WO2009111918A1 - 磺化罗丹明插层水滑石复合物及其制备方法 - Google Patents

磺化罗丹明插层水滑石复合物及其制备方法 Download PDF

Info

Publication number
WO2009111918A1
WO2009111918A1 PCT/CN2008/070890 CN2008070890W WO2009111918A1 WO 2009111918 A1 WO2009111918 A1 WO 2009111918A1 CN 2008070890 W CN2008070890 W CN 2008070890W WO 2009111918 A1 WO2009111918 A1 WO 2009111918A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
rhodamine
sulfonated rhodamine
sulfonated
hydrotalcite composite
Prior art date
Application number
PCT/CN2008/070890
Other languages
English (en)
French (fr)
Inventor
卫敏
闫东鹏
陆军
段雪
Original Assignee
北京化工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京化工大学 filed Critical 北京化工大学
Publication of WO2009111918A1 publication Critical patent/WO2009111918A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/78Compounds containing aluminium and two or more other elements, with the exception of oxygen and hydrogen
    • C01F7/784Layered double hydroxide, e.g. comprising nitrate, sulfate or carbonate ions as intercalating anions
    • C01F7/785Hydrotalcite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • C01P2002/22Two-dimensional structures layered hydroxide-type, e.g. of the hydrotalcite-type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram

Definitions

  • the invention relates to an intercalated hydrotalcite composite and a preparation method thereof, in particular to a sulfonated rhodamine intercalated hydrotalcite composite and a preparation method thereof.
  • dye laser As a kind of tunable laser with good performance, dye laser has the advantages of wide output line range, high power and low price. It has good application value in military and medical fields.
  • Dye lasers can be classified into liquid dye lasers, solid dye lasers, and gas dye lasers depending on the state of the working substance. At present, the most common ones are liquid dye lasers. However, such dye lasers have the disadvantages of being flammable, explosive, difficult to remove, difficult to operate, and easily causing environmental pollution.
  • solid dye lasers can overcome the shortcomings of the above liquid dye lasers. It greatly reduces the harm of the solution dye to human health and environmental resources. At the same time, the solid dye laser meets the requirements of miniaturization and practical application, and is an important development direction of dye lasers in the future.
  • Immobilization of dye molecules is the first problem to be solved for solid dye lasers.
  • the methods currently used are mainly to immobilize dye lasers by doping an appropriate amount of laser dye in a specific solid matrix.
  • sol gel incorporation method melt incorporation method
  • pre-polymerization incorporation method Such as: sol gel incorporation method, melt incorporation method and pre-polymerization incorporation method.
  • Rhodamine is one of the most common laser dyes with high fluorescence quantum efficiency, low threshold and high gain. However, the introduction of sulfonated rhodamine into the layered hydrotalcite layer has not been reported. Summary of the invention
  • the object of the present invention is to provide a sulfonated rhodamine intercalated hydrotalcite composite and a preparation method thereof, and to obtain an inorganic organic composite, which provides a solution for the immobilization of dye molecules and their uniform dispersion at the molecular level.
  • the invention combines the laser dye molecule sulfonated rhodamine anion (RB) with the surfactant sodium dodecylbenzenesulfonate (DBS) into the hydrotalcite layer by nucleation and crystallizing isolation method and hydrothermal treatment.
  • RB laser dye molecule sulfonated rhodamine anion
  • DBS sodium dodecylbenzenesulfonate
  • the initial molar ratio of RB to DBS controls the amount of intercalation between RB molecules in the interlayer, forming an anionic supramolecular layered material with uniformly dispersed dye molecules intercalated; the composite material can fully utilize the spatial confinement between hydrotalcite layers and The interaction between the host and the guest achieves the immobilization of the dye molecules while improving the mechanical strength and physicochemical stability of the dye.
  • the present invention provides a sulfonated rhodamine intercalated hydrotalcite composite, wherein the sulfonated rhodamine intercalated hydrotalcite composite has the composition shown by:
  • M 2+ represents a divalent metal cation selected from Mg 2+, Co 2+, Ni 2+ , Ca 2+, Cu 2+, Fe 2+ and Mn 2+ in one or more
  • M 3 + represents a trivalent metal cation selected from one or more of Al 3+ , Cr 3+ , Ga 3+ , In 3+ , Co 3+ , Fe 3+ , and V 3+
  • A is a hydrotalcite layer
  • y represents the number of sulfonated rhodamine anions
  • B represents the anionic dodecylbenzenesulfonate ion between hydrotalcite layers
  • z represents the number of dodecylbenzenesulfonate ions
  • x y+z, 1/5 ⁇ x ⁇ 1/3
  • the ratio of y to z is 0.01-0.2: 1
  • m represents the amount of crystal water, 0.1 m
  • the invention also provides a preparation method of a sulfonated rhodamine intercalated hydrotalcite composite, wherein the method comprises the following steps:
  • a providing a solution A, the solution A containing the soluble divalent metal cation and a soluble M 2+ M 3+ a trivalent metal cation, where M 2+ concentration is 0.01-1M, M 2+ and M 3+ molar ratio of 2-4, M 2+ is selected from one or more of Mg 2+ , Co 2+ , Ni 2+ , Ca 2+ , Cu 2+ , Fe 2+ and Mn 2+ , and M 3+ is selected from One or more of Al 3+ , Cr 3+ , Ga 3+ , In 3+ , Co 3+ , Fe 3+ , and V 3+ ; b, providing solution B, the solution B containing sulfonated rhodamine, sodium dodecylbenzene sulfonate, ethanol and water, the molar ratio of sulfonated rhodamine to sodium dodecylbenzenesulfonate is 0.01-0.2, ethanol The volume ratio to water is
  • the mixed solution C obtained in step c and the NaOH and / or KOH solution of step d are introduced into the full back-mixed membrane reactor for 0.5-2 minutes to obtain a red slurry, the amount of NaOH and / or KOH solution to make NaOH And/or the number of moles of KOH is 2-2.2 times the sum of the moles of M 2+ and M 3+ ;
  • the red slurry obtained in step e is crystallized, and then the recovered solid is produced in step a,
  • the mixed solution A can be prepared using water as a solvent; in solution A, the anion can be selected from N0 One or more of 3 -, Cl -, F -, Br - and S0 4 2 -.
  • the total amount of water and ethanol in the mixed solvent is such that the molar concentration of the sulfonated rhodamine and sodium dodecylbenzenesulfonate is 0.005 to 0.5 M.
  • the concentration of the NaOH and/or KOH solution is not particularly limited, and is preferably 0 ⁇ 05-1 Torr.
  • the mixed solution C is contacted with the NaOH and/or KOH solution at a uniform flow rate.
  • the inert atmosphere refers to any gas or gas mixture that does not chemically react with the reactants and products, such as hydrogen, nitrogen, carbon monoxide, ammonia decomposition gas, and one of the periodicity of the group Several, preferably nitrogen.
  • the temperature of the crystallization reaction is 90-160 ° C, preferably 100-150 ° C; crystallization
  • the reaction time is 24-72 hours, preferably 24-48 hours; the pressure of the crystallization reaction is 0.1-1 MPa, preferably 0.5-1 MPa.
  • the crystallization reaction is preferably carried out in a hydrothermal environment.
  • the method of recovering the solid product is well known to those skilled in the art, for example, the solid product is washed and dried.
  • the method of washing comprises separately washing with water and ethanol and centrifuging until the washing liquid is colorless.
  • the drying method and conditions are well known to those skilled in the art. For example, drying methods such as natural drying, vacuum drying, and blast drying may be employed.
  • the drying conditions include a drying temperature of 50-70 ° C and a drying time of 12- 24 hours.
  • the water used for the centrifugal washing is preferably deionized water (water temperature may be 30-65 ° C) from which CO 2 is removed to avoid the influence of carbonate ions on the obtained product.
  • XRD characterization of the materials prepared above showed that the sulfonated rhodamine (RB) and sodium dodecyl sulfonate (DBS) were co-intercalated between the hydrotalcite layers.
  • the XRD data showed that the interlayer spacing of the composite increased with the increase of the initial molar ratio of RB to DBS.
  • the best luminescence intensity of the composite showed that the initial molar ratio of RB to DBS was 5:100.
  • Characterization of fluorescence lifetime measurements showed that the fluorescence lifetime of the composite was significantly improved compared to the simple rhodamine solution.
  • the invention has the advantages that: by using the spatial confinement effect of the hydrotalcite layered material and the interaction between the host and the guest, the laser dye sulfonated rhodamine is introduced into the hydrotalcite layer to realize the immobilization of the dye molecule, and at the same time, the surface activity is introduced.
  • the dodecylsulfonate anion further realizes the uniform dispersion of dye molecules between the hydrotalcite layers, effectively reducing the fluorescence quenching caused by dye aggregation, and provides a theoretical basis for the application of hydrotalcite in the field of solid dye lasers.
  • Figure 1 is an X-ray powder diffraction (XRD) pattern of a sulfonated rhodamine intercalated hydrotalcite composite prepared according to the present invention; the abscissa is 2 ⁇ , the unit is degree; the ordinate is intensity;
  • FIG. 2 is a fluorescence emission spectrum obtained by exciting a sulfonated rhodamine intercalated hydrotalcite composite prepared by the present invention under ultraviolet light of 360 nm; the abscissa is a wavelength, the unit is nanometer; the ordinate is an intensity; 3 is an ultraviolet spectrum of a sulfonated rhodamine intercalated hydrotalcite composite prepared according to the present invention; FIG. 4 is an X-ray powder diffraction (XRD) pattern of a sulfonated rhodamine intercalated hydrotalcite composite prepared according to the present invention; The coordinates are 2 ⁇ , the unit is degree; the ordinate is intensity;
  • Fig. 5 is a fluorescence emission spectrum of a sulfonated rhodamine intercalated hydrotalcite composite prepared by the present invention excited under 360 nm ultraviolet light; the abscissa is wavelength, the unit is nanometer; the ordinate is intensity.
  • 1.282 g of Mg(N0 3 ) 2 ⁇ 6H 2 0 and 0.938 g of ⁇ 1 ( ⁇ 0 3 ) 3 ⁇ 9H 2 0 were dissolved in 100 ml of water to obtain a mixed solution A containing magnesium ions and aluminum ions, wherein the concentration of magnesium ions 0.05M, the molar ratio of magnesium ion to aluminum ion is 2:1; 0.828g sodium dodecylbenzenesulfonate (DBS) and 0.069g sulfonated rhodamine (RB) (the initial molar ratio of DBS to RB is 100:5) Dissolve in 35 ml of deionized water with CO 2 removed and 70 ml of absolute ethanol to prepare a mixed salt solution B. Mix the A and B solutions evenly to obtain solution C.
  • DBS sodium dodecylbenzenesulfonate
  • RB 0.069g sulfonated rhodamine
  • Rhodamine intercalated water was obtained using an XRD-6000 X-ray diffractometer from Shimadzu Corporation of Japan
  • the X-ray powder diffraction (XRD) pattern of the talc complex is shown in Figure 1.
  • XRD X-ray powder diffraction
  • the anions RB and DBS with an initial molar ratio of 100:5 reacted into the hydrotalcite layer, and a diffraction peak of the ⁇ (001) orientation appeared.
  • the 003 diffraction peak appeared at about 3°, and the interlayer spacing At 3.2 nm, the interference between the carbonate and the hydrotalcite layer was eliminated, which proved the success of the anion intercalation.
  • the fluorescence spectrum of the rhodamine intercalated hydrotalcite complex was obtained using a Shimadzu RF-5301PC fluorescence spectrophotometer, as shown in Fig. 2. It can be seen from the fluorescence spectrum that the emission spectrum of the complex peaks at about 587 nm, and emits orange-red light, which again indicates that the RB molecules successfully enter the interlayer.
  • the ultraviolet spectrum of the rhodamine intercalated hydrotalcite complex was obtained using a UV-2501PC UV-visible spectrophotometer from Shimadzu Corporation, Japan. As shown in Fig. 3, it was proved that there was no dye aggregate in the composite, and single-molecule luminescence was realized. .
  • a time-resolved fluorescence assay (UK Edinburgh Instrument production FLS 920 fluorescence spectrometer software and F900) the measured fluorescence lifetime of the complex in 3.71ns, higher than the fluorescence lifetime of 2.1ns 10- 5 M RB dilute solution.
  • the product was removed from the reaction vessel, washed with absolute ethanol and deionized water with CO 2 removed until the washing liquid was colorless, pH was about 7.0; the sample was vacuum dried at 70 ° C for 18 hours to obtain a shallow
  • the red toner powder is obtained by grinding to obtain a DBS/RB/Mg-Al-LDH composite having a molecular formula of [ ⁇ /3 ⁇ 4 2+ . . 66 1 3+ . . 33 (03 ⁇ 4 2 ] () 33+ ( 8)-, (088)-.. 3 ' 3 ⁇ 40. Characterize the product.
  • X-ray powder diffraction (XRD) pattern of the rhodamine intercalated hydrotalcite composite was obtained using an XRD-6000 X-ray diffractometer from Shimadzu Corporation, as shown in Fig. 4. It can be seen from the XRD pattern that the anion RB and DBS with an initial molar ratio of 100:10 are reacted into the hydrotalcite layer, and a series of (001)-oriented diffraction peaks appear. The 003 diffraction peak appears at about 3°, and the interlayer spacing is 3.36. In the nanometer, the interlayer spacing is increased compared to the sample layer spacing obtained in the method of Example 1.
  • the fluorescence spectrum of the rhodamine intercalated hydrotalcite complex was obtained using a Shimadzu RF-5301PC fluorescence spectrophotometer, as shown in Fig. 5. It can be seen from the fluorescence spectrum that the emission spectrum of the complex peaks at around 585 nm, and emits orange-red light, again indicating that the RB molecules successfully enter the interlayer. Compared with the sample obtained in the method of Example 1, the maximum emission wavelength showed no red shift phenomenon, indicating that no aggregate of RB was present.
  • a time-resolved fluorescence assay (UK Edinburgh Instrument production FLS 920 fluorescence spectrometer software and F900) the measured fluorescence lifetime of the composite material 4.14ns, higher than the fluorescence lifetime of 2.1ns 10- 5 M RB dilute solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

磺化罗丹明插层水滑石复合物及其制备方法
技术领域
本发明涉及一种插层水滑石复合物及其制备方法, 特别是涉及一种磺化 罗丹明插层水滑石复合物及其制备方法。 背景技术
染料激光器作为一种性能良好的可调谐激光器, 具有输出谱线范围宽、 功率高、 价格低等优点, 在军事、 医学等领域具有很好的应用价值。 根据工 作物质状态的不同, 染料激光器可分为液体染料激光器、 固体染料激光器和 气体染料激光器。 目前最为常见的是液体染料激光器, 然而该类染料激光器 存在易燃、 易爆、 难以清除、 操作困难、 容易造成环境污染等缺点, 与之相 比, 固体染料激光器可以克服上述液体染料激光器的缺点, 大大减小了溶体 染料对人体健康和环境资源的危害; 同时固体染料激光器满足了小型化和实 用化的要求, 是今后染料激光器的重要发展方向。 染料分子的固定化是实现 固体染料激光器首先需要解决的问题。 目前使用的方法主要是通过在特定的 固体基质中掺杂适量的激光染料来实现染料激光器的固定化。 如: 溶胶凝胶 掺入法、 熔融掺入法和聚合前掺入法等。 以上是采用物理混合实现染料分子 在基质中的分散, 难以达到染料分子在分子水平上的均匀分散效果, 仍然可 能出现由于染料分子的聚集而产生的荧光淬灭现象。
将带负电荷的染料分子引入层状材料水滑石层间, 形成有机-无机复合 物, 有利于实现染料分子在分子水平上的定向排列和均匀分散, 同时, 有利 于提高染料分子的物理和化学稳定性。 罗丹明 (Rhodamine ) 是一种最为常 见的激光染料, 具有荧光量子效率高、 阈值低和增益高等优点, 然而将磺化 罗丹明引入层状材料水滑石层间的研究还未见报道。 发明内容
本发明的目的在于提供一种磺化罗丹明插层水滑石复合物及其制备方 法, 得到一种无机有机复合物, 为染料分子的固定化及其在分子水平的均匀 分散问题提供解决方案。
本发明是将激光染料分子磺化罗丹明阴离子(RB )与表面活性剂十二垸 基苯磺酸钠 (DBS ) 经成核晶化隔离法及水热处理共同进入水滑石层间, 通 过调变 RB与 DBS初始摩尔比例控制 RB分子在层间的插层量,构成均匀分 散的染料分子插层的阴离子型超分子层状材料; 该复合材料能充分利用水滑 石层间的空间限域作用和主客体之间的相互作用, 实现了染料分子固定化, 同时提高了染料的机械强度和物理化学稳定性。
本发明提供了一种磺化罗丹明插层水滑石复合物, 其中, 该磺化罗丹明 插层水滑石复合物具有下式所示的组成:
[M2+ 1-xM3+ x(OH)2]x+A"yB-z- m¾0,
其中, M2+表示二价金属阳离子, 选自 Mg2+、 Co2+、 Ni2+、 Ca2+、 Cu2+、 Fe2+和 Mn2+中的一种或几种; M3+表示三价金属阳离子, 选自 Al3+、 Cr3+、 Ga3+、 In3+、 Co3+、 Fe3+和 V3+中的一种或几种; A—表示水滑石层间阴离子磺 化罗丹明阴离子, y表示磺化罗丹明阴离子的数量, B—表示水滑石层间阴离 子十二垸基苯磺酸根离子, z表示十二垸基苯磺酸根离子的数量, x=y+z, 1/5 ^x^ 1/3 , y与 z的比例为 0.01-0.2: 1 ; m表示结晶水的数量, 0.1 m 2。
本发明还提供了一种磺化罗丹明插层水滑石复合物的制备方法, 其中, 该方法包括如下步骤:
a、提供溶液 A,所述溶液 A含有可溶性二价金属阳离子 M2+和可溶性三 价金属阳离子 M3+, 其中 M2+的浓度为 0.01-1M, M2+与 M3+的摩尔比为 2-4, M2+选自 Mg2+、 Co2+、 Ni2+、 Ca2+、 Cu2+、 Fe2+和 Mn2+中的一种或几种, M3+ 选自 Al3+、 Cr3+、 Ga3+、 In3+、 Co3+、 Fe3+和 V3+中的一种或几种; b、 提供溶液 B, 所述溶液 B含有磺化罗丹明、 十二垸基苯磺酸钠、 乙醇 和水, 磺化罗丹明和十二垸基苯磺酸钠的摩尔比为 0.01-0.2, 乙醇和水的体 积比为 1-3:1 ;
c、 将溶液 A与溶液 B混合得到混合溶液 C, 在该混合溶液 C中, 磺化 罗丹明和十二垸基苯磺酸钠的摩尔数总和与三价金属阳离子的摩尔数的比 值为 1-2:1 ;
d、 提供 NaOH和 /或 KOH溶液;
e、 将步骤 c得到的混合溶液 C与步骤 d的 NaOH和 /或 KOH溶液通入 全返混液膜反应器中接触 0.5-2分钟, 得到红色桨液, NaOH和 /或 KOH溶 液的用量使 NaOH和 /或 KOH的摩尔数为 M2+和 M3+的摩尔数总和的 2-2.2 倍;
f、在惰性气氛下, 将步骤 e得到的红色桨液进行晶化, 然后回收固体产 在步骤 a中, 可以使用水作为溶剂来配制所述混合溶液 A; 溶液 A中, 阴离子可以选自 N03-、 Cl—、 F -、 Br—和 S04 2—中的一种或几种。
在步骤 b中, 混合溶剂中水和乙醇的总用量使磺化罗丹明和十二垸基苯 磺酸钠的摩尔浓度总和为 0.005-0.5M。
在步骤 d中, 对 NaOH和 /或 KOH溶液的浓度没有特别限定, 优选为 0·05-1Μ。
在步骤 e中,优选情况下,为了使反应更充分,所述混合溶液 C与 NaOH 和 /或 KOH溶液以均匀的流速接触反应。
在步骤 f 中, 所述惰性气氛指不与反应物和产物发生化学反应的任意一 种气体或气体混合物, 如氢气、 氮气、 一氧化碳、 氨分解气和元素周期表零 族气体中的一种或几种, 优选为氮气。
在步骤 f中, 所述晶化反应的温度为 90-160°C, 优选为 100-150°C ; 晶化 反应的时间为 24-72小时,优选为 24-48小时;晶化反应的压力为 0.1-1兆帕, 优选为 0.5-1兆帕。 所述晶化反应优选在水热环境中进行。 所述回收固体产 物的方法为本领域技术人员所公知, 例如, 将固体产物洗涤并干燥。 所述洗 涤的方法包括分别用水和乙醇进行洗涤并离心分离, 至洗涤液为无色。 干燥 的方法和条件为本领域技术人员所公知, 例如, 可以采用自然干燥, 真空干 燥, 鼓风干燥等干燥方法, 干燥的条件包括干燥的温度为 50-70 °C, 干燥的 时间为 12-24小时。 用于离心洗涤的水优选为去除了 C02的去离子水(水温 可以为 30-65°C ), 以避免碳酸根离子对得到的产物的影响。
将上述所制备的材料进行 XRD表征显示磺化罗丹明 (RB)与十二垸基 磺酸钠 (DBS) 在水滑石层间共插层成功。 XRD数据显示随着 RB与 DBS 初始摩尔比例的增加, 该复合材料层间距增加; 进行荧光光谱表征显示该复 合材料的最佳发光强度出现在 RB与 DBS初始摩尔比在 5:100的条件下;进 行荧光寿命测量表征显示该复合材料的荧光寿命较单纯的罗丹明稀溶液有 了显著提高。
本发明的优点在于:利用水滑石层状材料的空间限域作用以及主客体之 间的相互作用, 把激光染料磺化罗丹明引入水滑石层间, 实现染料分子固定 化, 同时通过引入表面活性剂十二垸基磺酸根阴离子进一步实现染料分子在 水滑石层间的均匀分散, 有效地减少了染料聚集而导致的荧光淬灭, 为将水 滑石应用于固体染料激光器领域提供理论研究基础。 附图说明
图 1 为本发明制备的磺化罗丹明插层水滑石复合物的 X射线粉末衍射 (XRD) 图; 横坐标为 2Θ, 单位为度; 纵坐标为强度;
图 2为本发明制备的磺化罗丹明插层水滑石复合物在 360纳米紫外光条 件下激发得到的荧光发射光谱;横坐标为波长,单位为纳米;纵坐标为强度; 图 3为本发明制备的磺化罗丹明插层水滑石复合物的紫外光谱图; 图 4为本发明制备的磺化罗丹明插层水滑石复合物的 X射线粉末衍射 (XRD ) 图; 横坐标为 2Θ, 单位为度; 纵坐标为强度;
图 5为本发明制备的磺化罗丹明插层水滑石复合物在 360纳米紫外光条 件下激发得到的荧光发射光谱;横坐标为波长,单位为纳米;纵坐标为强度。 具体实施方式
实施例 1
将 1.282克 Mg(N03)2 · 6H20和 0.938克 Α1(Ν03)3 · 9H20溶解于 100毫 升水中, 得到含有镁离子和铝离子的混合溶液 A, 其中, 镁离子的浓度为 0.05M,镁离子与铝离子的摩尔比为 2: 1;将 0.828克十二垸基苯磺酸钠 (DBS ) 和 0.069克磺化罗丹明 (RB ) (DBS与 RB的初始摩尔比为 100:5 ) 溶于 35 毫升去除了 C02的去离子水和 70毫升无水乙醇配制混合盐溶液 B。将 A, B 溶液均匀混合得到溶液 C
将 0.6克 NaOH溶于 105毫升去除了 C02的去离子水中得到溶液 D 将溶液 C和 D以均匀的流速通入全返混液膜反应器 (沈阳航天新光有 限公司生产, 型号为 JMS-50 ) 中充分反应, 并均匀混合 1分钟, 得到桨液。
将上述混合桨液 310毫升倒入内容积为 90毫升的聚四氟乙烯压力反应 容器中, 然后向该聚四氟乙烯压力反应容器中通入氮气, 将设备中的空气置 换, 并在密闭环境中, 在 100°C 0.5兆帕压力下进行晶化反应 24小时。
反应结束后, 将产物移出反应釜, 分别用无水乙醇和去除了 C02的去离 子水洗涤至洗涤液为无色, PH约为 7.0; 将样品在 70°C下真空干燥 18小时 后得到浅红色色粉体, 研磨后得到 DBS/RB/Mg-Al-LDH复合物, 它的分子 式为 [Mg2+ .66Al3+ .33(OH)2] 33+ (RB) - 6(DBS)- .314' ¾0。 对产物进行表征。
使用日本岛津公司的 XRD-6000型的 X射线衍射仪,得到罗丹明插层水 滑石复合物的 X射线粉末衍射 (XRD) 图, 如图 1所示。 由 XRD图可知, 初始摩尔比为 100:5的阴离子 RB和 DBS经反应进入水滑石层间, 出现了系 歹 ϋ (001) 取向的衍射峰, 003衍射峰出现在 3°左右, 其层间距为 3.2纳米, 排除了碳酸根进入水滑石层间的干扰, 证明了阴离子插层成功。
使用日本岛津公司 RF-5301PC型荧光分光光度计,得到罗丹明插层水滑 石复合物的荧光光谱图, 如图 2所示。 由该荧光光谱可知, 复合物的发射光 谱在 587纳米左右出峰, 发出橙红色光, 再次表明 RB分子成功进入层间。 使用日本岛津公司 UV-2501PC型紫外可见分光光度计, 得到罗丹明插层水 滑石复合物的紫外光谱, 如图 3所示, 证明该复合物中不存在染料聚集体, 实现了单分子发光。由时间分辨荧光分析法(英国 Edinburgh Instrument生产 的 FLS 920荧光光谱仪和 F900软件) 测得该复合物的荧光寿命在 3.71ns, 高于 10—5M的 RB稀溶液的荧光寿命 2.1ns。
实施例 2
将 1.282克 Mg(N03)2 · 6H20和 0.938克 Α1(Ν03)3 · 9H20溶解于 100毫 升水中, 得到含有镁离子和铝离子的混合溶液 A, 其中, 镁离子的浓度为 0.05M,镁离子与铝离子的摩尔比为 2: 1 ;将 0.792克十二垸基苯磺酸钠 (DBS ) 和 0.132克罗丹明 (RB) (DBS与 RB的初始摩尔比为 100:10)溶于 50毫升 去除了 C02的去离子水和 50毫升无水乙醇配制混合盐溶液 B。将 A和 B均 匀混合得到溶液 。
将 0.6克 NaOH溶于 100毫升去除了 C02的去离子水中得到溶液 D。 将溶液 C和 D倒入全返混液膜反应器 (沈阳航天新光有限公司生产, 型号为 JMS-50) 中充分反应, 并均匀混合 1分钟, 得到桨液。
将上述混合桨液 300毫升倒入内容积为 90毫升的聚四氟乙烯压力反应 容器中,然后向聚四氟乙烯压力反应容器中通入氮气,将设备中的空气置换, 并在密闭条件下, 在 120°C, 0.8兆帕压力下反应 36小时。
反应结束后, 将产物移出反应釜, 分别用无水乙醇和去除了 C02的去离 子水洗涤至洗涤液无色, PH约为 7.0; 将样品在 70°C下真空干燥 18小时后 得到浅红色色粉体, 研磨后得到 DBS/RB/Mg-Al-LDH复合物, 它的分子式 为[^/¾2+。.66 13+。.33(0¾2]()33+ ( 8)-,(088)-。.3' ¾0。 对产物进行表征。
使用日本岛津公司的 XRD-6000型的 X射线衍射仪, 得到罗丹明插层 水滑石复合物的 X射线粉末衍射(XRD )图, 如图 4所示。 由 XRD图可知, 初始摩尔比为 100: 10的阴离子 RB和 DBS经反应进入水滑石层间, 出现了 系列 (001) 取向的衍射峰, 003衍射峰出现在 3°左右, 其层间距为 3.36纳 米, 该层间距较实施例 1方法中得到的样品层间距有所增大。
使用日本岛津公司 RF-5301PC型荧光分光光度计, 得到罗丹明插层水 滑石复合物的荧光光谱图, 如图 5所示。 由该荧光光谱可知, 复合物的发射 光谱在 585纳米左右出峰,发出橙红色光,再次表明 RB分子成功进入层间。 与实施例 1方法中得到的样品相比, 其最大发射波长没有出现红移现象, 表 明没有 RB的聚集体存在。由时间分辨荧光分析法(英国 Edinburgh Instrument 生产的 FLS 920 荧光光谱仪和 F900 软件) 测得该复合材料的荧光寿命在 4.14ns, 高于 10—5M的 RB稀溶液的荧光寿命 2.1ns。

Claims

权利要求书
1、 一种磺化罗丹明插层水滑石复合物, 其特征在于, 该磺化罗丹明插层 水滑石复合物具有下式所示的组成:
[M2+ 1-xM3+ x(OH)2]x+A"yB-z- m¾0,
其中, M2+表示二价金属阳离子, 选自 Mg2+、 Co2+、 Ni2+、 Ca2+、 Cu2+、 Fe2+和 Mn2+中的一种或几种; M3+表示三价金属阳离子, 选自 Al3+、 Cr3+、 Ga3+、 In3+、 Co3+、 Fe3+和 V3+中的一种或几种; A—表示水滑石层间阴离子磺 化罗丹明阴离子, y表示磺化罗丹明阴离子的数量, B—表示水滑石层间阴离 子十二垸基苯磺酸根离子, z表示十二垸基苯磺酸根离子的数量, x=y+z, 1/5^x^ 1/3 , y与 z的比例为 0.01-0.2: 1 ; m表示结晶水的数量, 0.1 m 2。
2、 根据权利要求 1所述磺化罗丹明插层水滑石复合物, 其中, y与 z的 比例为 0.05-0.1:1
3、 根据权利要求 1所述的磺化罗丹明插层水滑石复合物, 其中, M2+选 自 Mg2+、 Zn2+和 Ca2+中的一种或几种, M3+为 Al3+和 /或 Fe3+
4、根据权利要求 1所述的磺化罗丹明插层水滑石复合物, 其中, 所述磺 化罗丹明插层水滑石复合物的层间距为 3.0-3.4纳米。
5、一种磺化罗丹明插层水滑石复合物的制备方法, 其特征在于, 该方法 包括如下步骤:
a、提供溶液 A,所述溶液 A含有可溶性二价金属阳离子 M2+和可溶性三 价金属阳离子 M3+,其中 M2+的浓度为 0.01-1.0M, M2+与 M3+的摩尔比为 2-4, M2+选自 Mg2+、 Co2+、 Ni2+、 Ca2+、 Cu2+、 Fe2+和 Mn2+中的一种或几种, M3+ 选自 Al3+、 Cr3+、 Ga3+、 In3+、 Co3+、 Fe3+和 V3+中的一种或几种; b、 提供溶液 B, 所述溶液 B含有磺化罗丹明、 十二垸基苯磺酸钠、 乙醇 和水, 磺化罗丹明和十二垸基苯磺酸钠的摩尔比为 0.01-0.2, 乙醇和水的体 积比为 1-3:1 ;
c、 将溶液 A与溶液 B混合得到混合溶液 C, 在该混合溶液 C中, 磺化 罗丹明和十二垸基苯磺酸钠的摩尔数总和与三价金属阳离子的摩尔数的比 值为 1-2:1 ;
d、 提供 NaOH和 /或 KOH溶液;
e、 将步骤 c得到的混合溶液 C与步骤 d的 NaOH和 /或 KOH溶液通入 全返混液膜反应器中接触 0.5-2分钟, 得到红色桨液, NaOH和 /或 KOH溶 液的用量使 NaOH和 /或 KOH的摩尔数为 M2+和 M3+的摩尔数总和的 2-2.2 倍;
f、 在惰性气氛下, 将步骤 e得到的红色桨液进行晶化, 然后回收固体产
6、根据权利要求 5所述的方法,其中,所述二价金属离子 M2+选自 Mg2+、 Zn2+和 Ca2+中的一种或几种, 所述三价金属离子 M3+为 Al3+和 /或 Fe3+
7、 根据权利要求 5所述的方法, 其中, 所述惰性气氛选自氢气、 氮气、 一氧化碳、 氨气和元素周期表零族气体中的一种或几种。
8、根据权利要求 5所述的方法, 其中, 在步骤 f中, 所述晶化反应的温 度为 90-160°C, 晶化反应的时间为 24-72小时, 晶化反应的压力为 0.4-1兆 帕。
PCT/CN2008/070890 2008-03-14 2008-05-06 磺化罗丹明插层水滑石复合物及其制备方法 WO2009111918A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810101930.0 2008-03-14
CN2008101019300A CN101255334B (zh) 2008-03-14 2008-03-14 罗丹明插层水滑石发光材料的制备方法

Publications (1)

Publication Number Publication Date
WO2009111918A1 true WO2009111918A1 (zh) 2009-09-17

Family

ID=39890453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/070890 WO2009111918A1 (zh) 2008-03-14 2008-05-06 磺化罗丹明插层水滑石复合物及其制备方法

Country Status (2)

Country Link
CN (1) CN101255334B (zh)
WO (1) WO2009111918A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101864293A (zh) * 2010-06-02 2010-10-20 北京化工大学 磺化花菁染料/水滑石复合薄膜及其制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101440281B (zh) * 2008-11-25 2011-11-23 北京化工大学 苯并咔唑插层水滑石复合发光材料及其制备方法
CN101497786B (zh) * 2009-03-02 2012-04-18 北京化工大学 一种磺化聚联苯与水滑石复合发光薄膜及其制备方法
CN101597490B (zh) * 2009-07-15 2012-06-27 北京化工大学 一种邻菲啰啉钌配合物与水滑石复合发光超薄膜及其制备方法
CN101649195B (zh) * 2009-09-08 2012-06-20 北京化工大学 一种热致变色复合薄膜材料及其制备方法
CN103319913A (zh) * 2013-06-18 2013-09-25 安科智慧城市技术(中国)有限公司 一种染料插层类水滑石纳米复合材料的制备方法
CN103965654B (zh) * 2014-04-30 2016-08-17 北京化工大学 一种耐光型超分子插层结构颜料及其制备方法
CN104845051A (zh) * 2015-04-13 2015-08-19 北京化工大学 一种中性共轭聚合物与水滑石复合薄膜及其制备方法
CN105214102B (zh) * 2015-10-22 2018-10-23 北京化工大学 一种超分子复合光热试剂及其在光热治疗和近红外成像方面的应用
CN107033876B (zh) * 2017-03-25 2020-01-10 巢湖学院 一种有机-无机荧光复合材料的制备方法
CN110065948B (zh) * 2018-01-23 2021-03-09 中国石油天然气股份有限公司 粘土的制备方法
CN113652228B (zh) * 2021-08-09 2022-06-03 西北大学 一种颜色可调型荧光mof-染料复合材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1715365A (zh) * 2005-07-22 2006-01-04 北京化工大学 具有荧光特性的稀土配合物插层水滑石及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RYO SASAI ET AL.: "Preparation of Hybrid Organic/Inorganic Luminescent Thin solid Thin solid Films with Highly Concentrated Laser-dye Cations.", CHEMISTRY LETTERS, vol. 34, no. 11, 2005, pages 1490 - 1491 *
RYO SASAI ET AL.: "Synthesis of Rhodamine 6G/Cationic Surfactant/Clay Hybrid Materials and its Luminescent Characterization.", CHEMISTRY LETTERS, vol. 32, no. 6, 2003, pages 550 - 551 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101864293A (zh) * 2010-06-02 2010-10-20 北京化工大学 磺化花菁染料/水滑石复合薄膜及其制备方法

Also Published As

Publication number Publication date
CN101255334B (zh) 2010-10-13
CN101255334A (zh) 2008-09-03

Similar Documents

Publication Publication Date Title
WO2009111918A1 (zh) 磺化罗丹明插层水滑石复合物及其制备方法
Smalenskaite et al. A comparative study of co-precipitation and sol-gel synthetic approaches to fabricate cerium-substituted MgAl layered double hydroxides with luminescence properties
Yu et al. Preparation of two dimensional layered double hydroxide nanosheets and their applications
Adam et al. The utilization of rice husk silica as a catalyst: review and recent progress
He et al. A micrometer-sized europium (iii)–organic framework for selective sensing of the Cr 2 O 7 2− anion and picric acid in water systems
Gong et al. Luminescent cadmium (II) coordination polymers of 1, 2, 4, 5-tetrakis (4-pyridylvinyl) benzene used as efficient multi-responsive sensors for toxic metal ions in water
US20080170978A1 (en) Clean method for preparing layered double hydroxides
Liu et al. A new two-dimensional layered germanate with in situ embedded carbon dots for optical temperature sensing
Wang et al. Preparation of interlayer surface tailored protonated double-layered perovskite H 2 CaTa 2 O 7 with n-alcohols, and their photocatalytic activity
Li et al. Preparation of 5-benzotriazolyl-4-hydroxy-3-sec-butylbenzenesulfonate anion-intercalated layered double hydroxide and its photostabilizing effect on polypropylene
Bhoi et al. Photocatalytic chemoselective aerobic oxidation of thiols to disulfides catalyzed by combustion synthesized bismuth tungstate nanoparticles in aqueous media
Nakagaki et al. Natural and synthetic layered hydroxide salts (LHS): Recent advances and application perspectives emphasizing catalysis
Ming et al. A new strategy for finely controlling the metal (oxide) coating on colloidal particles with tunable catalytic properties
CN110078135A (zh) 一种碳酸根型类水滑石单层纳米片的绿色制备方法
Islam et al. Pd-Nanoparticles@ layered double hydroxide/reduced graphene oxide (Pd NPs@ LDH/rGO) nanocomposite catalysts for highly efficient green reduction of aromatic nitro compounds
Wu et al. Three novel polyoxometalate-based inorganic–organic hybrid materials based on 2, 6-bis (1, 2, 4-triazol-1-yl) pyridine
CN115536059A (zh) 一种CsPbBr3纳米片及其制备方法和应用
JP2017513795A (ja) 合成層状鉱物粒子の連続的な調製方法
CN1041541A (zh) 催化剂
WO2018209665A1 (zh) 一种限域结构六面体形貌纳米镍基催化剂的制备方法及其催化加氢的应用
CN111054425A (zh) 一种水滑石/mcm-41介孔硅复合固体碱催化剂及其原位制备方法和应用
Foruzin et al. Microwave-assistant synthesis of Tartrazine/layered double hydroxide nano-hybrids with high photoluminescent properties: Influence of microwave energy
CN111153420B (zh) 一种镁铝水滑石纳米管及其制备方法
Leone et al. Poly (styrene)-graft-/rhodamine 6G–fluoromica hybrids: synthesis, characterization and photophysical properties
US11352264B2 (en) Method for preparing synthetic mineral particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08734246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08734246

Country of ref document: EP

Kind code of ref document: A1