WO2009110406A1 - ジアルコールの製造方法、アリルハライド化合物の製造方法およびアリルクロライド化合物 - Google Patents

ジアルコールの製造方法、アリルハライド化合物の製造方法およびアリルクロライド化合物 Download PDF

Info

Publication number
WO2009110406A1
WO2009110406A1 PCT/JP2009/053819 JP2009053819W WO2009110406A1 WO 2009110406 A1 WO2009110406 A1 WO 2009110406A1 JP 2009053819 W JP2009053819 W JP 2009053819W WO 2009110406 A1 WO2009110406 A1 WO 2009110406A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
dialcohol
represented
producing
alcohol
Prior art date
Application number
PCT/JP2009/053819
Other languages
English (en)
French (fr)
Inventor
寿也 高橋
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN2009801076522A priority Critical patent/CN101959836A/zh
Priority to US12/920,669 priority patent/US20110004028A1/en
Priority to EP09717938A priority patent/EP2248794A1/en
Publication of WO2009110406A1 publication Critical patent/WO2009110406A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/17Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/16Preparation of halogenated hydrocarbons by replacement by halogens of hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/215Halogenated polyenes with more than two carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/36Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal
    • C07C29/38Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal by reaction with aldehydes or ketones
    • C07C29/42Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal by reaction with aldehydes or ketones with compounds containing triple carbon-to-carbon bonds, e.g. with metal-alkynes

Definitions

  • the present invention relates to an advantageous method for producing an intermediate of carotenoids, and more particularly to a method for producing dialcohol, a method for producing an allyl halide compound, and a method for producing an allyl chloride compound.
  • Non-patent document 1 describes that the dialcohol is synthesized by reacting a Grineer reagent and acetylene gas in diethyl ether. Journal of Organic Chemistry (1961), 26, 1171-3
  • the main object of the present invention is to provide a method for easily producing a dialcohol represented by the formula (1).
  • the present inventor has intensively studied and has completed the present invention. That is, the present invention (1) A first step in which an ethynylmagnesium halide is obtained by reacting a gritin reagent with acetylene gas in an organic solvent at 30 ° C. or higher, and a second step in which methacrolein is reacted with the ethynylmagnesium halide obtained in the first step Formula (1) characterized by including: A method for producing a dialcohol represented by:
  • a dialcohol represented by the formula (1) which is an important production intermediate of carotenoids can be easily produced.
  • dialcohol (1) a dialcohol represented by formula (1) (hereinafter, sometimes referred to as dialcohol (1)), which comprises the following first step and second step.
  • the first step is a step of obtaining an ethynylmagnesium halide by reacting a grinder reagent and an acetylene gas at 30 ° C. or higher in an organic solvent
  • the second step is adding methacrolein to the ethynylmagnesium halide obtained in the first step. This is a reaction step.
  • Grignard reagent used in the first step examples include ethylmagnesium bromide, ethylmagnesium chloride, methylmagnesium bromide, methylmagnesium chloride, isopropylmagnesium bromide, isopropylmagnesium chloride, and preferably ethylmagnesium bromide.
  • the amount of such a Grineer reagent used is usually about 0.5 to 3 mole times the methacrolein used in the second step.
  • acetylene gas in an organic solvent-soluble acetylene cylinder is preferable, and acetylene gas obtained by removing the organic solvent from the acetylene gas with a cold trap or the like is particularly preferable.
  • the methacrolein used in the second step preferably contains a polymerization inhibitor, and particularly preferably contains hydroquinone.
  • the content of the polymerization inhibitor is preferably in the range of 100 ppm to 3000 ppm.
  • organic solvent examples include ether solvents such as tetrahydrofuran, methyl-t-butyl ether, and cyclopentyl methyl ether.
  • the ether solvent may be a single solvent or a mixed solvent of two or more kinds, and a single or two or more ether solvents and a hydrocarbon solvent, for example, an aromatic hydrocarbon solvent such as toluene and xylene, The mixed solvent may be used.
  • the reaction temperature in the first step is 30 ° C. or higher, preferably 30 to 70 ° C. It is preferable that the temperature is 30 ° C. or higher because the selectivity of the dialcohol (1) in the second step tends to be improved.
  • the temperature in the second step is appropriately selected depending on the solvent used, but is usually in the range from ⁇ 78 ° C. to the boiling point of the solvent, preferably 30 ° C. or higher.
  • the reaction time in each of the first step and the second step varies depending on various conditions such as the solvent used and the reaction temperature, but is usually in the range of about 10 minutes to 24 hours.
  • the dialcohol (1) can be produced by usual post-treatments such as extraction, washing, crystallization, various chromatographies, distillation of low-boiling substances and the like. Moreover, before using for the 3rd process described later, reaction rate may improve by processing with activated carbon.
  • the dialcohol (1) thus obtained is obtained by formula (3) by the production method including the third step and the fourth step shown below: (In the formula, X represents a halogen atom, and the wavy line represents one of E / Z geometric isomers or a mixture thereof.)
  • the allyl halide compound shown by these can be manufactured.
  • the dialcohol (1) is reduced with hydrogen to form the formula (2): (Where, wavy lines have the same meaning as above.)
  • the fourth step is a step of halogenating the triene alcohol obtained in the third step.
  • X in the allyl halide compound represented by the formula (3) represents a halogen atom, and specifically includes a chlorine atom, a bromine atom, an iodine atom, etc., preferably a chlorine atom or a bromine atom, more preferably a chlorine atom. It is done. X is particularly preferably a chlorine atom.
  • the compound in which X in the allyl halide compound represented by the formula (3) is a chlorine atom is represented by the formula (4): (In the formula, a wavy line represents either one of E / Z geometric isomers or a mixture thereof.) Can be shown.
  • Examples of the catalyst used in the third step include various Lindlar catalysts.
  • a base such as quinoline, cyclohexene or the like may be added.
  • the use amount of the Lindlar catalyst is usually 0.5 wt% to 10 wt% with respect to the dialcohol (1), and the addition amount of the base is 0.5 mol% to 10 mol%.
  • hydrogen in the third step is preferably supplied at a low pressure of 0.5 MPa or less, preferably 0.005 to 0.3 MPa. Moreover, it is preferable to stop the supply of hydrogen gas immediately after absorption of the theoretical amount of hydrogen gas. Furthermore, it is possible to efficiently advance the reaction by bubbling into the reaction solution by supplying hydrogen gas at normal pressure.
  • the third step is preferably performed in an organic solvent.
  • organic solvent examples include alcohol solvents such as methanol, ethanol, isopropyl alcohol, and t-butanol, n-hexane, cyclohexane, n-pentane, and benzene.
  • Hydrocarbon solvents such as toluene and xylene, ester solvents such as ethyl acetate, acetonitrile, N, N-dimethylformamide, dimethyl sulfoxide, hexamethylphosphoric triamide, sulfolane, 1,3-dimethyl-2-imidazolide
  • Non-protic polar solvents such as 1-methyl-2-pyrrolidinone, diethyl ether, tetrahydrofuran, methyl-t-butyl ether, cyclopentyl methyl ether, 1,4-dioxane, dimethoxyethane, anisole, diglyme, triglyme And ether solvents such as tetraglyme and the like. These may be used alone or in a mixture of two or more.
  • the reaction temperature in the third step can usually be arbitrarily selected within the range from ⁇ 78 ° C. to the boiling point of the solvent. However, in order to improve the selectivity of the reduction reaction, it is 50 ° C. or less, preferably 10 to 40 ° C. It is desirable to react with.
  • the reaction time in the third step varies depending on various conditions such as the solvent used, catalyst and reaction temperature, but is usually in the range of about 10 minutes to 24 hours.
  • the triene alcohol represented by the formula (2) is produced by performing operations such as washing, crystallization, and various chromatographies after the catalyst is separated by ordinary post-treatment, for example, filtration. Can do. Moreover, after filtering a catalyst, it can also use for the following 4th process as it is, without refine
  • the halogenation in the fourth step is performed using a halogenating agent.
  • a halogenating agent an aqueous solution of hydrogen halide, an alcohol solution, an acetic acid solution, or the like is used.
  • the hydrogen halide HBr, HCl, HI or the like is preferably used, and more preferably HCl.
  • the amount used is usually in the range of 2 mol times to 30 mol times with respect to the triene alcohol represented by the formula (2).
  • the fourth step is usually performed in an organic solvent or a mixed solvent with water.
  • organic solvents include alcohol solvents such as methanol, ethanol, isopropyl alcohol, and t-butanol, hydrocarbon solvents such as n-hexane, cyclohexane, n-pentane, benzene, toluene, and xylene, ester solvents such as ethyl acetate, Aprotic polar solvents such as acetonitrile, N, N-dimethylformamide, dimethyl sulfoxide, hexamethylphosphoric triamide, sulfolane, 1,3-dimethyl-2-imidazolidinone, 1-methyl-2-pyrrolidinone, diethyl ether And ether solvents such as tetrahydrofuran, methyl-t-butyl ether, cyclopentyl methyl ether, 1,4-dioxane, dimethoxyethane, anisole,
  • the reaction temperature in the fourth step can be arbitrarily selected within a range from ⁇ 78 ° C. to the boiling point of the solvent, but it is preferable to carry out the reaction at ⁇ 30 to 20 ° C.
  • the reaction time in the fourth step varies depending on various conditions such as the solvent used, catalyst and reaction temperature, but is usually in the range of about 10 minutes to 24 hours.
  • the fourth step is desirably performed in an inert gas atmosphere.
  • the stabilizer is preferably used in the presence of an antioxidant such as 3,5-di-t-butyl-4-hydroxytoluene (BHT), ethoxyquin, vitamin E or the like.
  • the allyl halide compound represented by the formula (3) can be produced by performing usual post-treatments such as filtration, extraction, washing, crystallization, and various chromatography.
  • the allyl halide compound represented by the formula (3) thus obtained can be reacted with the compound represented by the formula (5) under basic conditions (alkylation reaction, elimination reaction): (In the formula (5), Ts— represents CH 3 C 6 H 4 SO 2 —.) Can be induced to ⁇ -carotene and can be positioned as an important intermediate of carotenoids such as ⁇ -carotene.
  • Ts— represents CH 3 C 6 H 4 SO 2 —.
  • the first step and the second step were carried out in the same manner as in Example 1 except that the reaction temperature was changed to 20 to 25 ° C. to obtain a 18:82 mixture of alcohol (I) and alcohol (II).
  • Example of reaction with methacrolein The first and second steps were carried out in the same manner as in Example 1 except that a mixed solvent of diethyl ether and toluene was used instead of THF and the reaction temperature was 0 to 5 ° C. A 95: 5 mixture of I) and alcohol (II) was obtained. The yield of alcohol (I) was 49%.
  • the reaction mass into which acetylene gas was blown produced an insoluble oily substance, which was difficult to handle.
  • a dialcohol represented by the formula (1) which is an important production intermediate of carotenoids can be easily produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明は、カロテノイド中間体の有利な製造方法等に関し、有機溶媒中、グリニア試薬とアセチレンガスを30°C以上で反応させてエチニルマグネシウムハライドを調製し、ついでメタクロレインを反応させることを特徴とする式(1): で示されるジアルコールの製造方法;式(1)のジアルコールを水素により還元して、式(2): (式中、波線はE/Z幾何異性体のいずれか一方またはそれらの混合物であることを表す。)で示されるトリエンアルコールを得、該トリエンアルコールをハロゲン化することを特徴とする式(3): (式中、Xはハロゲン原子を示し、波線は上記と同じ意味を表す。) で示されるアリルハライド化合物の製造方法;および式(4): (式中、波腺は上記と同じ意味をあらわす。) で示されるアリルクロライド化合物を提供する。

Description

ジアルコールの製造方法、アリルハライド化合物の製造方法およびアリルクロライド化合物
 本発明は、カロテノイド類の中間体の有利な製造方法、さらに詳しくは、ジアルコールの製造方法、アリルハライド化合物の製造方法、およびアリルクロライド化合物の製造方法に関する。
 カロテノイド類の1種であるβ-カロテンの重要中間体としては式(1):
Figure JPOXMLDOC01-appb-C000006
で示されるジアルコールが知られており、該ジアルコールの合成方法としては、グリニア試薬とアセチレンガスをジエチルエーテル中、反応させることが非特許文献1に記載されている。
Journal of Organic Chemistry (1961), 26, 1171-3
 しかしながら、上記合成方法を工業的に行うことは必ずしも常に容易ではない。
 本発明の主な目的は、式(1)で示されるジアルコールを簡便に製造する方法を提供することである。
 本発明者は、上記目的を達成するため、鋭意研究を重ね、本発明を完成するに至った。
 すなわち、本発明は、
 (1)有機溶媒中、グリニア試薬とアセチレンガスを30℃以上で反応させてエチニルマグネシウムハライドを得る第1工程、および
 第1工程で得られたエチニルマグネシウムハライドにメタクロレインを反応させる第2工程、
を含むことを特徴とする式(1):
Figure JPOXMLDOC01-appb-C000007
で示されるジアルコールの製造方法;
(2)グリニア試薬が、エチルマグネシウムハライドである上記(1)記載のジアルコールの製造方法;
(3)第1工程および第2工程で用いられる有機溶媒が、テトラヒドロフラン、メチル-t-ブチルエーテルおよびシクロペンチルメチルエーテルからなる群から選ばれる少なくとも1種の有機溶媒である上記(1)または(2)記載のジアルコールの製造方法;
(4)式(1):
Figure JPOXMLDOC01-appb-C000008
で示されるジアルコールを水素により還元して、式(2):
Figure JPOXMLDOC01-appb-C000009
(式中、波線はE/Z幾何異性体のいずれか一方またはそれらの混合物であることを表す。)
で示されるトリエンアルコールを得る第3工程、および
 第3工程で得られたトリエンアルコールをハロゲン化する第4工程、
を含むことを特徴とする式(3):
Figure JPOXMLDOC01-appb-C000010
(式中、Xはハロゲン原子を示し、波線は上記と同じ意味を表す。)
で示されるアリルハライド化合物の製造方法;
(5)式(1)で示されるジアルコールが、上記(1)~(3)のいずれか1項記載のジアルコールの製造方法によって得られたジアルコールである上記(4)記載のアリルハライド化合物の製造方法;
(6)式(4):
Figure JPOXMLDOC01-appb-C000011
(式中、波線はE/Z幾何異性体のいずれか一方またはそれらの混合物であることを表す。)
で示されるアリルクロライド化合物。
 本発明の製造方法によれば、カロテノイド類の重要な製造中間体である式(1)で示されるジアルコール等を簡便に製造することができる。
 以下、本発明を詳細に説明する。
 本発明の1つの態様は、下記に示す第1工程および第2工程を含むことを特徴とする式(1)で示されるジアルコール(以下、ジアルコール(1)と記すことがある)の製造方法である。
 第1工程は、有機溶媒中、グリニア試薬とアセチレンガスを30℃以上で反応させてエチニルマグネシウムハライドを得る工程であり、第2工程は、第1工程で得られたエチニルマグネシウムハライドにメタクロレインを反応させる工程である。
 第1工程に用いられるグリニア試薬としては、エチルマグネシウムブロマイド、エチルマグネシウムクロライド、メチルマグネシウムブロマイド、メチルマグネシウムクロライド、イソプロピルマグネシウムブロマイド、イソプロピルマグネシウムクロライド等が挙げられ、好ましくはエチルマグネシウムブロマイドである。
 かかるグリニア試薬の使用量は、第2工程で用いられるメタクロレインに対して通常、0.5~3モル倍程度である。
 第1工程に用いられるアセチレンガスとしては、有機溶媒溶解型のアセチレンボンベ中のアセチレンガスが好ましく、特に、アセチレンガスからコールドトラップ等により有機溶媒を除去したアセチレンガスが好ましい。
 第2工程に用いられるメタクロレインとしては、重合禁止剤を含有していることが好ましく、特に、ハイドロキノンを含有していることが好ましい。重合禁止剤の含有量は、100ppm~3000ppmの範囲であることが好ましい。
 有機溶媒としては、例えば、テトラヒドロフラン、メチル-t-ブチルエーテル、シクロペンチルメチルエーテルなどのエーテル系溶媒が挙げられる。エーテル系溶媒としては単一もしくは2種以上の混合溶媒であってもよく、単一もしくは2種以上のエーテル系溶媒と炭化水素系溶媒、例えば、トルエン、キシレンなどの芳香族炭化水素系溶媒との混合溶媒であってもよい。
 第1工程の反応温度は、30℃以上、好ましくは、30~70℃である。30℃以上であると、第2工程におけるジアルコール(1)の選択性を向上する傾向があることから好ましい。
 第2工程の温度は、使用する溶媒によって適宜選択されるものであるが、通常、-78℃から溶媒の沸点までの範囲であり、好ましくは、30℃以上である。
 第1工程および第2工程のそれぞれの反応時間は、使用する溶媒ならびに反応温度など諸条件によって異なるが、通常10分間から24時間程度の範囲である。
 第2工程終了後、通常の後処理、例えば抽出、洗浄、晶析、各種クロマトグラフィー、低沸物の留去などの操作をすることによりジアルコール(1)を製造することができる。
 また、後に記載する第3工程に供する前に、活性炭で処理することにより反応速度が向上する場合がある。
 かくして得られたジアルコール(1)は、以下に示す第3工程および第4工程を含む製造方法により、式(3):
Figure JPOXMLDOC01-appb-C000012
(式中、Xはハロゲン原子を示し、波線はE/Z幾何異性体のいずれか一方またはそれらの混合物であることを表す。)
で示されるアリルハライド化合物を製造することができる。
 第3工程は、ジアルコール(1)を水素により還元して、式(2):
Figure JPOXMLDOC01-appb-C000013
(式中、波線は上記と同じ意味を表す。)
で示されるトリエンアルコールを得る工程である。
 第4工程とは、第3工程で得られたトリエンアルコールをハロゲン化する工程である。
 式(3)で示されるアリルハライド化合物におけるXはハロゲン原子を示し、具体的には塩素原子、臭素原子、沃素原子等が挙げられ、塩素原子もしくは臭素原子が好ましく、より好ましくは塩素原子が挙げられる。Xとしては塩素原子が特に好ましい。
 式(3)で示されるアリルハライド化合物におけるXが塩素原子である化合物は、式(4):
Figure JPOXMLDOC01-appb-C000014
(式中、波線はE/Z幾何異性体のいずれか一方またはそれらの混合物であることを表す。)
で示すことができる。
 第3工程に用いられる触媒としては、例えば、各種リンドラー触媒などが挙げられる。
 反応の選択性を向上させるために、キノリンなどの塩基やシクロヘキセン等を添加してもよい。
 リンドラー触媒の使用量は、ジアルコール(1)に対して、通常、0.5wt%~10wt%、塩基の添加量は0.5モル%~10モル%である。
 ジアルコール(1)における三重結合を選択的に還元するために、第3工程における水素は0.5MPa以下、好ましくは、0.005~0.3MPaの低い圧力で供給することが好ましい。また、理論量の水素ガスの吸収後、すみやかに水素ガスの供給を停止するのが好ましい。さらに、常圧による水素ガス供給で反応液中にバブリングすることにより反応を効率的に進めることも可能である。
 第3工程は有機溶媒中で行うことが好ましく、使用される有機溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール、t-ブタノールなどのアルコール系溶媒、n-ヘキサン、シクロヘキサン、n-ペンタン、ベンゼン、トルエン、キシレン等の炭化水素系溶媒、酢酸エチル等のエステル系溶媒、アセトニトリル、N,N-ジメチルホルムアミド、ジメチルスルホキシド、ヘキサメチルホスホリックトリアミド、スルホラン、1,3-ジメチル-2-イミダゾリジノン、1-メチル-2-ピロリジノン等の非プロトン性極性溶媒、ジエチルエーテル、テトラヒドロフラン、メチル-t-ブチルエーテル、シクロペンチルメチルエーテル、1,4-ジオキサン、ジメトキシエタン、アニソール、ジグライム、トリグライム、テトラグライム等のエーテル系溶媒などが挙げられる。これらは単一であっても2種以上の混合溶媒で使用してもよい。
 第3工程における反応温度は、通常、-78℃から溶媒の沸点までの範囲内で任意に選択できるが、還元反応の選択性を向上させるために、50℃以下、好ましくは、10~40℃で反応させるのが望ましい。
 第3工程における反応時間は、使用する溶媒、触媒ならびに反応温度など諸条件によって異なるが、通常10分間から24時間程度の範囲である。
 第3工程終了後は、通常の後処理、例えば濾過により触媒を濾別した後、洗浄、晶析、各種クロマトグラフィーなどの操作をすることにより式(2)で示されるトリエンアルコールを製造することができる。また、触媒を濾別した後、精製せずにそのまま次の第4工程に供することもできる。
 第4工程のハロゲン化は、ハロゲン化剤を用いて行う。ハロゲン化剤としては、ハロゲン化水素の水溶液、アルコール溶液、酢酸溶液などが用いられる。ハロゲン化水素としては、HBr、HCl、HI等が好ましくは用いられ、より好ましくはHClである。使用量は、式(2)で示されるトリエンアルコールに対し、通常、2モル倍から30モル倍の範囲である。
 第4工程は、通常、有機溶媒中もしくは水との混合溶媒中で行われる。有機溶媒としてはメタノール、エタノール、イソプロピルアルコール、t-ブタノールなどのアルコール系溶媒、n-ヘキサン、シクロヘキサン、n-ペンタン、ベンゼン、トルエン、キシレン等の炭化水素系溶媒、酢酸エチル等のエステル系溶媒、アセトニトリル、N,N-ジメチルホルムアミド、ジメチルスルホキシド、ヘキサメチルホスホリックトリアミド、スルホラン、1,3-ジメチル-2-イミダゾリジノン、1-メチル-2-ピロリジノン等の非プロトン性極性溶媒、ジエチルエーテル、テトラヒドロフラン、メチル-t-ブチルエーテル、シクロペンチルメチルエーテル、1,4-ジオキサン、ジメトキシエタン、アニソール、ジグライム、トリグライム、テトラグライム等のエーテル系溶媒などが挙げられる。これらは単一であっても2種以上の混合溶媒で使用してもよい。
 第4工程における反応温度は通常、-78℃から溶媒の沸点までの範囲内で任意に選択できるが、―30~20℃で反応させるのが望ましい。
 第4工程における反応時間は、使用する溶媒、触媒ならびに反応温度など諸条件によって異なるが、通常10分間から24時間程度の範囲である。
 第4工程は、不活性ガス雰囲気下で行うことが望ましい。また、安定剤として3,5-ジ-t-ブチル-4-ヒドロキシトルエン(BHT)、エトキシキン、ビタミンE等の酸化防止剤存在下に行うことが好ましい。
 第4工程終了後は、通常の後処理、例えば濾過、抽出、洗浄、晶析、各種クロマトグラフィーなどの操作をすることにより式(3)で示されるアリルハライド化合物を製造することができる。
 かくして得られた式(3)で示されるアリルハライド化合物は、例えば、式(5)で表される化合物とともに、塩基性条件下、反応(アルキル化反応、脱離反応):
Figure JPOXMLDOC01-appb-C000015
(式(5)中、Ts-は、CHSO-を表す。)
に従って、β-カロテンに誘導することが可能であり、β-カロテンなどのカロテノイド類の重要な中間体と位置付けることができる。
 以下、実施例、比較例を挙げて、本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
 (第1工程)
 フラスコをアルゴンガスに置換した後、25℃でテトラヒドロフラン(以下、THFと記すことがある。)を40ml仕込み、別途調製した1mol/lのエチルマグネシウムブロマイドのTHF溶液を36.7ml(36.7mmol)仕込み、50℃に昇温した。50~55℃で3時間、所定量のアセチレンガスを液中に吹込み、停止した。過剰のアセチレンガスを系外に除去するために、同温度で、アルゴンガスを30分間、液中に吹き込み、第1工程を終了した。
 (第2工程)
 ジブチルヒドロキシトルエン(BHT)を1000ppm含有するメタクロレイン2.0g(28.3mmol)をTHF10mlに溶解し、該THF溶液を第1工程で得られた溶液に30℃で30分かけて滴下し、30~35℃で2時間保温した。30℃以下に冷却後、冷却した飽和塩化アンモニウムをゆっくりと滴下し、酢酸エチルで抽出した。酢酸エチル層は、水、飽和食塩水で洗浄後、硫酸マグネシウムで脱水し、溶媒をエバポレーターで留去することで、後に示すアルコール(I)とアルコール(II)の78:22の混合物を得た。アルコール(I)の収率は76%であった。
 (第1工程)
 フラスコをアルゴンガスに置換した後、25℃でTHFを300ml仕込み、別途調製した1mol/lのエチルマグネシウムブロマイドのTHF溶液を250ml(250mmol)仕込み、50℃に昇温した。50~55℃で3時間、所定量のアセチレンガスを液中に吹込み、停止した。過剰のアセチレンガスを系外に除去するために、同温度で、アルゴンガスを30分間、液中に吹き込み、第1工程を終了した。
 (第2工程)
 BHTを1000ppm含有するメタクロレイン21.45g(300mmol)をTHF50mlに溶解し、該THF溶液を第1工程で得られた溶液に30℃で1時間かけて滴下し、30~35℃で2時間保温した。30℃以下に冷却後、冷却した飽和塩化アンモニウムをゆっくりと滴下し、酢酸エチルで抽出した。酢酸エチル層は、水、飽和食塩水で洗浄後、硫酸マグネシウムで脱水し、溶媒をエバポレーターで留去することでアルコール(I)とアルコール(II)の89:11の混合物を得た。2成分以外の不純物はGC分析にて観測されなかった。
 THFの代わりにシクロペンチルメチルエーテルを用いて36℃でアセチレンガスを吹き込んだ以外は実施例1と同様に反応、後処理を行い、アルコール(I)とアルコール(II)の98:2の混合物を得た。アルコール(I)の収率は90%であった。
 THFの代わりにメチル-t-ブチルエーテルを用いた以外は実施例1と同様に反応、後処理を行い、アルコール(I)とアルコール(II)の72:28の混合物を得た。アルコール(I)の収率は64%であった。
[参考例1]
 反応温度を20~25℃にした以外は、実施例1と同様に第1工程および第2工程を行い、アルコール(I)とアルコール(II)の18:82の混合物を得た。
[参考例2]
 反応温度を0~5℃にした以外は、実施例1と同様に第1工程および第2工程を行い、アルコール(I)とアルコール(II)の6:94の混合物を得た。
[参考例3]
 メタクロレインとの反応例
 THFの代わりにジエチルエーテルとトルエンの混合溶媒を用い、反応温度を0~5℃にした以外は、実施例1と同様に第1工程および第2工程を行い、アルコール(I)とアルコール(II)の95:5の混合物を得た。アルコール(I)の収率は49%であった。アセチレンガスを吹き込んだ反応マスは、不溶性油状物が生成し、ハンドリングが困難であった。
 (第3工程)
 フラスコに、アルコール(I)550mg(3.16mmol)とイソプロピルアルコール70mlを仕込み、溶解させ、キノリン20mg(0.16mmol)とリンドラー触媒 26mg(5wt%)を仕込み、水素ガスでフラスコを置換し、20-30℃、水素圧0.02MPaで3.5時間反応した。反応後、触媒を濾別し、溶媒をエバポレーターで留去することで、後に示すアルコール(III)を収率89%で得た。
 (第3工程)
 イソプロピルアルコールの代わりにトルエンを用いた以外は、実施例3と同様に第3工程を行い、アルコール(III)を収率83%で得た。
 (第4工程)
 フラスコに、アルコール(III)500mg(2.44mmol)とイソプロピルアルコール20mlを仕込み、溶解させ、-10~0℃に冷却した。35%塩酸2.54g(24.4mmol)を同温度で30分をかけて滴下し、15分保温した。その後、水を滴下して、結晶の析出を確認し、窒素雰囲気下で濾別した。結晶を5%炭酸水素ナトリウム、水で洗浄し、乾燥後、アリルクロライド(IV)が収率85%で得られた。
アリルクロライド(IV)
FD-MS m/z=204
1H-NMR δ(CDCl3): 1.87 (6H, s), 4.07 (4H, s), 6.16-6.18 (2H, m), 6.40-6.42 (2H, m)
13C-NMR δ(CDCl3): 14.9, 52.2, 129.5, 129.6, 134.5
 MS、NMRより主成分はアリルクロライド(IV)であることが示された。
 末端オレフィンの幾何異性は、NOE測定よりトランス体である。
 (第4工程)
 フラスコに、アルコール(III)300mg(1.59mmol)とイソプロピルアルコール150mlとを仕込み、溶解させ、-10~0℃に冷却した。48%臭化水素酸2.68g(15.9mmol)を同温度で30分かけて滴下し、15分間保温した。その後、結晶の析出を確認し、窒素雰囲気下で濾別した。結晶を5%炭酸水素ナトリウム、水で洗浄し、乾燥後、アリルブロマイド(V)が収率80%で得られた。
アリルブロマイド(V)
FD-MS m/z=294
1H-NMR δ(CDCl3): 1.91 (6H, s), 4.06 (4H, s), 6.25-6.26 (2H, s), 6.40-6.42 (2H, m)
13C-NMR δ(CDCl3): 15.4, 41.5, 130.0, 130.2, 135.0
 NMRより主成分はアリルブロマイド(V)であることが示された。
 末端オレフィンの幾何異性は、NOE測定よりトランス体である。
 実施例および比較例における各化合物の化学式を以下に示す。
Figure JPOXMLDOC01-appb-C000016
 本発明の製造方法によれば、カロテノイド類の重要な製造中間体である式(1)で示されるジアルコール等を簡便に製造することができる。

Claims (6)

  1.  有機溶媒中、グリニア試薬とアセチレンガスを30℃以上で反応させてエチニルマグネシウムハライドを得る第1工程、および
     第1工程で得られたエチニルマグネシウムハライドにメタクロレインを反応させる第2工程、
    を含むことを特徴とする式(1):
    Figure JPOXMLDOC01-appb-C000001
    で示されるジアルコールの製造方法。
  2.  グリニア試薬が、エチルマグネシウムハライドである請求項1記載のジアルコールの製造方法。
  3.  第1工程および第2工程で用いられる有機溶媒が、テトラヒドロフラン、メチル-t-ブチルエーテルおよびシクロペンチルメチルエーテルからなる群から選ばれる少なくとも1種の有機溶媒である請求項1記載のジアルコールの製造方法。
  4.  式(1):
    Figure JPOXMLDOC01-appb-C000002
    で示されるジアルコールを水素により還元して、式(2):
    Figure JPOXMLDOC01-appb-C000003
    (式中、波線はE/Z幾何異性体のいずれか一方またはそれらの混合物であることを表す。)
    で示されるトリエンアルコールを得る第3工程、および
     第3工程で得られたトリエンアルコールをハロゲン化する第4工程、
    を含むことを特徴とする式(3):
    Figure JPOXMLDOC01-appb-C000004
    で示されるアリルハライド化合物の製造方法。
    (式(3)中、Xはハロゲン原子を示し、波線は上記と同じ意味を表す。)
  5.  式(1)で示されるジアルコールが、請求項1記載のジアルコールの製造方法によって得られたジアルコールである請求項4記載のアリルハライド化合物の製造方法。
  6.  式(4):
    Figure JPOXMLDOC01-appb-C000005
    (式中、波線はE/Z幾何異性体のいずれか一方またはそれらの混合物であることを表す。)
    で示されるアリルクロライド化合物。
PCT/JP2009/053819 2008-03-03 2009-03-02 ジアルコールの製造方法、アリルハライド化合物の製造方法およびアリルクロライド化合物 WO2009110406A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801076522A CN101959836A (zh) 2008-03-03 2009-03-02 二元醇的制备方法、烯丙基卤化合物的制备方法以及烯丙基氯化合物
US12/920,669 US20110004028A1 (en) 2008-03-03 2009-03-02 Process for production of dialcohol, process for production of allylhalide compound, and allylchloride compound
EP09717938A EP2248794A1 (en) 2008-03-03 2009-03-02 Process for production of dialcohol, process for production of allylhalide compound, and allylchloride compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008051814 2008-03-03
JP2008-051814 2008-03-03

Publications (1)

Publication Number Publication Date
WO2009110406A1 true WO2009110406A1 (ja) 2009-09-11

Family

ID=41055962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053819 WO2009110406A1 (ja) 2008-03-03 2009-03-02 ジアルコールの製造方法、アリルハライド化合物の製造方法およびアリルクロライド化合物

Country Status (5)

Country Link
US (1) US20110004028A1 (ja)
EP (1) EP2248794A1 (ja)
JP (1) JP2009235061A (ja)
CN (1) CN101959836A (ja)
WO (1) WO2009110406A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106349002B (zh) * 2016-08-24 2019-04-19 厦门大学 一种番茄红素中间体的制备方法
CN112041353B (zh) * 2018-03-07 2022-01-14 丸善石油化学株式会社 新型二官能(甲基)丙烯酸酯化合物和聚合物
JP7216043B2 (ja) * 2020-04-21 2023-01-31 信越化学工業株式会社 6-イソプロペニル-3-メチル-9-デセニル=アセテートの製造方法及びその中間体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2945888A (en) * 1958-10-24 1960-07-19 Hoffmann La Roche Unsaturated di(phosphonium halide) compounds and diphosphine compounds and preparation thereof
JPS5728095A (en) * 1980-07-25 1982-02-15 Hokko Chem Ind Co Ltd Production of ethynylmagnesium chloride

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2945888A (en) * 1958-10-24 1960-07-19 Hoffmann La Roche Unsaturated di(phosphonium halide) compounds and diphosphine compounds and preparation thereof
JPS5728095A (en) * 1980-07-25 1982-02-15 Hokko Chem Ind Co Ltd Production of ethynylmagnesium chloride

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DEEMER, L. F. ET AL.: "Acetylenic glycols related to natural polyenes", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 70, no. 1, 1948, pages 154 - 157, XP008140080 *
INFOFFEN, H. H.: "Synthesis in the carotenoid seriese. XXVI> Total synthesis of crocetin dimethyl ester", JUSTUS LIEBIGS ANNALEN DER CHEMIE, vol. 580, 1953, pages 7 - 19, XP008140076 *
JOURNAL OF ORGANIC CHEMISTRY, vol. 26, 1961, pages 1171 - 3
NAYLER, P. ET AL.: "Polyenes. II. Synthesis of cosmene", JOURNAL OF THE CHEMICAL SOCIETY, 1954, pages 4006 - 4009, XP008140048 *
SURMATIS, J. D. ET AL.: "A New Synthesis of trans-beta-Carotene and Decapreno-beta-carotene", JOURNAL OF ORGANIC CHEMISTRY, vol. 26, no. 4, 1961, pages 1171 - 1173, XP008140074 *

Also Published As

Publication number Publication date
EP2248794A1 (en) 2010-11-10
CN101959836A (zh) 2011-01-26
US20110004028A1 (en) 2011-01-06
JP2009235061A (ja) 2009-10-15

Similar Documents

Publication Publication Date Title
JP5603169B2 (ja) (e)−3−メチル−2−シクロペンタデセノンの製造方法
WO2007114359A1 (ja) パーフルオロアルキン化合物の製造方法
WO2009110406A1 (ja) ジアルコールの製造方法、アリルハライド化合物の製造方法およびアリルクロライド化合物
JP2020164505A (ja) ハロゲン化シクロアルカン化合物の製造方法
CN106866426B (zh) 一种生产3,4,5-三氯三氟甲苯的副产物2,4,5-三氯三氟甲苯的综合利用方法
JP6309966B2 (ja) ビス(3−アミノフェニル)ジスルフィド類及び3−アミノチオール類を製造する方法
JP6219884B2 (ja) (z)−3−メチル−2−シクロペンタデセノンの製造方法および(r)−(−)−3−メチルシクロペンタデカノンの製造方法
JP2004026691A (ja) 含フッ素スチレン重合性単量体の製造方法及びそれに使用される中間体化合物
US9272966B2 (en) Method for preparing optically active 1-bromo-1[3,5-bis(trifluoromethyl)phenyl]ethane
JP6498048B2 (ja) 含フッ素有機化合物及びこれとグリニャール試薬によるビアリール化合物の製造方法
JP4641839B2 (ja) 4−メチル−3−トリフルオロメチル安息香酸の製造方法
CN112939715A (zh) 一种4-烷基联苯乙炔的合成方法
WO2021106813A1 (ja) アルカン化合物の製造方法
JP4474773B2 (ja) (p−クロロフェニル)プロパノール誘導体の製造法
JP6051794B2 (ja) 4−ヒドロキシメチル−2,3,5,6−テトラフルオロトルエンの製造方法
JPH04273834A (ja) 弗素−および塩素−および/または臭素−含有芳香族化合物の脱塩素化および/または脱臭素化方法
JP2502936B2 (ja) 新規なアセチレン系誘導体
US8258362B2 (en) Method for the production of α, ω-olefins by using the copper catalyzed coupling reaction of a Grignard reagent with an allylic substrate
JP2018145123A (ja) 1,1,1,3,3,3−ヘキサフルオロプロパン−2−オールと脂肪族炭化水素系溶媒を用いた二相系反応媒体
JP4286694B2 (ja) 新規なグリニャール試薬及びそれを用いた脂肪族アルキニルグリニャール化合物の製造方法
CN117756622A (zh) 一种沙库巴曲关键中间体的制备方法
JP6643719B2 (ja) 3,3,3−トリフルオロプロパノールの製造方法
JP2009191006A (ja) 光学活性な4−アミノ−3−(3,4−ジクロロフェニル)ブタン−1−オールの製造方法およびその中間体
JP2019104700A (ja) 1,3−ウンデカジエン−5−インの製造方法
JP5082424B2 (ja) 4−アルコキシメチル−2,3,5,6−テトラフルオロトルエン、その製造方法およびその利用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980107652.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09717938

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009717938

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12920669

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE