は前記封止材により被覆されており、導線の他端は、封止材に設けられた切れ込み部から外部に引き出されていてもよい。
また、本発明の太陽電池モジュールにおいて、配線の少なくとも一部が、銅、アルミニウムおよび銀からなる群から選択された少なくとも1種を含むことが好ましい。
また、本発明の太陽電池モジュールにおいて、絶縁性基材は、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリイミドおよびエチレンビニルアセテートからなる群から選択された少なくとも1種を含む可撓性を有することが好ましい。
また、本発明の太陽電池モジュールにおいて、太陽電池セルは、太陽電池セルの受光面側とは反対側の裏面にp型用電極およびn型用電極を備えた裏面電極型太陽電池セルであることが好ましい。
さらに、本発明は、上記のいずれかの太陽電池モジュールを製造するための方法であって、絶縁性基材の配線に太陽電池セルを電気的に接続することによって太陽電池構造体を形成する工程と、導線の一端を配線に電気的に接続する工程と、導線の表面の少なくとも一部が絶縁性基材および封止材の少なくとも一方で被覆されるとともに導線の他端が封止材から外部に引き出されるように太陽電池構造体を封止材中に封止する工程とを含む太陽電池モジュールの製造方法である。
本発明によれば、配線作業を簡便に行なうことができる太陽電池モジュールおよび太陽電池モジュールの製造方法を提供することができる。
また、本発明によれば、導線の絶縁処理を簡便に行なうことができる太陽電池モジュールおよび太陽電池モジュールの製造方法を提供することができる。
100 裏面電極型太陽電池セル、101,801 シリコン基板、102 反射防止膜、103 パッシベーション膜、104 n型領域、105 p型領域、106 n型用電極、107 p型用電極、109 n型用配線、110 p型用配線、111 絶縁性基材、112 スリット、113 接続用配線、114a,114b,114c,114d,115a,115b,115c 配線端部、117 透明基板、118 封止材、119 裏面基材、120 枠体、121 棒材、300a,300b,300c ダイオード、301 開口部、302,302a,302b 端子ボックス、303a,303b,803a,803b リード線、304 磁性体、305 磁石、310a,310b 出力端子、416 ネジ受け部材、420a,420b リード線固定部材、421 ピン、422 ネジ、423 充填材、425 貫通孔、430 端子ボックス蓋材、501 支持体、502 弾性体、503 被覆部、504 バネ、505 圧着部、812 反射防止膜、807 裏面側電極、822 インターコネクタ、818 封止材、817 ガラス基板、819 耐候性フィルム、820 アルミニウム枠、816 接続用部材、1100 裏面電極型太陽電池セル、1101 シリコン基板、1102 反射防止膜、1103 パッシベーション膜、1104 n型領域、1105 p型領域、1106 n型用電極、1107 p型用電極、1109 n型用配線、1110 p型用配線、1111 絶縁性基材、1112 スリット、1113 接続用配線、1114a,1114b,1114c,1114d,1115a,1115b,1115c 配線端部、1117 透明基板、1118 封止材、1119 裏面基材、1120 枠体、1121 棒材、1200,1202 導線、1200a,1202a,1203a,1204a 導線の一端、1200b,1204b 導線の中間部、1200c,1202b,1203b,1204c 導線の他端、1201a,1201b 貼付部材、1300a,1300b,1300c 切れ込み部、801 シリコン基板、802 端子ボックス、803a,803b リード線、807 裏面側電極、812 反射防止膜、816 導線、817 ガラス基板、818 封止材、819 耐候性フィルム、820 アルミニウム枠、822 インターコネクタ。
以下、本発明の実施の形態について説明する。なお、本発明の図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。
<実施の形態1>
図1に、本発明の太陽電池モジュールの一例の模式的な断面図を示す。ここで、本発明の太陽電池モジュールにおいては、たとえばp型またはn型のシリコン基板101の裏面に形成されたパッシベーション膜103から露出している表面にn型領域104およびp型領域105がそれぞれ形成されている。そして、n型領域104上にn型用電極106が形成されるとともに、p型領域105上にp型用電極107が形成されており、シリコン基板101の受光面に反射防止膜102が形成された構成の裏面電極型太陽電池セル100を有している。なお、シリコン基板101の受光面はテクスチャ構造となっている。
図1に、本発明の太陽電池モジュールの一例の模式的な断面図を示す。ここで、本発明の太陽電池モジュールにおいては、たとえばp型またはn型のシリコン基板101の裏面に形成されたパッシベーション膜103から露出している表面にn型領域104およびp型領域105がそれぞれ形成されている。そして、n型領域104上にn型用電極106が形成されるとともに、p型領域105上にp型用電極107が形成されており、シリコン基板101の受光面に反射防止膜102が形成された構成の裏面電極型太陽電池セル100を有している。なお、シリコン基板101の受光面はテクスチャ構造となっている。
そして、裏面電極型太陽電池セル100のn型用電極106およびp型用電極107はそれぞれ、配線基板の絶縁性基材111上に設置されたn型用配線109およびp型用配線110に電気的に接続されており、隣接する裏面電極型太陽電池セル100のうち一方の裏面電極型太陽電池セル100のn型用電極106と他方の裏面電極型太陽電池セル100のp型用電極107とが電気的に接続されることにより、隣接する裏面電極型太陽電池セル100が直列に接続されて、太陽電池構造体が構成されている。この絶縁性基材111上には、裏面電極型太陽電池セル100が直列に一列に配列されてなる太陽電池ストリング同士を接続するための太陽電池ストリング接続用配線と、後述する端子ボックス内の出力端子を接続するための出力端子接続用配線とを備えていることが好ましい。また、配線基板は、たとえば絶縁性基材111上に金属箔を貼り合わせ、金属箔上において所望の形状にエッチング保護用レジストを形成し、エッチング保護用レジストから露出している金属箔をエッチングした後に、エッチング保護用レジストを除去することにより形成可能である。
また、太陽電池構造体は、たとえばガラス等からなる透明基板117と耐候性フィルム等からなる裏面基材119との間の封止材118中に設置されており、太陽電池構造体の配線基板の絶縁性基材111は、太陽電池ストリングを構成する裏面電極型太陽電池セル100の接続方向における両端部が折り曲げられて設置されていることが好ましい。なお、本発明において、封止材118としては、特に限定されることなく用いることができ、たとえば、EVA(エチレンビニルアセテート)等の透明樹脂を用いることができる。
さらに、太陽電池構造体の配線基板の絶縁性基材111の両端を折り曲げることによって裏面電極型太陽電池セル100の受光面側と反対側に設置された配線である配線端部114a、114bおよび配線端部115bのうち、配線端部114aは封止材118の裏面に設けられた開口部301から外部に露出しており、太陽電池モジュールに発生した電流を外部に取り出すための出力端子と電気的に接続可能となっている。そして、太陽電池構造体を封止している透明基板117、封止材118および裏面基材119の外周を取り囲むようにしてアルミニウム等の枠体120が嵌め込まれている。
図2に、図1に示す太陽電池モジュールを構成する太陽電池構造体の折り曲げ前の受光面側の一例の模式的な平面図を示す。この例では、24枚の裏面電極型太陽電池セル100が配線基板の配線上に縦6列×横4列の形態で配置されて太陽電池構造体を構成しており、配線基板の端部に設けられたスリット112に対応する破線A-Aおよび破線B-Bに沿って折り曲げられて封止材中に封止されることによって図1に示す構成の太陽電池モジュールとなる。
ここで、配線端部114a-配線端部115a間、配線端部115a-配線端部114b間、配線端部114b-配線端部115b間、配線端部115b-配線端部114c間、配線端部114c-配線端部115c間および配線端部115c-配線端部114d間に配列された太陽電池セル100はそれぞれ隣接する太陽電池セル100と電気的に直列に接続されている。なお、この例においては、図2に示すL2の方向に直列に接続されて一列に配列されている4枚の裏面電極型太陽電池セル100によって1つの太陽電池ストリングが構成されている。また、この例においては、配線端部114b、配線端部114c、配線端部115a、配線端部115bおよび配線端部115cがそれぞれ上記の太陽電池ストリング接続用配線に相当する。
また、太陽電池構造体においては、太陽電池構造体の直列抵抗を低減するために配線の断面積を大きくすることが好ましい。ここで、配線の断面積を十分に大きくするために配線の幅を広げた場合には、たとえば図2に示される太陽電池構造体の裏面電極型太陽電池セル100の接続方向(図2に示すL2の方向)における太陽電池構造体の折り曲げ前の長さL2が、図1に示す裏面電極型太陽電池セル100の接続方向(太陽電池モジュールの短辺方向)における枠の厚みを除いた太陽電池モジュールの長さL1よりも長くなる場合がある。
しかしながら、本発明においては、このような場合でも、太陽電池構造体の配線基板の絶縁性基材111の両端部を裏面電極型太陽電池セル100の受光面側とは反対側に折り曲げた状態で封止して太陽電池モジュールが作製されることから、太陽電池モジュールの形状によることなく配線の設計が可能となり、太陽電池構造体の直列抵抗を十分に低減することができるため、太陽電池モジュールのF.F.等の特性を向上することもできる。
また、太陽電池モジュールにおいては、一部の太陽電池セルに影がかかり、太陽光が当たらずに未発電状態になった場合には、未発電状態の太陽電池セルに発電状態の太陽電池セルから逆方向電流が流れて太陽電池セルが破壊するおそれがある。そこで、この逆方向電流を防ぐために、通常、端子ボックス内にダイオード(バイパスダイオード)が設置されている。バイパスダイオードに電流が流れる場合には、バイパスダイオードが発熱するため、放熱特性を高めた端子ボックスの開発が行なわれている。本発明においては、配線基板の絶縁性基材111を折り返すことによって配線の面積を大きくすることができることから、高い放熱特性を得るために従来の端子ボックスに設置されていたバイパスダイオードを配線に設置することが好ましい。
この例においては、配線端部114aと配線端部114bとの間にバイパスダイオード300aが接続されており、配線端部114bと配線端部114cとの間にバイパスダイオード300bが接続されており、配線端部114cと配線端部114dとの間にバイパスダイオード300cが接続されている。なお、本発明において、バイパスダイオードとしては、たとえば従来から公知のダイオード(バイパスダイオード)を用いることができる。
図3に、図1に示す太陽電池モジュールを構成する太陽電池構造体を折り曲げて封止材中に封止して作製された太陽電池モジュールの裏面側の一例の模式的な平面図を示す。この例においては、太陽電池モジュールの両端部の裏面基材119の一部およびその内側の封止材の一部が除去されており、これにより、太陽電池モジュールの両端部の配線端部114aの表面および配線端部114dの表面が円形状の開口部301からそれぞれ外部に露出している。
そして、外部に露出している配線端部114aおよび配線端部114dの表面にリード線303a、303bおよび出力端子310a、310bを内部に収容した端子ボックス302を取り付けて電気的に接続することによって、太陽光の照射により太陽電池モジュールで発生した電流がこれらのリード線303a、303bから外部に取り出すことができる。
このように、本発明の太陽電池モジュールにおいては、配線基板上の外部に露出している配線端部に出力端子を取り付けることによって簡単に電流を外部に取り出すことができるため、従来の図32に示されるような専用の接続用部材816を用いなくてもよく、従来のように端子ボックスに接続するための接続用部材を何本も太陽電池モジュールの外周を引き回して1箇所に集める必要がない。さらには、接続用部材同士が電気的に接続しないように接続用部材の表面に新たに絶縁処理をする必要もない。したがって、本発明の太陽電池モジュールにおいては、従来と比べて配線作業を大幅に簡易化することができる。また、本発明の太陽電池モジュールにおいては、接続用部材を何本も形成する必要がないため、製造コストの低減も図ることができる。
図4に、図1に示す太陽電池モジュールに用いられている裏面電極型太陽電池セル100の裏面の模式的な平面図を示す。ここで、n型用電極106およびp型用電極107はそれぞれ、シリコン基板101の裏面において櫛形状に形成されており、n型用電極106およびp型用電極107は、それぞれの櫛歯が噛み合わさって互い違いになるように設置されている。ここで、n型用電極106およびp型用電極107はそれぞれ金属材料で形成されることが好ましく、特に銀を含む材料で形成されることが好ましい。
図5に、図1に示す太陽電池モジュールに用いられている配線基板の絶縁性基材111の模式的な平面図を示す。ここで、絶縁性基材111には、n型用配線109とp型用配線110とが備えられているとともに、裏面電極型太陽電池セル100のn型用電極106に電気的に接続されるn型用配線109と、p型用電極107に電気的に接続されるp型用配線110とを電気的に接続するための接続用配線113が備えられている。
また、配線基板の端部に位置するp型用配線110およびn型用配線109は配線端部114a、配線端部114b、配線端部114c、配線端部114d、配線端部115a、配線端部115bまたは配線端部115cのいずれかに電気的に接続されている。
さらに、配線端部114a、114b、114c、114dおよび配線端部115a、115b、115cにはそれぞれ位置決め用の開口部となるスリット112が形成されている。
なお、図6においては、n型用配線109、p型用配線110、接続用配線113、配線端部114a、114b、114c、114dおよび配線端部115a、115b、115cのそれぞれの領域を破線によって分けているが、図5に示す分け方に限定されるものではない。
図6に、図4に示す裏面を有する裏面電極型太陽電池セル100を図5に示す配線基板に電気的に接続して構成された太陽電池構造体の模式的な概略断面図を示す。
ここで、裏面電極型太陽電池セル100のn型用電極106は、配線基板のn型用配線109と接触して電気的に接続されており、裏面電極型太陽電池セル100のp型用電極107は、配線基板のp型用配線110と接触して電気的に接続されている。
このように、本発明においては、裏面電極型太陽電池セル100の裏面に配線基板を設置することで電気的な接続が可能となり、従来の太陽電池セルの接続のように、インターコネクタを受光面から裏面に取り回す必要がなくなるため、太陽電池モジュールの作製時の裏面電極型太陽電池セル100への負荷が低減し、裏面電極型太陽電池セル100の割れの発生を低減させることができる。したがって、本発明によれば、太陽電池モジュールの作製時の裏面電極型太陽電池セル100への負荷を低減することができるため、裏面電極型太陽電池セル100の薄型化(シリコン基板101の厚さが200μm以下)への対応も可能となる。
さらに、配線端部114a、114b、114c、114dおよび配線端部115a、115b、115cが形成されている配線基板の絶縁性基材111の端部を裏面電極型太陽電池セル100の受光面側とは反対側に折り曲げた状態で太陽電池構造体を封止材中に封止することによって配線基板の配線の設計自由度が上がる。これにより、配線端部の幅を広くして断面積を大きくすることによって、裏面電極型太陽電池セル100間の直列抵抗を低減することができ、高いF.F.の太陽電池モジュールを作製することができる。
また、配線端部の幅を広げて裏面電極型太陽電池セル100間の直列抵抗を低減する観点からは、裏面電極型太陽電池セル100の接続方向が反転する部分となる配線端部114a、114b、114c、114dおよび配線端部115a、115b、115cに導電性部材を電気的に接続してもよい。なお、導電性部材としては、導電性を有する材質からなる部材であれば特に限定されずに用いることができ、たとえば太陽電池分野で用いられている従来から公知のインターコネクタ等を用いてもよい。
以下に、図7(a)~(c)の模式的断面図を参照して、図1に示す太陽電池モジュールを製造する方法の一例について説明する。
まず、図7(a)に示すように、上述したように太陽電池構造体を作製し、太陽電池構造体の両端部にそれぞれ形成されたスリット112の下方に絶縁性の棒材121を設置する。ここで、絶縁性の棒材121としては、たとえばアクリル等の絶縁材料からなる直径1~2mm程度の棒材を用いることができる。また、棒材121は、裏面電極型太陽電池セル100の割れの発生を抑制する観点から、たとえば図7(a)に示すように、裏面電極型太陽電池セル100の接続方向の端部に配置された裏面電極型太陽電池セル100の外側に設置されることが好ましい。また、スリット112は、配線基板の配線の抵抗に影響が出ない程度の大きさに形成されることが好ましい。
次に、図7(b)に示すように、棒材121を軸として、太陽電池構造体の両端部の配線基板の絶縁性基材111の部分を裏面電極型太陽電池セル100の受光面側とは反対側に折り曲げる。太陽電池モジュールの受光面内における裏面電極型太陽電池セル100の充填率に無駄が生じないように、太陽電池モジュールの受光部には裏面電極型太陽電池セル100以外の部分をなるべく露出させないように設置されることが好ましい。
また、ここでは、スリット112の部分を折り曲げ位置として棒材121を設置し、その棒材121を軸として太陽電池構造体の両端部の配線基板の絶縁性基材111の部分を折り曲げる形態について説明したが、本発明においては、棒材121を設置せずにスリット112の部分を折り曲げ位置として、裏面電極型太陽電池セル100の受光面側とは反対側に折り曲げてもよい。ただし、棒材121を用いずに折り曲げた場合には、折り曲げ部の折り目が鋭角になって配線が断線してしまうおそれがあることから、棒材121を軸として折り曲げることでその折り曲げ部分に対する負荷が軽減されるため、棒材121を使用して棒材121を軸として折り曲げることが好ましい。なお、棒材121は、太陽電池構造体の封止の際に取り外してもよく、そのまま残しておいてもよい。
その後、図7(c)に示すように、太陽電池構造体の両端部の配線基板の絶縁性基材111の部分を裏面電極型太陽電池セル100の受光面側とは反対側に折り曲げた状態で、ガラス等の透明基板117と耐候性フィルム等の裏面基材119との間の透明樹脂等の封止材118中に封止する。そして、封止材118の一部および裏面基材119の一部をそれぞれ予め除去しておくことによって開口部301を形成し、その開口部301から配線端部114aの表面を露出させる。その後、透明基板117、封止材118および裏面基材119の外周にアルミニウム等からなる枠体120を嵌め込むことによって、図1に示す構成の太陽電池モジュールが作製される。
なお、バイパスダイオード300a、300b、300cは、封止材118への封止前に配線基板の配線端部に取り付けられてもよく、予めバイパスダイオードの取り付け位置に対応する部分が開口するように封止材118および裏面基材119の一部を除去して太陽電池構造体を封止した後にバイパスダイオードを取り付けてもよい。このようにバイパスダイオードを配線基板の配線端部上に取り付けることで小さい端子ボックスにバイパスダイオードを取り付ける場合と比べて簡易にバイパスダイオードの取り付けを行なうことができるため作業安定性が向上するとともに高い放熱性を期待することができる。
なお、上記においては、配線基板の絶縁性基材111として、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、ポリイミドおよびエチレンビニルアセテートからなる群から選択された少なくとも1種の可撓性を有するフィルムを用いた場合について説明したが、本発明においては配線基板の絶縁性基材111としてガラス基板、ガラスエポキシ基板、紙フェノール基板等の可撓性を有しない基材を用いることもできる。配線基板の絶縁性基材111が可撓性を有しない場合には、たとえば図8に示すように、配線端部114a、114b、114c、114dおよび配線端部115a、115b、115cが絶縁性基材111の裏面(太陽電池セルの受光面側とは反対側の表面)に回り込むように配線が形成されていればよい。
また、上記において、n型用配線109、p型用配線110、接続用配線113、配線端部114a、114b、114c、114dおよび配線端部115a、115b、115cのそれぞれの配線部材としては、銀、銅およびアルミニウムからなる群から選択された少なくとも1種を含む金属材料を用いることが好ましい。
また、上記においては、配線端部114aの表面と端子ボックス302中の出力端子310aとの接続および配線端部114dの表面と端子ボックス302中の出力端子310bとの接続はそれぞれ、たとえば、物理的圧着による接続および導電性物質を介した接続の少なくとも一方により行なうことができる。
ここで、物理的圧着による接続としては、たとえば図9に示すように磁石305と鉄板等の磁性体304との間の磁力を利用して端子ボックス302内の出力端子310aと配線端部114aの表面とを接触させて固定する方法がある。このような構成の太陽電池モジュールは、たとえば以下のようにして作製することができる。
まず、たとえば厚さ1mm程度の鉄板等の磁性体304を配線基板の絶縁性基材111の折り返し部分に挟み込む。そして、端子ボックス302の設置箇所に対応する部分が開口するように封止材118および裏面基材119の一部を除去することによって配線基板の配線端部114a、114dに含まれる出力端子接続用配線が露出するように太陽電池構造体を封止する。そして、予め磁石305を底部に備えた端子ボックス302をその露出した出力端子接続用配線に設置することにより、端子ボックス302の磁石305と配線基板の絶縁性基材111の折り返し部分の磁性体304との間の磁力によって端子ボックス302が配線基板に取り付けられる。したがって、この構成によれば、端子ボックス302の設置のみによって端子ボックス302の出力端子310a、310bと出力端子接続用配線との電気的な接続が可能となるため、作業者の熟練度に関係なく、簡便かつ確実に端子ボックス302の取り付けが可能となる。なお、磁性体304としては、たとえば、鉄、ニッケルおよびコバルトからなる群から選択された少なくとも1種を含む物質を用いることができる。また、磁石305としては、自ら磁場を保持する磁石を用いればよいが、太陽電池モジュールの長期信頼性を考慮すると永久磁石を用いることが好ましい。永久磁石としては、特に減磁の少ないフェライト磁石を用いることが好ましい。なお、端子ボックス302の出力端子と出力端子接続用配線との電気的な接続の信頼性を向上させるために端子ボックス302と裏面基材119とは接着剤等を用いて固定することが好ましい。
また、図10に、図9に示す太陽電池モジュールの長辺方向(太陽電池モジュールの短辺方向に直交する方向)に沿った部分断面を模式的に示す。
ここで、太陽電池構造体は配線基板の絶縁性基材111と透明基板117との間において封止材118により封止されており、配線基板のn型用配線109は太陽電池構造体のn型用電極106と電気的に接続され、配線基板のp型用配線110は太陽電池構造体のp型用電極107と電気的に接続されている。また、配線基板の絶縁性基材111の両端部は折り返されており、絶縁性基材111の裏側に配線端部114aおよび配線端部114dが位置している。また、磁性体304は、絶縁性基材111の折返し部分の端子ボックス302の設置位置に対応する位置に設置されている。
また、配線基板の出力端子接続用配線に相当する配線端部114aの表面には端子ボックス302の出力端子310aが接触することにより電気的に接続されており、配線基板の出力端子接続用配線に相当する配線端部114dの表面には端子ボックス302の出力端子310bが接触することにより電気的に接続されている。また、出力端子310aはリード線303aと電気的に接続され、出力端子310bはリード線303bと電気的に接続されている。なお、出力端子310aとリード線303aとは、リード線固定部材420aをリード線303aに被せた後にピン421でリード線固定部材420aを端子ボックス302に固定することによって固定されている。また、出力端子310bとリード線303bとは、リード線固定部材420bをリード線303bに被せた後にピン421でリード線固定部材420bを端子ボックス302に固定することによって固定されている。
また、端子ボックス302の両端部にはそれぞれ磁石305が設置されており、この端子ボックス302内の磁石305と配線基板中の磁性体304との間の磁力によって端子ボックス302が配線基板に固定されるようになる。
また、配線基板の配線端部114aの出力端子310aの接続箇所(すなわち、出力端子接続用配線)以外の箇所および配線端部114dの出力端子310bの接続箇所(すなわち、出力端子接続用配線)以外の箇所は封止材118で覆われており、その封止材118上に裏面基材119が設置されている。そして、端子ボックス302はその裏面基材119に接するようにして配線基板に取り付けられている。なお、端子ボックス302と裏面基材119とは接着剤等を用いて固定することが好ましい。
また、端子ボックス蓋材430は端子ボックス302の上面に被せられるが、出力端子接続用配線等の水分による劣化を有効に抑止する観点からは端子ボックス302の内部には樹脂が充填されることが好ましい。
ここで、配線基板の封止材118中に封止される磁性体304は、たとえば図11の模式的斜視図に示すように、絶縁性基材111の下方に、端子ボックス302内に設置された磁石305が磁性体304の両端部に対応するようにして設置される。
図12に、本発明の太陽電池モジュールの他の一例の長辺方向(太陽電池モジュールの短辺方向に直交する方向)に沿った部分断面を模式的に示す。この太陽電池モジュールにおいては、配線基板の封止材118中にその一部が封止されてその四隅に上方への突出部が備え付けられているネジ受け部材416が備え付けられており、そのネジ受け部材416の突出部にネジ422を接合することによって端子ボックス302が取り付けられていることを特徴としている。さらに、端子ボックス302の内部にはたとえば樹脂等の充填材423が充填されている。
すなわち、図12に示す構成の太陽電池モジュールにおいては、ネジ422と端子ボックス302の一部を貫通するネジ受け部材416とを接合することにより、端子ボックス302内の出力端子310a、310bと配線基板の出力端子接続用配線に相当する配線端部114a、114dの表面とが接触する。これにより、出力端子310a、310bと出力端子接続用配線とが物理的圧着により接触して電気的に接続されている。
ここで、図12に示す構成の太陽電池モジュールはたとえば図13の模式的斜視図に示すように、配線基板の一部に貫通孔425を設けておき、ネジ受け部材416の突出部をその貫通孔425に通し、端子ボックス蓋材430および端子ボックス302を通してネジ受け部材416の突出部にネジ422をネジ止めすることによって作製することができる。
図12に示す構成の太陽電池モジュールにおいては、ネジ止めによって端子ボックス302を配線基板に固定することによって、端子ボックス302内の出力端子310a、310bをそれぞれ出力端子接続用配線に物理的圧着させて電気的に接続することができるため、作業者の熟練度に関係なく、簡便かつ確実に端子ボックス302の取り付けが可能となる。
また、上述したように配線基板の出力端子接続用配線と端子ボックスの出力端子とを物理的圧着によって接続する場合には、端子ボックスの出力端子は、たとえば図14~図16に例示されるように、弾性構造を有していることが好ましい。
たとえば、図14に示す構成の出力端子は、U字状の導電性の弾性体502を導電性の支持体501に接合した構成とされている。このような構成とすることにより、端子ボックスの出力端子を配線基板の出力端子接続用配線に押し付けた場合には弾性体502が撓んで図14の破線に示されるような形状となる。このとき、弾性体502には、撓んだ弾性体502が元の形状に戻ろうとする応力が生じるため、その応力により端子ボックスの出力端子を配線基板の出力端子接続用配線とが物理的に圧着する。
また、図15に示す構成の出力端子は、導電性の支持体501の表面上に接合された円筒状の導電性の被覆部503および導電性の被覆部503の内部に設置された導電性のバネ504を介して導電性の圧着部505を設置する構成とされている。このような構成とすることにより、端子ボックスの出力端子を配線基板の出力端子接続用配線に押し付けた場合にはバネ504が縮むことになる。このとき、縮んだバネ504には元の形状に戻ろうとする応力が生じるため、その応力により端子ボックスの出力端子と配線基板の出力端子接続用配線とが物理的に圧着することになる。
また、図16に示す構成の出力端子は、導電性の支持体501の表面上に接合された導電性の弾性体502自体がバネ形状に形成された構成とされている。このような構成とすることにより、端子ボックスの出力端子を配線基板の出力端子接続用配線に押し付けた場合には弾性体502が縮むことになる。このとき、縮んだ弾性体502には元の形状に戻ろうとする応力が生じるため、その応力により端子ボックスの出力端子と配線基板の出力端子接続用配線とが物理的に圧着することになる。
これらの中で、端子ボックスの出力端子には太陽電池モジュールの電力が集中するため、出力端子の断面積を大きくしやすい図14に示す構造または図16に示す構造が特に好ましい。
このような物理的圧着を行なうには、従来の配線材に比べて凹凸の小さい配線基板を用いることで安定した接触を得ることができるため有利であり、特に、本発明では、配線端部114a、114dの面積が大きいため、配線端部と端子ボックスの出力端子の位置を合わせやすく作業性がよい。
一方、導電性物質を介した接続としては、たとえば、従来一般的に行なわれているハンダ、導電性接着剤またはACF(Anisotropic Conductive Film)等の導電性物質を配線端部114aの表面と出力端子との間および/または配線端部114dの表面と出力端子との間にそれぞれ挟んでこれらを固定する方法等が挙げられる。
図17に、図1に示す太陽電池モジュールを構成する太陽電池構造体を折り曲げて封止材中に封止して作製された太陽電池モジュールの裏面側の他の一例の模式的な平面図を示す。この例においては、矩形状の開口部301から、配線端部114a、114b、114c、114dのそれぞれの一部と、バイパスダイオード300a、300b、300cとがそれぞれ露出するように設けられている。したがって、この例においては、太陽電池構造体を封止材に封止した後にバイパスダイオード300a、300b、300cを太陽電池ストリング接続用配線に接続することができるため、安定して作業をすることができる。また、リード線303a、リード線303b、出力端子310aおよび配線端部310bを備えた1つの端子ボックス302を取り付けるだけで太陽電池モジュールからの電流の取り出し用の配線が可能となるだけでなく、端子ボックス302によってダイオード300a、300b、300cを保護することも可能となる。
図18に、本発明の太陽電池モジュールを構成する太陽電池構造体の折り曲げ前の受光面側の他の一例の模式的な平面図を示す。
図19に、図18に示す太陽電池構造体を破線A-Aおよび破線B-Bに沿って折り曲げて封止材中に封止して作製された太陽電池モジュールの裏面側の一例の模式的な平面図を示す。この例においては、端子ボックスを正極または負極にそれぞれ分けて2箇所に設置している。このような構成とすることによって、端子ボックスを小型化することができ、端子ボックスへの配線を1箇所にまとめる必要がないため、配線基板の配線構造を簡略化することができる。また、隣接する太陽電池モジュールを接続するためのケーブルを短くすることができる。
図20に、図18に示す太陽電池構造体を破線A-Aおよび破線B-Bに沿って折り曲げて封止材中に封止して作製された太陽電池モジュールの裏面側の他の一例の模式的な平面図を示す。この例においては、矩形状の開口部301がダイオード300a、300b、300cをそれぞれ露出するように設けられていることに特徴がある。したがって、この例においては、太陽電池構造体を封止した後にバイパスダイオードを配線端部の太陽電池ストリング接続用配線に接続することができるため、作業の安定性が向上する傾向にある。
また、この例においては、端子ボックス302aの出力端子310aを開口部301から露出している配線端部114aの出力端子接続用配線に電気的に接続するとともに、端子ボックス302a内にバイパスダイオード300aを収容することによってバイパスダイオード300aを保護する構成となっている。
また、この例においては、開口部301から露出しているバイパスダイオード300bをダイオード保護ボックス302cに収容させることによって、バイパスダイオード300bを保護する構成となっている。
また、この例においては、端子ボックス302b内の出力端子310bを開口部301から露出している配線端部114dに電気的に接続するとともに、端子ボックス302b内にバイパスダイオード300cを収容することによってバイパスダイオード300cを保護する構成となっている。
なお、本明細書において、裏面電極型太陽電池セルおよび太陽電池モジュールの太陽光が入射する側の表面を受光面とし、受光面の反対側の表面を裏面とする。
また、本発明においては、太陽電池セルとしては、上記で説明したように、シリコン基板等の半導体基板の裏面にp型用電極およびn型用電極の双方が形成された裏面電極型太陽電池セルを用いることが好ましい。
また、本発明においては、シリコン基板以外の半導体基板を用いてもよく、p型とn型の導電型を入れ替えてもよい。
また、上記においては、いずれの端子ボックスにもバイパスダイオード(ダイオード)が設置されていないが、配線基板上にダイオードを設置せず、端子ボックスに予めバイパスダイオード(ダイオード)を作りこんでおくこともできる。
<実施の形態2>
図21に、本発明の太陽電池モジュールの一例の模式的な断面図を示す。ここで、本発明の太陽電池モジュールにおいては、たとえばp型またはn型のシリコン基板1101の裏面に形成されたパッシベーション膜1103から露出している表面にn型領域1104およびp型領域1105がそれぞれ形成されている。そして、n型領域1104上にn型用電極1106が形成されるとともに、p型領域1105上にp型用電極1107が形成されており、シリコン基板1101の受光面に反射防止膜1102が形成された構成の裏面電極型太陽電池セル1100を有している。なお、シリコン基板1101の受光面はテクスチャ構造となっている。
図21に、本発明の太陽電池モジュールの一例の模式的な断面図を示す。ここで、本発明の太陽電池モジュールにおいては、たとえばp型またはn型のシリコン基板1101の裏面に形成されたパッシベーション膜1103から露出している表面にn型領域1104およびp型領域1105がそれぞれ形成されている。そして、n型領域1104上にn型用電極1106が形成されるとともに、p型領域1105上にp型用電極1107が形成されており、シリコン基板1101の受光面に反射防止膜1102が形成された構成の裏面電極型太陽電池セル1100を有している。なお、シリコン基板1101の受光面はテクスチャ構造となっている。
そして、裏面電極型太陽電池セル1100のn型用電極1106およびp型用電極1107はそれぞれ、絶縁性基材1111上に設置されたn型用配線1109およびp型用配線1110に電気的に接続されており、隣接する裏面電極型太陽電池セル1100のうち一方の裏面電極型太陽電池セル1100のn型用電極1106と他方の裏面電極型太陽電池セル1100のp型用電極1107とが電気的に接続されることにより、隣接する裏面電極型太陽電池セル1100が直列に接続されて、太陽電池構造体が構成されている。
また、太陽電池構造体は、たとえばガラス等からなる透明基板1117と耐候性フィルム等からなる裏面基材1119との間の封止材1118中に設置されており、太陽電池構造体の配線基板は、裏面電極型太陽電池セル1100の接続方向における両端部が折り曲げられて設置されていることが好ましい。配線基板を折り曲げる際には、作業性を向上させるために、折り曲げる部分に予めスリット1112を形成しておいたり、絶縁性の棒材1121を軸として折り曲げることが好ましい。なお、本発明において、封止材1118としては、特に限定されることなく用いることができ、たとえば、EVA(エチレンビニルアセテート)等の絶縁性の透明樹脂を用いることができる。
さらに、太陽電池構造体の両端を折り曲げることによって裏面電極型太陽電池セル1100の受光面側と反対側に設置された配線端部1114dおよび配線端部1115cのうち、配線端部1114dには太陽電池モジュールで生じた電流を外部に取り出すための導線の一端1204aが電気的に接続されている。そして、太陽電池構造体を封止している透明基板1117、封止材1118および裏面基材1119の外周を取り囲むようにしてアルミニウム等の枠体1120が嵌め込まれている。
図22に、図21に示される太陽電池モジュールの断面よりもさらに内側の断面を模式的に示す。ここでは、上述した導線の一端1204aと図示しない導線の他端との間の導線中間部1204bが示されており、導線中間部1204bは絶縁性基材1111の折り曲げ部に包み込まれるようにして配置されている。
図23に、本発明の太陽電池モジュールに用いられる太陽電池構造体の配線基板の折り曲げ後であって封止材中への封止前の裏面側の一例の模式的な平面図を示す。絶縁性基材1111に形成された配線のうち配線端部1114a、1114b、1114c、1114dおよび配線端部1115a、1115b、1115cがそれぞれ裏面側に折り曲げられている。ここで、外部に電流を取り出すための導線1200の一端1200aが配線端部1114a上に接着テープ等の貼付部材1201aにより仮固定されることが好ましく、導線1202の一端1202aが配線端部1114b上に接着テープ等の貼付部材1201bにより仮固定されることが好ましい。このように仮固定することによって、後工程における導線1200、1202の位置ずれを抑止し、封止材1118への封止時の真空圧着にて電気的な接続を得るようにすることによって従来のような導線1200、1202をはんだ付けする工程を省略することができる。なお、導線1200の一端1204aおよび導線1202の一端1203aについても仮固定されることができる。
また、封止材1118への封止のための真空圧着時の処理温度以下で溶融する低温はんだ、真空圧着時の処理温度以下で硬化する導電性接着剤ならびに真空圧着時の処理温度および圧力で接続可能なACF(Anisotropic Conductive Film)等の導電性物質からなる群から選択される少なくとも1種を予め導線および/または配線端部に付与しておくことで、真空圧着と同時に導線と配線端部との接続を行なうことができるため、工程の簡略化とともにより確実な接続が可能となる。また、従来どおり封止材1118への封止前に導線と配線端部とをはんだ、導電性接着剤およびACF等の導電性物質からなる群から選択される少なくとも1種により接続を行なっておくこともできる。ここで、この例においては、導線1200および導線1202の外表面には絶縁処理がなされていない。
導線1200の一端1200a、1204aに引き続く導線1200の中間部1200b、1204bは、絶縁性基材1111に設けられた切れ込み部1300a、1300bからそれぞれ配線基板の折り曲げ部の間に進入することによって、配線基板の折り曲げ部の間に挟まれている。これにより、導線1200の中間部1200b、1204bの表面の少なくとも一部が絶縁性基材111により被覆されることになる。
その後、導線1200の中間部1200b、1204bは、配線基板の折り曲げ部の間で略直角に屈曲させられた後に配線基板の端部から引き出されており、導線1200の他端1200c、1204cがこれに引き続いている。
また、導線1202の一端1202a、1203aが配線端部1114b、1114cとそれぞれ接続しており、他端1202b、1203bがこれに引き続いている。導線1200の他端1200c、1204cと導線1202の他端1202b、1203bとの間には間隔が設けられており、太陽電池構造体の封止材1118への封止後にはその間隔に絶縁性の封止材1118が充填されるため、互いに接触することなく絶縁することができる。
このように本発明によれば、従来の太陽電池モジュールのように、裏面電極型太陽電池セルの裏面の電極や他の導線と接触しないように、導線の表面を絶縁フィルム等で覆う等の絶縁処理をする必要がないため、絶縁処理工程の削減および使用材料の低減が可能となる。
なお、導線1200の他端1200c、1204cおよび導線1202の他端1202b、1203bはそれぞれ太陽電池モジュールの外部に取り出され、たとえば、ダイオード等を備えた端子ボックスに接続される。
図24に、上記の太陽電池モジュールに用いられる裏面電極型太陽電池セル1100の裏面の模式的な平面図を示す。ここで、n型用電極1106およびp型用電極1107はそれぞれ、シリコン基板1101の裏面において櫛形状に形成されており、n型用電極1106およびp型用電極1107は、それぞれの櫛歯が噛み合わさって互い違いになるように設置されている。ここで、n型用電極1106およびp型用電極1107はそれぞれ金属材料で形成されることが好ましく、特に銀を含む材料で形成されることが好ましい。
図25に、上記の太陽電池モジュールに用いられている配線基板の模式的な平面図を示す。ここで、配線基板は、絶縁性基材1111の表面上に、n型用配線1109とp型用配線1110とが備えられているとともに、裏面電極型太陽電池セル1100のn型用電極1106に電気的に接続されるn型用配線1109とp型用電極1107に電気的に接続されるp型用配線1110とを電気的に接続するための接続用配線1113が備えられることにより構成されている。
また、配線基板の端部に位置するp型用配線1110およびn型用配線1109には配線端部1114a、1114b、1114c、1114d、1115a、1115b、1115cのいずれかが電気的に接続されており、裏面電極型太陽電池セル1100を接続したときに全体として直列に接続されるように配線が形成されている。
また、配線端部1114a、1114b、1114c、1114dおよび配線端部1115a、1115b、1115cにはそれぞれ位置決め用の開口部となるスリット1112が形成されている。
さらに、配線端部1114aと配線端部1114bとの間の絶縁性基材1111には切れ込み部1300aが設けられており、配線端部1114cと配線端部1114dとの間の絶縁性基材1111には切れ込み部1300bが設けられている。
なお、図25においては、n型用配線1109、p型用配線1110、接続用配線1113、配線端部1114a、1114b、1114c、1114dおよび配線端部1115a、1115b、1115cのそれぞれの領域を破線によって分けているが、図25に示す分け方に限定されるものではない。
図26に、図24に示す裏面を有する裏面電極型太陽電池セル1100を図25に示す配線基板に電気的に接続して構成された太陽電池構造体の模式的な概略断面図を示す。
ここで、裏面電極型太陽電池セル1100のn型用電極1106は、配線基板上のn型用配線1109と接触して電気的に接続されており、裏面電極型太陽電池セル1100のp型用電極1107は、配線基板上のp型用配線1110と接触して電気的に接続されている。
このように、本発明においては、裏面電極型太陽電池セル1100の裏面に配線基板を設置することで電気的な接続が可能となり、従来の太陽電池セルの接続のように、インターコネクタを受光面から裏面に取り回す必要がなくなるため、太陽電池モジュールの作製時の裏面電極型太陽電池セル1100への負荷が低減し、裏面電極型太陽電池セル1100の割れの発生を低減させることができる。したがって、本発明によれば、太陽電池モジュールの作製時の裏面電極型太陽電池セル1100への負荷を低減することができるため、裏面電極型太陽電池セル1100の薄型化(シリコン基板101の厚さが200μm以下)への対応も可能となる。
さらに、配線端部1114a、1114b、1114c、1114dおよび配線端部1115a、1115b、1115cが形成されている配線基板の端部を裏面電極型太陽電池セル1100の受光面側とは反対側に折り曲げた状態で太陽電池構造体を封止材中に封止することによって配線基板の配線の設計自由度が上がる。これにより、配線端部の幅を広くして断面積を大きくすることによって、裏面電極型太陽電池セル1100間の直列抵抗を低減することができ、高いF.F.の太陽電池モジュールを作製することができる。
また、配線端部の幅を広げて裏面電極型太陽電池セル1100間の直列抵抗を低減する観点からは、裏面電極型太陽電池セル1100の接続方向が反転する部分となる配線端部1114a、1114b、1114c、1114dおよび配線端部1115a、1115b、1115cに導電性部材を電気的に接続してもよい。なお、導電性部材としては、導電性を有する材質からなる部材であれば特に限定されずに用いることができ、たとえば太陽電池分野で用いられている従来から公知のインターコネクタ等を用いてもよい。
図27に、上記の太陽電池モジュールを構成する太陽電池構造体の折り曲げ前の受光面側の一例の模式的な平面図を示す。
この例では、24枚の裏面電極型太陽電池セル1100が配線基板の配線上に縦6列×横4列の形態で配置されて太陽電池構造体を構成しており、配線基板の端部に設けられたスリット1112に対応する破線A-Aおよび破線B-Bに沿って配線基板が折り曲げられて封止材中に封止されることによって上記構成の太陽電池モジュールとなる。
ここで、配線端部1114a-配線端部1115a間、配線端部1115a-配線端部1114b間、配線端部1114b-配線端部1115b間、配線端部1115b-配線端部1114c間、配線端部1114c-配線端部1115c間および配線端部1115c-配線端部1114d間に配列された裏面電極型太陽電池セル1100はそれぞれ隣接する裏面電極型太陽電池セル1100と電気的に直列に接続されている。
なお、太陽電池モジュールにおいては、接続抵抗を低減するために配線の幅を広くする等の理由により、たとえば図27に示される太陽電池構造体の裏面電極型太陽電池セル1100の接続方向における太陽電池構造体の折り曲げ前の長さL2が、図21に示す裏面電極型太陽電池セル1100の接続方向における太陽電池モジュールの長さL1よりも長くなる場合がある。
しかしながら、本発明においては、このような場合でも、太陽電池構造体の両端部の配線基板の部分を裏面電極型太陽電池セル1100の受光面側とは反対側に折り曲げた状態で封止して太陽電池モジュールが作製されることから、太陽電池モジュールの受光部の面積に対する裏面電極型太陽電池1100の受光面の総面積が占める割合である充填率を向上させることができるため、太陽電池モジュールの発電効率を向上することができる。また、本発明においては、配線基板の配線の幅を広げて接続抵抗を低減することができるため、太陽電池モジュールのF.F.等の特性を向上することもできる。
以下に、図28(a)~(c)の模式的断面図を参照して、上記の太陽電池モジュールを製造する方法の一例について説明する。
まず、図28(a)に示すように、上述したように太陽電池構造体を作製し、太陽電池構造体の両端部にそれぞれ形成されたスリット1112の下方に絶縁性の棒材1121を設置する。ここで、絶縁性の棒材1121としては、たとえばアクリル等の絶縁材料からなる直径1~2mm程度の棒材を用いることができる。また、棒材1121は、裏面電極型太陽電池セル1100の割れの発生を抑制する観点から、たとえば図28(a)に示すように、裏面電極型太陽電池セル1100の接続方向の端部に配置された裏面電極型太陽電池セル1100の外側に設置されることが好ましい。また、スリット1112は、配線基板上の配線の抵抗に影響が出ない程度の大きさに形成されることが好ましい。
次に、図28(b)に示すように、配線基板の配線端部1114dに配線1200の一端1204aを接続した後に、棒材1121を軸として、太陽電池構造体の両端部の絶縁性基材1111の部分を裏面電極型太陽電池セル1100の受光面側とは反対側に折り曲げる。ここで、配線基板は、絶縁性基材1111に設けられた切れ込み部1300bから伸びる配線1200の一部を包み込むようにして折り曲げられる。
このように折り曲げることによって、太陽電池モジュールの受光部の面積に対する裏面電極型太陽電池1100の受光面の総面積が占める割合である充填率を向上させることができるため、太陽電池モジュールの発電効率を向上することができる。また、導線1200および導線1202の接続は、配線基板を折り曲げる前であってもよく、配線基板を折り曲げた後であってもよい。
また、ここでは、スリット1112の部分を折り曲げ位置として棒材1121を設置し、その棒材1121を軸として太陽電池構造体の両端部の配線基板の部分を折り曲げる形態について説明したが、本発明においては、棒材1121を設置せずにスリット1112の部分を折り曲げ位置として、裏面電極型太陽電池セル1100の受光面側とは反対側に折り曲げてもよい。ただし、棒材1121を用いずに折り曲げた場合には、折り曲げ部の折り目が鋭角になって配線が断線してしまうおそれがあることから、棒材1121を軸として折り曲げることでその折り曲げ部分に対する負荷が軽減されるため、棒材1121を使用して棒材1121を軸として折り曲げることが好ましい。なお、棒材1121は、太陽電池構造体の封止の際に取り外してもよく、そのまま残しておいてもよい。
その後、図28(c)に示すように、太陽電池構造体の両端部の配線基板の部分を裏面電極型太陽電池セル1100の受光面側とは反対側に折り曲げた状態で、ガラス等の透明基板1117と耐候性フィルム等の裏面基材1119との間の透明樹脂等の封止材1118中に封止する。その後、透明基板1117、封止材1118および裏面基材1119の外周にアルミニウム等からなる枠体1120を嵌め込むことによって、上記構成の太陽電池モジュールが作製される。ここで、太陽電池構造体は、導線1200の中間部1200b、1204bの表面が絶縁性基材1111および封止材1118の少なくとも一方で被覆されるとともに、導線1200、1202の他端1200c、1202b、1203b、1204cが封止材1118から外部に引き出されるようにして封止材1118中に封止される。
なお、絶縁性基材1111としては絶縁性基材であれば特に限定なく用いることができるが、なかでもPET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、ポリイミドおよびエチレンビニルアセテートからなる群から選択された少なくとも1種の可撓性を有するフィルム等の絶縁性基材を用いることが好ましい。絶縁性基材1111として上記のような可撓性を有するフィルム等の絶縁性基材を用いた場合には、配線基板の両端部の少なくとも一方を容易に折り曲げることができる。
また、上記において、n型用配線1109、p型用配線1110、接続用配線1113、配線端部1114a、1114b、1114c、1114dおよび配線端部1115a、1115b、1115cのそれぞれの配線部材としては、銀、銅およびアルミニウムからなる群から選択された少なくとも1種を含む金属材料を用いることが好ましい。
また、本発明においては、太陽電池セルとしては、上記で説明したように、シリコン基板等の半導体基板の裏面にp型用電極およびn型用電極の双方が形成された裏面電極型太陽電池セルを用いることが好ましい。
また、本発明においては、シリコン基板以外の半導体基板を用いてもよく、p型とn型の導電型を入れ替えてもよい。
<実施の形態3>
図29に、本発明の太陽電池モジュールの一例の一部を受光面側から見たときの模式的な平面図を示す。また、図30に、図29の太陽電池モジュールの一部を裏面側から見たときの模式的な平面図を示す。この例においては、太陽電池構造体はその端部が折り曲げられることなく封止材中に封止されている点に特徴がある。なお、図29および図30においては、説明の便宜のため、透明基板1117、封止材1118および枠体1120の記載については省略されている。
図29に、本発明の太陽電池モジュールの一例の一部を受光面側から見たときの模式的な平面図を示す。また、図30に、図29の太陽電池モジュールの一部を裏面側から見たときの模式的な平面図を示す。この例においては、太陽電池構造体はその端部が折り曲げられることなく封止材中に封止されている点に特徴がある。なお、図29および図30においては、説明の便宜のため、透明基板1117、封止材1118および枠体1120の記載については省略されている。
ここで、太陽電池モジュールで発生した電流を外部に取り出すための導線1200の一端1200aが配線端部1114a上にはんだ等によって接続されており、導線1200の一端1204aが配線端部1114d上にはんだ等によって接続されている。なお、はんだ以外にも実施の形態1で説明した方法と同様の方法で接続してもよい。
そして、導線1200の一端1200aに引き続く導線1200の中間部1200bは、絶縁性基材1111に設けられた切れ込み部1300aから配線基板の裏側に進入しており、配線基板の裏側で略直角に屈曲させられている。また、導線1200の一端1204aに引き続く導線1200の中間部1204bは、絶縁性基材1111に設けられた切れ込み部1300bから配線基板の裏側に進入しており、配線基板の裏側で略直角に屈曲させられている。そして、導線1200の他端1200cが導線1200の中間部1200bに引き続いている。
また、外部に電流を取り出すための導線1202の一端1202a、1203aはそれぞれ、上記と同様に、配線端部1114bおよび配線端部1114c上にはんだ等によって固定されている。そして、導線1202は略直角に屈曲させられた後に切れ込み部1300cにより絶縁性基材1111の裏側に進行し、導線1202の他端1202b、1203bにそれぞれ引き続いている。
導線1200および導線1202の表面がそれぞれ絶縁処理されていない場合でも、導線1200と配線端部1114b、1114cとの接触は、導線1200を絶縁性基材1111の切れ込み部1300a、1300bから配線基板の裏側に進入させることで回避することができ、導線1200、1202と裏面電極型太陽電池セル1100との接触もこれらの間に絶縁性の絶縁性基材1111が存在するために回避することができる。また、導線1200の他端1200c、1204cと導線1202の他端1202b、1203bとの間に間隔が設けられており、太陽電池構造体の封止材1118中への封止後は絶縁性の封止材1118がその間隔に充填されるため互いに接触することなく絶縁することができる。
このように、この例においても、太陽電池モジュールで発生した電流を外部に取り出すための導線1200、1202のそれぞれの導線の外表面が、太陽電池モジュールの内部において絶縁性基材1111および封止材1118の少なくとも一方によって被覆されることになるため、太陽電池の内部における導線1200、1202の電気的な接触を回避できることから、導線1200、1202の外表面については絶縁処理をする必要がない。したがって、この例においても、太陽電池モジュールを構成する絶縁性の部材を利用して、導線1200、1202を互いに電気的に絶縁することができるため、導線1200、1202のそれぞれの表面について絶縁処理を行なう必要がないことから、導線の絶縁処理を簡便に行なうことができる。その他の説明は実施の形態2と同様である。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本発明によれば、配線作業を簡便に行なうことができる太陽電池モジュールおよび太陽電池モジュールの製造方法を提供することができる。
また、本発明によれば、導線の絶縁処理を簡便に行なうことができる太陽電池モジュールおよび太陽電池モジュールの製造方法を提供することができる。
Claims (18)
- 太陽電池セル(100,1100)同士を電気的に接続するための配線(109,110,1109,1110)を有する配線基板と、前記配線基板の前記配線(109,110,1109,1110)上に設置されて電気的に接続された複数の太陽電池セル(100,1100)とを備えた太陽電池構造体を含み、
前記太陽電池構造体は、前記太陽電池構造体の対向する両端部の少なくとも一方における前記配線(109,110,1109,1110)の一部が前記太陽電池セル(100,1100)の受光面側とは反対側に位置するように封止材(118,1118)中に設置されており、
前記太陽電池セル(100,1100)の受光面側とは反対側に位置する前記配線(109,110,1109,1110)の少なくとも一部が前記封止材(118,1118)から露出している、太陽電池モジュール。 - 前記配線(109,110,1109,1110)の少なくとも一部が、銅、アルミニウムおよび銀からなる群から選択された少なくとも1種を含むことを特徴とする、請求の範囲第1項に記載の太陽電池モジュール。
- 前記太陽電池セル(100,1100)が直列に接続されて一列に配列されてなる太陽電池ストリングの複数と、前記太陽電池構造体に発生した電流を外部に取り出すための出力端子(310a,310b)を有する端子ボックス(302,302a,302b)とを含み、
前記配線基板の前記配線(109,110,1109,1110)は、前記太陽電池ストリング同士が接続されている太陽電池ストリング接続用配線と、前記出力端子(310a,310b)が接続されている出力端子接続用配線とを含むことを特徴とする、請求の範囲第1項に記載の太陽電池モジュール。 - 前記太陽電池ストリング接続用配線に接続されたバイパスダイオードを含むことを特徴とする、請求の範囲第3項に記載の太陽電池モジュール。
- 前記出力端子接続用配線と前記出力端子(310a,310b)とは、物理的圧着による接続および導電性物質を介した接続の少なくとも一方により接続されていることを特徴とする、請求の範囲第3項に記載の太陽電池モジュール。
- 前記出力端子接続用配線と前記出力端子(310a,310b)とは、磁力を利用した物理的圧着により接続されていることを特徴とする、請求の範囲第5項に記載の太陽電池モジュール。
- 前記出力端子接続用配線と前記出力端子(310a,310b)とは、前記端子ボックス(302,302a,302b)を前記配線基板にネジ止めすることによって物理的圧着により接続されていることを特徴とする、請求の範囲第5項に記載の太陽電池モジュール。
- 前記配線基板は前記配線(109,110,1109,1110)が設置された絶縁性基材(111,1111)を有し、前記絶縁性基材(111,1111)は、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリイミドおよびエチレンビニルアセテートからなる群から選択された少なくとも1種を含む可撓性を有することを特徴とする、請求の範囲第1項に記載の太陽電池モジュール。
- 前記太陽電池構造体の対向する両端部の少なくとも一方における前記配線基板の一部を折り曲げることによって前記配線(109,110,1109,1110)の一部を前記太陽電池セル(100,1100)の受光面側とは反対側に位置させていることを特徴とする、請求の範囲第8項に記載の太陽電池モジュール。
- 前記太陽電池セル(100,1100)は、前記太陽電池セル(100,1100)の受光面側とは反対側の裏面にp型用電極(107,1107)およびn型用電極(106,1106)を備えた裏面電極型太陽電池セル(100,1100)であることを特徴とする、請求の範囲第1項に記載の太陽電池モジュール。
- 請求の範囲第1項に記載の太陽電池モジュールを製造するための方法であって、
前記配線基板の前記配線(109,110,1109,1110)に前記太陽電池セル(100,1100)を電気的に接続することによって前記太陽電池構造体を形成する工程と、
前記太陽電池セル(100,1100)の受光面側とは反対側において前記太陽電池構造体の対向する両端部の少なくとも一方における前記配線(109,110,1109,1110)の少なくとも一部が前記封止材(118,1118)から露出するように前記太陽電池構造体を前記封止材(118,1118)中に設置する工程と、を含む、太陽電池モジュールの製造方法。 - 太陽電池セル(100,1100)同士を電気的に接続するための配線(109,110,1109,1110)が設置された絶縁性基材(111,1111)と前記絶縁性基材(111,1111)の前記配線(109,110,1109,1110)上に設置されて電気的に接続された複数の太陽電池セル(100,1100)とを備えた太陽電池構造体が絶縁性の封止材(118,1118)中に設置され、
外部に電流を取り出すための導線(1200,1202)の一端(1200a,1202a,1203a,1204a)が前記配線(109,110,1109,1110)に電気的に接続されているとともに前記導線(1200,1202)の他端(1200c,1202b,1203b,1204c)が前記封止材(118,1118)から外部に引き出されており、
前記導線(1200,1202)の一端(1200a,1202a,1203a,1204a)と前記導線(1200,1202)の他端(1200c,1202b,1203b,1204c)との間の前記導線(1200,1202)の表面の少なくとも一部が前記絶縁性基材(111,1111)および前記封止材(118,1118)の少なくとも一方で被覆されている、太陽電池モジュール。 - 前記太陽電池構造体は、前記太陽電池構造体の対向する両端部の少なくとも一方における前記絶縁性基材(111,1111)の一部が前記太陽電池セル(100,1100)の受光面側と反対側に折り曲げられて前記封止材(118,1118)中に設置されており、
前記導線(1200,1202)の一端(1200a,1202a,1203a,1204a)と前記導線(1200,1202)の他端(1200c,1202b,1203b,1204c)との間の前記導線(1200,1202)の表面の少なくとも一部は前記絶縁性基材(111,1111)の前記折り曲げられた部分に挟まれることにより前記絶縁性基材(111,1111)に被覆されていることを特徴とする、請求の範囲第12項に記載の太陽電池モジュール。 - 前記導線(1200,1202)の一端(1200a,1202a,1203a,1204a)と前記導線(1200,1202)の他端(1200c,1202b,1203b,1204c)との間の前記導線(1200,1202)の表面の少なくとも一部は前記封止材(118,1118)により被覆されており、
前記導線(1200,1202)の他端(1200c,1202b,1203b,1204c)は、前記封止材(118,1118)に設けられた切れ込み部(1300a,1300b,1300c)から外部に引き出されていることを特徴とする、請求の範囲第12項に記載の太陽電池モジュール。 - 前記配線(109,110,1109,1110)の少なくとも一部が、銅、アルミニウムおよび銀からなる群から選択された少なくとも1種を含むことを特徴とする、請求の範囲第12項に記載の太陽電池モジュール。
- 前記絶縁性基材(111,1111)は、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリイミドおよびエチレンビニルアセテートからなる群から選択された少なくとも1種を含む可撓性を有することを特徴とする、請求の範囲第12項に記載の太陽電池モジュール。
- 前記太陽電池セル(100,1100)は、前記太陽電池セル(100,1100)の受光面側とは反対側の裏面にp型用電極(107,1107)およびn型用電極(106,1106)を備えた裏面電極型太陽電池セル(100,1100)であることを特徴とする、請求の範囲第12項に記載の太陽電池モジュール。
- 請求の範囲第12項に記載の太陽電池モジュールを製造するための方法であって、
前記絶縁性基材(111,1111)の前記配線(109,110,1109,1110)に前記太陽電池セル(100,1100)を電気的に接続することによって前記太陽電池構造体を形成する工程と、
前記導線(1200,1202)の一端(1200a,1202a,1203a,1204a)を前記配線(109,110,1109,1110)に電気的に接続する工程と、
前記導線(1200,1202)の表面の少なくとも一部が前記絶縁性基材(111,1111)および前記封止材(118,1118)の少なくとも一方で被覆されるとともに前記導線(1200,1202)の他端(1200c,1202b,1203b,1204c)が前記封止材(118,1118)から外部に引き出されるように前記太陽電池構造体を前記封止材(118,1118)中に封止する工程と、を含む、太陽電池モジュールの製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009801095947A CN101984772A (zh) | 2008-03-17 | 2009-03-04 | 太阳能电池模块和太阳能电池模块的制造方法 |
US12/933,035 US20110017281A1 (en) | 2008-03-17 | 2009-03-04 | Solar cell module and method for manufacturing solar cell module |
EP09721520A EP2264782A1 (en) | 2008-03-17 | 2009-03-04 | Solar battery module and method for manufacturing solar battery module |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-068128 | 2008-03-17 | ||
JP2008068129A JP4947660B2 (ja) | 2008-03-17 | 2008-03-17 | 太陽電池モジュールおよび太陽電池モジュールの製造方法 |
JP2008068128A JP5004835B2 (ja) | 2008-03-17 | 2008-03-17 | 太陽電池モジュールおよび太陽電池モジュールの製造方法 |
JP2008-068129 | 2008-03-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009116394A1 true WO2009116394A1 (ja) | 2009-09-24 |
Family
ID=41090800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/054040 WO2009116394A1 (ja) | 2008-03-17 | 2009-03-04 | 太陽電池モジュールおよび太陽電池モジュールの製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20110017281A1 (ja) |
EP (1) | EP2264782A1 (ja) |
CN (1) | CN101984772A (ja) |
WO (1) | WO2009116394A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011155132A (ja) * | 2010-01-27 | 2011-08-11 | Sharp Corp | 太陽電池モジュール及びその製造方法 |
WO2011151897A1 (ja) * | 2010-06-02 | 2011-12-08 | 凸版印刷株式会社 | 太陽電池およびその製造方法 |
US20140053892A1 (en) * | 2011-03-30 | 2014-02-27 | Hanmyeong Co., Ltd | Solar Cell Plate Having Junction Box Formed Thereon |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009043842A (ja) * | 2007-08-07 | 2009-02-26 | Sharp Corp | 太陽電池モジュール |
WO2010122935A1 (ja) * | 2009-04-23 | 2010-10-28 | シャープ株式会社 | 配線シート、配線シート付き太陽電池セルおよび太陽電池モジュール |
JP5242499B2 (ja) * | 2009-05-25 | 2013-07-24 | シャープ株式会社 | 太陽電池モジュールおよびその製造方法、ならびに当該太陽電池モジュールを搭載した電子機器 |
KR101204121B1 (ko) * | 2010-03-29 | 2012-11-22 | 삼성전기주식회사 | 상호 정전용량방식 터치패널 |
WO2012047269A1 (en) * | 2010-09-27 | 2012-04-12 | Banyan Energy, Inc. | Linear cell stringing |
KR101254564B1 (ko) | 2011-05-18 | 2013-04-19 | 엘지전자 주식회사 | 태양 전지 모듈 |
WO2013046773A1 (ja) * | 2011-09-29 | 2013-04-04 | 三洋電機株式会社 | 太陽電池モジュール |
CN103907201A (zh) * | 2011-10-31 | 2014-07-02 | 三洋电机株式会社 | 太阳能电池模块 |
CN102522442B (zh) * | 2011-12-31 | 2014-08-27 | 常州亿晶光电科技有限公司 | 一种八列太阳能组件内部线路的绝缘阻隔结构 |
JP6131508B2 (ja) * | 2013-05-09 | 2017-05-24 | ホシデン株式会社 | 端子ボックス |
ITTV20130211A1 (it) * | 2013-12-23 | 2015-06-24 | Vismunda Srl | "metodo d'assemblaggio di un pannello fotovoltaico di tipo back-contact con prefissaggio delle celle, e stazione combinata di carico e pre-fissaggio". |
EP2960946B1 (en) * | 2014-06-26 | 2020-11-18 | LG Electronics Inc. | Solar cell module |
US20160035907A1 (en) * | 2014-08-04 | 2016-02-04 | Lg Electronics Inc. | Solar cell module |
CN105405905B (zh) * | 2014-09-03 | 2017-06-16 | 英属开曼群岛商精曜有限公司 | 太阳能模块 |
CN105287430A (zh) * | 2015-12-01 | 2016-02-03 | 广州市富诺生物科技有限公司 | 一种藻油软胶囊及其制造方法 |
CN109245712A (zh) * | 2017-07-03 | 2019-01-18 | 北京信邦同安电子有限公司 | 太阳能组件及其分体式功率优化接线盒 |
US11626835B2 (en) * | 2018-03-30 | 2023-04-11 | Zeon Corporation | Energy harvester |
EP4002490A4 (en) * | 2019-07-17 | 2023-04-05 | Kabushiki Kaisha Toshiba | SOLAR BATTERY MODULE AND SOLAR BATTERY IN TANDEM |
CN113053677B (zh) * | 2019-12-26 | 2023-12-01 | 佳能株式会社 | 电源单元和包括电源单元的放射线摄像装置 |
NL2030125B1 (en) * | 2021-12-14 | 2023-06-27 | Atlas Technologies Holding Bv | Solar panel using back-contacted solar cells. |
FR3145647A1 (fr) | 2023-02-07 | 2024-08-09 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Module photovoltaïque à espace de décrochement intégrant une diode de bypass |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60123073A (ja) * | 1983-12-08 | 1985-07-01 | Fuji Electric Corp Res & Dev Ltd | 薄膜太陽電池 |
JPS61134080A (ja) * | 1984-12-04 | 1986-06-21 | Matsushita Electric Ind Co Ltd | 薄膜太陽電池 |
JPH0363954U (ja) * | 1989-10-27 | 1991-06-21 | ||
JPH09283785A (ja) * | 1996-04-16 | 1997-10-31 | Nec Corp | 太陽電池素子の実装構造 |
JP2005340362A (ja) | 2004-05-25 | 2005-12-08 | Sharp Corp | 太陽電池セルおよび太陽電池モジュール |
JP2005340821A (ja) * | 2004-05-25 | 2005-12-08 | Tyco Electronics Amp Gmbh | ソーラーモジュール及びその製造方法 |
JP2007115915A (ja) | 2005-10-20 | 2007-05-10 | Yukita Electric Wire Co Ltd | 太陽電池モジュール用端子ボックス |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3686815A (en) * | 1970-02-19 | 1972-08-29 | Robert J Von Bose | Method for building construction |
US4200472A (en) * | 1978-06-05 | 1980-04-29 | The Regents Of The University Of California | Solar power system and high efficiency photovoltaic cells used therein |
US4392009A (en) * | 1981-10-16 | 1983-07-05 | Exxon Research And Engineering Co. | Solar power module |
US5253300A (en) * | 1991-03-22 | 1993-10-12 | H. C. Knapp Sound Technology Inc. | Solar powered hearing aid |
TW280962B (en) * | 1995-02-24 | 1996-07-11 | Sanyo Electric Co | Battery charger and a solar battery used for charging a battery |
US5951786A (en) * | 1997-12-19 | 1999-09-14 | Sandia Corporation | Laminated photovoltaic modules using back-contact solar cells |
US5972732A (en) * | 1997-12-19 | 1999-10-26 | Sandia Corporation | Method of monolithic module assembly |
NO319368B1 (no) * | 2003-08-19 | 2005-07-18 | Betek Norge As | Anordning ved koblingsboks |
US20070295381A1 (en) * | 2004-03-29 | 2007-12-27 | Kyocera Corporation | Solar Cell Module and Photovoltaic Power Generator Using This |
US7406800B2 (en) * | 2004-05-18 | 2008-08-05 | Andalay Solar, Inc. | Mounting system for a solar panel |
US7282728B2 (en) * | 2004-09-03 | 2007-10-16 | Steril-Aire, Inc. | Modular fixture |
DE102004044061A1 (de) * | 2004-09-11 | 2006-04-20 | Rwe Space Solar Power Gmbh | Solarzellenanordung sowie Verfahren zum Verschalten eines Solarzellenstrings |
WO2007022106A2 (en) * | 2005-08-15 | 2007-02-22 | Konarka Technologies, Inc. | Photovoltaic cells with interconnects to external circuit |
JP4662151B2 (ja) * | 2005-11-29 | 2011-03-30 | 大日本印刷株式会社 | 太陽電池モジュール用充填材、およびそれを用いた太陽電池モジュール、ならびに太陽電池モジュール用充填材の製造方法 |
JP2007294866A (ja) * | 2006-03-31 | 2007-11-08 | Sanyo Electric Co Ltd | 太陽電池モジュール |
US8207442B2 (en) * | 2006-04-18 | 2012-06-26 | Itn Energy Systems, Inc. | Reinforcing structures for thin-film photovoltaic device substrates, and associated methods |
US20070283997A1 (en) * | 2006-06-13 | 2007-12-13 | Miasole | Photovoltaic module with integrated current collection and interconnection |
US20080041434A1 (en) * | 2006-08-18 | 2008-02-21 | Nanosolar, Inc. | Methods and devices for large-scale solar installations |
US20090032087A1 (en) * | 2007-02-06 | 2009-02-05 | Kalejs Juris P | Manufacturing processes for light concentrating solar module |
US7622672B2 (en) * | 2007-03-07 | 2009-11-24 | Johnson Richard A | Electrical housing knockout device and method |
US20090025778A1 (en) * | 2007-07-23 | 2009-01-29 | Day4 Energy Inc. | Shading protection for solar cells and solar cell modules |
JP2009043842A (ja) * | 2007-08-07 | 2009-02-26 | Sharp Corp | 太陽電池モジュール |
KR20100097219A (ko) * | 2007-12-18 | 2010-09-02 | 데이4 에너지 인코포레이티드 | Pv 스트링으로 에지 액세스를 수행하는 광전지 모듈, 연결 방법, 장치, 및 시스템 |
-
2009
- 2009-03-04 WO PCT/JP2009/054040 patent/WO2009116394A1/ja active Application Filing
- 2009-03-04 CN CN2009801095947A patent/CN101984772A/zh active Pending
- 2009-03-04 US US12/933,035 patent/US20110017281A1/en not_active Abandoned
- 2009-03-04 EP EP09721520A patent/EP2264782A1/en not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60123073A (ja) * | 1983-12-08 | 1985-07-01 | Fuji Electric Corp Res & Dev Ltd | 薄膜太陽電池 |
JPS61134080A (ja) * | 1984-12-04 | 1986-06-21 | Matsushita Electric Ind Co Ltd | 薄膜太陽電池 |
JPH0363954U (ja) * | 1989-10-27 | 1991-06-21 | ||
JPH09283785A (ja) * | 1996-04-16 | 1997-10-31 | Nec Corp | 太陽電池素子の実装構造 |
JP2005340362A (ja) | 2004-05-25 | 2005-12-08 | Sharp Corp | 太陽電池セルおよび太陽電池モジュール |
JP2005340821A (ja) * | 2004-05-25 | 2005-12-08 | Tyco Electronics Amp Gmbh | ソーラーモジュール及びその製造方法 |
JP2007115915A (ja) | 2005-10-20 | 2007-05-10 | Yukita Electric Wire Co Ltd | 太陽電池モジュール用端子ボックス |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011155132A (ja) * | 2010-01-27 | 2011-08-11 | Sharp Corp | 太陽電池モジュール及びその製造方法 |
WO2011151897A1 (ja) * | 2010-06-02 | 2011-12-08 | 凸版印刷株式会社 | 太陽電池およびその製造方法 |
JPWO2011151897A1 (ja) * | 2010-06-02 | 2013-07-25 | 凸版印刷株式会社 | 太陽電池およびその製造方法 |
US20140053892A1 (en) * | 2011-03-30 | 2014-02-27 | Hanmyeong Co., Ltd | Solar Cell Plate Having Junction Box Formed Thereon |
Also Published As
Publication number | Publication date |
---|---|
EP2264782A1 (en) | 2010-12-22 |
CN101984772A (zh) | 2011-03-09 |
US20110017281A1 (en) | 2011-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009116394A1 (ja) | 太陽電池モジュールおよび太陽電池モジュールの製造方法 | |
US10236403B2 (en) | Solar cell module | |
JP4947660B2 (ja) | 太陽電池モジュールおよび太陽電池モジュールの製造方法 | |
US10181543B2 (en) | Solar cell module having a conductive pattern part | |
EP2911206B1 (en) | Solar cell module and method for manufacturing the same | |
KR101661859B1 (ko) | 태양 전지 모듈 및 그 제조 방법 | |
US10825938B2 (en) | Solar cell module | |
US9331213B2 (en) | Integrated power connectors for PV modules and their methods of manufacture | |
US20130048046A1 (en) | Photovoltaic module | |
US20120216860A1 (en) | Interconnection sheet, solar cell with interconnection sheet, solar cell module, and interconnection sheet roll | |
JP5004835B2 (ja) | 太陽電池モジュールおよび太陽電池モジュールの製造方法 | |
US10700228B2 (en) | Method for manufacturing solar cell module having defect tested solar cell strings | |
KR100977509B1 (ko) | 태양전지모듈용 버스리본 | |
JP5311160B2 (ja) | 太陽電池モジュール | |
CN105453274B (zh) | 聚光光伏模块、聚光光伏面板和用于聚光光伏模块的柔性印刷电路 | |
EP2884546A1 (en) | Solar cell module. | |
US20140305488A1 (en) | Solar cell module | |
JP2016046362A (ja) | 光電変換装置 | |
EP4307393A1 (en) | Method for manufacturing a solar cell module and solar cell module | |
JP2002141535A (ja) | 太陽電池モジュールの電力リード引き出し方法 | |
US12125929B2 (en) | Solar device with insulated interconnectors | |
US20190312165A1 (en) | Solar device with insulated interconnectors | |
JP2009302595A (ja) | 太陽電池モジュール及びその製造方法 | |
JP2019004189A (ja) | 光電変換装置 | |
CN107452813A (zh) | 薄膜电池接线盒、薄膜电池组件及其组装方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980109594.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09721520 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12933035 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009721520 Country of ref document: EP |