WO2009110536A1 - Curable composition for nanoimprint, cured product using the same, method for producing the cured product, and member for liquid crystal display device - Google Patents

Curable composition for nanoimprint, cured product using the same, method for producing the cured product, and member for liquid crystal display device Download PDF

Info

Publication number
WO2009110536A1
WO2009110536A1 PCT/JP2009/054134 JP2009054134W WO2009110536A1 WO 2009110536 A1 WO2009110536 A1 WO 2009110536A1 JP 2009054134 W JP2009054134 W JP 2009054134W WO 2009110536 A1 WO2009110536 A1 WO 2009110536A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
curable composition
present
acrylate
meth
Prior art date
Application number
PCT/JP2009/054134
Other languages
French (fr)
Japanese (ja)
Inventor
裕之 米澤
丘 高柳
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN2009801074029A priority Critical patent/CN101959932A/en
Publication of WO2009110536A1 publication Critical patent/WO2009110536A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/16Cyclic ethers having four or more ring atoms
    • C08G65/18Oxetanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping

Definitions

  • the present invention relates to a curable composition for nanoimprint, a cured product using the same, a method for producing the same, and a member for a liquid crystal display device using the cured product.
  • the nanoimprint method has been developed by developing an embossing technique that is well-known in optical disc production, and mechanically pressing a mold master (generally called a mold, stamper, or template) with an uneven pattern on a resist.
  • a mold master generally called a mold, stamper, or template
  • This is a technology that precisely deforms and transfers fine patterns.
  • Once a mold is made, it is economical because it can be easily and repeatedly formed with fine structures such as nanostructures.
  • it is a nano-processing technology with few harmful wastes and emissions, so it can be applied to various fields in recent years. Is expected.
  • thermoimprint methods There are two types of nanoimprint methods: a thermal nanoimprint method using a thermoplastic resin as a material to be processed (for example, see Non-Patent Document 1) and an optical nanoimprint using a photocurable composition (for example, see Non-Patent Document 2).
  • the technology has been proposed.
  • the thermal nanoimprint method the mold is pressed onto a polymer resin heated to a temperature higher than the glass transition temperature, and after cooling, the mold is released to transfer the fine structure to the resin on the substrate. Since this method can be applied to various resin materials and glass materials, it is expected to be applied to various fields.
  • Patent Documents 1 and 2 below disclose thermal nanoimprinting methods that form a nanopattern at low cost using a thermoplastic resin.
  • the first technique is a case where a molded shape (pattern) itself has a function and can be applied as various nanotechnology element parts or structural members. Examples thereof include various micro / nano optical elements, high-density recording media, optical films, and structural members in flat panel displays.
  • the second technology is to build a laminated structure by simultaneous integral molding of microstructure and nanostructure and simple interlayer alignment, and try to apply it to ⁇ -TAS (Micro-Total Analysis System) and biochip fabrication. To do.
  • ⁇ -TAS Micro-Total Analysis System
  • biochip fabrication To do.
  • high-precision alignment and high integration are intended to be applied to the fabrication of high-density semiconductor integrated circuits and the fabrication of liquid crystal display transistors in place of conventional lithography. .
  • Pattern formation using an electron beam by an electron beam drawing apparatus or the like uses a method of drawing a mask pattern unlike a batch exposure method in pattern formation using a light source such as i-line or excimer laser. For this reason, the more patterns to be drawn, the longer the exposure (drawing) time, and the longer time it takes to form the pattern. For this reason, as the degree of integration of the semiconductor integrated circuit is dramatically increased to 256 mega, 1 giga, and 4 giga, the pattern formation time is correspondingly increased, and there is a concern that the throughput is remarkably deteriorated.
  • Patent Document 1 and Patent Document 3 below disclose a nanoimprint technique in which a silicon wafer is used as a stamper and a fine structure of 25 nanometers or less is formed by pattern transfer.
  • Patent Document 4 below discloses a composite composition using nanoimprints that is applied to the field of semiconductor microlithography.
  • nanoimprint lithography has been applied to the fabrication of semiconductor integrated circuits such as fine mold fabrication technology, mold durability, mold fabrication cost, mold-resin detachability, imprint uniformity, alignment accuracy, and inspection technology. Considerations for application are starting to increase.
  • optical nanoimprint lithography has recently attracted attention as an inexpensive alternative to conventional photolithography methods used in the manufacture of thin film transistors (TFTs) and electrode plates. Therefore, it has become necessary to develop a photo-curable resist that replaces the etching photoresist used in the conventional photolithography method.
  • a protective film provided on the color filter in order to impart resistance for example, photo-curing resins and thermosetting resins such as siloxane polymers, silicone polyimides, epoxy resins, and acrylic resins have been used for transparent permanent films for color filters (see Patent Documents 7 and 8 below).
  • these protective films in the formation of these protective films (permanent films), the uniformity of the coating film, adhesion to the substrate, high light transmittance after heat treatment exceeding 200 ° C., planarization characteristics, solvent resistance, scratch resistance Various characteristics such as these are required.
  • photocurable compositions comprising a resin, a photopolymerizable monomer and an initiator have generally been widely used in conventional photolithography methods (for example, patents).
  • Reference 9) The spacer generally forms a pattern having a size of about 10 ⁇ m to 20 ⁇ m by photolithography using a photocurable composition on a color filter substrate after forming a color filter or after forming the color filter protective film. Further, it is formed by heat curing by post-baking.
  • the spacer used in such a liquid crystal display is required to have high mechanical properties against external pressure, such as hardness, developability, pattern accuracy, and adhesion.
  • the coating uniformity of the photocurable composition As for the coating uniformity of the photocurable composition, the coating film thickness uniformity at the center and periphery of the substrate, dimensional uniformity due to higher resolution, film thickness, shape, etc., as the substrate becomes larger The demands are getting severe in various parts.
  • Non-Patent Document 3 a method of spinning after dropping in the center has been used as a resist coating method.
  • the resist application method by the discharge nozzle method is a method of applying a photoresist composition to the entire coating surface of the substrate by relatively moving the discharge nozzle and the substrate. For example, a plurality of nozzle holes are arranged in a line.
  • a method of adjusting the film thickness has been proposed. Therefore, in order to apply to these liquid crystal display element manufacturing fields, the coating uniformity on the substrate is required for the curable composition for nanoimprint.
  • Patent Documents 10 to 17 a technique for improving the coating property of a protective film such as a positive photoresist, a pigment-dispersed photoresist for producing a color filter or a magneto-optical disk
  • Patent Documents 10 to 17 a technique of adding various surfactants or the like
  • Patent Document 18 an example of using a photocurable resin containing a fluorosurfactant as an optical nanoimprint etching resist for manufacturing a semiconductor integrated circuit are disclosed.
  • a method for improving the substrate coating property of a curable composition for nanoimprinting that does not contain pigments, dyes, and organic solvents used for the permanent film has not been known so far.
  • the optical nanoimprint method it is necessary to improve the fluidity of the photocurable composition in the cavity of the concave portion of the mold surface where the pattern is formed. Moreover, it is necessary to improve the adhesiveness between a resist and a base material (a board
  • a base material a board
  • a liquid curable composition for optical nanoimprint is dropped onto a substrate such as a silicon wafer, quartz, glass, film, or other material such as a ceramic material, a metal, or a polymer, and approximately several tens nm to several It is applied with a film thickness of ⁇ m, a mold having fine irregularities with a pattern size of about several tens of nm to several tens of ⁇ m is pressed and pressurized, and the composition is cured by irradiating with light in the pressurized state. In general, a mold is released from the film to obtain a transferred pattern.
  • a base material or a mold when performing light irradiation in the state which pressurized the mold to the coating film, at least one of a base material or a mold needs to be transparent.
  • light irradiation is generally performed from the mold side.
  • an inorganic material such as quartz or sapphire that transmits UV light, a light-transmitting resin, or the like is often used as the mold material.
  • the optical nanoimprint method is (1) no heating / cooling process is required and high throughput is expected compared to the thermal nanoimprint method, and (2) imprinting at a low pressure is possible because a liquid composition is used.
  • Major advantages include (3) no dimensional change due to thermal expansion, (4) the mold is transparent and easy to align, and (5) a robust three-dimensional crosslinked body is obtained after curing. It is done. It is particularly suitable for semiconductor micromachining applications where alignment accuracy is required and for micromachining applications in the field of flat panel displays.
  • optical nanoimprint method Another feature of the optical nanoimprint method is that the resolution does not depend on the light source wavelength as compared with ordinary optical lithography. Therefore, expensive devices such as a stepper and an electron beam drawing device are also used for fine processing on the nanometer order. The feature is not required.
  • the optical nanoimprint method requires an equal-magnification mold, and since the mold and the resin are in contact, there are concerns about the durability and cost of the mold.
  • Molds used in optical nanoimprint lithography can be manufactured from various materials such as metals, semiconductors, ceramics, SOG (Spin On Glass), or certain plastics.
  • a flexible polydimethylsiloxane mold having a desired microstructure described in Patent Document 19 has been proposed.
  • various lithography methods can be used depending on the size of the structure and the specifications for its resolution.
  • Electron beam and x-ray lithography are typically used for structure dimensions below 300 nm.
  • Direct laser exposure and UV lithography are used for larger structures.
  • the optical nanoimprint method the releasability of the mold and the curable composition for optical nanoimprinting is important.
  • the mold and the surface treatment of the mold specifically, hydrogenated silsesquioxane or fluorinated ethylene propylene copolymer mold. Attempts have been made so far to solve the adhesion problem using slag.
  • the photo-curable resin applied to nanoimprint is roughly classified into radical polymerization type and ion polymerization type due to the difference in reaction mechanism, and these hybrid types are added.
  • Any type of curable composition can be used for nanoimprint applications, but since a wide range of materials can be selected, a radical polymerization type curable composition is generally used (for example, non-patent literature). 4).
  • a radical polymerization type curable composition a composition containing a monomer (monomer) or oligomer having a vinyl group or (meth) acryl group capable of radical polymerization and a photopolymerization initiator is generally used. It is done.
  • Non-Patent Document 5 discloses a composition that can be imprinted at low pressure and room temperature by using a low-viscosity and UV-curable monomer.
  • Non-Patent Document 6 the main requirement items shown in Non-Patent Document 6 below are applicability, substrate adhesion, low viscosity ( ⁇ 5 mPa ⁇ s), peelability, low cure shrinkage, fast curability, and the like.
  • a low-viscosity material in applications that require imprinting at a low pressure or a reduction in the remaining film ratio.
  • the refractive index of light, light transmittance, etc. are mentioned, for example.
  • Non-Patent Document 6 discloses a photocurable material having a viscosity of about 60 mPa ⁇ s (25 ° C.) as a material applied to such optical nanoimprint lithography.
  • Non-Patent Document 7 discloses a fluorine-containing photosensitive resin having a viscosity of 14.4 mPa ⁇ s whose main component is monomethacrylate and improved peelability.
  • the composition used in optical nanoimprinting there has been no report on a design guideline for a material to be adapted to each application although there is a description of a demand for viscosity.
  • Patent Documents 20 and 21 below disclose examples in which a photocurable resin containing a polymer having an isocyanate group is used for embossing for producing a relief hologram or a diffraction grating.
  • Patent Document 22 below discloses a curable composition for optical nanoimprinting for imprinting that contains a polymer, a photopolymerization initiator, and a viscosity modifier.
  • Non-Patent Document 8 includes (1) a functional acrylic monomer, (2) a functional acrylic monomer, and (3) a photocurable radical polymerizable composition in which a functional acrylic monomer and a photopolymerization initiator are combined.
  • a photo-cationic polymerizable composition containing a photocurable epoxy compound and a photoacid generator is applied to nanoimprint lithography to examine thermal stability and mold releasability.
  • Non-Patent Document 9 below discloses a technique for improving problems such as peelability between a photocurable resin and a mold, film shrinkage after curing, and reduction in sensitivity due to photopolymerization inhibition in the presence of oxygen (1).
  • a curable composition for optical nanoimprint which comprises a) a functional acrylic monomer, (2) a functional acrylic monomer, a silicone-containing monofunctional acrylic monomer, and a photopolymerization initiator.
  • Non-Patent Document 10 uses a surface-treated mold by applying a curable composition for optical nanoimprinting containing a monofunctional acrylic monomer, a silicone-containing monofunctional monomer, and a photopolymerization initiator on a silicone substrate. Thus, it is disclosed that pattern defects after molding are reduced. Further, in the following Non-Patent Document 11, a curable composition for optical nanoimprinting containing a silicone monomer, a trifunctional acrylic monomer, and a photopolymerization initiator is applied on a silicone substrate, and high resolution is achieved by using a SiO 2 mold. A composition having excellent coating uniformity is disclosed.
  • Non-Patent Document 12 discloses an example in which a 50 nm pattern size is formed by a cationic polymerizable composition in which a specific vinyl ether compound and a photoacid generator are combined. This composition is characterized by low viscosity and high curing speed, but it is stated that template peelability is an issue.
  • Non-Patent Documents 8 to 12 Although various photocurable resins in which an acrylic monomer, an acrylic polymer, and a vinyl ether compound having different functional groups are applied to optical nanoimprint lithography are disclosed, a curable composition is disclosed. Guidelines regarding material design such as preferred types, optimum monomer types, monomer combinations, optimum monomer or resist viscosity, preferred resist solution properties, and improved resist coatability are not fully disclosed. For this reason, a combination of preferable materials for widely applying the curable composition to optical nanoimprint lithography applications is not known, and curable compositions for optical nanoimprint capable of exhibiting satisfactory performance in various applications have been heretofore The actual situation was not proposed.
  • compositions disclosed in Non-Patent Documents 11 and 12 have low viscosity, but when both are photocured to form a pattern and subsequently subjected to heat treatment, the transmittance of the finished cured film is obtained. Is low (colored), and the hardness is insufficient, so that practical performance as a permanent film is not sufficient.
  • Non-Patent Documents 13 and 14 below propose inorganic / organic hybrid materials composed of a mixture of silica sol treated with a photofunctional cross-linking material, (meth) acrylic monomer, and photopolymerization initiator. Application has been reported. Further, Non-Patent Documents 13 and 14 report that a 200 nm line pattern formation example of an imprint material and a patterning up to a line width of 600 nm as a molding material are reported. However, this material also has problems such as insufficient releasability from the mold and insufficient hardness of the cured film, and is not always satisfactory.
  • Non-Patent Documents 13 and 14 low-viscosity materials are also disclosed, but both have low transmittance of the cured film after photocuring to form a pattern and subsequent heat treatment. (In other words, the cured film is colored) and the hardness is insufficient.
  • Patent Document 23 discloses a pattern forming method using a fluorine-containing curable material in order to improve the releasability from the mold, as well as colloidal silica subjected to surface treatment, and a specific ( A composition for a hard coat containing a (meth) acrylic monomer, a leveling agent, and a photopolymerization initiator is disclosed, and its application to an optical disk having both film hardness and low curing shrinkage has been reported.
  • these compositions have insufficient mold releasability and substrate coatability, and are difficult to apply to optical nanoimprint lithography. Further, when heat treatment is performed after photocuring, the pattern is colored, and it is difficult to apply as a permanent film requiring low transmittance and light transmittance.
  • Non-patent literature 15 and patent literature 24 have reported the curable composition containing polysiloxane for nanoimprint applications.
  • Patent Document 25 reports a composition for producing an optical article by a stamper method.
  • the main technical problems as a permanent film include pattern accuracy, adhesion, transparency after heat treatment exceeding 200 ° C., high mechanical properties (strength against external pressure), scratch resistance, flattening properties, There are many problems such as solvent resistance and reduction of outgas during heat treatment.
  • the nanoimprint curable composition is applied as a permanent film, the uniformity of the coating film, (2) transparency after heat treatment, and (3) scratch resistance, as in the case of a resist using a conventional acrylic resin, etc. Gender is important.
  • Non-Patent Document 15 and Patent Document 25 for nanoimprint applications.
  • the compositions reported in these documents are both highly viscous. For this reason, when forming a structure by a nanoimprint method using a large-sized substrate, the pattern accuracy decreases due to a decrease in the fluidity of the resist (composition) in the concave portion of the mold, and further within the substrate (that is, Thickness variation (at the center and end of the substrate) becomes a problem. However, this problem is not disclosed in Non-Patent Document 15 and Patent Document 25.
  • Patent Document 26 a composition for producing optical articles by a stamper method is reported in Patent Document 26 regarding a curable composition containing polysiloxane.
  • the stamper method it is generally possible to form a structure using a composition having a high stamper pressure and a high viscosity.
  • the optical nanoimprint application there arises a problem that the pattern accuracy is lowered and a thickness unevenness in the substrate surface.
  • compositions that have been known for use in inkjet compositions and protective films for magneto-optical disks, and curable compositions for optical nanoimprints that are used as etching resists are optical nanoimprints that are used in the production of permanent films.
  • the curable composition for use and the material the required characteristics are greatly different from the viewpoint of high-temperature heat treatment and mechanical strength. For this reason, if a photo-curable resin applied for inkjet, magneto-optical disk protective film or etching resist application is applied as it is as a permanent film resist, it is quite practical in terms of transparency, mechanical strength, solvent resistance, etc. No one can withstand.
  • various materials are disclosed for the curable composition for optical nanoimprint, there is no sufficient design guideline for the curable composition suitable for producing a permanent film. It is.
  • the present invention is to provide a curable composition for nanoimprinting that is excellent in photocurability, and particularly suitable for a transparent protective film such as a flat panel display or a permanent film such as a spacer, Specifically, a curable composition for nanoimprints excellent in pattern accuracy, surface hardness, light transmittance and heat resistance after heat curing, a cured product using the same, a method for producing the same, and a member for a liquid crystal display device The purpose is to provide.
  • a compound containing a compound having an oxetane ring, a functional acid anhydride, a photoradical polymerizable monomer, and a photoradical polymerization initiator, and having a radical polymerizable functional group in the composition A curable composition for nanoimprints, wherein the total content is 50 to 99.5% by mass.
  • a light transmittance of 400 nm is 95% or more when a thin film having a thickness of 3.0 ⁇ m is formed by exposure and heating.
  • a curable composition for nanoimprint is described in any one of [1] to [6].
  • a liquid crystal display device member comprising the cured product according to [8].
  • cured material characterized by including.
  • cured material using this, its manufacturing method, and the member for liquid crystal display devices can be provided.
  • (meth) acrylate represents “acrylate” and “methacrylate”
  • (meth) acryl represents “acryl” and “methacryl”
  • (meth) acryloyl” represents “ Represents “acryloyl” and “methacryloyl”.
  • “monomer” and “monomer” are synonymous.
  • the monomer in the present invention is distinguished from an oligomer and a polymer, and refers to a compound having a weight average molecular weight of 1,000 or less.
  • “functional group” refers to a group involved in polymerization.
  • the nanoimprint referred to in the present invention refers to pattern transfer having a size of about several tens of nanometers to several tens of micrometers, and is not limited to nano-order ones.
  • the curable composition for nanoimprinting of the present invention includes a compound having an oxetane ring, a functional acid anhydride, a photoradical polymerizable monomer, a photo A radical polymerization initiator, and the total content of molecules having radical polymerizable functional groups in the composition is 50 to 99.5% by mass.
  • the composition of the present invention contains a compound having an oxetane ring and a functional acid anhydride that is a curing agent in addition to the photoradical polymerizable monomer and the photoradical polymerization initiator, so that it is photocurable. In addition, it has thermosetting properties. Thereby, after hardening a composition by light irradiation, the composition of this invention can raise surface hardness etc. more by heating by a heating process further.
  • the curable composition for nanoimprints of the present invention can be widely used for optical nanoimprint lithography, and can have the following characteristics. (1) Since the composition of the present invention is excellent in solution fluidity at room temperature, the composition easily flows into the cavity of the mold recess, and the atmosphere is difficult to be taken in. In any of the recesses, it is difficult for residues to remain after photocuring. (2) The cured film after curing the composition of the present invention has excellent mechanical properties, excellent adhesion between the coating film and the substrate, and excellent peelability between the coating film and the mold. A good pattern can be formed because the pattern is not broken when the film is peeled off, and the surface of the coating film is not threaded to cause surface roughening (good pattern accuracy).
  • the curable composition for nanoimprints of the present invention is, for example, a member for semiconductor integrated circuits and liquid crystal display devices that have been difficult to develop (particularly, thin film transistors for liquid crystal displays, protective films for liquid crystal color filters, spacers, etc. And other applications such as partition materials for plasma display panels, flat screens, micro electromechanical systems (MEMS), sensor elements, optical disks, and high-density memories.
  • MEMS micro electromechanical systems
  • Magnetic recording media such as discs, optical parts such as diffraction grating relief holograms, nanodevices, optical devices, optical films and polarizing elements, organic transistors, color filters, overcoat layers, column materials, liquid crystal alignment rib materials, microlenses Array, immunoassay chip, DNA separation chip , Microreactors, nanobio devices, optical waveguides, can also be widely applied to manufacturing, such as an optical filter, photonic crystal.
  • the total content of compounds having radically polymerizable functional groups in the composition is 50 to 99.5% by mass.
  • the “compound having a radically polymerizable functional group” is a compound having a radically polymerizable functional group having an ethylenically unsaturated bond such as a (meth) acryl group, a vinyl group, or an allyl group.
  • the compound having an oxetane ring in the present invention described later is oxetane (meth) acrylate
  • the (meth) acryl group is a radical polymerizable functional group, it corresponds to the compound having the radical polymerizable functional group. To do.
  • the total content of the compound having a radical polymerizable functional group in the composition of the present invention is less than 50% by mass, it cannot be sufficiently cured even by light irradiation, and the mold pattern cannot be accurately transferred. In addition, physical properties such as hardness of the cured film are insufficient. Further, when the total content of the compound having a radical polymerizable functional group in the composition of the present invention exceeds 95.5% by mass, additives such as a photo radical polymerization initiator and a surfactant do not function sufficiently. The pattern accuracy and the physical properties of the cured film are deteriorated. From the viewpoint of pattern accuracy and cured film physical properties, the total content of the compound having a radical polymerizable functional group in the composition of the present invention is preferably 60 to 99% by mass, and more preferably 70 to 98% by mass.
  • the curable composition for nanoimprinting of the present invention contains a compound having an oxetane ring (hereinafter sometimes simply referred to as “oxetane compound”). Since the composition of the present invention contains a compound having an oxetane ring, excellent hardness can be obtained by heating.
  • the number of oxetane ring structures (oxetanyl groups) contained in the compound having an oxetane ring in the present invention is preferably 1 to 4, and more preferably 1 to 3, from the viewpoint of curing speed and cured film properties.
  • the total number of carbon atoms of the compound having an oxetane ring is preferably 5 to 50, and more preferably 5 to 20 from the viewpoint of reducing the viscosity of the composition.
  • the molecular weight of the compound having an oxetane ring in the present invention is preferably from 100 to 1,000, and more preferably from 100 to 400, from the viewpoint of reducing the viscosity of the composition.
  • the compound having an oxetane ring in the present invention preferably has a photoradically polymerizable functional group.
  • radical photopolymerizable functional group examples include a functional group having an ethylenically unsaturated bond, and a (meth) acryl group, a vinyl group, an allyl group, and a styryl group are preferable.
  • the number of radically polymerizable groups contained in the compound having an oxetane ring in the present invention is preferably 1 to 4, more preferably 1 to 2, from the viewpoint of pattern accuracy during light irradiation and adhesion to the substrate.
  • the compound having an oxetane ring contained in the composition of the present invention may be one type or two or more types.
  • an oxetane compound having a photoradically polymerizable functional group and an oxetane compound not having this may be used in combination.
  • the compound (x) which has a photoradically polymerizable functional group, and the oxetane compound (y) which does not have this as the content ratio (x: y, x reference
  • the content of the compound having an oxetane ring in the entire composition is preferably 5 to 50% by mass from the viewpoint of pattern accuracy after light irradiation, and is 10 to 30% by mass. Further preferred.
  • the compound having an oxetane ring in the present invention has a photo-radical polymerizable functional group, the content thereof, as described above, considers the content of the compound having a radical polymerizable functional group in the composition of the present invention. Can be determined.
  • the content of the oxetane compound having a photoradically polymerizable functional group is related to the content of the compound having another radical polymerizable functional group or the content of the oxetane compound having no photoradically polymerizable functional group. It is determined appropriately from the relationship.
  • Examples of the compound having an oxetanyl group in the present invention include 3-ethyl-3-hydroxymethyloxetane (trade name: OXT-101, manufactured by Toagosei Co., Ltd.), 1,4-bis [[(3-ethyl- 3-Oxetanyl) methoxy] methyl] benzene (trade name: OXT-121, manufactured by Toagosei Co., Ltd.), 3-ethyl-3- (phenoxymethyl) oxetane (trade name: OXT-211, manufactured by Toagosei Co., Ltd.) ), Di [1-ethyl (3-oxetanyl)] methyl ether (trade name: OXT-221, manufactured by Toagosei Co., Ltd.), 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane (trade name: OXT-212, manufactured by Toagosei Co., Ltd
  • the curable composition for nanoimprinting of the present invention contains a functional acid anhydride.
  • the acid anhydride compound in the present invention functions as a curing agent for the compound having an oxetane ring. Since the composition of the present invention contains a functional acid anhydride, a high surface hardness can be obtained after heat curing.
  • the “functional acid anhydride” means a compound obtained by dehydration condensation of two molecules of oxo acid and chemically bonded to other functional groups by heating or the like.
  • Examples of the functional acid anhydride in the present invention include phthalic anhydrides, citraconic anhydrides, succinic anhydrides, propionic anhydrides, maleic anhydrides, acetic anhydrides, and the like, from the viewpoint of viscosity reduction and composition stability. Therefore, phthalic anhydrides and maleic anhydrides are preferable.
  • the total number of carbon atoms of the functional acid anhydride in the present invention is preferably 10 to 100, more preferably 10 to 50, from the viewpoint of reducing the viscosity of the composition.
  • the molecular weight of the functional acid anhydride in the present invention is preferably from 100 to 1,000, more preferably from 100 to 500, from the viewpoint of reducing the viscosity of the composition.
  • the functional acid anhydride in the present invention preferably has a radically polymerizable functional group.
  • the photoradical polymerizable functional group include a functional group having an ethylenically unsaturated bond, and a (meth) acryl group, a vinyl group, an allyl group, and a styryl group are preferable.
  • the number of radical photopolymerizable groups contained in the functional acid anhydride in the present invention is preferably 1 to 3, more preferably 1 to 2, from the viewpoint of pattern accuracy during light irradiation and adhesion to the substrate. 1 type may be sufficient as the functional acid anhydride contained in the composition of this invention, and 2 or more types may be sufficient as it.
  • the composition of this invention may use together the functional acid anhydride which has a photoradically polymerizable functional group, and the functional acid anhydride which does not have this.
  • the compound (q) which has a radical photopolymerizable functional group, and the functional acid anhydride (w) which does not have this as the content ratio (q: w, q reference
  • the content of the functional acid anhydride in the entire composition is preferably 5 to 50% by mass, and preferably 10 to 30% by mass from the viewpoint of pattern accuracy after light irradiation. Further preferred.
  • the functional acid anhydride in the present invention has a photo-radical polymerizable functional group
  • the content thereof considers the content of the compound having a radical polymerizable functional group in the composition of the present invention. Can be determined.
  • the content of the functional acid anhydride having a photoradically polymerizable functional group is related to the content of a compound having another radical polymerizable functional group or a functional acid having no photoradically polymerizable functional group. It is determined appropriately from the relationship with the anhydride content.
  • the content ratio (a: b, a basis) of the compound (a) having a oxetane ring and the functional acid anhydride (b) in the present invention is unreacted. From the viewpoint of minimizing the amount of functional groups, 3/1 to 1/3 is preferable, and 2/1 to 1/2 is more preferable.
  • Examples of the functional acid anhydride in the present invention include methyl-1,2,3,6-tetrahydrophthalic anhydride (trade name: Epicron B570, manufactured by Dainippon Ink and Chemicals), methyl-hexahydrophthalic anhydride.
  • the curable composition for nanoimprinting of the present invention contains a photoradical polymerizable monomer. Since the composition of the present invention contains a photo-radically polymerizable monomer, good pattern accuracy can be obtained after light irradiation.
  • the “photo radical polymerizable monomer” means a monomer capable of causing a polymerization reaction by light irradiation to form a high molecular weight product.
  • the main function of the photoradically polymerizable monomer used in the present invention is appropriately selected for the purpose of adjusting the viscosity of the composition and the mechanical properties of the cured film. From the viewpoint of adjusting the viscosity of the composition, it is preferable to use a low-viscosity photo-radically polymerizable monomer.
  • the viscosity of the composition is usually preferably 18 mPa ⁇ s or less, and for that purpose, a polymerizable monomer having a viscosity as low as possible is used. preferable.
  • the reduction in viscosity of photoradical polymerizable monomers can be achieved by taking low molecular weight and low molecular interactions into consideration. Can be achieved.
  • the radical photopolymerizable monomer used in the present invention is preferably a compound having a viscosity of 100 mPa ⁇ s or less, more preferably 50 mPa ⁇ s or less, particularly preferably 10 mPa ⁇ s or less, from the viewpoint of adjusting the viscosity of the composition.
  • the weight average molecular weight of the photoradically polymerizable monomer in the present invention is preferably 500 or less, more preferably 100 to 400, and particularly preferably 100 to 300, from the viewpoint of adjusting the viscosity of the composition.
  • Examples of the photoradically polymerizable functional group possessed by the photoradically polymerizable monomer in the present invention include a functional group having an ethylenically unsaturated bond, such as (meth) acryl group, vinyl group, allyl group, styryl. Groups are preferred. 1 type may be sufficient as the radical photopolymerizable monomer contained in the composition of this invention, and 2 or more types may be sufficient as it. Further, the composition of the present invention comprises a photoradical polymerizable monomer having a photoradically polymerizable functional group and a photoradical polymerizable monomer having no photoradical polymerizable functional group (for example, a polymerizable monomer having a cationic polymerizable group). (Mer) may be used in combination.
  • a photoradical polymerizable monomer having a photoradically polymerizable functional group and a photoradical polymerizable monomer having no photoradical polymerizable functional group (for example, a polymeriz
  • the polymerizable monomer used in the present invention is a combination of a low-viscosity monomer for adjusting viscosity and a polyfunctional monomer for imparting mechanical properties of a cured film, or an oxetane compound or a functional acid anhydride in the present invention. It is selected comprehensively considering the combination of objects.
  • the content of the photoradically polymerizable monomer in the entire composition is preferably 20 to 90% by mass, and preferably 30 to 70% by mass from the viewpoint of pattern accuracy after light irradiation. % Is more preferable.
  • the content of the photoradical polymerizable monomer in the present invention is determined in consideration of the content of the compound having a radical polymerizable functional group in the composition of the present invention as described above.
  • silsesquioxane compound only one kind may be contained, or two or more kinds thereof may be contained.
  • the silsesquioxane compound is preferably contained in a proportion of 1 to 40% by mass, more preferably 1 to 20% by mass. By setting it as such a range, the composition viscosity and the mechanical characteristic of a cured film can be made compatible.
  • Examples of the photoradical polymerizable monomer in the present invention include a polymerizable unsaturated monomer having one ethylenically unsaturated bond-containing group (monofunctional polymerizable unsaturated monomer). Specifically, 2-acryloyloxyethyl phthalate, 2-acryloyloxy 2-hydroxyethyl phthalate, 2-acryloyloxyethyl hexahydrophthalate, 2-acryloyloxypropyl phthalate, 2-ethyl-2-butylpropanediol acrylate 2-ethylhexyl (meth) acrylate, 2-ethylhexyl carbitol (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-methoxyethyl (Meth) acrylate, 3-methoxybutyl (meth) acrylate, 4-hydroxy
  • a bifunctional polymerizable unsaturated monomer having two ethylenically unsaturated bond-containing groups can also be preferably used.
  • the bifunctional polymerizable unsaturated monomer include diethylene glycol monoethyl ether (meth) acrylate, dimethylol dicyclopentane di (meth) acrylate, di (meth) acrylated isocyanurate, 1,3-butylene glycol.
  • neopentyl glycol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, neopentyl hydroxypivalate Glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl di (meth) acrylate and the like are preferably used in the present invention. It is done.
  • a polyfunctional polymerizable unsaturated monomer having three or more ethylenically unsaturated bond-containing groups can also be preferably used.
  • the polyfunctional polymerizable unsaturated monomer include ECH-modified glycerol tri (meth) acrylate, EO-modified glycerol tri (meth) acrylate, PO-modified glycerol tri (meth) acrylate, pentaerythritol triacrylate, and EO-modified phosphorus.
  • Acid triacrylate trimethylolpropane tri (meth) acrylate, caprolactone-modified trimethylolpropane tri (meth) acrylate, EO-modified trimethylolpropane tri (meth) acrylate, PO-modified trimethylolpropane tri (meth) acrylate, tris (acryloxy) Ethyl) isocyanurate, dipentaerythritol hexa (meth) acrylate, caprolactone-modified dipentaerythritol hexa (meth) acrylate, dipentaerythritol Roxypenta (meth) acrylate, alkyl-modified dipentaerythritol penta (meth) acrylate, dipentaerythritol poly (meth) acrylate, alkyl-modified dipentaerythritol tri (meth) acrylate, ditrimethylolpropane tetra (me
  • EO-modified glycerol tri (meth) acrylate PO-modified glycerol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, EO-modified trimethylolpropane tri (meth) acrylate, PO-modified trimethylolpropane tri (Meth) acrylate, dipentaerythritol hexa (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, pentaerythritol tetra (meth) acrylate and the like are preferably used in the present invention.
  • a vinyl ether compound may be used as the radical photopolymerizable monomer used in the present invention.
  • the vinyl ether compound can be appropriately selected from known ones such as 2-ethylhexyl vinyl ether, butanediol-1,4-divinyl ether, diethylene glycol monovinyl ether, diethylene glycol monovinyl ether, ethylene glycol divinyl ether, triethylene glycol divinyl ether.
  • vinyl ether compounds are, for example, the method described in Stephen C. Lapin, Polymers Paint Paint, Journal 179 (4237), 321 (1988), that is, the reaction of a polyhydric alcohol or polyhydric phenol with acetylene, or They can be synthesized by the reaction of a polyhydric alcohol or polyhydric phenol and a halogenated alkyl vinyl ether, and these can be used singly or in combination of two or more.
  • a styrene derivative can also be employed as the radical photopolymerizable monomer used in the present invention.
  • the styrene derivative include p-methoxystyrene, p-methoxy- ⁇ -methylstyrene, p-hydroxystyrene, and the like.
  • vinyl naphthalene derivatives can also be used.
  • 1-vinylnaphthalene ⁇ -methyl-1-vinylnaphthalene, ⁇ -methyl-1-vinylnaphthalene, 4-methyl-1-vinylnaphthalene 4-methoxy-1-vinylnaphthalene and the like.
  • trifluoroethyl (meth) acrylate pentafluoroethyl (meth) acrylate, (perfluorobutyl) ethyl (meth) acrylate, perfluorobutyl-hydroxypropyl
  • Compounds having a fluorine atom such as (meth) acrylate, (perfluorohexyl) ethyl (meth) acrylate, octafluoropentyl (meth) acrylate, perfluorooctylethyl (meth) acrylate and tetrafluoropropyl (meth) acrylate are also used in the present invention. It can be used as a photoradical polymerizable monomer or used in combination with the photoradical polymerizable monomer in the present invention.
  • propenyl ether and butenyl ether can be blended as the radical photopolymerizable monomer used in the present invention.
  • a compound having a radical polymerizable group and an oxetane ring, a polymerizable acid anhydride, a photo radical polymerizable monomer hereinafter, these are collectively referred to as “polymerizable unsaturated monomer”.
  • the monofunctional polymerizable unsaturated monomer is usually used as a reactive diluent and is effective in reducing the viscosity of the composition of the present invention. Usually, 10 mass of the total polymerizable unsaturated monomer. % Or more is added.
  • the monofunctional polymerizable unsaturated monomer is better as a reactive diluent, it is preferable to add 10% by mass or more of the total polymerizable unsaturated monomer.
  • the monomer having two unsaturated bond-containing groups is preferably 90% by mass or less, more preferably 80% by mass or less, and particularly preferably 80% by mass or less of the total polymerizable unsaturated monomer. Preferably, it is added in a range of 70% by mass or less.
  • the ratio of the monofunctional and bifunctional polymerizable unsaturated monomer is preferably 1 to 95% by mass, more preferably 3 to 95% by mass, and particularly preferably 5 to 90% by mass of the total polymerizable unsaturated monomer. It is added in the range of mass%.
  • the ratio of the polyfunctional polymerizable unsaturated monomer having 3 or more unsaturated bond-containing groups is preferably 80% by mass or less, more preferably 70% by mass or less, and particularly preferably the total polymerizable unsaturated monomer. Is added in a range of 60% by mass or less. Since the viscosity of a composition can be lowered
  • the curable composition for nanoimprints of the present invention contains a radical photopolymerization initiator.
  • the composition of this invention can make the pattern precision after light irradiation favorable by including the radical photopolymerization initiator which starts radical polymerization reaction by light irradiation.
  • Photoradical polymerization initiator The content of the photoradical polymerization initiator used in the present invention is, for example, preferably from 0.1 to 15 mass%, more preferably from 0.2 to 12 mass%, based on the entire composition. Particularly preferred is 0.3 to 10% by mass. When using 2 or more types of photoinitiators, the total amount becomes the said range.
  • the ratio of the radical photopolymerization initiator When the ratio of the radical photopolymerization initiator is 0.1% by mass or more, the sensitivity (fast curability), resolution, line edge roughness, and coating film strength tend to be improved, which is preferable. On the other hand, when the ratio of the radical photopolymerization initiator is 15% by mass or less, the light transmittance, the colorability, the handleability and the like tend to be improved, which is preferable.
  • various addition amounts of preferred photopolymerization initiators and / or photoacid generators have been studied for ink jet compositions and dye display / color pigment compositions for liquid crystal display color filters, but for nanoimprinting.
  • a preferred photopolymerization initiator and / or photoacid generator addition amount for the curable composition for photo nanoimprint lithography is not reported. That is, in a system containing dyes and / or pigments, these may act as radical trapping agents, affecting the photopolymerizability and sensitivity. In consideration of this point, the amount of the photopolymerization initiator added is optimized in these applications. On the other hand, in the composition of the present invention, the dye and / or pigment is not an essential component, and the optimum range of the photopolymerization initiator is different from that in the field of an ink jet composition or a liquid crystal display color filter composition. There is.
  • radical photopolymerization initiator used in the present invention a compound having activity with respect to the wavelength of the light source to be used is blended to generate an appropriate active species.
  • radical photopolymerization initiator used in the present invention for example, a commercially available initiator can be used. As these examples, for example, those described in paragraph No. 0091 of JP-A No. 2008-105414 can be preferably used.
  • a photosensitizer can be added to the curable composition for nanoimprinting of the present invention to adjust the wavelength in the UV region.
  • Typical sensitizers that can be used in the present invention include those disclosed in Crivello [JVCrivello, Adv. In Polymers Sci, 62, 1 (1984)], specifically pyrene.
  • Perylene acridine orange, thioxanthone, 2-chlorothioxanthone, benzoflavine, N-vinylcarbazole, 9,10-dibutoxyanthracene, anthraquinone, coumarin, ketocoumarin, phenanthrene, camphorquinone, phenothiazine derivatives and the like.
  • the curable composition for nanoimprinting of the present invention may contain a surfactant.
  • the surfactant used in the present invention contains, for example, 0.001 to 5% by mass in the total composition, preferably 0.002 to 4% by mass, and more preferably 0.005 to 3% by mass. It is. When using 2 or more types of surfactant, the total amount becomes the said range. The total amount is in the above range.
  • the surfactant is in the range of 0.001 to 5% by mass in the composition, the effect of coating uniformity is good, and mold transfer characteristics are hardly deteriorated due to excessive surfactant.
  • the surfactant preferably includes at least one of a fluorine-based surfactant, a silicone-based surfactant, and a fluorine / silicone-based surfactant, and includes both a fluorine-based surfactant and a silicone-based surfactant.
  • it preferably contains a fluorine / silicone surfactant, and most preferably contains a fluorine / silicone surfactant.
  • the fluorine-based surfactant and the silicone-based surfactant are preferably nonionic surfactants.
  • the “fluorine / silicone surfactant” refers to one having both requirements of a fluorine surfactant and a silicone surfactant.
  • a silicon wafer for manufacturing a semiconductor element a glass square substrate for manufacturing a liquid crystal element, a chromium film, a molybdenum film, a molybdenum alloy film, a tantalum film, a tantalum alloy film, a silicon nitride film, Striation that occurs when the nanoimprint curable composition of the present invention is applied to a substrate on which various films are formed, such as an amorphous silicone film, an indium oxide (ITO) film doped with tin oxide, and a tin oxide film, It becomes possible to solve the problem of poor coating such as a scale-like pattern (unevenness of drying of the resist film).
  • ITO indium oxide
  • the fluidity of the composition of the present invention into the cavity of the mold recess is improved, the peelability between the mold and the resist is improved, the adhesion between the resist and the substrate is improved, the viscosity of the composition is decreased, etc. Is possible.
  • the nanoimprint composition of the present invention can significantly improve the coating uniformity by adding the surfactant, and in a coating using a spin coater or a slit scan coater, good coating suitability regardless of the substrate size. Is obtained.
  • nonionic fluorosurfactants examples include trade names Fluorard FC-430 and FC-431 (manufactured by Sumitomo 3M Co., Ltd.), trade names Surflon S-382 (Asahi Glass ( EFTOP EF-122A, 122B, 122C, EF-121, EF-126, EF-127, MF-100 (manufactured by Tochem Products), trade names PF-636, PF-6320, PF -656, PF-6520 (all OMNOVA Solutions, Inc.), trade names FT250, FT251, DFX18 (all manufactured by Neos), trade names Unidyne DS-401, DS-403, DS-451 (all All are made by Daikin Industries, Ltd.) and trade names Megafuk 171, 172, 173, 178K, 178A (all are Dainichi) Ink and Chemicals Co., Ltd.) and the like.
  • nonionic silicone surfactant examples include trade name SI-10 series (manufactured by Takemoto Yushi Co., Ltd.), MegaFac Paintad 31 (manufactured by Dainippon Ink & Chemicals, Inc.), KP -341 (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • fluorine / silicone surfactant examples include trade names X-70-090, X-70-091, X-70-092, X-70-093 (all Shin-Etsu Chemical Co., Ltd. )), And trade names Megafuk R-08 and XRB-4 (both manufactured by Dainippon Ink & Chemicals, Inc.).
  • the curable composition for nanoimprints of the present invention contains an antioxidant.
  • the content of the antioxidant used in the present invention is, for example, 0.01 to 10% by mass, preferably 0.2 to 5% by mass in the total composition. When using 2 or more types of antioxidant, the total amount becomes the said range.
  • the antioxidant suppresses fading caused by heat or light irradiation and fading caused by various oxidizing gases such as ozone, active oxygen, NO x , SO x (X is an integer).
  • an antioxidant there is an advantage that coloring of a cured film can be prevented and a reduction in film thickness due to decomposition can be reduced.
  • antioxidants include hydrazides, hindered amine antioxidants, nitrogen-containing heterocyclic mercapto compounds, thioether antioxidants, hindered phenol antioxidants, ascorbic acids, zinc sulfate, thiocyanates, Examples include thiourea derivatives, sugars, nitrites, sulfites, thiosulfates, hydroxylamine derivatives, and the like.
  • hindered phenol antioxidants and thioether antioxidants are particularly preferable from the viewpoint of coloring the cured film and reducing the film thickness.
  • antioxidants Commercially available products of the antioxidants include trade names “Irganox 1010, 1035, 1076, 1222 (manufactured by Ciba Geigy Co., Ltd.), trade names“ Antigene P, 3C, FR, Sumilizer S, and Sumilizer GA80 (Sumitomo Chemical Industries, Ltd.).
  • the composition of the present invention includes a polymer component, a release agent, an organometallic coupling agent, a polymerization inhibitor, an ultraviolet absorber, a light stabilizer, an anti-aging agent, a plasticizer, and an adhesive.
  • Accelerators, thermal polymerization initiators, photobase generators, colorants, elastomer particles, photoacid multipliers, basic compounds, and other flow regulators, antifoaming agents, dispersants, and the like may be added.
  • a polyfunctional oligomer having a molecular weight higher than that of the other polyfunctional polymerizable monomer may be blended within a range that achieves the object of the present invention.
  • the polyfunctional oligomer having photo-radical polymerizability include various acrylate oligomers such as ester acrylate, polyurethane acrylate, polyether acrylate, and epoxy acrylate, and hydrolysis condensation products of trimethoxysilylpropyl acrylate.
  • the addition amount of the oligomer component is preferably 0 to 30% by mass, more preferably 0 to 20% by mass, further preferably 0 to 10% by mass, and most preferably 0 to 5% by mass with respect to the component excluding the solvent of the composition. % By mass.
  • the curable composition for nanoimprinting of the present invention may further contain a polymer component from the viewpoint of improving imprintability and curability.
  • the polymer component is preferably a polymer having a polymerizable functional group in the side chain.
  • the weight average molecular weight of the polymer component is preferably from 2,000 to 100,000, more preferably from 5,000 to 50,000, from the viewpoint of compatibility with the polymerizable compound.
  • the addition amount of the polymer component is preferably 0 to 30% by mass, more preferably 0 to 20% by mass, further preferably 0 to 10% by mass, and most preferably 2% by mass or less, relative to the component excluding the solvent of the composition. It is. Further, from the viewpoint of pattern formability, it is preferable that the resin component is as few as possible, and it is preferable that the resin component is not included except for surfactants and trace amounts of additives.
  • a release agent can be arbitrarily blended in the composition of the present invention. Specifically, it is added for the purpose of enabling the mold pressed against the layer of the composition of the present invention to be peeled cleanly without causing the resin layer to become rough or take off the plate.
  • the release agent include conventionally known release agents such as silicone-based release agents, polyethylene wax, amide wax, solid wax such as Teflon powder (Teflon is a registered trademark), fluorine-based compounds, phosphate ester-based compounds, etc. Can also be used.
  • these mold release agents can be adhered to the mold.
  • the silicone-based mold release agent has particularly good releasability from the mold when combined with the photo-curable resin used in the present invention, and the phenomenon of taking a plate hardly occurs.
  • the silicone release agent is a release agent having an organopolysiloxane structure as a basic structure, and examples thereof include unmodified or modified silicone oil, polysiloxane containing trimethylsiloxysilicate, and silicone acrylic resin. Further, it is possible to apply a silicone leveling agent generally used in a hard coat composition.
  • the modified silicone oil is obtained by modifying the side chain and / or terminal of polysiloxane, and is classified into a reactive silicone oil and a non-reactive silicone oil.
  • the reactive silicone oil include amino modification, epoxy modification, carboxyl modification, carbinol modification, methacryl modification, mercapto modification, phenol modification, one-end reactivity, and different functional group modification.
  • the non-reactive silicone oil include polyether modification, methylstyryl modification, alkyl modification, higher fatty ester modification, hydrophilic special modification, higher alkoxy modification, higher fatty acid modification, and fluorine modification. Two or more modification methods as described above may be performed on one polysiloxane molecule.
  • the modified silicone oil preferably has an appropriate compatibility with the composition components.
  • a reactive silicone oil that is reactive with other coating film forming components blended as necessary in the composition it is chemically bonded in the cured film obtained by curing the composition of the present invention. Therefore, since it is fixed, problems such as adhesion inhibition, contamination, and deterioration of the cured film are unlikely to occur. In particular, it is effective for improving the adhesion with the vapor deposition layer in the vapor deposition step.
  • silicone modified with a photocurable functional group such as (meth) acryloyl-modified silicone or vinyl-modified silicone, it is excellent in characteristics after curing because it is crosslinked with the composition of the present invention.
  • Polysiloxane containing trimethylsiloxysilicic acid is easy to bleed out on the surface and has excellent releasability, excellent adhesion even when bleeded out to the surface, and excellent adhesion to metal deposition and overcoat layer. This is preferable.
  • the release agent can be added alone or in combination of two or more.
  • a release agent When a release agent is added to the curable composition for nanoimprints of the present invention, it is preferably blended in a proportion of 0.001 to 10% by mass in the total amount of the composition, and added in a range of 0.01 to 5% by mass. More preferably.
  • the content of the release agent is in the range of 0.01 to 5% by mass, the effect of improving the peelability between the mold and the curable composition layer for nanoimprinting is improved, and further due to the repellency when the composition is applied.
  • the problem of surface roughness of the coating film occurs, the adhesion of the substrate itself or the adjacent layer, for example, the deposited layer in the product, or the destruction of the film during transfer (film strength becomes too weak) occurs. Can be suppressed.
  • an organic metal coupling agent may be blended in order to improve the heat resistance, strength, or adhesion to the metal vapor deposition layer of the surface structure having a fine concavo-convex pattern.
  • the organometallic coupling agent is effective because it has an effect of promoting the thermosetting reaction.
  • various coupling agents such as a silane coupling agent, a titanium coupling agent, a zirconium coupling agent, an aluminum coupling agent, a tin coupling agent, can be used, for example.
  • silane coupling agent examples include vinyl silanes such as vinyltrichlorosilane, vinyltris ( ⁇ -methoxyethoxy) silane, vinyltriethoxysilane, and vinyltrimethoxysilane; ⁇ -methacryloxypropyl Trimethoxysilane; epoxy silane such as ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane; N- ⁇ - (amino Aminosilanes such as ethyl) - ⁇ -aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyltrimethoxysilane, N-phenyl- ⁇
  • titanium coupling agent examples include isopropyl triisostearoyl titanate, isopropyl tridodecyl benzene sulfonyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraoctyl bis (ditridecyl phosphite).
  • zirconium coupling agent examples include tetra-n-propoxyzirconium, tetra-butoxyzirconium, zirconium tetraacetylacetonate, zirconium dibutoxybis (acetylacetonate), zirconium tributoxyethyl acetoacetate, and zirconium butoxyacetylacetonate.
  • zirconium coupling agent examples include bis (ethyl acetoacetate).
  • Examples of the aluminum coupling agent include aluminum isopropylate, monosec-butoxyaluminum diisopropylate, aluminum sec-butyrate, aluminum ethylate, ethylacetoacetate aluminum diisopropylate, aluminum tris (ethylacetoacetate), alkyl Examples thereof include acetoacetate aluminum diisopropylate, aluminum monoacetylacetonate bis (ethylacetoacetate), aluminum tris (acetylacetoacetate) and the like.
  • the organometallic coupling agent can be arbitrarily blended at a ratio of 0.001 to 10% by mass in the total solid content of the curable composition for nanoimprinting of the present invention.
  • the ratio of the organometallic coupling agent is 0.001% by mass or more because the stability of the composition and the deficiency in film formability can be suppressed.
  • a polymerization inhibitor may be blended in order to improve storage stability and the like.
  • the polymerization inhibitor include phenols such as hydroquinone, tert-butylhydroquinone, catechol and hydroquinone monomethyl ether; quinones such as benzoquinone and diphenylbenzoquinone; phenothiazines; copper and the like.
  • the polymerization inhibitor is preferably blended arbitrarily in a proportion of 0.001 to 10% by mass with respect to the total amount of the composition of the present invention.
  • An ultraviolet absorber can also be used for the curable composition for nanoimprinting of the present invention.
  • Commercially available products of the ultraviolet absorber include Tinuvin P, 234, 320, 326, 327, 328, 213 (manufactured by Ciba Geigy Co., Ltd.), Sumsorb 110, 130, 140, 220, 250, 300, 320, 340, 350, 400 (manufactured by Sumitomo Chemical Co., Ltd.) and the like.
  • the ultraviolet absorber is preferably blended arbitrarily in a proportion of 0.01 to 10% by mass with respect to the total amount of the curable composition for optical nanoimprint.
  • a light stabilizer can also be used in the curable composition for nanoimprinting of the present invention.
  • Commercially available light stabilizers include Tinuvin® 292, 144, 622LD (above, manufactured by Ciba Geigy Co., Ltd.), Sanol LS-770, 765, 292, 2626, 1114, 744 (above, manufactured by Sankyo Kasei Kogyo Co., Ltd.) ) And the like.
  • the light stabilizer is preferably blended at a ratio of 0.01 to 10% by mass with respect to the total amount of the composition.
  • An anti-aging agent can also be used in the curable composition for nanoimprinting of the present invention.
  • examples of commercially available anti-aging agents include Antigene® W, S, P, 3C, 6C, RD-G, FR, and AW (manufactured by Sumitomo Chemical Co., Ltd.).
  • the antiaging agent is preferably blended at a ratio of 0.01 to 10% by mass with respect to the total amount of the composition.
  • a plasticizer can be added to adjust the adhesion to the substrate, the flexibility of the film, the hardness, and the like.
  • preferred plasticizers include, for example, dioctyl phthalate, didodecyl phthalate, triethylene glycol dicaprylate, dimethyl glycol phthalate, tricresyl phosphate, dioctyl adipate, dibutyl sebacate, triacetyl glycerin, dimethyl adipate, diethyl adipate , Di (n-butyl) adipate, dimethyl suberate, diethyl suberate, di (n-butyl) suberate and the like, and a plasticizer can be optionally added at 30% by mass or less in the composition. Preferably it is 20 mass% or less, More preferably, it is 10 mass% or less. In order to obtain the effect of adding a plasticizer, 0.1% by mass or
  • An adhesion promoter may be added to the curable composition for nanoimprints of the present invention in order to adjust adhesion to the substrate.
  • the adhesion promoter include benzimidazoles and polybenzimidazoles, lower hydroxyalkyl-substituted pyridine derivatives, nitrogen-containing heterocyclic compounds, urea or thiourea, organophosphorus compounds, 8-oxyquinoline, 4-hydroxypteridine, 1,10- Phenanthroline, 2,2'-bipyridine derivatives, benzotriazoles, organophosphorus compounds and phenylenediamine compounds, 2-amino-1-phenylethanol, N-phenylethanolamine, N-ethyldiethanolamine, N-ethyldiethanolamine, N-ethyl Ethanolamine and derivatives, benzothiazole derivatives and the like can be used.
  • the adhesion promoter in the composition is preferably 20% by mass or less, more preferably 10% by mass or less, and further
  • a thermal polymerization initiator can be added as necessary.
  • Preferred examples of the thermal polymerization initiator include peroxides and azo compounds. Specific examples include benzoyl peroxide, tert-butyl-peroxybenzoate, azobisisobutyronitrile, and the like.
  • the thermal polymerization initiator in the composition is preferably 8.0% by mass or less, more preferably 6.0% by mass or less, and still more preferably 4.0% by mass or less. In order to obtain the effect, the addition of the thermal polymerization initiator is preferably 3.0% by mass or more.
  • a photobase generator may be added as necessary for the purpose of adjusting the pattern shape, sensitivity, and the like.
  • the photobase generator include 2-nitrobenzylcyclohexyl carbamate, triphenylmethanol, O-carbamoylhydroxylamide, O-carbamoyloxime, [[(2,6-dinitrobenzyl) oxy] carbonyl] cyclohexylamine, bis [ [(2-Nitrobenzyl) oxy] carbonyl] hexane 1,6-diamine, 4- (methylthiobenzoyl) -1-methyl-1-morpholinoethane, (4-morpholinobenzoyl) -1-benzyl-1-dimethylaminopropane N- (2-nitrobenzyloxycarbonyl) pyrrolidine, hexaamminecobalt (III) tris (triphenylmethylborate), 2-benzyl-2-dimethylamin
  • a colorant may be optionally added for the purpose of improving the visibility of the coating film.
  • the colorant pigments and dyes used in UV inkjet compositions, color filter compositions, CCD image sensor compositions, and the like can be used as long as the object of the present invention is not impaired.
  • the pigment that can be used in the present invention conventionally known various inorganic pigments or organic pigments can be used.
  • the pigment that can be used in the present invention for example, those described in paragraph No. 0121 of JP-A No. 2008-105414 can be preferably used.
  • the colorant is preferably blended in a proportion of 0.001 to 2% by mass with respect to the total amount of the composition.
  • elastomer particles may be added as an optional component for the purpose of improving mechanical strength, flexibility and the like.
  • the elastomer particles that can be added as an optional component to the composition of the present invention have an average particle size of preferably 10 nm to 700 nm, more preferably 30 to 300 nm.
  • core / shell type particles in which these elastomer particles are coated with a methyl methacrylate polymer, a methyl methacrylate / glycidyl methacrylate copolymer or the like can be used.
  • the elastomer particles may have a crosslinked structure.
  • Examples of commercially available elastomer particles include Resin Bond RKB (manufactured by Resin Chemical Co., Ltd.), Techno MBS-61, MBS-69 (manufactured by Techno Polymer Co., Ltd.), and the like.
  • elastomer particles can be used alone or in combination of two or more.
  • the content of the elastomer component in the composition of the present invention is preferably 1 to 35% by mass, more preferably 2 to 30% by mass, and particularly preferably 3 to 20% by mass.
  • a basic compound may be optionally added to the composition of the present invention for the purpose of suppressing cure shrinkage and improving thermal stability.
  • the basic compound include amines, nitrogen-containing heterocyclic compounds such as quinoline and quinolidine, basic alkali metal compounds, basic alkaline earth metal compounds, and the like.
  • amine is preferable from the viewpoint of compatibility with the photopolymerization monomer, for example, octylamine, naphthylamine, xylenediamine, dibenzylamine, diphenylamine, dibutylamine, dioctylamine, dimethylaniline, quinuclidine, tributylamine, Examples include octylamine, tetramethylethylenediamine, tetramethyl-1,6-hexamethylenediamine, hexamethylenetetramine, and triethanolamine.
  • a chain transfer agent may be added to the composition of the present invention to improve photocurability.
  • Specific examples of the chain transfer agent include 4-bis (3-mercaptobutyryloxy) butane, 1,3,5-tris (3-mercaptobutyloxyethyl) 1,3,5-triazine-2, Examples include 4,6 (1H, 3H, 5H) -trione and pentaerythritol tetrakis (3-mercaptobutyrate).
  • the curable composition for nanoimprints of the present invention preferably has a water content of 2.0% by mass or less, more preferably 1.5% by mass, and even more preferably 1.0% by mass or less at the time of preparation.
  • a water content of 2.0% by mass or less, more preferably 1.5% by mass, and even more preferably 1.0% by mass or less at the time of preparation.
  • a solvent can be used in the curable composition for nanoimprinting of the present invention.
  • the content of the organic solvent is preferably 3% by mass or less in the entire composition. That is, since the composition of the present invention preferably contains other monofunctional and / or bifunctional monomers as described above as reactive diluents, the organic solvent for dissolving the components of the composition of the present invention is It is not always necessary to contain.
  • the content of the organic solvent is preferably 3% by mass or less, more preferably 2% by mass or less, and particularly preferably not contained. As described above, the composition of the present invention does not necessarily contain an organic solvent.
  • the organic solvent that can be preferably used in the composition of the present invention is a solvent generally used in curable compositions for optical nanoimprints and photoresists, which dissolves and uniformly disperses the compound used in the present invention. There is no particular limitation as long as it does not react with these components.
  • organic solvent examples include alcohols such as methanol and ethanol; ethers such as tetrahydrofuran; glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol methyl ethyl ether, and ethylene glycol monoethyl ether; methyl cellosolve Ethylene glycol alkyl ether acetates such as acetate and ethyl cellosolve acetate; diethylene glycols such as diethylene glycol monomethyl ether, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol monoethyl ether, and diethylene glycol monobutyl ether; propylene glycol Propylene glycol alkyl ether acetates such as rumethyl ether acetate and propylene glycol ethyl ether acetate; aromatic hydrocarbons such as toluene
  • a high boiling point solvent can also be added. These may be used alone or in combination of two or more. Among these, methoxypropylene glycol acetate, ethyl 2-hydroxypropionate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, ethyl lactate, cyclohexanone, methyl isobutyl ketone, 2-heptanone and the like are particularly preferable.
  • the surface tension of the curable composition for nanoimprinting of the present invention is preferably in the range of 18 to 30 mN / m, and more preferably in the range of 20 to 28 mN / m. By setting it as such a range, the effect of improving surface smoothness is acquired.
  • the moisture content at the time of preparation of the curable composition for nanoimprinting of the present invention is preferably 2.0% by mass or less, more preferably 1.5% by mass, and further preferably 1.0% by mass or less. By making the water content at the time of preparation 2.0% by mass or less, the storage stability of the composition of the present invention can be made more stable.
  • the viscosity of the curable composition for nanoimprints of the present invention will be described.
  • the viscosity in the present invention means a viscosity at 25 ° C. unless otherwise specified.
  • the curable composition for nanoimprints of the present invention preferably has a viscosity at 25 ° C. of 3 to 18 mPa ⁇ s, more preferably 5 to 15 mPa ⁇ s, and particularly preferably 7 to 12 mPa ⁇ s.
  • the viscosity of the composition of the present invention By setting the viscosity of the composition of the present invention to 3 mPa ⁇ s or more, there is a tendency that problems of substrate coating suitability and a decrease in mechanical strength of the film hardly occur. Specifically, by setting the viscosity to 3 mPa ⁇ s or more, it is preferable that unevenness on the surface is generated during the application of the composition or the composition can be prevented from flowing out of the substrate during the application. A composition having a viscosity of 3 mPa ⁇ s or more is also easier to prepare than a composition having a viscosity of less than 3 mPa ⁇ s.
  • the viscosity of the composition of the present invention is 18 mPa ⁇ s or less, even when a mold having a fine concavo-convex pattern is adhered to the composition, the composition flows into the cavity of the concave portion of the mold, and the atmosphere Is less likely to be taken in, so that it is difficult to cause bubble defects, and it is difficult for residues to remain after photocuring in the mold convex portion. Further, when the viscosity of the composition of the present invention is 18 mPa ⁇ s or less, the viscosity hardly affects the formation of a fine pattern.
  • the viscosity of the composition can be adjusted by blending various monomers, oligomers and polymers having different viscosities.
  • the nanoimprint curable composition of the present invention preferably has a 400 nm light transmittance of 95% or more when a thin film (cured product) having a thickness of 3.0 ⁇ m is formed by exposure and heating.
  • the light transmittance at 400 nm means the light transmittance at a wavelength of 400 nm.
  • the 400 nm light transmittance is more preferably 97% or more.
  • the 400 nm light transmittance can be measured by, for example, “UV-2400PC” manufactured by Shimadzu Corporation.
  • the curable composition for nanoimprinting of the present invention contains nitrogen atoms in the composition.
  • the content of the monomer to be contained is preferably 5% by mass or less, more preferably 3% by mass or less, and particularly preferably 1% by mass or less.
  • the light transmittance (400 nm light transmittance) can also be improved by adding the above-mentioned antioxidant to the composition of the present invention.
  • corrugated pattern can be formed by hardening the composition of this invention through the process of irradiating light.
  • the curable composition for nanoimprints of the present invention is preferably cured by light and heat.
  • the cured product obtained by the method for producing a cured product of the present invention is excellent in pattern precision, curability, and light transmittance, and is particularly suitable as a protective film for liquid crystal color filters, spacers, and other liquid crystal display device members. Can be used.
  • a layer (pattern forming layer) consisting of the composition of the present invention is applied on a base material (substrate or support) by applying at least a pattern forming layer consisting of the composition of the present invention and drying as necessary.
  • a pattern receptor with a pattern-forming layer provided on the substrate
  • press the mold against the surface of the pattern-receiving layer of the pattern receptor and transfer the mold pattern.
  • the concavo-convex pattern forming layer is cured by light irradiation and heating. Light irradiation and heating may be performed a plurality of times.
  • the optical imprint lithography according to the pattern forming method (a method for producing a cured product) of the present invention can be laminated and multiple patterned, and can be used in combination with ordinary thermal imprint.
  • the composition of the present invention is applied on a substrate or a support, and a layer comprising the composition is exposed, cured, and dried (baked) as necessary.
  • a permanent film such as an overcoat layer or an insulating film can be produced.
  • the concentration is 1000 ppm or less, preferably 100 ppm or less.
  • cured material using the curable composition for nanoimprints of this invention is described concretely.
  • the composition of this invention is apply
  • a coating method when the curable composition for nanoimprinting of the present invention is coated on a substrate generally known coating methods such as a dip coating method, an air knife coating method, a curtain coating method, and a wire bar coating method are used. It can be formed by coating by a gravure coating method, an extrusion coating method, a spin coating method, a slit scanning method or the like.
  • the film thickness of the pattern forming layer comprising the composition of the present invention is about 0.05 to 30 ⁇ m, although it varies depending on the intended use.
  • the composition of the present invention may be applied by multiple coating.
  • the substrate (substrate or support) on which the curable composition for nanoimprinting of the present invention is applied can be selected depending on various applications, such as quartz, glass, optical film, ceramic material, vapor deposition film, and magnetic film. , Reflective film, metal substrate such as Ni, Cu, Cr, Fe, paper, SOG (spin on glass glass), polymer film such as polyester film, polycarbonate film, polyimide film, TFT array substrate, PDP electrode plate, glass or transparent There are no particular restrictions on plastic substrates, conductive substrates such as ITO and metals, insulating substrates, semiconductor fabrication substrates such as silicone, silicone nitride, polysilicon, silicone oxide, and amorphous silicone. Further, the shape of the substrate is not particularly limited, and may be a plate shape or a roll shape. Furthermore, as described later, as the substrate, a light transmissive or non-light transmissive material can be selected according to the combination with the mold or the like.
  • a mold in order to transfer the pattern to the pattern forming layer, a mold is pressed against the surface of the pattern forming layer. Thereby, the fine pattern previously formed on the pressing surface of the mold can be transferred to the pattern forming layer.
  • a light-transmitting material is selected for at least one of a molding material and / or a substrate.
  • a curable composition for nanoimprinting of the present invention is applied on a substrate to form a pattern forming layer, and a light-transmitting mold is pressed on this surface, The pattern forming layer is cured by irradiating light from the back surface.
  • the curable composition for optical nanoimprint can be apply
  • the light irradiation may be performed with the mold attached or after the mold is peeled off. In the present invention, the light irradiation is preferably performed with the mold in close contact.
  • a mold having a pattern to be transferred is used as the mold that can be used in the present invention.
  • the pattern on the mold can be formed according to the desired processing accuracy by, for example, photolithography, electron beam drawing, or the like, but the mold pattern forming method is not particularly limited in the present invention.
  • the light-transmitting mold material used in the present invention is not particularly limited as long as it has predetermined strength and durability. Specifically, a light transparent resin such as glass, quartz, PMMA, and polycarbonate resin, a transparent metal vapor-deposited film, a flexible film such as polydimethylsiloxane, a photocured film, and a metal film are exemplified.
  • the non-light transmissive mold material used in the case of using the transparent substrate of the present invention is not particularly limited as long as it has a predetermined strength.
  • Specific examples include ceramic materials, deposited films, magnetic films, reflective films, metal substrates such as Ni, Cu, Cr, and Fe, and substrates such as SiC, silicone, silicone nitride, polysilicon, silicone oxide, and amorphous silicone.
  • the shape of the mold is not particularly limited, and may be either a plate mold or a roll mold. The roll mold is applied particularly when continuous transfer productivity is required.
  • the mold used in the method for producing a cured product of the present invention may be a mold that has been subjected to a release treatment in order to improve the releasability between the curable composition for optical nanoimprint and the mold surface.
  • examples of such molds include those that have been treated with a silane coupling agent such as silicone or fluorine, such as OPTOOL DSX manufactured by Daikin Industries, Ltd. or Novec EGC-1720 manufactured by Sumitomo 3M Co., Ltd. Commercially available release agents can also be suitably used.
  • the mold pressure it is usually preferable to perform the mold pressure at 10 atm or less in the method for producing a cured product of the present invention.
  • the mold pressure it is preferable to select a region in which the uniformity of mold transfer can be ensured within a range in which the remaining film of the curable composition for optical nanoimprinting on the mold convex portion is reduced.
  • the irradiation amount of the light irradiation in the process of irradiating light to the said pattern formation layer should just be sufficiently larger than the irradiation amount required for hardening.
  • the irradiation amount necessary for curing is appropriately determined by examining the consumption of unsaturated bonds of the curable composition for optical nanoimprint and the tackiness of the cured film.
  • the substrate temperature at the time of light irradiation is usually room temperature, but light irradiation may be performed while heating in order to increase the reactivity.
  • a pre-stage of light irradiation if it is in a vacuum state, it is effective in preventing bubble mixing, suppressing the decrease in reactivity due to oxygen mixing, and improving the adhesion between the mold and the curable composition for optical nanoimprinting. It may be irradiated with light.
  • a preferable degree of vacuum at the time of light irradiation is in the range of 10 ⁇ 1 Pa to normal pressure.
  • the light used for curing the curable composition for nanoimprints of the present invention is not particularly limited.
  • light or radiation having a wavelength in a region such as high energy ionizing radiation, near ultraviolet, far ultraviolet, visible, infrared, etc.
  • the high-energy ionizing radiation source for example, an electron beam accelerated by an accelerator such as a cockcroft accelerator, a handagraaf accelerator, a linear accelerator, a betatron, or a cyclotron is industrially most conveniently and economically used.
  • an accelerator such as a cockcroft accelerator, a handagraaf accelerator, a linear accelerator, a betatron, or a cyclotron
  • radiation such as ⁇ rays, X rays, ⁇ rays, neutron rays, proton rays emitted from radioisotopes or nuclear reactors can also be used.
  • the ultraviolet ray source examples include an ultraviolet fluorescent lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a xenon lamp, a carbon arc lamp, and a solar lamp.
  • the radiation includes, for example, microwaves and EUV.
  • laser light used in semiconductor microfabrication such as LED, semiconductor laser light, or 248 nm KrF excimer laser light or 193 nm ArF excimer laser can be suitably used in the present invention. These lights may be monochromatic lights, or may be lights having different wavelengths (mixed lights).
  • the exposure illuminance is in the range of 1 mW / cm 2 to 50 mW / cm 2 .
  • the exposure dose is desirably in the range of 5 mJ / cm 2 to 1000 mJ / cm 2 .
  • the exposure margin becomes narrow, photocuring becomes insufficient, and problems such as adhesion of unreacted materials to the mold can be prevented. Also.
  • an inert gas such as nitrogen or argon may be flowed to control the oxygen concentration to less than 100 mg / L.
  • the method for producing a cured product of the present invention it is preferable to include a step (post-baking step) in which the pattern forming layer is cured by light irradiation and then further cured by applying heat to the cured pattern.
  • the heating may be performed either before or after the mold is peeled from the pattern forming layer after light irradiation, but it is preferable to heat the pattern forming layer after the mold is peeled off.
  • the heat for heat-curing the composition of the present invention after light irradiation is preferably 150 to 280 ° C, more preferably 200 to 250 ° C.
  • the time for applying heat is preferably 5 to 60 minutes, more preferably 15 to 45 minutes.
  • the light irradiation in the photoimprint lithography may be sufficiently larger than the irradiation amount necessary for curing.
  • the amount of irradiation necessary for curing is determined by examining the consumption of unsaturated bonds of the curable composition for optical nanoimprint lithography and the tackiness of the cured film.
  • the substrate temperature at the time of light irradiation is usually room temperature, but the light irradiation may be performed while heating in order to increase the reactivity.
  • the pre-stage of light irradiation if it is in a vacuum state, it is effective in preventing bubble mixing, suppressing reactivity decrease due to oxygen mixing, and improving the adhesion between the mold and the curable composition for optical nanoimprint lithography. It may be irradiated with light.
  • a preferable degree of vacuum is in the range of 10 ⁇ 1 Pa to normal pressure.
  • the curable composition for nanoimprinting of the present invention can be prepared as a solution by mixing the above components and then filtering with a filter having a pore size of 0.05 ⁇ m to 5.0 ⁇ m, for example.
  • Mixing / dissolution of the curable composition for nanoimprinting is usually performed in the range of 0 ° C to 100 ° C. Filtration may be performed in multiple stages or repeated many times.
  • the filtered liquid can be refiltered.
  • Materials used for filtration can be polyethylene resin, polypropylene resin, fluorine resin, nylon resin, etc., but are not particularly limited.
  • the cured product formed by the method for producing a cured product of the present invention can be used as a permanent film (resist for a structural member) or an etching resist used in a liquid crystal display (LCD) or the like.
  • the permanent film is bottled in a container such as a gallon bottle or a coated bottle after manufacture, and is transported and stored.
  • the container is filled with inert nitrogen or argon. It may be replaced.
  • the temperature may be normal temperature, but the temperature may be controlled in the range of ⁇ 20 ° C. to 0 ° C. in order to prevent the permanent film from being altered. Of course, it is preferable to shield from light at a level where the reaction does not proceed.
  • the curable composition for nanoimprinting of the present invention can also be applied as an etching resist for semiconductor integrated circuits, recording materials, flat panel displays, and the like.
  • a desired pattern can be formed on the substrate by etching using an etching gas such as hydrogen fluoride in the case of wet etching or CF 4 in the case of dry etching.
  • O-1 3-ethyl-3-hydroxymethyloxetane (manufactured by Toagosei Co., Ltd .: OXT-101)
  • O-2 Oxetane acrylate (Osaka Organic Chemical Co., Ltd .: OXE-10)
  • H-1 Methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride (manufactured by Hitachi Chemical Co., Ltd .: MHAC-P)
  • H-2 Anhydride acrylate (manufactured by Sigma-Aldrich Japan Co., Ltd .: Aldrich reagent 330736)
  • M-1 benzyl acrylate (Osaka Organic Chemical Co., Ltd .: Biscote # 160)
  • M-2 Neopentyl glycol diacrylate (manufactured by Nippon Kayaku Co., Ltd .: KARAYAD NPGDA)
  • M-3 trimethylolpropane triacrylate (manufactured by Toagosei Co., Ltd .: Aronix M309)
  • N-1 N-vinylformamide (Arakawa Chemical Industries, Ltd .: Beam Set 770)
  • W-1 Non-fluorinated surfactant (manufactured by Takemoto Yushi Co., Ltd .: Pionein D6315)
  • W-2 Fluorosurfactant (Dainippon Ink & Chemicals, Inc .: MegaFuck F780F)
  • A-1 Sumilyzer GA80 (manufactured by Sumitomo Chemical Co., Ltd.)
  • H-2, M-1, M-2, M-3, and N-1 correspond to compounds having a radical polymerizable functional group.
  • “Amount” indicates the content of the compound having a radical polymerizable functional group in the entire composition.
  • ⁇ Viscosity measurement> The viscosity was measured at 25 ⁇ 0.2 ° C. using a RE-80L rotational viscometer manufactured by Toki Sangyo Co., Ltd.
  • the rotation speed at the time of measurement is 100 rpm for 0.5 mPa ⁇ s or more and less than 5 mPa ⁇ s, 50 rpm for 5 mPa ⁇ s or more and less than 10 mPa ⁇ s, 20 rpm for 10 mPa ⁇ s or more and less than 30 mPa ⁇ s, and 30 mPa ⁇ s.
  • the product was pressed using a material made of a material cured in 60 minutes, and further exposed from the surface of the mold under the condition of 240 mJ / cm 2. After the exposure, the mold was released to obtain a resist pattern. The obtained resist pattern was completely cured by heating in an oven at 230 ° C. for 30 minutes.
  • the pattern shape after the transfer was observed with a scanning electron microscope and an optical microscope, and the pattern shape was evaluated according to the following criteria.
  • A Almost the same as the pattern of the original plate that is the basis of the pattern shape of the mold.
  • There is a part (a range of less than 10% from the original pattern) that is partly different from the original pattern shape of the mold pattern shape.
  • There is a part (a range of 10% or more and less than 20% of the pattern of the original plate) that is partly different from the original pattern shape of the mold pattern shape.
  • X The pattern pattern of the mold is clearly different from the original pattern, or the film thickness of the pattern is 20% or more different from the original pattern.
  • Each composition was spin-coated on a glass substrate so as to have a film thickness of 3.0 ⁇ m, and the mold was not subjected to pressure bonding, and was exposed at an exposure amount of 240 mJ / cm 2 in a nitrogen atmosphere. Thereafter, the film cured by heating at 230 ° C. for 30 minutes in an oven was measured for transmittance at 400 nm using “UV-2400PC” manufactured by Shimadzu Corporation.
  • The transmittance was 95% or more and less than 97%.
  • The transmittance was 90 or more and less than 95%.
  • X The transmittance was less than 90.
  • Comparative Examples 1 and 2 which did not contain a functional acid anhydride or a compound having an oxetane ring, had a particularly high rate of film reduction after heating.
  • the comparative example 3 which does not contain photoradically polymerizable monomers other than the compound which has an oxetane ring, and an acid anhydride had various performance deteriorated.
  • Comparative Example 4 and Comparative Example 5 it can be seen that various performances are deteriorated because the content of the compound containing a radical polymerizable functional group is too small.
  • imprintability is deteriorated because the viscosity of the composition is too high.
  • Comparative Example 6 since no radical photopolymerization initiator is contained, curing is insufficient and various performances are deteriorated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Liquid Crystal (AREA)
  • Polyethers (AREA)

Abstract

Disclosed is a curable composition for nanoimprint, which is characterized by containing a compound having an oxethane ring, a functional acid anhydride, a radically photopolymerizable monomer and a radical photopolymerization initiator. The curable composition for nanoimprint is also characterized in that the total content of compounds having a radically polymerizable functional group in the composition is 50-99.5% by mass. The composition excels in pattern precision, surface hardness, light transmittance and heat resistance after thermal curing.

Description

ナノインプリント用硬化性組成物、これを用いた硬化物およびその製造方法、並びに、液晶表示装置用部材Curable composition for nanoimprint, cured product using the same, method for producing the same, and member for liquid crystal display device
 本発明は、ナノインプリント用硬化性組成物、これを用いた硬化物およびその製造方法、ならびに、該硬化物を用いた液晶表示装置用部材に関する。 The present invention relates to a curable composition for nanoimprint, a cured product using the same, a method for producing the same, and a member for a liquid crystal display device using the cured product.
 ナノインプリント法は、光ディスク製作ではよく知られているエンボス技術を発展させ、凹凸のパターンを形成した金型原器(一般的にモールド、スタンパ、テンプレートと呼ばれる)を、レジストにプレスして力学的に変形させて微細パターンを精密に転写する技術である。モールドを一度作製すれば、ナノ構造等の微細構造が簡単に繰り返して成型できるため経済的であるとともに、有害な廃棄・排出物が少ないナノ加工技術であるため、近年、さまざまな分野への応用が期待されている。 The nanoimprint method has been developed by developing an embossing technique that is well-known in optical disc production, and mechanically pressing a mold master (generally called a mold, stamper, or template) with an uneven pattern on a resist. This is a technology that precisely deforms and transfers fine patterns. Once a mold is made, it is economical because it can be easily and repeatedly formed with fine structures such as nanostructures. In addition, it is a nano-processing technology with few harmful wastes and emissions, so it can be applied to various fields in recent years. Is expected.
 ナノインプリント法には、被加工材料として熱可塑性樹脂を用いる熱ナノインプリント法(例えば、非特許文献1参照)と、光硬化性組成物を用いる光ナノインプリント(例えば、非特許文献2参照)との2通りの技術が提案されている。熱ナノインプリント法の場合、ガラス転移温度以上に加熱した高分子樹脂にモールドをプレスし、冷却後にモールドを離型することで微細構造を基板上の樹脂に転写するものである。この方法は、多様な樹脂材料やガラス材料にも応用可能であるため、様々な方面への応用が期待されている。例えば、下記特許文献1および2には、熱可塑性樹脂を用いて、ナノパターンを安価に形成する熱ナノインプリントの方法が開示されている。 There are two types of nanoimprint methods: a thermal nanoimprint method using a thermoplastic resin as a material to be processed (for example, see Non-Patent Document 1) and an optical nanoimprint using a photocurable composition (for example, see Non-Patent Document 2). The technology has been proposed. In the case of the thermal nanoimprint method, the mold is pressed onto a polymer resin heated to a temperature higher than the glass transition temperature, and after cooling, the mold is released to transfer the fine structure to the resin on the substrate. Since this method can be applied to various resin materials and glass materials, it is expected to be applied to various fields. For example, Patent Documents 1 and 2 below disclose thermal nanoimprinting methods that form a nanopattern at low cost using a thermoplastic resin.
 一方、透明モールドや透明基材を通して光を照射し、光硬化性組成物を光硬化させる光ナノインプリント法では、モールドのプレス時にパターンを転写する材料を加熱する必要がなく、室温でのインプリントが可能になる。最近では、この両者の長所を組み合わせたナノキャスティング法や3次元積層構造を作製するリバーサルインプリント方法などの新しい展開も報告されている。 On the other hand, in the optical nanoimprint method that irradiates light through a transparent mold or a transparent substrate and photocures the photocurable composition, it is not necessary to heat the material for transferring the pattern when the mold is pressed, and imprinting at room temperature is possible. It becomes possible. Recently, new developments such as a nanocasting method combining the advantages of both and a reversal imprint method for producing a three-dimensional laminated structure have been reported.
 このようなナノインプリント法においては、以下のような応用技術が提案されている。第一の技術としては、成型した形状(パターン)そのものが機能を持ち、様々なナノテクノロジーの要素部品、あるいは構造部材として応用できる場合である。その例としては、各種のマイクロ・ナノ光学要素や高密度の記録媒体、光学フィルム、フラットパネルディスプレイにおける構造部材などが挙げられる。第二の技術としては、マイクロ構造とナノ構造との同時一体成型や、簡単な層間位置合わせにより積層構造を構築し、μ-TAS(Micro - Total Analysis System)やバイオチップの作製に応用しようとするものである。第三の技術としては、高精度な位置合わせと高集積化とにより、従来のリソグラフィに代わって高密度半導体集積回路の作製や、液晶ディスプレイのトランジスタへの作製等に適用しようとするものである。前述の技術を含め、これらの応用に関するナノインプリント法の実用化への取り組みが近年活発化している。 In such a nanoimprint method, the following applied technologies have been proposed. The first technique is a case where a molded shape (pattern) itself has a function and can be applied as various nanotechnology element parts or structural members. Examples thereof include various micro / nano optical elements, high-density recording media, optical films, and structural members in flat panel displays. The second technology is to build a laminated structure by simultaneous integral molding of microstructure and nanostructure and simple interlayer alignment, and try to apply it to μ-TAS (Micro-Total Analysis System) and biochip fabrication. To do. As a third technique, high-precision alignment and high integration are intended to be applied to the fabrication of high-density semiconductor integrated circuits and the fabrication of liquid crystal display transistors in place of conventional lithography. . In recent years, efforts to put nanoimprinting methods into practical use for these applications, including the aforementioned technologies, have become active.
 ナノインプリント法の適用例として、まず、高密度半導体集積回路作製への応用例を説明する。近年、半導体集積回路は微細化、集積化が進んでおり、その微細加工を実現するためのパターン転写技術としてフォトリソグラフィ装置の高精度化が進められてきた。しかし、さらなる微細化の要求に応じて加工方法が光露光の光源の波長に近づき、従前のリソグラフィ技術も限界に近づいてきている。そのため、さらなるパターンの微細化、高精度化を進めるべくリソグラフィ技術に代えて、荷電粒子線装置の一種である電子線描画装置が用いられるようになっている。電子線描画装置等による電子線を用いたパターン形成は、i線、エキシマレーザー等の光源を用いたパターン形成における一括露光方法とは異なり、マスクパターンを描画していく方法を用いている。このため、描画するパターンが多ければ多いほど露光(描画)時間がかかり、パターン形成に時間を要することが欠点とされている。このため、256メガ、1ギガ、4ギガと、半導体集積回路の集積度が飛躍的に高まるにつれ、その分パターン形成時間も飛躍的に長くなり、スループットが著しく劣ることが懸念される。そこで、電子ビーム描画装置によるパターン形成の高速化のため、各種形状のマスクを組み合わせ、それらに一括して電子ビームを照射して複雑な形状の電子ビームを形成する一括図形照射法の開発が進められている。しかしながら、パターンの微細化が進められる一方で、電子線描画装置を大型化する必要が生じるほか、さらにマスク位置をより高精度に制御する機構が必要になるなど、装置コストが高くなるという欠点が生じていた。 As an application example of the nanoimprint method, an application example for manufacturing a high-density semiconductor integrated circuit will be described first. 2. Description of the Related Art In recent years, semiconductor integrated circuits have been miniaturized and integrated, and the photolithography apparatus has been improved in accuracy as a pattern transfer technique for realizing the fine processing. However, according to the demand for further miniaturization, the processing method approaches the wavelength of the light source for light exposure, and the conventional lithography technique is approaching the limit. Therefore, an electron beam drawing apparatus, which is a kind of charged particle beam apparatus, is used in place of lithography technology in order to further refine the pattern and increase the accuracy. Pattern formation using an electron beam by an electron beam drawing apparatus or the like uses a method of drawing a mask pattern unlike a batch exposure method in pattern formation using a light source such as i-line or excimer laser. For this reason, the more patterns to be drawn, the longer the exposure (drawing) time, and the longer time it takes to form the pattern. For this reason, as the degree of integration of the semiconductor integrated circuit is dramatically increased to 256 mega, 1 giga, and 4 giga, the pattern formation time is correspondingly increased, and there is a concern that the throughput is remarkably deteriorated. Therefore, in order to increase the speed of pattern formation by an electron beam lithography system, development of a collective figure irradiation method that combines various shapes of masks and collectively irradiates them with electron beams to form complex shapes of electron beams is progressing. It has been. However, while miniaturization of the pattern is promoted, the electron beam drawing apparatus needs to be enlarged, and a mechanism for controlling the mask position with higher accuracy is required. It was happening.
 これに対し、微細なパターン形成を低コストで行うための技術として、ナノインプリントリソグラフィ技術(光ナノインプリント法)を用いることが検討されている。例えば、下記特許文献1および特許文献3には、シリコンウエハをスタンパとして用い、25ナノメートル以下の微細構造をパターン転写によって形成するナノインプリント技術が開示されている。また、下記特許文献4には、半導体マイクロリソグラフィ分野に適用されるナノインプリントを使ったコンポジット組成物が開示されている。
 この流れに伴って、微細モールドの作製技術、モールドの耐久性、モールドの作製コスト、モールドと樹脂との剥離性、インプリント均一性、アライメント精度、検査技術など半導体集積回路の作製にナノインプリントリソグラフィを適用するための検討が活発化し始めている。
On the other hand, using a nanoimprint lithography technique (optical nanoimprint method) as a technique for forming a fine pattern at a low cost has been studied. For example, Patent Document 1 and Patent Document 3 below disclose a nanoimprint technique in which a silicon wafer is used as a stamper and a fine structure of 25 nanometers or less is formed by pattern transfer. Patent Document 4 below discloses a composite composition using nanoimprints that is applied to the field of semiconductor microlithography.
Along with this trend, nanoimprint lithography has been applied to the fabrication of semiconductor integrated circuits such as fine mold fabrication technology, mold durability, mold fabrication cost, mold-resin detachability, imprint uniformity, alignment accuracy, and inspection technology. Considerations for application are starting to increase.
 次に、液晶ディスプレイ(LCD)やプラズマディスプレイ(PDP)などのフラットデイスプレイへの光ナノインプリント法の応用例について説明する。
 LCD基板やPDP基板の大型化や高精細化の動向に伴って、薄膜トランジスタ(TFT)や電極板の製造時に使用する従来のフォトリソグラフィ法に代わる安価なリソグラフィとして光ナノインプリントリソグラフィが、近年注目されており、従来のフォトリソグラフィ法で用いられるエッチングフォトレジストに代わる光硬化性レジストの開発が必要になってきている。
Next, an application example of the optical nanoimprint method to a flat display such as a liquid crystal display (LCD) or a plasma display (PDP) will be described.
With the trend toward larger and higher-definition LCD and PDP substrates, optical nanoimprint lithography has recently attracted attention as an inexpensive alternative to conventional photolithography methods used in the manufacture of thin film transistors (TFTs) and electrode plates. Therefore, it has become necessary to develop a photo-curable resist that replaces the etching photoresist used in the conventional photolithography method.
 また、LCDなどの構造部材として用いられる透明保護膜材料や液晶ディスプレイにおけるセルギャップを規定するスペーサーなどに対しても、光ナノインプリントリソグラフィの応用が検討され始めている(例えば、特許文献5および6参照)。このような構造部材用のレジストは、上述のエッチングレジストとは異なり、最終的にフラットディスプレイパネル等のディスプレイ内に残るため、“永久レジスト”、あるいは“永久膜”と称されることがある。 In addition, application of optical nanoimprint lithography has been started for transparent protective film materials used as structural members such as LCDs and spacers that define cell gaps in liquid crystal displays (see, for example, Patent Documents 5 and 6). . Unlike the above-described etching resist, such a resist for a structural member is finally left in a display such as a flat display panel, and is therefore sometimes referred to as “permanent resist” or “permanent film”.
 従来のフォトリソグラフィ技術を適用した永久膜としては、例えば、液晶パネルのTFT基板上に設けられる保護膜や、R,G、B層間の段差を低減しITO膜のスパッタ製膜時の高温処理に対する耐性を付与するためにカラーフィルタ上に設けられる保護膜等が挙げられる。従来、カラーフィルタ用の透明永久膜には、シロキサンポリマー、シリコーンポリイミド、エポキシ樹脂、アクリル樹脂等の光硬化性樹脂や熱硬化性樹脂が用いられている(下記特許文献7および8参照)。これらの保護膜(永久膜)の形成においては、塗布膜の均一性、基材との密着性、200℃を超える加熱処理後の高い光透過性、平坦化特性、耐溶剤性、耐擦傷製等の種々の特性が要求されている。 As a permanent film to which a conventional photolithography technique is applied, for example, a protective film provided on a TFT substrate of a liquid crystal panel, or a high temperature process during sputtering of an ITO film by reducing a step between R, G and B layers. For example, a protective film provided on the color filter in order to impart resistance. Conventionally, photo-curing resins and thermosetting resins such as siloxane polymers, silicone polyimides, epoxy resins, and acrylic resins have been used for transparent permanent films for color filters (see Patent Documents 7 and 8 below). In the formation of these protective films (permanent films), the uniformity of the coating film, adhesion to the substrate, high light transmittance after heat treatment exceeding 200 ° C., planarization characteristics, solvent resistance, scratch resistance Various characteristics such as these are required.
 また、液晶ディスプレイに用いられるスペーサーの分野では、従来のフォトリソグラフィ法においては、樹脂、光重合性モノマーおよび開始剤からなる光硬化性組成物が一般的に広く用いられてきている(例えば、特許文献9参照)。前記スペーサーは、一般には、カラーフィルタ形成後または前記カラーフィルタ用保護膜形成後に、カラーフィルタ基板上に光硬化性組成物を用いてフォオトリソグラフィによって10μm~20μm程度の大きさのパターンを形成し、さらにポストベイクにより加熱硬化して形成される。このような液晶ディスプレイの用いられるスペーサーには、外部圧力に対する高い機械的特性、硬度、現像性、パターン精度、密着性等の性能が要求される。 Also, in the field of spacers used in liquid crystal displays, photocurable compositions comprising a resin, a photopolymerizable monomer and an initiator have generally been widely used in conventional photolithography methods (for example, patents). Reference 9). The spacer generally forms a pattern having a size of about 10 μm to 20 μm by photolithography using a photocurable composition on a color filter substrate after forming a color filter or after forming the color filter protective film. Further, it is formed by heat curing by post-baking. The spacer used in such a liquid crystal display is required to have high mechanical properties against external pressure, such as hardness, developability, pattern accuracy, and adhesion.
 このため、ナノインプリント法を用いた前記透明保護膜やスペーサー等の永久膜(永久レジスト)の形成に好適な光硬化性組成物の開発が求められている。 For this reason, development of a photocurable composition suitable for the formation of a permanent film (permanent resist) such as the transparent protective film or spacer using the nanoimprint method is demanded.
 また、光硬化性組成物の塗膜均一性に関しては、基板の大型化に伴い、基板の中央部と周辺部とにおける塗布膜厚均一性、高解像度化による寸法均一性、膜厚、形状など様々な部分において要求が厳しくなっている。 As for the coating uniformity of the photocurable composition, the coating film thickness uniformity at the center and periphery of the substrate, dimensional uniformity due to higher resolution, film thickness, shape, etc., as the substrate becomes larger The demands are getting severe in various parts.
 従来、小型ガラス基板を用いた液晶表示素子製造分野においては、レジスト塗布方法として中央滴下後スピンする方法が用いられていた(例えば、非特許文献3参照)。しかし、中央滴下後スピンする方法では、塗布均一性以外の要求に対応するのが難しい。このため、代替技術として第4世代基板以降、特に第5世代基板以降の大型基板に適用可能な吐出ノズル式による新しいレジスト塗布方法が提案されている。吐出ノズル式によるレジスト塗布法は、吐出ノズルと基板とを相対的に移動させることによって基板の塗布面全面にフォトレジスト組成物を塗布する方法であり、例えば、複数のノズル孔が列状に配列された吐出口やスリット状の吐出口を有し、フォトレジスト組成物を帯状に吐出できる吐出ノズルを用いる方法や、基板の塗布面全面にフォトレジスト組成物を塗布した後、該基板をスピンさせて膜厚を調整する方法が提案されている。したがって、これら液晶表示素子製造分野に適用するためにも、ナノインプリント用硬化性組成物に対して基材への塗布均一性が要求されている。 Conventionally, in the field of manufacturing liquid crystal display elements using a small glass substrate, a method of spinning after dropping in the center has been used as a resist coating method (see, for example, Non-Patent Document 3). However, in the method of spinning after the central dropping, it is difficult to meet demands other than coating uniformity. For this reason, as an alternative technique, a new resist coating method using a discharge nozzle type that can be applied to a large substrate after the fourth generation substrate, particularly after the fifth generation substrate has been proposed. The resist application method by the discharge nozzle method is a method of applying a photoresist composition to the entire coating surface of the substrate by relatively moving the discharge nozzle and the substrate. For example, a plurality of nozzle holes are arranged in a line. A method of using a discharge nozzle that can discharge the photoresist composition in a strip shape, or after applying the photoresist composition to the entire coated surface of the substrate and then spinning the substrate. A method of adjusting the film thickness has been proposed. Therefore, in order to apply to these liquid crystal display element manufacturing fields, the coating uniformity on the substrate is required for the curable composition for nanoimprint.
 また、ポジ型フォトレジスト、カラーフィルタ作製用顔料分散フォトレジストや光磁気ディスクなどの保護膜の塗布性を改良する技術としては、各種界面活性剤等を添加する技術が知られており(例えば、特許文献10~17参照)、半導体集積回路作製用の光ナノインプリント用エッチングレジストとして、フッ素系界面活性剤を含む光硬化性樹脂を用いる例が開示されている(例えば、特許文献18参照)。しかしながら、永久膜に用いる顔料、染料、有機溶剤を必須成分としないナノインプリント用硬化性組成物の基板塗布性を向上させるための方法はこれまで知られていなかった。 Further, as a technique for improving the coating property of a protective film such as a positive photoresist, a pigment-dispersed photoresist for producing a color filter or a magneto-optical disk, a technique of adding various surfactants or the like is known (for example, Patent Documents 10 to 17) and an example of using a photocurable resin containing a fluorosurfactant as an optical nanoimprint etching resist for manufacturing a semiconductor integrated circuit are disclosed (for example, refer to Patent Document 18). However, a method for improving the substrate coating property of a curable composition for nanoimprinting that does not contain pigments, dyes, and organic solvents used for the permanent film has not been known so far.
 さらに、光ナノインプリント法においては、パターンが形成されたモールド表面凹部のキャビティ内における光硬化性組成物の流動性を高める必要がある。また、モールドとレジストとの間の剥離性をよくしつつ、レジストと基材(基板、支持体)との間の密着性をよくする必要がある。しかし、光ナノインプリント用硬化性組成物の、キャビティ内における流動性、モールドとの剥離性、基材との密着性の全てを同時に満足させるのは困難であった。 Furthermore, in the optical nanoimprint method, it is necessary to improve the fluidity of the photocurable composition in the cavity of the concave portion of the mold surface where the pattern is formed. Moreover, it is necessary to improve the adhesiveness between a resist and a base material (a board | substrate, a support body), improving the peelability between a mold and a resist. However, it has been difficult to simultaneously satisfy all of the fluidity in the cavity, the releasability from the mold, and the adhesion to the base material of the curable composition for optical nanoimprint.
 光ナノインプリントリソグラフィは、シリコンウエハ、石英、ガラス、フィルムや他の材料、例えばセラミック材料、金属または、ポリマー等の基板上に液状の光ナノインプリント用硬化性組成物を滴下し、およそ数十nm~数μmの膜厚で塗布し、およそ数十nm~数十μmのパターンサイズの微細な凹凸を有するモールドを押しつけて加圧し、加圧した状態で光照射して組成物を硬化させた後、塗膜からモールドを離型し、転写されたパターンを得る方法が一般的である。このようにモールドを塗膜に加圧した状態で光照射を行う場合、基材またはモールドの少なくとも一方が透明である必要がある。通常は、モールド側から光照射する場合が一般的である。この場合、モールド材料には石英、サファイア等のUV光を透過する無機材料や光透過性の樹脂などが多く用いられる。 In optical nanoimprint lithography, a liquid curable composition for optical nanoimprint is dropped onto a substrate such as a silicon wafer, quartz, glass, film, or other material such as a ceramic material, a metal, or a polymer, and approximately several tens nm to several It is applied with a film thickness of μm, a mold having fine irregularities with a pattern size of about several tens of nm to several tens of μm is pressed and pressurized, and the composition is cured by irradiating with light in the pressurized state. In general, a mold is released from the film to obtain a transferred pattern. Thus, when performing light irradiation in the state which pressurized the mold to the coating film, at least one of a base material or a mold needs to be transparent. Usually, light irradiation is generally performed from the mold side. In this case, an inorganic material such as quartz or sapphire that transmits UV light, a light-transmitting resin, or the like is often used as the mold material.
 光ナノインプリント法は、熱ナノインプリント法に対して、(1)加熱/冷却プロセスが不要であり、高スループットが見込まれる、(2)液状組成物を使用するため低加圧でのインプリントが可能である、(3)熱膨張による寸法変化がない、(4)モールドが透明でありアライメントが容易である、(5)硬化後、頑強な三次元架橋体が得られるなどの主な優位点が挙げられる。特にアライメント精度が要求されるような半導体微細加工用途やフラットパネルディスプレイ分野の微細加工用途には適している。 The optical nanoimprint method is (1) no heating / cooling process is required and high throughput is expected compared to the thermal nanoimprint method, and (2) imprinting at a low pressure is possible because a liquid composition is used. Major advantages include (3) no dimensional change due to thermal expansion, (4) the mold is transparent and easy to align, and (5) a robust three-dimensional crosslinked body is obtained after curing. It is done. It is particularly suitable for semiconductor micromachining applications where alignment accuracy is required and for micromachining applications in the field of flat panel displays.
 また、光ナノインプリント法の他の特徴としては、通常の光リソグラフィに比較して解像度が光源波長に依存しないため、ナノメートルオーダの微細加工時にも、ステッパや電子線描画装置などの高価な装置を必要としないのが特徴である。一方で、光ナノインプリント法は等倍モールドを必要とし、モールドと樹脂が接触するため、モールドの耐久性やコストについて懸念されている。 Another feature of the optical nanoimprint method is that the resolution does not depend on the light source wavelength as compared with ordinary optical lithography. Therefore, expensive devices such as a stepper and an electron beam drawing device are also used for fine processing on the nanometer order. The feature is not required. On the other hand, the optical nanoimprint method requires an equal-magnification mold, and since the mold and the resin are in contact, there are concerns about the durability and cost of the mold.
 このように、熱式および/または光ナノインプリント法を適用し、マイクロメートル、あるいはナノメートルサイズのパターンを大面積にインプリントするには、押し付け圧力の均一性や原盤(モールド)の平坦性が要求されるだけでなく、前述のモールド凹部のキャビティ内への組成物の流動性や押し付けられて流出する組成物の挙動をも制御する必要がある。 In this way, to apply a thermal and / or optical nanoimprint method and imprint a micrometer or nanometer size pattern over a large area, uniformity of pressing pressure and flatness of the master (mold) are required. In addition to this, it is necessary to control the fluidity of the composition into the cavity of the mold recess and the behavior of the composition flowing out by being pressed.
 光ナノインプリントリソグラフィで用いられるモールドは、様々な材料、例えば金属、半導体、セラミック、SOG(Spin On Glass)、または一定のプラスチック等から製造可能である。例えば、特許文献19に記載の所望の微細構造を有する柔軟なポリジメチルシロキサンのモールドが提案されている。このモールドの一表面に3次元の構造体を形成するために、構造体のサイズおよびその分解能に対する仕様に応じて、様々なリソグラフィ方法が使用可能である。電子ビームおよびX線のリソグラフィは、通常、300nm未満の構造体寸法に使用される。ダイレクトレーザ露光およびUVリソグラフィはより大きな構造体に使用される。
 光ナノインプリント法に関しては、モールドと光ナノインプリント用硬化性組成物の剥離性が重要であり、モールドやモールドの表面処理、具体的には、水素化シルセスキオキサンやフッソ化エチレンプロピレン共重合体モールドを使って付着問題を解決する試みなどがこれまでになされてきた。
Molds used in optical nanoimprint lithography can be manufactured from various materials such as metals, semiconductors, ceramics, SOG (Spin On Glass), or certain plastics. For example, a flexible polydimethylsiloxane mold having a desired microstructure described in Patent Document 19 has been proposed. In order to form a three-dimensional structure on one surface of the mold, various lithography methods can be used depending on the size of the structure and the specifications for its resolution. Electron beam and x-ray lithography are typically used for structure dimensions below 300 nm. Direct laser exposure and UV lithography are used for larger structures.
Regarding the optical nanoimprint method, the releasability of the mold and the curable composition for optical nanoimprinting is important. The mold and the surface treatment of the mold, specifically, hydrogenated silsesquioxane or fluorinated ethylene propylene copolymer mold. Attempts have been made so far to solve the adhesion problem using slag.
 ナノインプリントに適用される光硬化性樹脂は、反応機構の違いからラジカル重合タイプとイオン重合タイプとに大別され、さらに、これらのハイブリッドタイプが加えられる。いずれのタイプの硬化性組成物もナノインプリント用途に用いることが可能であるが、材料の選択範囲が広いことから、一般にラジカル重合型の硬化性組成物が多く用いられている(例えば、非特許文献4参照)。ラジカル重合型の硬化性組成物としては、ラジカル重合可能なビニル基や(メタ)アクリル基を有する単量体(モノマー)またはオリゴマーと、光重合開始剤とを含んだ組成物が一般的に用いられる。ラジカル重合性の硬化性組成物は、光を照射すると、光重合開始剤により発生したラジカルがビニル基を攻撃して連鎖重合が進み、ポリマーを形成する。また、2官能以上の多官能基モノマーやオリゴマーを用いた場合には、架橋構造体を得ることができる。下記非特許文献5においては、低粘度でUV硬化可能な単量体を用いることにより、低圧、室温でインプリンティングが可能な組成物が開示されている。 The photo-curable resin applied to nanoimprint is roughly classified into radical polymerization type and ion polymerization type due to the difference in reaction mechanism, and these hybrid types are added. Any type of curable composition can be used for nanoimprint applications, but since a wide range of materials can be selected, a radical polymerization type curable composition is generally used (for example, non-patent literature). 4). As the radical polymerization type curable composition, a composition containing a monomer (monomer) or oligomer having a vinyl group or (meth) acryl group capable of radical polymerization and a photopolymerization initiator is generally used. It is done. When the radically polymerizable curable composition is irradiated with light, the radical generated by the photopolymerization initiator attacks the vinyl group and chain polymerization proceeds to form a polymer. Moreover, when a bifunctional or higher polyfunctional group monomer or oligomer is used, a crosslinked structure can be obtained. Non-Patent Document 5 below discloses a composition that can be imprinted at low pressure and room temperature by using a low-viscosity and UV-curable monomer.
 光ナノインプリントリソグラフィに用いられる材料の要求特性は適用する用途によって異なる場合が多いものの、プロセス特性についての要望は用途に依らず共通点がある。例えば、下記非特許文献6に示されている主な要求項目は、塗布性、基板密着性、低粘度(<5mPa・s)、剥離性、低硬化収縮率、速硬化性などである。特に、低圧でのインプリントや残膜率の低減等が必要な用途では、低粘度材料であることの要求が強い。一方、用途別に要求特性を挙げると、例えば光学部材については、光の屈折率や光透過性などが挙げられる。また、エッチングレジストについては、エッチング耐性や残膜厚低減などが挙げられる。これらの要求特性をいかに制御し、諸特性のバランスを取るかが材料デザインの鍵となる。このため、少なくともプロセス材料と永久膜とでは要求特性が大きく異なるため材料はプロセスや用途に応じて開発する必要がある。このような光ナノインプリントリソグラフィ用途に適用する材料として、下記非特許文献6に、約60mPa・s(25℃)の粘度を有する光硬化性材料が開示されている。同様に、下記非特許文献7には、モノメタクリレートを主成分とする粘度が14.4mPa・sの剥離性を向上させた含フッソ感光性樹脂が開示されている。
 しかし、光ナノインプリントで用いられる組成物に関し、粘度に関する要望の記載はあるものの、各用途に適合させるための材料の設計指針についての報告例は、これまでになかった。
Although the required characteristics of materials used for optical nanoimprint lithography are often different depending on the application to which they are applied, the demands on process characteristics are common regardless of the application. For example, the main requirement items shown in Non-Patent Document 6 below are applicability, substrate adhesion, low viscosity (<5 mPa · s), peelability, low cure shrinkage, fast curability, and the like. In particular, there is a strong demand for a low-viscosity material in applications that require imprinting at a low pressure or a reduction in the remaining film ratio. On the other hand, when a required characteristic is mentioned according to a use, about the optical member, the refractive index of light, light transmittance, etc. are mentioned, for example. As for the etching resist, etching resistance, reduction of remaining film thickness and the like can be mentioned. The key to material design is how to control these required characteristics and balance them. For this reason, at least the process material and the permanent film have greatly different required characteristics, so the material must be developed according to the process and application. Non-Patent Document 6 below discloses a photocurable material having a viscosity of about 60 mPa · s (25 ° C.) as a material applied to such optical nanoimprint lithography. Similarly, Non-Patent Document 7 below discloses a fluorine-containing photosensitive resin having a viscosity of 14.4 mPa · s whose main component is monomethacrylate and improved peelability.
However, with respect to the composition used in optical nanoimprinting, there has been no report on a design guideline for a material to be adapted to each application although there is a description of a demand for viscosity.
 また、下記特許文献20および21には、レリーフ型ホログラムや回折格子作製のために、イソシアネート基を有する重合体を含む光硬化性樹脂を用い、これにエンボス加工を施す例が開示されている。また、下記特許文献22には、ポリマー、光重合開始剤、粘度調整剤を含むインプリント用光ナノインプリント用硬化性組成物が開示されている。 Further, Patent Documents 20 and 21 below disclose examples in which a photocurable resin containing a polymer having an isocyanate group is used for embossing for producing a relief hologram or a diffraction grating. Patent Document 22 below discloses a curable composition for optical nanoimprinting for imprinting that contains a polymer, a photopolymerization initiator, and a viscosity modifier.
 更に、下記非特許文献8には、(1)官能性アクリルモノマー、(2)官能性アクリルモノマー、(3)官能性アクリルモノマーと光重合開始剤とを組み合わせた光硬化性ラジカル重合性組成物や、光硬化性エポキシ化合物と光酸発生剤とを含む光カチオン重合性組成物などをナノインプリントリソグラフィに適用し、熱的安定性やモールド剥離性を調べた例が開示されている。
 下記非特許文献9には、光硬化性樹脂とモールドとの剥離性、硬化後の膜収縮性、酸素存在下での光重合阻害による低感度化などの問題を改良するための工夫として(1)官能アクリルモノマー、(2)官能アクリルモノマー、シリコーン含有1官能アクリルモノマーおよび光重合開始剤を含む光ナノインプリント用硬化性組成物が開示されている。
Further, the following Non-Patent Document 8 includes (1) a functional acrylic monomer, (2) a functional acrylic monomer, and (3) a photocurable radical polymerizable composition in which a functional acrylic monomer and a photopolymerization initiator are combined. In addition, there is disclosed an example in which a photo-cationic polymerizable composition containing a photocurable epoxy compound and a photoacid generator is applied to nanoimprint lithography to examine thermal stability and mold releasability.
Non-Patent Document 9 below discloses a technique for improving problems such as peelability between a photocurable resin and a mold, film shrinkage after curing, and reduction in sensitivity due to photopolymerization inhibition in the presence of oxygen (1). There is disclosed a curable composition for optical nanoimprint, which comprises a) a functional acrylic monomer, (2) a functional acrylic monomer, a silicone-containing monofunctional acrylic monomer, and a photopolymerization initiator.
 下記非特許文献10には、1官能アクリルモノマーとシリコーン含有1官能モノマーと光重合開始剤とを含む光ナノインプリント用硬化性組成物を、シリコーン基板上に付与し、表面処理されたモールドを用いることで、モールド後のパターンの欠陥が低減されることが開示されている。また、下記非特許文献11には、シリコーンモノマーと3官能アクリルモノマーと光重合開始剤とを含む光ナノインプリント用硬化性組成物をシリコーン基板上に付与し、SiOモールドにより、高解像性、塗布の均一性に優れる組成物が開示されている。さらに、非特許文献12には、特定のビニルエーテル化合物と光酸発生剤とを組み合わせたカチオン重合性組成物により50nmパターンサイズを形成した例が開示されている。この組成物は、粘性が低く硬化速度が速いことが特徴であるが、テンプレート引き剥がし性が課題であると述べられている。 Non-Patent Document 10 below uses a surface-treated mold by applying a curable composition for optical nanoimprinting containing a monofunctional acrylic monomer, a silicone-containing monofunctional monomer, and a photopolymerization initiator on a silicone substrate. Thus, it is disclosed that pattern defects after molding are reduced. Further, in the following Non-Patent Document 11, a curable composition for optical nanoimprinting containing a silicone monomer, a trifunctional acrylic monomer, and a photopolymerization initiator is applied on a silicone substrate, and high resolution is achieved by using a SiO 2 mold. A composition having excellent coating uniformity is disclosed. Furthermore, Non-Patent Document 12 discloses an example in which a 50 nm pattern size is formed by a cationic polymerizable composition in which a specific vinyl ether compound and a photoacid generator are combined. This composition is characterized by low viscosity and high curing speed, but it is stated that template peelability is an issue.
 ところが、非特許文献8~12に示されるように、官能基の異なるアクリルモノマー、アクリル系ポリマー、ビニルエーテル化合物を光ナノインプリントリソグラフィに適用した光硬化性樹脂が様々開示されているものの、硬化性組成物としての好ましい種類、最適なモノマー種、モノマーの組み合わせ、モノマー若しくはレジストの最適な粘度、好ましいレジストの溶液物性、レジストの塗布性改良などの材料の設計に関しての指針は十分に開示されていない。このため、光ナノインプリントリソグラフィ用途に、硬化性組成物を広く適用するための好ましい材料の組み合わせが知られておらず、種々の用途において満足できる性能を発揮できる光ナノインプリント用硬化性組成物はこれまでに提案されていなかったのが実情である。 However, as shown in Non-Patent Documents 8 to 12, although various photocurable resins in which an acrylic monomer, an acrylic polymer, and a vinyl ether compound having different functional groups are applied to optical nanoimprint lithography are disclosed, a curable composition is disclosed. Guidelines regarding material design such as preferred types, optimum monomer types, monomer combinations, optimum monomer or resist viscosity, preferred resist solution properties, and improved resist coatability are not fully disclosed. For this reason, a combination of preferable materials for widely applying the curable composition to optical nanoimprint lithography applications is not known, and curable compositions for optical nanoimprint capable of exhibiting satisfactory performance in various applications have been heretofore The actual situation was not proposed.
 また、非特許文献11および12に開示される組成物においては低粘度のものもあるが、いずれも光硬化してパターンを形成して引き続き加熱処理を施した場合、出来上がった硬化膜の透過率が低く(着色してしまう)、さらに硬度も不十分であり、永久膜としての実用的性能が十分とはいえない。 In addition, some of the compositions disclosed in Non-Patent Documents 11 and 12 have low viscosity, but when both are photocured to form a pattern and subsequently subjected to heat treatment, the transmittance of the finished cured film is obtained. Is low (colored), and the hardness is insufficient, so that practical performance as a permanent film is not sufficient.
 下記非特許文献13および14には、光機能架橋材物質で処理したシリカゾル、(メタ)アクリルモノマー、光重合開始剤の混合物よりなる無機・有機ハイブリッド材料が提案されており、光ナノインプリントリソグラフィへの応用が報告されている。さらに、非特許文献13および14には、インプリント材料の200nmラインのパターン形成例や、モールド材として600nmの線幅までパターニング可能であることが報告されている。しかし、この材料においてもモールドとの剥離性や硬化膜の硬度が十分でないなどの問題点があり、必ずしも満足できるものではなかった。また、非特許文献13および14の組成物においても、低粘度の材料も開示されているが、いずれも光硬化してパターンを形成し引き続き加熱処理を施した後の硬化膜の透過率が低く(すなわち、硬化膜が着色してしまう)、また硬度も不十分である。 Non-Patent Documents 13 and 14 below propose inorganic / organic hybrid materials composed of a mixture of silica sol treated with a photofunctional cross-linking material, (meth) acrylic monomer, and photopolymerization initiator. Application has been reported. Further, Non-Patent Documents 13 and 14 report that a 200 nm line pattern formation example of an imprint material and a patterning up to a line width of 600 nm as a molding material are reported. However, this material also has problems such as insufficient releasability from the mold and insufficient hardness of the cured film, and is not always satisfactory. In the compositions of Non-Patent Documents 13 and 14, low-viscosity materials are also disclosed, but both have low transmittance of the cured film after photocuring to form a pattern and subsequent heat treatment. (In other words, the cured film is colored) and the hardness is insufficient.
 また、特許文献23には、モールドとの剥離性をよくするために、フッソ含有硬化性材料を用いたパターン形成方法が開示されているほか、表面処理が施されたコロイダルシリカや、特定の(メタ)アクリルモノマー、レベリング剤、光重合開始剤を含有するハードコート用組成物が開示されており、膜硬度と低硬化収縮性とを両立させた光ディスクへの応用が報告されている。しかし、これらの組成物では、モールドとの剥離性や基板塗布性が不十分であり、光ナノインプリントリソグラフィへの応用が困難である。さらに、光硬化後に、加熱処理を施した場合にパターンに着色が見られ、透過率が低く、光透過性が求められる永久膜としては適用しがたい。 In addition, Patent Document 23 discloses a pattern forming method using a fluorine-containing curable material in order to improve the releasability from the mold, as well as colloidal silica subjected to surface treatment, and a specific ( A composition for a hard coat containing a (meth) acrylic monomer, a leveling agent, and a photopolymerization initiator is disclosed, and its application to an optical disk having both film hardness and low curing shrinkage has been reported. However, these compositions have insufficient mold releasability and substrate coatability, and are difficult to apply to optical nanoimprint lithography. Further, when heat treatment is performed after photocuring, the pattern is colored, and it is difficult to apply as a permanent film requiring low transmittance and light transmittance.
 ポリシロキサンを含有する硬化性組成物としてはナノインプリント用途では非特許文献15、および特許文献24で報告されている。また、ポリシロキサンを含有する硬化性組成物として、特許文献25においてスタンパ方式による光学物品作成用組成物が報告されている。 Non-patent literature 15 and patent literature 24 have reported the curable composition containing polysiloxane for nanoimprint applications. In addition, as a curable composition containing polysiloxane, Patent Document 25 reports a composition for producing an optical article by a stamper method.
 以上のように永久膜としての主要技術課題としては、パターン精度、密着性、200℃を超える加熱処理後の透明性、高い機械的特性(外部圧力に対する強度)、耐擦傷性、平坦化特性、耐溶剤性、加熱処理時のアウトガス低減など、多くの課題が挙げられる。ナノインプリント用硬化性組成物を永久膜として適用する場合には、従来のアクリル樹脂などを用いたレジストと同様に、塗布膜の均一性、(2)加熱処理後の透明性、(3)耐擦傷性の付与が重要である。 As described above, the main technical problems as a permanent film include pattern accuracy, adhesion, transparency after heat treatment exceeding 200 ° C., high mechanical properties (strength against external pressure), scratch resistance, flattening properties, There are many problems such as solvent resistance and reduction of outgas during heat treatment. When the nanoimprint curable composition is applied as a permanent film, the uniformity of the coating film, (2) transparency after heat treatment, and (3) scratch resistance, as in the case of a resist using a conventional acrylic resin, etc. Gender is important.
米国特許第5,772,905号公報US Pat. No. 5,772,905 米国特許第5,956,216号公報US Pat. No. 5,956,216 米国特許第5,259,926号公報US Pat. No. 5,259,926 特表2005-527110号公報JP 2005-527110 Gazette 特開2005-197699号公報JP 2005-197699 A 特開2005-301289号公報JP 2005-301289 A 特開2000-39713号公報JP 2000-39713 A 特開平6-43643号公報JP-A-6-43643 特開2004-240241号公報Japanese Patent Laid-Open No. 2004-240241 特開平7-230165号公報Japanese Patent Laid-Open No. 7-230165 特開2000-181055号公報JP 2000-181055 A 特開2004-94241号公報JP 2004-94241 A 特開平4-149280号公報JP-A-4-149280 特開平7-62043号公報JP-A-7-62043 特開2001-93192号公報JP 2001-93192 A 特開2005-8759号公報JP 2005-8759 A 特開2003-165930号公報JP 2003-165930 A 特開2007-84625号公報JP 2007-84625 A 国際公開WO99/22849号パンフレットInternational Publication WO99 / 22849 Pamphlet 特開2004-59820号公報JP 2004-59820 A 特開2004-59822号公報JP 2004-59822 A 特開2006-114882号公報JP 2006-114882 A 特開2000-143924号公報JP 2000-143924 A 特開2007-72374号公報JP 2007-72374 A 特開2005-92099号公報JP 2005-92099 A
 光ナノインプリント用硬化性組成物特有の課題としては、上記(1)~(3)の性能以外に、機械的特性の1つとして(4)高弾性回復率の付与が重要である。さらに、ナノインプリント用硬化性組成物の組成物を設計する場合、上記(1)~(4)の点に加えて、同時に(5)モールドの凹部へのレジストの流動性を確保し、無溶剤もしくは少量の溶剤使用下での低粘度化が必要となること、(6)光硬化後、モールドと容易に剥離することができ、モールドへの付着が生じないこと、を考慮する必要があり、組成物設計の技術的難易度が一層高くなる。
 本発明者が検討した結果、ポリシロキサンを組成物中に含有させることにより、(4)高弾性回復率が得られる組成物を設計できることが見出された。
As problems specific to the curable composition for optical nanoimprint, in addition to the performances (1) to (3), it is important to provide (4) a high elastic recovery rate as one of the mechanical properties. Further, when designing the composition of the curable composition for nanoimprint, in addition to the above points (1) to (4), at the same time, (5) ensuring the fluidity of the resist to the concave portion of the mold, It is necessary to consider that it is necessary to reduce the viscosity under the use of a small amount of solvent, and (6) that it can be easily peeled off from the mold after photocuring and does not adhere to the mold. The technical difficulty of product design is further increased.
As a result of investigation by the present inventors, it has been found that (4) a composition capable of obtaining a high elastic recovery rate can be designed by including polysiloxane in the composition.
 上述のようにポリシロキサンを含有する硬化性組成物としてはナノインプリント用途では非特許文献15および特許文献25で報告されている。しかし、これらの文献で報告されている組成物は両者とも粘度が高い。このため、大型基材を用いてナノインプリント方法で構造体を形成する場合、モールドの凹部へのレジスト(組成物)の流動性低下によって、パターン精度が低下し、更に、基材内での(即ち、基材の中央と端とでの)厚みムラが問題になる。しかし、この問題に関しては上記非特許文献15および特許文献25では開示されていない。 As described above, curable compositions containing polysiloxane are reported in Non-Patent Document 15 and Patent Document 25 for nanoimprint applications. However, the compositions reported in these documents are both highly viscous. For this reason, when forming a structure by a nanoimprint method using a large-sized substrate, the pattern accuracy decreases due to a decrease in the fluidity of the resist (composition) in the concave portion of the mold, and further within the substrate (that is, Thickness variation (at the center and end of the substrate) becomes a problem. However, this problem is not disclosed in Non-Patent Document 15 and Patent Document 25.
 また、上述の通り、ポリシロキサンを含有する硬化性組成物ついて、特許文献26にスタンパ方式による光学物品作成用組成物が報告されている。スタンパ方式では一般にスタンパ押し圧が高く、粘度が高い組成物を用いても構造体形成が可能ではある。しかし、光ナノインプリント用途ではパターン精度が低下する問題や基材面内での厚みムラの問題を生じてしまう。 Also, as described above, a composition for producing optical articles by a stamper method is reported in Patent Document 26 regarding a curable composition containing polysiloxane. In the stamper method, it is generally possible to form a structure using a composition having a high stamper pressure and a high viscosity. However, in the optical nanoimprint application, there arises a problem that the pattern accuracy is lowered and a thickness unevenness in the substrate surface.
 また、これまでインクジェット用組成物や光磁気ディスク用保護膜の用途で知られている組成物、また、エッチングレジストとして用いられる光ナノインプリント用硬化性組成物は、永久膜の作製に用いられる光ナノインプリント用硬化性組成物と材料に共通部分はあるものの、高温の加熱処理や、機械的強度の観点などで大きく必要特性が異なってくる。このため、インクジェット、光磁気ディスク用保護膜、または、エッチングレジスト用途で適用する光硬化性樹脂をそのまま永久膜用のレジストとして適用すると、透明性、機械的強度、耐溶剤性などでなかなか実用性に耐えるものが得られない。このように、光ナノインプリント用の硬化性組成物については、種々の材料が開示されているものの、永久膜の作製に適した硬化性組成物については十分な設計指針が示されていないのが現状である。 In addition, compositions that have been known for use in inkjet compositions and protective films for magneto-optical disks, and curable compositions for optical nanoimprints that are used as etching resists are optical nanoimprints that are used in the production of permanent films. Although there is a common part between the curable composition for use and the material, the required characteristics are greatly different from the viewpoint of high-temperature heat treatment and mechanical strength. For this reason, if a photo-curable resin applied for inkjet, magneto-optical disk protective film or etching resist application is applied as it is as a permanent film resist, it is quite practical in terms of transparency, mechanical strength, solvent resistance, etc. No one can withstand. As described above, although various materials are disclosed for the curable composition for optical nanoimprint, there is no sufficient design guideline for the curable composition suitable for producing a permanent film. It is.
 本発明は、上述の課題を解決するために、光硬化性に優れ、特にフラットパネルディスプレイ等の透明保護膜やスペーサーなどの永久膜に好適なナノインプリント用硬化性組成物を提供することにあり、具体的には、加熱硬化後のパターン精度、表面硬度、光透過性および耐熱性に優れたナノインプリント用硬化性組成物、これを用いた硬化物およびその製造方法、並びに、液晶表示装置用部材を提供することを目的とする。 In order to solve the above-mentioned problems, the present invention is to provide a curable composition for nanoimprinting that is excellent in photocurability, and particularly suitable for a transparent protective film such as a flat panel display or a permanent film such as a spacer, Specifically, a curable composition for nanoimprints excellent in pattern accuracy, surface hardness, light transmittance and heat resistance after heat curing, a cured product using the same, a method for producing the same, and a member for a liquid crystal display device The purpose is to provide.
 上記課題のもと、本願発明者らが鋭意検討を行った結果、下記手段により上記課題を解決しうることを見出した。 Based on the above problems, the inventors of the present invention have conducted extensive studies and found that the above problems can be solved by the following means.
[1] オキセタン環を有する化合物と、官能性酸無水物と、光ラジカル重合性単量体と、光ラジカル重合開始剤と、を含有し、組成物中のラジカル重合性官能基を有する化合物の総含有量が50~99.5質量%であることを特徴とするナノインプリント用硬化性組成物。 [1] A compound containing a compound having an oxetane ring, a functional acid anhydride, a photoradical polymerizable monomer, and a photoradical polymerization initiator, and having a radical polymerizable functional group in the composition A curable composition for nanoimprints, wherein the total content is 50 to 99.5% by mass.
[2] 組成物の粘度が25℃において3~18mPa・sであることを特徴とする[1]に記載のナノインプリント用硬化性組成物。 [2] The curable composition for nanoimprints according to [1], wherein the composition has a viscosity of 3 to 18 mPa · s at 25 ° C.
[3] 前記オキセタン環を有する化合物が、光ラジカル重合性官能基を有することを特徴とする[1]または[2]に記載のナノインプリント用硬化性組成物。 [3] The curable composition for nanoimprints according to [1] or [2], wherein the compound having an oxetane ring has a photoradically polymerizable functional group.
[4] 前記官能性酸無水物が、光ラジカル重合性官能基を有することを特徴とする[1]~[3]のいずれか1つに記載のナノインプリント用硬化性組成物。 [4] The curable composition for nanoimprints according to any one of [1] to [3], wherein the functional acid anhydride has a radically polymerizable functional group.
[5] さらに、酸化防止剤を含有することを特徴とする[1]~[4]のいずれか1つに記載のナノインプリント用硬化性組成物。 [5] The curable composition for nanoimprints according to any one of [1] to [4], further comprising an antioxidant.
[6] 組成物中の窒素原子を含むモノマーの含有量が5.0質量%以下であることを特徴とする[1]~[5]のいずれか1つに記載のナノインプリント用硬化性組成物。 [6] The curable composition for nanoimprints according to any one of [1] to [5], wherein the content of the monomer containing a nitrogen atom in the composition is 5.0% by mass or less .
[7] 露光及び加熱によって厚さ3.0μmの薄膜を形成した際に、400nm光線透過率が95%以上であることを特徴とする[1]~[6]のいずれか1つに記載のナノインプリント用硬化性組成物。 [7] As described in any one of [1] to [6], a light transmittance of 400 nm is 95% or more when a thin film having a thickness of 3.0 μm is formed by exposure and heating. A curable composition for nanoimprint.
[8] [1]~[7]のいずれか1つに記載のナノインプリント用硬化性組成物を硬化させたことを特徴とする硬化物。 [8] A cured product obtained by curing the curable composition for nanoimprints according to any one of [1] to [7].
[9] 厚さ3.0μmにおける400nm光線透過率が95%以上であることを特徴とする[8]に記載の硬化物。 [9] The cured product according to [8], wherein a light transmittance of 400 nm at a thickness of 3.0 μm is 95% or more.
[10] [8]に記載の硬化物を含むことを特徴とする液晶表示装置用部材。 [10] A liquid crystal display device member comprising the cured product according to [8].
[11] [1]~[7]のいずれか1つに記載のナノインプリント用硬化性組成物を基材上に塗布してパターン形成層を形成する工程と、
 前記パターン形成層表面にモールドを押圧する工程と、
 前記パターン形成層に光を照射する工程と、
を含むことを特徴とする硬化物の製造方法。
[11] A step of applying the curable composition for nanoimprints according to any one of [1] to [7] onto a substrate to form a pattern forming layer;
Pressing the mold against the surface of the pattern forming layer;
Irradiating the pattern forming layer with light;
The manufacturing method of the hardened | cured material characterized by including.
[12] さらに、光が照射された前記パターン形成層を加熱する工程を含むことを特徴とする[11]に記載の硬化物の製造方法。 [12] The method for producing a cured product according to [11], further comprising a step of heating the pattern forming layer irradiated with light.
 本発明によれば、加熱硬化後のパターン精度、表面硬度、光透過性および耐熱性に優れたナノインプリント用硬化性組成物、これを用いた硬化物およびその製造方法、並びに、液晶表示装置用部材を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the curable composition for nanoimprint excellent in the pattern accuracy after heat-curing, surface hardness, light transmittance, and heat resistance, the hardened | cured material using this, its manufacturing method, and the member for liquid crystal display devices Can be provided.
 以下において、本発明の内容について詳細に説明する。本願明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。 Hereinafter, the contents of the present invention will be described in detail. In the present specification, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 また、本明細書中において、“(メタ)アクリレート”は“アクリレート”および“メタクリレート”を表し、“(メタ)アクリル”は“アクリル”および“メタクリル”を表し、“(メタ)アクリロイル”は“アクリロイル”および“メタクリロイル”を表す。さらに、本明細書中において、“単量体”と“モノマー”は同義である。本発明における単量体は、オリゴマーおよびポリマーと区別され、重量平均分子量が1,000以下の化合物をいう。本明細書中において、“官能基”は重合に関与する基をいう。
 また、本発明でいうナノインプリントとは、およそ数十nmから数十μmのサイズのパターン転写をいい、ナノオーダーのものに限定されるものではない。
In the present specification, “(meth) acrylate” represents “acrylate” and “methacrylate”, “(meth) acryl” represents “acryl” and “methacryl”, and “(meth) acryloyl” represents “ Represents “acryloyl” and “methacryloyl”. Further, in the present specification, “monomer” and “monomer” are synonymous. The monomer in the present invention is distinguished from an oligomer and a polymer, and refers to a compound having a weight average molecular weight of 1,000 or less. In this specification, “functional group” refers to a group involved in polymerization.
In addition, the nanoimprint referred to in the present invention refers to pattern transfer having a size of about several tens of nanometers to several tens of micrometers, and is not limited to nano-order ones.
[ナノインプリント用硬化性組成物]
 本発明のナノインプリント用硬化性組成物(以下、単に「本発明の組成物」ということがある)、は、オキセタン環を有する化合物と、官能性酸無水物と、光ラジカル重合性モノマーと、光ラジカル重合開始剤と、を含有し、組成物中のラジカル重合性官能基を有する分子の総含有量が50~99.5質量%である。
 本発明の組成物は、光ラジカル重合性モノマーと光ラジカル重合開始剤とに加えて、オキセタン環を有する化合物と、その硬化剤である官能性酸無水物とを含有するため、光硬化性に加えて熱硬化性をも有する。これにより、本発明の組成物は、光照射によって組成物を硬化させた後、さらに加熱工程により加熱することで、表面硬度等をより高めることができる。
[Curable composition for nanoimprint]
The curable composition for nanoimprinting of the present invention (hereinafter sometimes simply referred to as “the composition of the present invention”) includes a compound having an oxetane ring, a functional acid anhydride, a photoradical polymerizable monomer, a photo A radical polymerization initiator, and the total content of molecules having radical polymerizable functional groups in the composition is 50 to 99.5% by mass.
The composition of the present invention contains a compound having an oxetane ring and a functional acid anhydride that is a curing agent in addition to the photoradical polymerizable monomer and the photoradical polymerization initiator, so that it is photocurable. In addition, it has thermosetting properties. Thereby, after hardening a composition by light irradiation, the composition of this invention can raise surface hardness etc. more by heating by a heating process further.
 また、本発明のナノインプリント用硬化性組成物は、光ナノインプリントリソグラフィに広く用いることができ、以下のような特徴を有するものとすることができる。
(1)本発明の組成物は、室温での溶液流動性に優れるため、モールド凹部のキャビティ内に該組成物が流れ込みやすく、大気が取り込まれにくいためバブル欠陥を引き起こすことがなく、モールド凸部、凹部のいずれにおいても光硬化後に残渣が残りにくい。
(2)本発明の組成物を硬化した後の硬化膜は、機械的性質に優れ、塗膜と基材との密着性に優れ、かつ、塗膜とモールドとの剥離性に優れるため、モールドを引き剥がす際にパターン崩れや塗膜表面に糸引きが生じて表面荒れを引き起こすことがないため良好なパターンを形成できる(良好なパターン精度)。
(3)塗布均一性に優れるため、大型基材への塗布・微細加工分野などに適する。
(4)光透過性、残膜性、耐擦傷性などの機械特性、耐溶剤性が高いので、各種の永久膜としてとして好適に用いることができる、等の特徴を有するものとすることができる。
Moreover, the curable composition for nanoimprints of the present invention can be widely used for optical nanoimprint lithography, and can have the following characteristics.
(1) Since the composition of the present invention is excellent in solution fluidity at room temperature, the composition easily flows into the cavity of the mold recess, and the atmosphere is difficult to be taken in. In any of the recesses, it is difficult for residues to remain after photocuring.
(2) The cured film after curing the composition of the present invention has excellent mechanical properties, excellent adhesion between the coating film and the substrate, and excellent peelability between the coating film and the mold. A good pattern can be formed because the pattern is not broken when the film is peeled off, and the surface of the coating film is not threaded to cause surface roughening (good pattern accuracy).
(3) Since it is excellent in coating uniformity, it is suitable for the field of coating / microfabrication on large substrates.
(4) Since it has high mechanical properties such as light transmittance, residual film property, scratch resistance, and solvent resistance, it can be suitably used as various permanent films. .
 このため、本発明のナノインプリント用硬化性組成物は、例えば、これまで展開が難しかった半導体集積回路や液晶表示装置用部材(特に、液晶ディスプレイの薄膜トランジタ、液晶カラーフィルタの保護膜、スペーサー、その他の液晶表示装置用部材の微細加工用途等)に好適に適用でき、その他の用途、例えば、プラズマディスプレイパネル用隔壁材、フラットスクリーン、マイクロ電気機械システム(MEMS)、センサ素子、光ディスク、高密度メモリーデイスク等の磁気記録媒体、回折格子ヤレリーフホログラム等の光学部品、ナノデバイス、光学デバイス、光学フィルムや偏光素子、有機トランジスタ、カラーフィルタ、オーバーコート層、柱材、液晶配向用リブ材、マイクロレンズアレイ、免疫分析チップ、DNA分離チップ、マイクロリアクター、ナノバイオデバイス、光導波路、光学フィルター、フォトニック液晶等の作製にも幅広く適用することができる。 For this reason, the curable composition for nanoimprints of the present invention is, for example, a member for semiconductor integrated circuits and liquid crystal display devices that have been difficult to develop (particularly, thin film transistors for liquid crystal displays, protective films for liquid crystal color filters, spacers, etc. And other applications such as partition materials for plasma display panels, flat screens, micro electromechanical systems (MEMS), sensor elements, optical disks, and high-density memories. Magnetic recording media such as discs, optical parts such as diffraction grating relief holograms, nanodevices, optical devices, optical films and polarizing elements, organic transistors, color filters, overcoat layers, column materials, liquid crystal alignment rib materials, microlenses Array, immunoassay chip, DNA separation chip , Microreactors, nanobio devices, optical waveguides, can also be widely applied to manufacturing, such as an optical filter, photonic crystal.
(ラジカル重合性官能基を有する化合物の含有量)
 本発明のナノインプリント用硬化性組成物は、組成物中のラジカル重合性官能基を有する化合物の総含有量が50~99.5質量%である。“ラジカル重合性官能基を有する化合物”とは、例えば、(メタ)アクリル基、ビニル基、アリル基等のエチレン性不飽和結合を有するラジカル重合性官能基を有する化合物である。例えば、後述する本発明におけるオキセタン環を有する化合物がオキセタン(メタ)アクリレートの場合には、(メタ)アクリル基がラジカル重合性官能基であることから、前記ラジカル重合性官能基を有する化合物に該当する。
(Content of compound having radical polymerizable functional group)
In the curable composition for nanoimprinting of the present invention, the total content of compounds having radically polymerizable functional groups in the composition is 50 to 99.5% by mass. The “compound having a radically polymerizable functional group” is a compound having a radically polymerizable functional group having an ethylenically unsaturated bond such as a (meth) acryl group, a vinyl group, or an allyl group. For example, when the compound having an oxetane ring in the present invention described later is oxetane (meth) acrylate, since the (meth) acryl group is a radical polymerizable functional group, it corresponds to the compound having the radical polymerizable functional group. To do.
 本発明の組成物中におけるラジカル重合性官能基を有する化合物の総含有量が50質量%未満であると、光照射を行っても十分に硬化できず、モールドパターンを精度よく転写することができないうえ、硬化膜の硬度などの物性も不十分である。また、本発明の組成物中におけるラジカル重合性官能基を有する化合物の総含有量が95.5質量%を越えると、光ラジカル重合開始剤や界面活性剤などの添加剤が十分に機能せず、パターン精度や硬化膜の物性が悪化してしまう。パターン精度と硬化膜物性の観点から、本発明の組成物中におけるラジカル重合性官能基を有する化合物の総含有量としては、60~99質量%が好ましく、70~98質量%がさらに好ましい。 When the total content of the compound having a radical polymerizable functional group in the composition of the present invention is less than 50% by mass, it cannot be sufficiently cured even by light irradiation, and the mold pattern cannot be accurately transferred. In addition, physical properties such as hardness of the cured film are insufficient. Further, when the total content of the compound having a radical polymerizable functional group in the composition of the present invention exceeds 95.5% by mass, additives such as a photo radical polymerization initiator and a surfactant do not function sufficiently. The pattern accuracy and the physical properties of the cured film are deteriorated. From the viewpoint of pattern accuracy and cured film physical properties, the total content of the compound having a radical polymerizable functional group in the composition of the present invention is preferably 60 to 99% by mass, and more preferably 70 to 98% by mass.
(オキセタン環を有する化合物)
 本発明のナノインプリント用硬化性組成物は、オキセタン環を有する化合物(以下、単に「オキセタン化合物」という場合がある)を含有する。本発明の組成物は、オキセタン環を有する化合物を含有するため、加熱により優れた硬度を得ることができる。
 本発明におけるオキセタン環を有する化合物に含まれるオキセタン環構造(オキセタニル基)の数としては、硬化速度と硬化膜物性の観点から、1~4が好ましく、1~3がさらに好ましい。
 また、本発明におけるオキセタン環を有する化合物の総炭素数としては、組成物の粘度低減の観点から、5~50が好ましく、5~20がさらに好ましい。
 本発明におけるオキセタン環を有する化合物の分子量としては、組成物の粘度低減の観点から、100~1000が好ましく、100~400がさらに好ましい。
 また、本発明におけるオキセタン環を有する化合物は、光ラジカル重合性官能基を有することが好ましい。前記光ラジカル重合性官能基としては、例えば、エチレン性不飽和結合を有する官能基が挙げられ、(メタ)アクリル基、ビニル基、アリル基,スチリル基が好ましい。本発明におけるオキセタン環を有する化合物に含まれる光ラジカル重合性基の数としては、光照射時のパターン精度と基板との密着性の観点から、1~4が好ましく、1~2がさらに好ましい。本発明の組成物に含まれるオキセタン環を有する化合物は、1種であってもよいし、2種以上であってもよい。また、本発明の組成物は、光ラジカル重合性官能基を有するオキセタン化合物と、これを有しないオキセタン化合物とを併用してもよい。光ラジカル重合性官能基を有する化合物(x)と、これを有しないオキセタン化合物(y)とを併用する場合、その含有比(x:y、x基準)としては、光照射後のパターン精度と加熱時の未反応成分揮発抑制の観点から、1/2~5/1が好ましく、1/1~2/1がさらに好ましい。
(Compound having oxetane ring)
The curable composition for nanoimprinting of the present invention contains a compound having an oxetane ring (hereinafter sometimes simply referred to as “oxetane compound”). Since the composition of the present invention contains a compound having an oxetane ring, excellent hardness can be obtained by heating.
The number of oxetane ring structures (oxetanyl groups) contained in the compound having an oxetane ring in the present invention is preferably 1 to 4, and more preferably 1 to 3, from the viewpoint of curing speed and cured film properties.
In the present invention, the total number of carbon atoms of the compound having an oxetane ring is preferably 5 to 50, and more preferably 5 to 20 from the viewpoint of reducing the viscosity of the composition.
The molecular weight of the compound having an oxetane ring in the present invention is preferably from 100 to 1,000, and more preferably from 100 to 400, from the viewpoint of reducing the viscosity of the composition.
In addition, the compound having an oxetane ring in the present invention preferably has a photoradically polymerizable functional group. Examples of the radical photopolymerizable functional group include a functional group having an ethylenically unsaturated bond, and a (meth) acryl group, a vinyl group, an allyl group, and a styryl group are preferable. The number of radically polymerizable groups contained in the compound having an oxetane ring in the present invention is preferably 1 to 4, more preferably 1 to 2, from the viewpoint of pattern accuracy during light irradiation and adhesion to the substrate. The compound having an oxetane ring contained in the composition of the present invention may be one type or two or more types. In the composition of the present invention, an oxetane compound having a photoradically polymerizable functional group and an oxetane compound not having this may be used in combination. When using together the compound (x) which has a photoradically polymerizable functional group, and the oxetane compound (y) which does not have this, as the content ratio (x: y, x reference | standard), pattern accuracy after light irradiation and From the viewpoint of suppressing volatilization of unreacted components during heating, 1/2 to 5/1 is preferable, and 1/1 to 2/1 is more preferable.
 本発明のナノインプリント用硬化性組成物において、全組成物中におけるオキセタン環を有する化合物の含有量は、光照射後のパターン精度の観点から、5~50質量%が好ましく、10~30質量%がさらに好ましい。但し、本発明におけるオキセタン環を有する化合物が光ラジカル重合性官能基を有する場合、その含有量は、上述の通り、本発明の組成物中におけるラジカル重合性官能基を有する化合物の含有量を考慮して決定することができる。この際、光ラジカル重合性官能基を有するオキセタン化合物の含有量は、他のラジカル重合性官能基を有する化合物の含有量との関係や光ラジカル重合性官能基を有しないオキセタン化合物の含有量との関係から適宜決定される。 In the curable composition for nanoimprints of the present invention, the content of the compound having an oxetane ring in the entire composition is preferably 5 to 50% by mass from the viewpoint of pattern accuracy after light irradiation, and is 10 to 30% by mass. Further preferred. However, when the compound having an oxetane ring in the present invention has a photo-radical polymerizable functional group, the content thereof, as described above, considers the content of the compound having a radical polymerizable functional group in the composition of the present invention. Can be determined. At this time, the content of the oxetane compound having a photoradically polymerizable functional group is related to the content of the compound having another radical polymerizable functional group or the content of the oxetane compound having no photoradically polymerizable functional group. It is determined appropriately from the relationship.
 本発明におけるオキセタニル基を有する化合物としては、例えば、3-エチル-3-ヒドロキシメチルオキセタン(商品名:OXT-101、東亞合成(株)製)、1,4-ビス[[(3-エチル-3-オキセタニル)メトキシ]メチル]ベンゼン(商品名:OXT-121、東亞合成(株)製)、3-エチル-3-(フェノキシメチル)オキセタン(商品名:OXT-211、東亞合成(株)製)、ジ[1-エチル(3-オキセタニル)]メチルエーテル(商品名:OXT-221、東亞合成(株)製)、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン(商品名:OXT-212、東亞合成(株)製)、4,4’-ビス[3-エチル-(3-オキセタニル)メトキシメチル]ビフェニル(商品名:ETERNACOLL OXBP、宇部興産(株)製)、シルセスキオキサン変性型オキセタン(商品名:OX-SQ、東亞合成(株)製)、オキセタン(メタ)アクリレート(商品名:OXE-10、30、大阪有機化学(株)製)等が挙げられる。 Examples of the compound having an oxetanyl group in the present invention include 3-ethyl-3-hydroxymethyloxetane (trade name: OXT-101, manufactured by Toagosei Co., Ltd.), 1,4-bis [[(3-ethyl- 3-Oxetanyl) methoxy] methyl] benzene (trade name: OXT-121, manufactured by Toagosei Co., Ltd.), 3-ethyl-3- (phenoxymethyl) oxetane (trade name: OXT-211, manufactured by Toagosei Co., Ltd.) ), Di [1-ethyl (3-oxetanyl)] methyl ether (trade name: OXT-221, manufactured by Toagosei Co., Ltd.), 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane (trade name: OXT-212, manufactured by Toagosei Co., Ltd.), 4,4′-bis [3-ethyl- (3-oxetanyl) methoxymethyl] biphenyl (trade name: ETERRNACOLL) XBP, manufactured by Ube Industries, Ltd.), silsesquioxane modified oxetane (trade name: OX-SQ, manufactured by Toagosei Co., Ltd.), oxetane (meth) acrylate (trade name: OXE-10, 30, Osaka Organic) Chemical Co., Ltd.).
(官能性酸無水物)
 本発明のナノインプリント用硬化性組成物は、官能性酸無水物を含有する。本発明における酸無水物化合物は、前記オキセタン環を有する化合物の硬化剤としての機能を有する。本発明の組成物は官能性酸無水物を含有することで、加熱硬化後に高い表面硬度を得ることができる。
 本発明において「官能性酸無水物」とは、オキソ酸2分子が脱水縮合した化合物であって、加熱などにより他の官能基と化学結合するものを意味する。
 本発明における官能性酸無水物としては、例えば、無水フタル酸類、無水シトラコン酸類、無水コハク酸類、無水プロピオン酸類、無水マレイン酸類、無水酢酸類等が挙げられ、粘度低減と組成物安定性の観点から、無水フタル酸類、無水マレイン酸類が好ましい。
(Functional acid anhydride)
The curable composition for nanoimprinting of the present invention contains a functional acid anhydride. The acid anhydride compound in the present invention functions as a curing agent for the compound having an oxetane ring. Since the composition of the present invention contains a functional acid anhydride, a high surface hardness can be obtained after heat curing.
In the present invention, the “functional acid anhydride” means a compound obtained by dehydration condensation of two molecules of oxo acid and chemically bonded to other functional groups by heating or the like.
Examples of the functional acid anhydride in the present invention include phthalic anhydrides, citraconic anhydrides, succinic anhydrides, propionic anhydrides, maleic anhydrides, acetic anhydrides, and the like, from the viewpoint of viscosity reduction and composition stability. Therefore, phthalic anhydrides and maleic anhydrides are preferable.
  また、本発明における官能性酸無水物の総炭素数としては、組成物の粘度低減の観点から、10~100が好ましく、10~50がさらに好ましい。
 本発明における官能性酸無水物の分子量としては、組成物の粘度低減の観点から、100~1000が好ましく、100~500がさらに好ましい。
The total number of carbon atoms of the functional acid anhydride in the present invention is preferably 10 to 100, more preferably 10 to 50, from the viewpoint of reducing the viscosity of the composition.
The molecular weight of the functional acid anhydride in the present invention is preferably from 100 to 1,000, more preferably from 100 to 500, from the viewpoint of reducing the viscosity of the composition.
 また、本発明における官能性酸無水物は、光ラジカル重合性官能基を有することが好ましい。前記光ラジカル重合性官能基としては、例えば、エチレン性不飽和結合を有する官能基が挙げられ、(メタ)アクリル基、ビニル基、アリル基、スチリル基が好ましい。本発明における官能性酸無水物に含まれる光ラジカル重合性基の数としては、光照射時のパターン精度と基板との密着性の観点から、1~3が好ましく、1~2がさらに好ましい。本発明の組成物に含まれる官能性酸無水物は、1種であってもよいし、2種以上であってもよい。また、本発明の組成物は、光ラジカル重合性官能基を有する官能性酸無水物と、これを有しない官能性酸無水物とを併用してもよい。光ラジカル重合性官能基を有する化合物(q)と、これを有しない官能性酸無水物(w)とを併用する場合、その含有比(q:w、q基準)としては、光照射後のパターン精度と加熱時の未反応成分揮発抑制の観点から、1/2~5/1が好ましく、1/1~2/1がさらに好ましい。 In addition, the functional acid anhydride in the present invention preferably has a radically polymerizable functional group. Examples of the photoradical polymerizable functional group include a functional group having an ethylenically unsaturated bond, and a (meth) acryl group, a vinyl group, an allyl group, and a styryl group are preferable. The number of radical photopolymerizable groups contained in the functional acid anhydride in the present invention is preferably 1 to 3, more preferably 1 to 2, from the viewpoint of pattern accuracy during light irradiation and adhesion to the substrate. 1 type may be sufficient as the functional acid anhydride contained in the composition of this invention, and 2 or more types may be sufficient as it. Moreover, the composition of this invention may use together the functional acid anhydride which has a photoradically polymerizable functional group, and the functional acid anhydride which does not have this. When using together the compound (q) which has a radical photopolymerizable functional group, and the functional acid anhydride (w) which does not have this, as the content ratio (q: w, q reference | standard), after light irradiation From the viewpoint of pattern accuracy and suppression of volatilization of unreacted components during heating, 1/2 to 5/1 is preferable, and 1/1 to 2/1 is more preferable.
 本発明のナノインプリント用硬化性組成物において、全組成物中における官能性酸無水物の含有量は、光照射後のパターン精度の観点から、5~50質量%が好ましく、10~30質量%がさらに好ましい。但し、本発明における官能性酸無水物が光ラジカル重合性官能基を有する場合、その含有量は、上述の通り、本発明の組成物中におけるラジカル重合性官能基を有する化合物の含有量を考慮して決定することができる。この際、光ラジカル重合性官能基を有する官能性酸無水物の含有量は、他のラジカル重合性官能基を有する化合物の含有量との関係や光ラジカル重合性官能基を有しない官能性酸無水物の含有量との関係から適宜決定される。 In the curable composition for nanoimprints of the present invention, the content of the functional acid anhydride in the entire composition is preferably 5 to 50% by mass, and preferably 10 to 30% by mass from the viewpoint of pattern accuracy after light irradiation. Further preferred. However, when the functional acid anhydride in the present invention has a photo-radical polymerizable functional group, the content thereof, as described above, considers the content of the compound having a radical polymerizable functional group in the composition of the present invention. Can be determined. At this time, the content of the functional acid anhydride having a photoradically polymerizable functional group is related to the content of a compound having another radical polymerizable functional group or a functional acid having no photoradically polymerizable functional group. It is determined appropriately from the relationship with the anhydride content.
 また、本発明のナノインプリント用硬化性組成物において、本発明におけるオキセタン環を有する化合物(a)と官能性酸無水物(b)との含有比(a:b、a基準)としては、未反応官能基の量をできるだけ少なくする観点から、3/1~1/3が好ましく、2/1~1/2がさらに好ましい。 In the curable composition for nanoimprints of the present invention, the content ratio (a: b, a basis) of the compound (a) having a oxetane ring and the functional acid anhydride (b) in the present invention is unreacted. From the viewpoint of minimizing the amount of functional groups, 3/1 to 1/3 is preferable, and 2/1 to 1/2 is more preferable.
 本発明における官能性酸無水物としては、例えば、メチル-1,2,3,6-テトラヒドロ無水フタル酸(商品名:エピクロンB570、大日本インキ化学工業(株)製)、メチル-ヘキサヒドロ無水フタル酸(商品名:エピクロンB650、大日本インキ化学工業(株)製)、メチル-3,6-エンドメチレン-1,2,3,6-テトラヒドロ無水フタル酸(商品名:MHAC-P、日立化成工業(株)製)、4-メチルヘキサヒドロ無水フタル酸(商品名:リカシッドM H-700、新日本理化(株)製)、無水シトラコン酸、ドデセン無水コハク酸(商品名:リカシッドDDSA、新日本理化(株)製)、グリセロールビス(無水トリメリテート)モノアセテート(商品名:リカシッドMTA-10、新日本理化(株)製)、日本ゼオン(株)製のクインハード-200(商品名)、ジャパンエポキシレジン(株)製のエピキュアYH-306(商品名)、Aldrich試薬(P25205、294152,B9750、B4600、412287、N818、N1607、330736)等が挙げられる。 Examples of the functional acid anhydride in the present invention include methyl-1,2,3,6-tetrahydrophthalic anhydride (trade name: Epicron B570, manufactured by Dainippon Ink and Chemicals), methyl-hexahydrophthalic anhydride. Acid (trade name: Epicron B650, manufactured by Dainippon Ink and Chemicals), methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride (trade name: MHAC-P, Hitachi Chemical) Kogyo Co., Ltd.), 4-methylhexahydrophthalic anhydride (trade name: Ricacid M H-700, manufactured by Shin Nippon Rika Co., Ltd.), citraconic anhydride, dodecene succinic anhydride (trade name: Ricacid DDSA, Shin Nippon Rika Co., Ltd.), glycerol bis (anhydrous trimellitate) monoacetate (trade name: Ricacid MTA-10, Shin Nippon Rika Co., Ltd.), Japan Quinhard-200 (trade name) manufactured by ON Co., Ltd., EpiCure YH-306 (trade name) manufactured by Japan Epoxy Resin Co., Ltd., Aldrich Reagent (P25205, 294152, B9750, B4600, 41287, N818, N1607, 3307376 ) And the like.
(光ラジカル重合性単量体)
 本発明のナノインプリント用硬化性組成物には光ラジカル重合性単量体が含有される。本発明の組成物は、光ラジカル重合性単量体を含有することで、光照射後に良好なパターン精度を得ることができる。本発明において、「光ラジカル重合性単量体」とは、光照射によって重合反応を起こし,高分子量体を形成することのできる単量体を意味する。
(Photoradical polymerizable monomer)
The curable composition for nanoimprinting of the present invention contains a photoradical polymerizable monomer. Since the composition of the present invention contains a photo-radically polymerizable monomer, good pattern accuracy can be obtained after light irradiation. In the present invention, the “photo radical polymerizable monomer” means a monomer capable of causing a polymerization reaction by light irradiation to form a high molecular weight product.
 本発明で用いられる光ラジカル重合性単量体の主な機能としては、組成物の粘度調整や、硬化膜の機械特性を目的に適宜選択される。組成物の粘度調整の観点からは、低粘度の光ラジカル重合性単量体を使用することが好ましい。また、硬化物のパターン精度を向上させるためには組成物の粘度が、通常、18mPa・s以下であることが好ましく、その目的では、できうる限り低粘度の重合性単量体を用いることが好ましい。光ラジカル重合性単量体の粘度は、分子量、分子間相互作用等と関連がありことから、光ラジカル重合性単量の低粘度化は、低分子量、低分子間相互作用を考慮することで達成することができる。 The main function of the photoradically polymerizable monomer used in the present invention is appropriately selected for the purpose of adjusting the viscosity of the composition and the mechanical properties of the cured film. From the viewpoint of adjusting the viscosity of the composition, it is preferable to use a low-viscosity photo-radically polymerizable monomer. In order to improve the pattern accuracy of the cured product, the viscosity of the composition is usually preferably 18 mPa · s or less, and for that purpose, a polymerizable monomer having a viscosity as low as possible is used. preferable. Since the viscosity of photoradical polymerizable monomers is related to molecular weight, intermolecular interaction, etc., the reduction in viscosity of photoradical polymerizable monomers can be achieved by taking low molecular weight and low molecular interactions into consideration. Can be achieved.
 本発明で用いられる光ラジカル重合性単量体は、組成物の粘度の調整の観点から、100mPa・s以下の粘度を有する化合物が好ましく、50mPa・s以下が更に好ましく、10mPa・s以下が特に好ましい。
 本発明における光ラジカル重合性単量体の重量平均分子量は、組成物の粘度の調整の観点から、500以下が好ましく、100~400がさらに好ましく、100~300が特に好ましい。
The radical photopolymerizable monomer used in the present invention is preferably a compound having a viscosity of 100 mPa · s or less, more preferably 50 mPa · s or less, particularly preferably 10 mPa · s or less, from the viewpoint of adjusting the viscosity of the composition. preferable.
The weight average molecular weight of the photoradically polymerizable monomer in the present invention is preferably 500 or less, more preferably 100 to 400, and particularly preferably 100 to 300, from the viewpoint of adjusting the viscosity of the composition.
 また、本発明における光ラジカル重合性単量体が有する光ラジカル重合性官能基としては、例えば、エチレン性不飽和結合を有する官能基が挙げられ、(メタ)アクリル基、ビニル基、アリル基 スチリル基が好ましい。本発明の組成物に含まれる光ラジカル重合性単量体は、1種であってもよいし、2種以上であってもよい。また、本発明の組成物は、光ラジカル重合性官能基を有する光ラジカル重合性単量体と、これを有しない光ラジカル重合性単量体(例えば、カチオン性重合性基を有する重合性単量体)とを併用してもよい。 Examples of the photoradically polymerizable functional group possessed by the photoradically polymerizable monomer in the present invention include a functional group having an ethylenically unsaturated bond, such as (meth) acryl group, vinyl group, allyl group, styryl. Groups are preferred. 1 type may be sufficient as the radical photopolymerizable monomer contained in the composition of this invention, and 2 or more types may be sufficient as it. Further, the composition of the present invention comprises a photoradical polymerizable monomer having a photoradically polymerizable functional group and a photoradical polymerizable monomer having no photoradical polymerizable functional group (for example, a polymerizable monomer having a cationic polymerizable group). (Mer) may be used in combination.
 また、硬化膜の機械特性付与の観点からは、2官能以上の多官能単量体の使用が好ましい。このような多官能単量体は必然的に分子量が大きくなるため粘度が高く、組成物の高粘度化によりパターン精度が低下することもある。そこで、本発明に用いられる重合性単量体は、粘度の調整用の低粘度モノマーと硬化膜の機械特性付与の為の多官能モノマーとの組み合わせや、本発明におけるオキセタン化合物や官能性酸無水物の組み合せを考慮して、総合的に選択される。 Also, from the viewpoint of imparting mechanical properties to the cured film, it is preferable to use a bifunctional or higher polyfunctional monomer. Such a polyfunctional monomer inevitably has a high molecular weight and thus has a high viscosity, and the pattern accuracy may be lowered by increasing the viscosity of the composition. Therefore, the polymerizable monomer used in the present invention is a combination of a low-viscosity monomer for adjusting viscosity and a polyfunctional monomer for imparting mechanical properties of a cured film, or an oxetane compound or a functional acid anhydride in the present invention. It is selected comprehensively considering the combination of objects.
 本発明のナノインプリント用硬化性組成物において、全組成物中における光ラジカル重合性単量体の含有量は、光照射後のパターン精度の観点から、20~90質量%が好ましく、30~70質量%がさらに好ましい。但し、本発明における光ラジカル重合性単量体の含有量は、上述の通り、本発明の組成物中におけるラジカル重合性官能基を有する化合物の含有量を考慮して決定される。 In the curable composition for nanoimprints of the present invention, the content of the photoradically polymerizable monomer in the entire composition is preferably 20 to 90% by mass, and preferably 30 to 70% by mass from the viewpoint of pattern accuracy after light irradiation. % Is more preferable. However, the content of the photoradical polymerizable monomer in the present invention is determined in consideration of the content of the compound having a radical polymerizable functional group in the composition of the present invention as described above.
 本発明では、シルセスキオキサン化合物を1種類のみ含んでいても、2種類以上含んでいてもよい。また、本発明の組成物中、シルセスキオキサン化合物は、1~40質量%の割合で含んでいることが好ましく、1~20質量%の割合で含んでいることがより好ましい。このような範囲とすることにより、組成物粘度と硬化膜の機械特性を両立できる。 In the present invention, only one kind of silsesquioxane compound may be contained, or two or more kinds thereof may be contained. In the composition of the present invention, the silsesquioxane compound is preferably contained in a proportion of 1 to 40% by mass, more preferably 1 to 20% by mass. By setting it as such a range, the composition viscosity and the mechanical characteristic of a cured film can be made compatible.
 本発明における光ラジカル重合性単量体としては、エチレン性不飽和結合含有基を1個有する重合性不飽和単量体(1官能の重合性不飽和単量体)を挙げることができる。具体的には、2-アクリロイロキシエチルフタレート、2-アクリロイロキシ2-ヒドロキシエチルフタレート、2-アクリロイロキシエチルヘキサヒドロフタレート、2-アクリロイロキシプロピルフタレート、2-エチル-2-ブチルプロパンジオールアクリレート、2-エチルヘキシル(メタ)アクリレート、2-エチルヘキシルカルビトール(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、アクリル酸ダイマー、ベンジル(メタ)アクリレート、ブタンジオールモノ(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート、エチレンオキシド変性(以下「EO」という。)クレゾール(メタ)アクリレート、ジプロピレングリコール(メタ)アクリレート、エトキシ化フェニル(メタ)アクリレート、エチル(メタ)アクリレート、イソアミル(メタ)アクリレート、イソブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロヘンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ラウリル(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メチル(メタ)アクリレート、ネオペンチルグリコールベンゾエート(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリプロピレングリコール(メタ)アクリレート、オクチル(メタ)アクリレート、パラクミルフェノキシエチレングリコール(メタ)アクリレート、エピクロロヒドリン(以下「ECH」という)変性フェノキシアクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシヘキサエチレングリコール(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール-ポリプロピレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、ステアリル(メタ)アクリレート、EO変性コハク酸(メタ)アクリレート、tert-ブチル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、EO変性トリブロモフェニル(メタ)アクリレート、トリドデシル(メタ)アクリレート、p-イソプロペニルフェノール、スチレン、α-メチルスチレン、アクリロニトリル、ビニルカルバゾール、エチルオキセタニルメチルアクリレートが例示される。
 これらの中でも特に、アクリレートモノマーが本発明に好適に用いられる。
Examples of the photoradical polymerizable monomer in the present invention include a polymerizable unsaturated monomer having one ethylenically unsaturated bond-containing group (monofunctional polymerizable unsaturated monomer). Specifically, 2-acryloyloxyethyl phthalate, 2-acryloyloxy 2-hydroxyethyl phthalate, 2-acryloyloxyethyl hexahydrophthalate, 2-acryloyloxypropyl phthalate, 2-ethyl-2-butylpropanediol acrylate 2-ethylhexyl (meth) acrylate, 2-ethylhexyl carbitol (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-methoxyethyl (Meth) acrylate, 3-methoxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, acrylic acid dimer, benzyl (meth) acrylate, butanediol mono (meth) acrylate Rate, butoxyethyl (meth) acrylate, butyl (meth) acrylate, cetyl (meth) acrylate, ethylene oxide modified (hereinafter referred to as “EO”) cresol (meth) acrylate, dipropylene glycol (meth) acrylate, ethoxylated phenyl (meth) ) Acrylate, ethyl (meth) acrylate, isoamyl (meth) acrylate, isobutyl (meth) acrylate, isooctyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclohentanyl (meth) acrylate, dicyclo Pentanyloxyethyl (meth) acrylate, isomyristyl (meth) acrylate, lauryl (meth) acrylate, methoxydipropylene glycol (meth) acrylate Methoxytripropylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, methyl (meth) acrylate, neopentyl glycol benzoate (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, Nonylphenoxy polypropylene glycol (meth) acrylate, octyl (meth) acrylate, paracumylphenoxyethylene glycol (meth) acrylate, epichlorohydrin (hereinafter referred to as “ECH”) modified phenoxy acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol ( (Meth) acrylate, phenoxyhexaethylene glycol (meth) acrylate, phenoxytetraethylene Glycol (meth) acrylate, polyethylene glycol (meth) acrylate, polyethylene glycol-polypropylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate, stearyl (meth) acrylate, EO-modified succinic acid (meth) acrylate, tert-butyl (meta ) Acrylate, tribromophenyl (meth) acrylate, EO-modified tribromophenyl (meth) acrylate, tridodecyl (meth) acrylate, p-isopropenylphenol, styrene, α-methylstyrene, acrylonitrile, vinylcarbazole, ethyl oxetanylmethyl acrylate Illustrated.
Among these, acrylate monomers are particularly preferably used in the present invention.
 また、本発明における光ラジカル重合性単量体としては、エチレン性不飽和結合含有基を2個有する2官能重合性不飽和単量体も好ましく用いることができる。前記2官能重合性不飽和単量体の例としては、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジメチロールジシクロペンタンジ(メタ)アクリレート、ジ(メタ)アクリル化イソシアヌレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、EO変性1,6-ヘキサンジオールジ(メタ)アクリレート、ECH変性1,6-ヘキサンジオールジ(メタ)アクリレート、アリロキシポリエチレングリコールアクリレート、1,9-ノナンジオールジ(メタ)アクリレート、EO変性ビスフェノールAジ(メタ)アクリレート、PO変性ビスフェノールAジ(メタ)アクリレート、変性ビスフェノールAジ(メタ)アクリレート、EO変性ビスフェノールFジ(メタ)アクリレート、ECH変性ヘキサヒドロフタル酸ジアクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、EO変性ネオペンチルグリコールジアクリレート、プロピレンオキシド(以後「PO」という。)変性ネオペンチルグリコールジアクリレート、カプロラクトン変性ヒドロキシピバリン酸エステルネオペンチルグリコール、ステアリン酸変性ペンタエリスリトールジ(メタ)アクリレート、ECH変性フタル酸ジ(メタ)アクリレート、ポリ(エチレングリコール-テトラメチレングリコール)ジ(メタ)アクリレート、ポリ(プロピレングリコール-テトラメチレングリコール)ジ(メタ)アクリレート、ポリエステル(ジ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ECH変性プロピレングリコールジ(メタ)アクリレート、シリコーンジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリシクロデカンジメタノール(ジ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、EO変性トリプロピレングリコールジ(メタ)アクリレート、トリグリセロールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ジビニルエチレン尿素、ジビニルプロピレン尿素、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、が例示される。 In addition, as the photoradical polymerizable monomer in the present invention, a bifunctional polymerizable unsaturated monomer having two ethylenically unsaturated bond-containing groups can also be preferably used. Examples of the bifunctional polymerizable unsaturated monomer include diethylene glycol monoethyl ether (meth) acrylate, dimethylol dicyclopentane di (meth) acrylate, di (meth) acrylated isocyanurate, 1,3-butylene glycol. Di (meth) acrylate, 1,4-butanediol di (meth) acrylate, EO-modified 1,6-hexanediol di (meth) acrylate, ECH-modified 1,6-hexanediol di (meth) acrylate, allyloxy polyethylene glycol Acrylate, 1,9-nonanediol di (meth) acrylate, EO modified bisphenol A di (meth) acrylate, PO modified bisphenol A di (meth) acrylate, modified bisphenol A di (meth) acrylate, EO modified bisphenol F di (meth) Acrylate, ECH-modified hexahydrophthalic acid diacrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, EO-modified neopentyl glycol diacrylate, propylene oxide (hereinafter referred to as “PO”) Modified neopentyl glycol diacrylate, caprolactone modified hydroxypivalate ester neopentyl glycol, stearic acid modified pentaerythritol di (meth) acrylate, ECH modified phthalic acid di (meth) acrylate, poly (ethylene glycol-tetramethylene glycol) di (meta ) Acrylate, poly (propylene glycol-tetramethylene glycol) di (meth) acrylate, polyester (di) acrylate, poly Tylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, ECH-modified propylene glycol di (meth) acrylate, silicone di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate , Tricyclodecane dimethanol (di) acrylate, neopentyl glycol modified trimethylolpropane di (meth) acrylate, tripropylene glycol di (meth) acrylate, EO modified tripropylene glycol di (meth) acrylate, triglycerol di (meth) Acrylate, dipropylene glycol di (meth) acrylate, divinylethyleneurea, divinylpropyleneurea, dicyclopentenyl (meth) acrylate, di Black pentenyl oxyethyl (meth) acrylate, dicyclopentanyl di (meth) acrylate, are exemplified.
 これらの中で特に、ネオペンチルグリコールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート等が本発明に好適に用いられる。 Among these, neopentyl glycol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, neopentyl hydroxypivalate Glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl di (meth) acrylate and the like are preferably used in the present invention. It is done.
 本発明における光ラジカル重合性単量体としては、エチレン性不飽和結合含有基を3個以上有する多官能重合性不飽和単量体も好ましく用いることができる。前記多官能重合性不飽和単量体の例としては、ECH変性グリセロールトリ(メタ)アクリレート、EO変性グリセロールトリ(メタ)アクリレート、PO変性グリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリアクリレート、EO変性リン酸トリアクリレート、トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、アルキル変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、アルキル変性ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等が挙げられる。 As the radical photopolymerizable monomer in the present invention, a polyfunctional polymerizable unsaturated monomer having three or more ethylenically unsaturated bond-containing groups can also be preferably used. Examples of the polyfunctional polymerizable unsaturated monomer include ECH-modified glycerol tri (meth) acrylate, EO-modified glycerol tri (meth) acrylate, PO-modified glycerol tri (meth) acrylate, pentaerythritol triacrylate, and EO-modified phosphorus. Acid triacrylate, trimethylolpropane tri (meth) acrylate, caprolactone-modified trimethylolpropane tri (meth) acrylate, EO-modified trimethylolpropane tri (meth) acrylate, PO-modified trimethylolpropane tri (meth) acrylate, tris (acryloxy) Ethyl) isocyanurate, dipentaerythritol hexa (meth) acrylate, caprolactone-modified dipentaerythritol hexa (meth) acrylate, dipentaerythritol Roxypenta (meth) acrylate, alkyl-modified dipentaerythritol penta (meth) acrylate, dipentaerythritol poly (meth) acrylate, alkyl-modified dipentaerythritol tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol ethoxytetra (Meth) acrylate, pentaerythritol tetra (meth) acrylate, etc. are mentioned.
 これらの中で特に、EO変性グリセロールトリ(メタ)アクリレート、PO変性グリセロールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等が本発明に好適に用いられる。 Among these, EO-modified glycerol tri (meth) acrylate, PO-modified glycerol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, EO-modified trimethylolpropane tri (meth) acrylate, PO-modified trimethylolpropane tri (Meth) acrylate, dipentaerythritol hexa (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, pentaerythritol tetra (meth) acrylate and the like are preferably used in the present invention.
 本発明で用いる光ラジカル重合性単量体としては、ビニルエーテル化合物を用いてもよい。
 前記ビニルエーテル化合物は公知のものを適宜選択することができ、例えば、2-エチルヘキシルビニルエーテル、ブタンジオール-1,4-ジビニルエーテル、ジエチレングリコールモノビニルエーテル、ジエチレングリコールモノビニルエーテル、エチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、1,2-プロパンジオールジビニルエーテル、1,3-プロパンジオールジビニルエーテル、1,3-ブタンジオールジビニルエーテル、1,4-ブタンジオールジビニルエーテル、テトラメチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、トリメチロールエタントリビニルエーテル、ヘキサンジオールジビニルエーテル、テトラエチレングリコールジビニルエーテル、ペンタエリスリトールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ソルビトールテトラビニルエーテル、ソルビトールペンタビニルエーテル、エチレングリコールジエチレンビニルエーテル、トリエチレングリコールジエチレンビニルエーテル、エチレングリコールジプロピレンビニルエーテル、トリエチレングリコールジエチレンビニルエーテル、トリメチロールプロパントリエチレンビニルエーテル、トリメチロールプロパンジエチレンビニルエーテル、ペンタエリスリトールジエチレンビニルエーテル、ペンタエリスリトールトリエチレンビニルエーテル、ペンタエリスリトールテトラエチレンビニルエーテル、1,1,1-トリス〔4-(2-ビニロキシエトキシ)フェニル〕エタン、ビスフェノールAジビニロキシエチルエーテル等が挙げられる。
As the radical photopolymerizable monomer used in the present invention, a vinyl ether compound may be used.
The vinyl ether compound can be appropriately selected from known ones such as 2-ethylhexyl vinyl ether, butanediol-1,4-divinyl ether, diethylene glycol monovinyl ether, diethylene glycol monovinyl ether, ethylene glycol divinyl ether, triethylene glycol divinyl ether. 1,2-propanediol divinyl ether, 1,3-propanediol divinyl ether, 1,3-butanediol divinyl ether, 1,4-butanediol divinyl ether, tetramethylene glycol divinyl ether, neopentyl glycol divinyl ether, tri Methylolpropane trivinyl ether, trimethylolethane trivinyl ether, hexanediol divinyl ether, Raethylene glycol divinyl ether, pentaerythritol divinyl ether, pentaerythritol trivinyl ether, pentaerythritol tetravinyl ether, sorbitol tetravinyl ether, sorbitol pentavinyl ether, ethylene glycol diethylene vinyl ether, triethylene glycol diethylene vinyl ether, ethylene glycol dipropylene vinyl ether, triethylene glycol diethylene Vinyl ether, trimethylolpropane triethylene vinyl ether, trimethylolpropane diethylene vinyl ether, pentaerythritol diethylene vinyl ether, pentaerythritol triethylene vinyl ether, pentaerythritol tetraethylene vinyl ether, 1,1,1 Tris [4- (2-vinyloxy ethoxy) phenyl] ethane, bisphenol A divinyloxyethyl carboxyethyl ether.
 これらのビニルエーテル化合物は、例えば、Stephen.C.Lapin,Polymers Paint Colour Journal.179(4237)、321(1988)に記載されている方法、即ち多価アルコールもしくは多価フェノールとアセチレンとの反応、または多価アルコールもしくは多価フェノールとハロゲン化アルキルビニルエーテルとの反応により合成することができ、これらは1種単独あるいは2種以上を組み合わせて用いることができる。 These vinyl ether compounds are, for example, the method described in Stephen C. Lapin, Polymers Paint Paint, Journal 179 (4237), 321 (1988), that is, the reaction of a polyhydric alcohol or polyhydric phenol with acetylene, or They can be synthesized by the reaction of a polyhydric alcohol or polyhydric phenol and a halogenated alkyl vinyl ether, and these can be used singly or in combination of two or more.
 また、本発明で用いる光ラジカル重合性単量体としては、スチレン誘導体も採用できる。スチレン誘導体としては、例えば、p-メトキシスチレン、p-メトキシ-β-メチルスチレン、p-ヒドロキシスチレン、等を挙げることができる。 In addition, as the radical photopolymerizable monomer used in the present invention, a styrene derivative can also be employed. Examples of the styrene derivative include p-methoxystyrene, p-methoxy-β-methylstyrene, p-hydroxystyrene, and the like.
 その他、本発明の1官能重合体と併用できるスチレン誘導体としては、例えば、スチレン、p-メチルスチレン、p-メトキシスチレン、β-メチルスチレン、p-メチル-β-メチルスチレン、α-メチルスチレン、p-メトキシ-β-メチルスチレン、p-ヒドロキシスチレン、等を挙げることができる。さらに、本発明においては、ビニルナフタレン誘導体を使用することもでき、例えば、1-ビニルナフタレン、α-メチル-1-ビニルナフタレン、β-メチル-1-ビニルナフタレン、4-メチル-1-ビニルナフタレン、4-メトキシ-1-ビニルナフタレン等を挙げることができる。 Other styrene derivatives that can be used in combination with the monofunctional polymer of the present invention include, for example, styrene, p-methylstyrene, p-methoxystyrene, β-methylstyrene, p-methyl-β-methylstyrene, α-methylstyrene, Examples include p-methoxy-β-methylstyrene, p-hydroxystyrene, and the like. Furthermore, in the present invention, vinyl naphthalene derivatives can also be used. For example, 1-vinylnaphthalene, α-methyl-1-vinylnaphthalene, β-methyl-1-vinylnaphthalene, 4-methyl-1-vinylnaphthalene 4-methoxy-1-vinylnaphthalene and the like.
 また、モールドとの剥離性や塗布性を向上させる目的で、トリフルオロエチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、(パーフルオロブチル)エチル(メタ)アクリレート、パーフルオロブチル-ヒドロキシプロピル(メタ)アクリレート、(パーフルオロヘキシル)エチル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート等のフッソ原子を有する化合物も本発明における光ラジカル重合性単量体として使用または本発明における光ラジカル重合性単量体と併用することができる。 In addition, for the purpose of improving the mold release and coating properties, trifluoroethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, (perfluorobutyl) ethyl (meth) acrylate, perfluorobutyl-hydroxypropyl ( Compounds having a fluorine atom such as (meth) acrylate, (perfluorohexyl) ethyl (meth) acrylate, octafluoropentyl (meth) acrylate, perfluorooctylethyl (meth) acrylate and tetrafluoropropyl (meth) acrylate are also used in the present invention. It can be used as a photoradical polymerizable monomer or used in combination with the photoradical polymerizable monomer in the present invention.
 さらに、本発明に用いられる光ラジカル重合性単量体としては、プロペニルエーテルおよびブテニルエーテルを配合できる。例えば1-ドデシル-1-プロペニルエーテル、1-ドデシル-1-ブテニルエーテル、1-ブテノキシメチル-2-ノルボルネン、1-4-ジ(1-ブテノキシ)ブタン、1,10-ジ(1-ブテノキシ)デカン、1,4-ジ(1-ブテノキシメチル)シクロヘキサン、ジエチレングリコールジ(1-ブテニル)エーテル、1,2,3-トリ(1-ブテノキシ)プロパン、プロペニルエーテルプロピレンカーボネート等が好適に適用できる。 Furthermore, propenyl ether and butenyl ether can be blended as the radical photopolymerizable monomer used in the present invention. For example, 1-dodecyl-1-propenyl ether, 1-dodecyl-1-butenyl ether, 1-butenoxymethyl-2-norbornene, 1-4-di (1-butenoxy) butane, 1,10-di (1-butenoxy) Decane, 1,4-di (1-butenoxymethyl) cyclohexane, diethylene glycol di (1-butenyl) ether, 1,2,3-tri (1-butenoxy) propane, propenyl ether propylene carbonate, and the like can be suitably applied.
 次に、本発明における,ラジカル重合性基とオキセタン環を有する化合物、重合性酸無水物、光ラジカル重合性単量体(以下、これらを併せて「重合性不飽和単量体」ということがある)の好ましいブレンド形態について説明する。
 1官能の重合性不飽和単量体は、通常、反応性希釈剤として用いられ、本発明の組成物の粘度を下げるのに有効であり、通常、全重合性不飽和単量体の10質量%以上添加される。好ましくは、20~80質量%、より好ましくは、25~70質量%、特に好ましくは、30~60質量%の範囲で添加される。
 上記1官能の重合性不飽和単量体は、反応性希釈剤としてより良好であるため、全重合性不飽和単量体の10質量%以上添加されることが好ましい。
 不飽和結合含有基を2個有する単量体(2官能重合性不飽和単量体)は、全重合性不飽和単量体の好ましくは90質量%以下、より好ましくは80質量%以下、特に好ましくは、70質量%以下の範囲で添加される。1官能および2官能重合性不飽和単量体の割合は、全重合性不飽和単量体の、好ましくは1~95質量%、より好ましくは3~95質量%、特に好ましくは、5~90質量%の範囲で添加される。不飽和結合含有基を3個以上有する多官能重合性不飽和単量体の割合は、全重合性不飽和単量体の、好ましくは80質量%以下、より好ましくは70質量%以下、特に好ましくは、60質量%以下の範囲で添加される。重合性不飽和結合含有基を3個以上有する重合性不飽和単量体の割合を80質量%以下とすることにより、組成物の粘度を下げられるため好ましい。
Next, in the present invention, a compound having a radical polymerizable group and an oxetane ring, a polymerizable acid anhydride, a photo radical polymerizable monomer (hereinafter, these are collectively referred to as “polymerizable unsaturated monomer”). A preferable blend form of (some) will be described.
The monofunctional polymerizable unsaturated monomer is usually used as a reactive diluent and is effective in reducing the viscosity of the composition of the present invention. Usually, 10 mass of the total polymerizable unsaturated monomer. % Or more is added. Preferably, it is added in the range of 20 to 80% by mass, more preferably 25 to 70% by mass, and particularly preferably 30 to 60% by mass.
Since the monofunctional polymerizable unsaturated monomer is better as a reactive diluent, it is preferable to add 10% by mass or more of the total polymerizable unsaturated monomer.
The monomer having two unsaturated bond-containing groups (bifunctional polymerizable unsaturated monomer) is preferably 90% by mass or less, more preferably 80% by mass or less, and particularly preferably 80% by mass or less of the total polymerizable unsaturated monomer. Preferably, it is added in a range of 70% by mass or less. The ratio of the monofunctional and bifunctional polymerizable unsaturated monomer is preferably 1 to 95% by mass, more preferably 3 to 95% by mass, and particularly preferably 5 to 90% by mass of the total polymerizable unsaturated monomer. It is added in the range of mass%. The ratio of the polyfunctional polymerizable unsaturated monomer having 3 or more unsaturated bond-containing groups is preferably 80% by mass or less, more preferably 70% by mass or less, and particularly preferably the total polymerizable unsaturated monomer. Is added in a range of 60% by mass or less. Since the viscosity of a composition can be lowered | hung by making the ratio of the polymerizable unsaturated monomer which has 3 or more of polymerizable unsaturated bond containing groups into 80 mass% or less, it is preferable.
(光ラジカル重合開始剤)
 本発明のナノインプリント用硬化性組成物には、光ラジカル重合開始剤が含まれる。本発明の組成物は、光照射によりラジカル重合反応を開始させる光ラジカル重合開始剤を含むことで、光照射後のパターン精度を良好なものとすることができる。光ラジカル重合開始剤本発明に用いられる光ラジカル重合開始剤の含有量としては、全組成物中、例えば、0.1~15質量%が好ましく、さらに好ましくは0.2~12質量%であり、特に好ましくは、0.3~10質量%である。2種類以上の光重合開始剤を用いる場合は、その合計量が前記範囲となる。
 前記光ラジカル重合開始剤の割合が0.1質量%以上であると、感度(速硬化性)、解像性、ラインエッジラフネス性、塗膜強度が向上する傾向にあり好ましい。一方、光ラジカル重合開始剤の割合を15質量%以下とすることにより、光透過性、着色性、取り扱い性などが向上する傾向にあり、好ましい。これまで、染料および/または顔料を含むインクジェット用組成物や液晶デイスプレイカラーフィルタ用組成物においては、好ましい光重合開始剤および/または光酸発生剤の添加量が種々検討されてきたが、ナノインプリント用等の光ナノインプリントリソグラフィ用硬化性組成物についての好ましい光重合開始剤および/または光酸発生剤の添加量については報告されていない。すなわち、染料および/または顔料を含む系では、これらがラジカルトラップ剤として働くことがあり、光重合性、感度に影響を及ぼす。その点を考慮して、これらの用途では、光重合開始剤の添加量が最適化される。一方で、本発明の組成物では、染料および/または顔料は必須成分でなく、光重合開始剤の最適範囲がインクジェット用組成物や液晶デイスプレイカラーフィルタ用組成物等の分野のものとは異なる場合がある。
(Photo radical polymerization initiator)
The curable composition for nanoimprints of the present invention contains a radical photopolymerization initiator. The composition of this invention can make the pattern precision after light irradiation favorable by including the radical photopolymerization initiator which starts radical polymerization reaction by light irradiation. Photoradical polymerization initiator The content of the photoradical polymerization initiator used in the present invention is, for example, preferably from 0.1 to 15 mass%, more preferably from 0.2 to 12 mass%, based on the entire composition. Particularly preferred is 0.3 to 10% by mass. When using 2 or more types of photoinitiators, the total amount becomes the said range.
When the ratio of the radical photopolymerization initiator is 0.1% by mass or more, the sensitivity (fast curability), resolution, line edge roughness, and coating film strength tend to be improved, which is preferable. On the other hand, when the ratio of the radical photopolymerization initiator is 15% by mass or less, the light transmittance, the colorability, the handleability and the like tend to be improved, which is preferable. Until now, various addition amounts of preferred photopolymerization initiators and / or photoacid generators have been studied for ink jet compositions and dye display / color pigment compositions for liquid crystal display color filters, but for nanoimprinting. A preferred photopolymerization initiator and / or photoacid generator addition amount for the curable composition for photo nanoimprint lithography is not reported. That is, in a system containing dyes and / or pigments, these may act as radical trapping agents, affecting the photopolymerizability and sensitivity. In consideration of this point, the amount of the photopolymerization initiator added is optimized in these applications. On the other hand, in the composition of the present invention, the dye and / or pigment is not an essential component, and the optimum range of the photopolymerization initiator is different from that in the field of an ink jet composition or a liquid crystal display color filter composition. There is.
 本発明で用いる光ラジカル重合開始剤は、使用する光源の波長に対して活性を有するものが配合され、適切な活性種を発生させるものを用いる。 As the radical photopolymerization initiator used in the present invention, a compound having activity with respect to the wavelength of the light source to be used is blended to generate an appropriate active species.
 本発明で使用される光ラジカル重合開始剤としては、例えば、市販されている開始剤を用いることができる。これらの例としては、例えば、特開平2008-105414号公報の段落番号0091に記載のものを好ましく採用することができる。 As the radical photopolymerization initiator used in the present invention, for example, a commercially available initiator can be used. As these examples, for example, those described in paragraph No. 0091 of JP-A No. 2008-105414 can be preferably used.
 さらに本発明のナノインプリント用硬化性組成物には、光ラジカル重合開始剤の他に、光増感剤を加えて、UV領域の波長を調整することもできる。本発明において用いることができる典型的な増感剤としては、クリベロ〔J.V.Crivello,Adv.in Polymer Sci,62,1(1984)〕に開示しているものが挙げられ、具体的には、ピレン、ペリレン、アクリジンオレンジ、チオキサントン、2-クロロチオキサントン、ベンゾフラビン、N-ビニルカルバゾール、9,10-ジブトキシアントラセン、アントラキノン、クマリン、ケトクマリン、フェナントレン、カンファキノン、フェノチアジン誘導体などを挙げることができる。 Furthermore, in addition to the radical photopolymerization initiator, a photosensitizer can be added to the curable composition for nanoimprinting of the present invention to adjust the wavelength in the UV region. Typical sensitizers that can be used in the present invention include those disclosed in Crivello [JVCrivello, Adv. In Polymers Sci, 62, 1 (1984)], specifically pyrene. Perylene, acridine orange, thioxanthone, 2-chlorothioxanthone, benzoflavine, N-vinylcarbazole, 9,10-dibutoxyanthracene, anthraquinone, coumarin, ketocoumarin, phenanthrene, camphorquinone, phenothiazine derivatives and the like.
(界面活性剤)
 本発明のナノインプリント用硬化性組成物は界面活性剤を含んでいてもよい。本発明に用いられる界面活性剤は、全組成物中、例えば、0.001~5質量%含有し、好ましくは0.002~4質量%であり、さらに好ましくは、0.005~3質量%である。2種類以上の界面活性剤を用いる場合は、その合計量が前記範囲となる。の合計量が前記範囲となる。界面活性剤が組成物中0.001~5質量%の範囲にあると、塗布の均一性の効果が良好であり、界面活性剤の過多によるモールド転写特性の悪化を招きにくい。
 前記界面活性剤としては、フッ素系界面活性剤、シリコーン系界面活性剤およびフッ素・シリコーン系界面活性剤の少なくとも1種を含むことが好ましく、フッ素系界面活性剤とシリコーン系界面活性剤との両方または、フッ素・シリコーン系界面活性剤を含むことがより好ましく、フッ素・シリコーン系界面活性剤を含むことが最も好ましい。尚、前記フッ素系界面活性剤およびシリコーン系界面活性剤としては、非イオン性の界面活性剤が好ましい。
 ここで、“フッ素・シリコーン系界面活性剤”とは、フッ素系界面活性剤およびシリコーン系界面活性剤の両方の要件を併せ持つものをいう。
 このような界面活性剤を用いることによって、半導体素子製造用のシリコンウエハや、液晶素子製造用のガラス角基板、クロム膜、モリブデン膜、モリブデン合金膜、タンタル膜、タンタル合金膜、窒化珪素膜、アモルファスシリコーン膜、酸化錫をドープした酸化インジウム(ITO)膜や酸化錫膜などの、各種の膜が形成される基板上に本発明のナノインプリント硬化性組成物を塗布したときに起こるストリエーションや、鱗状の模様(レジスト膜の乾燥むら)などの塗布不良の問題を解決するが可能となる。また、モールド凹部のキャビティ内への本発明の組成物の流動性の向上、モールドとレジストとの間の剥離性の向上、レジストと基板間との密着性の向上、組成物の粘度を下げる等が可能になる。特に、本発明のナノインプリント組成物は、前記界面活性剤を添加することにより、塗布均一性を大幅に改良でき、スピンコーターやスリットスキャンコーターを用いた塗布において、基板サイズに依らず良好な塗布適性が得られる。
(Surfactant)
The curable composition for nanoimprinting of the present invention may contain a surfactant. The surfactant used in the present invention contains, for example, 0.001 to 5% by mass in the total composition, preferably 0.002 to 4% by mass, and more preferably 0.005 to 3% by mass. It is. When using 2 or more types of surfactant, the total amount becomes the said range. The total amount is in the above range. When the surfactant is in the range of 0.001 to 5% by mass in the composition, the effect of coating uniformity is good, and mold transfer characteristics are hardly deteriorated due to excessive surfactant.
The surfactant preferably includes at least one of a fluorine-based surfactant, a silicone-based surfactant, and a fluorine / silicone-based surfactant, and includes both a fluorine-based surfactant and a silicone-based surfactant. Alternatively, it preferably contains a fluorine / silicone surfactant, and most preferably contains a fluorine / silicone surfactant. The fluorine-based surfactant and the silicone-based surfactant are preferably nonionic surfactants.
Here, the “fluorine / silicone surfactant” refers to one having both requirements of a fluorine surfactant and a silicone surfactant.
By using such a surfactant, a silicon wafer for manufacturing a semiconductor element, a glass square substrate for manufacturing a liquid crystal element, a chromium film, a molybdenum film, a molybdenum alloy film, a tantalum film, a tantalum alloy film, a silicon nitride film, Striation that occurs when the nanoimprint curable composition of the present invention is applied to a substrate on which various films are formed, such as an amorphous silicone film, an indium oxide (ITO) film doped with tin oxide, and a tin oxide film, It becomes possible to solve the problem of poor coating such as a scale-like pattern (unevenness of drying of the resist film). In addition, the fluidity of the composition of the present invention into the cavity of the mold recess is improved, the peelability between the mold and the resist is improved, the adhesion between the resist and the substrate is improved, the viscosity of the composition is decreased, etc. Is possible. In particular, the nanoimprint composition of the present invention can significantly improve the coating uniformity by adding the surfactant, and in a coating using a spin coater or a slit scan coater, good coating suitability regardless of the substrate size. Is obtained.
 本発明で用いることのできる、非イオン性のフッ素系界面活性剤の例としては、商品名 フロラード FC-430、FC-431(住友スリーエム(株)製)、商品名サーフロン S-382(旭硝子(株)製)、EFTOP EF-122A、122B、122C、EF-121、EF-126、EF-127、MF-100((株)トーケムプロダクツ製)、商品名 PF-636、PF-6320、PF-656、PF-6520(いずれもOMNOVA Solutions, Inc.)、商品名フタージェントFT250、FT251、DFX18 (いずれも(株)ネオス製)、商品名ユニダインDS-401、DS-403、DS-451 (いずれもダイキン工業(株)製)、商品名メガフアック171、172、173、178K、178A、(いずれも大日本インキ化学工業(株)製)が挙げられる。
 また、非イオン性の前記シリコーン系界面活性剤の例としては、商品名SI-10シリーズ(竹本油脂(株)製)、メガファックペインタッド31(大日本インキ化学工業(株)製)、KP-341(信越化学工業(株)製)が挙げられる。
 また、前記フッ素・シリコーン系界面活性剤の例としては、商品名 X-70-090、X-70-091、X-70-092、X-70-093、(いずれも、信越化学工業(株)製)、商品名メガフアックR-08、XRB-4(いずれも、大日本インキ化学工業(株)製)が挙げられる。
Examples of nonionic fluorosurfactants that can be used in the present invention include trade names Fluorard FC-430 and FC-431 (manufactured by Sumitomo 3M Co., Ltd.), trade names Surflon S-382 (Asahi Glass ( EFTOP EF-122A, 122B, 122C, EF-121, EF-126, EF-127, MF-100 (manufactured by Tochem Products), trade names PF-636, PF-6320, PF -656, PF-6520 (all OMNOVA Solutions, Inc.), trade names FT250, FT251, DFX18 (all manufactured by Neos), trade names Unidyne DS-401, DS-403, DS-451 (all All are made by Daikin Industries, Ltd.) and trade names Megafuk 171, 172, 173, 178K, 178A (all are Dainichi) Ink and Chemicals Co., Ltd.) and the like.
Examples of the nonionic silicone surfactant include trade name SI-10 series (manufactured by Takemoto Yushi Co., Ltd.), MegaFac Paintad 31 (manufactured by Dainippon Ink & Chemicals, Inc.), KP -341 (manufactured by Shin-Etsu Chemical Co., Ltd.).
Examples of the fluorine / silicone surfactant include trade names X-70-090, X-70-091, X-70-092, X-70-093 (all Shin-Etsu Chemical Co., Ltd. )), And trade names Megafuk R-08 and XRB-4 (both manufactured by Dainippon Ink & Chemicals, Inc.).
(酸化防止剤)
 さらに、本発明のナノインプリント用硬化性組成物は、酸化防止剤を含むことが好ましい。本発明に用いられる酸化防止剤の含有量は、全組成物中、例えば、0.01~10質量%であり、好ましくは0.2~5質量%である。2種類以上の酸化防止剤を用いる場合は、その合計量が前記範囲となる。
 前記酸化防止剤は、熱や光照射による退色およびオゾン、活性酸素、NO、SO(Xは整数)などの各種の酸化性ガスによる退色を抑制するものである。特に本発明では、酸化防止剤を添加することにより、硬化膜の着色を防止や、分解による膜厚減少を低減できるという利点がある。このような酸化防止剤としては、ヒドラジド類、ヒンダードアミン系酸化防止剤、含窒素複素環メルカプト系化合物、チオエーテル系酸化防止剤、ヒンダードフェノール系酸化防止剤、アスコルビン酸類、硫酸亜鉛、チオシアン酸塩類、チオ尿素誘導体、糖類、亜硝酸塩、亜硫酸塩、チオ硫酸塩、ヒドロキシルアミン誘導体などを挙げることができる。この中でも、特にヒンダードフェノール系酸化防止剤、チオエーテル系酸化防止剤が硬化膜の着色、膜厚減少の観点で好ましい。
(Antioxidant)
Furthermore, it is preferable that the curable composition for nanoimprints of the present invention contains an antioxidant. The content of the antioxidant used in the present invention is, for example, 0.01 to 10% by mass, preferably 0.2 to 5% by mass in the total composition. When using 2 or more types of antioxidant, the total amount becomes the said range.
The antioxidant suppresses fading caused by heat or light irradiation and fading caused by various oxidizing gases such as ozone, active oxygen, NO x , SO x (X is an integer). In particular, in the present invention, by adding an antioxidant, there is an advantage that coloring of a cured film can be prevented and a reduction in film thickness due to decomposition can be reduced. Such antioxidants include hydrazides, hindered amine antioxidants, nitrogen-containing heterocyclic mercapto compounds, thioether antioxidants, hindered phenol antioxidants, ascorbic acids, zinc sulfate, thiocyanates, Examples include thiourea derivatives, sugars, nitrites, sulfites, thiosulfates, hydroxylamine derivatives, and the like. Among these, hindered phenol antioxidants and thioether antioxidants are particularly preferable from the viewpoint of coloring the cured film and reducing the film thickness.
 前記酸化防止剤の市販品としては、商品名 Irganox1010、1035、1076、1222(以上、チバガイギー(株)製)、商品名 Antigene P、3C、FR、スミライザーS、スミライザーGA80(住友化学工業(株)製)、商品名アデカスタブAO70、AO80、AO503((株)ADEKA製)等が挙げられる。これらは単独で用いてもよいし、混合して用いてもよい。 Commercially available products of the antioxidants include trade names “Irganox 1010, 1035, 1076, 1222 (manufactured by Ciba Geigy Co., Ltd.), trade names“ Antigene P, 3C, FR, Sumilizer S, and Sumilizer GA80 (Sumitomo Chemical Industries, Ltd.). Product name) ADK STAB AO70, AO80, AO503 (manufactured by ADEKA Corporation) and the like. These may be used alone or in combination.
(その他の成分)
 本発明の組成物には前記成分の他に必要に応じて、ポリマー成分、離型剤、有機金属カップリング剤、重合禁止剤、紫外線吸収剤、光安定剤、老化防止剤、可塑剤、密着促進剤、熱重合開始剤、光塩基発生剤、着色剤、エラストマー粒子、光酸増殖剤、塩基性化合物、および、その他流動調整剤、消泡剤、分散剤等を添加してもよい。
(Other ingredients)
In addition to the above-described components, the composition of the present invention includes a polymer component, a release agent, an organometallic coupling agent, a polymerization inhibitor, an ultraviolet absorber, a light stabilizer, an anti-aging agent, a plasticizer, and an adhesive. Accelerators, thermal polymerization initiators, photobase generators, colorants, elastomer particles, photoacid multipliers, basic compounds, and other flow regulators, antifoaming agents, dispersants, and the like may be added.
 本発明の組成物では、架橋密度をさらに高める目的で、前記多官能の他の重合性単量体よりもさらに分子量の大きい多官能オリゴマーを、本発明の目的を達成する範囲で配合することもできる。光ラジカル重合性を有する多官能オリゴマーとしてはエステルアクリレート、ポリウレタンアクリレート、ポリエーテルアクリレート、エポキシアクリレート等の各種アクリレートオリゴマー、トリメトキシシリルプロピルアクリレートの加水分解縮合物が挙げられる。オリゴマー成分の添加量としては、組成物の溶剤を除く成分に対し、0~30質量%が好ましく、より好ましくは0~20質量%、さらに好ましくは0~10質量%、最も好ましくは0~5質量%である。
 本発明のナノインプリント用硬化性組成物はインプリント適性、硬化性等の改良を観点からも、さらにポリマー成分を含有していてもよい。前記ポリマー成分としては側鎖に重合性官能基を有するポリマーが好ましい。前記ポリマー成分の重量平均分子量としては、重合性化合物との相溶性の観点から、2000~100000が好ましく、5000~50000がさらに好ましい。ポリマー成分の添加量としては組成物の溶剤を除く成分に対し、0~30質量%が好ましく、より好ましくは0~20質量%、さらに好ましくは0~10質量%、最も好ましくは2質量%以下である。また、パターン形成性の観点から樹脂成分はできる限り少ない法が好ましく、界面活性剤や微量の添加剤を除き、樹脂成分を含まないことが好ましい。
In the composition of the present invention, for the purpose of further increasing the crosslinking density, a polyfunctional oligomer having a molecular weight higher than that of the other polyfunctional polymerizable monomer may be blended within a range that achieves the object of the present invention. it can. Examples of the polyfunctional oligomer having photo-radical polymerizability include various acrylate oligomers such as ester acrylate, polyurethane acrylate, polyether acrylate, and epoxy acrylate, and hydrolysis condensation products of trimethoxysilylpropyl acrylate. The addition amount of the oligomer component is preferably 0 to 30% by mass, more preferably 0 to 20% by mass, further preferably 0 to 10% by mass, and most preferably 0 to 5% by mass with respect to the component excluding the solvent of the composition. % By mass.
The curable composition for nanoimprinting of the present invention may further contain a polymer component from the viewpoint of improving imprintability and curability. The polymer component is preferably a polymer having a polymerizable functional group in the side chain. The weight average molecular weight of the polymer component is preferably from 2,000 to 100,000, more preferably from 5,000 to 50,000, from the viewpoint of compatibility with the polymerizable compound. The addition amount of the polymer component is preferably 0 to 30% by mass, more preferably 0 to 20% by mass, further preferably 0 to 10% by mass, and most preferably 2% by mass or less, relative to the component excluding the solvent of the composition. It is. Further, from the viewpoint of pattern formability, it is preferable that the resin component is as few as possible, and it is preferable that the resin component is not included except for surfactants and trace amounts of additives.
 剥離性をさらに向上する目的で、本発明の組成物には、離型剤を任意に配合することができる。具体的には、本発明の組成物の層に押し付けたモールドを、樹脂層の面荒れや版取られを起こさずにきれいに剥離できるようにする目的で添加される。離型剤としては従来公知の離型剤、例えば、シリコーン系離型剤、ポリエチレンワックス、アミドワックス、テフロンパウダー(テフロンは登録商標)等の固形ワックス、弗素系、リン酸エステル系化合物等が何れも使用可能である。また、これらの離型剤をモールドに付着させておくこともできる。 For the purpose of further improving releasability, a release agent can be arbitrarily blended in the composition of the present invention. Specifically, it is added for the purpose of enabling the mold pressed against the layer of the composition of the present invention to be peeled cleanly without causing the resin layer to become rough or take off the plate. Examples of the release agent include conventionally known release agents such as silicone-based release agents, polyethylene wax, amide wax, solid wax such as Teflon powder (Teflon is a registered trademark), fluorine-based compounds, phosphate ester-based compounds, etc. Can also be used. Moreover, these mold release agents can be adhered to the mold.
 前記シリコーン系離型剤は、本発明で用いられる前記光硬化性樹脂と組み合わせた時にモールドからの剥離性が特に良好であり、版取られ現象が起こり難くなる。前記シリコーン系離型剤は、オルガノポリシロキサン構造を基本構造とする離型剤であり、例えば、未変性または変性シリコーンオイル、トリメチルシロキシケイ酸を含有するポリシロキサン、シリコーン系アクリル樹脂等が該当し、一般的にハードコート用組成物で用いられているシリコーン系レベリング剤の適用も可能である。 The silicone-based mold release agent has particularly good releasability from the mold when combined with the photo-curable resin used in the present invention, and the phenomenon of taking a plate hardly occurs. The silicone release agent is a release agent having an organopolysiloxane structure as a basic structure, and examples thereof include unmodified or modified silicone oil, polysiloxane containing trimethylsiloxysilicate, and silicone acrylic resin. Further, it is possible to apply a silicone leveling agent generally used in a hard coat composition.
 前記変性シリコーンオイルは、ポリシロキサンの側鎖および/または末端を変性したものであり、反応性シリコーンオイルと非反応性シリコーンオイルとに分けられる。反応性シリコーンオイルとしては、アミノ変性、エポキシ変性、カルボキシル変性、カルビノール変性、メタクリル変性、メルカプト変性、フェノール変性、片末端反応性、異種官能基変性等が挙げられる。非反応性シリコーンオイルとしては、ポリエーテル変性、メチルスチリル変性、アルキル変性、高級脂肪エステル変性、親水性特殊変性、高級アルコキシ変性、高級脂肪酸変性、フッ素変性等が挙げられる。
 一つのポリシロキサン分子に前記したような変性方法の2つ以上を行うこともできる。
The modified silicone oil is obtained by modifying the side chain and / or terminal of polysiloxane, and is classified into a reactive silicone oil and a non-reactive silicone oil. Examples of the reactive silicone oil include amino modification, epoxy modification, carboxyl modification, carbinol modification, methacryl modification, mercapto modification, phenol modification, one-end reactivity, and different functional group modification. Examples of the non-reactive silicone oil include polyether modification, methylstyryl modification, alkyl modification, higher fatty ester modification, hydrophilic special modification, higher alkoxy modification, higher fatty acid modification, and fluorine modification.
Two or more modification methods as described above may be performed on one polysiloxane molecule.
 前記変性シリコーンオイルは組成物成分との適度な相溶性があることが好ましい。特に、組成物中に必要に応じて配合される他の塗膜形成成分に対して反応性がある反応性シリコーンオイルを用いる場合には、本発明の組成物を硬化した硬化膜中に化学結合よって固定されるので、当該硬化膜の密着性阻害、汚染、劣化等の問題が起き難い。特に、蒸着工程での蒸着層との密着性向上には有効である。また、(メタ)アクリロイル変性シリコーン、ビニル変性シリコーン等の、光硬化性を有する官能基で変性されたシリコーンの場合は、本発明の組成物と架橋するため、硬化後の特性に優れる。 The modified silicone oil preferably has an appropriate compatibility with the composition components. In particular, when using a reactive silicone oil that is reactive with other coating film forming components blended as necessary in the composition, it is chemically bonded in the cured film obtained by curing the composition of the present invention. Therefore, since it is fixed, problems such as adhesion inhibition, contamination, and deterioration of the cured film are unlikely to occur. In particular, it is effective for improving the adhesion with the vapor deposition layer in the vapor deposition step. In addition, in the case of silicone modified with a photocurable functional group such as (meth) acryloyl-modified silicone or vinyl-modified silicone, it is excellent in characteristics after curing because it is crosslinked with the composition of the present invention.
 前記トリメチルシロキシケイ酸を含有するポリシロキサンは表面にブリードアウトし易く剥離性に優れており、表面にブリードアウトしても密着性に優れ、金属蒸着やオーバーコート層との密着性にも優れている点で好ましい。
 前記離型剤は1種類のみ或いは2種類以上を組み合わせて添加することができる。
Polysiloxane containing trimethylsiloxysilicic acid is easy to bleed out on the surface and has excellent releasability, excellent adhesion even when bleeded out to the surface, and excellent adhesion to metal deposition and overcoat layer. This is preferable.
The release agent can be added alone or in combination of two or more.
 離型剤を本発明のナノインプリント用硬化性組成物に添加する場合、組成物全量中に0.001~10質量%の割合で配合することが好ましく、0.01~5質量%の範囲で添加することがさらに好ましい。離型剤の含有量が0.01~5質量%の範囲内にあると、モールドとナノインプリント用硬化性組成物層との剥離性向上効果が向上し、さらに組成物の塗工時のはじきによる塗膜面の面荒れの問題が生じたり、製品において基材自身や近接する層、例えば、蒸着層の密着性を阻害したり、転写時における皮膜破壊等(膜強度が弱くなりすぎる)が生じるのを抑制することができる。 When a release agent is added to the curable composition for nanoimprints of the present invention, it is preferably blended in a proportion of 0.001 to 10% by mass in the total amount of the composition, and added in a range of 0.01 to 5% by mass. More preferably. When the content of the release agent is in the range of 0.01 to 5% by mass, the effect of improving the peelability between the mold and the curable composition layer for nanoimprinting is improved, and further due to the repellency when the composition is applied. The problem of surface roughness of the coating film occurs, the adhesion of the substrate itself or the adjacent layer, for example, the deposited layer in the product, or the destruction of the film during transfer (film strength becomes too weak) occurs. Can be suppressed.
 本発明の組成物には、微細凹凸パターンを有する表面構造の耐熱性、強度、或いは、金属蒸着層との密着性を高めるために、有機金属カップリング剤を配合してもよい。また、有機金属カップリング剤は、熱硬化反応を促進させる効果も持つため有効である。前記有機金属カップリング剤としては、例えば、シランカップリング剤、チタンカップリング剤、ジルコニウムカップリング剤、アルミニウムカップリング剤、スズカップリング剤等の各種カップリング剤を使用できる。 In the composition of the present invention, an organic metal coupling agent may be blended in order to improve the heat resistance, strength, or adhesion to the metal vapor deposition layer of the surface structure having a fine concavo-convex pattern. In addition, the organometallic coupling agent is effective because it has an effect of promoting the thermosetting reaction. As said organometallic coupling agent, various coupling agents, such as a silane coupling agent, a titanium coupling agent, a zirconium coupling agent, an aluminum coupling agent, a tin coupling agent, can be used, for example.
 本発明の組成物に用いることのできるシランカップリング剤としては、例えば、ビニルトリクロロシラン、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン等のビニルシラン;γ-メタクリロキシプロピルトリメトキシシラン;β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン等のエポキシシラン;N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン等のアミノシラン;および、その他のシランカップリング剤として、γ-メルカプトプロピルトリメトキシシラン、γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルメチルジエトキシシラン等が挙げられる。 Examples of the silane coupling agent that can be used in the composition of the present invention include vinyl silanes such as vinyltrichlorosilane, vinyltris (β-methoxyethoxy) silane, vinyltriethoxysilane, and vinyltrimethoxysilane; γ-methacryloxypropyl Trimethoxysilane; epoxy silane such as β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane; N-β- (amino Aminosilanes such as ethyl) -γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane, γ-aminopropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane ;and Examples of other silane coupling agents include γ-mercaptopropyltrimethoxysilane, γ-chloropropylmethyldimethoxysilane, γ-chloropropylmethyldiethoxysilane, and the like.
 前記チタンカップリング剤としては、例えば、イソプロピルトリイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、イソプロピルトリ(N-アミノエチル・アミノエチル)チタネート、ジクミルフェニルオキシアセテートチタネート、ジイソステアロイルエチレンチタネート等が挙げられる。 Examples of the titanium coupling agent include isopropyl triisostearoyl titanate, isopropyl tridodecyl benzene sulfonyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraoctyl bis (ditridecyl phosphite). ) Titanate, tetra (2,2-diallyloxymethyl) bis (ditridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyltrioctanoyl titanate, isopropyldimethacryliso Stearoyl titanate, isopropyl isostearoyl diacryl titanate, Sopuropirutori (dioctyl phosphate) titanate, isopropyl tricumylphenyl titanate, isopropyl tri (N- aminoethyl-aminoethyl) titanate, dicumyl phenyloxy acetate titanate, diisostearoyl ethylene titanate.
 前記ジルコニウムカップリング剤としては、例えば、テトラ-n-プロポキシジルコニウム、テトラ-ブトキシジルコニウム、ジルコニウムテトラアセチルアセトネート、ジルコニウムジブトキシビス(アセチルアセトネート)、ジルコニウムトリブトキシエチルアセトアセテート、ジルコニウムブトキシアセチルアセトネートビス(エチルアセトアセテート)等が挙げられる。 Examples of the zirconium coupling agent include tetra-n-propoxyzirconium, tetra-butoxyzirconium, zirconium tetraacetylacetonate, zirconium dibutoxybis (acetylacetonate), zirconium tributoxyethyl acetoacetate, and zirconium butoxyacetylacetonate. Examples thereof include bis (ethyl acetoacetate).
 前記アルミニウムカップリング剤としては、例えば、アルミニウムイソプロピレート、モノsec-ブトキシアルミニウムジイソプロピレート、アルミニウムsec-ブチレート、アルミニウムエチレート、エチルアセトアセテエートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、アルキルアセトアセテートアルミニウムジイソプロピレート、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトアセテート)等を挙げることができる。 Examples of the aluminum coupling agent include aluminum isopropylate, monosec-butoxyaluminum diisopropylate, aluminum sec-butyrate, aluminum ethylate, ethylacetoacetate aluminum diisopropylate, aluminum tris (ethylacetoacetate), alkyl Examples thereof include acetoacetate aluminum diisopropylate, aluminum monoacetylacetonate bis (ethylacetoacetate), aluminum tris (acetylacetoacetate) and the like.
 前記有機金属カップリング剤は、本発明のナノインプリント用硬化性組成物の固形分全量中に0.001~10質量%の割合で任意に配合できる。有機金属カップリング剤の割合を0.001質量%以上とすることにより、耐熱性、強度、蒸着層との密着性の付与の向上についてより効果的な傾向にある。一方、有機金属カップリング剤の割合を10質量%以下とすることにより、組成物の安定性、成膜性の欠損を抑止できる傾向にあり好ましい。 The organometallic coupling agent can be arbitrarily blended at a ratio of 0.001 to 10% by mass in the total solid content of the curable composition for nanoimprinting of the present invention. By setting the ratio of the organometallic coupling agent to 0.001% by mass or more, there is a tendency to be more effective in improving heat resistance, strength, and adhesion with the vapor deposition layer. On the other hand, it is preferable that the ratio of the organometallic coupling agent is 10% by mass or less because the stability of the composition and the deficiency in film formability can be suppressed.
 本発明のナノインプリント用硬化性組成物には、貯蔵安定性等を向上させるために、重合禁止剤を配合してもよい。前記重合禁止剤としては、例えば、ハイドロキノン、tert-ブチルハイドロキノン、カテコール、ハイドロキノンモノメチルエーテル等のフェノール類;ベンゾキノン、ジフェニルベンゾキノン等のキノン類;フェノチアジン類;銅類等を用いることができる。重合禁止剤は、本発明の組成物の全量に対して任意に0.001~10質量%の割合で配合するのが好ましい。 In the curable composition for nanoimprints of the present invention, a polymerization inhibitor may be blended in order to improve storage stability and the like. Examples of the polymerization inhibitor include phenols such as hydroquinone, tert-butylhydroquinone, catechol and hydroquinone monomethyl ether; quinones such as benzoquinone and diphenylbenzoquinone; phenothiazines; copper and the like. The polymerization inhibitor is preferably blended arbitrarily in a proportion of 0.001 to 10% by mass with respect to the total amount of the composition of the present invention.
 本発明のナノインプリント用硬化性組成物には紫外線吸収剤を用いることもできる。前記紫外線吸収剤の市販品としては、Tinuvin P、234、320、326、327、328、213(以上、チバガイギー(株)製)、Sumisorb110、130、140、220、250、300、320、340、350、400(以上、住友化学工業(株)製)等が挙げられる。紫外線吸収剤は、光ナノインプリント用硬化性組成物の全量に対して任意に0.01~10質量%の割合で配合するのが好ましい。 An ultraviolet absorber can also be used for the curable composition for nanoimprinting of the present invention. Commercially available products of the ultraviolet absorber include Tinuvin P, 234, 320, 326, 327, 328, 213 (manufactured by Ciba Geigy Co., Ltd.), Sumsorb 110, 130, 140, 220, 250, 300, 320, 340, 350, 400 (manufactured by Sumitomo Chemical Co., Ltd.) and the like. The ultraviolet absorber is preferably blended arbitrarily in a proportion of 0.01 to 10% by mass with respect to the total amount of the curable composition for optical nanoimprint.
 本発明のナノインプリント用硬化性組成物には光安定剤を用いることもできる。前記光安定剤の市販品としては、Tinuvin 292、144、622LD(以上、チバガイギー(株)製)、サノールLS-770、765、292、2626、1114、744(以上、三共化成工業(株)製)等が挙げられる。光安定剤は組成物の全量に対し、0.01~10質量%の割合で配合するのが好ましい。 A light stabilizer can also be used in the curable composition for nanoimprinting of the present invention. Commercially available light stabilizers include Tinuvin® 292, 144, 622LD (above, manufactured by Ciba Geigy Co., Ltd.), Sanol LS-770, 765, 292, 2626, 1114, 744 (above, manufactured by Sankyo Kasei Kogyo Co., Ltd.) ) And the like. The light stabilizer is preferably blended at a ratio of 0.01 to 10% by mass with respect to the total amount of the composition.
 本発明のナノインプリント用硬化性組成物には老化防止剤を用いることもできる。前記老化防止剤の市販品としては、Antigene W、S、P、3C、6C、RD-G、FR、AW(以上、住友化学工業(株)製)等が挙げられる。老化防止剤は組成物の全量に対し、0.01~10質量%の割合で配合するのが好ましい。 An anti-aging agent can also be used in the curable composition for nanoimprinting of the present invention. Examples of commercially available anti-aging agents include Antigene® W, S, P, 3C, 6C, RD-G, FR, and AW (manufactured by Sumitomo Chemical Co., Ltd.). The antiaging agent is preferably blended at a ratio of 0.01 to 10% by mass with respect to the total amount of the composition.
 本発明のナノインプリント用硬化性組成物には基板との接着性や膜の柔軟性、硬度等を調整するために可塑剤を加えることが可能である。好ましい可塑剤の具体例としては、例えば、ジオクチルフタレート、ジドデシルフタレート、トリエチレングリコールジカプリレート、ジメチルグリコールフタレート、トリクレジルホスフェート、ジオクチルアジペート、ジブチルセバケート、トリアセチルグリセリン、ジメチルアジペート、ジエチルアジペート、ジ(n-ブチル)アジペート、ジメチルスベレート、ジエチルスベレート、ジ(n-ブチル)スベレート等があり、可塑剤は組成物中の30質量%以下で任意に添加することができる。好ましくは20質量%以下で、より好ましくは10質量%以下である。可塑剤の添加効果を得るためには、0.1質量%以上が好ましい。 In the curable composition for nanoimprints of the present invention, a plasticizer can be added to adjust the adhesion to the substrate, the flexibility of the film, the hardness, and the like. Specific examples of preferred plasticizers include, for example, dioctyl phthalate, didodecyl phthalate, triethylene glycol dicaprylate, dimethyl glycol phthalate, tricresyl phosphate, dioctyl adipate, dibutyl sebacate, triacetyl glycerin, dimethyl adipate, diethyl adipate , Di (n-butyl) adipate, dimethyl suberate, diethyl suberate, di (n-butyl) suberate and the like, and a plasticizer can be optionally added at 30% by mass or less in the composition. Preferably it is 20 mass% or less, More preferably, it is 10 mass% or less. In order to obtain the effect of adding a plasticizer, 0.1% by mass or more is preferable.
 本発明のナノインプリント用硬化性組成物には基板との接着性等を調整するために密着促進剤を添加してもよい。前記密着促進剤として、ベンズイミダゾール類やポリベンズイミダゾール類、低級ヒドロキシアルキル置換ピリジン誘導体、含窒素複素環化合物、ウレアまたはチオウレア、有機リン化合物、8-オキシキノリン、4-ヒドロキシプテリジン、1,10-フェナントロリン、2,2‘-ビピリジン誘導体、ベンゾトリアゾール類、有機リン化合物とフェニレンジアミン化合物、2-アミノ-1-フェニルエタノール、N-フェニルエタノールアミン、N-エチルジエタノールアミン,N-エチルジエタノールアミン、N-エチルエタノールアミンおよび誘導体、ベンゾチアゾール誘導体などを使用することができる。密着促進剤は、組成物中の好ましくは20質量%以下、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。密着促進剤の添加は効果を得るためには、0.1質量%以上が好ましい。 An adhesion promoter may be added to the curable composition for nanoimprints of the present invention in order to adjust adhesion to the substrate. Examples of the adhesion promoter include benzimidazoles and polybenzimidazoles, lower hydroxyalkyl-substituted pyridine derivatives, nitrogen-containing heterocyclic compounds, urea or thiourea, organophosphorus compounds, 8-oxyquinoline, 4-hydroxypteridine, 1,10- Phenanthroline, 2,2'-bipyridine derivatives, benzotriazoles, organophosphorus compounds and phenylenediamine compounds, 2-amino-1-phenylethanol, N-phenylethanolamine, N-ethyldiethanolamine, N-ethyldiethanolamine, N-ethyl Ethanolamine and derivatives, benzothiazole derivatives and the like can be used. The adhesion promoter in the composition is preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less. The addition of the adhesion promoter is preferably 0.1% by mass or more in order to obtain the effect.
 本発明の組成物を硬化させる場合、必要に応じて熱重合開始剤も添加することができる。好ましい熱重合開始剤としては、例えば過酸化物、アゾ化合物を挙げることができる。具体例としては、ベンゾイルパーオキサイド、tert-ブチル-パーオキシベンゾエート、アゾビスイソブチロニトリル等を挙げることができる。熱重合開始剤は、組成物中の好ましくは8.0質量%以下、より好ましくは6.0質量%以下、さらに好ましくは4.0質量%以下である。熱重合開始剤の添加は効果を得るためには、3.0質量%以上が好ましい。 In the case of curing the composition of the present invention, a thermal polymerization initiator can be added as necessary. Preferred examples of the thermal polymerization initiator include peroxides and azo compounds. Specific examples include benzoyl peroxide, tert-butyl-peroxybenzoate, azobisisobutyronitrile, and the like. The thermal polymerization initiator in the composition is preferably 8.0% by mass or less, more preferably 6.0% by mass or less, and still more preferably 4.0% by mass or less. In order to obtain the effect, the addition of the thermal polymerization initiator is preferably 3.0% by mass or more.
 本発明のナノインプリント用硬化性組成物は、パターン形状、感度等を調整する目的で、必要に応じて光塩基発生剤を添加してもよい。光塩基発生剤としては、例えば、2-ニトロベンジルシクロヘキシルカルバメート、トリフェニルメタノール、O-カルバモイルヒドロキシルアミド、O-カルバモイルオキシム、[[(2,6-ジニトロベンジル)オキシ]カルボニル]シクロヘキシルアミン、ビス[[(2-ニトロベンジル)オキシ]カルボニル]ヘキサン1,6-ジアミン、4-(メチルチオベンゾイル)-1-メチル-1-モルホリノエタン、(4-モルホリノベンゾイル)-1-ベンジル-1-ジメチルアミノプロパン、N-(2-ニトロベンジルオキシカルボニル)ピロリジン、ヘキサアンミンコバルト(III)トリス(トリフェニルメチルボレート)、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン、2,6-ジメチル-3,5-ジアセチル-4-(2’-ニトロフェニル)-1,4-ジヒドロピリジン、2,6-ジメチル-3,5-ジアセチル-4-(2’,4’-ジニトロフェニル)-1,4-ジヒドロピリジン等が好ましいものとして挙げられる。 In the curable composition for nanoimprints of the present invention, a photobase generator may be added as necessary for the purpose of adjusting the pattern shape, sensitivity, and the like. Examples of the photobase generator include 2-nitrobenzylcyclohexyl carbamate, triphenylmethanol, O-carbamoylhydroxylamide, O-carbamoyloxime, [[(2,6-dinitrobenzyl) oxy] carbonyl] cyclohexylamine, bis [ [(2-Nitrobenzyl) oxy] carbonyl] hexane 1,6-diamine, 4- (methylthiobenzoyl) -1-methyl-1-morpholinoethane, (4-morpholinobenzoyl) -1-benzyl-1-dimethylaminopropane N- (2-nitrobenzyloxycarbonyl) pyrrolidine, hexaamminecobalt (III) tris (triphenylmethylborate), 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone, 2,6 -Dimethyl- , 5-Diacetyl-4- (2′-nitrophenyl) -1,4-dihydropyridine, 2,6-dimethyl-3,5-diacetyl-4- (2 ′, 4′-dinitrophenyl) -1,4- Preferred examples include dihydropyridine.
 本発明のナノインプリント用硬化性組成物には、塗膜の視認性を向上するなどの目的で、着色剤を任意に添加してもよい。着色剤は、UVインクジェット組成物、カラーフィルタ用組成物およびCCDイメージセンサ用組成物等で用いられている顔料や染料を本発明の目的を損なわない範囲で用いることができる。本発明で用いることができる顔料としては、従来公知の種々の無機顔料または有機顔料を用いることができる。本発明で用いることができる顔料としては、例えば、特開平2008-105414号公報の段落番号0121に記載のものを好ましく採用することができる。着色剤は組成物の全量に対し、0.001~2質量%の割合で配合するのが好ましい。 In the curable composition for nanoimprints of the present invention, a colorant may be optionally added for the purpose of improving the visibility of the coating film. As the colorant, pigments and dyes used in UV inkjet compositions, color filter compositions, CCD image sensor compositions, and the like can be used as long as the object of the present invention is not impaired. As the pigment that can be used in the present invention, conventionally known various inorganic pigments or organic pigments can be used. As the pigment that can be used in the present invention, for example, those described in paragraph No. 0121 of JP-A No. 2008-105414 can be preferably used. The colorant is preferably blended in a proportion of 0.001 to 2% by mass with respect to the total amount of the composition.
 また、本発明のナノインプリント用硬化性組成物では、機械的強度、柔軟性等を向上するなどの目的で、任意成分としてエラストマー粒子を添加してもよい。
 本発明の組成物に任意成分として添加できるエラストマー粒子は、平均粒子サイズが好ましくは10nm~700nm、より好ましくは30~300nmである。例えばポリブタジエン、ポリイソプレン、ブタジエン/アクリロニトリル共重合体、スチレン/ブタジエン共重合体、スチレン/イソプレン共重合体、エチレン/プロピレン共重合体、エチレン/α-オレフィン系共重合体、エチレン/α-オレフィン/ポリエン共重合体、アクリルゴム、ブタジエン/(メタ)アクリル酸エステル共重合体、スチレン/ブタジエンブロック共重合体、スチレン/イソプレンブロック共重合体などのエラストマーの粒子である。またこれらエラストマー粒子を、メチルメタアクリレートポリマー、メチルメタアクリレート/グリシジルメタアクリレート共重合体などで被覆したコア/シェル型の粒子を用いることができる。エラストマー粒子は架橋構造をとっていてもよい。
In the curable composition for nanoimprints of the present invention, elastomer particles may be added as an optional component for the purpose of improving mechanical strength, flexibility and the like.
The elastomer particles that can be added as an optional component to the composition of the present invention have an average particle size of preferably 10 nm to 700 nm, more preferably 30 to 300 nm. For example, polybutadiene, polyisoprene, butadiene / acrylonitrile copolymer, styrene / butadiene copolymer, styrene / isoprene copolymer, ethylene / propylene copolymer, ethylene / α-olefin copolymer, ethylene / α-olefin / Particles of elastomer such as polyene copolymer, acrylic rubber, butadiene / (meth) acrylic ester copolymer, styrene / butadiene block copolymer, styrene / isoprene block copolymer. Further, core / shell type particles in which these elastomer particles are coated with a methyl methacrylate polymer, a methyl methacrylate / glycidyl methacrylate copolymer or the like can be used. The elastomer particles may have a crosslinked structure.
 エラストマー粒子の市販品としては、例えば、レジナスボンドRKB(レジナス化成(株)製)、テクノMBS-61、MBS-69(以上、テクノポリマー(株)製)等を挙げることができる。 Examples of commercially available elastomer particles include Resin Bond RKB (manufactured by Resin Chemical Co., Ltd.), Techno MBS-61, MBS-69 (manufactured by Techno Polymer Co., Ltd.), and the like.
 これらエラストマー粒子は単独で、または2種以上組み合わせて使用することができる。本発明の組成物におけるエラストマー成分の含有割合は、好ましくは1~35質量%であり、より好ましくは2~30質量%、特に好ましくは3~20質量%である。 These elastomer particles can be used alone or in combination of two or more. The content of the elastomer component in the composition of the present invention is preferably 1 to 35% by mass, more preferably 2 to 30% by mass, and particularly preferably 3 to 20% by mass.
 本発明の組成物には、硬化収縮の抑制、熱安定性を向上するなどの目的で、塩基性化合物を任意に添加してもよい。塩基性化合物としては、アミンならびに、キノリンおよびキノリジンなど含窒素複素環化合物、塩基性アルカリ金属化合物、塩基性アルカリ土類金属化合物などが挙げられる。これらの中でも、光重合成モノマーとの相溶性の面からアミンが好ましく、例えば、オクチルアミン、ナフチルアミン、キシレンジアミン、ジベンジルアミン、ジフェニルアミン、ジブチルアミン、ジオクチルアミン、ジメチルアニリン、キヌクリジン、トリブチルアミン、トリオクチルアミン、テトラメチルエチレンジアミン、テトラメチル-1,6-ヘキサメチレンジアミン、ヘキサメチレンテトラミンおよびトリエタノールアミンなどが挙げられる。 A basic compound may be optionally added to the composition of the present invention for the purpose of suppressing cure shrinkage and improving thermal stability. Examples of the basic compound include amines, nitrogen-containing heterocyclic compounds such as quinoline and quinolidine, basic alkali metal compounds, basic alkaline earth metal compounds, and the like. Among these, amine is preferable from the viewpoint of compatibility with the photopolymerization monomer, for example, octylamine, naphthylamine, xylenediamine, dibenzylamine, diphenylamine, dibutylamine, dioctylamine, dimethylaniline, quinuclidine, tributylamine, Examples include octylamine, tetramethylethylenediamine, tetramethyl-1,6-hexamethylenediamine, hexamethylenetetramine, and triethanolamine.
 本発明の組成物には、光硬化性向上のために、連鎖移動剤を添加してもよい。前記連鎖移動剤としては、具体的には、4-ビス(3-メルカプトブチリルオキシ)ブタン、1,3,5-トリス(3-メルカプトブチルオキシエチル)1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、ペンタエリスリトールテトラキス(3-メルカプトブチレート)を挙げることができる。 A chain transfer agent may be added to the composition of the present invention to improve photocurability. Specific examples of the chain transfer agent include 4-bis (3-mercaptobutyryloxy) butane, 1,3,5-tris (3-mercaptobutyloxyethyl) 1,3,5-triazine-2, Examples include 4,6 (1H, 3H, 5H) -trione and pentaerythritol tetrakis (3-mercaptobutyrate).
 なお、本発明のナノインプリント用硬化性組成物は、調製時における水分量が好ましくは2.0質量%以下、より好ましくは1.5質量%、さらに好ましくは1.0質量%以下である。調製時における水分量を2.0質量%以下とすることにより、本発明の組成物の保存性をより安定にすることができる。 The curable composition for nanoimprints of the present invention preferably has a water content of 2.0% by mass or less, more preferably 1.5% by mass, and even more preferably 1.0% by mass or less at the time of preparation. By making the water content at the time of preparation 2.0% by mass or less, the storage stability of the composition of the present invention can be made more stable.
 また、本発明のナノインプリント用硬化性組成物には溶剤を用いることもできる。前記有機溶剤の含有量は、全組成物中、3質量%以下であることが好ましい。すなわち本発明の組成物は、好ましくは前記のような1官能およびまたは2官能の他の単量体を反応性希釈剤として含むため、本発明の組成物の成分を溶解させるための有機溶剤は、必ずしも含有する必要がない。本発明の組成物では、有機溶剤の含有量は、好ましくは3質量%以下、より好ましくは2質量%以下であり、含有しないことが特に好ましい。このように、本発明の組成物は、必ずしも、有機溶剤を含むものではないが、反応性希釈剤では、溶解しない化合物などを、本発明の組成物として溶解させる場合や粘度を微調整する際など、任意に添加してもよい。本発明の組成物に好ましく使用できる有機溶剤の種類としては、光ナノインプリント用硬化性組成物やフォトレジストで一般的に用いられている溶剤であり、本発明で用いる化合物を溶解および均一分散させるものであればよく、かつこれらの成分と反応しないものであれば特に限定されない。 Also, a solvent can be used in the curable composition for nanoimprinting of the present invention. The content of the organic solvent is preferably 3% by mass or less in the entire composition. That is, since the composition of the present invention preferably contains other monofunctional and / or bifunctional monomers as described above as reactive diluents, the organic solvent for dissolving the components of the composition of the present invention is It is not always necessary to contain. In the composition of the present invention, the content of the organic solvent is preferably 3% by mass or less, more preferably 2% by mass or less, and particularly preferably not contained. As described above, the composition of the present invention does not necessarily contain an organic solvent. However, in the case of dissolving a compound that does not dissolve in the reactive diluent as the composition of the present invention, or when finely adjusting the viscosity. Any of these may be added. The organic solvent that can be preferably used in the composition of the present invention is a solvent generally used in curable compositions for optical nanoimprints and photoresists, which dissolves and uniformly disperses the compound used in the present invention. There is no particular limitation as long as it does not react with these components.
 前記有機溶剤としては、例えば、メタノール、エタノール等のアルコール類;テトラヒドロフラン等のエーテル類;エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールメチルエチルエーテル、エチレングリコールモノエチルエーテル等のグリコールエーテル類;メチルセロソルブアセテート、エチルセロソルブアセテート等のエチレングリコールアルキルエーテルアセテート類;ジエチレングリコールモノメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル等のジエチレングリコール類;プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート等のプロピレングリコールアルキルエーテルアセテート類;トルエン、キシレン等の芳香族炭化水素類;アセトン、メチルエチルケトン、メチルイソフチルケトン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノン、2-ヘプタノン等のケトン類;2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸メチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-2-メチルブタン酸メチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル等の乳酸エステル類等のエステル類などが挙げられる。
 さらに、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-メチルホルムアニリド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、ジメチルスルホキシド、ベンジルエチルエーテル、ジヘキシルエーテル、アセトニルアセトン、イソホロン、カプロン酸、カプリル酸、1-オクタノール、1-ノナノール、ベンジルアルコール、酢酸ベンジル、安息香酸エチル、シュウ酸ジエチル、マレイン酸ジエチル、γ-ブチロラクトン、炭酸エチレン、炭酸プロピレン、フェニルセロソルブアセテート等の高沸点溶剤を添加することもできる。これらは1種を単独使用してもよく、2種類以上を併用しても構わない。
 これらの中でも、メトキシプロピレングリコールアセテート、2-ヒドロキシプロピン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、乳酸エチル、シクロヘキサノン、メチルイソブチルケトン、2-ヘプタノンなどが特に好ましい。
Examples of the organic solvent include alcohols such as methanol and ethanol; ethers such as tetrahydrofuran; glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol methyl ethyl ether, and ethylene glycol monoethyl ether; methyl cellosolve Ethylene glycol alkyl ether acetates such as acetate and ethyl cellosolve acetate; diethylene glycols such as diethylene glycol monomethyl ether, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol monoethyl ether, and diethylene glycol monobutyl ether; propylene glycol Propylene glycol alkyl ether acetates such as rumethyl ether acetate and propylene glycol ethyl ether acetate; aromatic hydrocarbons such as toluene and xylene; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2 Ketones such as pentanone and 2-heptanone; ethyl 2-hydroxypropionate, methyl 2-hydroxy-2-methylpropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, 2- Methyl hydroxy-2-methylbutanoate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl acetate, acetic acid Chill, methyl lactate, and the like esters such as lactic acid esters such as ethyl lactate.
Further, N-methylformamide, N, N-dimethylformamide, N-methylformanilide, N-methylacetamide, N, N-dimethylacetamide, N-methylpyrrolidone, dimethylsulfoxide, benzylethyl ether, dihexyl ether, acetonylacetone , Isophorone, caproic acid, caprylic acid, 1-octanol, 1-nonanol, benzyl alcohol, benzyl acetate, ethyl benzoate, diethyl oxalate, diethyl maleate, γ-butyrolactone, ethylene carbonate, propylene carbonate, phenyl cellosolve acetate, etc. A high boiling point solvent can also be added. These may be used alone or in combination of two or more.
Among these, methoxypropylene glycol acetate, ethyl 2-hydroxypropionate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, ethyl lactate, cyclohexanone, methyl isobutyl ketone, 2-heptanone and the like are particularly preferable.
 本発明のナノインプリント用硬化性組成物は、表面張力が、18~30mN/mの範囲にあることが好ましく、20~28mN/mの範囲にあることがより好ましい。このような範囲とすることにより、表面平滑性を向上させるという効果が得られる。
 なお、本発明のナノインプリント用硬化性組成物は、調製時における水分量が好ましくは2.0質量%以下、より好ましくは1.5質量%、さらに好ましくは1.0質量%以下である。調製時における水分量を2.0質量%以下とすることにより、本発明の組成物の保存性をより安定にすることができる。
The surface tension of the curable composition for nanoimprinting of the present invention is preferably in the range of 18 to 30 mN / m, and more preferably in the range of 20 to 28 mN / m. By setting it as such a range, the effect of improving surface smoothness is acquired.
In addition, the moisture content at the time of preparation of the curable composition for nanoimprinting of the present invention is preferably 2.0% by mass or less, more preferably 1.5% by mass, and further preferably 1.0% by mass or less. By making the water content at the time of preparation 2.0% by mass or less, the storage stability of the composition of the present invention can be made more stable.
(本発明のナノインプリント用硬化性組成物の粘度)
 本発明のナノインプリント用硬化性組成物の粘度について説明する。本発明における粘度は特に述べない限り、25℃における粘度をいう。本発明のナノインプリント用硬化性組成物は、25℃における粘度が、3~18mPa・sであることが好ましく、さらに好ましくは5~15mPa・sであり、特に好ましくは7~12mPa・sである。本発明の組成物の粘度を3mPa・s以上とすることにより、基板塗布適性の問題や膜の機械的強度の低下が生じにくい傾向にある。具体的には、粘度を3mPa・s以上とすることによって、組成物の塗布の際に面上ムラを生じたり、塗布時に基板から組成物が流れ出たりするのを抑止できる傾向にあり、好ましい。また、粘度が3mPa・s以上の組成物は、粘度3mPa・s未満の組成物に較べて調製も容易である。一方、本発明の組成物の粘度を18mPa・s以下とすることにより、微細な凹凸パターンを有するモールドを組成物に密着させた場合でも、モールドの凹部のキャビティ内にも組成物が流れ込み、大気が取り込まれにくくなるため、バブル欠陥を引き起こしにくくなり、モールド凸部において光硬化後に残渣が残りにくくなり好ましい。また、本発明の組成物の粘度が18mPa・s以下であると、微細なパターンの形成に粘度が影響を与えにくい。
 一般的に、組成物の粘度は、粘度の異なる各種の単量体、オリゴマー、ポリマーをプレンドすることで調整可能である。本発明のナノインプリント用硬化性組成物の粘度を前記範囲内に設計するためには、単体の粘度が5.0mPa・s以下の組成物を添加して粘度を調整することが好ましい。
(Viscosity of curable composition for nanoimprinting of the present invention)
The viscosity of the curable composition for nanoimprints of the present invention will be described. The viscosity in the present invention means a viscosity at 25 ° C. unless otherwise specified. The curable composition for nanoimprints of the present invention preferably has a viscosity at 25 ° C. of 3 to 18 mPa · s, more preferably 5 to 15 mPa · s, and particularly preferably 7 to 12 mPa · s. By setting the viscosity of the composition of the present invention to 3 mPa · s or more, there is a tendency that problems of substrate coating suitability and a decrease in mechanical strength of the film hardly occur. Specifically, by setting the viscosity to 3 mPa · s or more, it is preferable that unevenness on the surface is generated during the application of the composition or the composition can be prevented from flowing out of the substrate during the application. A composition having a viscosity of 3 mPa · s or more is also easier to prepare than a composition having a viscosity of less than 3 mPa · s. On the other hand, by setting the viscosity of the composition of the present invention to 18 mPa · s or less, even when a mold having a fine concavo-convex pattern is adhered to the composition, the composition flows into the cavity of the concave portion of the mold, and the atmosphere Is less likely to be taken in, so that it is difficult to cause bubble defects, and it is difficult for residues to remain after photocuring in the mold convex portion. Further, when the viscosity of the composition of the present invention is 18 mPa · s or less, the viscosity hardly affects the formation of a fine pattern.
Generally, the viscosity of the composition can be adjusted by blending various monomers, oligomers and polymers having different viscosities. In order to design the viscosity of the curable composition for nanoimprints of the present invention within the above range, it is preferable to adjust the viscosity by adding a composition having a single viscosity of 5.0 mPa · s or less.
(硬化物の光透過性)
 本発明のナノインプリント用硬化性組成物は、厚さ3.0μmの薄膜(硬化物)を露光及び加熱により形成した際における、400nm光線透過率が95%以上であることが好ましい。ここで、400nm光線透過率とは400nmの波長における光の透過率を意味する。前記400nm光線透過率としては、97%以上であることが更に好ましい。
 前記400nm光線透過率は、例えば、島津製作所(株)製の「UV-2400PC」等により測定することができる。
(Light transmittance of cured product)
The nanoimprint curable composition of the present invention preferably has a 400 nm light transmittance of 95% or more when a thin film (cured product) having a thickness of 3.0 μm is formed by exposure and heating. Here, the light transmittance at 400 nm means the light transmittance at a wavelength of 400 nm. The 400 nm light transmittance is more preferably 97% or more.
The 400 nm light transmittance can be measured by, for example, “UV-2400PC” manufactured by Shimadzu Corporation.
 本発明のナノインプリント用硬化性組成物は、硬化物の光透過率性(400nm光線透過率)を向上させる(黄変による光透過率の低下を抑制する)観点から、組成物中の窒素原子を含むモノマーの含有量を5質量%以下とすることが好ましく、3質量%以下とすることがさらに好ましく、1質量%以下とすることが特に好ましい。 From the viewpoint of improving the light transmittance (400 nm light transmittance) of the cured product (suppressing a decrease in light transmittance due to yellowing), the curable composition for nanoimprinting of the present invention contains nitrogen atoms in the composition. The content of the monomer to be contained is preferably 5% by mass or less, more preferably 3% by mass or less, and particularly preferably 1% by mass or less.
 また、前記光透過率性(400nm光線透過率)は、上述の酸化防止剤を本発明の組成物に加えることでも向上させることができる。 The light transmittance (400 nm light transmittance) can also be improved by adding the above-mentioned antioxidant to the composition of the present invention.
[硬化物の製造方法]
 次に、本発明のナノインプリント用硬化性組成物を用いた硬化物(特に、微細凹凸パターン)の形成方法について説明する。本発明のナノインプリント用硬化性組成物を基板または支持体(基材)上に塗布してパターン形成層を形成する工程と、前記パターン形成層表面にモールドを押圧する工程と、前記パターン形成層に光を照射する工程と、を経て本発明の組成物を硬化することで、微細な凹凸パターンを形成することができる。特に本発明においては、硬化物の硬化度を向上させるために、更に、光照射後にパターン形成層を加熱する工程を含むことが好ましい。即ち、本発明のナノインプリント用硬化性組成物は、光および熱によって硬化させることが好ましい。
 本発明の硬化物の製造方法によって得られた硬化物は、パターン精密度、硬化性、光透過性に優れ、特に、液晶カラーフィルタの保護膜、スペーサー、その他の液晶表示装置用部材として好適に用いることができる。
[Method for producing cured product]
Next, the formation method of the hardened | cured material (especially fine uneven | corrugated pattern) using the curable composition for nanoimprints of this invention is demonstrated. A step of applying the curable composition for nanoimprinting of the present invention on a substrate or a support (base material) to form a pattern forming layer, a step of pressing a mold against the surface of the pattern forming layer, and the pattern forming layer A fine uneven | corrugated pattern can be formed by hardening the composition of this invention through the process of irradiating light. Particularly in the present invention, in order to improve the degree of curing of the cured product, it is preferable to further include a step of heating the pattern forming layer after light irradiation. That is, the curable composition for nanoimprints of the present invention is preferably cured by light and heat.
The cured product obtained by the method for producing a cured product of the present invention is excellent in pattern precision, curability, and light transmittance, and is particularly suitable as a protective film for liquid crystal color filters, spacers, and other liquid crystal display device members. Can be used.
 具体的には、基材(基板または支持体)上に少なくとも本発明の組成物からなるパターン形成層を塗布し、必要に応じて乾燥させて本発明の組成物からなる層(パターン形成層)を形成してパターン受容体(基材上にパターン形成層が設けられたもの)を作製し、当該パターン受容体のパターン形成層表面にモールドを圧接し、モールドパターンを転写する加工を行い、微細凹凸パターン形成層を光照射および加熱により硬化させる。光照射および加熱は複数回に渡って行ってもよい。本発明のパターン形成方法(硬化物の製造方法)による光インプリントリソグラフィは、積層化や多重パターニングもでき、通常の熱インプリントと組み合わせて用いることもできる。 Specifically, a layer (pattern forming layer) consisting of the composition of the present invention is applied on a base material (substrate or support) by applying at least a pattern forming layer consisting of the composition of the present invention and drying as necessary. To form a pattern receptor (with a pattern-forming layer provided on the substrate), press the mold against the surface of the pattern-receiving layer of the pattern receptor, and transfer the mold pattern. The concavo-convex pattern forming layer is cured by light irradiation and heating. Light irradiation and heating may be performed a plurality of times. The optical imprint lithography according to the pattern forming method (a method for producing a cured product) of the present invention can be laminated and multiple patterned, and can be used in combination with ordinary thermal imprint.
 なお、本発明のナノインプリント用硬化性組成物の応用として、基板または、支持体上に本発明の組成物を塗布し、該組成物からなる層を露光、硬化、必要に応じて乾燥(ベーク)させることにより、オーバーコート層や絶縁膜などの永久膜を作製することもできる。 As an application of the curable composition for nanoimprints of the present invention, the composition of the present invention is applied on a substrate or a support, and a layer comprising the composition is exposed, cured, and dried (baked) as necessary. Thus, a permanent film such as an overcoat layer or an insulating film can be produced.
 液晶ディスプレイ(LCD)などに用いられる永久膜(構造部材用のレジスト)においては、ディスプレイの動作を阻害しないようにするため、レジスト中の金属あるいは有機物のイオン性不純物の混入を極力避けることが望ましく、その濃度としては、1000ppm以下、望ましくは100ppm以下である。 In permanent films (resist for structural members) used in liquid crystal displays (LCDs), it is desirable to avoid contamination of metal or organic ionic impurities in the resist as much as possible so as not to hinder the operation of the display. The concentration is 1000 ppm or less, preferably 100 ppm or less.
 以下において、本発明のナノインプリント用硬化性組成物を用いた硬化物の製造方法(パターン形成方法(パターン転写方法))について具体的に述べる。
 本発明の硬化物の製造方法においては、まず、本発明の組成物を基材上に塗布してパターン形成層を形成する。
 本発明のナノインプリント用硬化性組成物を基材上に塗布する際の塗布方法としては、一般によく知られた塗布方法、例えば、ディップコート法、エアーナイフコート法、カーテンコート法、ワイヤーバーコート法、グラビアコート法、エクストルージョンコート法、スピンコート方法、スリットスキャン法などにより、塗布することにより形成することができる。また、本発明の組成物からなるパターン形成層の膜厚は、使用する用途によって異なるが、0.05μm~30μm程度である。また、本発明の組成物を、多重塗布により塗布してもよい。尚、基材と本発明の組成物からなるパターン形成層との間には、例えば平坦化層等の他の有機層などを形成してもよい。これにより、パターン形成層と基板とが直接接しないことから、基板に対するごみの付着や基板の損傷等を防止することができる。
Below, the manufacturing method (pattern formation method (pattern transfer method)) of the hardened | cured material using the curable composition for nanoimprints of this invention is described concretely.
In the manufacturing method of the hardened | cured material of this invention, first, the composition of this invention is apply | coated on a base material, and a pattern formation layer is formed.
As a coating method when the curable composition for nanoimprinting of the present invention is coated on a substrate, generally known coating methods such as a dip coating method, an air knife coating method, a curtain coating method, and a wire bar coating method are used. It can be formed by coating by a gravure coating method, an extrusion coating method, a spin coating method, a slit scanning method or the like. In addition, the film thickness of the pattern forming layer comprising the composition of the present invention is about 0.05 to 30 μm, although it varies depending on the intended use. Further, the composition of the present invention may be applied by multiple coating. In addition, you may form other organic layers, such as a planarization layer, for example between a base material and the pattern formation layer which consists of a composition of this invention. Thereby, since the pattern formation layer and the substrate are not in direct contact with each other, it is possible to prevent adhesion of dust to the substrate, damage to the substrate, and the like.
 本発明のナノインプリント用硬化性組成物を塗布するための基材(基板または支持体)は、種々の用途によって選択可能であり、例えば、石英、ガラス、光学フィルム、セラミック材料、蒸着膜、磁性膜、反射膜、Ni、Cu、Cr、Feなどの金属基板、紙、SOG(スピンオングラスガラス)、ポリエステルフイルム、ポリカーボネートフィルム、ポリイミドフィルム等のポリマー基板、TFTアレイ基板、PDPの電極板、ガラスや透明プラスチック基板、ITOや金属などの導電性基材、絶縁性基材、シリコーン、窒化シリコーン、ポリシリコーン、酸化シリコーン、アモルファスシリコーンなどの半導体作製基板など特に制約されない。また、基材の形状も特に限定されるものではなく、板状でもよいし、ロール状でもよい。さらに、後述のように前記基材としては、モールドとの組み合わせ等に応じて、光透過性、または、非光透過性のものを選択することができる。 The substrate (substrate or support) on which the curable composition for nanoimprinting of the present invention is applied can be selected depending on various applications, such as quartz, glass, optical film, ceramic material, vapor deposition film, and magnetic film. , Reflective film, metal substrate such as Ni, Cu, Cr, Fe, paper, SOG (spin on glass glass), polymer film such as polyester film, polycarbonate film, polyimide film, TFT array substrate, PDP electrode plate, glass or transparent There are no particular restrictions on plastic substrates, conductive substrates such as ITO and metals, insulating substrates, semiconductor fabrication substrates such as silicone, silicone nitride, polysilicon, silicone oxide, and amorphous silicone. Further, the shape of the substrate is not particularly limited, and may be a plate shape or a roll shape. Furthermore, as described later, as the substrate, a light transmissive or non-light transmissive material can be selected according to the combination with the mold or the like.
 次いで、本発明の硬化物の製造方法においては、パターン形成層にパターンを転写するために、パターン形成層表面にモールドを(押圧)押接する。これにより、モールドの押圧表面にあらかじめ形成された微細なパターンをパターン形成層に転写することができる。 Next, in the method for producing a cured product of the present invention, in order to transfer the pattern to the pattern forming layer, a mold is pressed against the surface of the pattern forming layer. Thereby, the fine pattern previously formed on the pressing surface of the mold can be transferred to the pattern forming layer.
 本発明のナノインプリント用硬化性組成物を用いた光ナノインプリントリソグラフィは、モールド材および/または基板の少なくとも一方に、光透過性の材料を選択する。本発明に適用される光インプリントリソグラフィでは、基材の上に本発明のナノインプリント用硬化性組成物を塗布してパターン形成層を形成し、この表面に光透過性のモールドを押圧し、モールドの裏面から光を照射し、前記パターン形成層を硬化させる。また、光透過性基材上に光ナノインプリント用硬化性組成物を塗布し、モールドを押し当て、基材の裏面から光を照射し、光ナノインプリント用硬化性組成物を硬化させることもできる。
 前記光照射は、モールドを付着させた状態で行ってもよいし、モールド剥離後に行ってもよいが、本発明では、モールドを密着させた状態で行うのが好ましい。
In optical nanoimprint lithography using the curable composition for nanoimprinting of the present invention, a light-transmitting material is selected for at least one of a molding material and / or a substrate. In optical imprint lithography applied to the present invention, a curable composition for nanoimprinting of the present invention is applied on a substrate to form a pattern forming layer, and a light-transmitting mold is pressed on this surface, The pattern forming layer is cured by irradiating light from the back surface. Moreover, the curable composition for optical nanoimprint can be apply | coated on a transparent base material, a mold can be pressed, light can be irradiated from the back surface of a base material, and the curable composition for optical nanoimprint can also be hardened.
The light irradiation may be performed with the mold attached or after the mold is peeled off. In the present invention, the light irradiation is preferably performed with the mold in close contact.
 本発明で用いることのできるモールドは、転写されるべきパターンを有するモールドが使われる。前記モールド上のパターンは、例えば、フォトリソグラフィや電子線描画法等によって、所望する加工精度に応じてパターンが形成できるが、本発明では、モールドパターン形成方法は特に制限されない。
 本発明において用いられる光透過性モールド材は、特に限定されないが、所定の強度、耐久性を有するものであればよい。具体的には、ガラス、石英、PMMA、ポリカーボネート樹脂などの光透明性樹脂、透明金属蒸着膜、ポリジメチルシロキサンなどの柔軟膜、光硬化膜、金属膜等が例示される。
As the mold that can be used in the present invention, a mold having a pattern to be transferred is used. The pattern on the mold can be formed according to the desired processing accuracy by, for example, photolithography, electron beam drawing, or the like, but the mold pattern forming method is not particularly limited in the present invention.
The light-transmitting mold material used in the present invention is not particularly limited as long as it has predetermined strength and durability. Specifically, a light transparent resin such as glass, quartz, PMMA, and polycarbonate resin, a transparent metal vapor-deposited film, a flexible film such as polydimethylsiloxane, a photocured film, and a metal film are exemplified.
 本発明の透明基板を用いた場合で使われる非光透過型モールド材としては、特に限定されないが、所定の強度を有するものであればよい。具体的には、セラミック材料、蒸着膜、磁性膜、反射膜、Ni、Cu、Cr、Feなどの金属基板、SiC、シリコーン、窒化シリコーン、ポリシリコーン、酸化シリコーン、アモルファスシリコーンなどの基板などが例示され、特に制約されない。また、モールドの形状も特に制約されるものではなく、板状モールド、ロール状モールドのどちらでもよい。ロール状モールドは、特に転写の連続生産性が必要な場合に適用される。 The non-light transmissive mold material used in the case of using the transparent substrate of the present invention is not particularly limited as long as it has a predetermined strength. Specific examples include ceramic materials, deposited films, magnetic films, reflective films, metal substrates such as Ni, Cu, Cr, and Fe, and substrates such as SiC, silicone, silicone nitride, polysilicon, silicone oxide, and amorphous silicone. There are no particular restrictions. Further, the shape of the mold is not particularly limited, and may be either a plate mold or a roll mold. The roll mold is applied particularly when continuous transfer productivity is required.
 本発明の硬化物の製造方法で用いられるモールドは、光ナノインプリント用硬化性組成物とモールド表面との剥離性を向上させるために離型処理を行ったものを用いてもよい。このようなモールドとしては、シリコーン系やフッソ系などのシランカップリング剤による処理を行ったもの、例えば、ダイキン工業(株)製のオプツールDSXや、住友スリーエム(株)製のNovec EGC-1720等、市販の離型剤も好適に用いることができる。 The mold used in the method for producing a cured product of the present invention may be a mold that has been subjected to a release treatment in order to improve the releasability between the curable composition for optical nanoimprint and the mold surface. Examples of such molds include those that have been treated with a silane coupling agent such as silicone or fluorine, such as OPTOOL DSX manufactured by Daikin Industries, Ltd. or Novec EGC-1720 manufactured by Sumitomo 3M Co., Ltd. Commercially available release agents can also be suitably used.
 本発明の組成物を用いて光インプリントリソグラフィを行う場合、本発明の硬化物の製造方法では、通常、モールド圧力を10気圧以下で行うのが好ましい。モールド圧力を10気圧以下とすることによって、モールドや基板が変形しにくくパターン精度が向上する傾向にある。また、加圧が低いため装置を縮小できる傾向にある点からも好ましい。モールド圧力は、モールド凸部の光ナノインプリント用硬化性組成物の残膜が少なくなる範囲で、モールド転写の均一性が確保できる領域を選択することが好ましい。 When photoimprint lithography is performed using the composition of the present invention, it is usually preferable to perform the mold pressure at 10 atm or less in the method for producing a cured product of the present invention. By setting the mold pressure to 10 atm or less, the mold and the substrate are hardly deformed and the pattern accuracy tends to be improved. Moreover, it is also preferable from the viewpoint that the apparatus can be reduced because the pressure is low. As the mold pressure, it is preferable to select a region in which the uniformity of mold transfer can be ensured within a range in which the remaining film of the curable composition for optical nanoimprinting on the mold convex portion is reduced.
 本発明の硬化物の製造方法において、前記パターン形成層に光を照射する工程における光照射の照射量は、硬化に必要な照射量よりも十分大きければよい。硬化に必要な照射量は、光ナノインプリント用硬化性組成物の不飽和結合の消費量や硬化膜のタッキネスを調べて適宜決定される。
 また、本発明に適用される光インプリントリソグラフィにおいて、光照射の際の基板温度は、通常、室温で行われるが、反応性を高めるために加熱をしながら光照射してもよい。光照射の前段階として、真空状態にしておくと、気泡混入防止、酸素混入による反応性低下の抑制、モールドと光ナノインプリント用硬化性組成物との密着性向上に効果があるため、真空状態で光照射してもよい。また、本発明の硬化物の製造方法中、光照射時における好ましい真空度は、10-1Paから常圧の範囲である。
In the manufacturing method of the hardened | cured material of this invention, the irradiation amount of the light irradiation in the process of irradiating light to the said pattern formation layer should just be sufficiently larger than the irradiation amount required for hardening. The irradiation amount necessary for curing is appropriately determined by examining the consumption of unsaturated bonds of the curable composition for optical nanoimprint and the tackiness of the cured film.
Moreover, in the photoimprint lithography applied to the present invention, the substrate temperature at the time of light irradiation is usually room temperature, but light irradiation may be performed while heating in order to increase the reactivity. As a pre-stage of light irradiation, if it is in a vacuum state, it is effective in preventing bubble mixing, suppressing the decrease in reactivity due to oxygen mixing, and improving the adhesion between the mold and the curable composition for optical nanoimprinting. It may be irradiated with light. In the method for producing a cured product of the present invention, a preferable degree of vacuum at the time of light irradiation is in the range of 10 −1 Pa to normal pressure.
 本発明のナノインプリント用硬化性組成物を硬化させるために用いられる光は特に限定されず、例えば、高エネルギー電離放射線、近紫外、遠紫外、可視、赤外等の領域の波長の光または放射線が挙げられる。高エネルギー電離放射線源としては、例えば、コッククロフト型加速器、ハンデグラーフ型加速器、リニヤーアクセレーター、ベータトロン、サイクロトロン等の加速器によって加速された電子線が工業的に最も便利且つ経済的に使用されるが、その他に放射性同位元素や原子炉等から放射されるγ線、X線、α線、中性子線、陽子線等の放射線も使用できる。紫外線源としては、例えば、紫外線螢光灯、低圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノン灯、炭素アーク灯、太陽灯等が挙げられる。放射線には、例えばマイクロ波、EUVが含まれる。また、LED、半導体レーザー光、あるいは248nmのKrFエキシマレーザー光や193nmArFエキシマレーザーなどの半導体の微細加工で用いられているレーザー光も本発明に好適に用いることができる。これらの光は、モノクロ光を用いてもよいし、複数の波長の異なる光(ミックス光)でもよい。 The light used for curing the curable composition for nanoimprints of the present invention is not particularly limited. For example, light or radiation having a wavelength in a region such as high energy ionizing radiation, near ultraviolet, far ultraviolet, visible, infrared, etc. Can be mentioned. As the high-energy ionizing radiation source, for example, an electron beam accelerated by an accelerator such as a cockcroft accelerator, a handagraaf accelerator, a linear accelerator, a betatron, or a cyclotron is industrially most conveniently and economically used. However, radiation such as γ rays, X rays, α rays, neutron rays, proton rays emitted from radioisotopes or nuclear reactors can also be used. Examples of the ultraviolet ray source include an ultraviolet fluorescent lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a xenon lamp, a carbon arc lamp, and a solar lamp. The radiation includes, for example, microwaves and EUV. Also, laser light used in semiconductor microfabrication such as LED, semiconductor laser light, or 248 nm KrF excimer laser light or 193 nm ArF excimer laser can be suitably used in the present invention. These lights may be monochromatic lights, or may be lights having different wavelengths (mixed lights).
 露光に際しては、露光照度を1mW/cm~50mW/cmの範囲にすることが望ましい。1mW/cm以上とすることにより、露光時間を短縮することができるため生産性が向上し、50mW/cm以下とすることにより、副反応が生じることによる永久膜の特性の劣化を抑止できる傾向にあり好ましい。露光量は5mJ/cm~1000mJ/cmの範囲にすることが望ましい。5mJ/cm以上であると、露光マージンが狭くなり、光硬化が不十分となりモールドへの未反応物の付着などの問題が発生するのを防止できる。また。露光量が1000mJ/cm以下であると組成物の分解による永久膜の劣化を抑制することができる。
 さらに、露光に際しては、酸素によるラジカル重合の阻害を防ぐため、チッソやアルゴンなどの不活性ガスを流して、酸素濃度を100mg/L未満に制御してもよい。
In the exposure, it is desirable that the exposure illuminance is in the range of 1 mW / cm 2 to 50 mW / cm 2 . By setting it to 1 mW / cm 2 or more, the exposure time can be shortened, so that productivity is improved. By setting it to 50 mW / cm 2 or less, deterioration of the properties of the permanent film due to side reactions can be suppressed. It tends to be preferable. The exposure dose is desirably in the range of 5 mJ / cm 2 to 1000 mJ / cm 2 . When it is 5 mJ / cm 2 or more, the exposure margin becomes narrow, photocuring becomes insufficient, and problems such as adhesion of unreacted materials to the mold can be prevented. Also. When the exposure amount is 1000 mJ / cm 2 or less, deterioration of the permanent film due to decomposition of the composition can be suppressed.
Further, during exposure, in order to prevent inhibition of radical polymerization by oxygen, an inert gas such as nitrogen or argon may be flowed to control the oxygen concentration to less than 100 mg / L.
 本発明の硬化物の製造方法においては、光照射によりパターン形成層を硬化させた後、硬化させたパターンに熱を加えてさらに硬化させる工程(ポストベーク工程)を含むのが好ましい。尚、加熱は、光照射後のパターン形成層からモールドを剥離する前後のいずれに行ってもよいが、モールドの剥離後にパターン形成層を加熱するほうが好ましい。光照射後に本発明の組成物を加熱硬化させる熱としては、150~280℃が好ましく、200~250℃がより好ましい。また、熱を付与する時間としては、5~60分間が好ましく、15~45分間がさらに好ましい。 In the method for producing a cured product of the present invention, it is preferable to include a step (post-baking step) in which the pattern forming layer is cured by light irradiation and then further cured by applying heat to the cured pattern. The heating may be performed either before or after the mold is peeled from the pattern forming layer after light irradiation, but it is preferable to heat the pattern forming layer after the mold is peeled off. The heat for heat-curing the composition of the present invention after light irradiation is preferably 150 to 280 ° C, more preferably 200 to 250 ° C. The time for applying heat is preferably 5 to 60 minutes, more preferably 15 to 45 minutes.
 本発明において、光インプリントリソグラフィにおける光照射は、硬化に必要な照射量よりも十分大きければよい。硬化に必要な照射量は、光ナノインプリントリソグラフィ用硬化性組成物の不飽和結合の消費量や硬化膜のタッキネスを調べて決定される。 In the present invention, the light irradiation in the photoimprint lithography may be sufficiently larger than the irradiation amount necessary for curing. The amount of irradiation necessary for curing is determined by examining the consumption of unsaturated bonds of the curable composition for optical nanoimprint lithography and the tackiness of the cured film.
 また、本発明に適用される光インプリントリソグラフィにおいては、光照射の際の基板温度は、通常、室温で行われるが、反応性を高めるために加熱をしながら光照射してもよい。光照射の前段階として、真空状態にしておくと、気泡混入防止、酸素混入による反応性低下の抑制、モールドと光ナノインプリントリソグラフィ用硬化性組成物の密着性向上に効果があるため、真空状態で光照射してもよい。本発明において、好ましい真空度は、10-1Paから常圧の範囲で行われる。 In the photoimprint lithography applied to the present invention, the substrate temperature at the time of light irradiation is usually room temperature, but the light irradiation may be performed while heating in order to increase the reactivity. As a pre-stage of light irradiation, if it is in a vacuum state, it is effective in preventing bubble mixing, suppressing reactivity decrease due to oxygen mixing, and improving the adhesion between the mold and the curable composition for optical nanoimprint lithography. It may be irradiated with light. In the present invention, a preferable degree of vacuum is in the range of 10 −1 Pa to normal pressure.
 本発明のナノインプリント用硬化性組成物は、上記各成分を混合した後、例えば、孔径0.05μm~5.0μmのフィルターで濾過することによって溶液として調製することができる。ナノインプリント用硬化性組成物の混合・溶解は、通常、0℃~100℃の範囲で行われる。濾過は、多段階で行ってもよいし、多数回繰り返してもよい。また、濾過した液を再濾過することもできる。濾過に使用する材質は、ポリエチレン樹脂、ポリプロピレン樹脂、フッソ樹脂、ナイロン樹脂などのものが使用できるが特に限定されない。 The curable composition for nanoimprinting of the present invention can be prepared as a solution by mixing the above components and then filtering with a filter having a pore size of 0.05 μm to 5.0 μm, for example. Mixing / dissolution of the curable composition for nanoimprinting is usually performed in the range of 0 ° C to 100 ° C. Filtration may be performed in multiple stages or repeated many times. Moreover, the filtered liquid can be refiltered. Materials used for filtration can be polyethylene resin, polypropylene resin, fluorine resin, nylon resin, etc., but are not particularly limited.
 上述のように本発明の硬化物の製造方法によって形成された硬化物は、液晶ディスプレイ(LCD)などに用いられる永久膜(構造部材用のレジスト)やエッチングレジストとして使用することができる。また、前記永久膜は、製造後にガロン瓶やコート瓶などの容器にボトリングし、輸送、保管されるが、この場合に、劣化を防ぐ目的で、容器内を不活性なチッソ、またはアルゴンなどで置換しておいてもよい。また、輸送、保管に際しては、常温でもよいが、より永久膜の変質を防ぐため、-20℃から0℃の範囲に温度制御してもよい。勿論、反応が進行しないレベルで遮光することが好ましい。 As described above, the cured product formed by the method for producing a cured product of the present invention can be used as a permanent film (resist for a structural member) or an etching resist used in a liquid crystal display (LCD) or the like. In addition, the permanent film is bottled in a container such as a gallon bottle or a coated bottle after manufacture, and is transported and stored. In this case, in order to prevent deterioration, the container is filled with inert nitrogen or argon. It may be replaced. Further, at the time of transportation and storage, the temperature may be normal temperature, but the temperature may be controlled in the range of −20 ° C. to 0 ° C. in order to prevent the permanent film from being altered. Of course, it is preferable to shield from light at a level where the reaction does not proceed.
 また、本発明のナノインプリント用硬化性組成物は、半導体集積回路、記録材料、あるいはフラットパネルディスプレイなどのエッチングレジストとして適用することも可能である。
 本発明のナノインプリント用組成物をエッチングレジストとして利用する場合には、まず、基材として例えばSiO等の薄膜が形成されたシリコンウエハ等を用い、基材上に本発明の硬化物の製造方法によってナノオーダーの微細なパターンを形成する。その後、ウェットエッチングの場合にはフッ化水素等、ドライエッチングの場合にはCF等のエッチングガスを用いてエッチングすることにより、基材上に所望のパターンを形成することができる。
The curable composition for nanoimprinting of the present invention can also be applied as an etching resist for semiconductor integrated circuits, recording materials, flat panel displays, and the like.
When using the nanoimprinting composition of the present invention as an etching resist, first, a method for producing a cured product of the present invention on a substrate using, for example, a silicon wafer on which a thin film such as SiO 2 is formed as a substrate. To form a nano-order fine pattern. Thereafter, a desired pattern can be formed on the substrate by etching using an etching gas such as hydrogen fluoride in the case of wet etching or CF 4 in the case of dry etching.
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。 The present invention will be described more specifically with reference to the following examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below.
 下記表1~2に示すように、オキセタン化合物、官能性無水酸物、重合性単量体に加えて、下記光ラジカル重合開始剤P-1、下記界面活性剤W-1およびW-2、下記酸化防止剤A-1およびA-2を加えてナノインプリント用硬化性組成物を調製した。尚、表中の数値(粘度を除く)は質量%である。 As shown in Tables 1 and 2 below, in addition to the oxetane compound, functional anhydride, and polymerizable monomer, the following photo radical polymerization initiator P-1, the following surfactants W-1 and W-2, The following antioxidants A-1 and A-2 were added to prepare a curable composition for nanoimprinting. In addition, the numerical value (except a viscosity) in a table | surface is the mass%.
<オキセタン化合物>
O-1:3-エチル-3-ヒドロキシメチルオキセタン(東亞合成(株)製:OXT-101)
O-2:オキセタンアクリレート(大阪有機化学(株)製:OXE-10)
<Oxetane compound>
O-1: 3-ethyl-3-hydroxymethyloxetane (manufactured by Toagosei Co., Ltd .: OXT-101)
O-2: Oxetane acrylate (Osaka Organic Chemical Co., Ltd .: OXE-10)
<官能性無水酸物>
H-1:メチル-3,6-エンドメチレン-1,2,3,6-テトラヒドロ無水フタル酸(日立化成工業(株)製:MHAC―P)
H-2:酸無水物アクリレート(シグマアルドリッチジャパン(株)製:Aldrich試薬330736)
<Functional anhydride>
H-1: Methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride (manufactured by Hitachi Chemical Co., Ltd .: MHAC-P)
H-2: Anhydride acrylate (manufactured by Sigma-Aldrich Japan Co., Ltd .: Aldrich reagent 330736)
<光ラジカル重合性単量体>
M-1:ベンジルアクリレート(大阪有機化学(株)製:ビスコート#160)
M-2:ネオペンチルグリコールジアクリレート(日本化薬(株)製:KARAYAD NPGDA)
M-3:トリメチロールプロパントリアクリレート(東亞合成(株)製:アロニックスM309)
<Photoradical polymerizable monomer>
M-1: benzyl acrylate (Osaka Organic Chemical Co., Ltd .: Biscote # 160)
M-2: Neopentyl glycol diacrylate (manufactured by Nippon Kayaku Co., Ltd .: KARAYAD NPGDA)
M-3: trimethylolpropane triacrylate (manufactured by Toagosei Co., Ltd .: Aronix M309)
<N原子含有重合性単量体>
N-1:N-ビニルホルムアミド(荒川化学工業(株)製:ビームセット770)
<N atom-containing polymerizable monomer>
N-1: N-vinylformamide (Arakawa Chemical Industries, Ltd .: Beam Set 770)
<光ラジカル重合開始剤>
P-1:2,4,6-トリメチルベンゾイル-エトキシフェニル-ホスフィンオキシド(BASF社製:Lucirin TPO-L)
<Radical radical polymerization initiator>
P-1: 2,4,6-trimethylbenzoyl-ethoxyphenyl-phosphine oxide (manufactured by BASF: Lucirin TPO-L)
<界面活性剤>
W-1:非フッ素系界面活性剤(竹本油脂(株)製:パイオニンD6315)
W-2:フッ素系界面活性剤(大日本インキ化学工業(株)製:メガファックF780F)
<Surfactant>
W-1: Non-fluorinated surfactant (manufactured by Takemoto Yushi Co., Ltd .: Pionein D6315)
W-2: Fluorosurfactant (Dainippon Ink & Chemicals, Inc .: MegaFuck F780F)
<酸化防止剤>
A-1:スミライザーGA80(住友化学(株)製)
A-2:アデカスタブAO503(アデカジャパン(株)製)
<Antioxidant>
A-1: Sumilyzer GA80 (manufactured by Sumitomo Chemical Co., Ltd.)
A-2: ADK STAB AO503 (Adeka Japan Co., Ltd.)
 尚、上記化合物のうち、0-2,H-2,M-1,M-2,M-3,N-1が、ラジカル重合性官能基を有する化合物に該当し、表中の“ラジカル含有量”は、ラジカル重合性官能基を有する化合物の全組成物中の含有量を示す。 Of the above compounds, 0-2, H-2, M-1, M-2, M-3, and N-1 correspond to compounds having a radical polymerizable functional group. “Amount” indicates the content of the compound having a radical polymerizable functional group in the entire composition.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[ナノインプリント用硬化性組成物の評価]
 各実施例および比較例の組成物をについて、粘度、パターン精度、剥離性、膜減り、硬さ、透過率、について下記評価方法に従って測定・評価を行った。結果を表3および4に示す。
[Evaluation of curable composition for nanoimprint]
About the composition of each Example and the comparative example, it measured and evaluated in accordance with the following evaluation method about the viscosity, pattern precision, peelability, film | membrane reduction, hardness, and the transmittance | permeability. The results are shown in Tables 3 and 4.
<粘度測定>
 粘度の測定は、東機産業(株)社製のRE-80L型回転粘度計を用い、25±0.2℃で測定した。測定時の回転速度は、0.5mPa・s以上5mPa・s未満は100rpmで行い、5mPa・s以上10mPa・s未満は50rpmで行い、10mPa・s以上30mPa・s未満は20rpmで行い、30mPa・s以上60mPa・s未満は10rpmで行い、60mPa・s以上120mPa・s未満は5rpmで行い、120mPa・s以上は1rpmもしくは0.5rpmで行った。
<Viscosity measurement>
The viscosity was measured at 25 ± 0.2 ° C. using a RE-80L rotational viscometer manufactured by Toki Sangyo Co., Ltd. The rotation speed at the time of measurement is 100 rpm for 0.5 mPa · s or more and less than 5 mPa · s, 50 rpm for 5 mPa · s or more and less than 10 mPa · s, 20 rpm for 10 mPa · s or more and less than 30 mPa · s, and 30 mPa · s. More than s and less than 60 mPa · s was carried out at 10 rpm, more than 60 mPa · s and less than 120 mPa · s was carried out at 5 rpm, and more than 120 mPa · s was carried out at 1 rpm or 0.5 rpm.
<パターン精度の観察>
 各組成物について。膜厚3.0μmとなるようにガラス基板上にスピンコートした。スピンコートした塗布基膜をORC社製の高圧水銀灯(ランプパワー2000mW/cm)を光源とするナノインプリント装置にセットし、モールド加圧力0.8kN、露光中の真空度は10Torr((約1.33×10Pa)の条件で、モールドとして、10μmのライン/スペースパターンを有し、溝深さが4.0μmのポリジメチルシロキサン(東レ・ダウコーニング(株)製の「SILPOT184」を80℃60分で硬化させたもの)を材質とするものを用いて押圧し、さらに、モールドの表面から240mJ/cmの条件で露光した。露光後、モールドを離し、レジストパターンを得た。更に、得られたレジストパターンをオーブンで230℃、30分間加熱して完全に硬化させた。
 転写後のパターン形状を走査型電子顕微鏡および光学顕微鏡にて観察し、パターン形状を以下の基準に従って評価した。
◎:モールドのパターン形状の元となる原版のパターンとほぼ同一である。
○:モールドのパターン形状の元となる原版のパターン形状と一部異なる部分(原版のパターンと10%未満の範囲)がある。
△:モールドのパターン形状の元となる原版のパターン形状と一部異なる部分(原版のパターンと10%以上20%未満の範囲)がある。
×:モールドのパターン形状の元となる原版のパターンとはっきりと異なる、あるいはパターンの膜厚が原版のパターンと20%以上異なる。
<Observation of pattern accuracy>
About each composition. It spin-coated on the glass substrate so that it might become a film thickness of 3.0 micrometers. The spin-coated coated base film was set in a nanoimprint apparatus using a high pressure mercury lamp (lamp power: 2000 mW / cm 2 ) manufactured by ORC as a light source. The mold pressure was 0.8 kN and the degree of vacuum during exposure was 10 Torr ((about 1. As a mold under the condition of 33 × 10 4 Pa), polydimethylsiloxane having a line / space pattern of 10 μm and a groove depth of 4.0 μm (“SILPOT184” manufactured by Toray Dow Corning Co., Ltd.) is 80 ° C. The product was pressed using a material made of a material cured in 60 minutes, and further exposed from the surface of the mold under the condition of 240 mJ / cm 2. After the exposure, the mold was released to obtain a resist pattern. The obtained resist pattern was completely cured by heating in an oven at 230 ° C. for 30 minutes.
The pattern shape after the transfer was observed with a scanning electron microscope and an optical microscope, and the pattern shape was evaluated according to the following criteria.
A: Almost the same as the pattern of the original plate that is the basis of the pattern shape of the mold.
◯: There is a part (a range of less than 10% from the original pattern) that is partly different from the original pattern shape of the mold pattern shape.
Δ: There is a part (a range of 10% or more and less than 20% of the pattern of the original plate) that is partly different from the original pattern shape of the mold pattern shape.
X: The pattern pattern of the mold is clearly different from the original pattern, or the film thickness of the pattern is 20% or more different from the original pattern.
<膜減りの評価>
 各組成物を膜厚3.0μmとなるようにガラス基板上にスピンコートし、モールドを圧着せず、窒素雰囲気下で露光量240mJ/cmで露光した。その後、オーブンで230℃、30分間加熱して硬化させた。オーブンでベークする前後の膜厚を測定し、その減少率を求め下記の基準に従って加熱による膜の減少率(膜減り)について評価した。
◎:減少率が5%未満
○:減少率が5%以上、10%未満
△:減少率が10%以上、15%未満
×:減少率が15%以上
<Evaluation of film reduction>
Each composition was spin-coated on a glass substrate so as to have a film thickness of 3.0 μm, and the mold was not subjected to pressure bonding, and was exposed at an exposure amount of 240 mJ / cm 2 in a nitrogen atmosphere. Thereafter, it was cured by heating in an oven at 230 ° C. for 30 minutes. The film thickness before and after baking in an oven was measured, the reduction rate was determined, and the reduction rate (film reduction) of the film due to heating was evaluated according to the following criteria.
◎: Reduction rate is less than 5% ○: Reduction rate is 5% or more and less than 10% △: Reduction rate is 10% or more, less than 15% ×: Reduction rate is 15% or more
<鉛筆硬度の評価>
 各組成物を膜厚3.0μmとなるようにガラス基板上にスピンコートし、モールドを圧着せず、窒素雰囲気下で露光量240mJ/cmで露光した。その後オーブンで230℃、30分間加熱して硬化させた膜を用いて、「JIS K5600-5-4」に準拠した方法で鉛筆硬度の評価を行った。
◎:4H以上
○:3H
△:2H
×:2H未満
<Evaluation of pencil hardness>
Each composition was spin-coated on a glass substrate so as to have a film thickness of 3.0 μm, and the mold was not subjected to pressure bonding, and was exposed at an exposure amount of 240 mJ / cm 2 in a nitrogen atmosphere. Thereafter, pencil hardness was evaluated by a method in accordance with “JIS K5600-5-4” using a film cured by heating at 230 ° C. for 30 minutes in an oven.
◎: 4H or more ○: 3H
Δ: 2H
X: Less than 2H
<光透過率(着色性)の評価>
 各組成物を膜厚3.0μmとなるようにガラス基板上にスピンコートし、モールドを圧着せず、窒素雰囲気下で露光量240mJ/cmで露光した。その後オーブンで230℃、30分間加熱して硬化させた膜を、島津製作所(株)製「UV-2400PC」にて400nmにおける透過率を測定した。
◎:透過率が97%以上であった。
○:透過率が95%以上、97%未満であった。
△:透過率が90以上、95%未満であった。
×:透過率が90未満であった。
<Evaluation of light transmittance (colorability)>
Each composition was spin-coated on a glass substrate so as to have a film thickness of 3.0 μm, and the mold was not subjected to pressure bonding, and was exposed at an exposure amount of 240 mJ / cm 2 in a nitrogen atmosphere. Thereafter, the film cured by heating at 230 ° C. for 30 minutes in an oven was measured for transmittance at 400 nm using “UV-2400PC” manufactured by Shimadzu Corporation.
A: The transmittance was 97% or more.
○: The transmittance was 95% or more and less than 97%.
Δ: The transmittance was 90 or more and less than 95%.
X: The transmittance was less than 90.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3からわかるように、実施例の各組成物はいずれもパターン精度および光透過性が良好であり、加熱による膜の残膜率(膜減り)および硬度が高いものであった。また、実施例9と実施例10との比較から、N原子含有モノマーが5.0質量%以下のほうが光透過性(着色)に優れることがわかった。また実施例11と他の実施例との比較から、酸化防止剤を含有するほうが光透過性(着色)に優れることがわかった。 As can be seen from Table 3, all the compositions of the examples had good pattern accuracy and light transmittance, and had a high residual film ratio (film reduction) and hardness due to heating. Moreover, it was found from comparison between Example 9 and Example 10 that the N atom-containing monomer is 5.0% by mass or less and is more excellent in light transmission (coloring). Moreover, it turned out that the direction which contains antioxidant is excellent in light transmittance (coloring) from the comparison with Example 11 and another Example.
 また表4からわかるように、官能性酸無水物またはオキセタン環を有する化合物を含まない比較例1および2は特に加熱後における膜の減少率が高いことがわかった。また、オキセタン環を有する化合物や酸無水物以外の光ラジカル重合性単量体を含まない比較例3は、各種性能が悪化していた。同様に比較例4および比較例5ではラジカル重合性官能性基を含有する化合物の含有量が少なすぎるために各種性能が悪化していることがわかる。特に、比較例4では組成物の粘度が高すぎるためにインプリント適性が悪化している。比較例6では光ラジカル重合開始剤が含まれていないために硬化が不十分で、各種性能が悪化している。 Further, as can be seen from Table 4, it was found that Comparative Examples 1 and 2, which did not contain a functional acid anhydride or a compound having an oxetane ring, had a particularly high rate of film reduction after heating. Moreover, the comparative example 3 which does not contain photoradically polymerizable monomers other than the compound which has an oxetane ring, and an acid anhydride had various performance deteriorated. Similarly, in Comparative Example 4 and Comparative Example 5, it can be seen that various performances are deteriorated because the content of the compound containing a radical polymerizable functional group is too small. In particular, in Comparative Example 4, imprintability is deteriorated because the viscosity of the composition is too high. In Comparative Example 6, since no radical photopolymerization initiator is contained, curing is insufficient and various performances are deteriorated.

Claims (12)

  1.  オキセタン環を有する化合物と、官能性酸無水物と、光ラジカル重合性単量体と、光ラジカル重合開始剤と、を含有し、組成物中のラジカル重合性官能基を有する化合物の総含有量が50~99.5質量%であることを特徴とするナノインプリント用硬化性組成物。 The total content of the compound having a radical polymerizable functional group in the composition containing a compound having an oxetane ring, a functional acid anhydride, a radical photopolymerizable monomer, and a radical photopolymerization initiator. Is a curable composition for nanoimprints, characterized in that is from 50 to 99.5% by mass.
  2.  組成物の粘度が25℃において3~18mPa・sであることを特徴とする請求項1に記載のナノインプリント用硬化性組成物。 The curable composition for nanoimprints according to claim 1, wherein the viscosity of the composition is 3 to 18 mPa · s at 25 ° C.
  3.  前記オキセタン環を有する化合物が、光ラジカル重合性官能基を有することを特徴とする請求項1または2に記載のナノインプリント用硬化性組成物。 The curable composition for nanoimprints according to claim 1 or 2, wherein the compound having an oxetane ring has a photoradically polymerizable functional group.
  4.  前記官能性酸無水物が、光ラジカル重合性官能基を有することを特徴とする請求項1~3のいずれか1項に記載のナノインプリント用硬化性組成物。 The curable composition for nanoimprints according to any one of claims 1 to 3, wherein the functional acid anhydride has a photoradically polymerizable functional group.
  5.  さらに、酸化防止剤を含有することを特徴とする請求項1~4のいずれか1項に記載のナノインプリント用硬化性組成物。 The curable composition for nanoimprints according to any one of claims 1 to 4, further comprising an antioxidant.
  6.  組成物中の窒素原子を含むモノマーの含有量が5.0質量%以下であることを特徴とする請求項1~5のいずれか1項に記載のナノインプリント用硬化性組成物。 The curable composition for nanoimprints according to any one of claims 1 to 5, wherein the content of the monomer containing a nitrogen atom in the composition is 5.0% by mass or less.
  7.  露光及び加熱によって厚さ3.0μmの薄膜を形成した際に、400nm光線透過率が95%以上であることを特徴とする請求項1~6のいずれか1項に記載のナノインプリント用硬化性組成物。 The curable composition for nanoimprints according to any one of claims 1 to 6, wherein when a thin film having a thickness of 3.0 µm is formed by exposure and heating, the light transmittance of 400 nm is 95% or more. object.
  8.  請求項1~7のいずれか1項に記載のナノインプリント用硬化性組成物を硬化させたことを特徴とする硬化物。 A cured product obtained by curing the curable composition for nanoimprints according to any one of claims 1 to 7.
  9.  厚さ3.0μmにおける400nm光線透過率が95%以上であることを特徴とする請求項8に記載の硬化物。 The cured product according to claim 8, wherein the light transmittance at 400 nm at a thickness of 3.0 μm is 95% or more.
  10.  請求項8に記載の硬化物を含むことを特徴とする液晶表示装置用部材。 A member for a liquid crystal display device, comprising the cured product according to claim 8.
  11.  請求項1~7のいずれか1項に記載のナノインプリント用硬化性組成物を基材上に塗布してパターン形成層を形成する工程と、
     前記パターン形成層表面にモールドを押圧する工程と、
     前記パターン形成層に光を照射する工程と、
    を含むことを特徴とする硬化物の製造方法。
    Applying a nanoimprint curable composition according to any one of claims 1 to 7 on a substrate to form a pattern forming layer;
    Pressing the mold against the surface of the pattern forming layer;
    Irradiating the pattern forming layer with light;
    The manufacturing method of the hardened | cured material characterized by including.
  12.  さらに、光が照射された前記パターン形成層を加熱する工程を含むことを特徴とする請求項11に記載の硬化物の製造方法。 Furthermore, the manufacturing method of the hardened | cured material of Claim 11 including the process of heating the said pattern formation layer irradiated with light.
PCT/JP2009/054134 2008-03-06 2009-03-05 Curable composition for nanoimprint, cured product using the same, method for producing the cured product, and member for liquid crystal display device WO2009110536A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009801074029A CN101959932A (en) 2008-03-06 2009-03-05 Curable composition for nanoimprint, cured product using the same, method for producing the cured product, and member for liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-056905 2008-03-06
JP2008056905A JP2009209337A (en) 2008-03-06 2008-03-06 Curable composition for nanoimprint, cured material made using the same, method for producing the material, and member for liquid crystal display

Publications (1)

Publication Number Publication Date
WO2009110536A1 true WO2009110536A1 (en) 2009-09-11

Family

ID=41056088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054134 WO2009110536A1 (en) 2008-03-06 2009-03-05 Curable composition for nanoimprint, cured product using the same, method for producing the cured product, and member for liquid crystal display device

Country Status (4)

Country Link
JP (1) JP2009209337A (en)
KR (1) KR20100126728A (en)
CN (1) CN101959932A (en)
WO (1) WO2009110536A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125335A1 (en) * 2010-04-09 2011-10-13 富士フイルム株式会社 Pattern forming method and pattern substrate manufacturing method
US20170204222A1 (en) * 2013-07-26 2017-07-20 Kabushiki Kaisha Toshiba Resist material and pattern forming method using same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258944A (en) * 2013-05-31 2013-08-21 江苏索尔光电科技有限公司 Method for manufacturing LED package
JP6460672B2 (en) 2013-09-18 2019-01-30 キヤノン株式会社 Film manufacturing method, optical component manufacturing method, circuit board manufacturing method, and electronic component manufacturing method
CN106384745B (en) * 2016-11-16 2019-01-08 京东方科技集团股份有限公司 The preparation method of display base plate
KR102404724B1 (en) * 2017-06-07 2022-06-02 삼성디스플레이 주식회사 Display device
US11415880B2 (en) * 2018-05-09 2022-08-16 Facebook Technologies, Llc Nanoimprint lithography material with switchable mechanical properties
US10892167B2 (en) * 2019-03-05 2021-01-12 Canon Kabushiki Kaisha Gas permeable superstrate and methods of using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160702A (en) * 1997-08-12 1999-03-05 Ube Ind Ltd Thermosetting oxetane composition
WO2001072857A1 (en) * 2000-03-29 2001-10-04 Kanagawa University Resins curable with actinic radiation, process for the production thereof, and photo- and thermo-setting resin composition
JP2007071995A (en) * 2005-09-05 2007-03-22 Tokyo Ohka Kogyo Co Ltd Photosensitive resin composition
JP2008019292A (en) * 2006-07-10 2008-01-31 Fujifilm Corp Photocurable composition and pattern forming method using it
JP2008045081A (en) * 2006-08-21 2008-02-28 Konica Minolta Medical & Graphic Inc Active ray-curable composition, adhesive, ink and ink for inkjet
JP2008105414A (en) * 2006-09-27 2008-05-08 Fujifilm Corp Curable composition for optical nano imprint lithography, and pattern forming method using it
JP2008163311A (en) * 2006-12-08 2008-07-17 Yamaguchi Univ Thermosetting oxetane composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160702A (en) * 1997-08-12 1999-03-05 Ube Ind Ltd Thermosetting oxetane composition
WO2001072857A1 (en) * 2000-03-29 2001-10-04 Kanagawa University Resins curable with actinic radiation, process for the production thereof, and photo- and thermo-setting resin composition
JP2007071995A (en) * 2005-09-05 2007-03-22 Tokyo Ohka Kogyo Co Ltd Photosensitive resin composition
JP2008019292A (en) * 2006-07-10 2008-01-31 Fujifilm Corp Photocurable composition and pattern forming method using it
JP2008045081A (en) * 2006-08-21 2008-02-28 Konica Minolta Medical & Graphic Inc Active ray-curable composition, adhesive, ink and ink for inkjet
JP2008105414A (en) * 2006-09-27 2008-05-08 Fujifilm Corp Curable composition for optical nano imprint lithography, and pattern forming method using it
JP2008163311A (en) * 2006-12-08 2008-07-17 Yamaguchi Univ Thermosetting oxetane composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125335A1 (en) * 2010-04-09 2011-10-13 富士フイルム株式会社 Pattern forming method and pattern substrate manufacturing method
US9005512B2 (en) 2010-04-09 2015-04-14 Fujifilm Corporation Method for forming patterns and method for producing patterned substrates
US20170204222A1 (en) * 2013-07-26 2017-07-20 Kabushiki Kaisha Toshiba Resist material and pattern forming method using same
US10113030B2 (en) * 2013-07-26 2018-10-30 Toshiba Memory Corporation Resist material and pattern forming method using same
US10407542B2 (en) 2013-07-26 2019-09-10 Toshiba Memory Corporation Resist material and pattern forming method using same

Also Published As

Publication number Publication date
KR20100126728A (en) 2010-12-02
CN101959932A (en) 2011-01-26
JP2009209337A (en) 2009-09-17

Similar Documents

Publication Publication Date Title
JP5306903B2 (en) Curable composition for imprint, cured product using the same, method for producing the same, and member for liquid crystal display device
JP5196933B2 (en) Curable composition for optical nanoimprint lithography and pattern forming method using the same
KR101603616B1 (en) Composition for imprints, pattern and patterning method
JP5829177B2 (en) Curable composition for imprint, pattern forming method and pattern
JP5710553B2 (en) Curable composition for imprint, pattern forming method and pattern
JP5448696B2 (en) Curable composition for photoimprint and method for producing cured product using the same
JP2009206197A (en) Curable composition for nanoimprint, and cured body and manufacturing method thereof
JP2009215179A (en) (meth)acrylate compound, curable composition using the same, composition for optical nano imprinting, and cured products of these curable compositions and its manufacturing method
JP2009073078A (en) Curable composition for photo-nanoimprint and member for liquid crystal display using the same
JP2010157706A (en) Curable composition for optical imprint and method of manufacturing hardened material using same
JP2008202022A (en) Curable composition for optical nano imprint lithography, and pattern forming method using the same
JP2010006870A (en) Curable composition for nanoimprinting, cured product and method for producing the same
JP2010000612A (en) Nanoimprinting curable composition and pattern forming method
JP2008084984A (en) Photocuring composition for optical nano imprint lithography and pattern forming method employing it
JP2010013514A (en) Curable composition for nano-imprint, cured product using the same, and member for liquid crystal display device
JP2010067621A (en) Curable composition for nanoimprint, cured article, and method for producing same
JP2010114209A (en) Curable composition for optical nanoimprint, curing material and method for manufacturing it
JP2010073811A (en) Curable composition for nanoimprint, cured object using the same, and member for liquid display
JP2011097037A (en) Curable composition for imprint, patterning method, and pattern
WO2009110536A1 (en) Curable composition for nanoimprint, cured product using the same, method for producing the cured product, and member for liquid crystal display device
JP2009203287A (en) Curable composition for nanoimprint, cured product using it, method for producing cured product, and member for liquid crystal display
JP5065209B2 (en) Curable composition for nanoimprint, cured product and method for producing the same
KR20090027169A (en) Curable composition for optical nanoimprint, a cured article and a method for making the same
JP2012041521A (en) Photocurable composition and method for manufacturing photocured product using thereof
JP2010106185A (en) Curable composition for photo-imprint, and method for pattern formation using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980107402.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09716708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107020016

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09716708

Country of ref document: EP

Kind code of ref document: A1