WO2009110321A1 - モータ制御回路、モータシステム、モータ制御方法 - Google Patents

モータ制御回路、モータシステム、モータ制御方法 Download PDF

Info

Publication number
WO2009110321A1
WO2009110321A1 PCT/JP2009/052876 JP2009052876W WO2009110321A1 WO 2009110321 A1 WO2009110321 A1 WO 2009110321A1 JP 2009052876 W JP2009052876 W JP 2009052876W WO 2009110321 A1 WO2009110321 A1 WO 2009110321A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
rotor
motor
brake control
reverse brake
Prior art date
Application number
PCT/JP2009/052876
Other languages
English (en)
French (fr)
Inventor
貴志 福嶋
Original Assignee
旭化成エレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成エレクトロニクス株式会社 filed Critical 旭化成エレクトロニクス株式会社
Priority to EP09718472.5A priority Critical patent/EP2200172A4/en
Priority to US12/601,755 priority patent/US8305017B2/en
Priority to CN2009800002023A priority patent/CN101682285B/zh
Priority to JP2009529466A priority patent/JP5016674B2/ja
Publication of WO2009110321A1 publication Critical patent/WO2009110321A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/24Arrangements for stopping
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor

Definitions

  • the present invention relates to a motor control circuit, a motor system, and a motor control method for controlling a motor by energizing a motor coil.
  • FIG. 11 shows a change in rotational speed when electrical braking is performed using the conventional control method.
  • a broken line S11 indicates a case where the control is performed only by the reverse brake
  • a one-dot chain line S12 indicates a case where the control is performed only by the short brake
  • a two-dot chain line S13 indicates the control method described in Japanese Patent Application Laid-Open No. 2007-68400. The case where the control is performed in is shown.
  • FIG. 12 shows a timing chart of the position detection signal HALL during electrical braking. Referring to the figure, since the rotational speed when continuously rotating due to inertia is slow, the time T S continuously rotating due to inertia is smaller than the time T B from the start of braking to the stop of the rotor. The proportion occupied may increase.
  • the present invention has been made in view of the above-described circumstances, and its purpose is to control a motor so as to stop in a short time by suppressing continuous rotation due to inertia and prevent reverse rotation.
  • a motor control circuit is a motor control circuit including a control unit that controls energization of the coil based on a detection result of a position of a rotor that rotates by energizing the motor coil.
  • the control means includes In the first control state, reverse brake control is performed, In the second control state next to the first control state, the short brake control state is performed, and the reverse brake control is intermittently switched. According to this configuration, the motor can be controlled so as to stop in a short time by suppressing continuous rotation due to inertia and prevent reverse rotation.
  • the reverse brake is performed by temporarily switching to the reverse brake control, and the inertia of the rotor
  • the continuous rotation by may be suppressed.
  • the period during which the reverse brake control is performed may be arbitrarily set. By appropriately setting the period during which the reverse brake control is performed, it is possible to suppress the continuous rotation due to inertia and stop it in a short time.
  • the period during which the reverse brake control is performed may be set such that the rotation of the rotor does not occur and the torque is generated most. By setting the period during which reverse brake control is performed in this manner, continuous rotation due to inertia can be suppressed and stopped in a short time.
  • the reverse brake control may be repeated intermittently until the rotor is completely stopped.
  • the timing which starts said 2nd control may be arbitrarily settable.
  • the timing may be a timing at which the rotor position detection signal changes according to continuous rotation of the rotor due to inertia. If this timing is adopted, continuous rotation due to inertia can be suppressed and the rotation can be stopped in a short time.
  • the rotational speed of the rotor when the reverse brake is terminated is such that the rotor rotates backward even when the rotor is stopped only in the second control state after the end of the first control state. It may be set to no rotation speed. By setting in this way, continuous rotation due to inertia can be suppressed and stopped in a short time.
  • the control means includes A brake control circuit that monitors the rotational speed of the rotor based on a rotor position detection signal that detects the position of the rotor and generates a brake control signal; Based on the rotor position detection signal, a normal rotation control circuit that generates a normal rotation control signal for controlling energization switching for normal rotation of the rotor; An energization switching control circuit that controls a plurality of transistors that drive the motor coil in order to energize the motor coil based on an external control signal, the brake control signal, and the forward rotation control signal; You may comprise. By generating these signals and controlling multiple transistors, it is possible to intermittently switch to reverse brake control in the short brake control state, and to stop the rotation in a short time by suppressing continuous rotation due to inertia. Can do.
  • the energization switching control circuit may switch between reverse brake control and short brake control according to the external control signal and the brake control signal. If it does in this way, in the short brake control state, it can switch to reverse brake control intermittently, and it can stop in a short time, suppressing the continuous rotation by inertia.
  • the brake control circuit An edge detection circuit for detecting an edge of the rotor position detection signal; A counter circuit that counts the clock signal and resets the count value according to the detection result from the edge detection circuit; A pulse generation circuit for generating a pulse when a preset reference value and a counter value are equal; A generating circuit for generating the brake control signal based on the pulse and the rotor position detection signal; You may comprise. By comprising in this way, the continuous rotation by inertia can be suppressed and it can be stopped in a short time.
  • the motor system comprises: A motor including the rotor and the motor coil; A magnetic sensor for detecting the position of the rotor; Any one of the above motor control circuits; It is characterized by comprising. According to this configuration, the motor can be controlled so as to stop in a short time by suppressing continuous rotation due to inertia and prevent reverse rotation.
  • the motor control method is a motor control method for controlling energization of the coil based on the detection result of the position of the rotor rotating by energizing the motor coil, A first control state for performing reverse brake control; Next to the first control state, a short brake control state is performed, and a second control state that is intermittently switched to reverse brake control; It is characterized by providing. According to this method, it is possible to stop the motor in a short time by suppressing continuous rotation due to inertia and to control the motor so that reverse rotation does not occur. By intermittently switching to reverse brake control, continuous rotation due to inertia can be suppressed and stopped in a short time.
  • the reverse brake is performed by temporarily switching to the reverse brake control, and the inertia of the rotor
  • the continuous rotation by may be suppressed.
  • a period during which the reverse brake control is performed may be arbitrarily set. By appropriately setting the period during which the reverse brake control is performed, it is possible to suppress the continuous rotation due to inertia and stop it in a short time.
  • the period during which the reverse brake control is performed may be set such that the rotation of the rotor does not occur and the torque is generated most. By setting the period during which reverse brake control is performed in this manner, continuous rotation due to inertia can be suppressed and stopped in a short time.
  • the reverse brake control may be repeated intermittently until the rotor is completely stopped.
  • the timing which starts said 2nd control may be arbitrarily settable.
  • the timing may be a timing at which the rotor position detection signal changes according to continuous rotation of the rotor due to inertia. If this timing is adopted, continuous rotation due to inertia can be suppressed and the rotation can be stopped in a short time.
  • the rotational speed of the rotor when the reverse brake is terminated is such that the rotor rotates backward even when the rotor is stopped only in the second control state after the end of the first control state. It may be set to no rotation speed. By setting in this way, continuous rotation due to inertia can be suppressed and stopped in a short time.
  • the rotational speed of the motor is monitored, and the reverse rotation brake control is performed until the rotational speed immediately before the stop. After the reverse rotation brake is finished, the motor that continuously rotates with inertia is switched to the short pulse reverse brake and the short brake. Therefore, the motor can be stopped in a short time without reverse rotation.
  • FIG. 4 is a timing chart showing the operation of each part of the circuit of FIG. 3.
  • FIG. 4 shows the structural example of the electricity supply switching control circuit in FIG.
  • FIG. It is a timing chart figure of the main signal at the time of motor brake in the embodiment of the present invention.
  • FIG. 1 is a block diagram showing a configuration example of a motor control circuit according to an embodiment of the present invention.
  • a rotor position detection circuit 1 that outputs a rotor position detection signal HALL based on a magnetic field detected by a magnetic sensor, for example, a Hall element HE, and a motor rotational speed are monitored based on the rotor position detection signal HALL.
  • the brake control circuit 2 that outputs the brake control signal SPSB for controlling the short pulse reverse brake and the short brake, the H-type bridge circuit 3 that drives the motor based on the rotor position detection signal HALL, and the rotor rotates forward.
  • a forward rotation control circuit 4 that outputs a signal for controlling the H-type bridge circuit 3, and an energization switching control circuit 5 that selects the forward rotation control, reverse brake control, and short brake control and controls the H-type bridge circuit 3.
  • an oscillator 6 for generating a clock signal CLK that determines the operation timing of the entire circuit.
  • the control signal CTL input from the external terminal 12 is input to the brake control circuit 2 and the energization switching control circuit 5.
  • the H-type bridge circuit 3 has a bridge circuit composed of MOS transistors Tr1, Tr2, Tr3, Tr4.
  • a motor coil as a load is connected between an output terminal OUT1 that is a connection point between the MOS transistor Tr1 and the MOS transistor Tr3 and an output terminal OUT2 that is a connection point between the MOS transistor Tr2 and the MOS transistor Tr4. (Dotted line part in the figure).
  • the forward rotation control circuit 4 outputs signals P1, P2, N1, and N2 that control the gates of the MOS transistors Tr1, Tr2, Tr3, and Tr4 constituting the H-type bridge circuit 3 so that the rotor rotates in the forward direction.
  • the energization switching control circuit 5 outputs signals PG1, PG2, NG1, and NG2 for controlling the gates of the MOS transistors Tr1, Tr2, Tr3, and Tr4 constituting the H-type bridge circuit 3.
  • the H-type bridge circuit 3 can be configured such that the MOS transistors Tr1, Tr2, Tr3, Tr4 are all N-type MOS transistors or P-type MOS transistors. It is also possible to use a bipolar transistor instead of the MOS transistor.
  • FIG. 2 is a diagram showing a configuration example of the brake control circuit 2 in FIG.
  • the brake control circuit 2 of this example includes a counter circuit 7 that counts up each time the clock signal CLK rises, and an edge detection signal HALLEDGE that is a pulse when the edge of the position detection signal HALL is detected.
  • An edge detection circuit 8 to be generated a pulse generation circuit 9 for generating a pulse when a preset value and a counter value are equal, and a signal obtained by inverting the control signal CTL input from the external terminal 12 are output.
  • An inverter circuit IN1 an OR circuit OR1 that outputs a logical sum of signals obtained by inverting the edge detection signal HALLEDGE and the control signal CTL, a D-flip-flop circuit (hereinafter referred to as DFF) 13 with an asynchronous reset terminal R, and Consists of The D input of the DFF 13 is fixed to the H level, and the output is input as the brake control signal SPSB to the energization switching control circuit 5 in FIG.
  • DFF D-flip-flop circuit
  • the counter circuit 7 performs a counting operation according to the clock signal CLK.
  • the count value is reset at the timing when the edge detection signal HALLEDGE is input.
  • Monitoring the rotational speed the time T H from the rising of the rotor position detection signal HALL to fall from the counter circuit 7 is reset and then performed by counting the time until it is reset.
  • the switching timing of the brake control signal SPSB for controlling the brake corresponds to the time T H from the rise to the fall of the position detection signal HALL, the time set in advance by the pulse generation circuit 9 and the time of the clock signal CLK. Pulse widths T SB and T RB (which will be described later).
  • FIG. 3 is a diagram showing a configuration example of the normal rotation control circuit 4 in FIG.
  • the forward rotation control circuit 4 of this example is composed of dead time generation circuits 10 and 11 and IN2 that outputs a signal obtained by inverting the position detection signal HALL so that the rotor rotates forward.
  • Control signals P1, P2, N1, and N2 are output.
  • the dead time is a time for setting all the transistors in an off state in order to prevent a short circuit of an arm which is a set of transistors.
  • FIG. 4 shows a timing chart of the signals P1, P2, N1, and N2 for controlling the rotor to rotate forward.
  • the signal inverted signal of the HALL signal or HALL signal
  • T D
  • Signals (P1, N1 or P2, N2) are output from the output terminals O1, O2 of the dead time generation circuits 10, 11.
  • a logical product or a logical sum of a signal obtained by delaying the HALL signal by a delay circuit and the original HALL signal may be obtained.
  • the inverted signal of the HALL signal for example, a logical product or a logical sum of a signal obtained by delaying the HALL signal by a delay circuit and the original HALL signal may be obtained.
  • the inverted signal of the HALL signal for example, a logical product or a logical sum of a signal obtained by delaying the HALL signal by a delay circuit and the original HALL signal may be obtained.
  • the inverted signal of the HALL signal for example, a logical product or a logical sum of
  • FIG. 5 is a diagram illustrating a configuration example of the energization switching control circuit 5 in FIG.
  • the energization switching control circuit 5 of this example outputs the input signal A as the output signal Q when the signal input as the selection signal S is L level (low level), and the selection signal S Selector SEL1, SEL2, SEL3, SEL4 that outputs the input signal B as the output signal Q, and the brake control signal SPSB that controls the short pulse reverse brake and the short brake.
  • Is composed of OR circuits OR2, OR3, OR4, OR5 that output a control signal that becomes a short brake when H is H level and a short pulse reverse brake when L level, and constitutes an H-type bridge circuit 3
  • OR1, Tr2, Tr3, Tr4 For controlling the gates of the MOS transistors Tr1, Tr2, Tr3, Tr4 (see FIG. 1) PG1, PG2, NG1, and outputs the NG2.
  • FIG. 6 is a timing chart of main signals during motor braking in this example.
  • FIG. 7 is a figure which shows the change of the rotational speed at the time of the motor brake in this example. 6 shows a position detection signal HALL, a control signal CTL, a brake control signal SPSB, signals P1, N1, P2 and N2 in FIG. 1, signals PG1, NG1, PG2 and NG2 in FIG. 1, and output terminals OUT1 and OUT2. For each of the output signals from, the change in the output level is shown.
  • the brake control circuit 2 in FIG. 1 monitors the rotational speed of the motor at the time of braking.
  • the pulse generation circuit 9 in FIG. Since one pulse is output, the brake control signal SPSB output from the DFF 13 changes from the L level to the H level. Therefore, the outputs of the OR circuits OR2, OR3, OR4, and OR5 in FIG.
  • the motor continues to rotate due to inertia even in the short brake state (thus, the position detection signal HALL changes).
  • the edge detection circuit 8 in FIG. 2 since the edge detection circuit 8 in FIG. 2 generates a pulse when the position detection signal HALL changes, a change in HALL is detected in a short brake state, that is, a continuous rotation due to inertia is detected.
  • the DFF 13 When the DFF 13 is set, the DFF 13 in FIG. 2 is reset. For this reason, the brake control signal SPSB that is the output of the DFF 13 changes from the H level to the L level. Accordingly, the OR circuits OR2, OR3, OR4, and OR5 in FIG. 5 output a reverse brake control signal.
  • FIG. 8 is a diagram illustrating a change example of the rotation speed when the rotation speed at which the reverse brake is finished is set to Na, Nb, and Nc.
  • the short brake section is indicated by a two-dot chain line. Referring to the figure, when the rotation speed at which the reverse brake is finished is set to Na, it takes time to stop because the short brake section is too long.
  • the rotational speed at which the reverse brake is terminated is the same as in the conventional control method.
  • the reverse rotation does not occur even though the reverse rotation torque is applied by the short pulse reverse brake.
  • the solid line S1 represents the torque in the reverse rotation direction applied to the rotor by brake control
  • the alternate long and short dash line S2 represents the torque in the forward rotation direction of the rotor
  • the alternate long and two short dashes line S3 represents the torque in the forward rotation direction possessed by the rotor of the alternate long and short dash line S2. This is the amount of torque obtained by adding the torque required to start the rotor from a stopped state.
  • the reverse rotation occurs due to the change in the rotation speed when the rotation speed for completing the reverse brake shown in FIG. 8 is set to Nc.
  • the reverse rotation direction torque by the brake control of the solid line S1 is the reverse rotation of the two-dot chain line S3. This is because reverse rotation braking is performed to a rotational speed that exceeds the torque that occurs.
  • the set rotational speed for ending the reverse brake is Nb
  • the torque in the reverse rotation direction by the brake of the solid line S1 does not exceed the torque that causes the reverse rotation of the two-dot chain line S3 when the rotational speed Nb is reached. There is no reverse rotation of the rotor. Furthermore, as shown in FIG.
  • the pulse width T RB (see FIG. 6) of the short pulse reverse brake is set to a pulse width that does not rotate the motor even when the pulse width is energized while the motor is stopped.
  • Pulse width of short pulse reverse brake The setting of the pulse width of the short pulse reverse brake will be described with reference to FIG.
  • This figure shows the output of the position detection signal HALL when the voltage of each pulse width is applied in the motor stop state.
  • the position detection signal HALL is not changed, indicating that the rotor is not rotating.
  • the position detection signal HALL changes, indicating that the rotor has rotated. Therefore, the optimum pulse width of the short pulse reverse brake is the pulse width Tb in which the rotor does not rotate and the torque is generated most.
  • the method for determining the pulse width of the short pulse reverse brake is when the pulse width of the short pulse reverse brake is always constant, and the pulse width of the short pulse reverse brake can be changed according to the rotational speed. .
  • the pulse width of the short pulse reverse brake at each rotational speed is set for each rotational speed so as not to exceed the torque at which reverse rotation indicated by a two-dot chain line S3 in FIG. 9 occurs.
  • the pulse width T SB for determining the rotation speed for ending the reverse brake and the pulse width T RB for the short pulse reverse brake are set in advance in the pulse generation circuit 9 of FIG. It is also possible to set from the outside by providing a multi-bit input. Further, the oscillator 6 that generates the clock signal CLK that determines the operation timing of FIG. 1 may be configured such that the period of the clock signal CLK is not fixed but can be adjusted from the outside. For example, if a configuration is adopted in which the cycle of the clock signal CLK is determined by a component such as an externally connected resistor or capacitor, it can be adjusted from the outside.
  • PWM Pulse Width Modulation
  • the present invention can be used for motor control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Stopping Of Electric Motors (AREA)

Abstract

 ロータの位置の検出結果に基づいて、コイルの通電を制御するモータ制御回路において、慣性による継続的な回転を抑制して短時間で停止させ、かつ、逆回転が起こらないように制御する。外部コントロール信号CTLがLからHへ変化すると、定常回転制御から逆転制御へと切り替わり、逆転ブレーキ状態となる。モータの回転速度がモニタされ、設定回転速度まで減衰したら、ブレーキ制御信号SPSBがLからHへ変化し、ショートブレーキ状態となる。しかし、モータは慣性により回転を続け、位置検出信号HALLが変化するため、一時的に(パルス幅TRBに相当する時間だけ)逆転ブレーキ制御が行われる。この短パルス逆転ブレーキ制御は、モータが完全に停止するまで断続的に行われる。よって、停止直前の回転速度まで減速した後でショートブレーキ制御のみで停止する場合よりも、短い時間で停止できる。

Description

モータ制御回路、モータシステム、モータ制御方法
 本発明は、モータコイルに通電することによりモータを制御するモータ制御回路、モータシステム、モータ制御方法に関する。
 駆動しているモータに対して電気的に制動を行う方式として、モータのコイルに正転時とは逆方向に電流を通電させ電気的ブレーキをかける逆転ブレーキ制御と、コイル端をショートさせ、ロータの磁場とステータのコイル(インナーロータ型の場合は、ステータの磁場とロータのコイル)により生ずる逆起電圧で流れる電流で電気的ブレーキをかける、ショートブレーキ制御とがある。
 図11に従来制御方式の電気的制動を行った場合の回転速度の変化を示す。破線S11は逆転ブレーキのみで制御を行った場合を示し、一点鎖線S12はショートブレーキのみで制御を行った場合を示し、二点鎖線S13は特開2007-68400号公報で挙げられている制御方法で制御を行った場合を示す。
 同図中の破線S11に示すように、定常回転で駆動しているモータに時刻T0より逆転ブレーキのみで電気的制動を行った場合、制動力が大きいため回転速度は急激に低下する。しかしながら、逆転ブレーキ制御は、モータのコイルに正転時とは逆向きに電流を通電しているため、停止後も逆方向通電を続けた場合及び停止寸前の低回転時まで逆方向通電を行った場合、逆回転が起こる。従って、この逆回転を防止するには、逆転検知の回路を設けるか、ロータが停止するよりもある程度早い段階で逆方向通電を終了する必要がある。
 逆転検知回路を設けてロータを停止させた場合、ロータ停止までには時刻T3までの時間が必要となる。また、ロータが停止するよりも早い段階で逆方向通電を終了した場合は、慣性により継続的に回転するため、停止までに時刻T3までの時間より更に長い時間がかかる。
 一方、定常回転で駆動しているモータにショートブレーキのみで電気的制動を行った場合、図11中の一点鎖線S12に示すように、逆回転が起こることはない。しかしながら、制動力は逆起電圧に依存するため回転速度が低下するのに従って制動力も低下し停止するまでに時刻T4までの時間が必要となる。
 ここで、逆転検知回路を必要とせず短時間でモータを停止させる従来の制御回路として、ロータの回転速度に応じて、前記逆転ブレーキ制御及びショートブレーキ制御を切り替える方式が、特開2007-68400号公報に記載されている。
 特開2007-68400号公報に記載されている制御方式では、図11中の二点鎖線S13に示すように、停止直前の閾値の回転数N1までは、上記逆転ブレーキ制御及びショートブレーキ制御を回転速度により切り替えて短時間で減速し、停止直前の閾値の回転速度N1より低下した時刻T1よりショートブレーキ制御を行う。このように制御することで、上記逆転ブレーキ制御及びショートブレーキ制御のどちらか一方のみで制動を行う場合よりも短時間となる時刻T2で停止させることができる。
(発明が解決しようとする課題)
 しかしながら、上記の制御方式では、以下の問題がある。すなわち、停止直前の閾値の回転速度N1より低下した場合に、ショートブレーキ制御を行うことで逆転は防止できるものの、低回転時におけるショートブレーキ制御の制動力は小さく、ロータは慣性で継続的に回転を続けるために停止までに多大な時間を要する。
 ここで、図12に電気的制動時の位置検出信号HALLのタイミングチャート図を示す。同図を参照すると、慣性により継続的に回転しているときの回転速度は遅いため、ブレーキ開始からロータ停止までの時間TBに対して、慣性により継続的に回転している時間TSが占める割合が大きくなる場合がある。
 従って、停止までの時間短縮には、慣性による継続的な回転を抑制することが重要となる。
 そこで本発明は、上述の事情に鑑みてなされたものであり、その目的は、慣性による継続的な回転を抑制することにより短時間で停止させ、かつ、逆回転が起こらないようにモータを制御することのできるモータ制御回路、モータシステム、モータ制御方法を提供することである。
(課題を解決するための手段)
 本発明によるモータ制御回路は、モータコイルに通電することにより回転するロータの位置の検出結果に基づいて、前記コイルの通電を制御する制御手段を具備したモータ制御回路であって、
 前記制御手段は、
 第1制御状態において、逆転ブレーキ制御を行い、
 前記第1制御状態の次の第2制御状態において、ショートブレーキ制御状態を行うと共に、断続的に逆転ブレーキ制御に切り替えることを特徴とする。この構成によれば、慣性による継続的な回転を抑制することにより短時間で停止させ、かつ、逆回転が起こらないようにモータを制御することができる。
 前記第2制御状態において、前記ロータの慣性による継続的な回転に応じた前記ロータ位置検出信号の変化を検出した場合、一時的に逆転ブレーキ制御に切り替えることで逆転ブレーキを行い、前記ロータの慣性による継続的な回転を抑制してもよい。ロータ位置検出信号の変化を検出することにより、慣性による継続的な回転を抑制して短時間で停止させることができる。
 また、前記第2制御状態において、前記逆転ブレーキ制御を行う期間は、任意に設定可能としてもよい。逆転ブレーキ制御を行う期間を適切に設定することにより、慣性による継続的な回転を抑制して短時間で停止させることができる。
 前記第2制御状態において、前記逆転ブレーキ制御を行う期間は、前記ロータの回転が起こらずかつ最もトルクが発生するように設定されてもよい。このように逆転ブレーキ制御を行う期間を設定することにより、慣性による継続的な回転を抑制して短時間で停止させることができる。
 また、前記第2制御状態において、前記逆転ブレーキ制御は、前記ロータが完全に停止するまで断続的に繰返し行われてもよい。このように制御すれば、慣性による継続的な回転を抑制して短時間で停止させることができる。
 そして、前記第2制御を開始するタイミングは、任意に設定可能であってもよい。第2制御を開始するタイミングを適切に設定することにより、慣性による継続的な回転を抑制して短時間で停止させることができる。
 前記タイミングは、慣性による継続的な前記ロータの回転に応じた前記ロータ位置検出信号が変化したタイミングでもよい。このタイミングを採用すれば、慣性による継続的な回転を抑制して短時間で停止させることができる。
 前記第1制御状態において、前記逆転ブレーキを終了するときの前記ロータの回転速度は、前記第1制御状態の終了後、前記第2制御状態のみで停止させた場合でも前記ロータの逆回転が起こらない回転速度に設定してもよい。このように設定することにより、慣性による継続的な回転を抑制して短時間で停止させることができる。
 前記制御手段は、
 前記ロータの位置を検出したロータ位置検出信号に基づいてロータの回転速度をモニタし、ブレーキ制御信号を生成するブレーキ制御回路と、
 前記ロータ位置検出信号に基づいて、前記ロータの正転のための通電切り替えを制御する正転制御信号を生成する正転制御回路と、
 外部コントロール信号、前記ブレーキ制御信号、及び前記正転制御信号に基づいた前記モータコイルの通電を行うために、前記モータコイルを駆動する複数のトランジスタを制御する通電切り替え制御回路と、
 を具備してもよい。これらの信号を生成して複数のトランジスタを制御することにより、ショートブレーキ制御状態において、逆転ブレーキ制御へ断続的に切り替えることができ、慣性による継続的な回転を抑制して短時間で停止させることができる。
 前記通電切り替え制御回路は、前記外部コントロール信号及び前記ブレーキ制御信号に応じて、逆転ブレーキ制御及びショートブレーキ制御を切り替えてもよい。このようにすれば、ショートブレーキ制御状態において、逆転ブレーキ制御へ断続的に切り替えることができ、慣性による継続的な回転を抑制して短時間で停止させることができる。
 前記ブレーキ制御回路は、
 前記ロータ位置検出信号のエッジを検出するエッジ検出回路と、
 クロック信号をカウントすると共に前記エッジ検出回路からの検出結果によりそのカウント値がリセットされるカウンタ回路と、
 予め設定した基準値とカウンタ値が等しくなったときパルスを発生するパルス発生回路と、
 前記パルス及び前記ロータ位置検出信号に基づき前記ブレーキ制御信号を生成する生成回路と、
 を具備してもよい。このように構成することにより、慣性による継続的な回転を抑制して短時間で停止させることができる。
 本発明によるモータシステムは、
 前記ロータ及び前記モータコイルを含むモータと、
 前記ロータの位置を検出する磁気センサと、
 上記いずれかのモータ制御回路と、
を具備することを特徴とする。この構成によれば、慣性による継続的な回転を抑制することにより短時間で停止させ、かつ、逆回転が起こらないようにモータを制御することができる。
 本発明によるモータ制御方法は、モータコイルに通電することにより回転するロータの位置の検出結果に基づいて、前記コイルの通電を制御するモータ制御方法であって、
 逆転ブレーキ制御を行う第1制御状態と、
 前記第1制御状態の次に、ショートブレーキ制御状態を行うと共に、断続的に逆転ブレーキ制御に切り替える第2制御状態と、
を備えることを特徴とする。この方法によれば、慣性による継続的な回転を抑制することにより短時間で停止させ、かつ、逆回転が起こらないようにモータを制御することができる。逆転ブレーキ制御へ断続的に切り替えることにより、慣性による継続的な回転を抑制して短時間で停止させることができる。
 前記第2制御状態において、前記ロータの慣性による継続的な回転に応じた前記ロータ位置検出信号の変化を検出した場合、一時的に逆転ブレーキ制御に切り替えることで逆転ブレーキを行い、前記ロータの慣性による継続的な回転を抑制してもよい。ロータ位置検出信号の変化を検出することにより、慣性による継続的な回転を抑制して短時間で停止させることができる。
 前記第2制御状態において、前記逆転ブレーキ制御を行う期間は、任意に設定可能であってもよい。逆転ブレーキ制御を行う期間を適切に設定することにより、慣性による継続的な回転を抑制して短時間で停止させることができる。
 前記第2制御状態において、前記逆転ブレーキ制御を行う期間は、前記ロータの回転が起こらずかつ最もトルクが発生するように設定されてもよい。このように逆転ブレーキ制御を行う期間を設定することにより、慣性による継続的な回転を抑制して短時間で停止させることができる。
 また、前記第2制御状態において、前記逆転ブレーキ制御は、前記ロータが完全に停止するまで断続的に繰返し行われてもよい。このように制御すれば、慣性による継続的な回転を抑制して短時間で停止させることができる。
 そして、前記第2制御を開始するタイミングは、任意に設定可能であってもよい。第2制御を開始するタイミングを適切に設定することにより、慣性による継続的な回転を抑制して短時間で停止させることができる。
 前記タイミングは、慣性による継続的な前記ロータの回転に応じた前記ロータ位置検出信号が変化したタイミングでもよい。このタイミングを採用すれば、慣性による継続的な回転を抑制して短時間で停止させることができる。
 前記第1制御状態において、前記逆転ブレーキを終了するときの前記ロータの回転速度は、前記第1制御状態の終了後、前記第2制御状態のみで停止させた場合でも前記ロータの逆回転が起こらない回転速度に設定してもよい。このように設定することにより、慣性による継続的な回転を抑制して短時間で停止させることができる。
(発明の効果)
 本発明によれば、モータの回転速度をモニタし、停止直前の回転速度までは逆転ブレーキ制御を行い、逆転ブレーキ終了後、慣性で継続的に回転しようとするモータを短パルス逆転ブレーキ及びショートブレーキで抑制するため、モータが逆回転することがなく短時間で停止できる。
本発明の実施形態におけるモータ制御回路の構成例を示すブロック図である。 図1中のブレーキ制御回路の構成例を示す図である。 図1中の正転制御回路の構成例を示す図である。 図3の回路の各部の動作を示すタイミングチャート図である。 図1中の通電切り替え制御回路の構成例を示す図である。 本発明の実施形態におけるモータブレーキ時の主信号のタイミングチャート図である。 本発明の実施形態におけるモータブレーキ時の回転速度の変化を表した図である。 本発明の実施形態における異なるブレーキ制御タイミングの回転速度の変化を表した図である。 本発明の実施形態におけるロータの逆回転が起こらない理由を説明するための図である。 本発明の実施形態における異なる印加パルス幅における位置検出信号の出力を表した図である。 従来方法におけるモータブレーキ時の回転速度の変化を表した図である。 従来方法におけるロータ位置検出信号のタイミングチャート図である。
符号の説明
1 ロータ位置検出回路
2 ブレーキ制御回路
3 H型ブリッジ回路
4 正転制御回路
5 通電切り替え制御回路
6 発振器
7 カウンタ回路
8 エッジ検出回路
9 パルス発生回路
10、11 デッドタイム生成回路
12 外部端子
13 D-フリップフロップ回路
HE ホール素子
IN1、IN2インバータ回路
OR1~OR5 論理和回路
OUT1、OUT2 出力端子
SEL1~SEL4 セレクタ
Tr1~Tr4 トランジスタ
 以下、本発明の実施の形態を、図面を参照して説明する。なお、以下の説明において参照する各図では、他の図と同等部分は同一符号によって示されている。
(モータ制御回路の構成)
 図1は、本発明の実施形態によるモータ制御回路の構成例を示すブロック図である。
 同図に示すように、磁気センサ、例えばホール素子HEによる検出磁場を基にロータ位置検出信号HALLを出力するロータ位置検出回路1と、ロータ位置検出信号HALLを基にモータの回転速度をモニタし、短パルス逆転ブレーキ及びショートブレーキをコントロールするためのブレーキ制御信号SPSBを出力するブレーキ制御回路2と、ロータ位置検出信号HALLを基にモータを駆動するH型ブリッジ回路3と、ロータが正転するようにH型ブリッジ回路3をコントロールする信号を出力する正転制御回路4と、正転制御、逆転ブレーキ制御及びショートブレーキ制御を選択し、H型ブリッジ回路3を制御する通電切り替え制御回路5と、回路全体の動作タイミングを決めるクロック信号CLKを発生する発振器6とを備えている。なお、外部端子12から入力されるコントロール信号CTLは、ブレーキ制御回路2および通電切り替え制御回路5に入力される。
 H型ブリッジ回路3は、MOSトランジスタTr1、Tr2、Tr3、Tr4によるブリッジ回路を有している。そして、MOSトランジスタTr1とMOSトランジスタTr3との接続点である出力端子OUT1と、MOSトランジスタTr2とMOSトランジスタTr4との接続点である出力端子OUT2との間に、負荷であるモータコイルが接続される(同図中の破線部分)。
 正転制御回路4は、H型ブリッジ回路3を構成するMOSトランジスタTr1、Tr2、Tr3、Tr4のゲートをロータが正転するようにコントロールする信号P1、P2、N1、N2を出力する。
 通電切り替え制御回路5は、H型ブリッジ回路3を構成するMOSトランジスタTr1、Tr2、Tr3、Tr4のゲートをコントロールするための信号PG1、PG2、NG1、NG2を出力する。
 ここで、H型ブリッジ回路3は、MOSトランジスタTr1、Tr2、Tr3、Tr4が全てN型のMOSトランジスタまたはP型のMOSトランジスタでも構成可能である。また、MOSトランジスタの代わりにバイポーラトランジスタを用いることも可能である。
(ブレーキ制御回路の構成例)
 図2は、図1中のブレーキ制御回路2の構成例を示す図である。同図に示すように、本例のブレーキ制御回路2は、クロック信号CLKの立ち上がり毎にカウントアップするカウンタ回路7と、位置検出信号HALLのエッジを検出した場合にパルスであるエッジ検出信号HALLEDGEを発生するエッジ検出回路8と、予め設定しておいた値とカウンタの値が等しくなったときパルスを発生するパルス発生回路9と、外部端子12から入力されるコントロール信号CTLを反転した信号を出力するインバータ回路IN1と、エッジ検出信号HALLEDGE及びコントロール信号CTLを反転した信号の論理和を出力する論理和回路OR1と、非同期リセット端子R付きのD-フリップフロップ回路(以下、DFFと称する)13とから構成される。DFF13のD入力はHレベルに固定され、出力はブレーキ制御信号SPSBとして、図1中の通電切り替え制御回路5に入力される。
 カウンタ回路7は、クロック信号CLKによってカウント動作を行う。そのカウント値は、エッジ検出信号HALLEDGEが入力されるタイミングでリセットされる。
 回転速度のモニタは、ロータ位置検出信号HALLの立ち上がりから立下がりまでの時間THを、カウンタ回路7がリセットされてから、次にリセットされるまでの時間をカウントすることで行われる。そして、ブレーキをコントロールするブレーキ制御信号SPSBの切り替えタイミングは、位置検出信号HALLの立ち上がりから立下がりまでの時間TH及びパルス発生回路9で予め設定した値とクロック信号CLKの周期により求まる時間に相当するパルス幅TSB、TRB(これらについては後述する)により決定される。
(正転制御回路の構成例)
 図3は、図1中の正転制御回路4の構成例を示す図である。同図に示すように、本例の正転制御回路4は、デッドタイム生成回路10および11と、位置検出信号HALLを反転した信号を出力するIN2とから構成され、ロータが正転するようにコントロールする信号P1、P2、N1、N2を出力する。なお、デッドタイム(dead time)とは、トランジスタの組であるアームの短絡を防止するために、全てのトランジスタをオフ状態に設定する時間である。
 ここで、図4は、ロータが正転するようにコントロールする信号P1、P2、N1、N2のタイミングチャート図を示す。同図を参照すると、図3のデッドタイム生成回路10、11の入力端子INに入力される信号(HALL信号またはHALL信号の反転信号)に対し、設定された時間TDの遅延を持たせた信号(P1、N1またはP2、N2)が、デッドタイム生成回路10、11の出力端子O1、O2から出力される。このような信号を出力端子O1、O2から出力するには、例えば、HALL信号を遅延回路で遅延させた信号と元のHALL信号との論理積、論理和をとればよい。HALL信号の反転信号についても同様である。
(通電切り替え制御回路の構成例)
 図5は、図1中の通電切り替え制御回路5の構成例を示す図である。同図に示すように、本例の通電切り替え制御回路5は、選択信号Sとして入力される信号がLレベル(ローレベル)の場合には入力信号Aを出力信号Qとして出力し、選択信号Sとして入力される信号がHレベル(ハイレベル)の場合には入力信号Bを出力信号Qとして出力するセレクタSEL1、SEL2、SEL3、SEL4と、短パルス逆転ブレーキ及びショートブレーキをコントロールするブレーキ制御信号SPSBがHレベルの場合にショートブレーキ、Lレベルの場合に短パルス逆転ブレーキとなるコントロール信号を出力する論理和回路OR2、OR3、OR4、OR5と、から構成されており、H型ブリッジ回路3を構成するMOSトランジスタTr1、Tr2、Tr3、Tr4(図1参照)のゲートをコントロールする信号PG1、PG2、NG1、NG2を出力する。
(動作例)
 次に、図1中の各部の信号レベルについて説明する。図6は、本例におけるモータブレーキ時の主信号のタイミングチャート図である。また、図7は、本例におけるモータブレーキ時の回転速度の変化を示す図である。
 図6には、位置検出信号HALL、コントロール信号CTL、ブレーキ制御信号SPSB、図1中の信号P1、N1、P2およびN2、図1中の信号PG1、NG1、PG2およびNG2、出力端子OUT1およびOUT2からの出力信号、について、それぞれの出力レベルの変化が示されている。
 本例では、同図に示すように、定常回転状態において、外部コントロール信号CTLがLレベルからHレベルへ変化した場合、図5中のセレクタSEL1、SEL2、SEL3、SEL4の出力信号Qの内容が入力信号Aから入力信号Bとなる。これにより、定常回転制御から逆転制御へと切り替わり、逆転ブレーキ状態となる。それと共に、図2中のDFF13のリセットが解除され、パルス発生回路9の出力するパルスが有効となる。
 図1中のブレーキ制御回路2では、ブレーキ時にモータの回転速度をモニタしており、設定回転速度まで減衰したら(つまり、TH>TSBとなったら)、図2中のパルス発生回路9よりパルスが一発出力されるため、DFF13の出力であるブレーキ制御信号SPSBがLレベルからHレベルへと変化する。このため、図5中の論理和回路OR2、OR3、OR4、OR5の出力は全てHレベルとなるため、ショートブレーキ状態となる。
 しかしながら、図6に示すように、ショートブレーキ状態となってもモータは慣性により継続的に回転を続ける(したがって、位置検出信号HALLが変化する)。ここで、図2中のエッジ検出回路8は位置検出信号HALLが変化したときにパルスを発生させるため、ショートブレーキ状態においてHALLの変化が検出された場合、つまり、慣性による継続的な回転が検出された場合、図2中のDFF13はリセットされる。このため、DFF13の出力であるブレーキ制御信号SPSBはHレベルからLレベルと変化する。従って、図5中の論理和回路OR2、OR3、OR4、OR5は、逆転ブレーキの制御信号を出力する。
 このとき、図2中のカウンタ回路7もリセットされるため、ブレーキ制御信号SPSBがLレベルに変化してからカウントし始め、パルス発生回路9で設定されたパルス幅TRBに相当する時間が経過すると再びパルス発生回路9はパルスを発生する。このパルス発生回路9により出力されたパルスによって、DFF13の出力であるブレーキ制御信号SPSBは再びHレベルとなりショートブレーキ制御状態へ戻る。従って、パルス幅TRBに相当する時間だけ、一時的に、逆転ブレーキ制御が行われることになる(以下、短パルス逆転ブレーキ制御と呼ぶ)。なお、図6に示すように、この短パルス逆転ブレーキ制御は、モータが完全に停止するまで、断続的に繰返し行われる。
 従って、慣性による継続的な回転を、短パルス逆転ブレーキ制御及びショートブレーキ制御により抑制することになる。このため、図7に示すように、従来の停止直前の回転速度まで減速した後ショートブレーキ制御のみで停止する場合(図7中の二点鎖線S13)の時刻T2までの停止時間に対して、上記動作の場合(図7中の実線S10)は時刻T5までの停止時間に短縮することができる。
(逆転ブレーキの終了タイミング)
 ここで、上記ブレーキ制御において、逆転ブレーキを終了する回転速度N1(時間TSBにより設定)は、逆転ブレーキ終了後、ショートブレーキのみで停止させた場合でもモータの逆回転が起こらない回転速度に設定する。
 図8は、逆転ブレーキを終了する回転速度をNa、Nb、Ncに設定した場合の回転速度の変化例を示す図である。同図では、ショートブレーキ区間を二点鎖線で示している。同図を参照すると、逆転ブレーキを終了する回転速度をNaに設定した場合、ショートブレーキ区間が長すぎるために停止まで時間がかかる。また、逆転ブレーキを終了する回転速度をNcに設定した場合、逆転ブレーキによる逆回転方向のトルクが大きすぎるために逆回転が起こる。従って、逆回転が起こらず、最短で停止するNbが最適な設定回転速度となる。
 ここで、逆転ブレーキを終了する回転速度は、従来の制御方法の場合と同じであり、本発明ではさらに短パルスの逆転ブレーキにより逆回転方向のトルクを与えるにも関わらず、逆回転が起こらない理由について、図9を用いて説明する。同図において、実線S1はブレーキ制御によりロータにかかる逆回転方向のトルク、一点鎖線S2はロータが持つ正回転方向のトルク、二点鎖線S3は一点鎖線S2のロータが持つ正回転方向のトルクにロータが停止状態から起動するのに必要なトルクを加算したトルク量である。二点鎖線S3を瞬間的にでも超えるようなトルクがロータに加わると逆回転が起こる。
 同図を参照すると、実線S1のブレーキ制御による逆回転方向のトルクは、回転速度が低下するに従って、増加する。よって、一点鎖線S2のロータが持つ正回転方向のトルク及び二点鎖線S3の逆回転が起こるトルクは回転速度の低下に伴って減衰する。
 図8に示す逆転ブレーキを終了する回転速度をNcに設定した場合の回転速度の変化で逆回転が起こるのは、実線S1のブレーキ制御による逆回転方向のトルクが二点鎖線S3の逆回転が起こるトルクを超えるような回転速度まで逆転ブレーキを行っているためである。逆転ブレーキを終了する設定回転数をNbとした場合には、回転速度Nbに到達したときに実線S1のブレーキによる逆回転方向のトルクが二点鎖線S3の逆回転が起こるトルクを超えていないのでロータの逆回転は起こらない。更に、図9に示すように短パルスの逆転ブレーキを行ったとしても短パルスの逆転ブレーキによる逆回転方向のトルクが二点鎖線S3の逆回転が起こるトルクを超えなければ逆回転が起こることがない。従って、短パルス逆転ブレーキのパルス幅TRB(図6参照)は、モータ停止状態において、そのパルス幅の通電を行ってもモータが回転しないパルス幅に設定する。
(短パルス逆転ブレーキのパルス幅)
 短パルス逆転ブレーキのパルス幅の設定について、図10を参照して説明する。同図は、モータ停止状態において、各パルス幅の電圧を印加した場合の位置検出信号HALLの出力を示す。
 同図を参照すると、パルス幅Ta、Tbのパルスを印加した場合、位置検出信号HALLは変化しておらず、ロータが回転していないことを示す。しかしながら、パルス幅Tcの電圧を印加した場合、位置検出信号HALLが変化しており、ロータが回転したことを示す。従って、最適な短パルス逆転ブレーキのパルス幅は、ロータの回転が起こらず、最もトルクが発生するパルス幅Tbとなる。
 この短パルス逆転ブレーキのパルス幅の決定方法は、短パルス逆転ブレーキのパルス幅が常に一定で動作する場合であり、回転速度に応じて短パルス逆転ブレーキのパルス幅を変化させることも可能である。その場合、各回転速度における短パルス逆転ブレーキのパルス幅は、図9中の二点鎖線S3に示す逆回転が起こるトルクを超えないように各回転速度毎に設定を行う。
(変形例)
 上記制御方法では、逆転ブレーキを終了する回転速度を決定するパルス幅TSB及び短パルス逆転ブレーキのパルス幅TRBは、図2のパルス発生回路9に予め設定しているが、パルス発生回路9に複数ビットの入力を設けることで、外部から設定することも可能である。
 また、図1の動作タイミングを決めるクロック信号CLKを発生する発振器6は、クロック信号CLKの周期は固定ではなく、外部から調整できるように構成してもよい。例えば、外部接続の抵抗または容量等の部品によりクロック信号CLKの周期を決定する構成を採用すれば、それを外部から調整することができる。
(まとめ)
 以上のように、逆転ブレーキ制御から、短パルス逆転ブレーキ制御及びショートブレーキへ制御の切り替え回転速度、短パルス逆転ブレーキ制御のパルス幅を最適値に設定することにより、モータの逆回転が起こることなく短時間での停止が実現できる。また、ブレーキ時の振動騒音を低減するためにブレーキ開始時に逆転ブレーキを行わず、ショートブレーキ制御から開始し、その後短パルス逆転ブレーキ制御及びショートブレーキへ制御の切り替えを行うことも可能である。ブレーキ開始から短パルス逆転ブレーキ制御及びショートブレーキ制御を行うことも可能である。
 上述したブレーキ制御では、逆転ブレーキ及び短パルス逆転ブレーキ時にPWM(Pulse Width Modulation)制御を行わず、Fullトルクでの動作により説明を行ったが、逆転ブレーキ及び短パルス逆転ブレーキ時にPWM制御を行うことも可能である。ブレーキ制御時にPWM制御を行い、PWM制御用パルスのDuty及び周波数を変更することで、停止時間、振動騒音レベル及び消費電力を容易に調整することができる。
 さらに、上述した制御方法は単相コイルのモータだけでなく複数相コイルのモータにも適用することができる。
産業上の利用の可能性
 本発明は、モータの制御に利用することができる。

Claims (20)

  1.  モータコイルに通電することにより回転するロータの位置の検出結果に基づいて、前記コイルの通電を制御する制御手段を具備したモータ制御回路であって、
     前記制御手段は、
     第1制御状態において、逆転ブレーキ制御を行い、
     前記第1制御状態の次の第2制御状態において、ショートブレーキ制御状態を行うと共に、断続的に逆転ブレーキ制御に切り替えることを特徴とするモータ制御回路。
  2.  前記第2制御状態において、前記ロータの慣性による継続的な回転に応じた前記ロータ位置検出信号の変化を検出した場合、一時的に逆転ブレーキ制御に切り替えることで逆転ブレーキを行い、前記ロータの慣性による継続的な回転を抑制することを特徴とする請求項1に記載のモータ制御回路。
  3.  前記第2制御状態において、前記逆転ブレーキ制御を行う期間は、任意に設定可能であることを特徴とする請求項1または請求項2に記載のモータ制御回路。
  4.  前記第2制御状態において、前記逆転ブレーキ制御を行う期間は、前記ロータの回転が起こらずかつ最もトルクが発生するように設定される請求項3に記載のモータ制御回路。
  5.  前記第2制御状態において、前記逆転ブレーキ制御は、前記ロータが完全に停止するまで断続的に繰返し行われることを特徴とする請求項1から請求項4までのいずれか1項に記載のモータ制御回路。
  6.  前記第2制御を開始するタイミングは、任意に設定可能であることを特徴とする請求項1から請求項5までのいずれか1項に記載のモータ制御回路。
  7.  前記タイミングは、慣性による継続的な前記ロータの回転に応じた前記ロータ位置検出信号が変化したタイミングであることを特徴とする請求項6に記載のモータ制御回路。
  8.  前記第1制御状態において、前記逆転ブレーキを終了するときの前記ロータの回転速度は、前記第1制御状態の終了後、前記第2制御状態のみで停止させた場合でも前記ロータの逆回転が起こらない回転速度に設定することを特徴とする請求項1から請求項5までのいずれか1項に記載のモータ制御回路。
  9.  前記制御手段は、
     前記ロータの位置を検出したロータ位置検出信号に基づいてロータの回転速度をモニタし、ブレーキ制御信号を生成するブレーキ制御回路と、
     前記ロータ位置検出信号に基づいて、前記ロータの正転のための通電切り替えを制御する正転制御信号を生成する正転制御回路と、
     外部コントロール信号、前記ブレーキ制御信号、及び前記正転制御信号に基づいた前記モータコイルの通電を行うために、前記モータコイルを駆動する複数のトランジスタを制御する通電切り替え制御回路と、
     を具備することを特徴とする請求項1から請求項8までのいずれか1項に記載のモータ制御回路。
  10.  前記通電切り替え制御回路は、
     前記外部コントロール信号及び前記ブレーキ制御信号に応じて、逆転ブレーキ制御及びショートブレーキ制御を切り替えることを特徴とする請求項9に記載のモータ制御回路。
  11.  前記ブレーキ制御回路は、
     前記ロータ位置検出信号のエッジを検出するエッジ検出回路と、
     クロック信号をカウントすると共に前記エッジ検出回路からの検出結果によりそのカウント値がリセットされるカウンタ回路と、
     予め設定した基準値とカウンタ値が等しくなったときパルスを発生するパルス発生回路と、
     前記パルス及び前記ロータ位置検出信号に基づき前記ブレーキ制御信号を生成する生成回路と、
     を具備することを特徴とする請求項9または請求項10に記載のモータ制御回路。
  12.  前記ロータ及び前記モータコイルを含むモータと、
     前記ロータの位置を検出する磁気センサと、
     請求項1から請求項11までのいずれか1項に記載のモータ制御回路と、
    を具備することを特徴とするモータシステム。
  13.  モータコイルに通電することにより回転するロータの位置の検出結果に基づいて、前記コイルの通電を制御するモータ制御方法であって、
     逆転ブレーキ制御を行う第1制御状態と、
     前記第1制御状態の次に、ショートブレーキ制御状態を行うと共に、断続的に逆転ブレーキ制御に切り替える第2制御状態と、
    を備えることを特徴とするモータ制御方法。
  14.  前記第2制御状態において、前記ロータの慣性による継続的な回転に応じた前記ロータ位置検出信号の変化を検出した場合、一時的に逆転ブレーキ制御に切り替えることで逆転ブレーキを行い、前記ロータの慣性による継続的な回転を抑制することを特徴とする請求項13に記載のモータ制御方法。
  15.  前記第2制御状態において、前記逆転ブレーキ制御を行う期間は、任意に設定可能であることを特徴とする請求項13または請求項14に記載のモータ制御方法。
  16.  前記第2制御状態において、前記逆転ブレーキ制御を行う期間は、前記ロータの回転が起こらずかつ最もトルクが発生するように設定される請求項15に記載のモータ制御方法。
  17.  前記第2制御状態において、前記逆転ブレーキ制御は、前記ロータが完全に停止するまで断続的に繰返し行われることを特徴とする請求項13から請求項16までのいずれか1項に記載のモータ制御方法。
  18.  前記第2制御を開始するタイミングは、任意に設定可能であることを特徴とする請求項13から請求項17までのいずれか1項に記載のモータ制御方法。
  19.  前記タイミングは、慣性による継続的な前記ロータの回転に応じた前記ロータ位置検出信号が変化したタイミングであることを特徴とする請求項18に記載のモータ制御方法。
  20.  前記第1制御状態において、前記逆転ブレーキを終了するときの前記ロータの回転速度は、前記第1制御状態の終了後、前記第2制御状態のみで停止させた場合でも前記ロータの逆回転が起こらない回転速度に設定することを特徴とする請求項13から請求項17までのいずれか1項に記載のモータ制御方法。
PCT/JP2009/052876 2008-03-04 2009-02-19 モータ制御回路、モータシステム、モータ制御方法 WO2009110321A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09718472.5A EP2200172A4 (en) 2008-03-04 2009-02-19 Motor control circuit, motor system, and motor control method
US12/601,755 US8305017B2 (en) 2008-03-04 2009-02-19 Motor control circuit, motor system, and motor control method
CN2009800002023A CN101682285B (zh) 2008-03-04 2009-02-19 马达控制电路、马达系统、马达控制方法
JP2009529466A JP5016674B2 (ja) 2008-03-04 2009-02-19 モータ制御回路、モータシステム、モータ制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008053809 2008-03-04
JP2008-053809 2008-03-04

Publications (1)

Publication Number Publication Date
WO2009110321A1 true WO2009110321A1 (ja) 2009-09-11

Family

ID=41055882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052876 WO2009110321A1 (ja) 2008-03-04 2009-02-19 モータ制御回路、モータシステム、モータ制御方法

Country Status (5)

Country Link
US (1) US8305017B2 (ja)
EP (1) EP2200172A4 (ja)
JP (1) JP5016674B2 (ja)
CN (1) CN101682285B (ja)
WO (1) WO2009110321A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013093984A1 (ja) * 2011-12-22 2015-04-27 株式会社島津製作所 回診用x線撮影装置
WO2023286510A1 (ja) * 2021-07-13 2023-01-19 株式会社今仙電機製作所 位置決め装置とその制御方法
WO2023286511A1 (ja) * 2021-07-13 2023-01-19 株式会社今仙電機製作所 位置決め装置とその制御方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010083877A1 (de) * 2009-01-24 2010-07-29 Ebm-Papst St. Georgen Gmbh & Co. Kg Elektromotor, und vorrichtung zum erzeugen eines signals für die steuerung eines solchen
CN101800498B (zh) * 2010-04-01 2013-12-04 华为技术有限公司 太阳能光发电系统、控制装置及控制方法
CA2845125C (en) * 2011-08-15 2019-10-29 Ferno-Washington, Inc. Patient transport devices
JP5901926B2 (ja) * 2011-10-05 2016-04-13 ルネサスエレクトロニクス株式会社 Pwm出力装置及びモータ駆動装置
KR101228665B1 (ko) * 2011-12-21 2013-01-31 삼성전기주식회사 모터 구동 장치 및 방법
JP5981219B2 (ja) * 2012-05-18 2016-08-31 株式会社マキタ 3相ブラシレスモータの制動装置及び電気機器
CN102811021B (zh) * 2012-07-23 2016-01-20 联合汽车电子有限公司 车用电驱动系统故障模式下的安全控制系统及安全控制器
CN103036487B (zh) * 2012-12-13 2015-09-09 四川九洲电器集团有限责任公司 用于有刷直流电机的制动控制器
US9088233B2 (en) * 2012-12-18 2015-07-21 Allegro Microsystems, Llc Systems and methods for reduction of motor jitter while driving an electric motor
DE102013016216A1 (de) * 2013-09-28 2015-04-02 Andreas Stihl Ag & Co. Kg "Verfahren zum Bremsen eines elektrischen Antriebsmotors"
JP6082683B2 (ja) * 2013-10-08 2017-02-15 ミネベアミツミ株式会社 モータ駆動制御装置及びモータ駆動制御装置の制御方法
CN104682814A (zh) * 2013-11-29 2015-06-03 台达电子工业股份有限公司 风扇防回风系统及方法
CN106208843B (zh) * 2015-05-25 2021-05-18 罗姆股份有限公司 电动机驱动电路、振动装置以及电子设备
JP6739215B2 (ja) * 2015-05-25 2020-08-12 ローム株式会社 モータ駆動回路、振動装置および電子機器
CN105958871A (zh) 2016-03-09 2016-09-21 广东美的制冷设备有限公司 空调器及其压缩机的停机控制方法和装置
DE102016222958A1 (de) * 2016-11-22 2018-05-24 BSH Hausgeräte GmbH Verfahren zum Anhalten eines Hubkolben-Verdichters und Hubkolben-Verdichter eines Kältegerätes, Klimagerätes oder einer Wärmepumpe sowie Kältegerät, Klimageräts oder Wärmepumpe damit
JP6486985B2 (ja) * 2017-04-03 2019-03-20 ミネベアミツミ株式会社 モータ駆動制御装置、モータ駆動制御方法及びチューブポンプ
TWI673045B (zh) * 2018-10-17 2019-10-01 財團法人工業技術研究院 電動輪椅控制系統及其控制方法
CN110888357B (zh) * 2019-11-22 2021-06-29 珠海格力智能装备有限公司 机器人的控制方法及装置
TWI798151B (zh) * 2022-08-29 2023-04-01 茂達電子股份有限公司 馬達正反轉偵測器以及具有馬達正反轉偵測器的馬達驅動器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000209892A (ja) * 1999-01-11 2000-07-28 Sony Corp モ―タ駆動回路
JP2003235287A (ja) * 2001-12-05 2003-08-22 Matsushita Electric Ind Co Ltd モータ駆動装置及びモータ駆動方法
JP2005057993A (ja) * 2003-07-23 2005-03-03 Matsushita Electric Ind Co Ltd モータ駆動装置及びそれを用いたディスク装置
JP2006166666A (ja) * 2004-12-10 2006-06-22 Matsushita Electric Ind Co Ltd モータ駆動用半導体装置
JP2007068400A (ja) 2001-12-05 2007-03-15 Matsushita Electric Ind Co Ltd モータ駆動装置及びモータ駆動方法
JP2008022678A (ja) * 2006-07-14 2008-01-31 Matsushita Electric Ind Co Ltd モータ駆動装置及びモータ制動方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6831432B2 (en) * 2001-12-05 2004-12-14 Matsushita Electric Industrial Co., Ltd. Motor driving device and motor driving method
JP2003189651A (ja) * 2001-12-20 2003-07-04 Brother Ind Ltd 直流モータの減速制御装置
JP2004229462A (ja) * 2003-01-27 2004-08-12 Rohm Co Ltd 電動機の制御装置
US7073872B2 (en) * 2003-07-23 2006-07-11 Matsushita Electric Industrial Co., Ltd. Motor driving apparatus and disk apparatus using the same
JP2007110778A (ja) * 2005-10-11 2007-04-26 Matsushita Electric Ind Co Ltd モータ駆動装置および駆動方法
JP5121271B2 (ja) * 2006-04-06 2013-01-16 キヤノン株式会社 画像形成装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000209892A (ja) * 1999-01-11 2000-07-28 Sony Corp モ―タ駆動回路
JP2003235287A (ja) * 2001-12-05 2003-08-22 Matsushita Electric Ind Co Ltd モータ駆動装置及びモータ駆動方法
JP2007068400A (ja) 2001-12-05 2007-03-15 Matsushita Electric Ind Co Ltd モータ駆動装置及びモータ駆動方法
JP2005057993A (ja) * 2003-07-23 2005-03-03 Matsushita Electric Ind Co Ltd モータ駆動装置及びそれを用いたディスク装置
JP2006166666A (ja) * 2004-12-10 2006-06-22 Matsushita Electric Ind Co Ltd モータ駆動用半導体装置
JP2008022678A (ja) * 2006-07-14 2008-01-31 Matsushita Electric Ind Co Ltd モータ駆動装置及びモータ制動方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2200172A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013093984A1 (ja) * 2011-12-22 2015-04-27 株式会社島津製作所 回診用x線撮影装置
US9364188B2 (en) 2011-12-22 2016-06-14 Shimadzu Corporation X-ray apparatus for round visit
WO2023286510A1 (ja) * 2021-07-13 2023-01-19 株式会社今仙電機製作所 位置決め装置とその制御方法
WO2023286511A1 (ja) * 2021-07-13 2023-01-19 株式会社今仙電機製作所 位置決め装置とその制御方法

Also Published As

Publication number Publication date
CN101682285B (zh) 2013-10-23
JP5016674B2 (ja) 2012-09-05
EP2200172A4 (en) 2018-03-07
EP2200172A1 (en) 2010-06-23
US20100171452A1 (en) 2010-07-08
JPWO2009110321A1 (ja) 2011-07-14
CN101682285A (zh) 2010-03-24
US8305017B2 (en) 2012-11-06

Similar Documents

Publication Publication Date Title
JP5016674B2 (ja) モータ制御回路、モータシステム、モータ制御方法
KR100624888B1 (ko) 모터구동장치 및 모터구동방법
JP3890906B2 (ja) ブラシレスモータの駆動装置およびそれを使用するモータ
JP7016762B2 (ja) 半導体装置、モータ駆動システム、およびモータ制御プログラム
JP2007110779A (ja) モータ駆動装置および駆動方法
EP1219013B1 (en) State advance controller commutation loop for brushless d.c. motors
JP2002119081A (ja) ブラシレスモータ駆動回路
JP2007110778A (ja) モータ駆動装置および駆動方法
JP7221166B2 (ja) ブラシレスモータ、ブラシレスモータの制御方法およびワイパ装置の制御方法
JP2012200092A (ja) モータ駆動回路、方法およびそれを用いた冷却装置、電子機器
JP2012125096A (ja) モータ駆動制御装置
JP2019213367A (ja) ブラシレスdcモータの制御方法及び制御装置
US7714530B2 (en) System and method for controlling a synchronous electric motor, particularly for household appliances
TWI581559B (zh) 具有一個霍爾感測器運轉的系統及其方法
JP2004364381A (ja) モータ駆動装置
JP2007195313A (ja) ブラシレスモータの駆動装置
KR102238456B1 (ko) 스위치드 릴럭턴스 모터를 구동하는 구동 회로
WO2019244552A1 (ja) ステッピングモータの制御装置及びステッピングモータの制御方法
JP6528638B2 (ja) 電子制御装置
JP2021065074A (ja) モータ制御装置
JP5413904B2 (ja) 二相ステッピングモータのマイクロステップ駆動方法
JP2007068400A (ja) モータ駆動装置及びモータ駆動方法
JP3667719B2 (ja) モータ駆動装置及びモータ駆動方法
JP2001346389A (ja) 電気モータの通電制御装置
JP4136368B2 (ja) Dcブラシレスモータの並列駆動回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000202.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2009529466

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009718472

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09718472

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12601755

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE