WO2009113603A1 - 転写抑制ペプチド及びその遺伝子 - Google Patents

転写抑制ペプチド及びその遺伝子 Download PDF

Info

Publication number
WO2009113603A1
WO2009113603A1 PCT/JP2009/054718 JP2009054718W WO2009113603A1 WO 2009113603 A1 WO2009113603 A1 WO 2009113603A1 JP 2009054718 W JP2009054718 W JP 2009054718W WO 2009113603 A1 WO2009113603 A1 WO 2009113603A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
amino acid
transcription
peptide
acid sequence
Prior art date
Application number
PCT/JP2009/054718
Other languages
English (en)
French (fr)
Inventor
優 高木
美穂 池田
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to US12/921,735 priority Critical patent/US9243257B2/en
Publication of WO2009113603A1 publication Critical patent/WO2009113603A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1002Tetrapeptides with the first amino acid being neutral
    • C07K5/1005Tetrapeptides with the first amino acid being neutral and aliphatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8217Gene switch
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/827Flower development or morphology, e.g. flowering promoting factor [FPF]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the present invention includes a peptide having a transcriptional repression function, a gene encoding the peptide, a chimeric protein having a transcriptional repression function in which the peptide and a transcription factor or a DNA binding domain thereof are linked, a chimeric gene encoding the chimeric protein,
  • the present invention relates to a recombinant vector having a chimeric gene, and a transformant containing the recombinant vector.
  • antisense methods or ribozyme methods are known as means for suppressing the expression of biological genes, and these are used, for example, to suppress the expression of genes that cause diseases such as oncogenes or to improve plants. Research is underway.
  • a target gene intended to suppress transcription or an antisense DNA or RNA complementary to a specific site such as mRNA transcribed from this is used.
  • the prepared antisense DNA or RNA is other than the target gene. It cannot be used to suppress the expression of these genes, and for other target genes, it is necessary to newly prepare antisense DNA or RNA in accordance with the sequence.
  • the ribozyme in order to cleave a target DNA or mRNA with a ribozyme, the ribozyme is designed so that it has a complementary sequence for binding to the target DNA or mRNA and can be cleaved at a predetermined position.
  • a ribozyme designed to cleave a target gene is constructed by linking this to a promoter such as the cauliflower mosaic virus 35S promoter and a transcription termination sequence to construct an introduction vector.
  • a promoter such as the cauliflower mosaic virus 35S promoter
  • a transcription termination sequence to construct an introduction vector.
  • Non-Patent Documents 1 to 8 Non-Patent Documents 1 to 3
  • the CRES-T method uses a transcriptional repressor domain (dominant repressor) isolated from plants and binds to the carboxyl group terminal of the transcriptional activator to give the transcriptional activator a strong transcriptional repressing activity.
  • This technology strongly suppresses transcription of the target gene by expressing in vivo the chimeric gene of the nucleic acid molecule that encodes each.
  • a chimeric gene fused with a transcriptional repression domain was created using the CRES-T method because it suppresses not only the transcriptional activator, but also all other functions of the transcriptional activator acting on the same gene.
  • the plant shows a form in which the expression of the target gene is completely suppressed.
  • the CRES-T method is very useful not only for the practical modification of plant traits but also for the elucidation of basic gene functions.
  • the transcription repression domain comprises a motif (L / F) DLN (L / F) (X) P (where X represents an arbitrary amino acid residue), and was originally isolated from Arabidopsis thaliana, However, in addition to tobacco, many of the same motifs were identified from transcriptional repressing factors of a wide range of plants including monocotyledonous plants such as rice. So far, we have shown that it is possible to actively control secondary metabolic biosynthesis by converting transcription factors working in the secondary metabolic biosynthesis system into chimeric transcriptional repressors, and control of flower organ formation.
  • An object of the present invention is to apply a CRES-T method by providing a conserved motif sequence serving as a completely new transcription repression domain that can be used in the CRES-T method, which is a simple and widely applicable means of gene transcription repression. To increase scope and applicability.
  • the present inventors focused on the At2g36080 gene of the Arabidopsis transcription gene, and as a result of a transient assay in Arabidopsis leaves using an effector construct fused with the GAL4 DNA binding domain and the gene, strong transcription suppression The function was confirmed, and further, it was found that the transcription repressing active region was 8 peptide “LRLFFGVNM”.
  • 29 transcription regulator genes having an amino acid sequence similar to the LRLFVVNM motif were discovered from all genes registered in the Arabidopsis database, and the same was performed for At3g11580, At2g46870, At1g13260, At1g68840, At4g36990, and At4g11660.
  • At4g36990 was KLFFGV.
  • At4g36990 was further analyzed with an effector plasmid into which mutation was introduced, and was referred to as “K / RLFGV”. It was determined that 5 amino acids (first 1 amino acid is K or R) are conserved sequences.
  • the present inventors expressed a chimeric gene in which the accession number At2g36080 gene classified as a transcriptional gene in the Arabidopsis database was linked to a yeast-derived GAL4 DNA binding domain under the control of the CaMV 35S promoter. Effector construct (35S: GAL4DBAt2g36080, attached FIG. 1A) was created. It was introduced into Arabidopsis leaves simultaneously with a reporter gene having a CaMV 35S enhancer region and a GAL4 binding region (35S-GAL4-TATA-LUC, attached FIG. 1A) and transiently expressed (transient assay).
  • At2g36080 functions as a transcriptional repressor.
  • FIG. 1A an effector construct in which the coding region of At2g36080 was gradually deleted from the carboxyl terminus was created (Attached Figure 1A), and a transient assay was performed.
  • amino acid region 178 to 192 15 amino acid region was found to have a region with strong transcriptional repression activity (Attached FIG. 1B).
  • At4g36990 Based on this, for At4g36990, a more detailed domain analysis was performed using an effector plasmid into which mutation was introduced, and an 11 amino acid region (GEGLKLFGVWL, amino acids from 233 to 243) including KLFFG has transcription repressing activity. This was clarified (Attached FIGS. 3A and 3B). From these facts, it is predicted that all transcription factor genes (Table 1) having K / RLFGV discovered in the previous database search function as transcription repressing factors in the plant body.
  • the transcriptional activator activity is converted into a transcriptional repressor by fusing the transcription repressor peptide [K / R] LFGV identified above to a transcriptional regulator that originally has a transcriptional activator.
  • analysis was performed to confirm whether the chimeric gene could actually function as a transcriptional repressor in plants and induce changes in plant traits.
  • CUC2 gene and AG gene derived from Arabidopsis thaliana which has already been demonstrated to be related to plant trait changes by experiments using conventionally known transcription repressor peptides as model genes for transcription activators (non-patented) Documents 2, 3) were used.
  • a chimeric gene fused to the C-terminal side of the CUC2 gene (35S: CUC2SRDX), or a chimeric gene fused to the C-terminal side of the AG gene (
  • 35S: AGSRDX Non-Patent Document 2
  • cotyledon fusion is induced in the 35S: CUC2SRDX plant (Attached FIG. 4D), and the double-flowered trait in the 35S: AGSRDX plant (Attached FIG. 4B).
  • a chimeric gene (35S: CUC2-36RD, 35S) in which 15 amino acids (indicated as 36RD in FIG. 4) containing RLFFGV, a novel repression domain discovered in the present invention, are fused to the C-terminal side of each of the CUC2 gene and the AG gene.
  • AG-36RD (Attached FIG. 4A) and analyzed whether the Arabidopsis plants into which this was introduced exhibited similar traits.
  • 35S: CUC2-36RD (Attached FIG. 4E) and 35S: AG-36RD (Attached FIG.
  • 35S: AG-36RD chimeric gene which became a strong transcriptional repressor, functioned, and thus AG was repressed all the expression of the target gene that originally activates transcription, thus leading to an induced trait. From this trait it is clear that the 35S: AG-36RD chimeric gene functions predominantly over the endogenous AG gene.
  • the cotyledon fusion observed in 35S: CUC2-36RD is a trait (cuc1 cuc2) observed only when two of the CUC2 and CUC1 (similar genes that work complementarily to CUC2) genes are disrupted.
  • a peptide having a plant transcription repressing function comprising an amino acid sequence represented by the following formula (I).
  • Formula (I) X1-X2-Leu-Phe-Gly-Val-X3 (In the formula, X1 and X3 represent an amino acid sequence composed of 1 to 10 arbitrary amino acids, and X2 represents Lys or Arg.)
  • a chimera having a transcriptional repression function characterized in that a peptide having a transcriptional repression function of a plant comprising the amino acid sequence represented by the following formula (I) is bound to a transcription factor or a DNA binding domain thereof.
  • a nucleic acid molecule encoding a peptide having a transcriptional repression function of a plant consisting of an amino acid sequence represented by the following formula (I) and a nucleic acid molecule encoding a transcription factor or a DNA binding domain thereof are aligned in a reading frame.
  • a chimeric protein having a transcriptional repression function characterized by culturing cells transformed with the expression vector containing the nucleic acid molecule according to [5], and collecting and purifying the obtained expression product.
  • Manufacturing method [10] A chimeric protein having a transcriptional repression function, characterized by linking a plant transcriptional repression function peptide consisting of an amino acid sequence represented by the following formula (I) and a transcription factor or a DNA binding domain thereof: Production method; Formula (I) X1-X2-Leu-Phe-Gly-Val-X3 (In the formula, X1 and X3 represent an amino acid sequence composed of 1 to 10 arbitrary amino acids, and X2 represents Lys or Arg.)
  • the peptide of the present invention is a transcription factor that can effectively suppress gene transcription in a very short size and binds to a transcription control region of a specific target gene, similarly to a conventionally known peptide having a transcriptional repression function, Alternatively, the chimeric protein linked to the DNA binding domain has a function of converting the transcription factor into a transcription repressing factor.
  • the gene of the present invention is similar to a gene encoding a known transcriptional repressor peptide, a transcription factor that binds to the transcriptional regulatory region of a specific target gene, or a gene encoding its DNA binding domain, or its transcription
  • a chimeric gene fused with a regulatory factor and a gene that forms a transcriptional regulatory complex transcriptional repression targeting only a specific gene can be performed. Therefore, the transcription and expression of the target gene can be reliably inhibited.
  • the peptide of the present invention has a conserved motif that is completely different from a peptide group having a conventionally known transcriptional repression function, it can be used for breeding various plants by substituting or combining with a conventionally known peptide.
  • the scope of application in the field is likely to further expand.
  • FIG. 1A is a view showing a GAL4DB-RD effector plasmid and a reporter gene containing various DNA fragments to be tested.
  • FIG. 2 is a view showing a reporter gene and an effector plasmid used for determination of a domain having transcription repressing activity of At2g36080 gene.
  • 5XGAL4 GAL4 transcription factor DNA binding sequence
  • TATA region containing CaMV35S promoter TATA box
  • LUC luciferase gene
  • CaMV35S cauliflower mosaic virus 35S protein gene promoter
  • omega sequence derived from tobacco mosaic virus
  • GAL4DB yeast GAL4 Transcription factor DNA-binding domain coding region
  • RD repression domain sequence (LDLELRLGFA) of SUPERMAN
  • Nos nopaline synthase gene transcription termination region.
  • FIG. 1B is a diagram showing the influence of various peptides bound to pGAL4DB on the activity (Relative-Activity) of the reporter gene.
  • FIG. 1C is a diagram showing a reporter gene and an effector plasmid used to determine a domain having transcription repressing activity of At2g36080 gene.
  • FIG. 1D is a diagram showing the effect of various peptides bound to pGAL4DB on the activity of the reporter gene (Relative Activity).
  • FIG. 2 is a diagram showing the influence of each gene bound to pGAL4DB on the activity of the reporter gene (relative activity).
  • the graph on the right side shows the activity of the reporter gene when an effector plasmid having various DNA fragments was introduced (the activity of the reporter gene when pGAL4DB was used as an effector was set to 1.00).
  • Fig. 2A shows the activity when the At3g11580 gene
  • Fig. 2B shows the At2g36080 gene
  • FIG. 3A is a diagram showing a reporter gene and an effector plasmid used for determination of a domain having transcriptional repression activity of At4g36990 gene.
  • FIG. 3B is a diagram showing the influence of various peptides bound to pGAL4DB on the activity of the reporter gene (relative Activity).
  • FIG. 4A is a schematic diagram of various gene-transcription repressor peptide fusion constructs introduced into a plant body.
  • FIG. 4B shows the form of AG-SRDX flowers.
  • FIG. 4C is a form of AG-36RD flower.
  • Fig. 4D shows the seedling form of CUC2-SRDX.
  • FIG. 4E is a seedling form of CUC2-36RD.
  • a peptide that is a transcriptional repressing factor consisting of an amino acid sequence represented by the following formula (I) and has a function of converting a transcription factor into a transcriptional repressing factor.
  • Formula (I) X1-X2-Leu-Phe-Gly-Val-X3
  • X2 represents Lys or Arg.
  • X1 and X3 may be any amino acid, and the number of amino acids constituting the amino acid sequences of X1 and X2 may be any number as long as each is within the range of 1 to 10.
  • the total number of X1 and X3 is preferably 3 or more. More preferably, X1 + X3 is 6 or more, more preferably 10 or more.
  • the optimal peptide in the present invention include the amino acid sequences shown in SEQ ID NOs: 3 to 33 consisting of 8 to 15 amino acids. Peptides having an amino acid sequence in which 1 to several amino acids are deleted, substituted, or added in the X1 or X3 portion of the amino acid sequences shown in SEQ ID NOs: 3 to 33 are also preferred as the peptides of the present invention.
  • “1 to several” means 1 to 10, preferably 1 to 7, more preferably 1 to 5, and further preferably about 1 to 3.
  • the conserved motif contained in the transcription repressing peptide of the present invention is “K / RLFGV”, and has an amino acid sequence different from the motif (L / F) DLN (L / F) (X) P shown in the above prior art.
  • the motif is completely different from the motif “DLELLL” in the amino acid sequence encoded by the SUP gene, which has been found by the present inventors to have a transcriptional repression function. Since these transcription repressing peptides are short, they can be easily chemically synthesized. However, nucleic acid molecules encoding these peptides can be linked to an appropriate expression vector and produced by transformed cells.
  • a nucleic acid molecule encoding the transcription repressing peptide is introduced into the cell with or without being connected to the expression vector, and the transcription repressing function in the cell May be exhibited.
  • each peptide can be chemically peptide-bonded, but generally a nucleic acid molecule encoding the transcription repressing peptide of the present invention and a nucleic acid molecule encoding a transcription factor or its DNA binding domain. Then, the chimeric gene combined in the reading frame is placed under the control of an appropriate promoter, and is expressed in a cell containing the target gene to act on the target gene.
  • the chimeric gene is linked to a promoter sequence, a plant body or a plant cell is transformed with or without an expression vector, and the chimeric gene is expressed in the transformed cell to produce a chimeric protein as an expression product.
  • the transcription factor-derived DNA binding region binds to the transcriptional control region of the target gene, but the transcription repression function derived from the transcription repressor peptide is exerted in preference to the transcription activation function originally possessed by the transcription factor. Therefore, transcription of the target gene is suppressed and expression does not occur.
  • the transcription repression function by the chimeric protein of the present invention acts regardless of the type of DNA binding domain of the transcriptional regulator. Since the transcription repressing function of the chimeric protein of the present invention requires binding to the transcription control region of the target gene, the gene encoding the chimeric protein is a DNA binding domain that binds to the transcription control region of the specific target gene.
  • a chimera fused with a gene that forms a transcription control complex with a transcription factor that binds to the transcription control region of the transcriptional control gene of the target or a nucleic acid sequence that encodes the DNA binding domain of the transcription control gene and the transcription control region of a specific target gene Transcriptional repression can be performed targeting a specific gene as a gene.
  • the chimeric gene of the present invention expresses a chimeric protein in which a transcription factor is linked to a peptide having a function of converting a transcription factor into a transcriptional repressor, and a transcription factor-derived DNA binding domain in the chimeric protein binds. It specifically suppresses the transcription of genes controlled by the control region. Therefore, when transcriptional repression of a specific gene is performed, a transcription factor that governs the transcription of the gene is selected, and the gene of the present invention is linked to the end of the gene encoding the transcription factor or a DNA binding domain.
  • the chimeric protein which is the above-described chimeric gene expression product of the present invention, specifically suppresses transcription of the gene to which the DNA binding domain of the transcription factor binds, and this transcriptional suppression appears as a dominant trait.
  • the transcriptional repressor peptide of the present invention By expressing the transcriptional repressor peptide of the present invention by fusing it to a transcriptional activator, the function of the transcriptional activator is converted to a transcriptional repressor and the transcription of the target gene that the transcription factor should be activated is specified.
  • a method similar to the method used by the present inventors in the above Patent Documents 1 to 8 and Non-Patent Documents 1 to 3, that is, the CRES-T method is used. Applied. This will be described in more detail by taking the case of using an AGAMOUS (AG) transcription factor as an example.
  • AG AGAMOUS
  • AGAMOUS is a transcriptional activator that acts on the flower organ formation in Arabidopsis thaliana, and in the ag mutant lacking the function of this gene, the stamen and pistil petals, and the formation of flower organs does not end, and petals are formed one after another. It is known that it will eventually become a so-called double-flowered flower with many petals.
  • a gene encoding a peptide containing the “K / RLFGV” motif of the present invention is fused to this transcriptional activator AG and expressed in Arabidopsis thaliana, the known (L / F) DLN (L / F) ( X)
  • the AG gene having transcription activation ability was functionally converted to a transcription repressing factor by fusing with the transcription repressing peptide of the present invention, and further, it acted dominantly to the endogenous AG gene. Show.
  • CUC2 is a transcription factor that controls the formation of seedling apical buds together with CUC1 having the same NAC domain, and the cotyledon of the plant body has a cup-like form only when both CUC1 and CUC2 genes have mutations ( cup-sahped cotyledon), and it has been shown that no apical meristem formation occurs.
  • CUC1 and CUC2 are known to be functionally redundant factors (Development, 126, 1563).
  • the expressed chimeric protein is In addition to the CUC2 transcription factor, the transcriptional activity of functionally overlapping CUC1 transcription factors can be suppressed, and the expression of genes controlled by the CUC2 transcription factor can be suppressed.
  • the cotyledon of the plant body has a cup-shaped cotyledon shape which is a trait of a double mutant of CUC1 / CUC2, and no apical meristem is formed.
  • Example 6 as a result of constructing a chimeric gene in which a gene encoding a peptide containing the “K / RLFGV” motif of the present invention and the CUC2 gene were fused, and transforming an Arabidopsis thaliana plant with the chimeric gene, CUC1 / CUC2 As well as a STM gene-deficient strain that controls the formation of a cup-shaped cotyledon that is characteristic of being a double-deficient strain of and controls the formation of apical mitotic cells that are controlled by the CUC2 transcription factor It was confirmed that no apical meristem formation was observed.
  • the peptide of the present invention and the gene encoding the peptide have the ability to convert an arbitrary transcription factor into a transcription repressor, and other functionally redundant transcripts. It also has the ability to suppress factor activity.
  • plant transcription factors often have a plurality of functionally overlapping transcription factors as shown by CUC, and the transcriptional repressors functionally converted according to the present invention are dominant traits (dominant traits). Therefore, according to the present invention, it is possible to analyze the function of a transcription factor that has not been clarified so far by knockout of one gene, and it is also effective for plants having a double diploid genome such as wheat. This is an extremely useful means in that it can act on the surface.
  • the chimeric gene of the present invention suppresses transcription of the target gene by generating a chimeric protein corresponding to the gene and binding the chimeric protein to the transcriptional regulatory region of the target gene.
  • this chimeric protein may be synthesized separately and directly introduced into a living body site where the target gene exists.
  • the synthesis of the chimeric protein may be carried out using a normal genetic engineering technique.
  • the chimeric protein is incorporated into an appropriate vector, and the transformed microorganism is cultured using the chimeric gene. A large amount of protein can be synthesized.
  • the binding position of the gene of the present invention to the transcription factor is the downstream end of the region encoding the transcription factor or its DNA binding domain.
  • a gene encoding the peptide of the present invention When a gene encoding the peptide of the present invention is to be inserted into a gene encoding a transcription factor, it involves troublesome operations such as cleavage of the gene encoding the transcription factor, ligation of the gene of the present invention, and recombination. It is convenient to simply bind the gene of the present invention to the downstream end of the protein coding region of the transcription factor. This is one of the advantages of the present invention. In addition, as long as the gene of this invention codes the peptide which has an amino acid sequence represented by the said Formula (I), what kind of base sequence may be sufficient as it.
  • the gene of the present invention may be provided with a linking site for linking to a gene encoding a transcription factor, and when the amino acid reading frame of the gene of the present invention and the gene reading frame encoding the transcription factor do not match. Design genes to match. Therefore, you may have the additional base sequence for that.
  • a base sequence encoding the amino acid sequence represented by the formula (I) there is 5′-GGGAGGCAACTCGAAGACATTAAGACTGTTCGGAGTGAACATGGAGTGCTAA-3 ′ (SEQ ID NO: 65).
  • the chimeric protein in order to suppress the transcription of the target gene, may be directly introduced into the living body.
  • the transcription of a specific gene is constantly suppressed, It is necessary to suppress the expression of the gene, and it is more effective to link the gene encoding the chimeric protein to an appropriate vector and transform a plant or the like using this recombinant vector.
  • the gene encoding the chimeric protein is constantly expressed in the plant body, and the generated chimeric protein continues to suppress the transcription of the gene.
  • the introduced chimeric protein is produced in the subsequent generations of plants derived from the transformed plant into which the gene has been introduced (including plants produced by crossing using transformed pollen, etc.) Gene expression is suppressed.
  • Example 1 (i) various At2g36080 fragments combined with a region encoding the DNA binding domain of the yeast GAL4 transcription factor were linked downstream of the cauliflower mosaic virus 35S promoter that functions in plant cells. While constructing the plasmid, (ii) a reporter gene comprising a luciferase gene in which the enhancer region of the cauliflower mosaic virus 35S promoter, the GAL4 protein binding DNA sequence, and the TATA region of the 35S promoter of cauliflower mosaic virus were linked to the promoter region.
  • effector plasmid and reporter gene are simultaneously introduced into Arabidopsis thaliana leaves using a particle gun, and the activity of the luciferase gene, which is a reporter gene, is measured, thereby a gene encoding a protein having the entire amino acid sequence of At2g36080, and The transcriptional repression ability of a gene encoding the At2g36080 partial protein having a 178-192 amino acid sequence was examined.
  • Example 2 the ability to suppress transcription of a gene encoding the At2g36080 partial protein having the 183-192 amino acid sequence of At2g36080 was examined by measuring the activity of luciferase, which is a reporter gene.
  • Example 3 the transcriptional repression ability of a gene encoding a protein of At3g11580, At2g46870, At1g13260, At1g68840, At4g36990, At4g11660 genes having R / KLFGV amino acid sequence was examined by measuring luciferase activity which is a reporter gene.
  • Example 4 the ability to suppress the transcription of a gene encoding the At4g36990 partial protein having the 233-243 amino acid sequence of At4g36990 was examined by measuring the activity of luciferase, which is a reporter gene.
  • Example 5 a gene fragment encoding GNSKLTLRLFGVNMEC (36RD; Repression domain 178-192 of At2g36080) was ligated to the AG gene which is a transcription factor in an actual plant, and this was linked downstream of the cauliflower mosaic virus 35S promoter.
  • the effect of suppressing the transcription function of the gene fragment on the target gene of the AG gene was examined. .
  • Example 6 a gene fragment encoding GNSKLTLRLFGVNMEC (36RD; repression domain 178-192 of At2g36080) was ligated to the CUC2 gene which is a transcription factor in an actual plant, and this was linked downstream of the cauliflower mosaic virus 35S promoter.
  • the CUC2 gene and the CUC1 gene functionally overlapping with the gene are observed by constructing a transformed plasmid and observing the morphology of the cotyledons after germination of the transformed plant prepared by introducing the plasmid into an Arabidopsis plant. It was investigated the effect of suppressing the transcription function of the above gene fragment on the target gene.
  • Example 1 Transcriptional repression by an effector plasmid containing At2g36080 gene
  • (1-1) Construction of effector plasmid vector p35S- GAL4DBD Plasmid pBI221 of Clontech (Clontech, USA) was transformed into restriction enzymes XhoI and SacI. After digestion with T4 polymerase and blunt end treatment, the GUS gene was removed by agarose gel electrophoresis, and the transcription termination region of the cauliflower mosaic virus 35S promoter (hereinafter referred to as CaMV 35S) and the nopaline synthase gene (Nos terminator, hereinafter referred to as Nos-). 35S-Nos plasmid fragment DNA containing ter) was obtained.
  • CaMV 35S cauliflower mosaic virus 35S promoter
  • Nos-Nos- nopaline synthase gene
  • GAL4DBD 748 bp DNA fragment encoding the DNA binding region (1-147 amino acid residues) of yeast GAL4 protein
  • GAL4DBD 748 bp DNA fragment
  • the DNA fragment containing the GAL4DBD coding region was inserted into the 35S-Nos DNA at the site of the blunt end between the 35S promoter and Nos terminator, and the ORF of the DNA binding region of the yeast GAL4 protein was compared to the 35S promonitor.
  • a vector arranged in the forward direction was selected to construct a p35S-GAL4DBD vector.
  • FIG. 1A Construction of effector plasmid
  • FIG. 1A Construction of effector plasmid
  • FIG. 1A Construction of effector plasmid
  • pGAL4-At2g36080 containing the entire protein coding region (1-244aa.) Of At2g36080 gene
  • At2g36080 gene 5-terminal upper primer primer1 designed to match the reading frame (frame) of GAL4DBD on the 'side and 3' side (binding to At2g36080 gene / base sequence 1-29): gATGTCAATAAACCAATACTCAAGCGATTT (SEQ ID NO: 34), 3-terminal lower primer primer1 having a restriction enzyme SalI site (binding to At2g36080 gene base sequence 710-735): gtcgacgtcgacTTAGCTCGTCCGGTTCATATCCT (SEQ ID NO: 35)
  • oligonucleotides having a sequence corresponding to was synthesized, PCR was performed using these as primers and
  • This DNA fragment is digested with the restriction enzyme SalI, the target DNA fragment is isolated by agarose electrophoresis, incorporated into the 35S-GAL4DBD plasmid previously digested with the restriction enzymes SmaI and SalI, and the nucleotide sequence is determined.
  • the protein coding region of the At2g36080 gene that has already been reported was confirmed.
  • the PCR reaction was performed for 30 cycles, with a denaturation reaction at 94 ° C. for 1 minute, an annealing reaction at 50 ° C. for 1 minute, and an extension reaction at 72 ° C. for 3 minutes.
  • This DNA fragment is inserted into the 35S-GAL4DBD plasmid previously digested with the restriction enzyme SmaI, the nucleotide sequence is determined, and the sequence encoding the region containing the amino acid sequence 1-169 of the At2g36080 gene that has already been reported I confirmed that there was.
  • the conditions for the PCR reaction are the same as in (1-2-1) above.
  • This DNA fragment was inserted into the 35S-GAL4DBD plasmid previously digested with the restriction enzyme SmaI, the nucleotide sequence was determined, and the sequence coding for the previously reported region containing the amino acid sequence 1-178 of the At2g36080 gene It was confirmed that it was pGAL4-1-178.
  • Upper primer primer2 having a restriction enzyme BglII site (binding to nucleotide sequence 577-598 of At2g36080 gene): agatctagatctCAGCTAGATTCGGACTGGTC (SEQ ID NO: 38); 3-terminal lower primer primer1 having a restriction enzyme SalI site (binding to At2g36080 gene base sequence 710-735): gtcgacgtcgacTTAGCTCGTCCGGTTCATATCTCCT (SEQ ID NO: 35)
  • Each of the oligonucleotides having a sequence corresponding to was synthesized, PCR was performed using these as primers and pGAL4-At2g36080 as a template, and a DNA fragment containing the amino acid sequence 193-244 of the At2g36080 gene was isolated.
  • This DNA fragment is digested with the restriction enzymes BglII and SalI, and the desired DNA fragment is isolated by agarose electrophoresis and incorporated into the pGAL4-1-178 plasmid previously digested with the restriction enzymes BglII and SalI.
  • the sequence was determined, and it was confirmed that it was a sequence encoding a protein lacking the amino acid number 178 to 192 region from the previously reported amino acid sequence of the At2g36080 gene.
  • the conditions for the PCR reaction are the same as in (1-2-1) above.
  • FIG. 1A Construction of reporter gene (FIG. 1A) (1-3-1) Construction of p35S-GAL4-LUC reporter gene (FIG. 1A) Plasmid pUC18 was digested with restriction enzymes EcoRI and SstI.
  • the pBI221 plasmid (Clontech) was digested with restriction enzymes EcoRI and SstI, and a 270 bp DNA fragment containing a Nos-ter (nopaline synthase terminator) region was isolated by agarose gel electrophoresis. The obtained fragment was inserted into the EcoRI-SstI site of plasmid pUC18 which had been digested with restriction enzymes EcQRI and SstI.
  • DNA1 AGCTTAGATCTGCAAGACCCTTCCTCTATATAAGGAAGTTCATTTCATTTGGAGAGGACACGCTG (SEQ ID NO: 41) and DNA2: GATCCAGCGTGTCCTCTCCAAATGAAATGAACTTCCTTATATAGAGGAAGGGTCTTGCAGATCTA (SEQ ID NO: 42)
  • the synthesized DNA was heated at 90 ° C. for 2 minutes, then heated at 60 ° C. for 1 hour, and then allowed to stand at room temperature (25 ° C.) for 2 hours for annealing to form a double strand.
  • the pUC18 plasmid with Nos-ter was digested with restriction enzymes HindIII and BamHI.
  • the synthesized double-stranded DNA was inserted into the HindIII-BamHI site of pUC18 to construct a plasmid containing TATA-box and Nos-ter.
  • This plasmid was digested with the restriction enzyme SstI and blunt-ended with T4 DNA polymerase.
  • a plasmid vector PGV-CS2 (manufactured by Toyo Ink Co.) having a firefly luciferase gene (LUC) was digested with restriction enzymes XbaI and NcoI, blunt-ended with T4 DNA polymerase, and then luciferase by agarose gel electrophoresis. A 1.65 kb DNA fragment containing the gene was isolated and purified. This DNA fragment was inserted into a plasmid containing the above TATA box and Nos terminator to construct a pTATA-LUC reporter gene.
  • PGV-CS2 manufactured by Toyo Ink Co.
  • LOC firefly luciferase gene
  • Plasmid pG5CAT (manufactured by Clontech) having 5 copies of the yeast GAL4 protein DNA binding sequence was digested with restriction enzymes SmaI and XbaI, blunt-ended with T4 DNA polymerase, and then 5 copies of GAL4 protein DNA binding.
  • the DNA fragment containing the sequence was purified by agarose gel electrophoresis.
  • the TATA-LUC vector was digested with the restriction enzyme BglII and blunt-ended with T4 DNA polymerase.
  • a DNA fragment containing 5 copies of the GAL4 protein DNA-binding sequence blunt-ended is inserted into this site, and a plasmid with the GAL4 protein DNA-binding sequence oriented in the forward direction is selected from the obtained plasmids, and the reporter gene pGAL4 is selected.
  • -Constructed LUC Furthermore, using the plasmid pBI121 as a template, a 5-terminal upper primer: CGCCAGGGTTTTCCCAGTCACGAC (SEQ ID NO: 43) and a 3-terminal lower primer: AAGGGTAAGCTTAAGGATAGTGGGATTGTGCGTCATC (SEQ ID NO: 44) A DNA fragment containing the ⁇ 800 to ⁇ 46 region of the CaMV 35S promoter was obtained.
  • Measurement of firefly luciferase and Renilla luciferase activity was carried out by counting the luminescence for 10 seconds in the integration mode according to the instruction of the measurement kit.
  • the activity value of the reference gene was divided by the activity value of the reporter gene, and the relative value of the relative luciferase activity was determined as a measurement value.
  • transient assay experiments were individually performed three times for each type of effector plasmid, and an average value and a standard deviation were obtained.
  • FIG. 1A shows the structure of a reporter gene and an effector plasmid.
  • FIG. 1B shows the measurement results of the reporter gene activity.
  • the effector containing the full length of AT2G36080 or the amino acid number 178-192 of At2g36080 gene decreased the activity of the reporter gene by 75 to 90% or more compared to the case where the reporter gene activity was introduced as a PUC18 effector (control). From these results, it was proved that these peptides have transcription repressive ability.
  • the peptide consisting of amino acids 1-169 of AT2G36080 or the effector plasmid of At2g36080 gene lacking amino acid sequence 178-192 did not decrease the activity of the reporter gene. This indicates that the region containing amino acid numbers 178 to 192 of the At2g36080 gene bound to the GAL4 DNA binding domain functions as a repressor that suppresses transcription.
  • Example 2 Identification of peptide functioning as a repression domain
  • 2-1 Construction of effector plasmid pGAL4-183 / 192 having partial amino acid sequence 183-192 of At2g36080 gene Matching reading frame (frame) with GAL4DBD Partial sequence 3 of At2g36080 gene designed in (SEQ ID NO: 45: equivalent to At2g36080 gene / base sequence 547-576): TTAAGACTGTTCGGAGTGAACATGTAA and its complementary sequence partial sequence 4 (SEQ ID NO: 46: complement of At2g36080 gene base sequence 547-576) (Corresponding to the sequence) oligonucleotides having TTACATGTTCACTCCGAACAGTCTTAA: were synthesized, mixed, heated at 90 ° C.
  • FIG. 1C shows the structure of the reporter gene and effector plasmid.
  • FIG. 1D shows the measurement results of the reporter gene activity.
  • an effector containing the region of amino acid numbers 178 to 192 of the At2g36080 gene or the region of amino acid numbers 183 to 192 of the At2g36080 gene shows the activity of the reporter gene when PUC18 is added as an effector (control). ), It was proved that these peptides have transcriptional repression ability. This indicates that the At2g36080 gene fragment (183-190aa.) Bound to the GAL4 DNA binding domain functions as a repressor that suppresses transcription.
  • Example 3 Transcriptional repression by an effector plasmid containing a gene having an R / KLFGV amino acid sequence (3-1) Construction of an effector plasmid (3-1-1) Effector plasmid pGAL4-containing the entire protein coding region of the At3g11580 gene Construction of At3g11580
  • the nucleotide sequence of the At3g11580 gene is 5 of the At3g11580 gene designed so that the GAL4DBD reading frame (frame) matches the 5 'side and 3' side of the protein coding region of the Arabidopsis At3g11580 gene already reported.
  • End upper primer primer (SEQ ID NO: 47: equivalent to At3g11580 gene / base sequence 1-29): gATGTCAGTCAACCATTACCACAACACTCT And a 3-terminal lower primer primer having a restriction enzyme SalI site (SEQ ID NO: 48, corresponding to the nucleotide sequence 782-804 of At3g11580 gene): GTCGACGTCGACtcaACCTCGTCCATCTCCTACCTG
  • SEQ ID NO: 48 corresponding to the nucleotide sequence 782-804 of At3g11580 gene
  • GTCGACGTCGACtcaACCTCGTCCATCTCCTACCTG Each of the oligonucleotides having a sequence corresponding to was synthesized, and PCR was performed using these as primers and a cDNA derived from Arabidopsis seedlings as a template to isolate a DNA fragment containing the protein coding region of the At3g11580 gene.
  • This DNA fragment is digested with the restriction enzyme SalI, the target DNA fragment is isolated by agarose electrophoresis, incorporated into the 35S-GAL4DBD plasmid previously digested with the restriction enzymes SmaI and SalI, and the nucleotide sequence is determined.
  • the protein coding region of the At3g11580 gene that has already been reported was confirmed.
  • the PCR reaction was performed for 30 cycles, with a denaturation reaction at 94 ° C. for 1 minute, an annealing reaction at 50 ° C. for 1 minute, and an extension reaction at 72 ° C. for 3 minutes.
  • At2g46870 gene 5-terminal upper primer designed to match the reading frame (frame) of GAL4DBD SEQ ID NO: 49, equivalent to At2g46870 gene / base sequence 1-29): gATGATGACAGATTTATCTCTCACGAGAGA And 3 lower end primer primer (SEQ ID NO: 50: equivalent to At2g46870 gene base sequence 910-933): TTATTGATCCAAATCAAAAGACAA
  • oligonucleotides having a sequence corresponding to was synthesized, PCR was performed using these as primers and a cDNA derived from Arabidopsis sheath as a template, and a DNA fragment containing the protein coding region of the At2g46870 gene was isolated.
  • At1g13260 gene 5-terminal upper primer designed to match the reading frame (frame) of GAL4DBD SEQ ID NO: 51, equivalent to At1g13260 gene / base sequence 1-22): GATGGAATCGAGTAGCGTTGATG
  • the 3rd lower primer primer SEQ ID NO: 52: equivalent to At1g13260 gene base sequence 1012-1035: TTACGAGGCGTGAAAGATGCGTTG
  • the At1g68840 gene 5-terminal upper primer designed to match the reading frame (frame) of GAL4DBD SEQ ID NO: 53, equivalent to At1g68840 gene / base sequence 1-22): GATGGATTCTAGTTGCATAGACG
  • the 3rd lower primer primer SEQ ID NO: 54: equivalent to At1g68840 gene base sequence 1035-1059: TTACAAAGCATTGATTATCGCCTGC
  • At4g36990 gene 5-terminal upper primer primer1 designed to match the reading frame (frame) of GAL4DBD (SEQ ID NO: 55: equivalent to At4g36990 gene / base sequence 1-29): gATGACGGCTGTGACGGCGGCGCAAAGATC And a three-end lower primer primer1 having a restriction enzyme SalI site (SEQ ID NO: 56: equivalent to At4g36990 gene base sequence 823-855): gtcgacgtcgacTTAGTTGCAGACTTTGCTGCTTTTCCACAACGG
  • oligonucleotides having a sequence corresponding to was synthesized, PCR was performed using these as primers and cDNA derived from Arabidopsis roots as a template, and a DNA fragment containing the protein coding region of the At4g36990 gene was isolated.
  • This DNA fragment is digested with the restriction enzyme SalI, the target DNA fragment is isolated by agarose electrophoresis, incorporated into the 35S-GAL4DBD plasmid previously digested with the restriction enzymes SmaI and SalI, and the nucleotide sequence is determined.
  • the protein coding region of the At4g36990 gene already reported was confirmed.
  • the PCR reaction conditions are the same as in (3-1-1) above.
  • At4g11660 gene 5-terminal upper primer designed to match the reading frame (frame) of GAL4DBD SEQ ID NO: 57: equivalent to At4g11660 gene / base sequence 1-29): gATGCCGGGGGAACAAACCGGAGAAACTCC
  • a three-end lower primer primer having a restriction enzyme SalI site SEQ ID NO: 58, corresponding to the nucleotide sequence 1108-1134 of At4g11660 gene): gtcgacgtcgacTCATTTTCCGAGTTCAAGCCACGACCC
  • oligonucleotides having a sequence corresponding to was synthesized, PCR was performed using these as primers and a cDNA derived from Arabidopsis roots as a template, and a DNA fragment containing the protein coding region of the At4g11660 gene was isolated.
  • This DNA fragment is digested with the restriction enzyme SalI, the target DNA fragment is isolated by agarose electrophoresis, incorporated into the 35S-GAL4DBD plasmid previously digested with the restriction enzymes SmaI and SalI, and the nucleotide sequence is determined.
  • the protein coding region of the At4g11660 gene that has already been reported was confirmed.
  • the PCR reaction conditions are the same as in (3-1-1) above.
  • transient assay experiments were individually performed three times for each type of effector plasmid, and an average value and a standard deviation were obtained.
  • the relative value of the activity of the p35S-GAL4-LUC reporter gene when p35S-GAL4DBD is inserted as an effector is 1, the activity value of the reporter gene when the effector plasmid fused with each DNA fragment to GAL4DBD is simultaneously introduced into the cell The effect of the effector was investigated.
  • FIGS. 2A to 2G show measurement results of reporter gene activity.
  • an effector comprising a peptide in which a gene region encoding the protein of At3g11580, At2g46870, At1g13260, At1g68840, At4g36990, At4g11660 genes having the amino acid sequence of “R / KLFGV” is fused to GAL4DBD. Since the activity of the reporter gene was reduced by 82 to 96% compared to the case where p35S-GAL4DBD was added as an effector (control), it was proved that these peptides have transcription repressive ability. This indicates that the At3g11580, At2g46870, At1g13260, At1g68840, At4g36990, and At4g11660 genes bound to the GAL4 DNA binding domain function as repressors that suppress transcription.
  • This DNA fragment was inserted into the 35S-GAL4DBD plasmid previously digested with the restriction enzyme SmaI, the nucleotide sequence was determined, and the sequence encoding the previously reported region containing the amino acid sequence 1-236 of the At4g36990 gene It was confirmed that there was pGAL4-1-236.
  • Upper primer primer 2 (SEQ ID NO: 62: bound to At4g36990 gene / base sequence 732-752): gggccgcgggggcttgggctAAAGGAGAGAGAAAAAAGAGGG And a three-end lower primer primer1 having a restriction enzyme SalI site (SEQ ID NO: 56: bound to At4g36990 gene base sequence 823-855): gtcgacgtcgacTTAGTTGCAGACTTTGCTGCTTTTCCACAACGG Each of the oligonucleotides having a sequence corresponding to was synthesized, PCR was performed using these as primers and pGAL4-At4g36990 as a template, and a DNA fragment containing the amino acid sequence 244-283 of the At4g36990 gene was isolated.
  • This DNA fragment is digested with the restriction enzyme SalI, the target DNA fragment is isolated by agarose electrophoresis, and incorporated into the pGAL4-1-236 plasmid previously digested with the restriction enzymes SmaI and SalI. It was determined and confirmed to be a sequence having an amino acid mutation in the region of amino acid numbers 236 to 243 from the previously reported amino acid sequence of the At4g36990 gene.
  • the PCR reaction was performed for 30 cycles, with a denaturation reaction at 94 ° C. for 1 minute, an annealing reaction at 50 ° C. for 1 minute, and an extension reaction at 72 ° C. for 3 minutes.
  • the p35S-GAL4-LUC reporter gene was constructed in the same manner as in Example (1-3-1), and a reference gene ( pPTRL) was constructed.
  • a reporter gene and an effector plasmid are used in an Arabidopsis plant using the same particle gun method as in (1-6). The effector effect was examined by measuring the activity of the reporter gene.
  • the luciferase activity of the cell extract of Arabidopsis leaves that was allowed to stand for 6 hours was measured in the same manner as the luciferase activity measurement in (1-6) above, and the relative luciferase activity was determined as the measurement value.
  • FIG. 3B shows the measurement results of the activity of the reporter gene.
  • the effector containing the full length of AT4g36990 or the amino acid number 233-243 of the AT4g36990 gene reduces the activity of the reporter gene by 60 to 80% compared to the case where PUC18 is introduced as an effector (control). From these results, it was proved that these peptides have transcription repressive ability.
  • the effector plasmid of AT4g36990 gene in which a mutation was introduced into amino acids 236 to 243 of AT4g36990 did not reduce the activity of the reporter gene. This indicates that the 233-243rd amino acid of the AT4g36990 gene functions as a repressor domain that represses transcription.
  • Example 5 Inhibition of transcriptional activation function of AG in plant body by gene fragment encoding At2g36080 repression domain 178-192 (5-1) Construction of transformation vector pBIG2 Clontech (Clontech, USA) plasmid p35S-GFP was cleaved with restriction enzymes HindIII and BamHI, and a DNA fragment containing the cauliflower mosaic virus 35S promoter (CaMV 35S) was separated and collected by agarose gel electrophoresis. A plant transformation vector pBIG-HYG (Becker, D.
  • DNA having the following sequence was synthesized, heated at 70 ° C. for 10 minutes, and then annealed by natural cooling to obtain double-stranded DNA.
  • This DNA fragment has a BamHI restriction enzyme site at the 5 ′ end, an omega sequence derived from tobacco mosaic virus that enhances translation efficiency, and restriction enzyme sites SmaI and SalI.
  • the bacterial cells were collected from the culture solution and suspended in 500 ml of an infection medium.
  • Arabidopsis thaliana grown for 14 days was soaked for 1 minute, infected, and then grown and seeded again.
  • the collected seeds are sterilized with 50% bleach and 0.02% Triton X-100 solution for 7 minutes, rinsed three times with sterilized water, and the sterilized seeds are added to 1/2 MS selective medium containing 30 mg / l hygromycin. I was slaughtered. A transformed plant growing on the hygromycin plate was selected, replanted in soil, and grown.
  • Example 6 Suppression of transcriptional activation function of CUC2 and its duplicated gene CUC1 in a plant by gene fragment encoding At2g36080 repression domain 178-192 (6-1) Construction of transformation vector pCUC2-36RD In the same manner as in Examples (5-1) and (5-2), p36RD was obtained in which a partial base sequence of AT2G36080 (corresponding to 532-576) was inserted in the transformation vector pBIG2 in the forward direction.
  • the peptide having the amino acid sequence of 36RD (GNSKTLRLFGVNMEC: SEQ ID NO: 3) and the gene encoding it have the ability to convert any transcription factor into a transcriptional repressor, It was also revealed that it functions dominantly against live duplicate genes.
  • the peptide encoded by the gene of the present invention can perform transcriptional repression targeting only a specific gene, as in the case of conventionally known transcriptional repression functional peptide groups, as in known transcriptional repression functional peptide genes, It is expected to be applied in the field of breeding and at the same time has a conserved motif that is completely different from the known peptide group, so it can be applied in a wider range of fields by using it alone or in combination with known peptides And potentially useful technical means.

Abstract

 簡便でかつ広く適用可能な遺伝子の転写抑制手段であるCRES-T法において使用可能な、植物の転写抑制機能を有する、下記式(I)で示されるアミノ酸配列からなるペプチド及び当該ペプチドをコードする遺伝子を提供する。 式(I)  X1-X2-Leu-Phe-Gly-Val-X3 (式中、X1及びX3は1~10個の任意のアミノ酸で構成されるアミノ酸配列を表し、X2はLys又はArgを表す。)

Description

転写抑制ペプチド及びその遺伝子
 本発明は、転写抑制機能を有するペプチド、該ペプチドをコードする遺伝子、該ペプチドと転写因子もしくはそのDNA結合ドメインとが連結した転写抑制機能を有するキメラタンパク質、該キメラタンパク質をコードするキメラ遺伝子、該キメラ遺伝子を有する組換えベクター、及び該組換えベクターを含む形質転換体に関する。
 従来、生体遺伝子の発現を抑制する手段として、アンチセンス法又はリボザイム法が知られており、これらは、例えば、発癌遺伝子等疾病の原因となる遺伝子の発現の抑制又は植物の改良等への利用に関して研究が進められている。アンチセンス法では、転写を抑制しようとする標的遺伝子又はこれを転写したmRNA等の特定部位と相補的なアンチセンスDNA又はRNAが用いられるが、調製されたアンチセンスDNA又はRNAは該標的遺伝子以外の遺伝子の発現抑制には使用できず、他の標的遺伝子に対してはその配列に合わせて新たにアンチセンスDNA又はRNAを調製する必要がある。一方、リボザイム法では、標的DNA又はmRNAをリボザイムにより切断するためには、該標的DNA又はmRNAと結合するための相補的な配列を有し、かつ所定位置で切断可能なようにリボザイムを設計する必要がある。また、標的遺伝子を切断するように設計されたリボザイムであっても、例えば、これを、カリフラワーモザイクウイルスの35Sプロモーター等のプロモーター及び転写終結配列に連結して導入ベクターを構築し、実際に植物細胞中に導入すると、転写されたリボザイムに余分な配列が付加されてリボザイム活性が失われる場合がある。また、これらの従来技術においては、当然のことながら標的遺伝子の特定、塩基配列の決定が不可欠であり、特に植物の形質改良を目的とする場合にはこれが大きな問題となっていた。なぜなら、植物に関する研究のほとんどはモデル植物を材料として用いており、食料・燃料・建築資材などとして実用的な植物の遺伝子配列についてはほとんど知見が無く、適切なアンチセンスDNA又はRNAやリボザイムを設計することが非常に困難だからである。さらに、実用植物においては品種ごと、場合によっては個体ごとに遺伝子配列に大きな差異が存在することがよく知られており、それぞれの有用品種ごとに適切なアンチセンスDNAやリボザイムを設計することはほぼ不可能である。このほか、化学処理や放射線照射、あるいは外来遺伝子の導入によって内生の遺伝子を破壊する遺伝子ノックアウト法により遺伝子そのものを破壊することで発現を抑える方法もある。しかし、この方法によっては例えば生来の遺伝子セット数が多い複2倍体植物などにおいては全ての遺伝子を破壊することが難しいために適用が困難であった。倍数体植物には、食用・飼料用として重要な作物であるダイズ、コムギなどが含まれる。また、植物においては重要な機能を有する遺伝子は重複している場合が多く、通常の二倍体植物においても、やはり全ての遺伝子を破壊することは困難であった。
 そこで、本発明者らは上記従来技術とは全く別のアプローチであるCRES-T法(Chimeric repressor silencing technology)を開発してきた。(特許文献1~8、非特許文献1~3)。当該CRES-T法は、植物から単離された転写抑制ドメイン(ドミナントリプレッサー)を用い、転写活性化因子のカルボキシル基末端に結合して、当該転写活性化因子に強力な転写抑制活性を付与する技術であり、それぞれをコードする核酸分子のキメラ遺伝子を生体内で発現させることで、該標的遺伝子の転写を強く抑制する。転写抑制ドメインを融合したキメラ遺伝子は該転写活性因子のみではなく、同一遺伝子に対して重複して働く他の転写活性因子の機能も全て抑制することから、CRES-T法を用いて作成された植物は標的遺伝子の発現を完全に抑制した形態を示す。このことからCRES-T法は、実用的な植物の形質改変のみならず、基礎的な遺伝子の機能解明においても非常に有用な方法である。またCRES-T法においては配列と機能が類似した近縁遺伝子についても機能抑制が可能なことから、従来のアンチセンス法又はリボザイム法のように標的遺伝子の塩基配列に合わせてその都度DNA又はRNAの設計を行う必要がなく、簡便でかつ広範囲の適用が可能である。
 そして、上記転写抑制ドメインは、(L/F)DLN(L/F)(X)Pなるモチーフ(但し、Xは、任意のアミノ酸残基を表す)からなり、当初シロイヌナズナから単離され、シロイヌナズナでの研究が中心であったが、その後、タバコの他、イネなどの単子葉植物も含め広範囲な植物の転写抑制因子からも上記同一モチーフが多数同定された。これまでに、二次代謝生合成系で働く転写因子をキメラ転写抑制因子に変換させることで、二次代謝生合成を能動的に制御することが可能であることを示し、花器官形成の制御をおこなう転写因子のキメラ転写抑制因子を発現させることにより、雄性不稔、完全不稔をシロイヌナズナのみならずイネにおいても高効率で誘導することに成功した。これらの結果から、CRES-T法が単子葉であるイネにおいても利用できることが示され、広く植物一般に適用できる画期的な技術として注目されている。
 しかしながら、植物のみならず生物一般においても、今までに見出された転写抑制ドメインとなる保存モチーフは、当該(L/F)DLN(L/F)(X)Pモチーフのみであり、その後、本発明者らにより公知のSUP遺伝子が転写抑制機能ドメインとして「DLELRL」を有することが発見されたが、同一モチーフを有する転写遺伝子は見いだせず保存モチーフであるとまではいえない。したがって、(L/F)DLN(L/F)(X)Pモチーフと同様に植物一般に対して適用可能であり、なおかつ生来の転写抑制因子に保存されている、転写抑制ドメインの保存モチーフの探索が求められていた。
特許第3829200号 特許第3995211号 特開2001-269177号公報 特開2001-269178号公報 特開2001-292776号公報 特開2001-292777号公報 特開2001-269176号公報 特開2001-269179号公報 The Plant Cell,2001 13,1959-1968 Plant Biotechnology J 2006. 4. 325-332 Plant Journal 2003 34:733-739.
 本発明の課題は、簡便でかつ広く適用可能な遺伝子の転写抑制手段であるCRES-T法において使用可能な全く新しい転写抑制ドメインとなる保存モチーフ配列を提供することによって、CRES-T法の適用範囲と応用性を高めることにある。
 本発明者等は、上記課題を解決するため、シロイヌナズナ転写遺伝子のAt2g36080遺伝子に着目し、GAL4 DNA結合ドメインと該遺伝子を融合したエフェクターコンストラクトを用いたシロイヌナズナ葉でのトランジェントアッセイの結果、強い転写抑制機能を確認して、さらにその転写抑制活性領域が8ペプチド「LRLFGVNM」であることを見出した。次いで、シロイヌナズナデーターベースに登録された全遺伝子の中からLRLFGVNMモチーフと類似のアミノ酸配列を持つ29個の転写制御因子遺伝子を発見し、その中のAt3g11580、At2g46870、At1g13260、At1g68840、At4g36990及びAt4g11660について同様のトランジェントアッセイを行った結果、いずれも転写抑制因子として働くことを証明した。これら転写抑制因子のうち6遺伝子は保存配列としてRLFGVを有していたが、At4g36990はKLFGVであったため、At4g36990に対してはさらに変異を導入したエフェクタープラスミドによる解析を行ない、「K/RLFGV」という5個のアミノ酸(最初の1アミノ酸がKまたはR)が保存配列であることを確定した。一方で、RLFGVを含むAt2g36080遺伝子の部分断片15アミノ酸をコードするDNA断片をシロイヌナズナ由来の転写活性化因子CUC2遺伝子及びAG遺伝子それぞれに融合したコンストラクトを作成し、シロイヌナズナ植物体に導入した結果、公知の転写抑制ドメインSRDX(LDLELRLGFA)と同様の、子葉の融合、八重咲きの形質が誘導されたことを確認して、本発明を完成するに至った。
 具体的には、本発明者らはシロイヌナズナデーターベース中で転写遺伝子として分類されているアクセッション番号At2g36080遺伝子を、酵母由来のGAL4 DNA結合ドメインと結合したキメラ遺伝子を、CaMV 35Sプロモーター制御下で発現するエフェクターコンストラクト(35S: GAL4DBAt2g36080、添付図1A)を作成した。それを、CaMV 35S エンハンサー領域とGAL4結合領域を有するリポーター遺伝子(35S-GAL4-TATA-LUC、添付図1A)と同時にシロイヌナズナ葉に導入し、一過性に発現させた(トランジェントアッセイ)。すると、リポーター遺伝子の活性が、コントロール(pUC18 或いは35S:GAL4DB、添付図1A)と比較して、著しく発現抑制されたことから、At2g36080遺伝子は、転写抑制因子として機能していることが示唆された(添付図1B)。
 そこで、At2g36080の転写抑制ドメインを同定するため、At2g36080のコード領域をカルボキシル末端から徐々に削除したエフェクターコンストラクトを作成し(添付図1A)、トランジェントアッセイを行ったところ、178から192番目のアミノ酸領域 (15アミノ酸領域)に強い転写抑制活性を持つ領域があることがわかった(添付図1B)。また、この領域のみを切り出してGAL4 DNA結合ドメインに融合したエフェクターコンストラクト(添付図1A)も強い転写抑制活性を示したことから(添付図1B)、この領域がDNA結合ドメインに対して転写抑制活性を付与する転写抑制ドメイン(リプレッションドメイン)であることが判った。
 この15アミノ酸からなるペプチドについてさらに詳細な解析を行なったところ、183から190番目のLRLFGVNMの8アミノ酸のみでもリプレッションドメインとして機能することが明らかになった(添付図1C、1D)。
 次に、シロイヌナズナデーターベースに登録された全遺伝子の中からLRLFGVNMと類似した配列を持つ遺伝子を探索したところ、29個の転写制御因子をコードする遺伝子が発見された(表1:リスト[RK]LFGV)。それらの中からAt2g36080、At3g11580、At2g46870、At1g13260、At1g68840、At4g36990及びAt4g11660の7遺伝子について同様のトランジェントアッセイを行い、7遺伝子全てが転写抑制因子であることを証明した(添付図2A~G)。当初から転写抑制ドメインの同定に用いたAt2g36080と、新たに転写抑制因子として同定された6個の遺伝子のアミノ酸配列を詳細に比較したところ、K/RLFGVという5個のアミノ酸(最初の1アミノ酸がKまたはR)が保存配列であることが判った(リスト[RK]LFGV)。これらのうち、6遺伝子は保存配列としてRLFGVを有していたが、At4g36990(添付図2F)については保存配列がKLFGVであった。このことからAt4g36990については、変異を導入したエフェクタープラスミドなどを用いて、更に詳細なドメインの解析を行ない、KLFGVを含む11アミノ酸の領域(GEGLKLFGVWL、233から243番目のアミノ酸)が転写抑制活性を有することを明らかとした(添付図3A、3B)。これらのことから先のデータベース検索において発見したK/RLFGVを持つ転写因子遺伝子(表1)は全て植物体内において転写抑制因子として機能していることが予測される。
<表1>リスト[RK]LFGVを持つシロイヌナズナ由来転写因子
Figure JPOXMLDOC01-appb-I000001
 次に、本来は転写活性化能を有する転写制御因子に対して、上記で同定した転写抑制ペプチド[K/R]LFGVを融合することによって当該転写活性化因子の活性を転写抑制因子に機能転換することが可能かどうか、更には、そのキメラ遺伝子が実際に植物体内においても転写抑制因子として機能し、植物の形質の変化を誘導しうるかどうかを確認するために解析をおこなった。実際の実験においては転写活性化因子のモデル遺伝子として、従来公知の転写抑制ペプチドを用いた実験により、植物の形質変化との関連がすでに実証されているシロイヌナズナ由来のCUC2遺伝子およびAG遺伝子(非特許文献2,3)を用いた。
 既に本発明者らにより報告されている転写抑制ドメインSRDX(LDLELRLGFA)については、CUC2遺伝子のC末端側に融合したキメラ遺伝子(35S:CUC2SRDX)、あるいはAG遺伝子のC末端側に融合したキメラ遺伝子(35S:AGSRDX)(非特許文献2)をシロイヌナズナにおいて発現させた場合、35S:CUC2SRDX植物体では子葉の融合が誘導され(添付図4D)、35S:AGSRDX植物体では八重咲きの形質が(添付図4B)誘導されることが知られている。そこで、本発明で発見した新規リプレッションドメインであるRLFGVを含む15アミノ酸(図4では36RDと示す)をCUC2遺伝子及びAG遺伝子それぞれのC末端側に融合したキメラ遺伝子(35S:CUC2-36RD、35S:AG-36RD)を作成し(添付図4A)、これを導入したシロイヌナズナ植物が同様な形質を示すかどうかについて解析を行った。
 その結果、35S:CUC2-36RD(添付図4E)、35S:AG-36RD(添付図4C)を導入した植物体においても35S:CUC2-SRDX、及び35S:AG-SRDXと同様に、子葉の融合、あるいは、八重咲きの形質が誘導された。これらのことから、発見した[RK]LFGVペプチドは、SRDXと同様に植物体においても機能することが示された。35S:AG-36RDにおいて観察された八重咲きの形質はAG遺伝子を破壊した植物体(ag mutant)において観察される形態と酷似していることから、融合された36RDによってAG遺伝子の機能転換が誘発され、強い転写抑制因子となった35S:AG-36RDキメラ遺伝子が機能することで、本来AGが転写を活性化する標的遺伝子の発現をことごとく抑制したため誘導された形質と考えられる。この形質から、35S:AG-36RDキメラ遺伝子が内生のAG遺伝子に対して優勢的に機能することは明白である。また、35S:CUC2-36RDにおいて観察された子葉の融合は、CUC2及びCUC1(CUC2と相補的に働く類似遺伝子)遺伝子の二つを破壊した時のみ観察される形質(cuc1 cuc2)であり、このことから35S:CUC2-36RDキメラ遺伝子が内生のCUC2遺伝子のみならずそれと機能を同じくするCUC1遺伝子に対しても優勢に機能し、標的遺伝子の発現を抑制することが証明された。
すなわち、本発明は以下の発明を包含する。
〔1〕 下記式(I)で示されるアミノ酸配列からなる、植物の転写抑制機能を有するペプチド。
式(I)
 X1-X2-Leu-Phe-Gly-Val-X3
(式中、X1及びX3は1~10個の任意のアミノ酸で構成されるアミノ酸配列を表し、X2はLys又はArgを表す。)
〔2〕 前記ペプチドが、配列番号3~33のいずれかで示されるアミノ酸配列を含む、前記〔1〕に記載のペプチド。
〔3〕 前記〔1〕又は〔2〕に記載のペプチドをコードする核酸分子。
〔4〕 下記式(I)で示されるアミノ酸配列からなる植物の転写抑制機能を有するペプチドと、転写因子もしくはそのDNA結合ドメインとが結合していることを特徴とする、転写抑制機能を有するキメラタンパク質;
式(I)
 X1-X2-Leu-Phe-Gly-Val-X3
(式中、X1及びX3は1~10個の任意のアミノ酸で構成されるアミノ酸配列を表し、X2はLys又はArgを表す。)
〔5〕 下記式(I)で示されるアミノ酸配列からなる植物の転写抑制機能を有するペプチドをコードする核酸分子と、転写因子もしくはそのDNA結合ドメインをコードする核酸分子とが、読み枠をそろえて連結されていることを特徴とする、転写抑制機能を有するキメラタンパク質をコードする核酸分子;
式(I)
 X1-X2-Leu-Phe-Gly-Val-X3
(式中、X1及びX3は1~10個の任意のアミノ酸で構成されるアミノ酸配列を表し、X2はLys又はArgを表す。)
〔6〕 前記〔5〕に記載の核酸分子を含む、発現ベクター。
〔7〕 前記〔5〕に記載の核酸分子が発現可能な状態で導入されている、形質転換体。
〔8〕 前記〔5〕に記載の核酸分子が発現可能な状態で導入されている、形質転換植物。
〔9〕 前記〔5〕に記載の核酸分子を含む発現ベクターを用いて形質転換した細胞を培養し、得られた発現産物を採取し精製することを特徴とする、転写抑制機能を有するキメラタンパク質の製造方法。
〔10〕 下記式(I)で示されるアミノ酸配列からなる植物の転写抑制機能を有するペプチドと、転写因子もしくはそのDNA結合ドメインとを連結することを特徴とする、転写抑制機能を有するキメラタンパク質の製造方法;
式(I)
 X1-X2-Leu-Phe-Gly-Val-X3
(式中、X1及びX3は1~10個の任意のアミノ酸で構成されるアミノ酸配列を表し、X2はLys又はArgを表す。)
 
 本発明のペプチドは、従来から知られていた転写抑制機能を有するペプチドと同様、極めて短いサイズで、効果的に遺伝子の転写を抑制でき、特定の標的遺伝子の転写制御領域に結合する転写因子、又はそのDNA結合ドメインと連結したキメラタンパク質は、当該転写因子を転写抑制因子に変換する機能を有する。
 したがって、本発明の遺伝子は、公知の転写抑制機能ペプチドをコードする遺伝子と同様に、特定の標的遺伝子の転写制御領域に結合する転写因子、又はそのDNA結合ドメインをコードする遺伝子、あるいは、その転写制御因子と転写制御複合体を形成する遺伝子と融合させたキメラ遺伝子とすることで、特定の遺伝子のみを標的にした転写抑制を行うことができ、この転写因子の転写に重複して関与する他の転写因子の機能をも抑制することができるので、標的遺伝子の転写、発現を確実に阻害することができる。
 しかも、本発明のペプチドは、従来公知の転写抑制機能を有するペプチド群とは全く異なる保存モチーフを有しているので、従来公知のペプチドに代替して又は組み合わせて用いることにより、各種植物の育種分野での適用の幅がさらに広がる可能性が大きい。
図1Aは、試験対象の各種DNA断片を含むGAL4DB-RDエフェクタープラスミド及びレポーター遺伝子を示す図である。 At2g36080遺伝子の転写抑制活性を有するドメインの決定に用いたレポーター遺伝子とエフェクタープラスミドを示す図である。なお、5XGAL4:GAL4転写因子DNA結合配列、TATA:CaMV35SプロモーターTATAボックスを含む領域、LUC:ルシフェラーゼ遺伝子、CaMV35S:カリフラワーモザイクウイルス35Sタンパク質遺伝子プロモーター、Ω:タバコモザイクウイルス由来のomega配列、GAL4DB:酵母GAL4転写因子DNA結合ドメインコード領域、RD:SUPERMANのリプレッションドメイン配列(LDLELRLGFA)、Nos:ノパリン合成酵素遺伝子転写終止領域を表す。 図1Bは、pGAL4DBに結合した各種ペプチドがリポーター遺伝子の活性(Relative Activity)に及ぼす影響を示す図である。 pGAL4DBに結合した各種ペプチドがリポーター遺伝子の活性(RelativeActivity)に及ぼす影響を示す図である。図中、右側のグラフは、各種DNA断片を有するエフェクタープラスミドを導入したときのリポーター遺伝子の活性を示す(PUC18をエフェクターとして入れたときのリポーター遺伝子の活性を1.00とした)。 図1Cは、At2g36080遺伝子の転写抑制活性を有するドメインの決定に用いたレポーター遺伝子とエフェクタープラスミドを示す図である。 図1Dは、pGAL4DBに結合した各種ペプチドがリポーター遺伝子の活性(Relative Activity)に及ぼす影響を示す図である。図中、右側のグラフは、各種DNA断片を有するエフェクタープラスミドを導入したときのリポーター遺伝子の活性を示す(PUC18をエフェクターとして入れたときのリポーター遺伝子の活性を1.00とした)。 図2は、pGAL4DBに結合した各遺伝子がリポーター遺伝子の活性(RelativeActivity)に及ぼす影響を示す図である。図中、右側のグラフは、各種DNA断片を有するエフェクタープラスミドを導入したときのリポーター遺伝子の活性を示す(pGAL4DBをエフェクターとして入れたときのリポーター遺伝子の活性を1.00とした)。 図2Aは、At3g11580遺伝子、図2BはAt2g36080遺伝子、図2CはAt2g46870遺伝子、図2DはAt1g13260遺伝子、図2EはAt1g68840遺伝子、図2FはAt4g36990遺伝子、及び図2GAt4g11660遺伝子を導入した場合の活性を示す。 図3Aは、At4g36990遺伝子の転写抑制活性を有するドメインの決定に用いたレポーター遺伝子とエフェクタープラスミドを示す図である。 図3Bは、pGAL4DBに結合した各種ペプチドがリポーター遺伝子の活性(Relative Activity)に及ぼす影響を示す図である。図中、右側のグラフは、各種DNA断片を有するエフェクタープラスミドを導入したときのリポーター遺伝子の活性を示す(PUC18をエフェクターとして入れたときのリポーター遺伝子の活性を1.00とした)。 図4Aは、植物体に導入した各種遺伝子-転写抑制ペプチド融合コンストラクトの模式図である。 図4Bは、AG-SRDXの花の形態である。 図4Cは、AG-36RDの花の形態である。 図4Dは、CUC2-SRDXの実生の形態である。 図4Eは、CUC2-36RDの実生の形態である。
 以下、本発明をさらに詳細に説明する。
 本発明においては、下記式(I)で表されるアミノ酸配列からなる転写抑制因子であり、かつ転写因子を転写抑制因子に変換する機能を有するペプチドが提供される。
 
式(I)
 X1-X2-Leu-Phe-Gly-Val-X3
 
 上記式(I)中、X2はLys又はArgを表す。X1及びX3についてはどのようなアミノ酸であってもよく、X1及びX2のアミノ酸配列を構成するアミノ酸の数はそれぞれが1~10個の範囲内であればいくつでもよい。使用するペプチドの合成のし易さからみれば短い方がよいが、確実に抑制効果を上げるためには、X1及びX3をあわせた数が3以上であることが好ましい。より好ましくは、X1+X3が6以上、さらに好ましくは10以上であることが好ましい。
 本発明における最適なペプチドとしては、8~15個のアミノ酸からなる配列番号3~33に示されるアミノ酸配列が例示される。これら配列番号3~33に示されるアミノ酸配列のX1又はX3の部分において1から数個のアミノ酸が欠失、置換、又は付加されたアミノ酸配列からなるペプチドも本発明ペプチドとして好ましい。なお、ここで、「1から数個」とは、1から10個、好ましくは1から7個、より好ましくは1から5個、さらに好ましくは1から3個程度を意味する。
 本発明の転写抑制ペプチドに含まれる保存モチーフは、「K/RLFGV」であり、上記従来技術に示した(L/F)DLN(L/F)(X)Pなるモチーフとは異なるアミノ酸配列を有しており、本発明者らにより転写抑制機能が発見されたSUP遺伝子がコードするアミノ酸配列中のモチーフ「DLELRL」とも全く異なるモチーフである。
 これら転写抑制ペプチドは、短いので簡単に化学的に合成することもできるが、これらペプチドをコードする核酸分子を適当な発現ベクターに繋ぎ、形質転換細胞により製造することも可能である。植物体又は植物細胞、酵母細胞内で転写抑制因子として働かせる場合には、当該転写抑制ペプチドをコードする核酸分子を発現ベクターに繋いで又は繋がずに細胞内に導入して細胞内で転写抑制機能を発揮させてもよい。
 本発明においては、上記のいずれかの転写抑制ペプチドと、転写因子もしくはそのDNA結合ドメインとを結合させた転写抑制機能を有するキメラタンパク質も提供するものである。
 その場合、それぞれのペプチド同士を化学的にペプチド結合させることもできるが、一般的には本発明の転写抑制ペプチドをコードする核酸分子と、転写因子もしくはそのDNA結合ドメインをコードする核酸分子とを、読み枠をそろえて結合したキメラ遺伝子を適切なプロモーターの制御下におき、標的遺伝子を含む細胞内で発現させて標的遺伝子に作用させる。すなわち、当該キメラ遺伝子をプロモーター配列に繋ぎ、発現ベクターを用い、又は用いずに植物体又は植物細胞などを形質転換し、該キメラ遺伝子を形質転換細胞内で発現させ発現産物としてキメラタンパク質を生成させる。このキメラタンパク質においても転写因子由来のDNA結合領域は標的遺伝子の転写制御領域と結合するが、本来転写因子が有する転写活性化機能に優先して、転写抑制ペプチドに由来する転写抑制機能が発揮されるために、該標的遺伝子の転写が抑制されて発現は起こらない。
 本発明のキメラタンパク質による転写抑制機能は転写制御因子のDNA結合ドメインの種類を問わず作用する。本発明のキメラタンパク質の転写抑制機能には標的遺伝子の転写制御領域との結合が必要であるから、上記のキメラタンパク質をコードする遺伝子は、特定の標的遺伝子の転写制御領域に結合するDNA結合ドメインを有する転写制御遺伝子、または、その転写制御遺伝子のDNA結合ドメインをコードする核酸配列、および特定の標的遺伝子の転写制御領域に結合する転写因子と転写制御複合体を形成する遺伝子と融合させてキメラ遺伝子とし、特定の遺伝子のみを標的にした転写抑制を行うことができる。
 すなわち、本発明のキメラ遺伝子は、転写因子を転写抑制因子に変換する機能を有するペプチドと転写因子とが連結したキメラタンパク質を発現し、該キメラタンパク質における転写因子由来のDNA結合ドメインが結合する転写制御領域によって制御される遺伝子の転写を特異的に抑制する。したがって、ある特定の遺伝子の転写抑制を行う場合、該遺伝子の転写を支配している転写因子を選び、該転写因子をコードする遺伝子の末端又はDNA結合ドメインに本発明の遺伝子を連結させてキメラ遺伝子を構築し、該遺伝子を適当なベクターに連結して、上記特定の遺伝子の転写を抑制したい生体部位に導入して、上記特定の遺伝子の転写を抑制すればよい。
 さらに、本発明の上記キメラ遺伝子発現産物であるキメラタンパク質は、その転写因子のDNA結合ドメインが結合する遺伝子の転写を特異的に抑制し、この転写抑制は優性形質として現れる。
 本発明の転写抑制ペプチドを転写活性化因子に融合して発現させることで、該転写活性化因子の機能を転写抑制因子に転換し、当該転写因子が活性化するはずの標的遺伝子の転写を特異的に、また、優性的に抑制することを立証するために、本発明者らが上記特許文献1~8、非特許文献1~3で用いた手法と同様の手法、すなわちCRES-T法を適用した。
 AGAMOUS(AG)転写因子を用いた場合を例にしてさらに詳細に説明する。
 AGAMOUSはシロイヌナズナの花器官形成に働く転写活性化因子であり、この遺伝子の機能が欠損したag変異体では雄蕊と雌蕊が花弁化し、さらに花器官の形成が終息しないために次々と花弁が形成され続け、最終的には多数の花弁を有する、いわゆる八重咲きの花になることが知られている。この転写活性化因子AGに対して、本発明の「K/RLFGV」モチーフを含むペプチドをコードする遺伝子を融合し、シロイヌナズナで発現させると、公知の(L/F)DLN(L/F)(X)Pモチーフの場合(非特許文献2)と同様に、八重咲きの花が得られた。このことは転写活性化能を有するAG遺伝子が、本発明の転写抑制ペプチドと融合されたことにより転写抑制因子へと機能転換し、さらに、内在のAG遺伝子に対して優性的に働いたことを示している。
 CUP-SHAPEDCOTYLEDON1(CUC2)転写因子を用いた場合を例にしてさらに詳細に説明する(非特許文献3)。
 CUC2は、同じNACドメインを持つCUC1と共に、芽生えの頂芽の形成を制御する転写因子であり、CUC1とCUC2遺伝子の両方に変異を持つ場合にのみ、その植物体の子葉がカップ状の形態(cup-sahped cotyledon)を示し、かつ頂芽の分裂組織の形成が行われないことが明らかになっている。一方、CUC1又はCUC2の一方だけに変異が入っているものは正常であることから、CUC1とCUC2は、機能的に重複した(redundant)因子であることが知られている(Development, 126, 1563, 1999; Development, 128, 1127, 2000)。これら重複した機能を持つCUC1とCUC2転写因子の遺伝子のうち、一方のCUC2遺伝子に、本発明のペプチドをコードする遺伝子を結合させたキメラ遺伝子を植物体で発現させた場合、発現したキメラタンパク質は、CUC2転写因子ばかりでなく、機能的に重複したCUC1転写因子の転写活性をも抑制し、CUC2転写因子が制御する遺伝子の発現を抑制することができる。この場合、その植物体の子葉はCUC1/CUC2の二重変異体の形質であるカップ状(cup-shaped cotyledon)の形状になり、また、頂芽分裂組織は形成されない。後記実施例6では、本発明の「K/RLFGV」モチーフを含むペプチドをコードする遺伝子とCUC2遺伝子とを融合させたキメラ遺伝子を構築し、キメラ遺伝子でシロイヌナズナ植物を形質転換した結果、CUC1/CUC2の二重欠損株である特徴を示すカップ状(cup-shaped cotyledon)の形質を示すこと、及びCUC2転写因子によって制御されている頂芽分裂細胞の形成を制御するSTM遺伝子の欠損株と同様に、頂芽分裂組織の形成がみられないことが確認された。このことは、転写活性化機能を有するCUC2転写因子が、本発明の上記ペプチドとの融合により、転写抑制因子に機能変換したことを示し、さらにCUC2転写因子ばかりでなく、機能的に重複するCUC1転写因子の活性をも優先的に抑制し、下流の遺伝子の発現を抑制していることを示すものである。この結果は、従来公知の「(L/F)DLN(L/F)(X)P」モチーフを含む転写抑制ペプチドを用いた結果(非特許文献3)と同様である。
 以上のことから理解されるように、本発明のペプチド及びそれをコードする遺伝子は、任意の転写因子を転写抑制因子に変換できる能力を有し、さらに機能的に重複(リダンダント)する他の転写因子の活性も抑制する能力を有する。
 一方、植物の転写因子は、多くの場合、CUCで示されたように、機能的に重複した複数の転写因子を持つ場合が多く、本発明により機能変換した転写抑制因子は、優性形質(ドミナント)で作用することから、本発明によれば、これまで一遺伝子のノックアウトでは明らかにされなかった転写因子の機能解析が可能となり、また、コムギなどの複二倍体ゲノムを持つ植物にも有効に作用できる等の点で、極めて有用な手段である。
 上記したように、本発明のキメラ遺伝子は、該遺伝子に対応するキメラタンパク質を生成させ、このキメラタンパク質が標的遺伝子の転写制御領域と結合することにより、該標的遺伝子の転写を抑制するものであるから、このキメラタンパク質を別途合成し、これを直接標的遺伝子が存在する生体部位に導入してもよい。
 このキメラタンパク質の合成には、通常の遺伝子工学的手法を用いて行えばよく、例えば、上記キメラ遺伝子を適当なベクターに組み込み、これを用いて形質転換させた微生物を培養することにより、上記キメラタンパク質を多量に合成することができる。
 本発明の遺伝子の転写因子に対する結合位置は、該転写因子またはそのDNA結合ドメインをコードする領域の下流側末端である。本発明のペプチドをコードする遺伝子を、転写因子をコードする遺伝子に挿入しようとする場合、転写因子をコードする遺伝子の切断、本発明の遺伝子の連結、再結合等の面倒な操作を伴うので、単に該転写因子のタンパク質コード領域の下流側末端に、本発明の遺伝子を結合するのが簡便である。この点は本発明の利点の一つでもある。
 なお、本発明の遺伝子は、上記式(I)で表されるアミノ酸配列を有するペプチドをコードするものであれば塩基配列はどのようなものであってもよい。また、本発明の遺伝子は、転写因子をコードする遺伝子と連結するための連結部位を設けてもよく、また本発明の遺伝子のアミノ酸読み枠と転写因子をコードする遺伝子読み枠が一致しない場合には、一致するように遺伝子を設計する。したがってそのための付加的な塩基配列を有していてもよい。例えば、式(I)で表されるアミノ酸配列をコードする塩基配列としては、5’-GGGAGGCAACTCGAAGACATTAAGACTGTTCGGAGTGAACATGGAGTGCTAA-3’(配列番号65)がある。
 本発明において標的遺伝子の転写を抑制するには、上記キメラタンパク質を、直接生体に導入してもよいが、例えば植物の品種改良等を行う場合、恒常的に特定遺伝子の転写を抑制し、該遺伝子の発現を抑制する必要があり、上記キメラタンパク質をコードする遺伝子を適当なベクターに連結させ、この組換えベクターを用いて植物等を形質転換するのがより効果的である。これにより、キメラタンパク質をコードする遺伝子は植物体内で恒常的に発現し、生成されたキメラタンパク質は、遺伝子の転写を抑制し続ける。また、該遺伝子を導入した形質転換植物に由来する後の世代の植物(形質転換花粉等を用いた交配等で生じた植物も含む)においても、導入されたキメラタンパク質が生成される限り、標的遺伝子の発現は抑制される。
 以下、本発明の実施例を示すが、本発明は特にこれら実施例に限定されるものではない。
 実施例1においては、(i)酵母のGAL4転写因子のDNA結合ドメインをコードしている領域を結合させた種々のAt2g36080断片を、植物細胞で機能するカリフラワーモザイクウイルス35Sプロモーターの下流につないでエフェクタープラスミドを構築するとともに、(ii)カリフラワーモザイクウイルス35Sプロモーターのエンハンサー領域とGAL4タンパク質結合DNA配列とカリフラワーモザイクウイルスの35SプロモーターのTATA領域をプロモーター領城に結合したルシフェラーゼ遺伝子からなるリポーター遺伝子を構築した。これらのエフェクタープラスミドとリポーター遺伝子とを同時にシロイヌナズナ葉にパーティクルガンを用いて導入し、リポーター遺伝子であるルシフェラーゼ遺伝子の活性を測定することによって、At2g36080の全アミノ酸配列を有する蛋白質をコードする遺伝子、および、178-192アミノ酸配列を有するAt2g36080部分タンパク質をコードする遺伝子の転写抑制能を調べたものである。
 実施例2は、At2g36080の183-192アミノ酸配列を有するAt2g36080部分タンパク質をコードする遺伝子の転写抑制能をリポーター遺伝子であるルシフェラーゼ活性の測定により調べたものである。
 実施例3は、R/KLFGVアミノ酸配列を有するAt3g11580, At2g46870, At1g13260, At1g68840, At4g36990, At4g11660遺伝子のタンパク質をコードする遺伝子の転写抑制能をリポーター遺伝子であるルシフェラーゼ活性の測定により調べたものである。
 実施例4は、At4g36990の233-243アミノ酸配列を有するAt4g36990部分タンパク質をコードする遺伝子の転写抑制能をリポーター遺伝子であるルシフェラーゼ活性の測定により調べたものである。
 実施例5は、実際の植物における転写因子であるAG遺伝子にGNSKLTLRLFGVNMEC (36RD;At2g36080のリプレッションドメイン178-192)をコードする遺伝子断片を結合させ、これをカリフラワーモザイクウイルス35Sプロモーターの下流につないで形質転換プラスミドを構築し、該プラスミドをシロイヌナズナ植物体に導入し、形質転換植物の花の形態を観察することにより、AG遺伝子の標的遺伝子に対する上記遺伝子断片の転写機能抑制効果を調べたものである。
 実施例6は、実際の植物における転写因子であるCUC2遺伝子にGNSKLTLRLFGVNMEC (36RD;At2g36080のリプレッションドメイン178-192)をコードする遺伝子断片を結合させ、これをカリフラワーモザイクウイルス35Sプロモーターの下流につないで形質転換プラスミドを構築し、該プラスミドをシロイヌナズナ植物体に導入することで作成した形質転換植物体の発芽後の子葉の形態を観察することにより、CUC2遺伝子及び該遺伝子と機能的に重複するCUC1遺伝子の標的遺伝子に対する上記遺伝子断片の転写機能抑制効果を調べたものである。
(実施例1) At2g36080遺伝子含有エフェクタープラスミドによる転写抑制
(1-1)エフェクタープラスミド用ベクターp35S-GAL4DBDの構築
クローンテック社製(Clontech社,USA)のプラスミドpBI221を制限酵素XhoIとSacIで切断し、T4ポリメラーゼで平滑末端処理した後、アガロースゲル電気泳動でGUS遺伝子を除き、カリフラワーモザイクウイルス35Sプロモーター(以下CaMV 35Sという)とノパリン合成酵素遺伝子の転写終止領域(Nosターミネーター、以下Nos-terという)を含む35S-Nosプラスミド断片DNAを得た。
 クローンテック社製のpAS2-1ベクターを制限酵素HindIIIで消化し、酵母GAL4タンパク質のDNA結合領域(1-147アミノ酸残基)をコードする748 bpのDNA断片(以下GAL4DBDという)をアガロースゲル電気泳動によって単離した後、T4 DNAポリメラーゼで平滑末端化処理をした。このGAL4DBDコード領域を含むDNA断片を、先ほどの35S-NosのDNAの35SプロモーターとNosターミネーター間の平滑末端にした部位に挿入し、35Sプロモニターに対して酵母GAL4タンパク質のDNA結合領域のORFが順方向に並んでいるものを選抜してp35S-GAL4DBDベクターを構築した。
(1-2)エフェクタープラスミドの構築 (図1A)
(1-2-1) At2g36080遺伝子の全蛋白質コード領域(1-244aa.)を含むエフェクタープラスミドpGAL4-At2g36080の構築
 At2g36080遺伝子の塩基配列は、すでに報告されているシロイヌナズナAt2g36080遺伝子のタンパク質コード領域の5’側と3’側に、GAL4DBDの読み枠(フレーム)が一致するように設計したAt2g36080遺伝子の5末アッパープライマーprimer1(At2g36080遺伝子・塩基配列1-29に結合):
gATGTCAATAAACCAATACTCAAGCGATTT(配列番号34)と、
制限酵素SalI部位を持つ3末ローワープライマーprimer1(At2g36080遺伝子塩基配列710-735に結合):
gtcgacgtcgacTTAGCTCGTCCGGTTCATATCTCCT(配列番号35)
に相当する配列をもつオリゴヌクレオチドをそれぞれ合成し、これらをプライマーとして、シロイヌナズナ実生由来のcDNAを鋳型としてPCRを行い、At2g36080遺伝子のタンパク質コード領域を含むDNA断片を単離した。このDNA断片を制限酵素SalIで消化し、アガロース電気泳動によって目的とするDNA断片を単離し、制限酵素SmaIとSalIで予め消化しておいた35S-GAL4DBDプラスミドに組み込んだのち、塩基配列を決定し、すでに報告されているAt2g36080遺伝子のタンパク質コード領域であることを確認した。
 なお上記PCR反応の条件は、変性反応94℃1分、アニール反応50℃1分、伸長反応72℃3分を1サイクルとして30サイクル行った。
(1-2-2) At2g36080遺伝子のアミノ酸配列1-169を含むエフェクタープラスミドpGAL4-At2g36080-1stEXの構築
 GAL4DBDと読み枠(フレーム)が一致するように設計したAt2g36080遺伝子の5末アッパープライマーprimer1:
gATGTCAATAAACCAATACTCAAGCGATTT(配列番号34)と、
ローワープライマーprimer2(At2g36080遺伝子塩基配列491-506に結合):
AATAAAAAGGGTACCTGCATGAGGATAATA(配列番号36)
に相当する配列をもつオリゴヌクレオチドをそれぞれ合成し、これらをプライマーとして、pGAL4-At2g36080を鋳型としてPCRを行い、At2g36080遺伝子のアミノ酸配列1-169を含むDNA断片を単離した。このDNA断片を制限酵素SmaIで予め消化しておいた35S-GAL4DBDプラスミドに組み込んだのち、塩基配列を決定し、すでに報告されているAt2g36080遺伝子のアミノ酸配列1-169を含む領域をコードする配列であることを確認した。
 なお上記PCR反応の条件は、前記(1-2-1)と同様である。
(1-2-3) アミノ酸配列178-192を欠失したAt2g36080遺伝子のエフェクタープラスミドpGAL4-de178 to 192の構築
 GAL4DBDと読み枠(フレーム)が一致するように設計したAt2g36080遺伝子の5末アッパープライマーprimer1:
gATGTCAATAAACCAATACTCAAGCGATTT(配列番号34)と、
制限酵素BglII部位を持つローワープライマーprimer3(At2g36080遺伝子塩基配列511-531に結合):
AGATCTAGATCTTTGGCTCTCCACCGCTTG(配列番号37)
に相当する配列をもつオリゴヌクレオチドをそれぞれ合成し、これらをプライマーとして、pGAL4-At2g36080を鋳型としてPCRを行い、At2g36080遺伝子のアミノ酸配列1-178を含むDNA断片を単離した。このDNA断片を制限酵素SmaIで予め消化しておいた35S-GAL4DBDプラスミドに組み込んだのち、塩基配列を決定し、すでに報告されているAt2g36080遺伝子のアミノ酸配列1-178を含む領域をコードする配列であることを確認し、pGAL4-1-178とした。
 制限酵素BglII部位を持つアッパープライマーprimer2(At2g36080遺伝子塩基配列577-598に結合):
agatctagatctCAGCTAGATTCGGACTGGTC(配列番号38)と、
制限酵素SalI部位を持つ3末ローワープライマーprimer1(At2g36080遺伝子塩基配列710-735に結合):
gtcgacgtcgacTTAGCTCGTCCGGTTCATATCTCCT(配列番号35)
に相当する配列をもつオリゴヌクレオチドをそれぞれ合成し、これらをプライマーとして、pGAL4-At2g36080を鋳型としてPCRを行い、At2g36080遺伝子のアミノ酸配列193-244を含むDNA断片を単離した。このDNA断片を制限酵素BglIIとSalIで消化し、アガロース電気泳動によって目的とするDNA断片を単離し、制限酵素BglIIとSalIで予め消化しておいたpGAL4-1-178プラスミドに組み込んだのち、塩基配列を決定し、すでに報告されているAt2g36080遺伝子のアミノ酸配列からアミノ酸番号178から192領域を欠失する蛋白質をコードする配列であることを確認した。
 なお上記PCR反応の条件は、前記(1-2-1)と同様である。
(1-2-4) At2g36080遺伝子の部分アミノ酸配列178-192を持つエフェクタープラスミドpGAL4-178/192の構築
 GAL4DBDと読み枠(フレーム)が一致するように設計したAt2g36080遺伝子の部分配列1(配列番号39:At2g36080遺伝子塩基配列532-576に相当):
aGGCAACTCGAAGACATTAAGACTGTTCGGAGTGAACATGGAGTGCTAAおよびその相補配列である
部分配列2(配列番号40:At2g36080遺伝子塩基配列532-576の相補配列に相当):
TTAGCACTCCATGTTCACTCCGAACAGTCTTAATGTCTTCGAGTTGCCT
をもつオリゴヌクレオチドをそれぞれ合成し、これらを混合して90℃2分加熱した後、60℃で1時間加熱し、その後室温(25℃)で2時間静置してアニーリングさせ二本鎖DNA断片を得た。このDNA断片を制限酵素SmaIで予め消化しておいた35S-GAL4DBDプラスミドに組み込んだのち、塩基配列を決定し、すでに報告されているAt2g36080遺伝子のアミノ酸配列178-192を含む領域をコードする配列であることを確認した。
(1-3)レポーター遺伝子の構築(図1A)
(1-3-1) p35S-GAL4-LUCリポーター遺伝子の構築(図1A)
 プラスミドpUC18を制限酵素EcoRIとSstIで消化した。pBI221プラスミド(クローンテック社)を制限酵素EcoRIとSstIで消化し、Nos-ter(nopaline synthase terminator)領域を含む270bpのDNA断片をアガロースゲル電気泳動によって単離した。得られた断片を制限酵素EcQRIとSstIで消化しておいたプラスミドpUC18のEcoRI-SstI部位に挿入した。カリフラワーモザイクウイルス35SプロモーターTATAボックスを含む相補鎖のDNA1:AGCTTAGATCTGCAAGACCCTTCCTCTATATAAGGAAGTTCATTTCATTTGGAGAGGACACGCTG(配列番号41)、及びDNA2:GATCCAGCGTGTCCTCTCCAAATGAAATGAACTTCCTTATATAGAGGAAGGGTCTTGCAGATCTA(配列番号42)を合成した。
 合成したDNAを90℃2分加熱した後、60℃で1時間加熱し、その後室温(25℃)で2時間静置してアニーリングさせ2本鎖を形成させた。Nos-terを持つpUC18プラスミドを制限酵素HindIIIとBamHIで消化した。合成した2本鎖DNAをpUC18のHindIII-BamHI部位に挿入し、TATA-boxとNos-terを含むプラスミドを構築した。
 このプラスミドを制限酵素SstIで消化し、T4 DNAポリメラーゼで平滑末端化処理を行った。
 ホタル・ルシフェラーゼ遺伝子(LUC)をもつプラスミドベクターPGV-CS2(東洋インキ社製)を制限酵素XbaIとNcoIで消化し、T4 DNAポリメラーゼで平滑末端化処理を行った後、アガロースゲル電気泳動によって、ルシフェラーゼ遺伝子を含む1.65kbのDNA断片を単離精製した。このDNA断片を上記のTATAボックスとNosターミネーターを含むプラスミドに挿入し、pTATA-LUCリポーター遺伝子を構築した。
 酵母のGAL4タンパク質のDNA結合配列を5コピー持つプラスミドpG5CAT(Clontech社製)を制限酵素SmaIとXbaIで消化し、T4 DNAポリメラーゼで平滑末端化処理を行った後、5コピーのGAL4タンパク質のDNA結合配列含むDNA断片をアガロースゲル電気泳動で精製した。TATA-LUCベクターを制限酵素BglIIで消化し、T4 DNAポリメラーゼで平滑末端化処理を行った。この部位に平滑末端化した5コピーのGAL4タンパク質のDNA結合配列含むDNA断片を挿入し、得られたプラスミドのうちGAL4タンパク質のDNA結合配列が順方向に向いているものを選抜し、リポーター遺伝子pGAL4-LUCを構築した。
 さらに、プラスミドpBI121を鋳型として、5末アッパープライマー:CGCCAGGGTTTTCCCAGTCACGAC(配列番号43)と、3末ローワープライマー:
AAGGGTAAGCTTAAGGATAGTGGGATTGTGCGTCATC(配列番号44)
を用いてPCRを行い、CaMV 35Sプロモーターの-800~-46領域を含むDNA断片を得た。制限酵素HindIIIで消化した後、CaMV 35Sプロモーター-800~-46領域を含む760bpのDNA断片をアガロースゲル電気泳動によって単離した。このHindIII断片を、あらかじめ制限酵素HindIIIで消化しておいたリポーター遺伝子pGAL4-LUCに挿入し、CaMV 35SプロモーターDANが順方向に向いているものを選抜し、p35S-GAL4-LUCリポーター遺伝子を構築した(図1A参照)。
(1-4)レファレンス遺伝子の構築
 ウミシイタケ由来のルシフェラーゼ遺伝子をもつプロメガ社製カセットベクターpRL-nullを制限酵素NheIとXbaI制限酵素で切断し、T4 DNAポリメラーゼで平滑末端化処理を行った後、アガロースゲル電気泳動でウミシイタケ・ルシフェラーゼ遺伝子を含む948bpのDNA断片を精製した。このDNA断片をエフェクタープラスミドの構築の際に用いたGUS遺伝子を除いたpBI221ベクターのGUS遺伝子があった領域に挿入した。得られたプラスミドのうち、ウミシイタケ・ルシフェラーゼ遺伝子が順方向に向いているものを選抜した(pPTRLの構築)。
(1-5)レポーター遺伝子の活性測定法
 シロイヌナズナ植物にリポーター遺伝子とエフェクタープラスミドを、パーティクルガン法を用いて導入し、エフェクターの効果をリポーター遺伝子の活性を測定することによって調べた。
(1-6)パーティクルガンによる遺伝子導入
 上記で作成したp35S-GAL4-LUCリポーター遺伝子1.6mgとエフェクタープラスミドpGAL4DB-RDのDNAを各1.2mgと、リファレンス遺伝子プラスミド0.4mgを直径1mmの金粒(BioRad社製)510mgにコーティングした。生育期間21日目のシロイヌナズナ葉7枚を、水で湿らせた濾紙をおいた9cmシャーレにならべ、Bio-Rad社製PDS-1000/Heボンバートメント機を用いてDNAを打ち込んだ。22℃で6時間明所で静置した後、レポーター遺伝子の活性を測定した。
(1-7)ルシフェラーゼ活性測定
 6時間静置したシロイヌナズナ葉を、液体窒素中で粉砕し、Dual-LuciferaseTM Reporter Assay System(Promega社製)に添付されているPassive Lysis Buffer 200μlに懸濁した後、遠心して上清を回収した。この細胞抽出液20μlをDual-LuciferaseTM Reporter Assay System(Promega社製)に添付されている測定バッファー100μlに混合し、ルミノメーター(TD20/20,Turener Design社製)を用いてルシフェラーゼ活性測定を行った。ホタル・ルシフェラーゼ及びウミシイタケ・ルシフェラーゼ活性の測定を測定キットの説明書に従って10秒間の発光を積分モードでカウントした。リファレンス遺伝子の活性値をリポーター遺伝子の活性値で割り、その相対値であるRelative lucifarase activityを測定値として求めた。実験は、エフェクタープラスミドの種類ごと3回個別にトランジェントアッセイ実験を行い、平均値と標準偏差を求めた。エフェクターとしてPUC18を入れた場合のp35S-GAL4-LUCレポーター遺伝子の活性の相対値を1として、各々のDNA断片をGAL4DBDに融合したエフェクタープラスミドを同時に細胞に導入したときのリポーター遺伝子の活性値の変動によって評価し、エフェクターの効果を調査した。すなわち、p35S-GAL4-LUCレポーター遺伝子と各ペプチド配列をコードするDNAを組み込んだエフェクタープラスミドを導入したとき、リポーターの活性値が減少すれば、そのペプチドは、レポーター遺伝子の活性を抑制する効果(リプレッサー機能)があることを示している。以下、リポーターの活性値を測定して、p35S-GAL4-LUCリポーターの相対活性値が1以下になる場合に、導入したエフェクターにはリプレッサー機能が存在すると判断した。
(1-8)リプレッサードメインの同定
 図1Aに、リポーター遺伝子とエフェクタープラスミドの構造を示す。図1Bにリポーター遺伝子の活性の測定結果を示す。
 図1Bに示されるように、AT2G36080の全長、あるいは、At2g36080遺伝子のアミノ酸番号178-192を含むエフェクターは、リポーター遺伝子の活性をPUC18エフェクターとして導入した場合(コントロール)に比べ75~90%以上減少させたことから、これらのペプチドは転写抑制能を持つことが証明された。一方、AT2G36080の1-169番目のアミノ酸からなるペプチド、あるいは、アミノ酸配列178-192を欠失したAt2g36080遺伝子のエフェクタープラスミドはリポーター遺伝子の活性を低下させなかった。このことは、GAL4DNA結合ドメインに結合したAt2g36080遺伝子のアミノ酸番号178-192を含む領域が、転写を抑制するリプレッサーとして機能していることを示している。
(実施例2) リプレッションドメインとして機能するペプチドの同定
(2-1)At2g36080遺伝子の部分アミノ酸配列183-192を持つエフェクタープラスミドpGAL4-183/192の構築
 GAL4DBDと読み枠(フレーム)が一致するように設計したAt2g36080遺伝子の部分配列3(配列番号45:At2g36080遺伝子・塩基配列547-576に相当): TTAAGACTGTTCGGAGTGAACATGTAAおよびその相補配列である
部分配列4(配列番号46:At2g36080遺伝子塩基配列547-576の相補配列に相当)TTACATGTTCACTCCGAACAGTCTTAA:をもつオリゴヌクレオチドをそれぞれ合成し、これらを混合して90℃2分加熱した後、60℃で1時間加熱し、その後室温(25℃)で2時間静置してアニーリングさせ二本鎖DNA断片を得た。このDNA断片を制限酵素SmaIで予め消化しておいた35S-GAL4DBDプラスミドに組み込んだのち、塩基配列を決定し、すでに報告されているAt2g36080遺伝子のアミノ酸配列178-192を含む領域をコードする配列であることを確認した。
(2-2)遺伝子導入とルシフェラーゼ活性測定
 前記実施例(1-3-1)と同様の手法により、p35S-GAL4-LUCリポーター遺伝子を構築し、同(1-4)の手法に従いレファレンス遺伝子(pPTRL)を構築した。
 また、前記実施例(1-5)に記載されるレポーター遺伝子の活性測定法と同様に、シロイヌナズナ植物にリポーター遺伝子とエフェクタープラスミドとを、同(1-6)と同様のパーティクルガン法を用いて導入し、エフェクターの効果をリポーター遺伝子の活性を測定することによって調べた。
 6時間静置したシロイヌナズナ葉の細胞抽出液のルシフェラーゼ活性測定を同(1-6)のルシフェラーゼ活性測定と同様に行い、Relative lucifarase activityを測定値として求めた。実験は、エフェクタープラスミドの種類ごと3回個別にトランジェントアッセイ実験を行い、平均値と標準偏差を求めた。エフェクターとしてPUC18を入れた場合のp35S-GAL4-LUCレポーター遺伝子の活性の相対値を1として、各々のDNA断片をGAL4DBDに融合したエフェクタープラスミドを同時に細胞に導入したときのリポーター遺伝子の活性値の変動によって評価し、エフェクターの効果を調査した。すなわち、p35S-GAL4-LUCレポーター遺伝子と各ペプチド配列をコードするDNAを組み込んだエフェクタープラスミドpGAL4DB-RDを導入したとき、リポーターの活性値が減少すれば、そのペプチドは、レポーター遺伝子の活性を抑制する効果(リプレッサー機能)があることを示している。以下、リポーターの活性値を測定して、p35S-GAL4-LUCリポーターの相対活性値が1以下になる場合に、導入したエフェクターにはリプレッサー機能が存在すると判断した。
(2-3)リプレッサードメインの同定
 図1Cに、リポーター遺伝子とエフェクタープラスミドの構造を示す。図1Dにリポーター遺伝子の活性の測定結果を示す。
 図1Dに示されるように、At2g36080遺伝子のアミノ酸番号178-192の領域、あるいはAt2g36080遺伝子のアミノ酸番号183-192の領域を含むエフェクターは、リポーター遺伝子の活性を、PUC18をエフェクターとして加えた場合(コントロール)に比べ87~97%以上減少させたことから、これらのペプチドは転写抑制能を持つことが証明された。
 このことは、GAL4DNA結合ドメインに結合したAt2g36080遺伝子断片(183-190aa.)が、転写を抑制するリプレッサーとして機能していることを示している。
(実施例3) R/KLFGVアミノ酸配列を有する遺伝子を含有するエフェクタープラスミドによる転写抑制
(3-1)エフェクタープラスミドの構築
(3-1-1) At3g11580遺伝子の全蛋白質コード領域を含むエフェクタープラスミドpGAL4- At3g11580の構築
 At3g11580遺伝子の塩基配列は、すでに報告されているシロイヌナズナAt3g11580遺伝子のタンパク質コード領域の5’側と3’側に、GAL4DBDの読み枠(フレーム)が一致するように設計したAt3g11580遺伝子の5末アッパープライマーprimer(配列番号47:At3g11580遺伝子・塩基配列1-29に相当):
gATGTCAGTCAACCATTACCACAACACTCT
と、制限酵素SalI部位を持つ3末ローワープライマーprimer(配列番号48:At3g11580遺伝子塩基配列782-804に相当):
GTCGACGTCGACtcaACCTCGTCCATCTCCTACCTG
に相当する配列をもつオリゴヌクレオチドをそれぞれ合成し、これらをプライマーとして、シロイヌナズナ実生由来のcDNAを鋳型としてPCRを行い、At3g11580遺伝子のタンパク質コード領域を含むDNA断片を単離した。このDNA断片を制限酵素SalIで消化し、アガロース電気泳動によって目的とするDNA断片を単離し、制限酵素SmaIとSalIで予め消化しておいた35S-GAL4DBDプラスミドに組み込んだのち、塩基配列を決定し、すでに報告されているAt3g11580遺伝子のタンパク質コード領域であることを確認した。なお上記PCR反応の条件は、変性反応94℃1分、アニール反応50℃1分、伸長反応72℃3分を1サイクルとして30サイクル行った。
(3-1-2) At2g46870遺伝子の全蛋白質コード領域を含むエフェクタープラスミドpGAL4- At2g46870の構築
 At2g46870遺伝子の塩基配列は、すでに報告されているシロイヌナズナAt2g46870遺伝子のタンパク質コード領域の5’側と3’側に、GAL4DBDの読み枠(フレーム)が一致するように設計したAt2g46870遺伝子の5末アッパープライマーprimer(配列番号49:At2g46870遺伝子・塩基配列1-29に相当):gATGATGACAGATTTATCTCTCACGAGAGA
と、3末ローワープライマーprimer(配列番号50:At2g46870遺伝子塩基配列910-933に相当):TTATTGATCCAAATCAAAAGACAA
に相当する配列をもつオリゴヌクレオチドをそれぞれ合成し、これらをプライマーとして、シロイヌナズナさや由来のcDNAを鋳型としてPCRを行い、At2g46870遺伝子のタンパク質コード領域を含むDNA断片を単離した。このDNA断片を制限酵素SmaIで予め消化しておいた35S-GAL4DBDプラスミドに組み込んだのち、インサートの方向性と塩基配列を決定し、すでに報告されているAt2g46870遺伝子のタンパク質コード領域であることを確認した。なお上記PCR反応の条件は、前記(3-1-1)と同様である。
(3-1-3) At1g13260遺伝子の全蛋白質コード領域を含むエフェクタープラスミドpGAL4- At1g13260の構築
 At1g13260遺伝子の塩基配列は、すでに報告されているシロイヌナズナAt1g13260遺伝子のタンパク質コード領域の5’側と3’側に、GAL4DBDの読み枠(フレーム)が一致するように設計したAt1g13260遺伝子の5末アッパープライマーprimer(配列番号51:At1g13260遺伝子・塩基配列1-22に相当):GATGGAATCGAGTAGCGTTGATG
と、3末ローワープライマーprimer(配列番号52:At1g13260遺伝子塩基配列1012-1035に相当):TTACGAGGCGTGAAAGATGCGTTG
に相当する配列をもつオリゴヌクレオチドをそれぞれ合成し、これらをプライマーとして、シロイヌナズナ実生由来のcDNAを鋳型としてPCRを行い、At1g13260遺伝子のタンパク質コード領域を含むDNA断片を単離した。このDNA断片を制限酵素SmaIで予め消化しておいた35S-GAL4DBDプラスミドに組み込んだのち、インサートの方向性と塩基配列を決定し、すでに報告されているAt1g13260遺伝子のタンパク質コード領域であることを確認した。なお上記PCR反応の条件は、前記(3-1-1)と同様である。
(3-1-4) At1g68840遺伝子の全蛋白質コード領域を含むエフェクタープラスミドpGAL4- At1g68840の構築
 At1g68840遺伝子の塩基配列は、すでに報告されているシロイヌナズナAt3g11580 At1g68840遺伝子のタンパク質コード領域の5’側と3’側に、GAL4DBDの読み枠(フレーム)が一致するように設計したAt1g68840遺伝子の5末アッパープライマーprimer(配列番号53:At1g68840遺伝子・塩基配列1-22に相当):GATGGATTCTAGTTGCATAGACG
と、3末ローワープライマーprimer(配列番号54:At1g68840遺伝子塩基配列1035-1059に相当):TTACAAAGCATTGATTATCGCCTGC
に相当する配列をもつオリゴヌクレオチドをそれぞれ合成し、これらをプライマーとして、シロイヌナズナ実生由来のcDNAを鋳型としてPCRを行い、At1g68840遺伝子のタンパク質コード領域を含むDNA断片を単離した。このDNA断片を制限酵素SmaIで予め消化しておいた35S-GAL4DBDプラスミドに組み込んだのち、インサート領域の方向性と塩基配列を決定し、すでに報告されているAt1g68840遺伝子のタンパク質コード領域であることを確認した。なお上記PCR反応の条件は、前記(3-1-1)と同様である。
(3-1-5) At4g36990遺伝子の全蛋白質コード領域を含むエフェクタープラスミドpGAL4- At4g36990の構築
 At4g36990遺伝子の塩基配列は、すでに報告されているシロイヌナズナAt4g36990遺伝子のタンパク質コード領域の5’側と3’側に、GAL4DBDの読み枠(フレーム)が一致するように設計したAt4g36990遺伝子の5末アッパープライマーprimer1(配列番号55:At4g36990遺伝子・塩基配列1-29に相当):gATGACGGCTGTGACGGCGGCGCAAAGATC
と、制限酵素SalI部位を持つ3末ローワープライマーprimer1(配列番号56:At4g36990遺伝子塩基配列823-855に相当):gtcgacgtcgacTTAGTTGCAGACTTTGCTGCTTTTCCACAACGG
に相当する配列をもつオリゴヌクレオチドをそれぞれ合成し、これらをプライマーとして、シロイヌナズナ根由来のcDNAを鋳型としてPCRを行い、At4g36990遺伝子のタンパク質コード領域を含むDNA断片を単離した。このDNA断片を制限酵素SalIで消化し、アガロース電気泳動によって目的とするDNA断片を単離し、制限酵素SmaIとSalIで予め消化しておいた35S-GAL4DBDプラスミドに組み込んだのち、塩基配列を決定し、すでに報告されているAt4g36990遺伝子のタンパク質コード領域であることを確認した。なお上記PCR反応の条件は、前記(3-1-1)と同様である。
(3-1-6) At4g11660遺伝子の全蛋白質コード領域を含むエフェクタープラスミドpGAL4-At4g11660の構築
 At4g11660遺伝子の塩基配列は、すでに報告されているシロイヌナズナAt4g11660遺伝子のタンパク質コード領域の5’側と3’側に、GAL4DBDの読み枠(フレーム)が一致するように設計したAt4g11660遺伝子の5末アッパープライマーprimer(配列番号57:At4g11660遺伝子・塩基配列1-29に相当):gATGCCGGGGGAACAAACCGGAGAAACTCC
と、制限酵素SalI部位を持つ3末ローワープライマーprimer(配列番号58:At4g11660遺伝子塩基配列1108-1134に相当):gtcgacgtcgacTCATTTTCCGAGTTCAAGCCACGACCC
に相当する配列をもつオリゴヌクレオチドをそれぞれ合成し、これらをプライマーとして、シロイヌナズナ根由来のcDNAを鋳型としてPCRを行い、At4g11660遺伝子のタンパク質コード領域を含むDNA断片を単離した。このDNA断片を制限酵素SalIで消化し、アガロース電気泳動によって目的とするDNA断片を単離し、制限酵素SmaIとSalIで予め消化しておいた35S-GAL4DBDプラスミドに組み込んだのち、塩基配列を決定し、すでに報告されているAt4g11660遺伝子のタンパク質コード領域であることを確認した。なお上記PCR反応の条件は前記(3-1-1)と同様である。
(3-2)遺伝子導入とルシフェラーゼ活性測定
 前記実施例(1-3-1)と同様の手法により、p35S-GAL4-LUCリポーター遺伝子を構築し、同(1-4)の手法に従いレファレンス遺伝子(pPTRL)を構築した。
 また、前記実施例(1-5)に記載されるレポーター遺伝子の活性測定法と同様に、シロイヌナズナ植物にリポーター遺伝子とエフェクタープラスミドとを、同(1-6)と同様のパーティクルガン法を用いて導入し、エフェクターの効果をリポーター遺伝子の活性を測定することによって調べた。
 6時間静置したシロイヌナズナ葉の細胞抽出液のルシフェラーゼ活性測定を同(1-6)のルシフェラーゼ活性測定と同様に行い、Relative lucifarase activityを測定値として求めた。実験は、エフェクタープラスミドの種類ごと3回個別にトランジェントアッセイ実験を行い、平均値と標準偏差を求めた。エフェクターとしてp35S-GAL4DBDを入れた場合のp35S-GAL4-LUCレポーター遺伝子の活性の相対値を1として、各々のDNA断片をGAL4DBDに融合したエフェクタープラスミドを同時に細胞に導入したときのリポーター遺伝子の活性値の変動によって評価し、エフェクターの効果を調査した。すなわち、p35S-GAL4-LUCレポーター遺伝子と各ペプチド配列をコードするDNAを組み込んだエフェクタープラスミドpGAL4DB-RDを導入したとき、リポーターの活性値が減少すれば、そのペプチドは、レポーター遺伝子の活性を抑制する効果(リプレッサー機能)があることを示している。以下、リポーターの活性値を測定して、p35S-GAL4-LUCリポーターの相対活性値が1以下になる場合に、導入したエフェクターにはリプレッサー機能が存在すると判断した。
(3-3)リプレッサーの同定
 図2Aから図2Gにリポーター遺伝子の活性の測定結果を示す。
 図2Aから図2Gに示されるように、「R/KLFGV」のアミノ酸配列を有するAt3g11580, At2g46870, At1g13260, At1g68840, At4g36990, At4g11660遺伝子のタンパク質をコードする遺伝子領域をGAL4DBDに融合したペプチドを含むエフェクターは、リポーター遺伝子の活性をp35S-GAL4DBDをエフェクターとして加えた場合(コントロール)に比べ82~96%減少させたことから、これらのペプチドは転写抑制能を持つことが証明された。このことは、GAL4DNA結合ドメインに結合したAt3g11580, At2g46870, At1g13260, At1g68840, At4g36990, At4g11660遺伝子が、転写を抑制するリプレッサーとして機能していることを示している。
(実施例4) At4g36990のリプレッションドメインの同定
(4-1)エフェクタープラスミドの構築
(4-1-1) At4g36990遺伝子の部分アミノ酸配列(233-243)を含むエフェクタープラスミドpGAL4- At4g36990-233/243の構築
 GAL4DBDと読み枠(フレーム)が一致するように設計したAt4g36990遺伝子の部分配列1(配列番号59:At4g36990遺伝子・塩基配列697-729に相当、3‘側にSalI制限酵素サイトを有する):gGGTGAAGGATTGAAATTGTTTGGGGTGTGGTTGgtcgacgtcgac
およびその相補配列である部分配列2(配列番号60:At4g36990遺伝子塩基配列697-729の相補配列に相当、5‘側にSalI制限酵素サイトを有する):GTCGACGTCGACCAACCACACCCCAAACAATTTCAATCCTTCACCC
をもつオリゴヌクレオチドをそれぞれ合成し、これらを混合して90℃2分加熱した後、60℃で1時間加熱し、その後室温(25℃)で2時間静置してアニーリングさせ二本鎖DNA断片を得た。このDNA断片を制限酵素SmaIで予め消化しておいた35S-GAL4DBDプラスミドに組み込んだのち、インサートの方向性と塩基配列を決定し、すでに報告されているAt4g36990遺伝子のアミノ酸配列233-243を含む領域をコードする配列であることを確認した。
(4-1-2) アミノ酸配列236-243に変異を導入したAt4g36990遺伝子のエフェクタープラスミドpGAL4-mut236-243の構築
 GAL4DBDと読み枠(フレーム)が一致するように設計したAt4g36990遺伝子の5末アッパープライマーprimer1(配列番号55:At4g36990遺伝子・塩基配列1-29に相当):gATGACGGCTGTGACGGCGGCGCAAAGATC
と、ローワープライマーprimer2(配列番号61:At4g36990遺伝子塩基配列680-705に相当):CCCCCCGCGGCTCCAGCTCCTTCACCTACCCCCTCCTCTGC
に相当する配列をもつオリゴヌクレオチドをそれぞれ合成し、これらをプライマーとして、pGAL4-At4g36990を鋳型としてPCRを行い、At4g36990遺伝子のアミノ酸配列1-236を含むDNA断片を単離した。このDNA断片を制限酵素SmaIで予め消化しておいた35S-GAL4DBDプラスミドに組み込んだのち、塩基配列を決定し、すでに報告されているAt4g36990遺伝子のアミノ酸配列1-236を含む領域をコードする配列であることを確認し、pGAL4-1-236とした。アッパープライマーprimer2(配列番号62:At4g36990遺伝子・塩基配列732-752に結合):gggccgcgggggcttgggctAAAGGAGAGAGAAAAAAGAGGG
と、制限酵素SalI部位を持つ3末ローワープライマーprimer1(配列番号56:At4g36990遺伝子塩基配列823-855に結合):gtcgacgtcgacTTAGTTGCAGACTTTGCTGCTTTTCCACAACGG
に相当する配列をもつオリゴヌクレオチドをそれぞれ合成し、これらをプライマーとして、pGAL4-At4g36990を鋳型としてPCRを行い、At4g36990遺伝子のアミノ酸配列244-283を含むDNA断片を単離した。このDNA断片を制限酵素SalIで消化し、アガロース電気泳動によって目的とするDNA断片を単離し、制限酵素SmaIとSalIで予め消化しておいたpGAL4-1-236プラスミドに組み込んだのち、塩基配列を決定し、すでに報告されているAt4g36990遺伝子のアミノ酸配列からアミノ酸番号236から243領域にアミノ酸変異を有する配列であることを確認した。
 なお上記PCR反応の条件は、変性反応94℃1分、アニール反応50℃1分、伸長反応72℃3分を1サイクルとして30サイクル行った。
(4-2)遺伝子導入とルシフェラーゼ活性測定
 前記実施例(1-3-1)と同様の手法により、p35S-GAL4-LUCリポーター遺伝子を構築し、同(1-4)の手法に従いレファレンス遺伝子(pPTRL)を構築した。
 また、前記実施例(1-5)に記載されるレポーター遺伝子の活性測定法と同様に、シロイヌナズナ植物にリポーター遺伝子とエフェクタープラスミドとを、同(1-6)と同様のパーティクルガン法を用いて導入し、エフェクターの効果をリポーター遺伝子の活性を測定することによって調べた。
 6時間静置したシロイヌナズナ葉の細胞抽出液のルシフェラーゼ活性測定を同(1-6)のルシフェラーゼ活性測定と同様に行い、Relative lucifarase activityを測定値として求めた。実験は、エフェクタープラスミドの種類ごと3回個別にトランジェントアッセイ実験を行い、平均値と標準偏差を求めた。エフェクターとしてPUC18を入れた場合のp35S-GAL4-LUCレポーター遺伝子の活性の相対値を1として、各々のDNA断片をGAL4DBDに融合したエフェクタープラスミドを同時に細胞に導入したときのリポーター遺伝子の活性値の変動によって評価し、エフェクターの効果を調査した。すなわち、p35S-GAL4-LUCレポーター遺伝子と各ペプチド配列をコードするDNAを組み込んだエフェクタープラスミドpGAL4DB-RDを導入したとき、リポーターの活性値が減少すれば、そのペプチドは、レポーター遺伝子の活性を抑制する効果(リプレッサー機能)があることを示している。以下、リポーターの活性値を測定して、p35S-GAL4-LUCリポーターの相対活性値が1以下になる場合に、導入したエフェクターにはリプレッサー機能が存在すると判断した。
(4-3)リプレッサーの同定
 図3Bにリポーター遺伝子の活性の測定結果を示す。
 図3Bに示されるように、AT4g36990の全長、あるいは、AT4g36990遺伝子のアミノ酸番号233-243を含むエフェクターは、リポーター遺伝子の活性をPUC18をエフェクターとして導入した場合(コントロール)に比べ60~80%減少させたことから、これらのペプチドは転写抑制能を持つことが証明された。一方、AT4g36990の236-243番目のアミノ酸に変異を導入したAT4g36990遺伝子のエフェクタープラスミドはリポーター遺伝子の活性を低下させなかった。このことは、AT4g36990遺伝子の233-243番目のアミノ酸が転写を抑制するリプレッサードメインとして機能していることを示している。
(実施例5) At2g36080リプレッションドメイン178-192をコードする遺伝子断片による、植物体におけるAGの転写活性化機能の抑制
(5-1)形質転換用ベクターpBIG2の構築
 クローンテック社製(Clontech社,USA)のプラスミドp35S-GFPを制限酵素HindIIIとBamHIで切断し、カリフラワーモザイクウイルス35Sプロモーター(CaMV 35S)を含むDNA断片をアガロースゲル電気泳動で分離し回収した。米国ミシガン州立大学より譲渡された植物形質転換用ベクターpBIG-HYG(Becker,D.1990 Nucleic Acid Research,18:203)を制限酵素HindIIIとSstIで切断し、アガロースゲル電気泳動によってGUS遺伝子を除いたDNA断片を得た。
 以下の配列を有するDNAを合成し、70℃で10分加温した後、自然冷却によりアニールさせて2本鎖DNAとした。このDNA断片には、5’末端にBamHI制限酵素部位、翻訳効率を高めるタバコモザイクウイルス由来のomega配列、及び制限酵素部位SmaI、SalIを有する。
5’-GATCCACAATTACCAACAACAACAAACAACAAACAACATTACAATTACAGATCCCGGGGGTACCGTCGACGAGCTC-3’(配列番号63)
5’- CGTCGACGGTACCCCCGGGATCTGTAATTGTAATGTTGTTTGTTGTTTGTTGTTGTTGGTAATTGT-3’(配列番号64)
 CaMV 35Sプロモーター領域をふくむDNA断片と合成した2本鎖DNAを、GUS遺伝子を除いたpBIG-HYGのHindIII、SstI部位に挿入し、植物形質転換用ベクターpBIG2を得た。
(5-2)形質転換ベクターpAG36RDの構築
 At2g36080の部分塩基配列(532-576相当)の5’にGGGを3‘にストップコドンを付与した相補的な二本のDNA配列
5’-GGGAGGCAACTCGAAGACATTAAGACTGTTCGGAGTGAACATGGAGTGCTAA-3’(配列番号65)
5’-TTAGCACTCCATGTTCACTCCGAACAGTCTTAATGTCTTCGAGTTGCCTCCC-3’(配列番号66)
をアニールし、SmaIでカットした上記のpBIG2ベクターに挿入、シークエンスを確認して順方向に導入されたものを選抜し、p36RDとした。
シロイヌナズナの蕾から抽出したRNAを逆転写して作成したcDNAを鋳型として、5末アッパープライマーgATGACCGCGTACCAATCGGAGCTAGGAGG(配列番号67)
3末ローアープライマーCACTAACTGGAGAGCGGTTTGGTCTTGGCG(配列番号68)
を用いてPCR反応により(反応条件は前記各実施例における条件と同一)AGAMOUSの全長配列(塩基配列1-759、アミノ酸1-252)を増幅した。次いで、SmaIでカットしてアガロールゲル電気泳動で回収した上記のp36RDに挿入し、シークエンスを確認してAG遺伝子が順方向に導入されたものの中からさらにAG遺伝子と36RDの読み枠が一致しているものを選抜、pAG36RDとした。
(5-3)pAG36RDで形質転換した植物体の作成
 pAG36RDによるシロイヌナズナ植物の形質転換は、Transfomation of Arabidopsis thaliana byvacuum infiltration(http://www.bch.msu.edu/pamgreen/protocol.htm)に従った。ただし、感染させるのにバキュウムは用いないで、浸すだけにした。プラスミドpAG36RDを、土壌細菌[(Agrobacterium tumefaciens strain GV3101(C58C1Rifr)pMP90(Gmr)(koncz and Schell 1986))株にエレクトロポレーション法で導入した。導入した菌を250ミリリットルのLB培地で二日間培養した。
 次いで、培養液から菌体を、回収し、500ミリリットルの感染用培地(Infiltration medium)に懸濁した。この溶液に、14日間生育したシロイヌナズナを1分間浸し、感染させた後、再び生育させ結種させた。回収した種子を50%ブリーチ、0.02%Triton X-100溶液で7分間滅菌した後、滅菌水で3回リンスし、滅菌した種子を30mg/lのハイグロマイシンを含む1/2MS選択培地に蒔種した。
 上記ハイグロマイシンプレートで生育する形質転換植物体を選抜し、土壌に植え換え、生育した。
(5-4)pAG36RDで形質転換した植物体の形質
 pAG36RDで形質転換した植物体の形質を図4のCに示す。pAG36RDで形質転換した植物体の花においては花弁数の増加(いわゆる八重咲き)の形態が確認され、これは図4のBに示されるpAGSRDXで形質転換した植物体の花、および、ag変異体の花と類似していた。このことより、36RD(GNSKTLRLFGVNMEC:配列番号3)ペプチド断片は融合された転写活性化因子に転写抑制能を付与することが示された。
(実施例6) At2g36080リプレッションドメイン178-192をコードする遺伝子断片による、植物体におけるCUC2とその重複遺伝子CUC1の転写活性化機能の抑制
(6-1)形質転換ベクターpCUC2-36RDの構築
 前記実施例(5-1)及び(5-2)と同様の手法で形質転換用ベクターpBIG2にAT2G36080の部分塩基配列(532-576相当)を順方向に挿入したp36RDを得た。
 シロイヌナズナの茎頂部から抽出したRNAを逆転写して作成したcDNAを鋳型として、5末アッパープライマーGGGATGGACATTCCGTATTACCACTAC(配列番号69)及び、CUC2遺伝子の3’末端からストップコドンを除去した3末ローアープライマーGTAGTTCCAAATACAGTCAAGTC(配列番号70)
を用いてPCR反応により(反応条件は前記各実施例における条件と同一)CUC2の全長配列(塩基配列1-1128、アミノ酸1-375)を増幅した。次いで、SmaIでカットしてアガロールゲル電気泳動で回収した上記のp36RDに挿入し、シークエンスを確認してCUC2遺伝子が順方向に導入されたものの中からさらにCUC2遺伝子と36RDの読み枠が一致しているものを選抜、pCUC2-36RDとした。
(6-2)pCUC2-36RDで形質転換した植物体の作成
 前記実施例(5-3)と同様に、pCUC2-36RDによりシロイヌナズナ植物を形質転換し、ハイグロマイシンプレートで選抜後土壌に植え換えて生育させた。
(6-3)pCUC2-36RDで形質転換した植物体の形質
 pCUC2-36RDで形質転換した実生の形質を図4のEに示す。通常、シロイヌナズナの実生は独立した子葉を二枚持つ「貝割れ菜」の形態を示すが、pCUC2-36RDで形質転換した植物体の実生においては子葉の一部または全体が融合した形質(いわゆるカップ状の形態)が確認され、茎頂分裂組織が欠損した個体も存在していた。これは図4のDに示されるpCUC2-SRDXで形質転換した植物体の実生、および、cuc1/cuc2の二重欠損株で見られる形状と非常に類似していた。
 以上の結果から、36RD(GNSKTLRLFGVNMEC:配列番号3)のアミノ酸配列を持つペプチド及びそれをコードする遺伝子は、任意の転写因子を転写抑制因子に変換できる能力を有しており、該キメラタンパク質は内生の重複遺伝子に対しても優性的に機能することが明らかとなった。
 本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書に組み入れるものとする。
 本発明の遺伝子がコードするペプチドは、従来公知の転写抑制機能ペプチド群と同様、特定の遺伝子のみを標的にした転写抑制を行うことができるため、公知転写抑制機能ペプチド遺伝子と同様、各種植物の育種分野での適用が期待されると同時に、公知ペプチド群とは全く異なる保存モチーフを有しているので、単独の使用、または、公知ペプチドと組み合わせての使用によって、さらに広範な分野において適用可能でかつ有用な技術手段を提供できる可能性がある。

Claims (10)

  1.  下記式(I)で示されるアミノ酸配列からなる、植物の転写抑制機能を有するペプチド。
    式(I)
     X1-X2-Leu-Phe-Gly-Val-X3
    (式中、X1及びX3は1~10個の任意のアミノ酸で構成されるアミノ酸配列を表し、X2はLys又はArgを表す。)
  2.  前記ペプチドが、配列番号3~33のいずれかで示されるアミノ酸配列を含む、請求項1に記載のペプチド。
  3.  請求項1又は2に記載のペプチドをコードする核酸分子。
  4.  下記式(I)で示されるアミノ酸配列からなる植物の転写抑制機能を有するペプチドと、転写因子もしくはそのDNA結合ドメインとが結合していることを特徴とする、転写抑制機能を有するキメラタンパク質;
    式(I)
     X1-X2-Leu-Phe-Gly-Val-X3
    (式中、X1及びX3は1~10個の任意のアミノ酸で構成されるアミノ酸配列を表し、X2はLys又はArgを表す。)
  5.  下記式(I)で示されるアミノ酸配列からなる植物の転写抑制機能を有するペプチドをコードする核酸分子と、転写因子もしくはそのDNA結合ドメインをコードする核酸分子とが、読み枠をそろえて連結されていることを特徴とする、転写抑制機能を有するキメラタンパク質をコードする核酸分子;
    式(I)
     X1-X2-Leu-Phe-Gly-Val-X3
    (式中、X1及びX3は1~10個の任意のアミノ酸で構成されるアミノ酸配列を表し、X2はLys又はArgを表す。)
  6.  請求項5に記載の核酸分子を含む、発現ベクター。
  7.  請求項5に記載の核酸分子が発現可能な状態で導入されている、形質転換体。
  8.  請求項5に記載の核酸分子が発現可能な状態で導入されている、形質転換植物。
  9.  請求項5に記載の核酸分子を含む発現ベクターを用いて形質転換した細胞を培養し、得られた発現産物を採取し精製することを特徴とする、転写抑制機能を有するキメラタンパク質の製造方法。
  10.  下記式(I)で示されるアミノ酸配列からなる植物の転写抑制機能を有するペプチドと、転写因子もしくはそのDNA結合ドメインとを連結することを特徴とする、転写抑制機能を有するキメラタンパク質の製造方法;
    式(I)
     X1-X2-Leu-Phe-Gly-Val-X3
    (式中、X1及びX3は1~10個の任意のアミノ酸で構成されるアミノ酸配列を表し、X2はLys又はArgを表す。)
PCT/JP2009/054718 2008-03-12 2009-03-12 転写抑制ペプチド及びその遺伝子 WO2009113603A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/921,735 US9243257B2 (en) 2008-03-12 2009-03-12 Transcriptional repressor peptides and genes for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-062113 2008-03-12
JP2008062113A JP5207354B2 (ja) 2008-03-12 2008-03-12 転写抑制ペプチド及びその遺伝子

Publications (1)

Publication Number Publication Date
WO2009113603A1 true WO2009113603A1 (ja) 2009-09-17

Family

ID=41065264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054718 WO2009113603A1 (ja) 2008-03-12 2009-03-12 転写抑制ペプチド及びその遺伝子

Country Status (3)

Country Link
US (1) US9243257B2 (ja)
JP (1) JP5207354B2 (ja)
WO (1) WO2009113603A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172282A1 (ja) * 2018-03-05 2019-09-12 国立研究開発法人産業技術総合研究所 受精を介さず種子植物の胚乳発生を誘導する核酸分子及びベクター、並びに受精を介さず胚乳を発生しうる組換え種子植物及びその作製方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7059965B2 (ja) 2019-02-21 2022-04-26 株式会社豊田中央研究所 エピゲノム状態を制御する融合タンパク質及びその利用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7030211B1 (en) * 1998-07-08 2006-04-18 Gemvax As Antigenic peptides derived from telomerase
US20030233670A1 (en) * 2001-12-04 2003-12-18 Edgerton Michael D. Gene sequences and uses thereof in plants
JP3421740B2 (ja) 2000-03-27 2003-06-30 独立行政法人産業技術総合研究所 遺伝子の転写を抑制する機能を有するペプチド
JP3407034B2 (ja) 2000-03-27 2003-05-19 独立行政法人産業技術総合研究所 遺伝子の転写を抑制する機能を有するペプチド
JP3407033B2 (ja) 2000-03-27 2003-05-19 独立行政法人産業技術総合研究所 遺伝子の転写を抑制する機能を有するペプチド
JP3409079B2 (ja) 2000-03-27 2003-05-19 独立行政法人産業技術総合研究所 遺伝子の転写を抑制する機能を有するペプチド
JP3407035B2 (ja) 2000-04-11 2003-05-19 独立行政法人産業技術総合研究所 遺伝子の転写を抑制する機能を有するペプチド
JP3407036B2 (ja) 2000-04-11 2003-05-19 独立行政法人産業技術総合研究所 遺伝子の転写を抑制する機能を有するペプチド
EP1469010B1 (en) * 2001-12-26 2008-11-12 National Institute of Advanced Industrial Science and Technology Transcription regulatory gene and peptide
US20040216190A1 (en) * 2003-04-28 2004-10-28 Kovalic David K. Nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MIHO IKEDA ET AL.: "Shiroinunazuna ni Okeru Shinki Repression Domain no Dotei to, sore o Motsu Tensha Yokusei Inshi no Kino Kaiseki", DAI 49 KAI PROCEEDINGS OF THE ANNUAL MEETING OF THE JAPANESE SOCIETY OF PLANT PHYSIOLOGISTS, 1AB08 (008), 15 March 2008 (2008-03-15), pages 102 *
MIHO IKEDA ET AL.: "WUS Family ni Kyotsu suru Tensha Yokusei Domain no Kaiseki", DAI 25 KAI NIPPON SHOKUBUTSU BUNSHI SEIBUTSU GAKKAI TAIKAI . SYMPOSIUM KOEN YOSHISHU, 8 August 2007 (2007-08-08), pages 145 *
OHTA, M. ET AL.: "Repression domains of class II ERF transcriptional repressors share an essential motif for active repression", PLANT CELL, vol. 13, no. 8, 2001, pages 1959 - 1968 *
SOMOZA, IR. ET AL.: "HvMCB1, a R1MYB transcription factor from barley with antagonistic regulatory functions during seed development and germination", PLANT CELL, vol. 45, 2006, pages 17 - 30 *
YUKO TAKIGUCHI ET AL.: "Tensha Yokusei Inshi wa dore kurai Sonzai suru noka?", DAI 49 KAI PROCEEDINGS OF THE ANNUAL MEETING OF THE JAPANESE SOCIETY OF PLANT PHYSIOLOGISTS, P202(737), 15 March 2008 (2008-03-15), pages 287 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172282A1 (ja) * 2018-03-05 2019-09-12 国立研究開発法人産業技術総合研究所 受精を介さず種子植物の胚乳発生を誘導する核酸分子及びベクター、並びに受精を介さず胚乳を発生しうる組換え種子植物及びその作製方法
JP2019150022A (ja) * 2018-03-05 2019-09-12 国立研究開発法人産業技術総合研究所 受精を介さず種子植物の胚乳発生を誘導する核酸分子及びベクター、並びに受精を介さず胚乳を発生しうる組換え種子植物及びその作製方法
US11319545B2 (en) 2018-03-05 2022-05-03 National Institute Of Advanced Industrial Science And Technology Nucleic acid molecule and vector inducing endosperm development in seed plant without fertilization, transgenic seed plant capable of developing endosperm without fertilization and method for constructing same
JP7453657B2 (ja) 2018-03-05 2024-03-21 国立研究開発法人産業技術総合研究所 受精を介さず種子植物の胚乳発生を誘導する核酸分子及びベクター、並びに受精を介さず胚乳を発生しうる組換え種子植物及びその作製方法

Also Published As

Publication number Publication date
JP2009213426A (ja) 2009-09-24
US20110035846A1 (en) 2011-02-10
US9243257B2 (en) 2016-01-26
JP5207354B2 (ja) 2013-06-12

Similar Documents

Publication Publication Date Title
JP3829200B2 (ja) 転写抑制遺伝子及びペプチド
JP5938444B2 (ja) コメの生産高の増加方法
AU2019246914A1 (en) Plant regulatory elements and uses thereof
JP5519192B2 (ja) 種子のタンパク質含量を増産させる遺伝子及びその利用方法
JP3995211B2 (ja) 転写抑制遺伝子及びペプチド
WO2021141082A1 (ja) エンハンサー
CN112010955B (zh) 小麦抗赤霉病相关蛋白TaRBL及其编码基因与应用
US8013141B2 (en) Promoter with high expression strength and over-expression in various tissues of plant, as well as application thereof
JP5207354B2 (ja) 転写抑制ペプチド及びその遺伝子
JP7335383B2 (ja) 植物調節エレメント及びその使用
JP2006055125A (ja) 遺伝子の転写抑制機能を有する新規ペプチドおよびこれをコードするポリヌクレオチド、並びにその利用
US9944937B2 (en) Regulatory region having increased expression and method of using same
WO2019154285A1 (zh) 一种无标签用于基因编辑的试剂组合及其应用
JPH06228193A (ja) トランス作用因子−1
US6930182B1 (en) Composition and methods of using the Mirabilis mosaic caulimovirus sub-genomic transcript (Sgt) promoter for plant genetic engineering
JP5907483B2 (ja) 脱分化または再分化が促進されるように改変された植物体の生産方法、形質転換体、ならびにその方法に用いられる、キメラタンパク質、キメラ遺伝子、dna、組換え発現ベクタおよびキット
JP4359963B2 (ja) 植物プロモーター
JP4439844B2 (ja) 植物の鉄欠乏応答性及び/又は根特異的発現を付与するシスエレメント
JP5845306B2 (ja) 種子のタンパク質含量を増産させる遺伝子及びその利用方法
JP5850079B2 (ja) 種子のタンパク質含量を減少させる遺伝子及びその利用方法
JP5850078B2 (ja) 種子のタンパク質含量を減少させる遺伝子及びその利用方法
TW201125978A (en) Inducible promoter from lily and use thereof
KR20230004531A (ko) 식물 조절 요소 및 그의 용도
JP2004135597A (ja) 発現誘導型プロモーター及びその利用
Klosterman Analysis of pea HMG-I/Y expression and a DNase elicitor from Fusarium solani

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09719582

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12921735

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09719582

Country of ref document: EP

Kind code of ref document: A1