WO2009115577A1 - Elektrodiaphragmalyse - Google Patents

Elektrodiaphragmalyse Download PDF

Info

Publication number
WO2009115577A1
WO2009115577A1 PCT/EP2009/053255 EP2009053255W WO2009115577A1 WO 2009115577 A1 WO2009115577 A1 WO 2009115577A1 EP 2009053255 W EP2009053255 W EP 2009053255W WO 2009115577 A1 WO2009115577 A1 WO 2009115577A1
Authority
WO
WIPO (PCT)
Prior art keywords
treated water
water according
electrochemically treated
oxidants
ppm
Prior art date
Application number
PCT/EP2009/053255
Other languages
English (en)
French (fr)
Inventor
Manuel Czech
André PHILIPPS
Michael Saefkow
Original Assignee
Aquagroup Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aquagroup Ag filed Critical Aquagroup Ag
Priority to US12/933,239 priority Critical patent/US20110176991A1/en
Priority to CA2716560A priority patent/CA2716560A1/en
Priority to CN2009801106015A priority patent/CN102015548A/zh
Priority to EP09721442A priority patent/EP2254840A1/de
Publication of WO2009115577A1 publication Critical patent/WO2009115577A1/de
Priority to ZA2010/06640A priority patent/ZA201006640B/en
Priority to US14/098,584 priority patent/US20140170059A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B5/00Water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/005Systems or processes based on supernatural or anthroposophic principles, cosmic or terrestrial radiation, geomancy or rhabdomancy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/307Treatment of water, waste water, or sewage by irradiation with X-rays or gamma radiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46145Fluid flow
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4618Supplying or removing reactants or electrolyte
    • C02F2201/46185Recycling the cathodic or anodic feed
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity

Definitions

  • Electrolysis is the branch of electrochemistry that deals with the phenomena that occur when chemicals are treated with electricity (as opposed to electroplating, which extracts electricity from chemicals).
  • the field of electrolysis includes the electron excitation (illumination of gases) at low current intensities to destruction (lysis) at high current intensities.
  • the shape of the electro-diaphragm analysis has a porous membrane between the anodic and cathodic regions, which is intended to prevent overflow and mixing of the gases produced at the anode and at the cathode.
  • gases oxygen and chlorine gas at the anode and hydrogen at the cathode
  • the diaphragm is thus an explosion protection, which was already introduced in 1886.
  • the alternative method is the amalgam process, in which the cathode consists of mercury flowing through, which entrains the fission products formed on it. Because of the open mercury not a viable option.
  • anodic and cathodic space flows through the same electrolyte simultaneously and in the same flow direction; (see DVGW worksheet W229 and Fig. 1).
  • the product according to the invention has a greater activity against microorganisms than is to be expected on the basis of its content of chemical substances (sodium hypochlorite). This is due to its oxidative power to act as an electron acceptor, which in turn is due to a high electron deficiency in the water matrix (cluster). This is achieved by a special version of the electro-diaphragm analysis.
  • This water is exposed to a low current intensity.
  • the water is e.g. Salt is added to keep the conductivity of the water in an optimum range for the process.
  • the added amount is approx. 0.2 to 0.6% or 2 to 6 g / L.
  • Plate electrodes are used which generate a homogeneous field of parallel field lines between them so that the field strength is the same at all points in the intermediate space.
  • the electrolyte is stirred at a constant flow rate of e.g. 140 l / h (based on a 100 l / h production cell) first passed through the cathodic space formed by the cathode and the diaphragm.
  • the treatment is carried out with preferably 15-30 amps.
  • the result is an alkaline catholyte with strong gas formation, especially hydrogen gas.
  • the cathodic fraction is then sent to a larger room for degassing.
  • the sudden enlargement of the space leads to a reduction of the flow velocity and the gas bubbles can separate out. This process is assisted by structures acting as coalescers in the liquid stream, e.g. honeycomb; see enclosed Fig. 2.
  • the inventive method is based on a further development of the method of electrolysis.
  • a defined conductivity in water is achieved.
  • the water clusters contiguous water molecules by magnetic action of Wassermoleküldipols
  • the process is fundamentally different from traditional electrolysis, e.g. the production of chlorine dioxide is based.
  • a present electrolyte is lysed, so separated and decomposed into radicals.
  • the Elektrodiapliragmalyse which is used for example for the production of sodium hypochlorite and other oxidants, is such a decomposing process.
  • the effect is based on the produced chlorine chemistry, which reacts oxidizing in the application to the environment.
  • the effect of the invention is based on the excitation of the water molecule itself. This is in a cluster compound, so that by applying a certain current water molecules are electrically discharged (similar to a neon tube, which is made by excitation of the electrons of the noble gas to light).
  • the water molecule In contrast to classical electrolytic processes, which has been used as a proven method for more than 120 years in various forms, in the preparation according to the invention the water molecule is not decomposed into its building blocks OH " and H + and remains pH-neutral (pH 7 , 0) The water molecule is retained and constantly exchanges the charge carriers within the cluster. Although small amounts of sodium hypochlorite disfigure during production, this contamination of the water (depending on the concentration 0.6 to 600 ppm) is tolerable in most practice applications.
  • the method described above can also be used for the production of products which no longer contains chlorine-based residues, but consists exclusively of water and portions of excited water molecules.
  • X-ray represents a strong electron input. This has no effect on e.g. a hypochlorite solution that does not lose its microbiocidal activity. In contrast, the product according to the invention completely loses its biocidal effect by X-ray:
  • Solution A was subjected to an X-ray dose, which acts on a 1-hour flight from Frankfurt to Berlin. The killing of E. coli in the microbiological laboratory was tested. The inspection was not x-rayed, but has the rides of the solution A of Regensburg to Wiesbaden and from there to the investigation laboratory "participated".
  • Test germ Escherichia coli starting bacterial count: 2.3 x 10 4
  • the control has killed all germs in only 10% solution in just 1 min, there was no growth. The transport had no effect on the effectiveness.
  • Solution A also showed no effect in 50% concentration at 5 min exposure time, so it was completely deactivated by the electron entry in the X-ray.
  • NADES SC shown in the table below is a 10% NADES product with the hypochlorite completely removed to ⁇ 0.02 ppm.
  • a hypochlorite solution of this concentration has no microbiocidal activity. Nevertheless, the redox potentials of both solutions were almost the same, in any case significantly higher than the 600 ppm required for bathing water remediation.

Abstract

Es wird elektrochemisch behandeltes Wasser mit Elektronenmangel beschrieben, das erhältlich ist durch ein Verfahren mit den folgenden Schritten: a) Elektrolysieren von Wasser, b) Abziehen eines Teils des Katholyten aus dem System, und c) Einleiten des restlichen Katholyten in die anodische Kammer.

Description

Elektrodiaphragmalyse
Die Elektrolyse bezeichnet das Teilgebiet der Elektrochemie, das sich mit den Erscheinungen befasst, die auftreten, wenn Chemikalien mit Strom behandelt werden (im Gegensatz zur Galvanik, die Strom aus Chemikalien gewinnt). Der Bereich der Elektrolyse umfasst die Elektronenanregung (Leuchten von Gasen) bei geringen Stromintensitäten bis zur Zerstörung (Lyse) bei hohen Stromintensi- täten.
Die Form der Elektrodiaphragmalyse hat zwischen anodischen und kathodischen Bereich eine poröse Membran gelagert, die ein Übertreten und Vermischen der an der Anode und an der Kathode entstehenden Gase verhindern soll. Diese Gase (Sauerstoff und Chlor gas an der Anode und Wasserstoff an der Kathode) bilden beim Zusammentreffen explosive Gemische: Sauerstoff und Wasserstoff, das sogenannte Knallgas, Chlorgas und Wasserstoff, das sogenannte Chlor-Knallgas. Das Diaphragma ist damit ein Explosionsschutz, der bereits 1886 eingeführt wurde. Die alternative Methode ist das Amalgam- Verfahren, bei dem die Kathode aus durchfließendem Quecksilber besteht, das die an ihm entstehenden Spaltprodukte mitreißt. Wegen des offenen Quecksilbers keine praktikable Möglichkeit.
Im Stand der Technik werden anodischer und kathodischer Raum gleichzeitig und in gleicher Strömungsrichtung mit dem gleichen Elektrolyt durchströmt; (siehe DVGW Arbeitsblatt W229 und Fig. 1). Das Diaphragma erlaubt zwei Teilströme getrennt zu gewinnen (Anodische Fraktion = Anolyt und kathodische Fraktion = Katholyt). Das erfindungsgemäße Produkt hat eine größere Wirksamkeit gegenüber Mikroorganismen als aufgrund seines Gehaltes an chemischen Substanzen (Natriumhypochlorit) zu erwarten ist. Dies liegt an seiner oxidativen Kraft, der Eigenschaft als Elektronenakzeptor zu agieren, was wiederum an einem hohen Elektronen- mangel in der Wassermatrix (Cluster) liegt. Diese wird erzielt durch eine besondere Version der Elektrodiaphragmalyse.
Dabei wird Wasser einer schwachen Stromintensität ausgesetzt. Dazu wird dem Wasser z.B. Kochsalz zugesetzt, um die Leitfähigkeit des Wassers in einem für den Vorgang optimalen Bereich zu halten. Die zugesetzte Menge sind ca. 0,2 bis 0,6 % bzw. 2 bis 6 g/L Es werden Platten-Elektroden verwendet, die zwischen sich ein homogenes Feld paralleler Feldlinien erzeugen, sodass die Feldstärke an allen Stellen im Zwischenraum gleich ist. So erfolgt eine homogene, eng begrenzte Elektrolyse im Sinne der Elektronenanregung. Das Elektrolyt wird mit konstan- ter Flussgeschwindigkeit von z.B. 140 l/h (bezogen auf eine 100 l/h Produktionszelle) zunächst durch den von der Kathode und dem Diaphragma gebildeten kathodischen Raum geleitet. Die Behandlung erfolgt mit vorzugsweise 15-30 Ampere. Es entsteht ein alkalisches Katholyt bei starker Gas-Bildung vor allem Wasserstoff-Gas. Die kathodische Fraktion wird dann in einen größeren Raum geleitet, der zum Entgasen dient. Durch die plötzliche Vergrößerung des Raumes kommt es zur Reduktion der Fließgeschwindigkeit und die Gasblasen können sich abscheiden. Unterstützt wird dieser Prozess durch als Koaleszer wirkende Strukturen im Flüssigkeitsstrom, wie z.B. Waben; siehe beiliegende Fig 2.
Zwischen 10% und 50%, in der Regel 30% des Katholyts, schwämmt die Gasblasen aus und verlässt das System über die Drainage. Die restlichen 50 bis 90% werden in die anodische Kammer geführt, sodass sie diese im Gegenstrom zur kathodischen Kammer durchfließen. So wird der pH Wert auf pH 7 eingestellt. Die angeregten Elektronen wandern durch das Diaphragma in den kathodischen Raum; die elektronenarme Anolyt-Fraktion kann gewonnen werden. Das erfindungsgemäße Verfahren beruht auf einer Weiterentwicklung des Verfahrens der Elektrolyse. Mittels Kochsalz wird eine definierte Leitfähigkeit in Wasser erreicht. Durch Anlegen einer bestimmten Spannung in der Elektrolysezelle, sowie durch Justierung anderer wichtiger Parameter bei der Herstellung, werden die Wassercluster (zusammenhängende Wassermoleküle durch Magnetwirkung des Wassermoleküldipols) elektrisch entladen.
Es entstehen positiv geladene Wassercluster, die als Elektronenakzeptoren fungieren, der so genannte Elektronenhunger. Dieser sättigt sich an einem Elektronen- donator, z.B. jede Form von Einzellern.
Das Verfahren unterscheidet sich grundlegend von einer klassischen Elektrolyse, die z.B. der Herstellung von Chlordioxid zugrunde liegt. Dabei wird ein vorliegendes Elektrolyt lysiert, also aufgetrennt und in Radikale zerlegt.
Auch die Elektrodiapliragmalyse, welche z.B. zur Herstellung von Natriumhypochlorit und anderer Oxidantien eingesetzt wird, ist ein solches zerlegendes Verfahren. Die Wirkung beruht auf der hergestellten Chlor chemie, welche im Anwendungsfall oxidierend auf die Umgebung reagiert. Die Wirkung der Erfindung beruht auf der Anregung des Wassermoleküls selbst. Dieses befindet sich in einem Clusterverbund, sodass durch Anlegen einer bestimmten Stromstärke Wassermoleküle elektrisch entladen werden (ähnlich wie bei einer Neonröhre, die durch Anregung der Elektronen des Edelgases zum Leuchten gebracht wird). Im Unterschied zu klassischen elektrolytischen Verfah- ren, welche als bewährte Methode bereits seit über 120 Jahren in unterschiedlichen Ausprägungen im Einsatz ist, wird bei der erfindungsgemäßen Herstellung das Wassermolekül nicht in seine Bausteine OH" und H+ zerlegt und bleibt pH- neutral (pH 7,0). Das Wassermolekül bleibt erhalten und tauscht die Ladungsträger innerhalb des Clusters ständig aus. Zwar entstellen bei der Herstellung geringe Mengen an Natriumhypochlorit, diese Verunreinigung des Wassers (je nach Konzentration 0,6 bis 600 ppm) ist jedoch in den meisten Praxisanwendungen tolerabel.
Für sehr empfindliche Applikationen kann das oben beschriebene Verfahren auch zur Herstellung von Produkten herangezogen werden, welches keine Chlor basierten Reststoffe mehr enthält, sondern ausschließlich aus Wasser und Anteilen angeregter Wassermoleküle besteht.
Nachweise des Elektronenmangels als oxidativer Biozidwirkstoff
Röntgen stellt einen starken Elektroneneintrag dar. Dieser hat keine Wirkung auf z.B. eine Hypochloritlösung, die dadurch ihre mikrobiozide Wirkung nicht verliert. Das erfindungsgemäße Produkt dagegen verliert seine biozide Wirkung durch Röntgen völlig:
Versuch 1
Es wurde beobachtet, dass Versuchslösungen, die mit dem Flugzeug verschickt wurden keine Wirkung hatten. Daraufhin wurde folgender Versuch durchgeführt. Lösung A wurde einer Röntgendosis unterworfen, die bei einem 1 -stündigen Flug von Frankfurt nach Berlin einwirkt. Geprüft wurde die Abtötung von E. coli im Mikrobiologischen Labor. Die Kontrolle wurde nicht geröngt, hat aber die Fahrten der Lösung A von Regensburg nach Wiesbaden und von dort zum Untersuchungslabor „mitgemacht".
Figure imgf000007_0001
+ = Wachstum des Testkeims (Nachweis durch Subkultur) - = kein Wachstum
Testkeim: Escherichia coli Ausgangskeimzahl: 2,3 x 104
Die Kontrolle hat auch bei nur 10%iger Lösung innerhalb von nur 1 min alle Keime abgetötet, es gab kein Wachstum. Der Transport hatte keinen Einfluss auf die Wirksamkeit.
Lösung A hat auch in 50%iger Konzentration bei 5 min Einwirkdauer keine Wirkung gezeigt, wurde also durch den Elektroneneintrag beim Röntgen völlig deaktiviert.
Versuch 2 Das erfindungsgemäße frische Produkt weist in einer 10%igen Lösung 25 ppm Hypochlorit auf (NADES).
Das in nachstehender Tabelle gezeigte NADES SC ist ein 10%iger NADES- Produkt dem das Hypochlorit völlig auf < 0,02 ppm entzogen wurde. Eine Hypochloritlösung dieser Konzentration hat keine mikrobiozide Wirkung. Die Re- doxpotentiale beider Lösungen waren dennoch nahezu gleich, jedenfalls deutlich über den für Badewasser-Sanierung geforderten 600 ppm.
Figure imgf000008_0001
Die mikrobiozide Wirkung beider Lösungen war gleich, es trat kein Wachstum auf, auch nach 4 Tagen nicht. Ein Beweis für die Wirksamkeit des Elektronenmangels.

Claims

Patentansprüche
1. Elektrochemisch behandeltes Wasser mit Elektronenmangel, erhältlich durch ein Verfahren, das gekennzeichnet ist durch die folgenden Schritte:
a) Elektrolysieren von Wasser, b) Abziehen eines Teils des Kafholyten aus dem System, und c) Einleiten des restlichen Katholyten in die anodische Kammer.
2. Elektrochemisch behandeltes Wasser nach Anspruch 1, gekennzeichnet durch eine desinfizierende Wirkung gegenüber Bakterien, Bakteriensporen, Pilzen, Pilzsporen, Viren, Prionen, einzelligen Algen oder Mischungen davon.
3. Elektrochemisch behandeltes Wasser nach Anspruch 1 oder 2, gekennzeichnet durch eine Gesamtkonzentration an in Schritt a) entstandenen Oxidantien von kleiner 600 ppm.
4. Elektrochemisch behandeltes Wasser nach Anspruch 3, gekennzeichnet durch eine Gesamtkonzentration an Oxidantien von kleiner 20 ppm.
5. Elektrochemisch behandeltes Wasser nach Anspruch 4, gekennzeichnet durch eine Gesamtkonzentration an Oxidantien von kleiner 2 ppm.
6. Elektrochemisch behandeltes Wasser nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Gehalt an chlorhaltigen Oxidantien, Peroxiden und Ozon jeweils kleiner als 0,02 ppm ist.
7. Elektrochemisch behandeltes Wasser nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es im Wesentlichen frei von Oxidantien ist.
8. Elektrochemisch behandeltes Wasser nach einem der Ansprüche 1 bis 7, da- durch gekennzeichnet, das in Schritt b) die Oxidantien durch ein geeignetes Sorbens entfernt werden.
9. Elektrochemisch behandeltes Wasser nach Anspruch 8, dadurch gekennzeichnet, dass das Sorbens unter Aktivkohle, Aluminiumoxid, Siliciumoxid, Ionenaus- tauscher, Zeolith oder Mischungen davon gewählt ist.
10. Elektrochemisch behandeltes Wasser nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass dem in Schritt a) zu elektrolysierenden Ausgangswas- ser zur Steigerung der Leitfähigkeit Salze, wie Salze aus Alkalimetallkationen und halogenhaltigen Anionen, schwefelhaltigen Anionen, phosphorhaltigen Anionen, Carboxylaten, Carbonaten, und Mischungen dieser Anionen, zugesetzt sind.
11. Elektrochemisch behandeltes Wasser nach Anspruch 10, dadurch gekennzeichnet, dass das in Schritt a) zu elektrolysierende Ausgangswasser Natriumehlo- rid enthält.
12. Elektrochemisch behandeltes Wasser nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass in Schritt a) die Elektrolyse mit einer Stromdichte von 0,5 bis 10 W/cm2 durchgeführt wird.
13. Elektrochemisch behandeltes Wasser nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das Verfahren kontinuierlich durchgeführt wird.
PCT/EP2009/053255 2008-03-19 2009-03-19 Elektrodiaphragmalyse WO2009115577A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/933,239 US20110176991A1 (en) 2008-03-19 2009-03-19 Electrodiaphragmalysis
CA2716560A CA2716560A1 (en) 2008-03-19 2009-03-19 Electrodiaphragmalysis
CN2009801106015A CN102015548A (zh) 2008-03-19 2009-03-19 电隔膜分解法
EP09721442A EP2254840A1 (de) 2008-03-19 2009-03-19 Elektrodiaphragmalyse
ZA2010/06640A ZA201006640B (en) 2008-03-19 2010-09-16 Electrodiaphragmalysis
US14/098,584 US20140170059A1 (en) 2008-03-19 2013-12-06 Electrodiaphragmalysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008015068A DE102008015068A1 (de) 2008-03-19 2008-03-19 Elektrodiaphragmalyse
DE102008015068.1 2008-03-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/933,239 A-371-Of-International US20110176991A1 (en) 2008-03-19 2009-03-19 Electrodiaphragmalysis
US14/098,584 Continuation US20140170059A1 (en) 2008-03-19 2013-12-06 Electrodiaphragmalysis

Publications (1)

Publication Number Publication Date
WO2009115577A1 true WO2009115577A1 (de) 2009-09-24

Family

ID=40791664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/053255 WO2009115577A1 (de) 2008-03-19 2009-03-19 Elektrodiaphragmalyse

Country Status (7)

Country Link
US (2) US20110176991A1 (de)
EP (1) EP2254840A1 (de)
CN (1) CN102015548A (de)
CA (1) CA2716560A1 (de)
DE (1) DE102008015068A1 (de)
WO (1) WO2009115577A1 (de)
ZA (1) ZA201006640B (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9162904B2 (en) 2011-03-04 2015-10-20 Tennant Company Cleaning solution generator
DE102014010901A1 (de) 2014-07-24 2016-01-28 Michael Saefkow ECA Reaktor zur Erzeugung eines aktivierten hypochlorithaltigen Desinfektionsmittels
US9556526B2 (en) 2012-06-29 2017-01-31 Tennant Company Generator and method for forming hypochlorous acid
DE102017214810A1 (de) 2017-08-24 2019-02-28 Gabriele Keddo Vorrichtung und Verfahren zur Wasserdesinfektion und Herstellung eines Desinfektionsmittels

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012239927A (ja) * 2011-05-16 2012-12-10 Omega:Kk 排水処理方法
WO2013064688A2 (en) * 2011-11-04 2013-05-10 Lohas Products Gmbh Process for preparing an electrochemically activated water-based solution
WO2013064695A2 (en) * 2011-11-04 2013-05-10 Lohas Products Gmbh Process for preparing an anolyte liquid
WO2013068599A2 (en) * 2011-11-11 2013-05-16 Lohas Products Gmbh Process for producing an anolyte composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2253860A (en) * 1991-03-12 1992-09-23 Kirk And Charashvili Internati Electrolytic treatment of water
EP0841305A2 (de) * 1996-11-07 1998-05-13 Honda Giken Kogyo Kabushiki Kaisha Prozess und Apparat zur Herstellung von elektrolysiertem Wasser
US5985110A (en) * 1996-03-28 1999-11-16 Bakhir; Vitold M. Apparatus for electrochemical treatment of water and/or water solutions

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60036582T2 (de) * 1999-08-06 2008-06-26 Puricore International Ltd. Elektrochemische Behandlung einer wässrigen Lösung
JP4130763B2 (ja) * 2002-11-06 2008-08-06 株式会社プロフィット 非酸化性強酸性水の生成方法
CN1477065A (zh) * 2003-06-05 2004-02-25 中国人民解放军军事医学科学院卫生学 消毒液的制备方法及其装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2253860A (en) * 1991-03-12 1992-09-23 Kirk And Charashvili Internati Electrolytic treatment of water
US5985110A (en) * 1996-03-28 1999-11-16 Bakhir; Vitold M. Apparatus for electrochemical treatment of water and/or water solutions
EP0841305A2 (de) * 1996-11-07 1998-05-13 Honda Giken Kogyo Kabushiki Kaisha Prozess und Apparat zur Herstellung von elektrolysiertem Wasser

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9162904B2 (en) 2011-03-04 2015-10-20 Tennant Company Cleaning solution generator
US9556526B2 (en) 2012-06-29 2017-01-31 Tennant Company Generator and method for forming hypochlorous acid
DE102014010901A1 (de) 2014-07-24 2016-01-28 Michael Saefkow ECA Reaktor zur Erzeugung eines aktivierten hypochlorithaltigen Desinfektionsmittels
DE102017214810A1 (de) 2017-08-24 2019-02-28 Gabriele Keddo Vorrichtung und Verfahren zur Wasserdesinfektion und Herstellung eines Desinfektionsmittels

Also Published As

Publication number Publication date
CA2716560A1 (en) 2009-09-24
DE102008015068A1 (de) 2009-09-24
US20140170059A1 (en) 2014-06-19
US20110176991A1 (en) 2011-07-21
EP2254840A1 (de) 2010-12-01
ZA201006640B (en) 2011-06-29
CN102015548A (zh) 2011-04-13

Similar Documents

Publication Publication Date Title
WO2009115577A1 (de) Elektrodiaphragmalyse
EP2139817B1 (de) Verwendung von elektrochemisch behandeltem wasser als desinfektionsmittel
DE602004009136T2 (de) Elektrochemische Sterilisation und bakteriostatisches Verfahren
DE4318628A1 (de) Verfahren zur Wasseraufbereitung
Rahmani et al. A comprehensive study of electrochemical disinfection of water using direct and indirect oxidation processes
DE10216860A1 (de) Elektrolysezelle für die Herstellung von Wasserstoffperoxid und Verfahren zur Herstelung von Wasserstoffperoxid
EP0729796B1 (de) Verfahren zur Abtötung von Mikroorganismen und/oder Mineralisierung organischer Substanzen im Boden und/oder im Grundwasser
EP2146580A2 (de) Desinfektionsmittel auf der basis wässriger, hypochlorige säure (hocl) enthaltender lösungen, verfahren zu deren herstellung sowie verwendung derselben
WO2010063433A1 (de) Desinfektionsmittel auf basis hypochloriger säure und deren salze sowie verfahren zu seiner herstellung mittels elektrochemischer aktivierung
DE60104211T2 (de) Elektrochemische zelle und elektrochemische behandlung von kontaminiertem wasser
EP0862538B1 (de) Verfahren und vorrichtung zur behandlung von mit mikroorganismen und/oder schadstoffen belastetem wasser
WO2012041357A1 (de) Verfahren zur herstellung eines desinfektionsmittels auf der basis von hypochloriger säure oder hypochlorit durch elektrochemische aktivierung einer chloridlösung
DE102015006706A1 (de) Kontinuierliches Verfahren zur Entfernung von Mikro-Verunreinigungen aus biologisch geklärtem, kommunalen Abwasser
EP2142471A1 (de) Verfahren zur herstellung von chlordioxid
DE102006058454A1 (de) Vorrichtung und Verfahren zur elektrolytischen Herstellung einer schwachen Natriumhypochloritlösung mit differenzdruckgesteuerter pH- und Redoxregelung mittels Elektrolysemembranzellen aus Wasser und Kochsalz
DE602004008584T2 (de) Verfahren und vorrichtung zur elektrochemischen wasserdesinfektion
DE102013010950B4 (de) Elektrolysezelle und Verfahren zur elektrolytischen Erzeugung von Chlordioxid
AT512231B1 (de) Badewasser und verfahren zur herstellung
DE102014010901A1 (de) ECA Reaktor zur Erzeugung eines aktivierten hypochlorithaltigen Desinfektionsmittels
EP3114087B1 (de) Verfahren und vorrichtung zur herstellung wässriger chlordioxidlösungen
JPH08257567A (ja) 銀イオン水の製造法
AT525630B1 (de) Lagerstabile lösung umfassend hypochlorige säure bzw.hypochlorit
AT525645B1 (de) Lagerstabile lösung umfassend hypochlorige säure bzw. hypochlorit
WO2010115985A9 (de) Vorrichtung zum behandeln von lebensmitteln
DE10031018B4 (de) Chloralkalielektrolyse-Verfahren in Membranzellen unter Elektrolyse von ungereinigtem Siedesalz

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980110601.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09721442

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1743/MUMNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2716560

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: P978/2010

Country of ref document: AE

WWE Wipo information: entry into national phase

Ref document number: 2009721442

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12933239

Country of ref document: US