WO2009113400A1 - 原料供給装置 - Google Patents

原料供給装置 Download PDF

Info

Publication number
WO2009113400A1
WO2009113400A1 PCT/JP2009/053543 JP2009053543W WO2009113400A1 WO 2009113400 A1 WO2009113400 A1 WO 2009113400A1 JP 2009053543 W JP2009053543 W JP 2009053543W WO 2009113400 A1 WO2009113400 A1 WO 2009113400A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
gas
valve
pipe
supply
Prior art date
Application number
PCT/JP2009/053543
Other languages
English (en)
French (fr)
Inventor
望 服部
Original Assignee
三井造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井造船株式会社 filed Critical 三井造船株式会社
Priority to KR1020107018621A priority Critical patent/KR101246921B1/ko
Priority to EP09720876.3A priority patent/EP2251451B1/en
Priority to US12/921,771 priority patent/US8382071B2/en
Publication of WO2009113400A1 publication Critical patent/WO2009113400A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • C23C16/4482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material by bubbling of carrier gas through liquid source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45593Recirculation of reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7761Electrically actuated valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85978With pump

Definitions

  • the present invention relates to a raw material supply apparatus that supplies a raw material gas to a thin film forming apparatus that forms a thin film by vapor phase growth.
  • the atomic layer growth method is a vapor phase growth technique in which a thin film is formed in units of atomic layers by alternately supplying a source gas of each element constituting a film to be formed to a substrate.
  • a metal organic compound gas constituting a film to be formed is used as a raw material gas.
  • such an organometallic compound is a liquid at room temperature (about 20 ° C.).
  • a liquid of an organometallic compound is vaporized by a so-called bubbling method to form a raw material gas (see Japanese Patent Application Laid-Open Nos. 5-074758 and 5-251348).
  • the method of vaporizing the liquid source by the bubbling method has a simple structure, and can be used as a carrier gas for the vaporized source gas such as the gas used for bubbling. Supply means.
  • the source gas is intermittently supplied onto the substrate.
  • a bubbling method for example, there is a method of performing bubbling only when supplying gas.
  • the bubbling method the gas generation state is not stable immediately after the bubbling is started, and the amount (concentration) of the vaporized gas to be generated immediately after the bubbling is started and after the bubbling is continued to some extent. Change. For this reason, it is not easy to stably supply the source gas by the method of repeatedly stopping and starting bubbling.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to make it possible to supply raw material gas more stably in a state where waste of raw materials is suppressed.
  • a raw material supply apparatus is connected to a raw material container in which a raw material liquid is stored, an introduction pipe connected to the raw material container and introducing a carrier gas for bubbling the raw material liquid into the raw material container, A supply pipe that transports the source gas generated by bubbling and derived from the source container, a pump that is provided in the transport pipe, transports the source gas, and is branched from the transport pipe and connected to the supply target to supply the source gas
  • a supply valve is provided in a supply pipe for branching from a transportation pipe to supply a source gas to a supply target, and a circulation valve is provided in a circulation pipe branched from the transportation pipe and communicated with an introduction pipe. Since at least the opening and closing of the supply valve and the circulation valve are controlled to be in different states by the unit, the effect that the raw material gas can be supplied more stably in a state where waste of the raw material is suppressed can be obtained.
  • FIG. 1 is a diagram showing a configuration of a raw material supply apparatus and a thin film forming apparatus that supplies raw materials by the raw material supply apparatus in an embodiment of the present invention.
  • FIG. 2 is a timing chart for explaining an operation example of the raw material supply apparatus in the embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration of a raw material supply apparatus and a thin film forming apparatus that supplies raw materials by the raw material supply apparatus in an embodiment of the present invention.
  • the thin film forming apparatus includes a film forming chamber 101 in which a film is grown in a gas phase, a substrate stage 102 having a heating mechanism disposed inside the film forming chamber 101, and an exhaust mechanism 104.
  • the raw material can be supplied from 105.
  • a substrate 103 on which a thin film is to be formed is placed on the substrate table 102.
  • the thin film forming apparatus includes an oxidation gas supply unit 106 that supplies an oxidation gas to the film formation chamber 101 and a purge gas supply unit 107 that supplies a purge gas made of an inert gas such as nitrogen gas or argon (Ar).
  • a purge gas made of an inert gas such as nitrogen gas or argon (Ar).
  • the thin film forming apparatus is, for example, an atomic layer growth apparatus.
  • the raw material supply device 105 includes a raw material container 151 that stores liquid raw materials, an introduction pipe 152 a that is connected to the raw material container 151 and introduces a carrier gas into the raw material container 151, and is connected to the raw material container 151.
  • a mass flow controller (MFC) 154 to be controlled.
  • a carrier gas supply unit such as a cylinder into which a carrier gas is press-fitted is connected to the introduction pipe 152a.
  • the raw material supply apparatus 105 is branched from the transport pipe 152b and connected to the film forming chamber (supply target) 101, and a supply pipe 155a for supplying the raw material gas and the carrier gas to the film forming chamber 101, and a transport pipe 152b.
  • a circulation pipe 155b for returning the raw material gas and the carrier gas to the introduction pipe 152a (raw material container 151), an introduction valve 156a provided in the introduction pipe 152a, and a supply pipe 155a
  • a control unit 157 connected to the supply valve 156b provided, the circulation valve 156c provided in the circulation pipe 155b, the introduction valve 156a, the supply valve 156b, and the circulation valve 156c to control the opening and closing of the respective valves 156a to 156c.
  • a pressure gauge 158 provided in connection with the introduction pipe 152a.
  • the introduction valve 156a is provided on the carrier gas supply side from a location where the circulation pipe 155b of the transport pipe 152a is connected.
  • each of these parts is accommodated in the thermostat 159, and can be heated (preserved) to a predetermined temperature.
  • a predetermined temperature for example, liquefaction of the source gas in the piping such as the circulation piping 155b can be suppressed.
  • an introduction pipe (bubble gas inlet) communicating with the introduction pipe 152a is set in the contained raw material liquid so that carrier gas can be introduced into the raw material liquid (bubbling).
  • the carrier gas is an inert gas such as nitrogen gas or Ar.
  • a lead-out port of the transport pipe 152b is arranged so that the vaporized gas of the raw material liquid obtained by bubbling can be led out.
  • the source gas and the carrier gas which are led out from the source container 151 and transported by the pump 153 and the flow rate of which is controlled by the MFC 154, are supplied to the supply pipe by the supply valve 156b and the circulation valve 156c controlled by the control unit 157. 155a or the circulation pipe 155b.
  • the supply valve 156b is opened and the circulation valve 156c is closed
  • the source gas and the carrier gas transported through the transport pipe 152b are guided to the supply pipe 155a and supplied to the film formation chamber 101.
  • the circulation valve 156c is opened and the supply valve 156b is closed
  • the raw material gas and the carrier gas transported through the transport pipe 152b are guided to the circulation pipe 155b and returned to the introduction pipe 152a.
  • the carrier gas is supplied to the introduction pipe 152a through the introduction valve 156a.
  • the controller 157 controls the opening / closing of the introduction valve 156a according to the value of the internal pressure of the introduction pipe 152a measured by the pressure gauge 158. For example, a preset pressure value is set in the control unit 157 in advance, and when the pressure value measured by the pressure gauge 158 falls below the lower limit value of the set pressure value, the introduction valve 156a is opened by the control of the control unit 157. Then, the carrier gas is introduced into the introduction pipe 152a. When the pressure value measured by the pressure gauge 158 is higher than the upper limit value of the set pressure value, the introduction valve 156a is closed under the control of the control unit 157, and the introduction of the carrier gas to the introduction pipe 152a is stopped.
  • the control unit 157 controls the supply valve 156b to be closed and the introduction valve 156a and the circulation valve 156c to be opened. Further, the gas in the transport pipe 152b is transported from the raw material container 151 side to the MFC 154 side by the pump 153.
  • the carrier gas is supplied to the introduction pipe 152a, and the carrier gas is introduced into the raw material liquid stored in the raw material container 151 and bubbled to generate a vaporized gas of the raw material liquid.
  • the vaporized gas generated in the raw material container 151 leads to the raw material container 151, is transported through the transport pipe 152b by the pump 153, the flow rate is controlled by the MFC 154, and returns to the introduction pipe 152a via the circulation pipe 155b.
  • the control unit 157 closes the introduction valve 156a, and the supply of the carrier gas to the introduction pipe 152a is stopped. Stopped.
  • the system of the introduction pipe 152a, the raw material container 151, the transport pipe 152b, and the circulation pipe 155b is in a closed circulation state.
  • the gas transportation by the pump 153 is continued, and therefore, in the raw material container 151, the bubble of the carrier gas to the contained raw material liquid is bubbled from the bubble gas inlet of the introduction pipe 152a. Will continue.
  • the raw material gas generated in the raw material container 151 in this manner is circulated through the system together with the carrier gas.
  • the control unit 157 closes the circulation pipe 155b and opens the supply pipe 155a.
  • the source gas and the carrier gas that are transported by the pump 153 and whose flow rates are controlled by the MFC 154 are transported through the supply pipe 155 a and introduced into the film formation chamber 101.
  • the source gas introduced into the film formation chamber 101 in this way is supplied onto the substrate 103 heated to a predetermined temperature by the substrate table 102 and adsorbed on this surface.
  • an adsorption layer for one molecular layer is formed.
  • the control unit 157 controls the supply valve 156b to be closed and the circulation valve 156c to be opened.
  • the above-described circulation state is established, and in the raw material container 151, bubbling of the carrier gas with respect to the stored raw material liquid is continued from the bubble gas introduction port of the introduction pipe 152a.
  • the raw material gas generated in the raw material container 151 circulates in the system together with the carrier gas.
  • the introduction valve 156a is opened, and the carrier gas is introduced into the introduction pipe 152a. Even in this state, in the raw material container 151, bubbling of the carrier gas with respect to the stored raw material liquid is continued. Thereafter, at time t2 ′ in the purge process, when the pressure inside the introduction pipe 152a reaches the upper limit value of the set pressure value and is detected by the pressure gauge 158, the control unit 157 controls the introduction valve 156a. close. Thereby, the supply of the carrier gas to the introduction pipe 152a is stopped, and the above-described circulation state is obtained.
  • a purge gas such as nitrogen gas or Ar gas is introduced into the film forming chamber 101 from the purge gas supply unit 107, and in addition, the gas (raw material gas) inside the film forming chamber 101 is exhausted by the exhaust mechanism 104. Is done.
  • the oxidation process is completed at time t4, and the subsequent purge process is completed and the next adsorption process is started.
  • the above-described circulation state is continued.
  • supply of purge gas by the purge gas supply unit 107 is stopped, and oxidation gas is supplied from the oxidation gas supply unit 106.
  • oxidation gas is supplied from the oxidation gas supply unit 106.
  • a purge gas such as nitrogen gas or Ar gas is introduced into the film forming chamber 101 from the purge gas supply unit 107, and in addition, the exhaust mechanism 104 causes the inside of the film forming chamber 101 to be inside. Gas (oxidizing gas) is exhausted.
  • the controller 157 closes the circulation pipe 155b and opens the supply pipe 155a as described above.
  • the source gas and the carrier gas that are transported by the pump 153 and whose flow rates are controlled by the MFC 154 are transported through the supply pipe 155 a and introduced into the film formation chamber 101.
  • the source gas introduced into the film formation chamber 101 in this manner is supplied onto the substrate 103 and is adsorbed on the surface of the oxide layer formed on the substrate 103.
  • an adsorption layer for one molecular layer is formed.
  • the control unit 157 controls the circulation valve 156c to be opened by closing the supply valve 156b.
  • a purge gas such as nitrogen gas or Ar gas is introduced into the film forming chamber 101 from the purge gas supply unit 107, and in addition, the gas (raw material gas) inside the film forming chamber 101 is exhausted by the exhaust mechanism 104. Is done.
  • the supply of the raw material gas to the film forming chamber 101 causes the internal pressure of the introduction pipe 152a to fall below the lower limit value of the set pressure value, which is detected by the pressure gauge 158, and the control unit Under the control of 157, the introduction valve 156a is opened, and the carrier gas is introduced into the introduction pipe 152a. Thereafter, at time t6 ′ in the purge process, when the pressure inside the introduction pipe 152a reaches the upper limit value of the set pressure value and is detected by the pressure gauge 158, the introduction valve is controlled by the control unit 157. 156a is closed. Thereby, the supply of the carrier gas to the introduction pipe 152a is stopped, and the above-described circulation state is obtained.
  • a desired thin film made of, for example, a metal oxide constituting the raw material is formed on the substrate 103.
  • the obtained state is obtained.
  • the introduction valve 156a is opened and the carrier gas is supplied to the introduction pipe 152a.
  • the present invention is not limited to this.
  • the controller 157 Under the control, the introduction valve 156a may be opened and the carrier gas may be supplied to the introduction pipe 152a.
  • the opening and closing of the supply valve 156b and the circulation valve 156c are controlled to be in different states by the control of the control unit 157. Even in the state where no gas is supplied, in the raw material container 151, bubbling of the carrier gas with respect to the stored raw material liquid is continued, and the generation of the raw material gas is continued. In addition, the generated source gas is circulated from the introduction pipe 152a to the introduction pipe 152a via the circulation pipe 155b by the transport operation of the pump 153, and therefore is not discarded.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 原料供給装置(105)は、キャリアガスを原料容器(151)に導入する導入配管(152a)と、原料容器より導出した原料ガスが輸送される輸送配管(152b)と、輸送配管より分岐して原料ガスを成膜室(101)に供給するための供給配管(155a)と、輸送配管(152b)より分岐して原料ガスを導入配管(152a)に戻すための循環配管(155b)と、導入配管に設けられた導入弁(156a)と、供給配管に設けられた供給弁(156b)と、循環配管に設けられた循環弁(156c)と、各弁の開閉を制御する制御部(157)とを備えている。制御部は、供給弁と循環弁との開閉を異なる状態に制御する。これにより、原料の無駄を抑制した状態で、より安定して原料ガスを供給することができる。

Description

原料供給装置
 本発明は、気相成長により薄膜を形成する薄膜形成装置に対して原料ガスの供給を行う原料供給装置に関するものである。
 近年、300℃程度の低温で良質な薄膜がより均質な状態で形成可能であるなどの種々の特徴を備える技術として、原子層および分子層単位で薄膜の形成が可能な原子層成長(Atomic Layer Deposition:ALD)法が、注目されている。原子層成長法は、形成しようとする膜を構成する各元素の原料ガスを基板に交互に供給することにより、原子層単位で薄膜を形成する気相成長の技術である。
 このような原子層成長方法を用いた薄膜の形成においては、例えば形成しようとする膜を構成する金属の有機化合物の気体を原料ガスとして用いている。このような有機金属化合物は、多くの場合、常温(20℃程度)においては液体である。このため、原子層成長法などの気相成長技術では、有機金属化合物の液体を、いわゆるバブリング法により気化して原料ガスとしている(特開平5-074758号および特開平5-251348号を参照)。バブリング法により液体原料を気化する方法は、構造が簡単であり、また、バブリングに用いたガスを気化した原料ガスのキャリアガスとして用いることができるなど、液体原料を気化して供給する簡便な原料供給手段である。
 ところで、原子層成長方法では、原料ガスを基板の上に間欠的に供給する。この間欠的なガスの供給をバブリング法で実現するためには、例えば、ガスを供給するときだけバブリングを行う方法がある。しかしながら、バブリング法では、バブリングを開始した直後は、ガスの生成状態が安定せず、また、バブリングを開始した直後と、バブリングをある程度継続した後とでは、生成する気化ガスの量(濃度)が変化する。このため、バブリングの停止と開始を繰り返す方法では、安定して原料ガスを供給することが容易ではない。
 これに対し、バブリングは継続し、原料ガスを供給していない状態では、例えば、ガスの経路を切り替えて、生成している原料ガスを排気経路に廃棄する方法がある。この方法であれば、バブリングを継続しているので、安定した原料ガスの供給が可能となる。しかしながら、基板への原料ガスの供給を停止しているときは、原料ガスを廃棄しているので、原料ガスが無駄となり、原料コストの上昇を招いてしまう。
 本発明は、以上のような問題点を解消するためになされたものであり、原料の無駄を抑制した状態で、より安定して原料ガスを供給できるようにすることを目的とする。
 本発明に係る原料供給装置は、原料液が収容された原料容器と、原料容器に接続され、原料液をバブリングするためのキャリアガスを原料容器に導入する導入配管と、原料容器に接続され、バブリングにより発生して原料容器より導出した原料ガスが輸送される輸送配管と、輸送配管に設けられ、原料ガスを輸送するポンプと、輸送配管より分岐して供給対象に接続され、原料ガスを供給対象に供給するための供給配管と、輸送配管より分岐して導入配管に接続される循環配管と、輸送配管の循環配管との接続部よりもキャリアガスの供給側に設けられた導入弁と、供給配管に設けられた供給弁と、循環配管に設けられた循環弁と、導入弁、供給弁および循環弁に接続され、それぞれの弁の開閉を制御する制御部とを備え、制御部は、少なくとも供給弁と循環弁との開閉を異なる状態に制御するようになされている。
 本発明によれば、輸送配管より分岐して原料ガスを供給対象に供給するための供給配管に供給弁を設け、輸送配管より分岐して導入配管に連通する循環配管に循環弁を設け、制御部により少なくとも供給弁と循環弁との開閉を異なる状態に制御するようにしたので、原料の無駄を抑制した状態で、より安定して原料ガスを供給できるという効果が得られる。
図1は、本発明の実施例における原料供給装置、および原料供給装置により原料を供給する薄膜形成装置の構成を示す図である。 図2は、本発明の実施例における原料供給装置の動作例を説明するためのタイミングチャートである。
 以下、本発明の実施例について図を参照して説明する。図1は、本発明の実施例における原料供給装置、および原料供給装置により原料を供給する薄膜形成装置の構成を示す図である。薄膜形成装置は、気相による膜の成長が行われる成膜室101と、成膜室101の内部に配置された加熱機構を備えた基板台102と、排気機構104とを備え、原料供給装置105から原料が供給可能とされている。基板台102の上には、薄膜形成対象の基板103が載置される。また、この薄膜形成装置は、成膜室101に、酸化ガスを供給する酸化ガス供給部106と、窒素ガスやアルゴン(Ar)などの不活性ガスよりなるパージガスを供給するパージガス供給部107とを備える。薄膜形成装置は、例えば、原子層成長装置である。
 原料供給装置105は、液体の原料が収容された原料容器151と、原料容器151に接続されて原料容器151にキャリアガスを導入する導入配管152aと、原料容器151に接続されて原料容器151で生成された原料ガスがキャリアガスとともに輸送される輸送配管152bと、輸送配管152bに設けられて原料ガスおよびキャリアガスを輸送するポンプ153と、ポンプ153で輸送される原料ガスおよびキャリアガスの流量を制御するマスフローコントローラ(MFC)154とを備える。導入配管152aには、図示していないがキャリアガスが圧入されたボンベなどのキャリアガス供給部が接続されている。
 また、原料供給装置105は、輸送配管152bより分岐して成膜室(供給対象)101に接続され、原料ガスおよびキャリアガスを成膜室101に供給するための供給配管155aと、輸送配管152bより分岐して導入配管152aに接続され、原料ガスおよびキャリアガスを導入配管152a(原料容器151)に戻すための循環配管155bと、導入配管152aに設けられた導入弁156aと、供給配管155aに設けられた供給弁156bと、循環配管155bに設けられた循環弁156cと、導入弁156a,供給弁156b,および循環弁156cに接続されてそれぞれの弁156a~156cの開閉を制御する制御部157と、導入配管152aに接続して設けられた圧力計158とを備える。導入弁156aは、輸送配管152aの循環配管155bが接続されている箇所よりキャリアガスの供給側に設けられている。また、これら各部分は、恒温槽159に収容されて、所定の温度に加温(保温)可能とされている。このように保温しておくことで、例えば、循環配管155bなどの配管における原料ガスの液化を抑制することができる。
 まず、原料容器151においては、導入配管152aに連通する導入管(バブルガス導入口)が、収容している原料液中に沈設され、原料液中にキャリアガスが導入(バブリング)可能とされている。キャリアガスは、例えば窒素ガスやArなどの不活性ガスである。また、原料容器151の内部の原料液面より上の空間に、輸送配管152bの導出口が配置され、バブリングにより得られた原料液の気化ガスが導出可能とされている。
 また、原料容器151より導出されてポンプ153により輸送され、MFC154により流量が制御された原料ガスおよびキャリアガスは、制御部157に制御された供給弁156bおよび循環弁156cの開閉制御により、供給配管155aもしくは循環配管155bのいずれかに導かれる。例えば、供給弁156bが開放状態とされて循環弁156cが閉じられた状態では、輸送配管152bを輸送された原料ガスおよびキャリアガスは、供給配管155aに導かれて成膜室101に供給される。一方、循環弁156cが開放状態とされて供給弁156bが閉じられた状態では、輸送配管152bを輸送された原料ガスおよびキャリアガスは、循環配管155bに導かれて導入配管152aに戻される。
 また、導入配管152aには、導入弁156aを介してキャリアガスが供給される。導入弁156aの開閉は、圧力計158が計測している導入配管152aの内部圧力の値により、制御部157が制御する。例えば、制御部157には、予め設定圧力値が設定されており、圧力計158により計測される圧力値が設定圧力値の下限値より低下すると、制御部157の制御により導入弁156aが開放され、導入配管152aにキャリアガスが導入される状態となる。また、圧力計158により計測される圧力値が設定圧力値の上限値より高くなると、制御部157の制御により導入弁156aが閉じられ、導入配管152aに対するキャリアガスの導入が停止される。
 以下、制御部157による各弁の制御例及び原料ガスの供給動作例について、図1の構成図及び図2のタイミングチャートを用いて説明する。初期段階では、導入配管152aの内部の圧力が、設定圧力値の上限値に達していない状態であり、また、薄膜形成装置における薄膜形成が開始されていない状態とする。この状態では、制御部157は、供給弁156bは閉じ、導入弁156aおよび循環弁156cを開けた状態に制御する。また、ポンプ153により、輸送配管152b中のガスが、原料容器151の側からMFC154の側に輸送される状態とされている。
 これらのことにより、導入配管152aにはキャリアガスが供給され、原料容器151に収容されている原料液中にキャリアガスが導入されてバブリングされ、原料液の気化ガスが生成される。また、原料容器151において生成された気化ガスは、原料容器151を導出し、輸送配管152bをポンプ153により輸送され、MFC154により流量が制御され、循環配管155bを経由して導入配管152aに戻る。
 この後、導入配管152aの内部の圧力が、設定圧力値の上限値に達してこれが圧力計158に検出されると、制御部157が導入弁156aを閉じ、導入配管152aに対するキャリアガスの供給が停止される。このことにより、導入配管152a,原料容器151,輸送配管152b,および循環配管155bの系は、閉じられた循環状態となる。また、閉じられた系においては、ポンプ153によるガスの輸送は継続されているので、原料容器151においては、導入配管152aのバブルガス導入口からは、収容されている原料液に対するキャリアガスのバブリングが継続される。このようにして原料容器151で生成された原料ガスは、キャリアガスとともに、上記系を循環することになる。
 上述したように、循環状態となった後、原子層成長方法における吸着工程が開始される時刻t1において、制御部157は、循環配管155bを閉じて供給配管155aを開放状態とする。この制御により、ポンプ153により輸送されてMFC154により流量が制御された原料ガスおよびキャリアガスは、供給配管155aを輸送されて成膜室101に導入される状態となる。このようにして成膜室101に導入された原料ガスは、基板台102により所定温度に加熱されている基板103の上に供給されてこの表面に吸着し、基板103の表面には、原料からなる1分子層分の吸着層が形成されるようになる。
 次に、吸着の工程が終了されてパージ工程が開始される時刻t2において、制御部157は、供給弁156bを閉じて循環弁156cを開放状態に制御する。この結果、原料供給装置105では、上述した循環状態となり、原料容器151においては、導入配管152aのバブルガス導入口からは、収容されている原料液に対するキャリアガスのバブリングが継続され、このようにして原料容器151で生成された原料ガスは、キャリアガスとともに、上記系を循環することになる。
 また、このとき、例えば、成膜室101への原料ガスの供給により、導入配管152aの内部圧力が設定圧力値の下限値以下に低下し、これが、圧力計158により検出されると、制御部157は、導入弁156aを開放し、導入配管152aにキャリアガスが導入される状態とする。この状態においても、原料容器151においては、収容されている原料液に対するキャリアガスのバブリングが継続されている。この後、パージの工程の中の時刻t2’において、導入配管152aの内部の圧力が、設定圧力値の上限値に達してこれが圧力計158に検出されると、制御部157が導入弁156aを閉じる。これにより、導入配管152aに対するキャリアガスの供給が停止され、前述した循環の状態となる。
 このパージ工程では、パージガス供給部107より、例えば、窒素ガスやArガスなどのパージガスが成膜室101に導入され、加えて、排気機構104により成膜室101内部のガス(原料ガス)が排気される。
 この後、時刻t3において、パージの工程が終了して酸化の工程が開始されると、時刻t4で酸化の工程が終了し、この後のパージの工程が終了して次の吸着の工程が開始する時刻t5までは、上述した循環の状態が継続される。なお、酸化の工程では、パージガス供給部107によるパージガスの供給が停止され、酸化ガス供給部106より酸化ガスが供給される。この酸化ガスの供給により、基板103の上に形成されている1分子層分の吸着層が酸化され、1分子層分の酸化層が形成された状態となる。また、時刻t4より開始されるパージの工程では、パージガス供給部107より、例えば、窒素ガスやArガスなどのパージガスが成膜室101に導入され、加えて、排気機構104により成膜室101内部のガス(酸化ガス)が排気される。
 次に、時刻t5において、パージの工程が終了して次の吸着の工程が開始されると、前述同様に、制御部157は、循環配管155bを閉じて供給配管155aを開放状態とする。この制御により、ポンプ153により輸送されてMFC154により流量が制御された原料ガスおよびキャリアガスは、供給配管155aを輸送されて成膜室101に導入される状態となる。このようにして成膜室101に導入された原料ガスは、基板103の上に供給されて基板103の上に形成されている酸化層の表面に吸着し、酸化層の表面には、原料からなる1分子層分の吸着層が形成されるようになる。
 次に、吸着の工程が終了されてパージ工程が開始される時刻t6において、制御部157は、供給弁156bを閉じて循環弁156cを開放状態に制御する。このパージ工程では、パージガス供給部107より、例えば、窒素ガスやArガスなどのパージガスが成膜室101に導入され、加えて、排気機構104により成膜室101内部のガス(原料ガス)が排気される。
 また、このとき、前述同様に、成膜室101への原料ガスの供給により、導入配管152aの内部圧力が設定圧力値の下限値以下に低下し、これが、圧力計158により検出され、制御部157の制御により、導入弁156aが開放され、導入配管152aにキャリアガスが導入される状態となる。この後、パージの工程の中の時刻t6’において、導入配管152aの内部の圧力が、設定圧力値の上限値に達してこれが圧力計158に検出されると、制御部157の制御により導入弁156aが閉じられる。これにより、導入配管152aに対するキャリアガスの供給が停止され、前述した循環の状態となる。
 上述した吸着,パージ,酸化,パージという、よく知られた原子層成長の1サイクルを繰り返すことで、例えば原料を構成している金属の酸化物からなる所望の薄膜が、基板103の上に形成された状態が得られる。なお、上述では、吸着工程が終了した段階で、導入弁156aが開放されてキャリアガスが導入配管152aに供給されるようにしたが、これに限るものではない。例えば、吸着の工程の原料ガスが成膜室101に供給されている途中で、導入配管152aにおける内部圧力が設定圧力値の下限より低下したことが圧力計158により測定されれば、制御部157の制御により、導入弁156aが開放されてキャリアガスが導入配管152aに供給されるようにしてもよい。
 以上に説明したように、本実施例によれば、制御部157の制御により、供給弁156bと循環弁156cとの開閉を異なる状態に制御するようにしたので、成膜室101に対して原料ガスを供給していない状態においても、原料容器151においては、収容されている原料液に対するキャリアガスのバブリングが継続され、原料ガスの生成が継続されている。加えて、生成されている原料ガスは、ポンプ153の輸送動作により、導入配管152aから循環配管155bを経由して導入配管152aに循環されるので、廃棄されることがない。

Claims (2)

  1.  原料液が収容された原料容器と、
     前記原料容器に接続され、前記原料液をバブリングするためのキャリアガスを前記原料容器に導入する導入配管と、
     前記原料容器に接続され、バブリングにより発生して前記原料容器より導出した原料ガスが輸送される輸送配管と、
     前記輸送配管に設けられ、前記原料ガスを輸送するポンプと、
     前記輸送配管より分岐して供給対象に接続され、前記原料ガスを前記供給対象に供給するための供給配管と、
     前記輸送配管より分岐して前記導入配管に接続される循環配管と、
     前記輸送配管の前記循環配管との接続部よりも前記キャリアガスの供給側に設けられた導入弁と、
     前記供給配管に設けられた供給弁と、
     前記循環配管に設けられた循環弁と、
     前記導入弁、前記供給弁および前記循環弁に接続され、それぞれの弁の開閉を制御する制御部とを備え、
     前記制御部は、少なくとも前記供給弁と前記循環弁との開閉を異なる状態に制御するようになされていることを特徴とする原料供給装置。
  2.  請求項1記載の原料供給装置において、
     前記導入弁と前記原料容器との間の前記導入配管の内部圧力を測定する圧力計をさらに備え、
     前記制御部は、前記圧力計の測定結果により前記導入弁の開閉を制御するようになされていることを特徴とする原料供給装置。
PCT/JP2009/053543 2008-03-12 2009-02-26 原料供給装置 WO2009113400A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020107018621A KR101246921B1 (ko) 2008-03-12 2009-02-26 원료공급장치
EP09720876.3A EP2251451B1 (en) 2008-03-12 2009-02-26 Raw material supplying device
US12/921,771 US8382071B2 (en) 2008-03-12 2009-02-26 Raw material supply device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-063076 2008-03-12
JP2008063076A JP4418001B2 (ja) 2008-03-12 2008-03-12 原料供給装置

Publications (1)

Publication Number Publication Date
WO2009113400A1 true WO2009113400A1 (ja) 2009-09-17

Family

ID=41065069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053543 WO2009113400A1 (ja) 2008-03-12 2009-02-26 原料供給装置

Country Status (6)

Country Link
US (1) US8382071B2 (ja)
EP (1) EP2251451B1 (ja)
JP (1) JP4418001B2 (ja)
KR (1) KR101246921B1 (ja)
TW (1) TW200947507A (ja)
WO (1) WO2009113400A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190035A (ja) * 2014-03-28 2015-11-02 東京エレクトロン株式会社 ガス供給機構およびガス供給方法、ならびにそれを用いた成膜装置および成膜方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10443127B2 (en) 2013-11-05 2019-10-15 Taiwan Semiconductor Manufacturing Company Limited System and method for supplying a precursor for an atomic layer deposition (ALD) process
US11970772B2 (en) 2014-08-22 2024-04-30 Lam Research Corporation Dynamic precursor dosing for atomic layer deposition
US10094018B2 (en) 2014-10-16 2018-10-09 Lam Research Corporation Dynamic precursor dosing for atomic layer deposition
US11072860B2 (en) 2014-08-22 2021-07-27 Lam Research Corporation Fill on demand ampoule refill
JP7089902B2 (ja) * 2018-02-28 2022-06-23 株式会社Screenホールディングス 基板処理装置、基板処理装置における処理液排出方法、基板処理装置における処理液交換方法、基板処理装置における基板処理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574758A (ja) 1991-09-17 1993-03-26 Mitsubishi Electric Corp 化学気相成長装置
JPH05251348A (ja) 1992-03-05 1993-09-28 Mitsubishi Electric Corp バブラおよびガス供給装置
JPH10130845A (ja) * 1996-10-29 1998-05-19 Mitsubishi Heavy Ind Ltd 化学蒸着用蒸気発生装置
JP2006052424A (ja) * 2004-08-10 2006-02-23 Tokyo Electron Ltd 薄膜形成装置及び薄膜形成方法
WO2007114156A1 (ja) * 2006-03-30 2007-10-11 Mitsui Engineering & Shipbuilding Co., Ltd. 原子層成長装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1269202A (en) * 1968-02-14 1972-04-06 Fordath Ltd Improvements in the production of cores for use in the production of metal castings
US6195504B1 (en) * 1996-11-20 2001-02-27 Ebara Corporation Liquid feed vaporization system and gas injection device
US6089184A (en) * 1997-06-11 2000-07-18 Tokyo Electron Limited CVD apparatus and CVD method
US5972117A (en) * 1997-09-03 1999-10-26 Applied Materials, Inc. Method and apparatus for monitoring generation of liquid chemical vapor
JP3706294B2 (ja) 2000-03-27 2005-10-12 東京エレクトロン株式会社 処理液供給装置及び処理液供給方法
JP4652860B2 (ja) 2004-04-27 2011-03-16 大陽日酸株式会社 クリプトン又はキセノンの回収方法
US7562672B2 (en) * 2006-03-30 2009-07-21 Applied Materials, Inc. Chemical delivery apparatus for CVD or ALD
US8016945B2 (en) * 2007-12-21 2011-09-13 Applied Materials, Inc. Hafnium oxide ALD process
US8235364B2 (en) * 2008-11-11 2012-08-07 Praxair Technology, Inc. Reagent dispensing apparatuses and delivery methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574758A (ja) 1991-09-17 1993-03-26 Mitsubishi Electric Corp 化学気相成長装置
JPH05251348A (ja) 1992-03-05 1993-09-28 Mitsubishi Electric Corp バブラおよびガス供給装置
JPH10130845A (ja) * 1996-10-29 1998-05-19 Mitsubishi Heavy Ind Ltd 化学蒸着用蒸気発生装置
JP2006052424A (ja) * 2004-08-10 2006-02-23 Tokyo Electron Ltd 薄膜形成装置及び薄膜形成方法
WO2007114156A1 (ja) * 2006-03-30 2007-10-11 Mitsui Engineering & Shipbuilding Co., Ltd. 原子層成長装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2251451A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190035A (ja) * 2014-03-28 2015-11-02 東京エレクトロン株式会社 ガス供給機構およびガス供給方法、ならびにそれを用いた成膜装置および成膜方法
US9938620B2 (en) 2014-03-28 2018-04-10 Tokyo Electron Limited Gas supply mechanism, gas supplying method, film forming apparatus and film forming method using the same

Also Published As

Publication number Publication date
EP2251451A4 (en) 2014-12-24
US8382071B2 (en) 2013-02-26
KR20100109559A (ko) 2010-10-08
US20110000554A1 (en) 2011-01-06
JP2009215635A (ja) 2009-09-24
EP2251451B1 (en) 2016-01-27
EP2251451A1 (en) 2010-11-17
TW200947507A (en) 2009-11-16
JP4418001B2 (ja) 2010-02-17
KR101246921B1 (ko) 2013-03-25

Similar Documents

Publication Publication Date Title
KR101161020B1 (ko) 원자층 성장 장치
JP5616591B2 (ja) 半導体装置の製造方法及び基板処理装置
JP6095825B2 (ja) 基板処理装置および半導体装置の製造方法
WO2009113400A1 (ja) 原料供給装置
JP6678489B2 (ja) 基板処理装置
US20100266765A1 (en) Method and apparatus for growing a thin film onto a substrate
JP2014007289A (ja) ガス供給装置及び成膜装置
KR20120126012A (ko) 가스 공급 장치, 열처리 장치, 가스 공급 방법 및 열처리 방법
JP2011023706A5 (ja)
KR101015985B1 (ko) 기판 처리 장치
JP2017085088A (ja) 原子層堆積のための動的前駆体注入
JP2008135633A (ja) 半導体デバイスの製造方法
JP2006222265A (ja) 基板処理装置
JP2013076113A (ja) ガス供給装置及び成膜装置
JP4356943B2 (ja) 基板処理装置及び半導体装置の製造方法
JP2005307233A (ja) 成膜装置及び成膜方法及びプロセスガスの供給方法
JP6021977B2 (ja) 基板処理装置および半導体装置の製造方法
JP2010202912A (ja) 原子層成長装置および方法
JP2011187485A (ja) 基板処理装置
JP2006066557A (ja) 基板処理装置
JP5357083B2 (ja) 薄膜形成装置および薄膜形成方法
JP5060375B2 (ja) 基板処理装置および半導体装置の製造方法
JP2010084156A (ja) 処理ガス供給系及び成膜装置
JP2005303153A (ja) 基板処理装置及び半導体デバイスの製造方法
JP2011168815A (ja) 成膜方法及び成膜装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09720876

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107018621

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009720876

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12921771

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE