JP2009203287A - Curable composition for nanoimprint, cured product using it, method for producing cured product, and member for liquid crystal display - Google Patents

Curable composition for nanoimprint, cured product using it, method for producing cured product, and member for liquid crystal display Download PDF

Info

Publication number
JP2009203287A
JP2009203287A JP2008045061A JP2008045061A JP2009203287A JP 2009203287 A JP2009203287 A JP 2009203287A JP 2008045061 A JP2008045061 A JP 2008045061A JP 2008045061 A JP2008045061 A JP 2008045061A JP 2009203287 A JP2009203287 A JP 2009203287A
Authority
JP
Japan
Prior art keywords
composition
acrylate
meth
curable composition
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008045061A
Other languages
Japanese (ja)
Inventor
Kyohei Sakida
享平 崎田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008045061A priority Critical patent/JP2009203287A/en
Publication of JP2009203287A publication Critical patent/JP2009203287A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a curable composition for a nanoimprint having excellent evenness of a coating film and filtration properties and exhibiting excellent pattern accuracy after curing, a cured product using the above composition, a method for producing the cured product, and a member for a liquid crystal display. <P>SOLUTION: The curable composition for a nanoimprint comprises a polymerizable monomer, a photopolymerization initiator liquid at 25°C, and a solvent. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光ナノインプリントに用いられるナノインプリント用硬化性組成物、硬化物およびその製造方法、ならびに該硬化物を用いた液晶表示装置用部材に関する。   The present invention relates to a curable composition for nanoimprint used for optical nanoimprint, a cured product and a method for producing the same, and a member for a liquid crystal display device using the cured product.

ナノインプリント法は、光ディスク製作ではよく知られているエンボス技術を発展させ、凹凸のパターンを形成した金型原器(一般的にモールド、スタンパ、テンプレートと呼ばれる)を、レジストにプレスして力学的に変形させて微細パターンを精密に転写する技術である。モールドを一度作製すれば、ナノ構造等の微細構造が簡単に繰り返して成型できるため経済的であるとともに、有害な廃棄・排出物が少ないナノ加工技術であるため、近年、さまざまな分野への応用が期待されている。   The nanoimprint method has been developed by developing an embossing technique that is well-known in optical disc production, and mechanically pressing a mold master (generally called a mold, stamper, or template) with a concavo-convex pattern onto a resist. This is a technology that precisely deforms and transfers fine patterns. Once the mold is made, it is economical because nanostructures and other microstructures can be easily and repeatedly molded, and it is economical, and since it is a nano-processing technology with less harmful waste and emissions, it has recently been applied to various fields. Is expected.

ナノインプリント法には、被加工材料として熱可塑性樹脂を用いる熱ナノインプリント法(例えば、非特許文献1参照)と、光硬化性組成物を用いる光ナノインプリント(例えば、非特許文献2参照)との2通りの技術が提案されている。熱ナノインプリント法の場合、ガラス転移温度以上に加熱した高分子樹脂にモールドをプレスし、冷却後にモールドを離型することで微細構造を基板上の樹脂に転写するものである。この方法は、多様な樹脂材料やガラス材料にも応用可能であるため、様々な方面への応用が期待されている。例えば、下記特許文献1および2には、熱可塑性樹脂を用いて、ナノパターンを安価に形成する熱ナノインプリントの方法が開示されている。   There are two types of nanoimprint methods: a thermal nanoimprint method using a thermoplastic resin as a material to be processed (for example, see Non-Patent Document 1) and an optical nanoimprint using a photocurable composition (for example, see Non-Patent Document 2). The technology has been proposed. In the case of the thermal nanoimprint method, the mold is pressed on a polymer resin heated to a temperature higher than the glass transition temperature, and the mold is released after cooling to transfer the fine structure to the resin on the substrate. Since this method can be applied to various resin materials and glass materials, it is expected to be applied to various fields. For example, Patent Documents 1 and 2 below disclose thermal nanoimprinting methods that form a nanopattern at low cost using a thermoplastic resin.

一方、透明モールドや透明基材を通して光を照射し、光硬化性組成物を光硬化させる光ナノインプリント法では、モールドのプレス時にパターンを転写する材料を加熱する必要がなく、室温でのインプリントが可能になる。最近では、この両者の長所を組み合わせたナノキャスティング法や3次元積層構造を作製するリバーサルインプリント方法などの新しい展開も報告されている。   On the other hand, in the optical nanoimprint method that irradiates light through a transparent mold or a transparent substrate and photocures the photocurable composition, it is not necessary to heat the material for transferring the pattern when the mold is pressed, and imprinting at room temperature is possible. It becomes possible. Recently, new developments such as a nanocasting method combining the advantages of both and a reversal imprint method for producing a three-dimensional laminated structure have been reported.

このようなナノインプリント法においては、以下のような応用技術が提案されている。第一の技術としては、成型した形状(パターン)そのものが機能を持ち、様々なナノテクノロジーの要素部品、あるいは構造部材として応用できる場合である。その例としては、各種のマイクロ・ナノ光学要素や高密度の記録媒体、光学フィルム、フラットパネルディスプレイにおける構造部材などが挙げられる。第二の技術としては、マイクロ構造とナノ構造との同時一体成型や、簡単な層間位置合わせにより積層構造を構築し、μ−TAS(Micro - Total Analysis System)やバイオチップの作製に応用しようとするものである。第三の技術としては、高精度な位置合わせと高集積化とにより、従来のリソグラフィに代わって高密度半導体集積回路の作製や、液晶ディスプレイのトランジスタへの作製等に適用しようとするものである。前述の技術を含め、これらの応用に関するナノインプリント法の実用化への取り組みが近年活発化している。   In such a nanoimprint method, the following applied technologies have been proposed. The first technique is a case where a molded shape (pattern) itself has a function and can be applied as various nanotechnology element parts or structural members. Examples thereof include various micro / nano optical elements, high-density recording media, optical films, and structural members in flat panel displays. The second technology is to build a multilayer structure by simultaneous integral molding of microstructure and nanostructure and simple interlayer alignment, and try to apply it to μ-TAS (Micro-Total Analysis System) and biochip fabrication. To do. As a third technique, high-precision alignment and high integration are intended to be applied to the fabrication of high-density semiconductor integrated circuits and the fabrication of liquid crystal display transistors in place of conventional lithography. . In recent years, efforts to put nanoimprinting methods into practical use for these applications, including the aforementioned technologies, have become active.

ナノインプリント法の適用例として、まず、高密度半導体集積回路作製への応用例を説明する。近年、半導体集積回路は微細化、集積化が進んでおり、その微細加工を実現するためのパターン転写技術としてフォトリソグラフィ装置の高精度化が進められてきた。しかし、さらなる微細化の要求に応じて加工方法が光露光の光源の波長に近づき、従前のリソグラフィ技術も限界に近づいてきている。そのため、さらなるパターンの微細化、高精度化を進めるべくリソグラフィ技術に代えて、荷電粒子線装置の一種である電子線描画装置が用いられるようになっている。電子線描画装置等による電子線を用いたパターン形成は、i線、エキシマレーザー等の光源を用いたパターン形成における一括露光方法とは異なり、マスクパターンを描画していく方法を用いている。このため、描画するパターンが多ければ多いほど露光(描画)時間がかかり、パターン形成に時間を要することが欠点とされている。このため、256メガ、1ギガ、4ギガと、半導体集積回路の集積度が飛躍的に高まるにつれ、その分パターン形成時間も飛躍的に長くなり、スループットが著しく劣ることが懸念される。そこで、電子ビーム描画装置によるパターン形成の高速化のため、各種形状のマスクを組み合わせ、それらに一括して電子ビームを照射して複雑な形状の電子ビームを形成する一括図形照射法の開発が進められている。しかしながら、パターンの微細化が進められる一方で、電子線描画装置を大型化する必要が生じるほか、さらにマスク位置をより高精度に制御する機構が必要になるなど、装置コストが高くなるという欠点が生じていた。   As an application example of the nanoimprint method, first, an application example for manufacturing a high-density semiconductor integrated circuit will be described. 2. Description of the Related Art In recent years, semiconductor integrated circuits have been miniaturized and integrated, and photolithography apparatuses have been improved in accuracy as a pattern transfer technique for realizing the fine processing. However, according to the demand for further miniaturization, the processing method approaches the wavelength of the light source for light exposure, and the conventional lithography technique is approaching the limit. Therefore, an electron beam drawing apparatus, which is a kind of charged particle beam apparatus, is used in place of lithography technology in order to further refine the pattern and increase the accuracy. Pattern formation using an electron beam by an electron beam drawing apparatus or the like uses a method of drawing a mask pattern unlike a batch exposure method in pattern formation using a light source such as i-line or excimer laser. For this reason, the more patterns to be drawn, the longer the exposure (drawing) time, and the longer time it takes to form the pattern. For this reason, as the degree of integration of the semiconductor integrated circuit is dramatically increased to 256 mega, 1 giga, and 4 giga, the pattern formation time is correspondingly increased, and there is a concern that the throughput is remarkably deteriorated. Therefore, in order to increase the speed of pattern formation by an electron beam lithography system, development of a collective figure irradiation method that combines various shapes of masks and collectively irradiates them with electron beams to form complex shapes of electron beams is progressing. It has been. However, while miniaturization of the pattern is promoted, the electron beam drawing apparatus needs to be enlarged, and a mechanism for controlling the mask position with higher accuracy is required. It was happening.

これに対し、微細なパターン形成を低コストで行うための技術として、ナノインプリントリソグラフィ技術(光ナノインプリント法)を用いることが検討されている。例えば、下記特許文献1および特許文献3には、シリコンウエハをスタンパとして用い、25ナノメートル以下の微細構造をパターン転写によって形成するナノインプリント技術が開示されている。また、下記特許文献4には、半導体マイクロリソグラフィ分野に適用されるナノインプリントを使ったコンポジット組成物が開示されている。
この流れに伴って、微細モールドの作製技術、モールドの耐久性、モールドの作製コスト、モールドと樹脂との剥離性、インプリント均一性、アライメント精度、検査技術など半導体集積回路の作製にナノインプリントリソグラフィを適用するための検討が活発化し始めている。
On the other hand, using a nanoimprint lithography technique (optical nanoimprint method) as a technique for forming a fine pattern at a low cost has been studied. For example, Patent Document 1 and Patent Document 3 below disclose a nanoimprint technique in which a silicon wafer is used as a stamper and a fine structure of 25 nanometers or less is formed by pattern transfer. Patent Document 4 below discloses a composite composition using nanoimprints that is applied to the field of semiconductor microlithography.
Along with this trend, nanoimprint lithography has been applied to the fabrication of semiconductor integrated circuits such as fine mold fabrication technology, mold durability, mold fabrication cost, mold-resin detachability, imprint uniformity, alignment accuracy, and inspection technology. Considerations for application are starting to increase.

次に、液晶ディスプレイ(LCD)やプラズマディスプレイ(PDP)などのフラットデイスプレイへの光ナノインプリント法の応用例について説明する。
LCD基板やPDP基板の大型化や高精細化の動向に伴って、薄膜トランジスタ(TFT)や電極板の製造時に使用する従来のフォトリソグラフィ法に代わる安価なリソグラフィとして光ナノインプリントリソグラフィが、近年注目されており、従来のフォトリソグラフィ法で用いられるエッチングフォトレジストに代わる光硬化性レジストの開発が必要になってきている。
Next, an application example of the optical nanoimprint method to a flat display such as a liquid crystal display (LCD) or a plasma display (PDP) will be described.
With the trend toward larger and higher-definition LCD and PDP substrates, optical nanoimprint lithography has recently attracted attention as an inexpensive alternative to conventional photolithography methods used in the manufacture of thin film transistors (TFTs) and electrode plates. Therefore, it has become necessary to develop a photo-curable resist that replaces the etching photoresist used in the conventional photolithography method.

また、LCDなどの構造部材として用いられる透明保護膜材料や液晶ディスプレイにおけるセルギャップを規定するスペーサーなどに対しても、光ナノインプリントリソグラフィの応用が検討され始めている(例えば、特許文献5および6参照)。このような構造部材用のレジストは、上述のエッチングレジストとは異なり、最終的にフラットディスプレイパネル等のディスプレイ内に残るため、“永久レジスト”、あるいは“永久膜”と称されることがある。   In addition, application of optical nanoimprint lithography has been started for transparent protective film materials used as structural members such as LCDs and spacers that define cell gaps in liquid crystal displays (see, for example, Patent Documents 5 and 6). . Unlike the above-described etching resist, such a resist for a structural member is finally left in a display such as a flat display panel, and is therefore sometimes referred to as “permanent resist” or “permanent film”.

従来のフォトリソグラフィ技術を適用した永久膜としては、例えば、液晶パネルのTFT基板上に設けられる保護膜や、R,G、B層間の段差を低減しITO膜のスパッタ製膜時の高温処理に対する耐性を付与するためにカラーフィルタ上に設けられる保護膜等が挙げられる。従来、カラーフィルタ用の透明永久膜には、シロキサンポリマー、シリコーンポリイミド、エポキシ樹脂、アクリル樹脂等の光硬化性樹脂や熱硬化性樹脂が用いられている(下記特許文献7および8参照)。これらの保護膜(永久膜)の形成においては、塗布膜の均一性、基材との密着性、200℃を超える加熱処理後の高い光透過性、平坦化特性、耐溶剤性、耐擦傷製等の種々の特性が要求されている。   As a permanent film to which a conventional photolithography technique is applied, for example, a protective film provided on a TFT substrate of a liquid crystal panel, or a high temperature process during sputtering of an ITO film by reducing a step between R, G and B layers. For example, a protective film provided on the color filter in order to impart resistance. Conventionally, photo-curing resins and thermosetting resins such as siloxane polymers, silicone polyimides, epoxy resins, and acrylic resins have been used for transparent permanent films for color filters (see Patent Documents 7 and 8 below). In the formation of these protective films (permanent films), the uniformity of the coating film, adhesion to the substrate, high light transmittance after heat treatment exceeding 200 ° C., planarization characteristics, solvent resistance, scratch resistance Various characteristics such as these are required.

また、液晶ディスプレイに用いられるスペーサーの分野では、従来のフォトリソグラフィ法においては、樹脂、光重合性モノマーおよび開始剤からなる光硬化性組成物が一般的に広く用いられてきている(例えば、特許文献9参照)。前記スペーサーは、一般には、カラーフィルタ形成後または前記カラーフィルタ用保護膜形成後に、カラーフィルタ基板上に光硬化性組成物を用いてフォオトリソグラフィによって10μm〜20μm程度の大きさのパターンを形成し、さらにポストベイクにより加熱硬化して形成される。このような液晶ディスプレイの用いられるスペーサーには、外部圧力に対する高い機械的特性、硬度、現像性、パターン精度、密着性等の性能が要求される。   Also, in the field of spacers used in liquid crystal displays, photocurable compositions comprising a resin, a photopolymerizable monomer and an initiator have generally been widely used in conventional photolithography methods (for example, patents). Reference 9). The spacer generally forms a pattern having a size of about 10 μm to 20 μm by photolithography using a photocurable composition on the color filter substrate after forming the color filter or after forming the color filter protective film. Further, it is formed by heat curing by post-baking. The spacer used in such a liquid crystal display is required to have high mechanical properties against external pressure, such as hardness, developability, pattern accuracy, and adhesion.

このため、ナノインプリント法を用いた前記透明保護膜やスペーサー等の永久膜(永久レジスト)の形成に好適な光硬化性組成物の開発が求められている。   For this reason, development of the photocurable composition suitable for formation of permanent films (permanent resist), such as the said transparent protective film and spacer using a nanoimprint method, is calculated | required.

また、光硬化性組成物の塗膜均一性に関しては、基板の大型化に伴い、基板の中央部と周辺部とにおける塗布膜厚均一性、高解像度化による寸法均一性、膜厚、形状など様々な部分において要求が厳しくなっている。   As for the coating uniformity of the photocurable composition, the coating film thickness uniformity at the center and periphery of the substrate, dimensional uniformity due to higher resolution, film thickness, shape, etc., as the substrate becomes larger The demands are getting severe in various parts.

従来、小型ガラス基板を用いた液晶表示素子製造分野においては、レジスト塗布方法として中央滴下後スピンする方法が用いられていた(例えば、非特許文献3参照)。しかし、中央滴下後スピンする方法では、塗布均一性以外の要求に対応するのが難しい。このため、代替技術として第4世代基板以降、特に第5世代基板以降の大型基板に適用可能な吐出ノズル式による新しいレジスト塗布方法が提案されている。吐出ノズル式によるレジスト塗布法は、吐出ノズルと基板とを相対的に移動させることによって基板の塗布面全面にフォトレジスト組成物を塗布する方法であり、例えば、複数のノズル孔が列状に配列された吐出口やスリット状の吐出口を有し、フォトレジスト組成物を帯状に吐出できる吐出ノズルを用いる方法や、基板の塗布面全面にフォトレジスト組成物を塗布した後、該基板をスピンさせて膜厚を調整する方法が提案されている。したがって、これら液晶表示素子製造分野に適用するためにも、ナノインプリント用硬化性組成物に対して基材への塗布均一性が要求されている。   Conventionally, in the field of manufacturing liquid crystal display devices using a small glass substrate, a method of spinning after dropping in the center has been used as a resist coating method (see, for example, Non-Patent Document 3). However, in the method of spinning after the central dropping, it is difficult to meet demands other than coating uniformity. For this reason, as an alternative technique, a new resist coating method using a discharge nozzle type that can be applied to a large substrate after the fourth generation substrate, particularly after the fifth generation substrate has been proposed. The resist application method by the discharge nozzle method is a method of applying a photoresist composition to the entire coating surface of the substrate by relatively moving the discharge nozzle and the substrate. For example, a plurality of nozzle holes are arranged in a line. A method of using a discharge nozzle that can discharge the photoresist composition in a strip shape, or after applying the photoresist composition to the entire coated surface of the substrate and then spinning the substrate. A method of adjusting the film thickness has been proposed. Therefore, in order to apply to these liquid crystal display element manufacturing fields, the coating uniformity on the substrate is required for the curable composition for nanoimprint.

また、ポジ型フォトレジスト、カラーフィルタ作製用顔料分散フォトレジストや光磁気ディスクなどの保護膜の塗布性を改良する技術としては、各種界面活性剤等を添加する技術が知られており(例えば、特許文献10〜17参照)、半導体集積回路作製用の光ナノインプリント用エッチングレジストとして、フッ素系界面活性剤を含む光硬化性樹脂を用いる例が開示されている(例えば、特許文献18参照)。しかしながら、永久膜に用いる顔料、染料、有機溶剤を必須成分としないナノインプリント用硬化性組成物の基板塗布性を向上させるための方法はこれまで知られていなかった。   Further, as a technique for improving the coating property of a protective film such as a positive photoresist, a pigment-dispersed photoresist for producing a color filter or a magneto-optical disk, a technique of adding various surfactants or the like is known (for example, Patent Documents 10 to 17), and an example of using a photocurable resin containing a fluorosurfactant as an optical nanoimprint etching resist for manufacturing a semiconductor integrated circuit is disclosed (for example, refer to Patent Document 18). However, a method for improving the substrate coating property of a curable composition for nanoimprinting that does not contain pigments, dyes, and organic solvents used for the permanent film has not been known so far.

一方、特許文献19には感光性樹脂成分に沸点100℃以上の溶剤を適切に組み合わせて添加することで塗布膜の均一性を向上させる例が開示されている。   On the other hand, Patent Document 19 discloses an example in which the uniformity of the coating film is improved by adding an appropriate combination of solvents having a boiling point of 100 ° C. or higher to the photosensitive resin component.

ナノインプリントに適用される光硬化性樹脂は、反応機構の違いからラジカル重合タイプとイオン重合タイプとに大別され、さらに、これらのハイブリッドタイプが加わえられる。いずれのタイプの硬化性組成物もナノインプリント用途に用いることが可能であるが、材料の選択範囲が広いことから、一般にラジカル重合型の硬化性組成物が多く用いられている(例えば、非特許文献4参照)。ラジカル重合型の硬化性組成物としては、ラジカル重合可能なビニル基や(メタ)アクリル基を有する単量体(モノマー)またはオリゴマーと、光重合開始剤とを含んだ組成物が一般的に用いられる。ラジカル重合性の硬化性組成物は、光を照射すると、光重合開始剤により発生したラジカルがビニル基を攻撃して連鎖重合が進み、ポリマーを形成する。また、2官能以上の多官能基モノマーやオリゴマーを用いた場合には、架橋構造体を得ることができる。下記非特許文献5においては、低粘度でUV硬化可能な単量体を用いることにより、低圧、室温でインプリンティングが可能な組成物が開示されている。   Photocurable resins applied to nanoimprints are roughly classified into radical polymerization types and ion polymerization types based on the difference in reaction mechanism, and these hybrid types are added. Any type of curable composition can be used for nanoimprint applications, but since a wide range of materials can be selected, a radical polymerization type curable composition is generally used (for example, non-patent literature). 4). As the radical polymerization type curable composition, a composition containing a monomer (monomer) or oligomer having a vinyl group or (meth) acryl group capable of radical polymerization and a photopolymerization initiator is generally used. It is done. When the radically polymerizable curable composition is irradiated with light, the radical generated by the photopolymerization initiator attacks the vinyl group and chain polymerization proceeds to form a polymer. Moreover, when a bifunctional or higher polyfunctional group monomer or oligomer is used, a crosslinked structure can be obtained. Non-Patent Document 5 below discloses a composition that can be imprinted at low pressure and room temperature by using a low-viscosity and UV-curable monomer.

光ナノインプリントリソグラフィに用いられる材料の要求特性は適用する用途によって異なる場合が多いものの、プロセス特性についての要望は用途に依らず共通点がある。例えば、下記非特許文献6に示されている主な要求項目は、塗布性、基板密着性、低粘度(<5mPa・s)、剥離性、低硬化収縮率、速硬化性などである。特に、低圧でのインプリントや残膜率の低減等が必要な用途では、低粘度材料であることの要求が強い。一方、用途別に要求特性を挙げると、例えば光学部材については、光の屈折率や光透過性などが挙げられる。また、エッチングレジストについては、エッチング耐性や残膜厚低減などが挙げられる。これらの要求特性をいかに制御し、諸特性のバランスを取るかが材料デザインの鍵となる。このため、少なくともプロセス材料と永久膜とでは要求特性が大きく異なるため材料はプロセスや用途に応じて開発する必要がある。このような光ナノインプリントリソグラフィ用途に適用する材料として、下記非特許文献6に、約60mPa・s(25℃)の粘度を有する光硬化性材料が開示されている。同様に、下記非特許文献7には、モノメタクリレートを主成分とする粘度が14.4mPa・sの剥離性を向上させた含フッソ感光性樹脂が開示されている。
しかし、光ナノインプリントで用いられる組成物に関し、粘度に関する要望の記載はあるものの、各用途に適合させるための材料の設計指針についての報告例は、これまでになかった。
Although the required characteristics of materials used for optical nanoimprint lithography are often different depending on the application to which they are applied, the demands on process characteristics are common regardless of the application. For example, the main requirement items shown in Non-Patent Document 6 below are applicability, substrate adhesion, low viscosity (<5 mPa · s), peelability, low cure shrinkage, fast curability, and the like. In particular, there is a strong demand for a low-viscosity material in applications that require imprinting at a low pressure or a reduction in the remaining film ratio. On the other hand, when a required characteristic is mentioned according to a use, about the optical member, the refractive index of light, light transmittance, etc. are mentioned, for example. As for the etching resist, etching resistance, reduction of remaining film thickness and the like can be mentioned. The key to material design is how to control these required characteristics and balance them. For this reason, at least the process material and the permanent film have greatly different required characteristics, so the material must be developed according to the process and application. Non-Patent Document 6 below discloses a photocurable material having a viscosity of about 60 mPa · s (25 ° C.) as a material applied to such optical nanoimprint lithography. Similarly, Non-Patent Document 7 below discloses a fluorine-containing photosensitive resin having a viscosity of 14.4 mPa · s whose main component is monomethacrylate and improved peelability.
However, with respect to the composition used in optical nanoimprinting, there has been no report on a design guideline for a material to be adapted to each application although there is a description of a demand for viscosity.

また、下記特許文献20および21には、レリーフ型ホログラムや回折格子作製のために、イソシアネート基を有する重合体を含む光硬化性樹脂を用い、これにエンボス加工を施す例が開示されている。また、下記特許文献22には、ポリマー、光重合開始剤、粘度調整剤を含むインプリント用光ナノインプリント用硬化性組成物が開示されている。   Patent Documents 20 and 21 below disclose examples in which a photocurable resin containing a polymer having an isocyanate group is used for embossing for producing a relief hologram or a diffraction grating. Patent Document 22 below discloses a curable composition for optical nanoimprinting for imprinting that contains a polymer, a photopolymerization initiator, and a viscosity modifier.

特許文献23には、モールドとの剥離性を良くするために、フッソ含有硬化性材料を用いたパターン形成方法が開示されている。   Patent Document 23 discloses a pattern forming method using a fluorine-containing curable material in order to improve releasability from a mold.

更に、下記非特許文献8には、(1)官能性アクリルモノマー、(2)官能性アクリルモノマー、(3)官能性アクリルモノマーと光重合開始剤とを組み合わせた光硬化性ラジカル重合性組成物や、光硬化性エポキシ化合物と光酸発生剤とを含む光カチオン重合性組成物などをナノインプリントリソグラフィに適用し、熱的安定性やモールド剥離性を調べた例が開示されている。
下記非特許文献9には、光硬化性樹脂とモールドとの剥離性、硬化後の膜収縮性、酸素存在下での光重合阻害による低感度化などの問題を改良するための工夫として(1)官能アクリルモノマー、(2)官能アクリルモノマー、シリコーン含有1官能アクリルモノマーおよび光重合開始剤を含む光ナノインプリント用硬化性組成物が開示されている。
Further, the following Non-Patent Document 8 includes (1) a functional acrylic monomer, (2) a functional acrylic monomer, and (3) a photocurable radical polymerizable composition in which a functional acrylic monomer and a photopolymerization initiator are combined. In addition, there is disclosed an example in which a photocationically polymerizable composition containing a photocurable epoxy compound and a photoacid generator is applied to nanoimprint lithography to examine thermal stability and mold releasability.
Non-Patent Document 9 below discloses a technique for improving problems such as peelability between a photocurable resin and a mold, film shrinkage after curing, and reduction in sensitivity due to photopolymerization inhibition in the presence of oxygen (1). There is disclosed a curable composition for optical nanoimprint, which comprises a) a functional acrylic monomer, (2) a functional acrylic monomer, a silicone-containing monofunctional acrylic monomer, and a photopolymerization initiator.

下記非特許文献10には、1官能アクリルモノマーとシリコーン含有1官能モノマーと光重合開始剤とを含む光ナノインプリント用硬化性組成物を、シリコーン基板上に付与し、表面処理されたモールドを用いることで、モールド後のパターンの欠陥が低減されることが開示されている。また、下記非特許文献11には、シリコーンモノマーと3官能アクリルモノマーと光重合開始剤とを含む光ナノインプリント用硬化性組成物をシリコーン基板上に付与し、SiO2モールドにより、高解像性、塗布の均一性に優れる組成物が開示されている。さらに、非特許文献12には、特定のビニルエーテル化合物と光酸発生剤とを組み合わせたカチオン重合性組成物により50nmパターンサイズを形成した例が開示されている。この組成物は、粘性が低く硬化速度が速いことが特徴であるが、テンプレート引き剥がし性が課題であると述べられている。 Non-Patent Document 10 below uses a surface-treated mold by applying a curable composition for optical nanoimprinting containing a monofunctional acrylic monomer, a silicone-containing monofunctional monomer, and a photopolymerization initiator on a silicone substrate. Thus, it is disclosed that pattern defects after molding are reduced. Further, in the following Non-Patent Document 11, a curable composition for optical nanoimprint including a silicone monomer, a trifunctional acrylic monomer, and a photopolymerization initiator is applied on a silicone substrate, and high resolution is achieved by using an SiO 2 mold. A composition having excellent coating uniformity is disclosed. Furthermore, Non-Patent Document 12 discloses an example in which a 50 nm pattern size is formed by a cationic polymerizable composition in which a specific vinyl ether compound and a photoacid generator are combined. This composition is characterized by low viscosity and high curing speed, but it is stated that template peelability is an issue.

ところが、非特許文献8〜12に示されるように、官能基の異なるアクリルモノマー、アクリル系ポリマー、ビニルエーテル化合物を光ナノインプリントリソグラフィに適用した光硬化性樹脂が様々開示されているものの、硬化性組成物としての好ましい種類、最適なモノマー種、モノマーの組み合わせ、モノマー若しくはレジストの最適な粘度、好ましいレジストの溶液物性、レジストの塗布性改良などの材料の設計に関しての指針は十分に開示されていない。このため、光ナノインプリントリソグラフィ用途に、硬化性組成物を広く適用するための好ましい材料の組み合わせが知られておらず、種々の用途において満足できる性能を発揮できる光ナノインプリント用硬化性組成物はこれまでに提案されていなかったのが実情である。   However, as shown in Non-Patent Documents 8 to 12, although various photocurable resins in which an acrylic monomer, an acrylic polymer, and a vinyl ether compound having different functional groups are applied to optical nanoimprint lithography are disclosed, a curable composition is disclosed. Guidelines regarding material design such as preferred types, optimum monomer types, monomer combinations, optimum monomer or resist viscosity, preferred resist solution properties, and improved resist coatability are not fully disclosed. For this reason, a combination of preferable materials for widely applying the curable composition to optical nanoimprint lithography applications is not known, and curable compositions for optical nanoimprint capable of exhibiting satisfactory performance in various applications have been heretofore The actual situation was not proposed.

以上のように、永久膜としての主要技術課題としては、パターン精度、密着性、200℃を超える加熱処理後の透明性、高い機械的特性(外部圧力に対する強度)、耐擦傷性、平坦化特性、耐溶剤性、加熱処理時のアウトガス低減など、多くの課題が挙げられる。光ナノインプリント用硬化性組成物を永久膜として適用した場合においても、従来のアクリル樹脂などを用いたレジストと同様に、(1)塗布膜の均一性、(2)加熱処理後の透明性、(3)耐擦傷性の付与が重要である。   As described above, the main technical problems as a permanent film include pattern accuracy, adhesion, transparency after heat treatment exceeding 200 ° C., high mechanical properties (strength against external pressure), scratch resistance, and flattening properties. There are many problems such as solvent resistance and reduction of outgas during heat treatment. Even when the curable composition for optical nanoimprint is applied as a permanent film, (1) uniformity of the coating film, (2) transparency after heat treatment, as in the case of a resist using a conventional acrylic resin, ( 3) It is important to provide scratch resistance.

同時に、光ナノインプリント用硬化性組成物特有の課題としては、前記(1)〜(3)の点に加えて、(4)モールドの凹部へのレジストの流動性を確保し、無溶剤もしくは少量の溶剤使用下での低粘度化が必要となること、および、(5)光硬化後、モールドと容易に剥離させ、モールドへの付着が生じないこと、を考慮する必要があり、組成物設計の技術的難易度が一層高くなる。   At the same time, in addition to the above points (1) to (3), (4) ensuring the fluidity of the resist to the recesses of the mold, no solvent or a small amount It is necessary to consider that it is necessary to reduce the viscosity under the use of a solvent, and (5) that it is easily peeled off from the mold after photocuring and does not adhere to the mold. Technical difficulty is further increased.

また、これまでインクジェット用組成物や光磁気ディスク用保護膜の用途で知られている組成物、また、エッチングレジストとして用いられる光ナノインプリント用硬化性組成物は、永久膜の作製に用いられる光ナノインプリント用硬化性組成物と材料に共通部分はあるものの、高温の加熱処理や、機械的強度の観点などで大きく必要特性が異なってくる。このため、インクジェット、光磁気ディスク用保護膜、または、エッチングレジスト用途で適用する光硬化性樹脂をそのまま永久膜用のレジストとして適用すると、透明性、機械的強度、耐溶剤性などでなかなか実用性に耐えるものが得られない。このように、光ナノインプリント用の硬化性組成物については、種々の材料が開示されているものの、永久膜の作製に適した硬化性組成物については十分な設計指針が示されていないのが現状である。
米国特許第5,772,905号公報 米国特許第5,956,216号公報 米国特許第5,259,926号公報 特表2005−527110号公報 特開2005−197699号公報 特開2005−301289号公報 特開2000−39713号公報 特開平6−43643号公報 特開2004−240241号公報 特開平7−230165号公報 特開2000−181055号公報 特開2004−94241号公報 特開平4−149280号公報 特開平7−62043号公報 特開2001−93192号公報 特開2005−8759号公報 特開2003−165930号公報 特開2007−84625号公報 特開2004−354601号公報 特開2004−59820号公報 特開2004−59822号公報 特開2006−114882号公報 特開2000−143924号公報 S.Chou et al.:Appl.Phys.Lett.Vol.67,3114(1995) M.Colbun et al,:Proc.SPIE,Vol. 3676,379 (1999) Electronic Journal 121−123 No.8 (2002) F.Xu et al.:SPIE Microlithography Conference,5374,232(2004) D.J.Resnick et al.:J.Vac.Sci.Technol.B,Vol.21,No.6,2624(2003) 最新レジスト材料ハンドブック、P1、103〜104(2005年、情報機構出版) シーエムシー出版:ナノインプリントの開発と応用P159〜160 (2006) N.Sakai et al.:J.Photopolymer Sci.Technol.Vol.18,No.4,531(2005) M.Stewart et al.:MRS Buletin,Vol.30,No.12,947(2005) T.Beiley et al.:J.Vac.Sci.Technol.B18(6),3572(2000) B.Vratzov et al.:J.Vac.Sci.Technol.B21(6),2760(2003) E.K.Kim et al.:J.Vac.Sci.Technol,B22(1),131(2004)
In addition, compositions that have been known for use in inkjet compositions and protective films for magneto-optical disks, and curable compositions for optical nanoimprints that are used as etching resists are optical nanoimprints that are used in the production of permanent films. Although there is a common part between the curable composition for use and the material, the required characteristics are greatly different from the viewpoint of high-temperature heat treatment and mechanical strength. For this reason, if a photo-curable resin applied for inkjet, magneto-optical disk protective film or etching resist application is applied as it is as a permanent film resist, it is quite practical in terms of transparency, mechanical strength, solvent resistance, etc. No one can withstand. As described above, although various materials are disclosed for the curable composition for optical nanoimprint, there is no sufficient design guideline for the curable composition suitable for producing a permanent film. It is.
US Pat. No. 5,772,905 US Pat. No. 5,956,216 US Pat. No. 5,259,926 JP 2005-527110 Gazette JP 2005-197699 A Japanese Patent Laying-Open No. 2005-301289 JP 2000-39713 A JP-A-6-43643 Japanese Patent Laid-Open No. 2004-240241 Japanese Patent Laid-Open No. 7-230165 JP 2000-181055 A JP 2004-94241 A JP-A-4-149280 JP-A-7-62043 JP 2001-93192 A JP 2005-8759 A JP 2003-165930 A JP 2007-84625 A JP 2004-354601 A JP 2004-59820 A JP 2004-59822 A JP 2006-114882 A JP 2000-143924 A S.Chou et al.:Appl.Phys.Lett.Vol.67,3114 (1995) M.Colbun et al,: Proc.SPIE, Vol. 3676,379 (1999) Electronic Journal 121-123 No.8 (2002) F.Xu et al.:SPIE Microlithography Conference, 5374,232 (2004) DJResnick et al .: J.Vac.Sci.Technol.B, Vol.21, No.6,2624 (2003) Latest resist material handbook, P1, 103-104 (2005, published by the Information Organization) CM Publishing: Nanoimprint Development and Applications P159-160 (2006) N.Sakai et al.:J.Photopolymer Sci.Technol.Vol.18, No.4,531 (2005) M. Stewart et al .: MRS Buletin, Vol. 30, No. 12, 947 (2005) T.Beiley et al .: J.Vac.Sci.Technol.B18 (6), 3572 (2000) B. Vratzov et al .: J. Vac. Sci. Technol. B21 (6), 2760 (2003) EKKim et al .: J. Vac. Sci. Technol, B22 (1), 131 (2004)

上述のように前記特許文献19には感光性樹脂成分に沸点100℃以上の溶剤を適切に組み合わせて添加することで塗布膜の均一性を向上させる例が開示されている。しかし、ナノインプリント用途に不可欠なパターン形成精度と塗布膜均一性とを同時に満足し、かつ製造工程上重要な組成液のろ過性を付与した光硬化性ナノインプリントレジスト組成物はこれまで知られていなかった。   As described above, Patent Document 19 discloses an example in which the uniformity of a coating film is improved by adding an appropriate combination of solvents having a boiling point of 100 ° C. or higher to a photosensitive resin component. However, a photo-curable nanoimprint resist composition that satisfies the pattern formation accuracy and the coating film uniformity essential for nanoimprint applications at the same time and imparts filterability of an important composition liquid in the manufacturing process has not been known so far. .

本発明は、上記実情に鑑みて成し遂げられたものであり、光硬化性に優れた光ナノインプリント用硬化性組成物、特にフラットパネルディスプレイ等の永久膜に好適な組成物を提供することを目的し、特に、塗布膜均一性およびろ過性に優れ、かつ硬化後のパターン精度に優れたナノインプリント用硬化性組成物、これを用いた硬化物およびその製造方法、並びに、液晶表示装置用部材を提供することを目的とする。   The present invention has been achieved in view of the above circumstances, and an object thereof is to provide a curable composition for optical nanoimprinting excellent in photocurability, particularly a composition suitable for a permanent film such as a flat panel display. In particular, the present invention provides a nanoimprint curable composition having excellent coating film uniformity and filterability and excellent pattern accuracy after curing, a cured product using the same, a method for producing the same, and a member for a liquid crystal display device. For the purpose.

下記手段により上記課題を解決しうることを見出した。   It has been found that the above problems can be solved by the following means.

(1) 重合性単量体と、25℃で液体の光重合開始剤と、溶剤と、を含むことを特徴とするナノインプリント用硬化性組成物。 (1) A curable composition for nanoimprints, comprising a polymerizable monomer, a photopolymerization initiator that is liquid at 25 ° C., and a solvent.

(2) 前記溶剤の常圧における沸点が100℃以上であることを特徴とする(1)に記載のナノインプリント用硬化性組成物。 (2) The curable composition for nanoimprints according to (1), wherein the boiling point of the solvent at normal pressure is 100 ° C. or higher.

(3) さらに、酸化防止剤を含むことを特徴とする(1)または(2)に記載のナノインプリント用硬化性組成物。 (3) The curable composition for nanoimprints according to (1) or (2), further comprising an antioxidant.

(4) さらに、界面活性剤を含むことを特徴とする(1)〜(3)のいずれか1つに記載のナノインプリント用硬化性組成物。 (4) The curable composition for nanoimprints according to any one of (1) to (3), further comprising a surfactant.

(5) 前記光重合開始剤が、アシルホスフィンオキサイド化合物およびα−ヒドロキシアセトフェノン化合物から選ばれる少なくとも1種であることを特徴とする(1)〜(4)のいずれか1つに記載のナノインプリント用硬化性組成物。 (5) The photopolymerization initiator is at least one selected from an acylphosphine oxide compound and an α-hydroxyacetophenone compound. For nanoimprinting according to any one of (1) to (4), Curable composition.

(6)前記光重合開始剤がアシルホスフィンオキサイド化合物である(1)〜(4)のいずれか1つに記載のナノインプリント用硬化性組成物。 (6) The curable composition for nanoimprints according to any one of (1) to (4), wherein the photopolymerization initiator is an acylphosphine oxide compound.

(7) (1)〜(6)のいずれか1つに記載のナノインプリント用硬化性組成物を硬化させた硬化物。 (7) A cured product obtained by curing the curable composition for nanoimprints according to any one of (1) to (6).

(8) (7)に記載の硬化物を含むことを特徴とする液晶表示装置用部材。 (8) A liquid crystal display member comprising the cured product according to (7).

(9) (1)〜(6)のいずれか1つに記載のナノインプリント用硬化性組成物を基材上に塗布してパターン形成層を形成する工程と、
前記パターン形成層表面にモールドを押圧する工程と、
前記パターン形成層に光を照射する工程と、
を含むことを特徴とする硬化物の製造方法。
(9) A step of applying the curable composition for nanoimprints according to any one of (1) to (6) on a substrate to form a pattern forming layer;
Pressing the mold against the surface of the pattern forming layer;
Irradiating the pattern forming layer with light;
The manufacturing method of the hardened | cured material characterized by including.

(10) さらに、光が照射された前記パターン形成層を加熱する工程を含むことを特徴とする(9)に記載の硬化物の製造方法。 (10) The method for producing a cured product according to (9), further comprising a step of heating the pattern forming layer irradiated with light.

本発明によれば、塗布膜均一性およびろ過性に優れ、かつ硬化後のパターン精度に優れたナノインプリント用硬化性組成物、これを用いた硬化物およびその製造方法、並びに、液晶表示装置用部材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the curable composition for nanoimprints which was excellent in the coating film uniformity and filterability, and was excellent in the pattern accuracy after hardening, the hardened | cured material using this, its manufacturing method, and the member for liquid crystal display devices Can be provided.

以下において、本発明の内容について詳細に説明する。尚、本願明細書において「〜」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。   Hereinafter, the contents of the present invention will be described in detail. In the present specification, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.

また、本明細書中において、“メタ(アクリレート)”は“アクリレート”および“メタクリレート”を表し、“メタ(アクリル)”は“アクリル”および“メタクリル”を表し、“メタ(アクリロイル)”は“アクリロイル”および“メタクリロイル”を表す。さらに、本明細書中において、“単量体”と“モノマー”とは同義である。本発明における単量体は、オリゴマーおよびポリマーと区別され、重量平均分子量が1,000以下の化合物をいう。本明細書中において、“官能基”は重合反応に関与する基をいう。
また、本発明でいうナノインプリントとは、およそ数十nmから数μmのサイズのパターン転写を意味し、ナノオーダーのものに限られるものではないことはいうまでもない。
なお、本明細書における基(原子団)の表記において、置換および無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
Further, in the present specification, “meth (acrylate)” represents “acrylate” and “methacrylate”, “meth (acryl)” represents “acryl” and “methacryl”, and “meth (acryloyl)” represents “ Represents “acryloyl” and “methacryloyl”. Further, in the present specification, “monomer” and “monomer” are synonymous. The monomer in the present invention is distinguished from an oligomer and a polymer, and refers to a compound having a weight average molecular weight of 1,000 or less. In the present specification, “functional group” refers to a group involved in a polymerization reaction.
In addition, the nanoimprint referred to in the present invention means pattern transfer having a size of about several tens of nm to several μm, and it is needless to say that the nanoimprint is not limited to the nano order.
In addition, in the description of group (atomic group) in this specification, the description which does not describe substitution and non-substitution includes what has a substituent with what does not have a substituent. For example, the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).

[ナノインプリント用硬化性組成物]
本発明のナノインプリント用硬化性組成物(以下、単に「本発明の組成物」ということがある)は、重合性単量体と、25℃で液体の光重合開始剤と、溶剤と、を含む。
本発明のナノインプリント用硬化性組成物は、硬化前においてはろ過性が高く、微細凹凸パターンの形成能に優れており、さらには、塗布適性(塗布均一性)に優れたものとすることができる。また、本発明の組成物は、塗布適性およびその他の加工適性など他の諸点において総合的に優れた塗膜物性とすることができる。このため、本発明のナノインプリント用硬化性組成物は、光ナノインプリントリソグラフィを適用可能な分野に広く適用することができる。
[Curable composition for nanoimprint]
The curable composition for nanoimprinting of the present invention (hereinafter sometimes simply referred to as “the composition of the present invention”) includes a polymerizable monomer, a photopolymerization initiator that is liquid at 25 ° C., and a solvent. .
The curable composition for nanoimprinting of the present invention has high filterability before curing, is excellent in the ability to form a fine concavo-convex pattern, and can be excellent in coating suitability (coating uniformity). . In addition, the composition of the present invention can have excellent coating film properties in other respects such as coating suitability and other processability. For this reason, the curable composition for nanoimprinting of the present invention can be widely applied to fields where optical nanoimprint lithography can be applied.

即ち、本発明のナノインプリント用硬化性組成物は、以下のような特徴を有するものとすることができる。
(1)室温での溶液流動性に優れるため、モールド凹部のキャビティ内に該組成物が流れ込みやすく、大気が取り込まれにくいためバブル欠陥を引き起こすことがなく、モールド凸部、凹部のいずれにおいても光硬化後に残渣が残りにくい。
(2)硬化後の硬化膜は機械的性質、塗膜と基材との密着性、および、塗膜とモールドとの剥離性に優れるため、モールドを引き剥がす際にパターン崩れや塗膜表面に糸引きが生じて表面荒れを引き起こすことがなく、良好なパターンを形成できる(良好なパターン転写精度)。
(3)塗布均一性に優れるため、大型基材への塗布・微細加工分野などに適する。
That is, the curable composition for nanoimprinting of the present invention can have the following characteristics.
(1) Since the solution fluidity at room temperature is excellent, the composition easily flows into the cavity of the mold recess, and the atmosphere is difficult to be taken in. Residues hardly remain after curing.
(2) The cured film after curing is excellent in mechanical properties, adhesion between the coating film and the substrate, and peelability between the coating film and the mold. A good pattern can be formed without causing surface roughness due to stringing (good pattern transfer accuracy).
(3) Since it is excellent in coating uniformity, it is suitable for the field of coating / microfabrication on large substrates.

このため、本発明のナノインプリント用硬化性組成物は、例えば、これまで展開が難しかった半導体集積回路や液晶表示装置用部材(特に、液晶ディスプレイの薄膜トランジタ、液晶カラーフィルタの保護膜、スペーサー、その他の液晶表示装置用部材の微細加工用途等)に好適に適用でき、その他の用途、例えば、プラズマディスプレイパネル用隔壁材、フラットスクリーン、マイクロ電気機械システム(MEMS)、センサ素子、光ディスク、高密度メモリーデイスク等の磁気記録媒体、回折格子ヤレリーフホログラム等の光学部品、ナノデバイス、光学デバイス、光学フィルムや偏光素子、有機トランジスタ、カラーフィルタ、オーバーコート層、柱材、液晶配向用リブ材、マイクロレンズアレイ、免疫分析チップ、DNA分離チップ、マイクロリアクター、ナノバイオデバイス、光導波路、光学フィルター、フォトニック液晶等の作製にも幅広く適用することができる。   For this reason, the curable composition for nanoimprints of the present invention is, for example, a member for semiconductor integrated circuits and liquid crystal display devices that have been difficult to develop (particularly, thin film transistors for liquid crystal displays, protective films for liquid crystal color filters, spacers, etc. And other applications such as partition materials for plasma display panels, flat screens, micro electromechanical systems (MEMS), sensor elements, optical disks, and high-density memories. Magnetic recording media such as discs, optical parts such as diffraction grating relief holograms, nanodevices, optical devices, optical films and polarizing elements, organic transistors, color filters, overcoat layers, column materials, liquid crystal alignment rib materials, microlenses Array, immunoassay chip, DNA separation chip Microreactor nanobio devices, optical waveguides, can also be widely applied to manufacturing, such as an optical filter, photonic crystal.

本発明のナノインプリント用硬化性組成物は、(A)重合性単量体、(B)25℃で液体の光重合開始剤、(C)溶剤、を含有し、必要に応じて(D)界面活性剤、(E)酸化防止剤、を含有してもよい。以下これらを詳細に説明する。   The curable composition for nanoimprints of the present invention contains (A) a polymerizable monomer, (B) a photopolymerization initiator that is liquid at 25 ° C., and (C) a solvent, and (D) an interface as necessary. You may contain an activator and (E) antioxidant. These will be described in detail below.

−(A)重合性単量体−
本発明のナノインプリント用硬化性組成物は、組成物粘度、膜硬度、可とう性等の改良を目的に重合性単量体を含む。前記重合性単量体としては、例えば、エチレン性不飽和結合含有基を1〜6個有する重合性不飽和単量体;オキシラン環を有する化合物(エポキシ化合物);ビニルエーテル化合物;スチレン誘導体;フッ素原子を有する化合物;プロペニルエーテルまたはブテニルエーテル等を挙げることができ、組成物粘度、膜硬度、可とう性等の改良の観点から、エチレン性不飽和結合含有基を1〜6個有する重合性不飽和単量体、オキシラン環を有する化合物、ビニルエーテル化合物、フッ素原子を有する化合物が好ましい。
-(A) polymerizable monomer-
The curable composition for nanoimprinting of the present invention contains a polymerizable monomer for the purpose of improving composition viscosity, film hardness, flexibility and the like. Examples of the polymerizable monomer include a polymerizable unsaturated monomer having 1 to 6 ethylenically unsaturated bond-containing groups; a compound having an oxirane ring (epoxy compound); a vinyl ether compound; a styrene derivative; and a fluorine atom. A compound having 1 to 6 ethylenically unsaturated bond-containing groups from the viewpoint of improving the composition viscosity, film hardness, flexibility and the like. A saturated monomer, a compound having an oxirane ring, a vinyl ether compound, and a compound having a fluorine atom are preferred.

前記エチレン性不飽和結合含有基を1〜6個有する重合性不飽和単量体について説明する。
まず、エチレン性不飽和結合含有基を1個有する重合性不飽和単量体(1官能の重合性不飽和単量体)としては、具体的に、2−アクリロイロキシエチルフタレート、2−アクリロイロキシ2−ヒドロキシエチルフタレート、2−アクリロイロキシエチルヘキサヒドロフタレート、2−アクリロイロキシプロピルフタレート、2−エチル−2−ブチルプロパンジオールアクリレート、2−エチルヘキシル(メタ)アクリレート、2−エチルヘキシルカルビトール(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、3−メトキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、アクリル酸ダイマー、ベンジル(メタ)アクリレート、ブタンジオールモノ(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート、エチレンオキシド変性(以下「EO」という。)クレゾール(メタ)アクリレート、ジプロピレングリコール(メタ)アクリレート、エトキシ化フェニル(メタ)アクリレート、エチル(メタ)アクリレート、イソアミル(メタ)アクリレート、イソブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ラウリル(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メチル(メタ)アクリレート、ネオペンチルグリコールベンゾエート(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリプロピレングリコール(メタ)アクリレート、オクチル(メタ)アクリレート、パラクミルフェノキシエチレングリコール(メタ)アクリレート、エピクロロヒドリン(以下「ECH」という)変性フェノキシアクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシヘキサエチレングリコール(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール−ポリプロピレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、ステアリル(メタ)アクリレート、EO変性コハク酸(メタ)アクリレート、tert−ブチル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、EO変性トリブロモフェニル(メタ)アクリレート、トリドデシル(メタ)アクリレート、p−イソプロペニルフェノール、スチレン、α−メチルスチレン、アクリロニトリル、ビニルカルバゾールが例示される。
これらの中で特に、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレートが本発明に好適に用いられる。
The polymerizable unsaturated monomer having 1 to 6 ethylenically unsaturated bond-containing groups will be described.
First, specific examples of the polymerizable unsaturated monomer having one ethylenically unsaturated bond-containing group (monofunctional polymerizable unsaturated monomer) include 2-acryloyloxyethyl phthalate and 2-acryloyloxy. 2-hydroxyethyl phthalate, 2-acryloyloxyethyl hexahydrophthalate, 2-acryloyloxypropyl phthalate, 2-ethyl-2-butylpropanediol acrylate, 2-ethylhexyl (meth) acrylate, 2-ethylhexyl carbitol (meta ) Acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, 4- Hydroxybutyl ( Acrylate), acrylic acid dimer, benzyl (meth) acrylate, butanediol mono (meth) acrylate, butoxyethyl (meth) acrylate, butyl (meth) acrylate, cetyl (meth) acrylate, ethylene oxide modified (hereinafter referred to as “EO”). ) Cresol (meth) acrylate, dipropylene glycol (meth) acrylate, ethoxylated phenyl (meth) acrylate, ethyl (meth) acrylate, isoamyl (meth) acrylate, isobutyl (meth) acrylate, isooctyl (meth) acrylate, cyclohexyl (meth) ) Acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, isomyristyl ( Acrylate), lauryl (meth) acrylate, methoxydipropylene glycol (meth) acrylate, methoxytripropylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, methyl (meth) acrylate , Neopentyl glycol benzoate (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, nonylphenoxypolypropylene glycol (meth) acrylate, octyl (meth) acrylate, paracumylphenoxyethylene glycol (meth) acrylate, epichlorohydrin (below) "ECH") modified phenoxy acrylate, phenoxyethyl (meth) acrylate, phenoxy Sidiethylene glycol (meth) acrylate, phenoxyhexaethylene glycol (meth) acrylate, phenoxytetraethylene glycol (meth) acrylate, polyethylene glycol (meth) acrylate, polyethylene glycol-polypropylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate, stearyl (Meth) acrylate, EO-modified succinic acid (meth) acrylate, tert-butyl (meth) acrylate, tribromophenyl (meth) acrylate, EO-modified tribromophenyl (meth) acrylate, tridodecyl (meth) acrylate, p-isopropenyl Examples include phenol, styrene, α-methylstyrene, acrylonitrile, and vinylcarbazole.
Of these, benzyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, and dicyclopentanyl (meth) acrylate are particularly preferably used in the present invention.

さらに重合性単量体として、エチレン性不飽和結合含有基を2個以上有する多官能重合性不飽和単量体を用いることも好ましい。
本発明で好ましく用いることのできるエチレン性不飽和結合含有基を2個有する2官能重合性不飽和単量体の例としては、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジメチロールジシクロペンタンジ(メタ)アクリレート、ジ(メタ)アクリル化イソシアヌレート、1,3−ブチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、EO変性1,6−ヘキサンジオールジ(メタ)アクリレート、ECH変性1,6−ヘキサンジオールジ(メタ)アクリレート、アリロキシポリエチレングリコールアクリレート、1,9−ノナンジオールジ(メタ)アクリレート、EO変性ビスフェノールAジ(メタ)アクリレート、PO変性ビスフェノールAジ(メタ)アクリレート、変性ビスフェノールAジ(メタ)アクリレート、EO変性ビスフェノールFジ(メタ)アクリレート、ECH変性ヘキサヒドロフタル酸ジアクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、EO変性ネオペンチルグリコールジアクリレート、プロピレンオキシド(以後「PO」という。)変性ネオペンチルグリコールジアクリレート、カプロラクトン変性ヒドロキシピバリン酸エステルネオペンチルグリコール、ステアリン酸変性ペンタエリスリトールジ(メタ)アクリレート、ECH変性フタル酸ジ(メタ)アクリレート、ポリ(エチレングリコール−テトラメチレングリコール)ジ(メタ)アクリレート、ポリ(プロピレングリコール−テトラメチレングリコール)ジ(メタ)アクリレート、ポリエステル(ジ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ECH変性プロピレングリコールジ(メタ)アクリレート、シリコーンジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、EO変性トリプロピレングリコールジ(メタ)アクリレート、トリグリセロールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ジビニルエチレン尿素、ジビニルプロピレン尿素が例示される。
Furthermore, it is also preferable to use a polyfunctional polymerizable unsaturated monomer having two or more ethylenically unsaturated bond-containing groups as the polymerizable monomer.
Examples of the bifunctional polymerizable unsaturated monomer having two ethylenically unsaturated bond-containing groups that can be preferably used in the present invention include diethylene glycol monoethyl ether (meth) acrylate, dimethylol dicyclopentane di (meta ) Acrylate, di (meth) acrylated isocyanurate, 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, EO-modified 1,6-hexanediol di (meth) acrylate, ECH modified 1,6-hexanediol di (meth) acrylate, allyloxy polyethylene glycol acrylate, 1,9-nonanediol di (meth) acrylate, EO modified bisphenol A di (meth) acrylate, PO modified bisphenol A di (meth) Acrylate, modified screw Enol A di (meth) acrylate, EO modified bisphenol F di (meth) acrylate, ECH modified hexahydrophthalic acid diacrylate, hydroxypivalic acid neopentyl glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, EO modified Neopentyl glycol diacrylate, propylene oxide (hereinafter referred to as “PO”) modified neopentyl glycol diacrylate, caprolactone modified hydroxypivalate ester neopentyl glycol, stearic acid modified pentaerythritol di (meth) acrylate, ECH modified phthalic acid di ( (Meth) acrylate, poly (ethylene glycol-tetramethylene glycol) di (meth) acrylate, poly (propylene glycol-tetramethylene glycol) Di) (di) (meth) acrylate, polyester (di) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, ECH modified propylene glycol di (meth) acrylate, silicone di (meth) acrylate, triethylene Glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate, neopentyl glycol modified trimethylolpropane di (meth) acrylate, tripropylene glycol di (meth) acrylate, EO Modified tripropylene glycol di (meth) acrylate, triglycerol di (meth) acrylate, dipropylene glycol di (meth) acrylate, divinyl ethyl And urea and divinyl propylene urea are exemplified.

これらの中で特に、ネオペンチルグリコールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等が本発明に好適に用いられる。   Among these, neopentyl glycol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, neopentyl hydroxypivalate Glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and the like are preferably used in the present invention.

エチレン性不飽和結合含有基を3個以上有する多官能重合性不飽和単量体の例としては、ECH変性グリセロールトリ(メタ)アクリレート、EO変性グリセロールトリ(メタ)アクリレート、PO変性グリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリアクリレート、EO変性リン酸トリアクリレート、トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、アルキル変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、アルキル変性ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等が挙げられる。   Examples of the polyfunctional polymerizable unsaturated monomer having 3 or more ethylenically unsaturated bond-containing groups include ECH-modified glycerol tri (meth) acrylate, EO-modified glycerol tri (meth) acrylate, PO-modified glycerol tri (meta) ) Acrylate, pentaerythritol triacrylate, EO modified phosphoric acid triacrylate, trimethylolpropane tri (meth) acrylate, caprolactone modified trimethylolpropane tri (meth) acrylate, EO modified trimethylolpropane tri (meth) acrylate, PO modified trimethylol Propane tri (meth) acrylate, tris (acryloxyethyl) isocyanurate, dipentaerythritol hexa (meth) acrylate, caprolactone-modified dipentaerythritol hexa (meth) Acrylate, dipentaerythritol hydroxypenta (meth) acrylate, alkyl-modified dipentaerythritol penta (meth) acrylate, dipentaerythritol poly (meth) acrylate, alkyl-modified dipentaerythritol tri (meth) acrylate, ditrimethylolpropane tetra (meth) Examples include acrylate, pentaerythritol ethoxytetra (meth) acrylate, and pentaerythritol tetra (meth) acrylate.

これらの中で特に、EO変性グリセロールトリ(メタ)アクリレート、PO変性グリセロールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等が本発明に好適に用いられる。   Among these, EO-modified glycerol tri (meth) acrylate, PO-modified glycerol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, EO-modified trimethylolpropane tri (meth) acrylate, PO-modified trimethylolpropane tri (Meth) acrylate, dipentaerythritol hexa (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, pentaerythritol tetra (meth) acrylate and the like are preferably used in the present invention.

本発明で用いられる重合性単量体として、オキシラン環を有する化合物(エポキシ化合物)を用いることができる。前記オキシラン環を有する化合物としては、例えば、多塩基酸のポリグリシジルエステル類、多価アルコールのポリグリシジルエーテル類、ポリオキシアルキレングリコールのポリグリシジルエーテル類、芳香族ポリオールのポリグリシジルエテーテル類、芳香族ポリオールのポリグリシジルエーテル類の水素添加化合物類、ウレタンポリエポキシ化合物およびエポキシ化ポリブタジエン類等を挙げることができる。これらの化合物は、その一種を単独で使用することもできるし、また、その二種以上を混合して使用することもできる。   As the polymerizable monomer used in the present invention, a compound having an oxirane ring (epoxy compound) can be used. Examples of the compound having an oxirane ring include polyglycidyl esters of polybasic acids, polyglycidyl ethers of polyhydric alcohols, polyglycidyl ethers of polyoxyalkylene glycols, polyglycidyl ethers of aromatic polyols, and aromatics. Examples include hydrogenated compounds of polyglycidyl ethers of group polyols, urethane polyepoxy compounds and epoxidized polybutadienes. These compounds can be used alone or in combination of two or more thereof.

本発明に好ましく使用することのできるオキシラン環を有する化合物(エポキシ化合物)としては、例えばビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、臭素化ビスフェノールAジグリシジルエーテル、臭素化ビスフェノールFジグリシジルエーテル、臭素化ビスフェノールSジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテル、水添ビスフェノールSジグリシジルエーテル、1,4−ブタンジオールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル類;エチレングリコール、プロピレングリコール、グリセリンなどの脂肪族多価アルコールに1種または2種以上のアルキレンオキサイドを付加することにより得られるポリエーテルポリオールのポリグリシジルエーテル類;脂肪族長鎖二塩基酸のジグリシジルエステル類;脂肪族高級アルコールのモノグリシジルエーテル類;フェノール、クレゾール、ブチルフェノールまたはこれらにアルキレンオキサイドを付加して得られるポリエーテルアルコールのモノグリシジルエーテル類;高級脂肪酸のグリシジルエステル類などを例示することができる。   Examples of the compound having an oxirane ring (epoxy compound) that can be preferably used in the present invention include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, brominated bisphenol A diglycidyl ether, and brominated. Bisphenol F diglycidyl ether, brominated bisphenol S diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol S diglycidyl ether, 1,4-butanediol diglycidyl ether, 1, 6-hexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, polyethylene glycol diglycid Ethers, polypropylene glycol diglycidyl ethers; polyglycidyl ethers of polyether polyols obtained by adding one or more alkylene oxides to aliphatic polyhydric alcohols such as ethylene glycol, propylene glycol, glycerin; fats Diglycidyl esters of long-chain dibasic acids; monoglycidyl ethers of higher aliphatic alcohols; monoglycidyl ethers of polyether alcohols obtained by adding phenol, cresol, butylphenol or alkylene oxide to these; glycidyl of higher fatty acids Examples thereof include esters.

これらの中で特に、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテル、1,4−ブタンジオールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテルが好ましい。   Among these, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol Diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, neopentyl glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and polypropylene glycol diglycidyl ether are preferred.

グリシジル基含有化合物として好適に使用できる市販品としては、UVR−6216(ユニオンカーバイド社製)、グリシドール、AOEX24、サイクロマーA200、(以上、ダイセル化学工業(株)製)、エピコート828、エピコート812、エピコート1031、エピコート872、エピコートCT508(以上、油化シェル(株)製)、KRM−2400、KRM−2410、KRM−2408、KRM−2490、KRM−2720、KRM−2750(以上、旭電化工業(株)製)などを挙げることができる。これらは、1種単独で、または2種以上組み合わせて用いることができる。   Commercially available products that can be suitably used as the glycidyl group-containing compound include UVR-6216 (manufactured by Union Carbide), glycidol, AOEX24, cyclomer A200, (manufactured by Daicel Chemical Industries, Ltd.), Epicoat 828, Epicoat 812, Epicoat 1031, Epicoat 872, Epicoat CT508 (above, manufactured by Yuka Shell Co., Ltd.), KRM-2400, KRM-2410, KRM-2408, KRM-2490, KRM-2720, KRM-2750 (above, Asahi Denka Kogyo ( Product)). These can be used alone or in combination of two or more.

また、これらのオキシラン環を有する化合物はその製法は問わないが、例えば、丸善KK出版、第四版実験化学講座20有機合成II、213〜、平成4年、Ed.by Alfred Hasfner,The chemistry of heterocyclic compounds−Small Ring Heterocycles part3 Oxiranes,John & Wiley and Sons,An Interscience Publication,New York,1985、吉村、接着、29巻12号、32、1985、吉村、接着、30巻5号、42、1986、吉村、接着、30巻7号、42、1986、特開平11−100378号公報、特許第2906245号公報、特許第2926262号公報などの文献を参考にして合成できる。   The production method of these compounds having an oxirane ring is not limited. For example, Maruzen KK Publishing, 4th edition Experimental Chemistry Course 20 Organic Synthesis II, 213, 1992, Ed. By Alfred Hasfner, The chemistry of cyclic compounds-Small Ring Heterocycles part3 Oxiranes, John & Wiley and Sons, An Interscience Publication, New York, 1985, Yoshimura, Adhesion, Vol. 29, No. 12, 32, 1985, Yoshimura, Adhesion, Vol. 30, No. 5, 42, 1986, Yoshimura, Adhesion, Vol. 30, No. 7, 42, 1986, Japanese Patent Application Laid-Open No. 11-1000037, Japanese Patent No. 2906245, Japanese Patent No. 2926262 and the like can be synthesized.

本発明で用いる重合性単量体として、ビニルエーテル化合物を用いてもよい。
ビニルエーテル化合物は、公知のものを適宜選択することができ、例えば、2−エチルヘキシルビニルエーテル、ブタンジオール−1,4−ジビニルエーテル、ジエチレングリコールモノビニルエーテル、エチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、1,2−プロパンジオールジビニルエーテル、1,3−プロパンジオールジビニルエーテル、1,3−ブタンジオールジビニルエーテル、1,4−ブタンジオールジビニルエーテル、テトラメチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、トリメチロールエタントリビニルエーテル、ヘキサンジオールジビニルエーテル、テトラエチレングリコールジビニルエーテル、ペンタエリスリトールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ソルビトールテトラビニルエーテル、ソルビトールペンタビニルエーテル、エチレングリコールジエチレンビニルエーテル、トリエチレングリコールジエチレンビニルエーテル、エチレングリコールジプロピレンビニルエーテル、トリエチレングリコールジエチレンビニルエーテル、トリメチロールプロパントリエチレンビニルエーテル、トリメチロールプロパンジエチレンビニルエーテル、ペンタエリスリトールジエチレンビニルエーテル、ペンタエリスリトールトリエチレンビニルエーテル、ペンタエリスリトールテトラエチレンビニルエーテル、1,1,1−トリス〔4−(2−ビニロキシエトキシ)フェニル〕エタン、ビスフェノールAジビニロキシエチルエーテル等が挙げられる。
これらの中で特に、2−エチルヘキシルビニルエーテル、1,4−ブタンジオールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ペンタエリスリトールテトラエチレンビニルエーテル、ビスフェノールAジビニロキシエチルエーテルが本発明に好適に用いられる。
As the polymerizable monomer used in the present invention, a vinyl ether compound may be used.
As the vinyl ether compound, known compounds can be appropriately selected. For example, 2-ethylhexyl vinyl ether, butanediol-1,4-divinyl ether, diethylene glycol monovinyl ether, ethylene glycol divinyl ether, triethylene glycol divinyl ether, 1,2 -Propanediol divinyl ether, 1,3-propanediol divinyl ether, 1,3-butanediol divinyl ether, 1,4-butanediol divinyl ether, tetramethylene glycol divinyl ether, neopentyl glycol divinyl ether, trimethylolpropane trivinyl ether , Trimethylol ethane trivinyl ether, hexanediol divinyl ether, tetraethylene glycol divinyl ether, Taerythritol divinyl ether, pentaerythritol trivinyl ether, pentaerythritol tetravinyl ether, sorbitol tetravinyl ether, sorbitol pentavinyl ether, ethylene glycol diethylene vinyl ether, triethylene glycol diethylene vinyl ether, ethylene glycol dipropylene vinyl ether, triethylene glycol diethylene vinyl ether, trimethylolpropane tri Ethylene vinyl ether, trimethylolpropane diethylene vinyl ether, pentaerythritol diethylene vinyl ether, pentaerythritol triethylene vinyl ether, pentaerythritol tetraethylene vinyl ether, 1,1,1-tris [4- (2-vinyloxyethoxy) Sulfonyl] ethane, bisphenol A divinyloxyethyl carboxyethyl ether.
Among these, 2-ethylhexyl vinyl ether, 1,4-butanediol divinyl ether, neopentyl glycol divinyl ether, trimethylolpropane trivinyl ether, pentaerythritol tetraethylene vinyl ether, and bisphenol A divinyloxyethyl ether are suitable for the present invention. Used for.

これらのビニルエーテル化合物は、例えば、Stephen.C.Lapin,Polymers Paint Colour Journal.179(4237)、321(1988)に記載されている方法、即ち多価アルコールもしくは多価フェノールとアセチレンとの反応、または多価アルコールもしくは多価フェノールとハロゲン化アルキルビニルエーテルとの反応により合成することができ、これらは1種単独あるいは2種以上を組み合わせて用いることができる。   These vinyl ether compounds can be obtained, for example, by the method described in Stephen C. Lapin, Polymers Paint Color Journal. 179 (4237), 321 (1988), that is, reaction of a polyhydric alcohol or polyhydric phenol with acetylene, or They can be synthesized by the reaction of a polyhydric alcohol or polyhydric phenol and a halogenated alkyl vinyl ether, and these can be used singly or in combination of two or more.

また、本発明で用いる重合性単量体として、スチレン誘導体も採用できる。スチレン誘導体としては、例えば、p−メトキシスチレン、p−メトキシ−β−メチルスチレン、p−ヒドロキシスチレン、等を挙げることができる。   Moreover, a styrene derivative can also be employ | adopted as a polymerizable monomer used by this invention. Examples of the styrene derivative include p-methoxystyrene, p-methoxy-β-methylstyrene, p-hydroxystyrene, and the like.

その他、上述の1官能重合体と併用できるスチレン誘導体としては、例えば、スチレン、p−メチルスチレン、p−メトキシスチレン、β−メチルスチレン、p−メチル−β−メチルスチレン、α−メチルスチレン、p−メトキシ−β−メチルスチレン、p−ヒドロキシスチレン、等を挙げることができ、ビニルナフタレン誘導体としては、例えば、1−ビニルナフタレン、α−メチル−1−ビニルナフタレン、β−メチル−1−ビニルナフタレン、4−メチル−1−ビニルナフタレン、4−メトキシ−1−ビニルナフタレン等を挙げることができる。   In addition, examples of styrene derivatives that can be used in combination with the above-described monofunctional polymer include styrene, p-methylstyrene, p-methoxystyrene, β-methylstyrene, p-methyl-β-methylstyrene, α-methylstyrene, p. -Methoxy-β-methylstyrene, p-hydroxystyrene, etc. can be mentioned. Examples of the vinylnaphthalene derivative include 1-vinylnaphthalene, α-methyl-1-vinylnaphthalene, β-methyl-1-vinylnaphthalene. 4-methyl-1-vinylnaphthalene, 4-methoxy-1-vinylnaphthalene and the like.

また、モールドとの剥離性や塗布性を向上させる目的で、トリフルオロエチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、(パーフルオロブチル)エチル(メタ)アクリレート、パーフルオロブチル−ヒドロキシプロピル(メタ)アクリレート、(パーフルオロヘキシル)エチル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート等のフッ素原子を有する化合物も併用することができる。   In addition, for the purpose of improving the peelability and applicability from the mold, trifluoroethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, (perfluorobutyl) ethyl (meth) acrylate, perfluorobutyl-hydroxypropyl ( Use in combination with compounds having fluorine atoms such as (meth) acrylate, (perfluorohexyl) ethyl (meth) acrylate, octafluoropentyl (meth) acrylate, perfluorooctylethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, etc. Can do.

本発明で用いる重合性単量体としては、プロペニルエーテルおよびブテニルエーテルを用いることもできる。前記プロペニルエーテルまたはブテニルエーテルとしては、例えば、1−ドデシル−1−プロペニルエーテル、1−ドデシル−1−ブテニルエーテル、1−ブテノキシメチル−2−ノルボルネン、1−4−ジ(1−ブテノキシ)ブタン、1,10−ジ(1−ブテノキシ)デカン、1,4−ジ(1−ブテノキシメチル)シクロヘキサン、ジエチレングリコールジ(1−ブテニル)エーテル、1,2,3−トリ(1−ブテノキシ)プロパン、プロペニルエーテルプロピレンカーボネート等が好適に適用できる。   Propenyl ether and butenyl ether can also be used as the polymerizable monomer used in the present invention. Examples of the propenyl ether or butenyl ether include 1-dodecyl-1-propenyl ether, 1-dodecyl-1-butenyl ether, 1-butenoxymethyl-2-norbornene, and 1-4-di (1-butenoxy) butane. 1,10-di (1-butenoxy) decane, 1,4-di (1-butenoxymethyl) cyclohexane, diethylene glycol di (1-butenyl) ether, 1,2,3-tri (1-butenoxy) propane, propenyl ether Propylene carbonate or the like can be suitably applied.

重合性単量体は、組成物中に、10〜90質量%の範囲で含むことが好ましく、20〜80質量%の範囲で含むことがより好ましい。   The polymerizable monomer is preferably included in the composition in the range of 10 to 90% by mass, and more preferably in the range of 20 to 80% by mass.

次に、本発明における重合性単量体(以下、「重合性不飽和単量体」ということがある)の好ましいブレンド形態について説明する。本発明のナノインプリント用硬化性組成物は、反応性の異なる2種類以上の硬化性官能基を同一分子内に有し、かつ、該硬化性官能基の少なくとも1つがα,β−不飽和エステル基である重合性単量体を含んでいることが好ましい。
1官能の重合性不飽和単量体は、通常、反応性希釈剤として用いられ、本発明の組成物の粘度を下げるのに有効であり、通常、全重合性不飽和単量体の15質量%以上添加される。好ましくは、20〜80質量%、より好ましくは、25〜70質量%、特に好ましくは、30〜60質量%の範囲で添加される。
上記1官能の重合性不飽和単量体は、反応性希釈剤としてより良好であるため、全重合性不飽和単量体の15質量%以上添加されることが好ましい。
不飽和結合含有基を2個有する単量体(2官能重合性不飽和単量体)は、全重合性不飽和単量体の好ましくは90質量%以下、より好ましくは80質量%以下、特に好ましくは70質量%以下の範囲で添加される。1官能および2官能重合性不飽和単量体の全重合性不飽和単量体に対する割合は、好ましくは1〜90質量%、より好ましくは3〜85質量%、特に好ましくは5〜80質量%である。不飽和結合含有基を3個以上有する多官能重合性不飽和単量体の全重合性不飽和単量体に対する割合は、好ましくは80質量%以下、より好ましくは70質量%以下、特に好ましくは60質量%以下である。重合性不飽和結合含有基を3個以上有する重合性不飽和単量体の割合を80質量%以下とすることにより、組成物の粘度を下げることができる。
Next, a preferred blend form of the polymerizable monomer in the present invention (hereinafter sometimes referred to as “polymerizable unsaturated monomer”) will be described. The curable composition for nanoimprinting of the present invention has two or more kinds of curable functional groups having different reactivity in the same molecule, and at least one of the curable functional groups is an α, β-unsaturated ester group. It is preferable that the polymerizable monomer is contained.
A monofunctional polymerizable unsaturated monomer is usually used as a reactive diluent and is effective in reducing the viscosity of the composition of the present invention. % Or more is added. Preferably, it is added in the range of 20 to 80% by mass, more preferably 25 to 70% by mass, and particularly preferably 30 to 60% by mass.
Since the monofunctional polymerizable unsaturated monomer is better as a reactive diluent, it is preferable to add 15% by mass or more of the total polymerizable unsaturated monomer.
The monomer having two unsaturated bond-containing groups (bifunctional polymerizable unsaturated monomer) is preferably 90% by mass or less, more preferably 80% by mass or less, and particularly preferably 80% by mass or less of the total polymerizable unsaturated monomer. Preferably, it is added in a range of 70% by mass or less. The ratio of monofunctional and bifunctional polymerizable unsaturated monomers to the total polymerizable unsaturated monomers is preferably 1 to 90% by mass, more preferably 3 to 85% by mass, and particularly preferably 5 to 80% by mass. It is. The ratio of the polyfunctional polymerizable unsaturated monomer having 3 or more unsaturated bond-containing groups to the total polymerizable unsaturated monomer is preferably 80% by mass or less, more preferably 70% by mass or less, particularly preferably. 60% by mass or less. By setting the ratio of the polymerizable unsaturated monomer having 3 or more polymerizable unsaturated bond-containing groups to 80% by mass or less, the viscosity of the composition can be lowered.

−(B)光重合開始剤−
本発明のナノインプリント用硬化性組成物には、光重合開始剤が含まれる。本発明の組成物に用いられる光重合開始剤は25℃において液体である。このように25℃において液体の光重合開始剤(以下、単に「液体光重合開始剤」という場合がある)を用いることによって、組成物中での光重合開始剤の溶け残り等による、組成物のろ過性の悪化を防ぐとともに、組成物を塗布する際に光重合開始剤がブツとなって膜厚の均一性を悪化させるといった問題を防ぐことができる。
本発明における液体光重合開始剤自体の25℃における粘度は、3〜1000mPa・sが好ましく、3〜800mPa・sがさらに好ましく、3〜500mPa・sが特に好ましい。
本発明で用いる光重合開始剤は、使用する光源の波長に対して活性を有するものが配合され、適切な活性種を発生させるものが用いられる。
-(B) Photopolymerization initiator-
The curable composition for nanoimprints of the present invention contains a photopolymerization initiator. The photopolymerization initiator used in the composition of the present invention is liquid at 25 ° C. Thus, by using a photopolymerization initiator that is liquid at 25 ° C. (hereinafter sometimes simply referred to as “liquid photopolymerization initiator”), a composition resulting from, for example, undissolved residual photopolymerization initiator in the composition In addition to preventing the deterioration of the filterability, it is possible to prevent the problem that the photopolymerization initiator becomes lumpy and the film thickness uniformity is deteriorated when the composition is applied.
The viscosity at 25 ° C. of the liquid photopolymerization initiator itself in the present invention is preferably 3 to 1000 mPa · s, more preferably 3 to 800 mPa · s, and particularly preferably 3 to 500 mPa · s.
As the photopolymerization initiator used in the present invention, those having activity with respect to the wavelength of the light source to be used are blended, and those that generate appropriate active species are used.

本発明で使用される液体光重合開始剤としては、前記重合性単量体の種類にもよるが、液体ラジカル光重合開始剤または液体カチオン光重合開始剤等を用いることができ、液体ラジカル光重合開始剤が好ましい。また、本発明における液体光重合開始剤としては、アシルホスフィンオキサイド化合物またはα−ヒドロキシアセトフェノン化合物から選ばれる少なくとも一種が好ましく、アシルホスフィンオキサイド化合物が特に好ましい。
前記液体ラジカル光重合開始剤としては、例えば、Ciba社から入手可能なIrgacure(登録商標)500(1−ヒドロキシシクロヘキシルフェニルケトン、ベンゾフェノン)、Irgacure(登録商標)1700(ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフォスフィンオキサイド,2−ヒドロキシ−2−メチル−1−フェニル−1−プロパン−1−オン)、Darocur(登録商標)1173(2−ヒドロキシ−2−メチル−1−フェニル−1−プロパン−1−オン)、BASF社から入手可能なLucirin TPO−L(2,4,6−トリメチルベンゾイルエトキシフェニルホスフィンオキサイド)、日本シイベルヘグナー社から入手可能なESACURE EB3(ベンゾインイソブチルエーテル)等が挙げられる。
The liquid photopolymerization initiator used in the present invention may be a liquid radical photopolymerization initiator or a liquid cation photopolymerization initiator, although depending on the type of the polymerizable monomer. A polymerization initiator is preferred. Moreover, as a liquid photoinitiator in this invention, at least 1 type chosen from the acyl phosphine oxide compound or the alpha-hydroxy acetophenone compound is preferable, and an acyl phosphine oxide compound is especially preferable.
Examples of the liquid radical photopolymerization initiator include Irgacure (registered trademark) 500 (1-hydroxycyclohexyl phenyl ketone, benzophenone) and Irgacure (registered trademark) 1700 (bis (2,6-dimethoxybenzoyl) available from Ciba. ) -2,4,4-trimethyl-pentylphosphine oxide, 2-hydroxy-2-methyl-1-phenyl-1-propan-1-one), Darocur® 1173 (2-hydroxy-2-methyl) -1-phenyl-1-propan-1-one), Lucirin TPO-L (2,4,6-trimethylbenzoylethoxyphenylphosphine oxide) available from BASF, ESACURE EB3 (benzoin available from Japan Siber Hegner) I Ether) and the like.

本発明における液体光重合開始剤の含有量は、膜の硬化不良防止の観点から、全組成物中、例えば、0.1〜15質量%であることが好ましく、0.2〜12質量%がさらに好ましく、0.3〜10質量%が特に好ましい。また、2種類以上の光重合開始剤を用いる場合には、その合計量が前記範囲となる。
本発明の組成物中の本発明における光重合開始剤の割合を0.1質量%以上とすると、感度(速硬化性)、解像性、ラインエッジラフネス性、塗膜強度が向上する傾向にあり好ましい。一方、本発明の組成物中の本発明における光重合開始剤の割合を15質量%以下とすると、光透過性、着色性、取り扱い性などが向上する傾向にあり好ましい。従来は、染料および/または顔料を含むインクジェット用組成物や液晶デイスプレイカラーフィルタ用組成物においては、好ましい光重合開始剤および/または光酸発生剤の添加量が種々検討されてきたが、ナノインプリント用等の光ナノインプリント用硬化性組成物についての好ましい光重合開始剤および/または光酸発生剤の添加量については報告されていない。すなわち、染料および/または顔料を含む系では、これらがラジカルトラップ剤として働くことがあり、光重合性、感度に影響を及ぼす。その点を考慮して、これらの用途では、光重合開始剤の添加量が最適化される。一方で、本発明の組成物では、染料および/または顔料は必須成分でなく、光重合開始剤の最適範囲がインクジェット用組成物や液晶デイスプレイカラーフィルタ用組成物等の分野のものとは異なる場合がある。
In the present invention, the content of the liquid photopolymerization initiator in the present invention is preferably, for example, 0.1 to 15% by mass, and 0.2 to 12% by mass in the entire composition from the viewpoint of preventing curing failure of the film. More preferred is 0.3 to 10% by mass. Moreover, when using 2 or more types of photoinitiators, the total amount becomes the said range.
When the ratio of the photopolymerization initiator in the present invention in the composition of the present invention is 0.1% by mass or more, sensitivity (fast curability), resolution, line edge roughness, and coating strength tend to be improved. It is preferable. On the other hand, when the ratio of the photopolymerization initiator in the present invention in the composition of the present invention is 15% by mass or less, the light transmittance, the colorability, the handleability and the like tend to be improved, which is preferable. Conventionally, in ink-jet compositions containing dyes and / or pigments and liquid crystal display color filter compositions, various addition amounts of preferred photopolymerization initiators and / or photoacid generators have been studied, but for nanoimprinting A preferred photopolymerization initiator and / or photoacid generator addition amount for the curable composition for photo-nanoimprints is not reported. That is, in a system containing dyes and / or pigments, these may act as radical trapping agents, affecting the photopolymerizability and sensitivity. In consideration of this point, the amount of the photopolymerization initiator added is optimized in these applications. On the other hand, in the composition of the present invention, the dye and / or pigment is not an essential component, and the optimum range of the photopolymerization initiator is different from that in the field of an ink jet composition or a liquid crystal display color filter composition. There is.

−(C)溶剤−
本発明のナノインプリント用硬化性組成物は、溶剤を含有する。前記溶剤の沸点は、常圧で80℃以上であることが好ましく、100℃以上であることが特に好ましい。溶剤の沸点が常圧下で100℃以上であると、本発明の組成物に含まれる溶剤を、本発明の組成物を基材上で十分にレベリングし、さらに膜を形成した後に揮発させることができる。また、硬化後のパターン精度の観点から、本発明の組成物中における溶剤の含有量は、全組成物中、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることが特に好ましい。また、本発明の組成物中における溶剤の含有量の下限としては、膜厚均一性の観点から、0.5質量%以上であることが好ましく、1質量%以上がさらに好ましく、5質量%以上が特に好ましい。
すなわち本発明の組成物は、上記のような1官能および/または2官能の重合性単量体を反応性希釈剤として含むため既に塗布膜の均一性を有するが、少量の高沸点溶剤を添加することで、反応性希釈剤では溶解しない化合物などを本発明のナノインプリント用硬化性組成物に溶解させることも可能となり、さらに塗布膜の均一性を向上させることができる。
-(C) Solvent-
The curable composition for nanoimprinting of the present invention contains a solvent. The boiling point of the solvent is preferably 80 ° C. or higher at normal pressure, and particularly preferably 100 ° C. or higher. If the boiling point of the solvent is 100 ° C. or higher under normal pressure, the solvent contained in the composition of the present invention may be volatilized after sufficiently leveling the composition of the present invention on the substrate and further forming a film. it can. Further, from the viewpoint of pattern accuracy after curing, the content of the solvent in the composition of the present invention is preferably 30% by mass or less, more preferably 20% by mass or less, in the total composition, It is especially preferable that it is 10 mass% or less. Moreover, as a minimum of content of the solvent in the composition of this invention, it is preferable that it is 0.5 mass% or more from a viewpoint of film thickness uniformity, 1 mass% or more is more preferable, 5 mass% or more is preferable. Is particularly preferred.
That is, since the composition of the present invention contains the monofunctional and / or bifunctional polymerizable monomer as described above as a reactive diluent, the coating film has uniformity, but a small amount of a high-boiling solvent is added. By doing so, it becomes possible to dissolve a compound that does not dissolve in the reactive diluent in the curable composition for nanoimprinting of the present invention, and to improve the uniformity of the coating film.

本発明のナノインプリント用硬化性組成物に好ましく使用できる溶剤としては、沸点が100℃以上であり、ナノインプリント用硬化性組成物やフォトレジストで一般的に用いられている有機溶剤であって、本発明の組成物に含まれる化合物を溶解および均一分散させるものであればよく、さらに、これらの化合物と反応しないものであれば特に限定されない。   The solvent that can be preferably used in the curable composition for nanoimprints of the present invention is an organic solvent having a boiling point of 100 ° C. or higher and generally used in curable compositions for nanoimprints and photoresists. Any compound can be used as long as it dissolves and uniformly disperses the compound contained in the composition, and any compound that does not react with these compounds is not particularly limited.

本発明に用いられる溶剤としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールメチルエチルエーテル、エチレングリコールモノエチルエーテル等のグリコールエーテル類;メチルセロソルブアセテート、エチルセロソルブアセテート等のエチレングリコールアルキルエーテルアセテート類;ジエチレングリコールモノメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル等のジエチレングリコール類;プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート等のプロピレングリコールアルキルエーテルアセテート類;トルエン、キシレン等の芳香族炭化水素類;メチルイソフチルケトン、シクロヘキサノン、4−ヒドロキシ−4−メチル−2−ペンタノン、2−ヘプタノン等のケトン類;2−ヒドロキシプロピオン酸エチル、2−ヒドロキシ−2−メチルプロピオン酸メチル、2−ヒドロキシ−2−メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2−ヒドロキシ−2−メチルブタン酸メチル、3−メトキシプロピオン酸メチル、3−メトキシプロピオン酸エチル、3−エトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、乳酸メチル、乳酸エチル等の乳酸エステル類等のエステル類などが挙げられる。   Examples of the solvent used in the present invention include glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol methyl ethyl ether, and ethylene glycol monoethyl ether; ethylene glycol alkyl ethers such as methyl cellosolve acetate and ethyl cellosolve acetate. Acetates; diethylene glycols such as diethylene glycol monomethyl ether, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether; propylene glycol methyl ether acetate, propylene glycol ethyl ether Propylene glycol alkyl ether acetates such as cetate; aromatic hydrocarbons such as toluene and xylene; ketones such as methyl isophthalyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone and 2-heptanone; Ethyl hydroxypropionate, methyl 2-hydroxy-2-methylpropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, methyl 2-hydroxy-2-methylbutanoate, 3-methoxypropionic acid Examples thereof include esters such as methyl, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, methyl lactate and ethyl lactate.

さらに、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−メチルホルムアニリド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、ジメチルスルホキシド、ベンジルエチルエーテル、ジヘキシルエーテル、アセトニルアセトン、イソホロン、カプロン酸、カプリル酸、1−オクタノール、1−ノナノール、ベンジルアルコール、酢酸ベンジル、安息香酸エチル、シュウ酸ジエチル、マレイン酸ジエチル、γ−ブチロラクトン、炭酸エチレン、炭酸プロピレン、フェニルセロソルブアセテート等の高沸点溶剤を添加することもできる。これらは1種を単独使用してもよく、2種類以上を併用しても構わない。
これらの中でも、プロピレングリコールメチルエーテルアセテート、メトキシプロピレングリコールアセテート、2−ヒドロキシプロピン酸エチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、乳酸エチル、シクロヘキサノン、メチルイソブチルケトン、2−ヘプタノンなどが特に好ましい。
Further, N-methylformamide, N, N-dimethylformamide, N-methylformanilide, N-methylacetamide, N, N-dimethylacetamide, N-methylpyrrolidone, dimethylsulfoxide, benzylethyl ether, dihexyl ether, acetonylacetone , Isophorone, caproic acid, caprylic acid, 1-octanol, 1-nonanol, benzyl alcohol, benzyl acetate, ethyl benzoate, diethyl oxalate, diethyl maleate, γ-butyrolactone, ethylene carbonate, propylene carbonate, phenyl cellosolve acetate, etc. A high boiling point solvent can also be added. These may be used alone or in combination of two or more.
Among these, propylene glycol methyl ether acetate, methoxypropylene glycol acetate, ethyl 2-hydroxypropionate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, ethyl lactate, cyclohexanone, methyl isobutyl ketone, 2-heptanone, etc. Is particularly preferred.

−(D)界面活性剤−
本発明のナノインプリント用硬化性組成物は、界面活性剤を含んでいてもよい。本発明に用いられる界面活性剤は、全組成物中、例えば、0.001〜5質量%含有し、好ましくは0.002〜4質量%であり、さらに好ましくは、0.005〜3質量%である。2種類以上の界面活性剤を用いる場合は、その合計量が前記範囲となる。その合計量が前記範囲となる。界面活性剤が組成物中0.001〜5質量%の範囲にあると、塗布の均一性の効果が良好であり、界面活性剤の過多によるモールド転写特性の悪化を招きにくい。
前記界面活性剤としては、フッ素系界面活性剤、シリコーン系界面活性剤およびフッ素・シリコーン系界面活性剤の少なくとも1種を含むことが好ましく、フッ素系界面活性剤とシリコーン系界面活性剤との両方または、フッ素・シリコーン系界面活性剤を含むことがより好ましく、フッ素・シリコーン系界面活性剤を含むことが最も好ましい。尚、前記フッ素系界面活性剤およびシリコーン系界面活性剤としては、非イオン性の界面活性剤が好ましい。
ここで、“フッ素・シリコーン系界面活性剤”とは、フッ素系界面活性剤およびシリコーン系界面活性剤の両方の要件を併せ持つものをいう。
このような界面活性剤を用いることによって、半導体素子製造用のシリコンウエハや、液晶素子製造用のガラス角基板、クロム膜、モリブデン膜、モリブデン合金膜、タンタル膜、タンタル合金膜、窒化珪素膜、アモルファスシリコーン膜、酸化錫をドープした酸化インジウム(ITO)膜や酸化錫膜などの、各種の膜が形成される基板上に本発明のナノインプリント硬化性組成物を塗布したときに起こるストリエーションや、鱗状の模様(レジスト膜の乾燥むら)などの塗布不良の問題を解決するが可能となる。また、モールド凹部のキャビティ内への本発明の組成物の流動性の向上、モールドとレジストとの間の剥離性の向上、レジストと基板間との密着性の向上、組成物の粘度を下げる等が可能になる。特に、本発明のナノインプリント組成物は、前記界面活性剤を添加することにより、塗布均一性を大幅に改良でき、スピンコーターやスリットスキャンコーターを用いた塗布において、基板サイズに依らず良好な塗布適性が得られる。
-(D) Surfactant-
The curable composition for nanoimprinting of the present invention may contain a surfactant. The surfactant used in the present invention contains, for example, 0.001 to 5% by mass, preferably 0.002 to 4% by mass, and more preferably 0.005 to 3% by mass in the entire composition. It is. When using 2 or more types of surfactant, the total amount becomes the said range. The total amount is within the above range. When the surfactant is in the range of 0.001 to 5% by mass in the composition, the effect of coating uniformity is good, and deterioration of mold transfer characteristics due to excessive surfactant is unlikely to occur.
The surfactant preferably includes at least one of a fluorine-based surfactant, a silicone-based surfactant, and a fluorine / silicone-based surfactant, and includes both a fluorine-based surfactant and a silicone-based surfactant. Alternatively, it preferably contains a fluorine / silicone surfactant, and most preferably contains a fluorine / silicone surfactant. The fluorine-based surfactant and the silicone-based surfactant are preferably nonionic surfactants.
Here, the “fluorine / silicone surfactant” refers to one having both requirements of a fluorine surfactant and a silicone surfactant.
By using such a surfactant, a silicon wafer for manufacturing a semiconductor element, a glass square substrate for manufacturing a liquid crystal element, a chromium film, a molybdenum film, a molybdenum alloy film, a tantalum film, a tantalum alloy film, a silicon nitride film, Striation that occurs when the nanoimprint curable composition of the present invention is applied to a substrate on which various films are formed, such as an amorphous silicone film, an indium oxide (ITO) film doped with tin oxide, and a tin oxide film, It becomes possible to solve the problem of poor coating such as a scale-like pattern (unevenness of drying of the resist film). In addition, the fluidity of the composition of the present invention into the cavity of the mold recess is improved, the peelability between the mold and the resist is improved, the adhesion between the resist and the substrate is improved, the viscosity of the composition is decreased, etc. Is possible. In particular, the nanoimprint composition of the present invention can significantly improve the coating uniformity by adding the surfactant, and in a coating using a spin coater or a slit scan coater, good coating suitability regardless of the substrate size. Is obtained.

本発明で用いることのできる、非イオン性のフッ素系界面活性剤の例としては、商品名 フロラード FC−430、FC−431(住友スリーエム(株)製)、商品名サーフロン S−382(旭硝子(株)製)、EFTOP EF−122A、122B、122C、EF−121、EF−126、EF−127、MF−100((株)トーケムプロダクツ製)、商品名 PF−636、PF−6320、PF−656、PF−6520(いずれもOMNOVA Solutions, Inc.)、商品名フタージェントFT250、FT251、DFX18 (いずれも(株)ネオス製)、商品名ユニダインDS−401、DS−403、DS−451 (いずれもダイキン工業(株)製)、商品名メガフアック171、172、173、178K、178A、(いずれも大日本インキ化学工業(株)製)が挙げられる。
また、非イオン性の前記シリコーン系界面活性剤の例としては、商品名SI−10シリーズ(竹本油脂(株)製)、メガファックペインタッド31(大日本インキ化学工業(株)製)、KP−341(信越化学工業(株)製)が挙げられる。
また、前記フッ素・シリコーン系界面活性剤の例としては、商品名 X−70−090、X−70−091、X−70−092、X−70−093、(いずれも、信越化学工業(株)製)、商品名メガフアックR−08、XRB−4(いずれも、大日本インキ化学工業(株)製)が挙げられる。
Examples of nonionic fluorosurfactants that can be used in the present invention include trade names Fluorard FC-430 and FC-431 (manufactured by Sumitomo 3M Co., Ltd.), trade names Surflon S-382 (Asahi Glass ( EFTOP EF-122A, 122B, 122C, EF-121, EF-126, EF-127, MF-100 (manufactured by Tochem Products), trade names PF-636, PF-6320, PF -656, PF-6520 (both OMNOVA Solutions, Inc.), trade names FT250, FT251, DFX18 (both manufactured by Neos Co., Ltd.), trade names Unidyne DS-401, DS-403, DS-451 ( All are made by Daikin Industries, Ltd.) and trade names Megafuk 171, 172, 173, 178K, 178A (all are Dainichi) Ink and Chemicals Co., Ltd.) and the like.
Examples of the nonionic silicone surfactant include trade name SI-10 series (manufactured by Takemoto Yushi Co., Ltd.), MegaFac Paintad 31 (manufactured by Dainippon Ink & Chemicals, Inc.), KP -341 (manufactured by Shin-Etsu Chemical Co., Ltd.).
Examples of the fluorine / silicone surfactant include trade names X-70-090, X-70-091, X-70-092, X-70-093 (all Shin-Etsu Chemical Co., Ltd. )), And trade names Megafuk R-08 and XRB-4 (both manufactured by Dainippon Ink & Chemicals, Inc.).

−(E)酸化防止剤−
さらに、本発明のナノインプリント用硬化性組成物は、酸化防止剤を含むことが好ましい。本発明に用いられる酸化防止剤の含有量は、全組成物中、例えば、0.01〜10質量%であり、好ましくは0.2〜5質量%である。2種類以上の酸化防止剤を用いる場合は、その合計量が前記範囲となる。
前記酸化防止剤は、熱や光照射による退色およびオゾン、活性酸素、NOx、SOx(Xは整数)などの各種の酸化性ガスによる退色を抑制するものである。特に本発明では、酸化防止剤を添加することにより、硬化膜の着色を防止や、分解による膜厚減少を低減できるという利点がある。このような酸化防止剤としては、ヒドラジド類、ヒンダードアミン系酸化防止剤、含窒素複素環メルカプト系化合物、チオエーテル系酸化防止剤、ヒンダードフェノール系酸化防止剤、アスコルビン酸類、硫酸亜鉛、チオシアン酸塩類、チオ尿素誘導体、糖類、亜硝酸塩、亜硫酸塩、チオ硫酸塩、ヒドロキシルアミン誘導体などを挙げることができる。この中でも、特にヒンダードフェノール系酸化防止剤、チオエーテル系酸化防止剤が硬化膜の着色、膜厚減少の観点で好ましい。
-(E) Antioxidant-
Furthermore, it is preferable that the curable composition for nanoimprints of the present invention contains an antioxidant. Content of the antioxidant used for this invention is 0.01-10 mass% in the whole composition, for example, Preferably it is 0.2-5 mass%. When using 2 or more types of antioxidant, the total amount becomes the said range.
The antioxidant suppresses fading caused by heat or light irradiation and fading caused by various oxidizing gases such as ozone, active oxygen, NO x , SO x (X is an integer). In particular, in the present invention, by adding an antioxidant, there is an advantage that coloring of a cured film can be prevented and a reduction in film thickness due to decomposition can be reduced. Examples of such antioxidants include hydrazides, hindered amine antioxidants, nitrogen-containing heterocyclic mercapto compounds, thioether antioxidants, hindered phenol antioxidants, ascorbic acids, zinc sulfate, thiocyanates, Examples include thiourea derivatives, sugars, nitrites, sulfites, thiosulfates, hydroxylamine derivatives, and the like. Among these, hindered phenol antioxidants and thioether antioxidants are particularly preferable from the viewpoint of coloring the cured film and reducing the film thickness.

前記酸化防止剤の市販品としては、商品名 Irganox1010、1035、1076、1222(以上、チバガイギー(株)製)、商品名 Antigene P、3C、FR、スミライザーS、スミライザーGA80(住友化学工業(株)製)、商品名アデカスタブAO70、AO80、AO503((株)ADEKA製)等が挙げられる。これらは単独で用いてもよいし、混合して用いてもよい。   Commercially available products of the antioxidant include trade names Irganox 1010, 1035, 1076, 1222 (manufactured by Ciba Geigy Co., Ltd.), trade names Antigene P, 3C, FR, Sumilyzer S, Sumilyzer GA80 (Sumitomo Chemical Co., Ltd.) Product name) ADK STAB AO70, AO80, AO503 (manufactured by ADEKA Corporation) and the like. These may be used alone or in combination.

−その他の成分−
本発明の組成物には前記成分の他に必要に応じて、ポリマー成分、離型剤、有機金属カップリング剤、重合禁止剤、紫外線吸収剤、光安定剤、老化防止剤、可塑剤、密着促進剤、熱重合開始剤、光塩基発生剤、着色剤、エラストマー粒子、光酸増殖剤、塩基性化合物、および、その他流動調整剤、消泡剤、分散剤等を添加してもよい。
-Other ingredients-
In addition to the above-described components, the composition of the present invention includes a polymer component, a release agent, an organometallic coupling agent, a polymerization inhibitor, an ultraviolet absorber, a light stabilizer, an anti-aging agent, a plasticizer, and an adhesive. Accelerators, thermal polymerization initiators, photobase generators, colorants, elastomer particles, photoacid multipliers, basic compounds, and other flow regulators, antifoaming agents, dispersants, and the like may be added.

本発明の組成物では、架橋密度をさらに高める目的で、前記多官能の他の重合性単量体よりもさらに分子量の大きい多官能オリゴマーを、本発明の目的を達成する範囲で配合することもできる。光ラジカル重合性を有する多官能オリゴマーとしてはポリエステルアクリレート、ウレタンアクリレート、ポリエーテルアクリレート、エポキシアクリレート等の各種アクリレートオリゴマーが挙げられる。
本発明のナノインプリント用硬化性組成物はインプリント適性、硬化性等の改良を観点からも、さらにポリマー成分を含有していてもよい。前記ポリマー成分としては側鎖に重合性官能基を有するポリマーが好ましい。前記ポリマー成分の重量平均分子量としては、組成物粘度、架橋密度向上、ろ過性、パターン形成精度の観点から、500〜100000が好ましく、1000〜30000がさらに好ましい。ポリマー成分の添加量としては組成物の溶剤を除く成分に対し、0〜30質量%が好ましく、より好ましくは0〜20質量%、さらに好ましくは0〜10質量%、最も好ましくは2質量%以下である。本発明の組成物において溶剤を除く成分中、分子量2000以上のポリマー成分の含有量が30質量%以下であると、パターン形成性が向上する。また、パターン形成性の観点から樹脂成分はできる限り少ない法が好ましく、界面活性剤や微量の添加剤を除き、樹脂成分を含まないことが好ましい。
In the composition of the present invention, for the purpose of further increasing the crosslinking density, a polyfunctional oligomer having a molecular weight higher than that of the other polyfunctional polymerizable monomer may be blended within a range that achieves the object of the present invention. it can. Examples of the polyfunctional oligomer having photoradical polymerizability include various acrylate oligomers such as polyester acrylate, urethane acrylate, polyether acrylate, and epoxy acrylate.
The curable composition for nanoimprinting of the present invention may further contain a polymer component from the viewpoint of improving imprintability and curability. The polymer component is preferably a polymer having a polymerizable functional group in the side chain. The weight average molecular weight of the polymer component is preferably from 500 to 100,000, more preferably from 1,000 to 30,000, from the viewpoints of composition viscosity, improved crosslinking density, filterability, and pattern formation accuracy. The addition amount of the polymer component is preferably 0 to 30% by mass, more preferably 0 to 20% by mass, still more preferably 0 to 10% by mass, and most preferably 2% by mass or less, relative to the component excluding the solvent of the composition. It is. When the content of the polymer component having a molecular weight of 2000 or more in the components excluding the solvent in the composition of the present invention is 30% by mass or less, the pattern forming property is improved. Further, from the viewpoint of pattern formability, it is preferable that the resin component is as few as possible, and it is preferable that the resin component is not included except for surfactants and trace amounts of additives.

剥離性をさらに向上する目的で、本発明の組成物には、離型剤を任意に配合することができる。具体的には、本発明の組成物の層に押し付けたモールドを、樹脂層の面荒れや版取られを起こさずにきれいに剥離できるようにする目的で添加される。離型剤としては従来公知の離型剤、例えば、シリコーン系離型剤、ポリエチレンワックス、アミドワックス、テフロンパウダー(テフロンは登録商標)等の固形ワックス、弗素系、リン酸エステル系化合物等が何れも使用可能である。また、これらの離型剤をモールドに付着させておくこともできる。   For the purpose of further improving the peelability, a release agent can be arbitrarily blended in the composition of the present invention. Specifically, it is added for the purpose of enabling the mold pressed against the layer of the composition of the present invention to be peeled cleanly without causing the resin layer to become rough or take off the plate. Examples of the release agent include conventionally known release agents such as silicone-based release agents, polyethylene wax, amide wax, solid wax such as Teflon powder (Teflon is a registered trademark), fluorine-based compounds, phosphate ester-based compounds, etc. Can also be used. Moreover, these mold release agents can be adhered to the mold.

前記シリコーン系離型剤は、本発明で用いられる前記光硬化性樹脂と組み合わせた時にモールドからの剥離性が特に良好であり、版取られ現象が起こり難くなる。前記シリコーン系離型剤は、オルガノポリシロキサン構造を基本構造とする離型剤であり、例えば、未変性または変性シリコーンオイル、トリメチルシロキシケイ酸を含有するポリシロキサン、シリコーン系アクリル樹脂等が該当し、一般的にハードコート用組成物で用いられているシリコーン系レベリング剤の適用も可能である。   The silicone-based release agent has particularly good releasability from the mold when combined with the photo-curable resin used in the present invention, and the phenomenon that the plate is taken off hardly occurs. The silicone release agent is a release agent having an organopolysiloxane structure as a basic structure, and examples thereof include unmodified or modified silicone oil, polysiloxane containing trimethylsiloxysilicate, and silicone acrylic resin. Further, it is possible to apply a silicone leveling agent generally used in a hard coat composition.

前記変性シリコーンオイルは、ポリシロキサンの側鎖および/または末端を変性したものであり、反応性シリコーンオイルと非反応性シリコーンオイルとに分けられる。反応性シリコーンオイルとしては、アミノ変性、エポキシ変性、カルボキシル変性、カルビノール変性、メタクリル変性、メルカプト変性、フェノール変性、片末端反応性、異種官能基変性等が挙げられる。非反応性シリコーンオイルとしては、ポリエーテル変性、メチルスチリル変性、アルキル変性、高級脂肪エステル変性、親水性特殊変性、高級アルコキシ変性、高級脂肪酸変性、フッ素変性等が挙げられる。
一つのポリシロキサン分子に前記したような変性方法の2つ以上を行うこともできる。
The modified silicone oil is obtained by modifying the side chain and / or terminal of polysiloxane, and is classified into a reactive silicone oil and a non-reactive silicone oil. Examples of the reactive silicone oil include amino modification, epoxy modification, carboxyl modification, carbinol modification, methacryl modification, mercapto modification, phenol modification, one-end reactivity, and different functional group modification. Examples of the non-reactive silicone oil include polyether modification, methylstyryl modification, alkyl modification, higher fatty ester modification, hydrophilic special modification, higher alkoxy modification, higher fatty acid modification, and fluorine modification.
Two or more modification methods as described above may be performed on one polysiloxane molecule.

前記変性シリコーンオイルは組成物成分との適度な相溶性があることが好ましい。特に、組成物中に必要に応じて配合される他の塗膜形成成分に対して反応性がある反応性シリコーンオイルを用いる場合には、本発明の組成物を硬化した硬化膜中に化学結合よって固定されるので、当該硬化膜の密着性阻害、汚染、劣化等の問題が起き難い。特に、蒸着工程での蒸着層との密着性向上には有効である。また、(メタ)アクリロイル変性シリコーン、ビニル変性シリコーン等の、光硬化性を有する官能基で変性されたシリコーンの場合は、本発明の組成物と架橋するため、硬化後の特性に優れる。   It is preferable that the modified silicone oil has appropriate compatibility with the composition components. In particular, when using a reactive silicone oil that is reactive with other coating film forming components blended as necessary in the composition, it is chemically bonded in the cured film obtained by curing the composition of the present invention. Therefore, since it is fixed, problems such as adhesion inhibition, contamination, and deterioration of the cured film are unlikely to occur. In particular, it is effective for improving the adhesion with the vapor deposition layer in the vapor deposition step. In addition, in the case of silicone modified with a photocurable functional group such as (meth) acryloyl-modified silicone or vinyl-modified silicone, it is excellent in characteristics after curing because it is crosslinked with the composition of the present invention.

前記トリメチルシロキシケイ酸を含有するポリシロキサンは表面にブリードアウトし易く剥離性に優れており、表面にブリードアウトしても密着性に優れ、金属蒸着やオーバーコート層との密着性にも優れている点で好ましい。
前記離型剤は1種類のみ或いは2種類以上を組み合わせて添加することができる。
Polysiloxane containing trimethylsiloxysilicic acid is easy to bleed out on the surface and has excellent releasability, excellent adhesion even when bleeded out to the surface, and excellent adhesion to metal deposition and overcoat layer. This is preferable.
The release agent can be added alone or in combination of two or more.

離型剤を本発明のナノインプリント用硬化性組成物に添加する場合、組成物全量中に0.001〜10質量%の割合で配合することが好ましく、0.01〜5質量%の範囲で添加することがさらに好ましい。離型剤の含有量が0.01〜5質量%の範囲内にあると、モールドとナノインプリント用硬化性組成物層との剥離性向上効果が向上し、さらに組成物の塗工時のはじきによる塗膜面の面荒れの問題が生じたり、製品において基材自身や近接する層、例えば、蒸着層の密着性を阻害したり、転写時における皮膜破壊等(膜強度が弱くなりすぎる)が生じるのを抑制することができる。   When a release agent is added to the curable composition for nanoimprints of the present invention, it is preferably added in a proportion of 0.001 to 10% by mass in the total amount of the composition, and added in a range of 0.01 to 5% by mass. More preferably. When the content of the release agent is in the range of 0.01 to 5% by mass, the effect of improving the peelability between the mold and the curable composition layer for nanoimprinting is improved, and further due to the repelling at the time of coating the composition. The problem of surface roughness of the coating film occurs, the adhesion of the substrate itself or the adjacent layer, for example, the deposited layer in the product, or the destruction of the film during transfer (film strength becomes too weak) occurs. Can be suppressed.

本発明の組成物には、微細凹凸パターンを有する表面構造の耐熱性、強度、或いは、金属蒸着層との密着性を高めるために、有機金属カップリング剤を配合してもよい。また、有機金属カップリング剤は、熱硬化反応を促進させる効果も持つため有効である。前記有機金属カップリング剤としては、例えば、シランカップリング剤、チタンカップリング剤、ジルコニウムカップリング剤、アルミニウムカップリング剤、スズカップリング剤等の各種カップリング剤を使用できる。   In the composition of the present invention, an organic metal coupling agent may be blended in order to improve the heat resistance, strength, or adhesion to the metal vapor deposition layer of the surface structure having a fine concavo-convex pattern. In addition, the organometallic coupling agent is effective because it has an effect of promoting the thermosetting reaction. As said organometallic coupling agent, various coupling agents, such as a silane coupling agent, a titanium coupling agent, a zirconium coupling agent, an aluminum coupling agent, a tin coupling agent, can be used, for example.

前記シランカップリング剤としては、例えば、ビニルトリクロロシラン、ビニルトリス(β−メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン等のビニルシラン;γ−メタクリロキシプロピルトリメトキシシラン;β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン等のエポキシシラン;N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等のアミノシラン;および、その他のシランカップリング剤として、γ−メルカプトプロピルトリメトキシシラン、γ−クロロプロピルメチルジメトキシシラン、γ−クロロプロピルメチルジエトキシシラン等が挙げられる。   Examples of the silane coupling agent include vinyl silanes such as vinyltrichlorosilane, vinyltris (β-methoxyethoxy) silane, vinyltriethoxysilane, and vinyltrimethoxysilane; γ-methacryloxypropyltrimethoxysilane; β- (3, 4-epoxycyclohexyl) epoxysilane such as ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane; N-β- (aminoethyl) -γ-aminopropyltrimethoxy Aminosilanes such as silane, N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane, γ-aminopropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane; and other silane coupling agents When And γ-mercaptopropyltrimethoxysilane, γ-chloropropylmethyldimethoxysilane, γ-chloropropylmethyldiethoxysilane, and the like.

前記チタンカップリング剤としては、例えば、イソプロピルトリイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2−ジアリルオキシメチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、イソプロピルトリ(N−アミノエチル・アミノエチル)チタネート、ジクミルフェニルオキシアセテートチタネート、ジイソステアロイルエチレンチタネート等が挙げられる。   Examples of the titanium coupling agent include isopropyl triisostearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl tris (dioctylpyrophosphate) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraoctyl bis (ditridecyl phosphite). ) Titanate, tetra (2,2-diallyloxymethyl) bis (ditridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyltrioctanoyl titanate, isopropyldimethacryliso Stearoyl titanate, isopropyl isostearoyl diacryl titanate, Propyl tri (dioctyl phosphate) titanate, isopropyl tricumylphenyl titanate, isopropyl tri (N- aminoethyl-aminoethyl) titanate, dicumyl phenyloxy acetate titanate, diisostearoyl ethylene titanate.

前記ジルコニウムカップリング剤としては、例えば、テトラ−n−プロポキシジルコニウム、テトラ−ブトキシジルコニウム、ジルコニウムテトラアセチルアセトネート、ジルコニウムジブトキシビス(アセチルアセトネート)、ジルコニウムトリブトキシエチルアセトアセテート、ジルコニウムブトキシアセチルアセトネートビス(エチルアセトアセテート)等が挙げられる。   Examples of the zirconium coupling agent include tetra-n-propoxyzirconium, tetra-butoxyzirconium, zirconium tetraacetylacetonate, zirconium dibutoxybis (acetylacetonate), zirconium tributoxyethyl acetoacetate, zirconium butoxyacetylacetonate. Examples thereof include bis (ethyl acetoacetate).

前記アルミニウムカップリング剤としては、例えば、アルミニウムイソプロピレート、モノsec−ブトキシアルミニウムジイソプロピレート、アルミニウムsec−ブチレート、アルミニウムエチレート、エチルアセトアセテエートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、アルキルアセトアセテートアルミニウムジイソプロピレート、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトアセテート)等を挙げることができる。   Examples of the aluminum coupling agent include aluminum isopropylate, monosec-butoxyaluminum diisopropylate, aluminum sec-butyrate, aluminum ethylate, ethylacetoacetate aluminum diisopropylate, aluminum tris (ethylacetoacetate), alkyl Examples thereof include acetoacetate aluminum diisopropylate, aluminum monoacetylacetonate bis (ethylacetoacetate), aluminum tris (acetylacetoacetate) and the like.

前記有機金属カップリング剤は、本発明のナノインプリント用硬化性組成物の固形分全量中に0.001〜10質量%の割合で任意に配合できる。前記有機金属カップリング剤の割合を0.001質量%以上とすると、耐熱性、強度、蒸着層との密着性の付与の向上についてより効果的な傾向にある。一方、有機金属カップリング剤の割合を10質量%以下とすると、組成物の安定性、成膜性の欠損を抑止できる傾向にあり好ましい。   The said organometallic coupling agent can be arbitrarily mix | blended in the ratio of 0.001-10 mass% in solid content whole quantity of the curable composition for nanoimprints of this invention. When the ratio of the organometallic coupling agent is 0.001% by mass or more, it tends to be more effective in improving heat resistance, strength, and adhesion with the deposited layer. On the other hand, when the ratio of the organometallic coupling agent is 10% by mass or less, it is preferable because defects in stability and film forming property of the composition can be suppressed.

本発明のナノインプリント用硬化性組成物には、貯蔵安定性等を向上させるために、重合禁止剤を配合してもよい。重合禁止剤としては、例えば、ハイドロキノン、tert−ブチルハイドロキノン、カテコール、ハイドロキノンモノメチルエーテル等のフェノール類;ベンゾキノン、ジフェニルベンゾキノン等のキノン類;フェノチアジン類;銅類等を用いることができる。重合禁止剤は、本発明の組成物の全量に対して任意に0.001〜10質量%の割合で配合するのが好ましい。   In order to improve storage stability etc., you may mix | blend a polymerization inhibitor with the curable composition for nanoimprint of this invention. Examples of the polymerization inhibitor include phenols such as hydroquinone, tert-butylhydroquinone, catechol, and hydroquinone monomethyl ether; quinones such as benzoquinone and diphenylbenzoquinone; phenothiazines; coppers and the like. The polymerization inhibitor is preferably blended arbitrarily in a proportion of 0.001 to 10% by mass with respect to the total amount of the composition of the present invention.

本発明のナノインプリント用硬化性組成物には紫外線吸収剤を用いることもできる。前記紫外線吸収剤の市販品としては、Tinuvin P、234、320、326、327、328、213(以上、チバガイギー(株)製)、Sumisorb110、130、140、220、250、300、320、340、350、400(以上、住友化学工業(株)製)等が挙げられる。前記紫外線吸収剤は、光ナノインプリント用硬化性組成物の全量に対して任意に0.01〜10質量%の割合で配合するのが好ましい。   An ultraviolet absorber can also be used for the curable composition for nanoimprints of the present invention. Commercially available UV absorbers include Tinuvin P, 234, 320, 326, 327, 328, 213 (above, manufactured by Ciba Geigy Co., Ltd.), Sumisorb 110, 130, 140, 220, 250, 300, 320, 340, 350, 400 (manufactured by Sumitomo Chemical Co., Ltd.) and the like. The ultraviolet absorber is preferably blended arbitrarily in a proportion of 0.01 to 10% by mass with respect to the total amount of the curable composition for optical nanoimprint.

本発明のナノインプリント用硬化性組成物には光安定剤を用いることもできる。前記光安定剤の市販品としては、Tinuvin 292、144、622LD(以上、チバガイギー(株)製)、サノールLS−770、765、292、2626、1114、744(以上、三共化成工業(株)製)等が挙げられる。光安定剤は組成物の全量に対し、0.01〜10質量%の割合で配合するのが好ましい。   A light stabilizer can also be used in the curable composition for nanoimprinting of the present invention. Commercially available products of the light stabilizer include Tinuvin 292, 144, 622LD (manufactured by Ciba Geigy Corp.), Sanol LS-770, 765, 292, 2626, 1114, 744 (manufactured by Sankyo Kasei Kogyo Co., Ltd.). ) And the like. The light stabilizer is preferably blended at a ratio of 0.01 to 10% by mass with respect to the total amount of the composition.

本発明のナノインプリント用硬化性組成物には老化防止剤を用いることもできる。前記老化防止剤の市販品としては、Antigene W、S、P、3C、6C、RD−G、FR、AW(以上、住友化学工業(株)製)等が挙げられる。老化防止剤は組成物の全量に対し、0.01〜10質量%の割合で配合するのが好ましい。   An anti-aging agent can also be used in the curable composition for nanoimprints of the present invention. Examples of commercially available anti-aging agents include Antigene W, S, P, 3C, 6C, RD-G, FR, and AW (manufactured by Sumitomo Chemical Co., Ltd.). The anti-aging agent is preferably blended at a ratio of 0.01 to 10% by mass with respect to the total amount of the composition.

本発明のナノインプリント用硬化性組成物には基板との接着性や膜の柔軟性、硬度等を調整するために可塑剤を加えることが可能である。好ましい可塑剤の具体例としては、例えば、ジオクチルフタレート、ジドデシルフタレート、トリエチレングリコールジカプリレート、ジメチルグリコールフタレート、トリクレジルホスフェート、ジオクチルアジペート、ジブチルセバケート、トリアセチルグリセリン、ジメチルアジペート、ジエチルアジペート、ジ(n−ブチル)アジペート、ジメチルスベレート、ジエチルスベレート、ジ(n−ブチル)スベレート等があり、可塑剤は組成物中の30質量%以下で任意に添加することができる。好ましくは20質量%以下で、より好ましくは10質量%以下である。可塑剤の添加効果を得るためには、0.1質量%以上が好ましい。   A plasticizer can be added to the curable composition for nanoimprinting of the present invention in order to adjust the adhesion to the substrate, the flexibility of the film, the hardness, and the like. Specific examples of preferred plasticizers include, for example, dioctyl phthalate, didodecyl phthalate, triethylene glycol dicaprylate, dimethyl glycol phthalate, tricresyl phosphate, dioctyl adipate, dibutyl sebacate, triacetyl glycerin, dimethyl adipate, diethyl adipate , Di (n-butyl) adipate, dimethyl suberate, diethyl suberate, di (n-butyl) suberate and the like, and a plasticizer can be optionally added at 30% by mass or less in the composition. Preferably it is 20 mass% or less, More preferably, it is 10 mass% or less. In order to obtain the effect of adding a plasticizer, 0.1% by mass or more is preferable.

本発明のナノインプリント用硬化性組成物には基板との接着性等を調整するために密着促進剤を添加してもよい。密着促進剤として、ベンズイミダゾール類やポリベンズイミダゾール類、低級ヒドロキシアルキル置換ピリジン誘導体、含窒素複素環化合物、ウレアまたはチオウレア、有機リン化合物、8−オキシキノリン、4−ヒドロキシプテリジン、1,10−フェナントロリン、2,2'−ビピリジン誘導体、ベンゾトリアゾール類、有機リン化合物とフェニレンジアミン化合物、2−アミノ−1−フェニルエタノール、N−フェニルエタノールアミン、N−エチルジエタノールアミン,N−エチルジエタノールアミン、N−エチルエタノールアミンおよび誘導体、ベンゾチアゾール誘導体などを使用することができる。密着促進剤は、組成物中の好ましくは20質量%以下、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。密着促進剤の添加は効果を得るためには、0.1質量%以上が好ましい。   An adhesion promoter may be added to the curable composition for nanoimprinting of the present invention in order to adjust adhesion to the substrate. Adhesion promoters include benzimidazoles and polybenzimidazoles, lower hydroxyalkyl-substituted pyridine derivatives, nitrogen-containing heterocyclic compounds, urea or thiourea, organophosphorus compounds, 8-oxyquinoline, 4-hydroxypteridine, 1,10-phenanthroline 2,2'-bipyridine derivatives, benzotriazoles, organophosphorus compounds and phenylenediamine compounds, 2-amino-1-phenylethanol, N-phenylethanolamine, N-ethyldiethanolamine, N-ethyldiethanolamine, N-ethylethanol Amines and derivatives, benzothiazole derivatives, and the like can be used. The adhesion promoter in the composition is preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less. The addition of the adhesion promoter is preferably 0.1% by mass or more in order to obtain the effect.

本発明の組成物を硬化させる場合、必要に応じて熱重合開始剤も添加することができる。好ましい熱重合開始剤としては、例えば過酸化物、アゾ化合物を挙げることができる。具体例としては、ベンゾイルパーオキサイド、tert−ブチル−パーオキシベンゾエート、アゾビスイソブチロニトリル等を挙げることができる。熱重合開始剤は、組成物中の好ましくは15質量%以下、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。熱重合開始剤の添加は効果を得るためには、0.1質量%以上が好ましい。   When hardening the composition of this invention, a thermal-polymerization initiator can also be added as needed. Preferred examples of the thermal polymerization initiator include peroxides and azo compounds. Specific examples include benzoyl peroxide, tert-butyl-peroxybenzoate, azobisisobutyronitrile, and the like. The thermal polymerization initiator in the composition is preferably 15% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less. The addition of the thermal polymerization initiator is preferably 0.1% by mass or more in order to obtain the effect.

本発明のナノインプリント用硬化性組成物は、パターン形状、感度等を調整する目的で、必要に応じて光塩基発生剤を添加してもよい。例えば、2−ニトロベンジルシクロヘキシルカルバメート、トリフェニルメタノール、O−カルバモイルヒドロキシルアミド、O−カルバモイルオキシム、[[(2,6−ジニトロベンジル)オキシ]カルボニル]シクロヘキシルアミン、ビス[[(2−ニトロベンジル)オキシ]カルボニル]ヘキサン1,6−ジアミン、4−(メチルチオベンゾイル)−1−メチル−1−モルホリノエタン、(4−モルホリノベンゾイル)−1−ベンジル−1−ジメチルアミノプロパン、N−(2−ニトロベンジルオキシカルボニル)ピロリジン、ヘキサアンミンコバルト(III)トリス(トリフェニルメチルボレート)、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン、2,6−ジメチル−3,5−ジアセチル−4−(2'−ニトロフェニル)−1,4−ジヒドロピリジン、2,6−ジメチル−3,5−ジアセチル−4−(2',4'−ジニトロフェニル)−1,4−ジヒドロピリジン等が好ましいものとして挙げられる。   The curable composition for nanoimprinting of the present invention may contain a photobase generator as necessary for the purpose of adjusting the pattern shape, sensitivity, and the like. For example, 2-nitrobenzylcyclohexylcarbamate, triphenylmethanol, O-carbamoylhydroxylamide, O-carbamoyloxime, [[(2,6-dinitrobenzyl) oxy] carbonyl] cyclohexylamine, bis [[(2-nitrobenzyl) Oxy] carbonyl] hexane 1,6-diamine, 4- (methylthiobenzoyl) -1-methyl-1-morpholinoethane, (4-morpholinobenzoyl) -1-benzyl-1-dimethylaminopropane, N- (2-nitro Benzyloxycarbonyl) pyrrolidine, hexaamminecobalt (III) tris (triphenylmethylborate), 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone, 2,6-dimethyl-3,5- Diacetyl-4 Preferred examples include (2′-nitrophenyl) -1,4-dihydropyridine, 2,6-dimethyl-3,5-diacetyl-4- (2 ′, 4′-dinitrophenyl) -1,4-dihydropyridine, and the like. It is done.

本発明のナノインプリント用硬化性組成物には、塗膜の視認性を向上するなどの目的で、着色剤を任意に添加してもよい。着色剤は、UVインクジェット組成物、カラーフィルタ用組成物およびCCDイメージセンサ用組成物等で用いられている顔料や染料を本発明の目的を損なわない範囲で用いることができる。本発明で用いることができる顔料としては、従来公知の種々の無機顔料または有機顔料を用いることができる。無機顔料としては、金属酸化物、金属錯塩等で示される金属化合物であり、具体的には鉄、コバルト、アルミニウム、カドミウム、鉛、銅、チタン、マグネシウム、クロム、亜鉛、アンチモン等の金属酸化物、金属複合酸化物を挙げることができる。有機顔料としては、C.I.Pigment Yellow 11, 24, 31, 53, 83, 99, 108, 109, 110, 138, 139,151, 154, 167、C.I.Pigment Orange 36, 38, 43、C.I.Pigment Red 105, 122, 149, 150, 155, 171, 175, 176, 177, 209、C.I.Pigment Violet 19, 23, 32, 39、C.I.Pigment Blue 1, 2, 15, 16, 22, 60, 66、C.I.Pigment Green 7, 36, 37、C.I.Pigment Brown 25, 28、C.I.Pigment Black 1, 7および、カーボンブラックを例示できる。着色剤は組成物の全量に対し、0.001〜2質量%の割合で配合するのが好ましい。   In the curable composition for nanoimprints of the present invention, a colorant may be optionally added for the purpose of improving the visibility of the coating film. As the colorant, pigments and dyes used in UV inkjet compositions, color filter compositions, CCD image sensor compositions, and the like can be used as long as the object of the present invention is not impaired. As the pigment that can be used in the present invention, conventionally known various inorganic pigments or organic pigments can be used. Examples of inorganic pigments are metal compounds such as metal oxides and metal complex salts. Specifically, metal oxides such as iron, cobalt, aluminum, cadmium, lead, copper, titanium, magnesium, chromium, zinc, and antimony And metal complex oxides. Organic pigments include CIPigment Yellow 11, 24, 31, 53, 83, 99, 108, 109, 110, 138, 139,151, 154, 167, CIPigment Orange 36, 38, 43, CIPigment Red 105, 122, 149, 150, 155, 171, 175, 176, 177, 209, CIPigment Violet 19, 23, 32, 39, CIPigment Blue 1, 2, 15, 16, 22, 60, 66, CIPigment Green 7, 36 37, CIPigment Brown 25, 28, CIPigment Black 1, 7 and carbon black. The colorant is preferably blended at a ratio of 0.001 to 2% by mass with respect to the total amount of the composition.

また、本発明のナノインプリント用硬化性組成物では、機械的強度、柔軟性等を向上するなどの目的で、任意成分としてエラストマー粒子を添加してもよい。
本発明の組成物に任意成分として添加できるエラストマー粒子は、平均粒子サイズが好ましくは10nm〜700nm、より好ましくは30〜300nmである。例えばポリブタジエン、ポリイソプレン、ブタジエン/アクリロニトリル共重合体、スチレン/ブタジエン共重合体、スチレン/イソプレン共重合体、エチレン/プロピレン共重合体、エチレン/α−オレフィン系共重合体、エチレン/α−オレフィン/ポリエン共重合体、アクリルゴム、ブタジエン/(メタ)アクリル酸エステル共重合体、スチレン/ブタジエンブロック共重合体、スチレン/イソプレンブロック共重合体などのエラストマーの粒子である。またこれらエラストマー粒子を、メチルメタアクリレートポリマー、メチルメタアクリレート/グリシジルメタアクリレート共重合体などで被覆したコア/シェル型の粒子を用いることができる。エラストマー粒子は架橋構造をとっていてもよい。
In the curable composition for nanoimprints of the present invention, elastomer particles may be added as an optional component for the purpose of improving mechanical strength, flexibility and the like.
The elastomer particles that can be added as an optional component to the composition of the present invention preferably have an average particle size of 10 nm to 700 nm, more preferably 30 to 300 nm. For example, polybutadiene, polyisoprene, butadiene / acrylonitrile copolymer, styrene / butadiene copolymer, styrene / isoprene copolymer, ethylene / propylene copolymer, ethylene / α-olefin copolymer, ethylene / α-olefin / Particles of elastomer such as polyene copolymer, acrylic rubber, butadiene / (meth) acrylic ester copolymer, styrene / butadiene block copolymer, styrene / isoprene block copolymer. Further, core / shell type particles in which these elastomer particles are coated with a methyl methacrylate polymer, a methyl methacrylate / glycidyl methacrylate copolymer or the like can be used. The elastomer particles may have a crosslinked structure.

エラストマー粒子の市販品としては、例えば、レジナスボンドRKB(レジナス化成(株)製)、テクノMBS−61、MBS−69(以上、テクノポリマー(株)製)等を挙げることができる。   Examples of commercially available elastomer particles include Resin Bond RKB (manufactured by Resinas Kasei Co., Ltd.), Techno MBS-61, MBS-69 (manufactured by Techno Polymer Co., Ltd.), and the like.

これらエラストマー粒子は単独で、または2種以上組み合わせて使用することができる。本発明の組成物におけるエラストマー成分の含有割合は、好ましくは1〜35質量%であり、より好ましくは2〜30質量%、特に好ましくは3〜20質量%である。   These elastomer particles can be used alone or in combination of two or more. The content of the elastomer component in the composition of the present invention is preferably 1 to 35% by mass, more preferably 2 to 30% by mass, and particularly preferably 3 to 20% by mass.

本発明のナノインプリント用硬化性組成物には、硬化収縮の抑制、熱安定性を向上するなどの目的で、塩基性化合物を任意に添加してもよい。塩基性化合物としては、アミンならびに、キノリンおよびキノリジンなど含窒素複素環化合物、塩基性アルカリ金属化合物、塩基性アルカリ土類金属化合物などが挙げられる。これらの中でも、光重合成モノマーとの相溶性の面からアミンが好ましく、例えば、オクチルアミン、ナフチルアミン、キシレンジアミン、ジベンジルアミン、ジフェニルアミン、ジブチルアミン、ジオクチルアミン、ジメチルアニリン、キヌクリジン、トリブチルアミン、トリオクチルアミン、テトラメチルエチレンジアミン、テトラメチル−1,6−ヘキサメチレンジアミン、ヘキサメチレンテトラミンおよびトリエタノールアミンなどが挙げられる。   A basic compound may be optionally added to the curable composition for nanoimprinting of the present invention for the purpose of suppressing curing shrinkage and improving thermal stability. Examples of the basic compound include amines, nitrogen-containing heterocyclic compounds such as quinoline and quinolidine, basic alkali metal compounds, basic alkaline earth metal compounds, and the like. Among these, amine is preferable from the viewpoint of compatibility with the photopolymerization monomer, for example, octylamine, naphthylamine, xylenediamine, dibenzylamine, diphenylamine, dibutylamine, dioctylamine, dimethylaniline, quinuclidine, tributylamine, Examples include octylamine, tetramethylethylenediamine, tetramethyl-1,6-hexamethylenediamine, hexamethylenetetramine, and triethanolamine.

本発明のナノインプリント用硬化性組成物には、光硬化性向上のために、連鎖移動剤を添加してもよい。具体的には、4−ビス(3−メルカプトブチリルオキシ)ブタン、1,3,5−トリス(3−メルカプトブチルオキシエチル)1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン、ペンタエリスリトールテトラキス(3−メルカプトブチレート)を挙げることができる。   A chain transfer agent may be added to the nanoimprint curable composition of the present invention in order to improve photocurability. Specifically, 4-bis (3-mercaptobutyryloxy) butane, 1,3,5-tris (3-mercaptobutyloxyethyl) 1,3,5-triazine-2,4,6 (1H, 3H , 5H) -trione, pentaerythritol tetrakis (3-mercaptobutyrate).

本発明のナノインプリント用硬化性組成物は、表面張力が、18〜30mN/mの範囲にあることが好ましく、20〜28mN/mの範囲にあることがより好ましい。このような範囲とすることにより、表面平滑性を向上させることができる。また、本発明の組成物は、調製時における水分量が好ましくは2.0質量%以下、より好ましくは1.5質量%、さらに好ましくは1.0質量%以下である。調製時における水分量を2.0質量%以下とすることにより、本発明の組成物の保存性をより安定にすることができる。   The curable composition for nanoimprints of the present invention preferably has a surface tension in the range of 18 to 30 mN / m, and more preferably in the range of 20 to 28 mN / m. By setting it as such a range, surface smoothness can be improved. Moreover, the water content at the time of preparation of the composition of the present invention is preferably 2.0% by mass or less, more preferably 1.5% by mass, and still more preferably 1.0% by mass or less. By making the water content at the time of preparation 2.0% by mass or less, the storage stability of the composition of the present invention can be made more stable.

本発明の組成物の粘度について説明する。本発明における粘度は特に述べない限り、25℃における粘度をいい、いずれも溶剤添加前に測定した値を指す。本発明のナノインプリント用硬化性組成物は、25℃における粘度が、3〜18mPa・sであることが好ましく、5〜15mPa・sであることがさらに好ましく、7〜12mPa・sであることが特に好ましい。本発明の組成物の粘度を3mPa・s以上とすることにより、基板塗布適性の問題や膜の機械的強度の低下が生じにくい傾向にある。具体的には、粘度を3mPa・s以上とすることによって、組成物の塗布の際に面上ムラを生じたり、塗布時に基板から組成物が流れ出たりするのを抑止できる傾向にある。また、本発明の組成物の粘度を18mPa・s以下とすることにより、微細な凹凸パターンを有するモールドを組成物に密着させた場合でも、モールドの凹部のキャビティ内にも組成物が流れ込み、大気が取り込まれにくくなるため、バブル欠陥を引き起こしにくくなり、モールド凸部において光硬化後に残渣が残りにくくなり好ましい。   The viscosity of the composition of the present invention will be described. The viscosity in the present invention means a viscosity at 25 ° C. unless otherwise specified, and all indicate values measured before adding a solvent. The curable composition for nanoimprints of the present invention preferably has a viscosity at 25 ° C. of 3 to 18 mPa · s, more preferably 5 to 15 mPa · s, and particularly preferably 7 to 12 mPa · s. preferable. By setting the viscosity of the composition of the present invention to 3 mPa · s or more, there is a tendency that problems of substrate coating suitability and a decrease in mechanical strength of the film hardly occur. Specifically, by setting the viscosity to 3 mPa · s or more, there is a tendency that unevenness on the surface can be prevented during the application of the composition or the composition can be prevented from flowing out of the substrate during the application. Further, by setting the viscosity of the composition of the present invention to 18 mPa · s or less, even when a mold having a fine concavo-convex pattern is brought into close contact with the composition, the composition flows into the cavity of the concave portion of the mold, and the atmosphere Is less likely to be taken in, so that it is difficult to cause bubble defects, and it is difficult for residues to remain after photocuring in the mold convex portion.

一般的に、組成物の粘度を調整するには、粘度の異なる各種の単量体、オリゴマー、ポリマーをプレンドすることが可能である。本発明のナノインプリント用硬化性組成物の粘度を前記範囲内に設計するためには、これら3種の成分のうち単量体が閉める割合を80質量%以上とすることが好ましい。   Generally, in order to adjust the viscosity of the composition, it is possible to blend various monomers, oligomers and polymers having different viscosities. In order to design the viscosity of the curable composition for nanoimprinting of the present invention within the above range, it is preferable that the ratio of the monomer to be closed among these three components is 80% by mass or more.

[硬化物の製造方法]
次に、本発明のナノインプリント用硬化性組成物を用いた硬化物(特に、微細凹凸パターン)の製造方法について説明する。本発明の硬化物の製造方法では、本発明のナノインプリント用硬化性組成物を基板または支持体(基材)上に塗布してパターン形成層を形成する工程と、前記パターン形成層表面にモールドを圧接する工程と、前記パターン形成層に光を照射する工程と、を経て本発明の組成物を硬化することで、微細な凹凸パターンを形成することができる。特に本発明においては、硬化物の硬化度を向上させるために、更に、光照射後にパターン形成層を加熱する工程を含むことが好ましい。
本発明の硬化物の製造方法によって得られた硬化物は、パーターン精密度、硬化性、光透過性に優れ、特に、液晶カラーフィルタの保護膜、スペーサー、その他の液晶表示装置用部材として好適に用いることができる。
具体的には、基材(基板または支持体)上に少なくとも本発明の組成物からなるパターン形成層を塗布し、必要に応じて乾燥させて本発明の組成物からなる層(パターン形成層)を形成してパターン受容体(基材上にパターン形成層が設けられたもの)を作製し、当該パターン受容体のパターン形成層表面にモールドを圧接し、モールドパターンを転写する加工を行い、微細凹凸パターン形成層を光照射および加熱により硬化させる。光照射および加熱は複数回に渡って行ってもよい。本発明のパターン形成方法(硬化物の製造方法)による光インプリントリソグラフィは、積層化や多重パターニングもでき、通常の熱インプリントと組み合わせて用いることもできる。
[Method for producing cured product]
Next, the manufacturing method of the hardened | cured material (especially fine uneven | corrugated pattern) using the curable composition for nanoimprints of this invention is demonstrated. In the method for producing a cured product of the present invention, a step of forming a pattern forming layer by applying the curable composition for nanoimprinting of the present invention on a substrate or a support (base material), and a mold on the surface of the pattern forming layer. A fine concavo-convex pattern can be formed by curing the composition of the present invention through the step of pressing and the step of irradiating the pattern forming layer with light. In particular, in the present invention, in order to improve the degree of curing of the cured product, it is preferable to further include a step of heating the pattern forming layer after light irradiation.
The cured product obtained by the method for producing a cured product of the present invention is excellent in pattern precision, curability, and light transmittance, and is particularly suitable as a protective film for liquid crystal color filters, spacers, and other liquid crystal display device members. Can be used.
Specifically, a layer (pattern forming layer) consisting of the composition of the present invention is applied on a base material (substrate or support) by applying at least a pattern forming layer consisting of the composition of the present invention and drying as necessary. To form a pattern receptor (with a pattern-forming layer provided on the substrate), press the mold against the surface of the pattern-receiving layer of the pattern receptor, and transfer the mold pattern. The concavo-convex pattern forming layer is cured by light irradiation and heating. Light irradiation and heating may be performed a plurality of times. The optical imprint lithography according to the pattern forming method (a method for producing a cured product) of the present invention can be laminated and multiple patterned, and can be used in combination with ordinary thermal imprint.

本発明のナノインプリント用硬化性組成物は、光ナノインプリント法により微細なパターンを低コスト且つ高い精度で形成すること可能である。このため、従来のフォトリソグラフィ技術を用いて形成されていたものをさらに高い精度且つ低コストで形成することができる。例えば、基板または支持体上に本発明の組成物を塗布し、該組成物からなる層を露光、硬化、必要に応じて乾燥(ベーク)させることによって、液晶ディスプレイ(LCD)などに用いられる、オーバーコート層や絶縁膜などの永久膜や、半導体集積回路、記録材料、あるいはフラットパネルディスプレイなどのエッチングレジストとして適用することも可能である。特に本発明のナノインプリント用硬化性組成物を用いて形成されたパターンは、エッチング性にも優れ、フッ化炭素等を用いるドライエッチングのエッチングレジストとしても好ましく用いることができる。本発明のナノインプリント用硬化性組成物は、硬化後の光透過性に優れることから、特にオーバーコート層や絶縁膜などの永久膜を作製に好適である。   The curable composition for nanoimprinting of the present invention can form a fine pattern with low cost and high accuracy by an optical nanoimprinting method. For this reason, what was formed using the conventional photolithographic technique can be formed with further high precision and low cost. For example, the composition of the present invention is applied on a substrate or a support, and a layer made of the composition is exposed, cured, and dried (baked) as necessary to be used for a liquid crystal display (LCD). It can also be applied as a permanent film such as an overcoat layer or an insulating film, an etching resist for a semiconductor integrated circuit, a recording material, or a flat panel display. In particular, the pattern formed using the curable composition for nanoimprinting of the present invention is excellent in etching property and can be preferably used as an etching resist for dry etching using fluorocarbon or the like. Since the curable composition for nanoimprinting of the present invention is excellent in light transmittance after curing, it is particularly suitable for producing a permanent film such as an overcoat layer or an insulating film.

液晶ディスプレイ(LCD)などに用いられる永久膜(構造部材用のレジスト)や電子材料の基板加工に用いられるレジストにおいては、製品の動作を阻害しないようにするため、レジスト中の金属あるいは有機物のイオン性不純物の混入を極力避けることが望ましい。このため、本発明のナノインプリント用硬化性組成物中における金属または有機物のイオン性不純物の濃度としては、1000ppm以下、望ましくは10ppm以下、さらに好ましくは100ppb以下にすることが好ましい。   In permanent films (resist for structural members) used in liquid crystal displays (LCDs) and resists used in substrate processing of electronic materials, ions of metals or organic substances in the resist are used so as not to hinder the operation of the product. It is desirable to avoid contamination with sexual impurities as much as possible. For this reason, the concentration of the ionic impurities of the metal or organic matter in the curable composition for nanoimprints of the present invention is preferably 1000 ppm or less, desirably 10 ppm or less, more preferably 100 ppb or less.

以下において、本発明のナノインプリント用硬化性組成物を用いた硬化物の製造方法(パターン形成方法(パターン転写方法))について具体的に述べる。
本発明の硬化物の製造方法においては、まず、本発明の組成物を基材上に塗布してパターン形成層を形成する。
本発明のナノインプリント用硬化性組成物を基材上に塗布する際の塗布方法としては、一般によく知られた塗布方法、例えば、ディップコート法、エアーナイフコート法、カーテンコート法、ワイヤーバーコート法、グラビアコート法、エクストルージョンコート法、スピンコート方法、スリットスキャン法などを挙げることができる。また、本発明の組成物からなるパターン形成層の膜厚は、使用する用途によって異なるが、0.05μm〜30μm程度である。また、本発明の組成物を、多重塗布により塗布してもよい。尚、基材と本発明の組成物からなるパターン形成層との間には、例えば平坦化層や接着剤層等の他の有機層などを形成してもよい。これにより、パターン形成層と基材とが直接接しないことから、基材に対するごみの付着や基材の損傷等を防止したり、パターン形成層と基材との密着性を向上したりすることができる。尚、本発明の組成物によって形成されるパターンは、基材上に有機層を設けた場合であっても、有機層との密着性に優れる。
Below, the manufacturing method (pattern formation method (pattern transfer method)) of the hardened | cured material using the curable composition for nanoimprints of this invention is described concretely.
In the manufacturing method of the hardened | cured material of this invention, first, the composition of this invention is apply | coated on a base material, and a pattern formation layer is formed.
As a coating method when the curable composition for nanoimprinting of the present invention is coated on a substrate, generally known coating methods such as a dip coating method, an air knife coating method, a curtain coating method, and a wire bar coating method are used. , Gravure coating method, extrusion coating method, spin coating method, slit scanning method and the like. Moreover, although the film thickness of the pattern formation layer which consists of a composition of this invention changes with uses to be used, it is about 0.05 micrometer-30 micrometers. Further, the composition of the present invention may be applied by multiple coating. In addition, you may form other organic layers, such as a planarization layer and an adhesive bond layer, for example between a base material and the pattern formation layer which consists of a composition of this invention. As a result, the pattern forming layer and the base material are not in direct contact with each other, so that adhesion of dust to the base material, damage to the base material, etc. can be prevented, or the adhesion between the pattern forming layer and the base material can be improved. Can do. In addition, the pattern formed with the composition of this invention is excellent in adhesiveness with an organic layer, even when it is a case where an organic layer is provided on a base material.

本発明のナノインプリント用硬化性組成物を塗布するための基材(基板または支持体)は、種々の用途によって選択可能であり、例えば、石英、ガラス、光学フィルム、セラミック材料、蒸着膜、磁性膜、反射膜、Ni,Cu,Cr,Feなどの金属基板、紙、SOG((Spin On Glass)、ポリエステルフイルム、ポリカーボネートフィルム、ポリイミドフィルム等のポリマー基板、TFTアレイ基板、PDPの電極板、ガラスや透明プラスチック基板、ITOや金属などの導電性基材、絶縁性基材、シリコーン、窒化シリコーン、ポリシリコーン、酸化シリコーン、アモルファスシリコーンなどの半導体作製基板など特に制約されない。また、基材の形状も特に限定されるものではなく、板状でもよいし、ロール状でもよい。また、後述のように前記基材としては、モールドとの組み合わせ等に応じて、光透過性、または、非光透過性のものを選択することができる。   The substrate (substrate or support) on which the curable composition for nanoimprinting of the present invention is applied can be selected depending on various applications, such as quartz, glass, optical film, ceramic material, vapor deposition film, and magnetic film. , Reflective film, metal substrate such as Ni, Cu, Cr, Fe, paper, polymer substrate such as SOG ((Spin On Glass), polyester film, polycarbonate film, polyimide film, TFT array substrate, PDP electrode plate, glass, etc. There are no particular restrictions on transparent plastic substrates, conductive substrates such as ITO and metals, insulating substrates, semiconductor fabrication substrates such as silicone, silicon nitride, polysilicon, silicone oxide, and amorphous silicone. It is not limited and may be plate-shaped or roll-shaped, as will be described later. In addition, as the substrate, a light-transmitting or non-light-transmitting material can be selected according to the combination with the mold or the like.

次いで、本発明の硬化物の製造方法においては、パターン形成層にパターンを転写するために、パターン形成層表面にモールドを(押圧)押接する。これにより、モールドの押圧表面にあらかじめ形成された微細なパターンをパターン形成層に転写することができる。
本発明で用いることのできるモールド材について説明する。本発明の組成物を用いた光ナノインプリントリソグラフィは、モールド材および/または基材の少なくとも一方に、光透過性の材料を選択する。本発明に適用される光インプリントリソグラフィでは、基材の上に本発明のナノインプリント用硬化性組成物を塗布してパターン形成層を形成し、この表面に光透過性のモールドを押圧し、モールドの裏面から光を照射し、前記パターン形成層を硬化させる。また、光透過性基材上に光ナノインプリント用硬化性組成物を塗布し、モールドを押し当て、基材の裏面から光を照射し、光ナノインプリント用硬化性組成物を硬化させることもできる。
前記光照射は、モールドを付着させた状態で行ってもよいし、モールド剥離後に行ってもよいが、本発明では、モールドを密着させた状態で行うのが好ましい。
Subsequently, in the manufacturing method of the hardened | cured material of this invention, in order to transcribe | transfer a pattern to a pattern formation layer, a mold is pressed (pressed) on the pattern formation layer surface. Thereby, the fine pattern previously formed on the pressing surface of the mold can be transferred to the pattern forming layer.
The molding material that can be used in the present invention will be described. In optical nanoimprint lithography using the composition of the present invention, a light transmissive material is selected as at least one of a molding material and / or a base material. In optical imprint lithography applied to the present invention, a curable composition for nanoimprinting of the present invention is applied on a substrate to form a pattern forming layer, and a light-transmitting mold is pressed on this surface, The pattern forming layer is cured by irradiating light from the back surface. Moreover, the curable composition for optical nanoimprint can be apply | coated on a transparent base material, a mold can be pressed, light can be irradiated from the back surface of a base material, and the curable composition for optical nanoimprint can also be hardened.
The light irradiation may be performed with the mold attached or after the mold is peeled off. In the present invention, the light irradiation is preferably performed with the mold in close contact.

本発明で用いることのできるモールドは、転写されるべきパターンを有するモールドが使われる。前記モールド上のパターンは、例えば、フォトリソグラフィや電子線描画法等によって、所望する加工精度に応じてパターンが形成できるが、本発明では、モールドパターン形成方法は特に制限されない。
本発明において用いられる光透過性モールド材は、特に限定されないが、所定の強度、耐久性を有するものであればよい。具体的には、ガラス、石英、PMMA、ポリカーボネート樹脂などの光透明性樹脂、透明金属蒸着膜、ポリジメチルシロキサンなどの柔軟膜、光硬化膜、金属膜等が例示される。
As the mold that can be used in the present invention, a mold having a pattern to be transferred is used. The pattern on the mold can be formed according to the desired processing accuracy by, for example, photolithography, electron beam drawing, or the like, but the mold pattern forming method is not particularly limited in the present invention.
The light-transmitting mold material used in the present invention is not particularly limited as long as it has predetermined strength and durability. Specifically, a light transparent resin such as glass, quartz, PMMA, and polycarbonate resin, a transparent metal vapor-deposited film, a flexible film such as polydimethylsiloxane, a photocured film, and a metal film are exemplified.

本発明において光透過性の基材を用いた場合に使われる非光透過型モールド材としては、特に限定されないが、所定の強度を有するものであればよい。具体的には、セラミック材料、蒸着膜、磁性膜、反射膜、Ni、Cu、Cr、Feなどの金属基板、SiC、シリコーン、窒化シリコーン、ポリシリコーン、酸化シリコーン、アモルファスシリコーンなどの基板などが例示され、特に制約されない。また、モールドの形状も特に制約されるものではなく、板状モールド、ロール状モールドのどちらでもよい。ロール状モールドは、特に転写の連続生産性が必要な場合に適用される。   In the present invention, the non-light-transmitting mold material used when a light-transmitting substrate is used is not particularly limited as long as it has a predetermined strength. Specific examples include ceramic materials, deposited films, magnetic films, reflective films, metal substrates such as Ni, Cu, Cr, and Fe, and substrates such as SiC, silicone, silicone nitride, polysilicon, silicone oxide, and amorphous silicone. There are no particular restrictions. Further, the shape of the mold is not particularly limited, and may be either a plate mold or a roll mold. The roll mold is applied particularly when continuous transfer productivity is required.

本発明の硬化物の製造方法で用いられるモールドは、光ナノインプリント用硬化性組成物とモールド表面との剥離性を向上させるために離型処理を行ったものを用いてもよい。このようなモールドとしては、シリコーン系やフッソ系などのシランカップリング剤による処理を行ったもの、例えば、ダイキン工業(株)製のオプツールDSXや、住友スリーエム(株)製のNovec EGC−1720等、市販の離型剤も好適に用いることができる。   The mold used in the method for producing a cured product of the present invention may be a mold subjected to a release treatment in order to improve the peelability between the curable composition for optical nanoimprint and the mold surface. Examples of such molds include those that have been treated with a silane coupling agent such as silicone or fluorine, such as Optool DSX manufactured by Daikin Industries, Ltd. or Novec EGC-1720 manufactured by Sumitomo 3M Co., Ltd. Commercially available release agents can also be suitably used.

本発明の組成物を用いて光インプリントリソグラフィを行う場合、本発明の硬化物の製造方法では、通常、モールド圧力を10気圧以下で行うのが好ましい。モールド圧力を10気圧以下とすることにより、モールドや基板が変形しにくくパターン精度が向上する傾向にある。また、加圧が低いため装置を縮小できる傾向にある点からも好ましい。モールド圧力は、モールド凸部の光ナノインプリント用硬化性組成物の残膜が少なくなる範囲で、モールド転写の均一性が確保できる領域を選択することが好ましい。   When photoimprint lithography is performed using the composition of the present invention, it is usually preferable to perform the mold pressure at 10 atm or less in the method for producing a cured product of the present invention. By setting the mold pressure to 10 atm or less, the mold and the substrate are hardly deformed and the pattern accuracy tends to be improved. Further, it is preferable from the viewpoint that the apparatus can be reduced because the pressure is low. As the mold pressure, it is preferable to select a region in which the uniformity of mold transfer can be ensured within a range in which the remaining film of the curable composition for optical nanoimprinting on the mold convex portion is reduced.

本発明の硬化物の製造方法中、前記パターン形成層に光を照射する工程における光照射の照射量は、硬化に必要な照射量よりも十分大きければよい。硬化に必要な照射量は、光ナノインプリント用硬化性組成物の不飽和結合の消費量や硬化膜のタッキネスを調べて適宜決定される。
また、本発明に適用される光インプリントリソグラフィにおいては、光照射の際の基板温度は、通常、室温で行われるが、反応性を高めるために加熱をしながら光照射してもよい。光照射の前段階として、真空状態にしておくと、気泡混入防止、酸素混入による反応性低下の抑制、モールドと光ナノインプリント用硬化性組成物との密着性向上に効果があるため、真空状態で光照射してもよい。また、本発明の硬化物の製造方法中、光照射時における好ましい真空度は、10-1Paから常圧の範囲である。
In the method for producing a cured product of the present invention, the irradiation amount of light irradiation in the step of irradiating the pattern forming layer with light may be sufficiently larger than the irradiation amount necessary for curing. The irradiation amount necessary for curing is appropriately determined by examining the consumption of unsaturated bonds of the curable composition for optical nanoimprint and the tackiness of the cured film.
In the photoimprint lithography applied to the present invention, the substrate temperature at the time of light irradiation is usually room temperature, but the light irradiation may be performed while heating in order to increase the reactivity. As a pre-stage of light irradiation, if it is in a vacuum state, it is effective in preventing bubble mixing, suppressing the decrease in reactivity due to oxygen mixing, and improving the adhesion between the mold and the curable composition for optical nanoimprinting. It may be irradiated with light. Moreover, the preferable vacuum degree at the time of light irradiation in the manufacturing method of the hardened | cured material of this invention is the range of 10 <-1 > Pa to normal pressure.

本発明のナノインプリント用硬化性組成物を硬化させるために用いられる光は特に限定されず、例えば、高エネルギー電離放射線、近紫外、遠紫外、可視、赤外等の領域の波長の光または放射線が挙げられる。高エネルギー電離放射線源としては、例えば、コッククロフト型加速器、ハンデグラーフ型加速器、リニヤーアクセレーター、ベータトロン、サイクロトロン等の加速器によって加速された電子線が工業的に最も便利且つ経済的に使用されるが、その他に放射性同位元素や原子炉等から放射されるγ線、X線、α線、中性子線、陽子線等の放射線も使用できる。紫外線源としては、例えば、紫外線螢光灯、低圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノン灯、炭素アーク灯、太陽灯等が挙げられる。放射線には、例えばマイクロ波、EUVが含まれる。また、LED、半導体レーザー光、あるいは248nmのKrFエキシマレーザー光や193nmArFエキシマレーザーなどの半導体の微細加工で用いられているレーザー光も本発明に好適に用いることができる。これらの光は、モノクロ光を用いてもよいし、複数の波長の異なる光(ミックス光)でもよい。   The light used for curing the curable composition for nanoimprints of the present invention is not particularly limited. For example, light or radiation having a wavelength in a region such as high energy ionizing radiation, near ultraviolet, far ultraviolet, visible, infrared, etc. Can be mentioned. As the high-energy ionizing radiation source, for example, an electron beam accelerated by an accelerator such as a cockcroft accelerator, a handagraaf accelerator, a linear accelerator, a betatron, or a cyclotron is industrially most conveniently and economically used. However, radiation such as γ rays, X rays, α rays, neutron rays, proton rays emitted from radioisotopes or nuclear reactors can also be used. Examples of the ultraviolet ray source include an ultraviolet fluorescent lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a xenon lamp, a carbon arc lamp, and a solar lamp. The radiation includes, for example, microwaves and EUV. Also, laser light used in semiconductor microfabrication such as LED, semiconductor laser light, or 248 nm KrF excimer laser light or 193 nm ArF excimer laser can be suitably used in the present invention. These lights may be monochromatic lights, or may be lights having different wavelengths (mixed lights).

露光に際しては、露光照度を1mW/cm2〜50mW/cm2の範囲にすることが望ましい。1mW/cm2以上とすることにより、露光時間を短縮することができるため生産性が向上し、50mW/cm2以下とすることにより、副反応が生じることによる永久膜の特性の劣化を抑止できる傾向にあり好ましい。露光量は5mJ/cm2〜1000mJ/cm2の範囲にすることが望ましい。5mJ/cm2未満では、露光マージンが狭くなり、光硬化が不十分となりモールドへの未反応物の付着などの問題が発生しやすくなる。一方、1000mJ/cm2を超えると組成物の分解による永久膜の劣化の恐れが生じる。 During exposure is preferably in the range of exposure intensity of 1mW / cm 2 ~50mW / cm 2 . By making the exposure time 1 mW / cm 2 or more, the exposure time can be shortened so that productivity is improved, and by making the exposure time 50 mW / cm 2 or less, deterioration of the properties of the permanent film due to side reactions can be suppressed. It tends to be preferable. The exposure dose is desirably in the range of 5 mJ / cm 2 to 1000 mJ / cm 2 . If it is less than 5 mJ / cm 2 , the exposure margin becomes narrow, photocuring becomes insufficient, and problems such as adhesion of unreacted substances to the mold tend to occur. On the other hand, if it exceeds 1000 mJ / cm 2 , the permanent film may be deteriorated due to decomposition of the composition.

さらに、露光に際しては、酸素によるラジカル重合の阻害を防ぐため、チッソやアルゴンなどの不活性ガスを流して、酸素濃度を100mg/L未満に制御してもよい。   Further, during exposure, in order to prevent inhibition of radical polymerization by oxygen, an inert gas such as nitrogen or argon may be flowed to control the oxygen concentration to less than 100 mg / L.

本発明の硬化物の製造方法においては、光照射によりパターン形成層を硬化させた後、硬化させたパターンに熱を加えてさらに硬化させる工程(ポストベーク工程)を含むのが好ましい。尚、加熱は、光照射後のパターン形成層からモールドを剥離する前後のいずれに行ってもよいが、モールドの剥離後にパターン形成層を加熱するほうが好ましい。光照射後に本発明の組成物を加熱硬化させる熱としては、150〜280℃が好ましく、200〜250℃がより好ましい。また、熱を付与する時間としては、5〜60分間が好ましく、15〜45分間がさらに好ましい。   In the manufacturing method of the hardened | cured material of this invention, after making a pattern formation layer harden | cure by light irradiation, it is preferable to include the process (post-baking process) which adds and heats the hardened pattern. The heating may be performed either before or after the mold is peeled from the pattern forming layer after light irradiation, but it is preferable to heat the pattern forming layer after the mold is peeled off. As heat which heat-hardens the composition of this invention after light irradiation, 150-280 degreeC is preferable and 200-250 degreeC is more preferable. In addition, the time for applying heat is preferably 5 to 60 minutes, and more preferably 15 to 45 minutes.

また、本発明の硬化物の製造方法によって形成されたパターンは、エッチングレジストとしても有用である。本発明のナノインプリント用組成物をエッチングレジストとして利用する場合には、まず、基材として例えばSiO2等の薄膜が形成されたシリコンウエハ等を用い、基材上に本発明の硬化物の製造方法によってナノオーダーの微細なパターンを形成する。その後、ウェットエッチングの場合にはフッ化水素等、ドライエッチングの場合にはCF4等のエッチングガスを用いてエッチングすることにより、基材上に所望のパターンを形成することができる。本発明のナノインプリント用硬化性組成物は、特にドライエッチングに対するエッチング耐性が良好である。 Moreover, the pattern formed by the manufacturing method of the hardened | cured material of this invention is useful also as an etching resist. When using the nanoimprinting composition of the present invention as an etching resist, first, a method for producing a cured product of the present invention on a substrate using, for example, a silicon wafer on which a thin film such as SiO 2 is formed as a substrate. To form a nano-order fine pattern. Thereafter, a desired pattern can be formed on the substrate by etching using an etching gas such as hydrogen fluoride in the case of wet etching or CF 4 in the case of dry etching. The curable composition for nanoimprinting of the present invention has particularly good etching resistance against dry etching.

本発明のナノインプリント用硬化性組成物は、前記各成分を混合した後、例えば、孔径0.05μm〜5.0μmのフィルターで濾過することによって溶液として調製することができる。光ナノインプリント用硬化性組成物の混合・溶解は、通常、0℃〜100℃の範囲で行われる。濾過は、多段階で行ってもよいし、多数回繰り返してもよい。また、濾過した液を再濾過することもできる。濾過に使用する材質は、ポリエチレン樹脂、ポリプロピレン樹脂、フッソ樹脂、ナイロン樹脂などのものが使用できるが特に限定されない。   The curable composition for nanoimprinting of the present invention can be prepared as a solution by, for example, filtering through a filter having a pore size of 0.05 μm to 5.0 μm after mixing the components described above. Mixing and dissolution of the curable composition for optical nanoimprint is usually performed in a range of 0 ° C to 100 ° C. Filtration may be performed in multiple stages or repeated many times. Moreover, the filtered liquid can be refiltered. Materials used for filtration can be polyethylene resin, polypropylene resin, fluorine resin, nylon resin, etc., but are not particularly limited.

上述のように本発明の硬化物の製造方法によって形成された硬化物は、液晶ディスプレイ(LCD)などに用いられる永久膜(構造部材用のレジスト)やエッチングレジストとして使用することができる。また、前記永久膜は、製造後にガロン瓶やコート瓶などの容器にボトリングし、輸送、保管されるが、この場合に、劣化を防ぐ目的で、容器内を不活性なチッソ、またはアルゴンなどで置換しておいてもよい。また、輸送、保管に際しては、常温でもよいが、より永久膜の変質を防ぐため、−20℃から0℃の範囲に温度制御してもよい。勿論、反応が進行しないレベルで遮光することが好ましい。   As described above, the cured product formed by the method for producing a cured product of the present invention can be used as a permanent film (resist for a structural member) or an etching resist used in a liquid crystal display (LCD) or the like. In addition, the permanent film is bottled in a container such as a gallon bottle or a coated bottle after manufacture, and is transported and stored. In this case, in order to prevent deterioration, the container is filled with inert nitrogen or argon. It may be replaced. Further, at the time of transportation and storage, the temperature may be normal temperature, but the temperature may be controlled in the range of −20 ° C. to 0 ° C. in order to prevent the permanent film from being altered. Of course, it is preferable to shield from light so that the reaction does not proceed.

以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。   The present invention will be described more specifically with reference to the following examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below.

[ナノインプリント用硬化性組成物の調製]
[実施例1〜4]
下記表1〜2に示すように、下記重合性化合物(官能単量体)、下記溶剤、下記重合開始剤、下記界面活性剤W−1およびW−2、下記酸化防止剤A−1およびA−2を加えてナノインプリント用硬化性組成物を調製した。
[Preparation of curable composition for nanoimprint]
[Examples 1 to 4]
As shown in Tables 1 and 2 below, the following polymerizable compounds (functional monomers), the following solvents, the following polymerization initiators, the following surfactants W-1 and W-2, the following antioxidants A-1 and A -2 was added to prepare a curable composition for nanoimprinting.

[比較例1]
実施例1で用いた光重合開始剤を25℃で固体のIrgacure907(下記P−3)に変更した以外は実施例1と同様にして比較例1の組成物を調製した。
[Comparative Example 1]
A composition of Comparative Example 1 was prepared in the same manner as in Example 1 except that the photopolymerization initiator used in Example 1 was changed to solid Irgacure 907 (P-3 below) at 25 ° C.

<重合性単量体>
〈1官能単量体〉
R−1:ベンジルアクリレート(ビスコート#160:大阪有機化学(株)製)
〈2官能単量体〉
S−1:ネオペンチルグリコールジアクリレート
〈3官能以上の単量体〉
T−1:トリメチロールプロパントリアクリレート(アロニックスM−309:東亞合成(株)製)
<Polymerizable monomer>
<Monofunctional monomer>
R-1: benzyl acrylate (Biscoat # 160: manufactured by Osaka Organic Chemical Co., Ltd.)
<Bifunctional monomer>
S-1: Neopentyl glycol diacrylate <monofunctional or higher monomer>
T-1: Trimethylolpropane triacrylate (Aronix M-309: manufactured by Toagosei Co., Ltd.)

<溶剤>
L−1:プロピレングリコールメチルエーテルアセテート
L−2:トルエン
L−3:メチルエチルケトン
<Solvent>
L-1: Propylene glycol methyl ether acetate L-2: Toluene L-3: Methyl ethyl ketone

<光重合開始剤>
P−1:2,4,6−トリメチルベンゾイル−エトキシフェニル−ホスフィンオキシド
(Lucirin TPO−L:BASF社製、25℃で液体)
P−2:2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン
(Darocure1173:チバスペシャルティケミカルズ(株)製、25℃で液体)
P−3:2−メチル−1[4−メチルチオフェニル]−2−モルフォリノプロパン−1−オン
(Irgacure907:チバスペシャルティケミカルズ社製、25℃で固体、融点72〜75℃)
<Photopolymerization initiator>
P-1: 2,4,6-trimethylbenzoyl-ethoxyphenyl-phosphine oxide (Lucirin TPO-L: manufactured by BASF, liquid at 25 ° C.)
P-2: 2-hydroxy-2-methyl-1-phenyl-propan-1-one (Darocur 1173: manufactured by Ciba Specialty Chemicals, Inc., liquid at 25 ° C.)
P-3: 2-methyl-1 [4-methylthiophenyl] -2-morpholinopropan-1-one (Irgacure 907: manufactured by Ciba Specialty Chemicals, solid at 25 ° C., melting point 72-75 ° C.)

<界面活性剤>
W−1:フッ素系界面活性剤(トーケムプロダクツ(株)製:フッ素系界面活性剤)
W−2:シリコーン系界面活性剤(大日本インキ化学工業(株)製:メガファックペインタッド31)
<Surfactant>
W-1: Fluorosurfactant (manufactured by Tochem Products Co., Ltd .: Fluorosurfactant)
W-2: Silicone surfactant (manufactured by Dainippon Ink and Chemicals, Inc .: MegaFuck Paint 31)

<酸化防止剤>
A−1:スミライザーGA80(住友化学工業(株)製)
A−2:アデカスタブAO503((株)ADEKA製)
<Antioxidant>
A-1: Sumilizer GA80 (manufactured by Sumitomo Chemical Co., Ltd.)
A-2: ADK STAB AO503 (manufactured by ADEKA Corporation)

Figure 2009203287
Figure 2009203287

[実施例5]
特開2007−186570号公報に開示されている液晶ディスプレイ用組成物の実施例1に記載の組成物に対し、光重合開始剤を前記P−1(2,4,6−トリメチルベンゾイル−エトキシフェニル−ホスフィンオキシド(Lucirin TPO−L:BASF社製、25℃で液体))に変更し、本実施例1と同様にして実施例5の組成物を調製した。組成物の配合表を下記表2に示す。
[Example 5]
For the composition described in Example 1 of the liquid crystal display composition disclosed in JP-A-2007-186570, the photopolymerization initiator is P-1 (2,4,6-trimethylbenzoyl-ethoxyphenyl). -Phosphine oxide (Lucirin TPO-L: manufactured by BASF, liquid at 25 ° C) was prepared in the same manner as in Example 1 to prepare the composition of Example 5. The formulation table for the composition is shown in Table 2 below.

[比較例2]
特開2006−328342号公報に開示されている液晶ディスプレイ用組成物の実施例1に記載の組成物ついて、本実施例と同様にして比較例2の組成物を調製した。組成物の配合表を下記表2に示す。
[Comparative Example 2]
About the composition of Example 1 of the composition for liquid crystal displays currently disclosed by Unexamined-Japanese-Patent No. 2006-328342, the composition of the comparative example 2 was prepared like the present Example. The formulation table for the composition is shown in Table 2 below.

[比較例3]
特開2007−186570号公報に開示されている液晶ディスプレイ用組成物の実施例1に記載の組成物ついて、本実施例と同様にして比較例3の組成物を調製した。組成物の配合表を下記表2に示す。
[Comparative Example 3]
With respect to the composition described in Example 1 of the composition for liquid crystal display disclosed in JP-A-2007-186570, a composition of Comparative Example 3 was prepared in the same manner as in this Example. The formulation table for the composition is shown in Table 2 below.

Figure 2009203287
Figure 2009203287

※表2中で示されている化合物は以下の通りである。
(重合性単量体)
BPE−500:(メタ)アクリレート材(新中村化学(株)製)
1G:エチレングリコールジ(メタ)アクリレート(新中村化学(株)製)
FA511A:シクロペンテニル(メタ)アクリレート(日立化成(株)製)
ライトエステルG−201P:2−ヒドロキシ−3−アクリロイロキシプロピルメタクリレート(共栄(株)製)
エチレン性不飽和化合物:特開平2006−328342号公報の合成例1に記載のエチレン性不飽和化合物(B1)
KAYARAD DPHA:重合性モノマー(日本化薬(株)製)
(界面活性剤)
メガファックR−18:フッ素系界面活性剤(大日本インキ(株)製)
FC−430:フッ素系界面活性剤(住友スリーエム(株)製)
* The compounds shown in Table 2 are as follows.
(Polymerizable monomer)
BPE-500: (meth) acrylate material (manufactured by Shin-Nakamura Chemical Co., Ltd.)
1G: Ethylene glycol di (meth) acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
FA511A: cyclopentenyl (meth) acrylate (manufactured by Hitachi Chemical Co., Ltd.)
Light ester G-201P: 2-hydroxy-3-acryloyloxypropyl methacrylate (manufactured by Kyoei Co., Ltd.)
Ethylenically unsaturated compound: ethylenically unsaturated compound (B1) described in Synthesis Example 1 of JP-A No. 2006-328342
KAYARAD DPHA: polymerizable monomer (Nippon Kayaku Co., Ltd.)
(Surfactant)
Megafuck R-18: Fluorosurfactant (Dainippon Ink Co., Ltd.)
FC-430: Fluorosurfactant (manufactured by Sumitomo 3M Limited)

[ナノインプリント用硬化性組成物の評価]
実施例1〜4および比較例1〜4により得られた組成物について、下記評価方法に従って測定・評価した。結果を表3に示す。
[Evaluation of curable composition for nanoimprint]
About the composition obtained by Examples 1-4 and Comparative Examples 1-4, it measured and evaluated in accordance with the following evaluation method. The results are shown in Table 3.

<粘度測定>
組成物のうち溶剤を除いた成分の粘度を、溶剤の添加前あるいは溶剤乾燥後に東機産業(株)社製のRE−80L型回転粘度計を用い、25±0.2℃で測定した。測定時の回転速度は、0.5mPa・s以上5mPa・s未満は100rpmで行い、5mPa・s以上10mPa・s未満は50rpmで行い、10mPa・s以上は30mPa・s未満は20rpmで行い、30mPa・s以上60mPa・s未満は10rpmで行い、60mPa・s以上120mPa・s未満は5rpmで行い、120mPa・s以上は1rpmもしくは0.5rpmで行った。
<Viscosity measurement>
The viscosity of the component excluding the solvent in the composition was measured at 25 ± 0.2 ° C. using a RE-80L rotational viscometer manufactured by Toki Sangyo Co., Ltd. before the addition of the solvent or after the solvent was dried. The rotational speed during measurement is 0.5 mPa · s to less than 5 mPa · s at 100 rpm, 5 mPa · s to less than 10 mPa · s at 50 rpm, 10 mPa · s to less than 30 mPa · s at 20 rpm, 30 mPa · s. -More than s and less than 60 mPa * s were performed at 10 rpm, more than 60 mPa * s and less than 120 mPa * s were performed at 5 rpm, and more than 120 mPa * s were performed at 1 rpm or 0.5 rpm.

<ろ過性の観察>
組成物を、0.45μmメンブレンフィルタにてろ過することによって組成物のろ過性を以下の基準に従って評価した。
A:ほとんど抵抗なくろ過できた。
B:目詰まりすることなくろ過できたが、ろ過の際に抵抗があった(プロセス適性が低い)。
C:目詰まりしてろ過ができなかった。
<Observation of filterability>
The filterability of the composition was evaluated according to the following criteria by filtering the composition through a 0.45 μm membrane filter.
A: It was able to filter almost without resistance.
B: Although filtration was possible without clogging, there was resistance during filtration (process suitability was low).
C: Clogged and could not be filtered.

<塗布適性の評価>
ガラス基板に組成物をコーティングし、乾燥によって溶剤を揮発させた後に、ガラス基板上の端から5mm以内の領域を除いた領域に任意の測定点を決定した。測定点5点での膜厚をそれぞれ測定して、最大膜厚と最小膜厚との平均膜厚からのズレの絶対値を算出し、組成物の塗布適性を、以下のように評価した。
A:1%未満
B:1%以上〜3%未満
C:3%以上〜5%未満
D:5%以上
<Evaluation of application suitability>
After coating the composition on the glass substrate and volatilizing the solvent by drying, arbitrary measurement points were determined in the region excluding the region within 5 mm from the edge on the glass substrate. The film thicknesses at five measurement points were measured, the absolute value of the deviation from the average film thickness between the maximum film thickness and the minimum film thickness was calculated, and the applicability of the composition was evaluated as follows.
A: Less than 1% B: 1% or more to less than 3% C: 3% or more to less than 5% D: 5% or more

<パターン精度の観察>
各実施例および比較例の組成物を、膜厚3.0μmとなるようにガラス基板上にスピンコートした。スピンコートした塗布基膜を、ORC社製の高圧水銀灯(ランプパワー2000mW/cm2)を光源とするナノインプリント装置にセットし、加圧力0.8kNでモールドを塗布基膜に圧接した。露光中の真空度を10Torr(約1.33×103Pa)とし、モールド側から240mJ/cm2の条件で露光した。前記モールドは、10μmのライン/スペースパターンを有し、溝深さが4.0μmのポリジメチルシロキサン(東レ・ダウコーニング社製、SILPOT184を80℃60分で硬化させたもの)からなる。露光後、塗布基膜からモールドを離し、レジストパターンを得た。得られたレジストパターンをオーブンで230℃、30分間加熱することにより完全に硬化させた。
転写後のパターン形状を走査型電子顕微鏡もしくは光学顕微鏡にて観察し、パターン形状を以下のように評価した。
A:モールドのパターン形状の元となる原版のパターンとほぼ同一である
B:モールドのパターン形状の元となる原版のパターン形状と一部異なる部分(原版のパターンと10%未満の範囲)がある
C:モールドのパターン形状の元となる原版のパターン形状と一部異なる部分(原版のパターンと10%以上20%未満の範囲)がある
D:モールドのパターン形状の元となる原版のパターンとはっきりと異なる、あるいはパターンの膜厚が原版のパターンと20%以上異なる
<Observation of pattern accuracy>
The compositions of each Example and Comparative Example were spin-coated on a glass substrate so as to have a film thickness of 3.0 μm. The spin-coated coated base film was set in a nanoimprint apparatus using a high pressure mercury lamp (lamp power: 2000 mW / cm 2 ) manufactured by ORC as a light source, and the mold was pressed against the coated base film with a pressure of 0.8 kN. The degree of vacuum during exposure was 10 Torr (about 1.33 × 10 3 Pa), and exposure was performed at 240 mJ / cm 2 from the mold side. The mold is made of polydimethylsiloxane having a line / space pattern of 10 μm and a groove depth of 4.0 μm (manufactured by Toray Dow Corning Co., Ltd., SILPOT 184 cured at 80 ° C. for 60 minutes). After the exposure, the mold was released from the coated base film to obtain a resist pattern. The obtained resist pattern was completely cured by heating in an oven at 230 ° C. for 30 minutes.
The pattern shape after the transfer was observed with a scanning electron microscope or an optical microscope, and the pattern shape was evaluated as follows.
A: Almost the same as the pattern of the original plate that is the basis of the pattern shape of the mold. B: There is a portion that is partially different from the pattern shape of the original plate that is the basis of the pattern shape of the mold (the range of the original pattern is less than 10%). C: There is a part (a range of 10% or more and less than 20% of the pattern of the original plate) that is partly different from the original pattern shape of the mold pattern shape. D: Clearly different from the original pattern of the mold pattern shape. Or the film thickness of the pattern differs from the original pattern by 20% or more.

Figure 2009203287
Figure 2009203287

重合性単量体、本発明における液体光重合開始剤、および溶剤を含む実施例の組成物では、パターン精度、ろ過性が非常に優れ、膜厚均一性についても優れていた(特に実施例1〜3)。一方、比較例1,3,4の組成物ではいずれもろ過性が本発明の組成物に比べ劣っていた。また比較例3の組成物では溶剤を除く組成物の粘度が高く、溶剤乾燥後の流動性が悪いためにパターン精度が劣っていた。さらに、実施例1〜4はいずれも比較例1〜4よりも粘度が低かった。   In the composition of the example containing the polymerizable monomer, the liquid photopolymerization initiator in the present invention, and the solvent, the pattern accuracy and filterability were very excellent, and the film thickness uniformity was also excellent (particularly Example 1). ~ 3). On the other hand, in the compositions of Comparative Examples 1, 3, and 4, the filterability was inferior to that of the composition of the present invention. Further, in the composition of Comparative Example 3, since the viscosity of the composition excluding the solvent was high and the flowability after drying the solvent was poor, the pattern accuracy was inferior. Furthermore, all of Examples 1-4 were lower in viscosity than Comparative Examples 1-4.

Claims (10)

重合性単量体と、25℃で液体の光重合開始剤と、溶剤と、を含むことを特徴とするナノインプリント用硬化性組成物。   A curable composition for nanoimprints, comprising a polymerizable monomer, a photopolymerization initiator that is liquid at 25 ° C., and a solvent. 前記溶剤の常圧における沸点が100℃以上であることを特徴とする請求項1に記載のナノインプリント用硬化性組成物。   The curable composition for nanoimprints according to claim 1, wherein the solvent has a boiling point at normal pressure of 100 ° C. or higher. さらに、酸化防止剤を含むことを特徴とする請求項1または2に記載のナノインプリント用硬化性組成物。   Furthermore, antioxidant is included, The curable composition for nanoimprints of Claim 1 or 2 characterized by the above-mentioned. さらに、界面活性剤を含むことを特徴とする請求項1〜3のいずれか1項に記載のナノインプリント用硬化性組成物。   Furthermore, surfactant is included, The curable composition for nanoimprints of any one of Claims 1-3 characterized by the above-mentioned. 前記光重合開始剤が、アシルホスフィンオキサイド化合物およびα−ヒドロキシアセトフェノン化合物から選ばれる少なくとも1種であることを特徴とする請求項1〜4のいずれか1項に記載のナノインプリント用硬化性組成物。   The curable composition for nanoimprints according to any one of claims 1 to 4, wherein the photopolymerization initiator is at least one selected from an acylphosphine oxide compound and an α-hydroxyacetophenone compound. 前記光重合開始剤がアシルホスフィンオキサイド化合物である請求項1〜4のいずれか1項に記載のナノインプリント用硬化性組成物。   The curable composition for nanoimprints according to any one of claims 1 to 4, wherein the photopolymerization initiator is an acylphosphine oxide compound. 請求項1〜6のいずれか1項に記載のナノインプリント用硬化性組成物を硬化させた硬化物。   Hardened | cured material which hardened the curable composition for nanoimprints of any one of Claims 1-6. 請求項7に記載の硬化物を含むことを特徴とする液晶表示装置用部材。   A member for a liquid crystal display device, comprising the cured product according to claim 7. 請求項1〜6のいずれか1項に記載のナノインプリント用硬化性組成物を基材上に塗布してパターン形成層を形成する工程と、
前記パターン形成層表面にモールドを押圧する工程と、
前記パターン形成層に光を照射する工程と、
を含むことを特徴とする硬化物の製造方法。
Applying the curable composition for nanoimprints according to any one of claims 1 to 6 on a substrate to form a pattern forming layer;
Pressing the mold against the surface of the pattern forming layer;
Irradiating the pattern forming layer with light;
The manufacturing method of the hardened | cured material characterized by including.
さらに、光が照射された前記パターン形成層を加熱する工程を含むことを特徴とする請求項9に記載の硬化物の製造方法。   Furthermore, the process of heating the said pattern formation layer irradiated with light is included, The manufacturing method of the hardened | cured material of Claim 9 characterized by the above-mentioned.
JP2008045061A 2008-02-26 2008-02-26 Curable composition for nanoimprint, cured product using it, method for producing cured product, and member for liquid crystal display Withdrawn JP2009203287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008045061A JP2009203287A (en) 2008-02-26 2008-02-26 Curable composition for nanoimprint, cured product using it, method for producing cured product, and member for liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008045061A JP2009203287A (en) 2008-02-26 2008-02-26 Curable composition for nanoimprint, cured product using it, method for producing cured product, and member for liquid crystal display

Publications (1)

Publication Number Publication Date
JP2009203287A true JP2009203287A (en) 2009-09-10

Family

ID=41145875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008045061A Withdrawn JP2009203287A (en) 2008-02-26 2008-02-26 Curable composition for nanoimprint, cured product using it, method for producing cured product, and member for liquid crystal display

Country Status (1)

Country Link
JP (1) JP2009203287A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011059104A1 (en) * 2009-11-10 2011-05-19 Fujifilm Corporation Curable composition for imprints, patterning method and pattern
JP2011159924A (en) * 2010-02-03 2011-08-18 Fujifilm Corp Method of manufacturing fine pattern
JP2012102314A (en) * 2010-10-13 2012-05-31 Jnc Corp Photocurable composition
JPWO2010110121A1 (en) * 2009-03-24 2012-09-27 株式会社ダイセル Curable composition for nanoimprint and cured product
JP2013062489A (en) * 2011-08-25 2013-04-04 Fujifilm Corp Curable composition for imprint, pattern formation method, and pattern
JP2013241554A (en) * 2011-08-23 2013-12-05 Jsr Corp Photosensitive composition, method for manufacturing molded article, molded article and semiconductor device
JP2015054929A (en) * 2013-09-12 2015-03-23 大日本印刷株式会社 Photocurable resin composition and pattern forming method using the same
CN113444396A (en) * 2020-03-25 2021-09-28 精工爱普生株式会社 Radiation-curable inkjet composition and inkjet method
CN113444397A (en) * 2020-03-25 2021-09-28 精工爱普生株式会社 Radiation-curable inkjet composition and inkjet method
US11981823B2 (en) 2019-06-17 2024-05-14 Seiko Epson Corporation Radiation-curable ink jet composition and ink jet method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010110121A1 (en) * 2009-03-24 2012-09-27 株式会社ダイセル Curable composition for nanoimprint and cured product
US9690193B2 (en) 2009-03-24 2017-06-27 Daicel Corporation Curable composition for nanoimprinting and cured product
US9459525B2 (en) 2009-03-24 2016-10-04 Daicel Chemical Industries, Ltd. Curable composition for nanoimprinting and cured product
JP5898952B2 (en) * 2009-03-24 2016-04-06 株式会社ダイセル Curable composition for nanoimprint and cured product
US9684233B2 (en) 2009-11-10 2017-06-20 Fujifilm Corporation Curable composition for imprints, patterning method and pattern
TWI506364B (en) * 2009-11-10 2015-11-01 Fujifilm Corp Curable composition for imprints, patterning method and pattern
JP2011124554A (en) * 2009-11-10 2011-06-23 Fujifilm Corp Curable composition for imprint, patterning method and pattern
WO2011059104A1 (en) * 2009-11-10 2011-05-19 Fujifilm Corporation Curable composition for imprints, patterning method and pattern
JP2011159924A (en) * 2010-02-03 2011-08-18 Fujifilm Corp Method of manufacturing fine pattern
JP2015187274A (en) * 2010-10-13 2015-10-29 Jnc株式会社 Photocurable composition
JP2012102314A (en) * 2010-10-13 2012-05-31 Jnc Corp Photocurable composition
JP2013241554A (en) * 2011-08-23 2013-12-05 Jsr Corp Photosensitive composition, method for manufacturing molded article, molded article and semiconductor device
JP2013062489A (en) * 2011-08-25 2013-04-04 Fujifilm Corp Curable composition for imprint, pattern formation method, and pattern
JP2015054929A (en) * 2013-09-12 2015-03-23 大日本印刷株式会社 Photocurable resin composition and pattern forming method using the same
US11981823B2 (en) 2019-06-17 2024-05-14 Seiko Epson Corporation Radiation-curable ink jet composition and ink jet method
CN113444396A (en) * 2020-03-25 2021-09-28 精工爱普生株式会社 Radiation-curable inkjet composition and inkjet method
CN113444397A (en) * 2020-03-25 2021-09-28 精工爱普生株式会社 Radiation-curable inkjet composition and inkjet method
US11884828B2 (en) 2020-03-25 2024-01-30 Seiko Epson Corporation Radiation curable ink jet composition and ink jet method
US11987715B2 (en) 2020-03-25 2024-05-21 Seiko Epson Corporation Radiation curable ink jet composition and ink jet method

Similar Documents

Publication Publication Date Title
JP5196933B2 (en) Curable composition for optical nanoimprint lithography and pattern forming method using the same
JP5306903B2 (en) Curable composition for imprint, cured product using the same, method for producing the same, and member for liquid crystal display device
JP5243887B2 (en) Curable composition for nanoimprint and pattern forming method
JP5671302B2 (en) Curable composition for imprint, pattern forming method and pattern
JP5611519B2 (en) Composition for nanoimprint, pattern and method for forming the same
JP5448696B2 (en) Curable composition for photoimprint and method for producing cured product using the same
JP2009215179A (en) (meth)acrylate compound, curable composition using the same, composition for optical nano imprinting, and cured products of these curable compositions and its manufacturing method
JP5511415B2 (en) Curable composition for imprint, pattern forming method and pattern
JP5564383B2 (en) Curable composition for imprint, pattern forming method and pattern
JP2009206197A (en) Curable composition for nanoimprint, and cured body and manufacturing method thereof
JP2009073078A (en) Curable composition for photo-nanoimprint and member for liquid crystal display using the same
JP2010157706A (en) Curable composition for optical imprint and method of manufacturing hardened material using same
JP2010000612A (en) Nanoimprinting curable composition and pattern forming method
JP2009203287A (en) Curable composition for nanoimprint, cured product using it, method for producing cured product, and member for liquid crystal display
JP2010006870A (en) Curable composition for nanoimprinting, cured product and method for producing the same
JP2010067621A (en) Curable composition for nanoimprint, cured article, and method for producing same
JP2010114209A (en) Curable composition for optical nanoimprint, curing material and method for manufacturing it
JP2010013514A (en) Curable composition for nano-imprint, cured product using the same, and member for liquid crystal display device
JP2010113170A (en) Curable composition for optical imprint, cured product using the same, method for producing cured product, and member for liquid crystal display
JP2012186356A (en) Curable composition for imprint, pattern formation method, and pattern
JP2010073811A (en) Curable composition for nanoimprint, cured object using the same, and member for liquid display
WO2009110536A1 (en) Curable composition for nanoimprint, cured product using the same, method for producing the cured product, and member for liquid crystal display device
JP5065209B2 (en) Curable composition for nanoimprint, cured product and method for producing the same
JP2012041521A (en) Photocurable composition and method for manufacturing photocured product using thereof
JP2010106185A (en) Curable composition for photo-imprint, and method for pattern formation using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120206

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20121210