WO2009107743A1 - 液化ガス再液化装置、これを備えた液化ガス貯蔵設備および液化ガス運搬船、並びに液化ガス再液化方法 - Google Patents

液化ガス再液化装置、これを備えた液化ガス貯蔵設備および液化ガス運搬船、並びに液化ガス再液化方法 Download PDF

Info

Publication number
WO2009107743A1
WO2009107743A1 PCT/JP2009/053594 JP2009053594W WO2009107743A1 WO 2009107743 A1 WO2009107743 A1 WO 2009107743A1 JP 2009053594 W JP2009053594 W JP 2009053594W WO 2009107743 A1 WO2009107743 A1 WO 2009107743A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquefied gas
secondary refrigerant
liquefied
bog
gas
Prior art date
Application number
PCT/JP2009/053594
Other languages
English (en)
French (fr)
Inventor
岡 勝
彩 平松
斎 近藤
義正 大橋
長屋 重夫
勉 玉田
Original Assignee
三菱重工業株式会社
中部電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 中部電力株式会社 filed Critical 三菱重工業株式会社
Priority to CN2009800005799A priority Critical patent/CN101796343B/zh
Priority to EP09715741.6A priority patent/EP2196722B1/en
Priority to KR1020107002140A priority patent/KR101136709B1/ko
Priority to US12/670,693 priority patent/US8739569B2/en
Publication of WO2009107743A1 publication Critical patent/WO2009107743A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • F17C9/04Recovery of thermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0077Argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0268Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using a dedicated refrigeration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0269Arrangement of liquefaction units or equipments fulfilling the same process step, e.g. multiple "trains" concept
    • F25J1/0271Inter-connecting multiple cold equipments within or downstream of the cold box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0128Shape spherical or elliptical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • F17C2205/0134Two or more vessels characterised by the presence of fluid connection between vessels
    • F17C2205/0142Two or more vessels characterised by the presence of fluid connection between vessels bundled in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/034Treating the boil-off by recovery with cooling with condensing the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/42Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/908External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by regenerative chillers, i.e. oscillating or dynamic systems, e.g. Stirling refrigerator, thermoelectric ("Peltier") or magnetic refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/908External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by regenerative chillers, i.e. oscillating or dynamic systems, e.g. Stirling refrigerator, thermoelectric ("Peltier") or magnetic refrigeration
    • F25J2270/91External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by regenerative chillers, i.e. oscillating or dynamic systems, e.g. Stirling refrigerator, thermoelectric ("Peltier") or magnetic refrigeration using pulse tube refrigeration

Definitions

  • the present invention relates to a liquefied gas reliquefaction device for reliquefying a boil-off gas (hereinafter referred to as “BOG”) vaporized from a liquefied gas such as LNG, a liquefied gas storage facility and a liquefied gas carrier equipped with the same, and a liquefied gas reliquefaction. It is about the method.
  • BOG boil-off gas
  • the LNG ship is provided with an LNG storage tank (liquefied gas storage tank) for storing LNG (liquefied natural gas).
  • LNG liquefied natural gas
  • LNG evaporates due to the intrusion heat that penetrates the tank insulation, and BOG is generated.
  • BOG is generated in order to keep the internal pressure constant while avoiding an increase in the pressure in the LNG storage tank due to the BOG.
  • a method for re-liquefying BOG and returning it to the LNG storage tank a method is generally used in which BOG extracted from the LNG storage tank is pressurized by a compressor, cooled by the cold generated by the refrigerator, and condensed. (See Patent Document 1).
  • a Brayton cycle using nitrogen or the like as a primary refrigerant is used as a primary refrigerant.
  • the conventional cooling method using the Brayton cycle requires a large-scale plant such as a compressor and an expander, and has a problem that a predetermined skill level is required for its handling.
  • the present invention has been made in view of such circumstances, and a liquefied gas reliquefaction device that can be easily handled and can be easily handled, a liquefied gas storage facility and a liquefied gas carrier ship equipped with the same, and
  • An object of the present invention is to provide a liquefied gas reliquefaction method.
  • a liquefied gas reliquefaction apparatus is a liquefied gas reliquefaction apparatus for reliquefying BOG vaporized from a liquefied gas in a liquefied gas storage tank, wherein the secondary refrigerant is a liquid having a melting point lower than the condensation temperature of the BOG.
  • the heat exchange means is provided in the vicinity of the liquefied gas storage tank.
  • BOG vaporized from the liquefied gas in the liquefied gas storage tank is condensed and liquefied by the heat exchange means by the liquefied secondary refrigerant liquefied by the cooling means.
  • the liquefied secondary refrigerant is conveyed to the heat exchange means by the liquefied secondary refrigerant conveying means.
  • the secondary refrigerant circulates between the heat exchange means and the cooling means in the secondary refrigerant circulation passage.
  • the heat exchange means is provided in the vicinity of the liquefied gas storage tank, so that the BOG can be reliquefied in the vicinity of the liquefied gas storage tank and separated from the liquefied gas storage tank.
  • the secondary refrigerant liquefied by the cooling means is transported to the heat exchanging means by the liquefied secondary refrigerant transport means, and only needs to be circulated in the secondary refrigerant circulation channel, so the secondary refrigerant is transported to the heat exchange means.
  • the configuration can be realized simply.
  • the cooling means can be separated from the heat exchange means by the secondary refrigerant circulation flow path, and the cooling means can be remotely located from the liquefied gas storage tank. The handling of the means is further simplified.
  • the cooling means mainly a forced circulation method in which the liquefied secondary refrigerant is supercooled (in this specification, supercooling means a state cooled to a liquid state below the boiling point); And a natural circulation condensation method in which the gas secondary refrigerant is cooled and condensed.
  • liquefied gas typically, liquefied natural gas (LNG) is exemplified.
  • LNG liquefied natural gas
  • the “secondary refrigerant” only needs to have a lower melting point than BOG, and an inert gas such as nitrogen or a hydrocarbon gas such as propane can be used for the liquefied natural gas.
  • a heat exchanger can be preferably used.
  • a liquefied gas storage tank or a pipe through which a secondary refrigerant flows is attached to an attached pipe or fitting of the tank. Also good.
  • the heat exchange means may be provided above the liquefied gas storage tank.
  • the heat exchange means is provided above the liquefied gas storage tank, the liquefied gas condensed and liquefied by the heat exchange means can be returned to the lower liquefied gas storage tank using gravity. . Thereby, equipment such as a pump for pushing the reliquefied liquefied gas into the liquefied gas storage tank can be omitted.
  • the heat exchange means may be provided in a header pipe provided above the plurality of liquefied gas storage tanks.
  • a header pipe that joins and guides the BOG is provided.
  • heat exchange means in the header pipe By providing heat exchange means in the header pipe, reliquefaction can be realized with a simple configuration. It is good also as providing header bypass piping which bypasses header piping, and providing a heat exchange means in this header bypass piping.
  • precooling means for precooling the secondary refrigerant supplied to the secondary refrigerant circulation channel with the boil-off gas may be provided.
  • a path for supplying the secondary refrigerant to the secondary refrigerant circulation flow path is provided, and the power for cooling and liquefying the secondary refrigerant by precooling the supplied secondary refrigerant using the cold heat of the BOG. Can be reduced.
  • the liquefied secondary refrigerant transfer means may be capable of changing the flow rate of the transferred liquefied secondary refrigerant.
  • the cooling means may include a plurality of pulse tube refrigerators.
  • the pulse tube refrigerator is smaller than a conventional Brayton cycle refrigeration system, it is very easy to handle.
  • a combination of a plurality of such pulse tube refrigerators it is possible to obtain high redundancy as a refrigeration system and to ensure flexibility in maintenance. Further, it is possible to realize a refrigeration system that does not require the skill level of the operator as compared with the conventional Brayton cycle type refrigeration system.
  • thermometer Based on the measurement results of at least one of a thermometer, a pressure gauge, and a pump discharge flow meter installed in the liquefied gas storage tank, control of the number of operating pulse tube refrigerators and / or each of the pulse tubes It is preferable to control the refrigeration capacity of the refrigerator.
  • composition and / or pressure of the secondary refrigerant can be set so that the BOG is condensed by evaporation of the secondary refrigerant. Thereby, the quantity of the secondary refrigerant
  • the liquefied gas storage facility of the present invention comprises a liquefied gas storage tank and any one of the above liquefied gas reliquefaction devices for reliquefying BOG vaporized from the liquefied gas in the liquefied gas storage tank.
  • the liquefied gas reliquefaction apparatus described above can be suitably used for a liquefied gas storage facility.
  • An example of the liquefied gas storage facility is an offshore LNG storage facility that stores LNG on the ocean.
  • the liquefied gas carrier of the present invention includes a liquefied gas storage tank and any one of the above liquefied gas reliquefaction devices for reliquefying BOG vaporized from the liquefied gas in the liquefied gas storage tank. To do.
  • the above-described liquefied gas reliquefaction apparatus can be suitably used for a liquefied gas carrier ship.
  • An example of the liquefied gas carrier ship is an LNG ship that carries LNG.
  • the liquefied gas reliquefaction method of the present invention is a liquefied gas reliquefaction method in which BOG vaporized from a liquefied gas in a liquefied gas storage tank is reliquefied.
  • heat exchange means provided in the secondary refrigerant circulation flow path for heat exchange between the liquefied secondary refrigerant conveyed by the liquefied secondary refrigerant conveyance means and the BOG to condense and liquefy the boil-off gas. And heat exchange by the heat exchange means is performed in the vicinity of the liquefied gas storage tank.
  • the heat exchange means for reliquefying BOG with the secondary refrigerant is provided in the vicinity of the liquefied gas storage tank, the liquefied gas reliquefaction apparatus can be realized with a simple configuration.
  • the cooling means is constituted by a plurality of pulse tube refrigerators, it is possible to obtain a refrigeration system that can obtain high redundancy as a refrigeration system and does not require the skill level of an operator.
  • LNG reliquefaction equipment (liquefied gas reliquefaction equipment) 3 Cargo tank (liquefied gas storage tank) 7 Vapor header line (header piping) 12 Heat exchanger (heat exchange means) 20 Refrigerator group (cooling means) 21 Pulse tube refrigerator 22 Transport pump (liquefied secondary refrigerant transport means) 24 Secondary refrigerant circulation passage 26 Gas-liquid separation tank
  • FIG. 1 shows a main part of an LNG ship (liquefied gas carrier ship) provided with a gas reliquefaction device 1.
  • the LNG ship includes a plurality of independent spherical cargo tanks (liquefied gas storage tanks) 3, and liquefied natural gas (LNG) is stored in each cargo tank 3.
  • LNG liquefied natural gas
  • Above each cargo tank 3 is a vapor header line (vapor) via a gate valve 5.
  • header line) 7 is provided.
  • the vapor header line 7 is connected to the cargo tanks 3 in common, and is a pipe that collects BOG (hereinafter referred to as “BOG”) in which the LNG has evaporated in each cargo tank 3.
  • BOG BOG
  • the vapor header line 7 is provided with a bypass line (header bypass pipe) 9 branched from the vapor header line 7 and flowing in parallel. Gate valves 10 are respectively provided at both ends of the bypass line 9.
  • a heat exchanger 12 is accommodated in the flow path of the bypass line 9, and the BOG evaporated from each cargo tank 3 is condensed and liquefied by the heat exchanger 12.
  • the bypass line 9 is provided with a pre-cooling heat exchanger 14 for circulating a part of the BOG and pre-cooling the nitrogen gas with the cold heat of the BOG.
  • the nitrogen gas is compressed by a compressor 43 described later, and then supplied to the precooling heat exchanger 14 through the first nitrogen gas supply pipe 13.
  • the LNG return pipe 16 is connected only to the two cargo tanks 3 from the left in the figure, but this is only omitted in order to avoid the complexity of the illustration.
  • the LNG return pipe 16 is also connected to the two cargo tanks 3 from the side.
  • the heat exchanger 12 includes the United States Chart Energy & Chemicals core in kettle (registered trademark) is preferred. Specifically, a core 18 through which liquid nitrogen (LN 2 ) is guided is disposed in the bypass line 9.
  • the core 18 is a plate fin type heat exchanger.
  • the liquid nitrogen introduced into the core 18 is evaporated by exchanging heat with the surrounding BOG and flows out from the core 18 as nitrogen gas (N 2 ).
  • N 2 nitrogen gas
  • FIG. 2A the LNG cooled and condensed into a liquid by the heat exchanger 12 is taken out from below and led to each cargo tank 3 through the LNG return pipe 16 shown in FIG. It is burned.
  • BOG is supplied from the upper two locations, which is different from the BOG flow path shown in FIG.
  • a core 18 ′ may be provided in the middle of the bypass line 9 and the core 18 ′ may be immersed in LN 2 .
  • the gas reliquefaction apparatus 1 includes the heat exchanger 12 described above, a refrigerator group (cooling means) 20 that supercools liquid nitrogen, a transport pump (liquefied secondary refrigerant transport means) 22 that transports liquid nitrogen, A circulation channel (secondary refrigerant circulation channel) 24 that circulates nitrogen, which is a secondary refrigerant, between the heat exchanger 12 and the refrigerator group 20 is mainly provided.
  • the refrigerator group 20 includes a plurality of pulse tube refrigerators 21.
  • the pulse tube refrigerator 21 forms a pressure wave in a pulse tube filled with helium or the like by a compressor using a linear motor, for example. Cold is obtained by forming a phase difference.
  • This pulse tube refrigerator 21 has the advantage that it is not necessary to provide a sliding part in the cold heat generating part and can be configured with low vibration. As shown in FIG. 1, a large number of pulse tube refrigerators 21 are connected in parallel and in series to the liquid nitrogen flow path so as to supercool the liquid nitrogen. By connecting a plurality of pulse tube refrigerators 21 in this way, it is possible to flexibly cope with the required refrigeration capacity and realize a configuration with excellent maintainability.
  • the conveyance pump 22 conveys the liquid nitrogen cooled by the refrigerator group 20 to the heat exchanger 12 and circulates it, and in this embodiment, two are provided in parallel.
  • Each conveyance pump 22 has a variable number of rotations, and the discharge flow rate can be arbitrarily changed. As described above, by appropriately changing the discharge flow rate, it is possible to prevent liquid nitrogen with supercooling from staying in the pipe and solidifying the liquid nitrogen.
  • a gas-liquid separation tank 26 is provided between the transport pump 22 and the refrigerator group 20.
  • a refrigerator outlet side lower pipe 27 is connected below the gas-liquid separation tank 26, and liquid nitrogen is supplied from the refrigerator group 20 to the lower side of the tank 27.
  • a refrigerator outlet side upper pipe 28 is connected above the gas-liquid separation tank 26, and liquid nitrogen supplied from the refrigerator group 20 is sprayed into the gas phase formed above the tank 26. It has come to be. By thus spraying liquid nitrogen into the gas phase, the nitrogen gas supplied into the tank 26 is effectively condensed.
  • the refrigerator outlet side lower pipe 27 is provided with a pressure control valve 27a so that the liquid phase pressure in the gas-liquid separation tank 26 can be controlled.
  • the refrigerator outlet side upper pipe 28 is provided with a pressure reducing valve 28a so that the flow rate of liquid nitrogen supplied into the gas-liquid separation tank 26 can be controlled.
  • a liquid nitrogen outflow pipe 30 connected to the upstream side of the transfer pump 22 is provided at the lower end of the gas-liquid separation tank 26. Liquid nitrogen is extracted from the liquid nitrogen outflow pipe 30 and is transported by the transport pump 22.
  • a liquid nitrogen discharge pipe 32 is provided on the downstream side of the transport pump 22. The liquid nitrogen discharge pipe 32 is provided between the transport pump 22 and the heat exchanger 12. The liquid nitrogen discharge pipe 32 is provided with a pressure control valve 32 a so that the pressure of liquid nitrogen supplied to the heat exchanger 12 can be controlled.
  • a liquid nitrogen bypass pipe 34 is provided between the lower portion of the gas-liquid separation tank 26 and the midway position of the liquid nitrogen discharge pipe 32. A part of the liquid nitrogen can be returned to the gas-liquid separation tank 26 by the liquid nitrogen bypass pipe 34.
  • a return gas cooling exchanger 38 for precooling nitrogen gas introduced from the heat exchanger 12 through the nitrogen gas return pipe 36 is provided above the gas-liquid separation tank 26, a return gas cooling exchanger 38 for precooling nitrogen gas introduced from the heat exchanger 12 through the nitrogen gas return pipe 36 is provided.
  • the return gas cooling heat exchanger 38 is connected to a liquid nitrogen branch pipe 40 branched from a midway position of the liquid nitrogen discharge pipe 32 so that supercooled liquid nitrogen is introduced. . Further, the liquid nitrogen flowing out from the return gas cooling heat exchanger 38 is guided to the refrigerator group 20 via the refrigerator group inlet pipe 42.
  • the circulation path 24 for nitrogen as the secondary refrigerant is mainly constituted by the transport pump 22, the liquid nitrogen discharge pipe 32, the heat exchanger 12, the nitrogen gas return pipe 36, and the gas-liquid separation tank 26. .
  • Nitrogen used as the secondary refrigerant is supplied from a nitrogen gas generator (not shown).
  • the nitrogen supplied from the nitrogen gas supply device is guided to the nitrogen gas storage tank 53 after moisture and carbon dioxide gas are removed by a nitrogen gas dryer 51 (see the lower right in FIG. 1).
  • the nitrogen gas storage tank 53 is at room temperature.
  • a compressor 54 that is rotationally driven by a motor 54 a is provided on the upstream side of the nitrogen gas storage tank 53.
  • a screw type is preferably used as the compressor 54.
  • the nitrogen gas whose pressure has been increased by the compressor 54 passes through the nitrogen gas discharge pipe 55 and is led to the first nitrogen gas supply pipe 13 and the second nitrogen gas supply pipe 57 at the branch point 55a.
  • the nitrogen gas introduced through the first nitrogen gas supply pipe 13 is pre-cooled by the BOG in the pre-cooling heat exchanger 14 and then the nitrogen gas return pipe 36 positioned in the immediate vicinity of the heat exchanger 12. It joins the upstream side.
  • the nitrogen gas introduced through the second nitrogen gas supply pipe 57 is joined to the downstream side of the gas return pipe 36 located immediately upstream of the return gas precooling heat exchanger 38.
  • the liquid nitrogen stored in the gas-liquid separation tank 26 is taken out from the lower end of the tank 26 through the liquid nitrogen outflow pipe 30 by the transfer pump 22 and is transferred to the heat exchanger 12 through the liquid nitrogen discharge pipe 32.
  • the pressure of liquid nitrogen led to the heat exchanger 12 is adjusted by the pressure control valve 32a.
  • the liquid nitrogen guided to the heat exchanger 12 exchanges heat with the BOG guided to the bypass line 9. That is, in the heat exchanger 12, the liquid nitrogen gives latent heat of evaporation to the BOG and evaporates.
  • the BOG is cooled by the latent heat of vaporization of liquid nitrogen and becomes condensed.
  • the condensed and liquefied BOG is returned to each cargo tank 3 via the LNG return pipe 16 as liquefied LNG.
  • the nitrogen evaporated in the heat exchanger 12 is led to the return gas precooling heat exchanger 38 through the nitrogen gas return pipe 36 as nitrogen gas.
  • the nitrogen gas is cooled by liquid nitrogen partially branched from the liquid nitrogen branch pipe 40.
  • the nitrogen gas cooled by the return gas precooling heat exchanger 38 is guided from above the gas-liquid separation tank 26 into the tank 26.
  • liquid nitrogen guided from the refrigerator outlet side upper pipe 28 is sprayed, whereby the nitrogen gas supplied from above is condensed and liquefied, and the lower space in the tank 26.
  • the flow rate of liquid nitrogen sprayed into the tank 26 can be adjusted by the pressure reducing valve 28a.
  • Liquid nitrogen is cooled by the refrigerator group 20. That is, the liquid nitrogen introduced through the refrigerator group inlet pipe 42 is cooled and supercooled by the pulse tube refrigerator 21 connected in series and in parallel. The liquid nitrogen after supercooling flows out through the refrigerator group outlet pipe 43, a part branches to the refrigerator outlet side upper pipe 28, and the remaining part flows to the refrigerator outlet side lower pipe 27. When the liquid nitrogen passes through the refrigerator outlet side lower pipe 27, the pressure is adjusted by the pressure control valve 27 a and then flows into the gas-liquid separation tank 26.
  • nitrogen is supplied to the circulation channel 24 as follows. Nitrogen introduced from a nitrogen gas generator (not shown) is introduced into the nitrogen gas storage tank 53 after moisture and carbon dioxide gas are removed by the nitrogen gas dryer 51. The nitrogen gas boosted by the compressor 54 driven by the motor 54a and guided from the nitrogen gas storage tank 53 is supplied to the first nitrogen gas supply pipe 13 and the second nitrogen gas supply pipe 57 at the branch point 55a. Led. The nitrogen gas led to the first nitrogen gas supply pipe 13 is precooled by the sensible heat of the BOG in the precooling heat exchanger 14 and led to the nitrogen gas return pipe 36. The BOG after the cold heat is applied by the pre-cooling heat exchanger 14 is burned by a combustion means (not shown) and then released to the atmosphere.
  • a combustion means not shown
  • the reason why a part of the BOG is incinerated in this way is to discharge the nitrogen content that remains in the cargo tank 3 and is concentrated.
  • the nitrogen gas guided to the second nitrogen gas supply pipe 57 joins the downstream side of the nitrogen gas return pipe 36 and is then cooled by the return gas precooling heat exchanger 38.
  • the LNG reliquefaction apparatus 1 has the following operational effects. Since the heat exchanger 12 for condensing and liquefying BOG is provided in the vicinity of the cargo tank 3, the BOG generated in the cargo tank 3 can be liquefied in the vicinity of the cargo tank 3. Therefore, it is possible to eliminate as much as possible a system such as a pipe for guiding the BOG to a cooling device installed at a remote part away from the cargo tank 3. As a result, it is possible to prevent the BOG from rising due to intrusion heat while transporting the BOG to the cooling device, and to reduce the cooling power for liquefying the BOG. Further, since the liquid is reliquefied in the vicinity of the cargo tank 3, when the reliquefied LNG is returned to the cargo tank 3, only the LNG return pipe 16 is required, and a system such as a redundant pipe can be eliminated.
  • the secondary refrigerant (nitrogen) liquefied by the refrigerator group 20 is only transported to the heat exchanger 12 by the transport pump 22 and is circulated in the secondary refrigerant circulation passage 24, the secondary refrigerant (nitrogen) is transferred to the heat exchanger 12.
  • a configuration for transporting the secondary refrigerant (nitrogen) can be easily realized.
  • the refrigerating machine group 20 can be separated from the heat exchanger 12 by the secondary refrigerant circulation passage 24 and can be remotely arranged from the cargo tank 3, so that the refrigerating machine group 20 can be arranged outside the gas danger zone.
  • the handling of the refrigerator group 20 is further simplified.
  • the LNG condensed and liquefied by the heat exchanger 12 can be returned to the cargo tank 3 below using gravity. Thereby, equipment such as a pump for pushing the liquefied LNG into the cargo tank 3 can be omitted.
  • a bypass line 9 arranged in parallel with the vapor header line 7 provided above the LNG tank was provided, and the heat exchanger 12 was arranged in the bypass line 9.
  • a first nitrogen gas supply pipe 13 for supplying nitrogen gas (secondary refrigerant) to a nitrogen gas return pipe 36 that is one of the secondary refrigerant circulation channels 24 is provided. Since the pre-cooling heat exchanger 14 is pre-cooled by the cold heat of the BOG, power for liquefying nitrogen gas can be reduced. Further, since the normal temperature nitrogen gas introduced from the second nitrogen gas supply pipe 57 is precooled by the return gas precooling heat exchanger 38, the power for cooling and liquefying the nitrogen gas can be reduced.
  • the refrigeration group 20 is configured by using a plurality of pulse tube refrigerators 21 that are small and extremely easy to handle. Therefore, high redundancy can be obtained, flexibility in maintenance can be ensured, and a system that does not require operator skill can be realized.
  • the nitrogen gas return pipe 36 that returns the nitrogen gas evaporated and evaporated in the heat exchanger 12 is directly connected to the gas-liquid separation tank 26. That is, the nitrogen gas returned from the nitrogen gas return pipe 36 is supplied to the gas phase portion in the gas-liquid separation tank 26 without passing through a heat exchanger for precooling (see reference numeral 38 in FIG. 1).
  • a refrigerator group inlet pipe 42 is connected to the upper end of the gas-liquid separation tank 26. Nitrogen gas in the gas-liquid separation tank 26 is extracted from this position and led to the refrigerator group 20 to be cooled. Condensed liquid.
  • FIG. 3 only a plurality of pulse tube refrigerators 21 constituting the refrigerator group 20 are connected in parallel and not connected in series. However, the present invention is not particularly limited to such a configuration. Alternatively, a plurality of pulse tube refrigerators 21 may be connected in parallel and in series.
  • the liquid nitrogen cooled and condensed into the refrigeration group 20 is guided into the gas-liquid separation tank 26 via the refrigeration group outlet pipe 43 and stored in the tank 26.
  • the nitrogen gas compressed by the compressor 54 passes through the nitrogen gas discharge pipe 55, passes through the gas-gas heat exchanger 60, and is led to the refrigerator group 20.
  • the gas-gas heat exchanger 60 the normal temperature nitrogen gas flowing through the nitrogen gas discharge pipe 55 and the cooled nitrogen gas guided through the nitrogen gas recovery pipe 62 branched from the refrigerator inlet pipe 42 are heat exchanged. Is done.
  • the nitrogen gas supplied from the compressor 54 is pre-cooled and guided to the refrigerator group 20. Thereby, the cooling power for condensing the nitrogen gas is saved.
  • the liquid nitrogen stored in the gas-liquid separation tank 26 is taken out from the lower end of the tank 26 through the liquid nitrogen outflow pipe 30 by the transfer pump 22 and is transferred to the heat exchanger 12 through the liquid nitrogen discharge pipe 32.
  • the liquid nitrogen guided to the heat exchanger 12 exchanges heat with the BOG guided to the bypass line 9. That is, in the heat exchanger 12, the liquid nitrogen gives latent heat of evaporation to the BOG and evaporates.
  • the BOG is cooled by the latent heat of vaporization of liquid nitrogen and becomes condensed.
  • the condensed and liquefied BOG is returned to each cargo tank 3 via the LNG return pipe 16 as liquefied LNG.
  • the nitrogen evaporated in the heat exchanger 12 is led as nitrogen gas to the gas phase portion in the gas-liquid separation tank 26 through the nitrogen gas return pipe 36.
  • the nitrogen gas introduced into the gas-liquid separation tank 26 is guided from the refrigerator group inlet pipe 42 to the refrigerator group 20 and is cooled by each pulse tube refrigerator 21 to be condensed and liquefied.
  • a natural circulation condensation method in which nitrogen gas is condensed and liquefied by the refrigerator group 20 is employed.
  • the liquefied liquid nitrogen is led to the gas-liquid separation tank 26 via the refrigerator group outlet pipe 43 and stored in the lower part of the tank 26.
  • the gas-gas heat exchanger 60 exchanges heat with normal temperature nitrogen gas flowing from the compressor 54 driven by the motor 54a through the nitrogen gas discharge pipe 55. To do. Thereby, the nitrogen gas sent from the compressor 54 to the refrigerator group 20 will be pre-cooled, and the cooling power of each pulse tube refrigerator 21 can be reduced.
  • the LNG reliquefaction apparatus 1 has the following operational effects. Since the heat exchanger 12 for condensing and liquefying BOG is provided in the vicinity of the cargo tank 3, the BOG generated in the cargo tank 3 can be liquefied in the vicinity of the cargo tank 3. Therefore, it is possible to eliminate as much as possible a system such as a pipe for guiding the BOG to a cooling device installed at a remote part away from the cargo tank 3. As a result, it is possible to prevent the BOG from rising due to intrusion heat while transporting the BOG to the cooling device, and to reduce the cooling power for liquefying the BOG. Further, since the liquid is reliquefied in the vicinity of the cargo tank 3, when the reliquefied LNG is returned to the cargo tank 3, only the LNG return pipe 16 is required, and a system such as a redundant pipe can be eliminated.
  • the refrigerator can be used as in the prior art. Compared with the case where the liquefied primary refrigerant is conveyed, the handling of the liquefied refrigerant is facilitated, and a configuration for conveying the secondary refrigerant to the heat exchanger 12 can be easily realized.
  • the refrigerating machine group 20 can be separated from the heat exchanger 12 by the secondary refrigerant circulation passage 24 and can be remotely arranged from the cargo tank 3, so that the refrigerating machine group 20 can be arranged outside the gas danger zone.
  • the handling of the refrigerator group 20 is further simplified.
  • the LNG condensed and liquefied by the heat exchanger 12 can be returned to the cargo tank 3 below using gravity. Thereby, equipment such as a pump for pushing the liquefied LNG into the cargo tank 3 can be omitted.
  • a bypass line 9 arranged in parallel with the vapor header line 7 to which the BOG provided above the LNG tank is guided is provided, and the heat exchanger 12 is arranged in the bypass line 9.
  • the cooling power of the pulse tube refrigerator 21 constituting the refrigerator group 20 is reduced. be able to.
  • the refrigeration group 20 is configured by using a plurality of pulse tube refrigerators 21 that are small and extremely easy to handle. Therefore, high redundancy can be obtained, flexibility in maintenance can be ensured, and a system that does not require operator skill can be realized.
  • the LNG gas reliquefaction apparatus used for the LNG ship has been described.
  • the present invention is not limited to this, for example, an LNG storage facility, particularly an LNG storage facility installed on the ocean. Good.
  • LNG was demonstrated as an example as gas to reliquefy, this invention is not limited to this, It can replace with LNG and can be applied also to LPG, ammonia, etc.
  • nitrogen was described as an example of the secondary refrigerant, the present invention is not limited to this, and other gases such as an inert gas such as argon may be used instead of nitrogen.
  • the composition and / or pressure of the secondary refrigerant can be set so that the BOG is condensed by evaporation of the secondary refrigerant.
  • coolant circulated to a heat exchange means can be reduced significantly.
  • the number of operating pulse tube refrigerators 21 and / or each pulse tube refrigeration is controlled. It is preferable to control the refrigerating capacity of the machine 21.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

コンパクトに構成できるとともに、取扱いが容易な液化ガス再液化装置を提供する。カーゴタンク(3)内のLNGから気化したBOGを再液化する液化ガス再液化装置(1)は、BOGよりも低い凝縮温度を有する窒素が循環する二次冷媒循環流路(24)に設けられ、窒素を液化する冷凍機群(20)と、冷凍機群(20)によって冷却された液体窒素を二次冷媒循環流路(24)内で搬送する搬送ポンプ(22)と、二次冷媒循環流路(24)に設けられ、搬送ポンプ(22)によって搬送された液体窒素とBOGとを熱交換させてBOGを凝縮液化させる熱交換器(12)とを備えている。熱交換器(12)は、カーゴタンク(3)の近傍に設けられている。

Description

液化ガス再液化装置、これを備えた液化ガス貯蔵設備および液化ガス運搬船、並びに液化ガス再液化方法
 本発明は、LNG等の液化ガスから気化したボイルオフガス(以下「BOG」という。)を再液化する液化ガス再液化装置、これを備えた液化ガス貯蔵設備および液化ガス運搬船、並びに液化ガス再液化方法に関するものである。
 例えば、LNG船には、LNG(液化天然ガス)を貯蔵するLNG貯蔵タンク(液化ガス貯蔵タンク)が設けられている。このLNG貯蔵タンク内では、タンク防熱を貫通する侵入熱によってLNGが蒸発気化し、BOGが発生する。このBOGによってLNG貯蔵タンク内の圧力が上昇することを回避しつつ内圧を一定に保つために、BOGを外気へ放出するか、又は、再液化してLNG貯蔵タンク内に戻す方法がある。BOGを再液化してLNG貯蔵タンク内に戻す方法としては、LNG貯蔵タンクから抜き出したBOGを圧縮機により加圧して、冷凍機によって発生させた冷熱で冷却させて凝縮させる方法が一般に用いられている(特許文献1参照)。このような用途に用いられる冷凍機としては、窒素等を一次冷媒として用いたブレイトンサイクルが用いられる。
特開2005-265170号公報
 しかし、従来のブレイトンサイクルを用いた冷却方式では、圧縮機や膨張機といった大規模なプラントを構成する必要があり、また、その取扱いにも所定の熟練度を要するといった問題がある。
 本発明は、このような事情に鑑みてなされたものであって、簡便な構成が実現できるとともに、取扱いが容易な液化ガス再液化装置、これを備えた液化ガス貯蔵設備および液化ガス運搬船、並びに液化ガス再液化方法を提供することを目的とする。
 上記課題を解決するために、本発明の液化ガス再液化装置、これを備えた液化ガス貯蔵設備および液化ガス運搬船、並びに液化ガス再液化方法は以下の手段を採用する。
 本発明にかかる液化ガス再液化装置は、液化ガス貯蔵タンク内の液化ガスから気化したBOGを再液化する液化ガス再液化装置において、前記BOGの凝縮温度よりも融点が低い液体である二次冷媒が循環する二次冷媒循環流路に設けられ、該二次冷媒を液化する冷却手段と、該冷却手段によって冷却された液化二次冷媒を前記二次冷媒循環流路内で搬送する液化二次冷媒搬送手段と、前記二次冷媒循環流路に設けられ、前記液化二次冷媒搬送手段によって搬送された液化二次冷媒と前記BOGとを熱交換させて該BOGを凝縮液化させる熱交換手段とを備え、該熱交換手段は、前記液化ガス貯蔵タンクの近傍に設けられていることを特徴とする。
 液化ガス貯蔵タンク内の液化ガスから気化したBOGは、冷却手段によって液化された液化二次冷媒によって熱交換手段にて凝縮液化されて再液化される。熱交換手段には、液化二次冷媒搬送手段によって液化二次冷媒が搬送される。二次冷媒は、熱交換手段と冷却手段との間を、二次冷媒循環流路内で循環する。
 本発明の液化ガス再液化装置では、熱交換手段を液化ガス貯蔵タンクの近傍に設けることとしたので、BOGを液化ガス貯蔵タンクの近傍にて再液化することができ、液化ガス貯蔵タンクから離れた遠隔部に設置された冷却装置までBOGを導くための配管等の系統を可及的に排除することができる。これにより、BOGを冷却装置まで輸送する間にBOGが侵入熱によって温度上昇してしまうことを回避することができ、BOGを再液化するための冷却動力を低減することができる。また、液化ガス貯蔵タンクの近傍にて再液化するので、再液化した液化ガスを液化ガス貯蔵タンクへと返送する配管等の系統を簡便化することができる。
 冷却手段によって液化された二次冷媒を液化二次冷媒搬送手段によって熱交換手段へと搬送し、二次冷媒循環流路内を循環させるだけで済むので、熱交換手段まで二次冷媒を搬送する構成が簡便に実現することができる。
 二次冷媒循環流路によって熱交換手段から冷却手段を分離し、冷却手段を液化ガス貯蔵タンクから遠隔配置することが可能となるので、冷却手段をガス危険区域外に配置することができ、冷却手段の取扱いがさらに簡便となる。
 冷却手段による冷熱取得方式としては、主として、液化二次冷媒を過冷却(本明細書において、過冷却とは沸点以下で液状の状態に冷却された状態を意味する。)する強制循環方式と、ガス二次冷媒を冷却凝縮する自然循環凝縮方式とが挙げられる。
 ここで、「液化ガス」としては、典型的には、液化天然ガス(LNG)が挙げられる。
 「二次冷媒」としては、BOGよりも低融点であれば良く、液化天然ガスに対しては、窒素等の不活性ガスや、プロパン等の炭化水素ガスを用いることができる。
 「熱交換手段」としては、好適には、熱交換器を用いることができ、これ以外には、液化ガス貯蔵タンクまたは該タンクの付属配管やフィッティングに二次冷媒が流れる配管を巻き付けた構成としても良い。
 本発明の液化ガス再液化装置では、前記熱交換手段は、前記液化ガス貯蔵タンクの上方に設けられていてもよい。
 熱交換手段が液化ガス貯蔵タンクの上方に設けられているので、熱交換手段によって凝縮液化され再液化された液化ガスを、重力を利用して下方の液化ガス貯蔵タンクへと返送することができる。これにより、再液化された液化ガスを液化ガス貯蔵タンクへと押し込むためのポンプ等の設備を省略することができる。
 本発明の液化ガス再液化装置では、前記熱交換手段は、複数の前記液化ガス貯蔵タンクの上方に設けられたヘッダ配管内に設けられていてもよい。
 複数の液化ガス貯蔵タンクの上方には、BOGを合流させて導くヘッダ配管が設けられている。このヘッダ配管内に熱交換手段を設けることにより、簡便な構成にて再液化を実現することができる。
 ヘッダ配管をバイパスするヘッダバイパス配管を設け、このヘッダバイパス配管内に熱交換手段を設けることとしても良い。
 本発明の液化ガス再液化装置では、前記二次冷媒循環流路に供給される二次冷媒を、前記ボイルオフガスによって予冷する予冷手段が設けられていてもよい。
 二次冷媒循環流路に二次冷媒を供給するための経路が設けられており、この供給される二次冷媒をBOGが有する冷熱によって予冷することによって、二次冷媒を冷却液化するための動力を低減することができる。
 本発明の液化ガス再液化装置では、液化二次冷媒搬送手段は、搬送する液化二次冷媒の流量を変更可能とされていてもよい。
 液化二次冷媒搬送手段によって液化二次冷媒の流量を可変とすることにより、液化二次冷媒の過冷却による固化を防止することができる。
 本発明の液化ガス再液化装置では、前記冷却手段は、複数のパルスチューブ冷凍機を備えていてもよい。
 パルスチューブ冷凍機は、従来のブレイトンサイクル式の冷凍システムに比べて小規模であるため、取扱いが極めて簡便である。このようなパルスチューブ冷凍機を複数組み合わせて用いることにより、冷凍システムとして高い冗長性を得ることができるとともに、保守上の柔軟性を確保することができる。また、従来のブレイトンサイクル式の冷凍システムに比べて作業者の熟練度を要求しない冷凍システムを実現することができる。
 前記液化ガス貯蔵タンク内に設置された温度計、圧力計およびポンプ吐出流量計の少なくともいずれかの計測結果に基づいて、前記パルスチューブ冷凍機の運転台数の制御、及び/又は、各前記パルスチューブ冷凍機の冷凍能力の制御を行うようにされていることが好ましい。
 二次冷媒の蒸発によってBOGの凝縮が行われるように二次冷媒の組成および/または圧力が設定可能とされていることが好ましい。これにより、熱交換手段へ循環させる二次冷媒の量を大幅に低減することができる。
 本発明の液化ガス貯蔵設備は、液化ガス貯蔵タンクと、該液化ガス貯蔵タンク内の液化ガスから気化したBOGを再液化する上記のいずれかの液化ガス再液化装置とを備えていることを特徴とする。
 上述した液化ガス再液化装置は、液化ガス貯蔵設備に好適に用いることができる。液化ガス貯蔵設備としては、例えば、洋上にLNGを貯蔵する洋上LNG貯蔵施設が挙げられる。
 本発明の液化ガス運搬船は、液化ガス貯蔵タンクと、該液化ガス貯蔵タンク内の液化ガスから気化したBOGを再液化する上記のいずれかの液化ガス再液化装置とを備えていることを特徴とする。
 上述した液化ガス再液化装置は、液化ガス運搬船に好適に用いることができる。液化ガス運搬船としては、例えば、LNGを運搬するLNG船が挙げられる。
 本発明の液化ガス再液化方法は、液化ガス貯蔵タンク内の液化ガスから気化したBOGを再液化する液化ガス再液化方法において、BOGの凝縮温度よりも融点が低い液体である二次冷媒が循環する二次冷媒循環流路に設けられ、該二次冷媒を液化する冷却手段と、該冷却手段によって冷却された液化二次冷媒を前記二次冷媒循環流路内で搬送する液化二次冷媒搬送手段と、前記二次冷媒循環流路に設けられ、前記液化二次冷媒搬送手段によって搬送された液化二次冷媒と前記BOGとを熱交換させて該ボイルオフガスを凝縮液化させる熱交換手段とを備え、該熱交換手段による熱交換が、前記液化ガス貯蔵タンクの近傍にて行われることを特徴とする。
 本発明によれば、二次冷媒によってBOGを再液化する熱交換手段を液化ガス貯蔵タンクの近傍に設けることとしたので、簡便な構成にて液化ガス再液化装置を実現することができる。
 また、複数のパルスチューブ冷凍機によって冷却手段を構成することとしたので、冷凍システムとして高い冗長性を得ることができるとともに作業者の熟練度を要求しない冷凍システムを実現することができる。
本発明の第一実施形態にかかるガス再液化装置を備えたLNG船の要部を示した概略構成図である。 図1の熱交換器の詳細を示した概略断面図である。 図1の熱交換器の詳細を示した概略断面図である。 本発明の第二実施形態にかかるガス再液化装置を備えたLNG船の要部を示した概略構成図である。
符号の説明
1 LNG再液化装置(液化ガス再液化装置)
3 カーゴタンク(液化ガス貯蔵タンク)
7 ベイパーヘッダーライン(ヘッダ配管)
12 熱交換器(熱交換手段)
20 冷凍機群(冷却手段)
21 パルスチューブ冷凍機
22 搬送ポンプ(液化二次冷媒搬送手段)
24 二次冷媒循環流路
26 気液分離タンク
 以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第一実施形態]
 以下、本発明の第一実施形態について、図1を用いて説明する。
 図1には、ガス再液化装置1を備えたLNG船(液化ガス運搬船)の要部が示されている。
 LNG船は、複数の独立した球形のカーゴタンク(液化ガス貯蔵タンク)3を備えており、各カーゴタンク3内には液化天然ガス(LNG)が貯蔵されている。
 各カーゴタンク3の上方には、仕切弁5を介してベイパーヘッダーライン(vapor
header line;ヘッダ配管)7が設けられている。ベイパーヘッダーライン7は、各カーゴタンク3に対して共通に接続されており、各カーゴタンク3内でLNGが蒸発したBOG(以下「BOG」という。)を回収する配管である。ベイパーヘッダーライン7には、このベイパーヘッダーライン7から分岐して並列的に流れるバイパスライン(ヘッダバイパス配管)9が設けられている。バイパスライン9の両端部には、仕切弁10がそれぞれ設けられている。
 バイパスライン9の流路内には、熱交換器12が収納されており、この熱交換器12によって各カーゴタンク3から蒸発気化したBOGが凝縮液化して再液化される。
 バイパスライン9には、一部のBOGを流通させ、BOGが有する冷熱によって窒素ガスを予冷するための予冷熱交換器14が設けられている。窒素ガスは、後述する圧縮機43によって圧縮された後に、第1窒素ガス供給配管13を介して予冷熱交換器14へと供給される。
 バイパスライン9の下部には、熱交換器12によって再液化されたLNGを各カーゴタンク3へと返送するためのLNG返送配管16が設けられている。なお、図1では、LNG返送配管16が同図において左方から2つのカーゴタンク3にのみ接続されているが、これは図示の煩雑さを避けるために省略しただけであり、同図において右方から2つのカーゴタンク3にもLNG返送配管16は接続されている。
 熱交換器12としては、図2Aに示すように、米国のChart Energy &
Chemicals社のコア・イン・ケトル(core in kettle;登録商標)が好適である。具体的には、バイパスライン9内に、液体窒素(LN)が導かれるコア18が配置された構成とされる。コア18は、プレートフィン型の熱交換器となっている。コア18内に導かれた液体窒素は、周囲のBOGと熱交換して蒸発し、窒素ガス(N)となってコア18から流出する。
 図2Aに示されているように、熱交換器12にて冷却されて凝縮液化したLNGは、下方から取り出され、図1にて示したLNG返送配管16を通って各カーゴタンク3へと導かれる。
 なお、図2Aにおいて、BOGが上方の2箇所から供給される構成となっており、図1に示したBOGの流路と異なっているが、これは理解の容易のために示しただけであり、BOGについては熱交換器12へと導かれる構成であれば、その流通形態は限定されない。例えば、図2Bに示すように、バイパスライン9の中途位置にコア18’を設け、このコア18’がLNに浸漬されるように構成しても良い。
 ガス再液化装置1は、上述した熱交換器12と、液体窒素に過冷却を与える冷凍機群(冷却手段)20と、液体窒素を搬送する搬送ポンプ(液化二次冷媒搬送手段)22と、二次冷媒である窒素を熱交換器12と冷凍機群20との間で循環させる循環流路(二次冷媒循環流路)24とを主として備えている。
 冷凍機群20は、複数のパルスチューブ冷凍機21を備えている。パルスチューブ冷凍機21は、例えばリニアモータを用いた圧縮機によってヘリウム等が充填されたパルスチューブ内に圧力波を形成し、パルスチューブに接続されたオリフィス等によって圧力変動と物質変動との間に位相差を形成することによって冷熱を得るものである。このパルスチューブ冷凍機21は、冷熱発生部に摺動部を設ける必要がなく、低振動にて構成できるという利点を有している。図1に示すように、多数のパルスチューブ冷凍機21が、液体窒素に対して過冷却を与えるように、液体窒素流路に対して並列かつ直列に接続されている。このようにパルスチューブ冷凍機21を複数接続することによって、必要とされる冷凍能力に対して柔軟に対応できるとともに、メンテナンス性に優れた構成が実現される。
 搬送ポンプ22は、冷凍機群20によって冷却された液体窒素を熱交換器12へと搬送して循環させるものであり、本実施形態では並列に2つ設けられている。それぞれの搬送ポンプ22は、回転数が可変とされており、吐出流量が任意に変更できるようになっている。このように吐出流量を適宜変更することにより、過冷却が付いた液体窒素が配管内で滞留してしまい、液体窒素が凝固することを防止できるようになっている。
 搬送ポンプ22と冷凍機群20との間には、気液分離タンク26が設けられている。気液分離タンク26の下方には、冷凍機出口側下方配管27が接続されており、冷凍機群20から液体窒素が同タンク27の下方に供給されるようになっている。また、気液分離タンク26の上方には、冷凍機出口側上方配管28が接続されており、冷凍機群20から供給される液体窒素が同タンク26の上方に形成された気相中に噴霧されるようになっている。このように気相中に液体窒素を噴霧することにより、同タンク26内に供給された窒素ガスを効果的に凝縮させるようになっている。
 なお、冷凍機出口側下方配管27には、圧力制御弁27aが設けられており、気液分離タンク26内の液相圧力が制御できるようになっている。また、冷凍機出口側上方配管28には、減圧弁28aが設けられており、気液分離タンク26内に供給する液体窒素の流量が制御できるようになっている。
 気液分離タンク26の下端には、搬送ポンプ22の上流側と接続される液体窒素流出配管30が設けられている。この液体窒素流出配管30から液体窒素が抜き出され、搬送ポンプ22によって搬送される。
 搬送ポンプ22の下流側には、液体窒素吐出配管32が設けられている。液体窒素吐出配管32は、搬送ポンプ22と熱交換器12との間にわたって設けられている。液体窒素吐出配管32には、圧力制御弁32aが設けられており、熱交換器12へと供給する液体窒素の圧力を制御できるようになっている。
 気液分離タンク26の下方と液体窒素吐出配管32の途中位置との間には、液体窒素バイパス配管34が設けられている。この液体窒素バイパス配管34によって、一部の液体窒素を気液分離タンク26へと戻すことができるようになっている。
 気液分離タンク26の上方には、熱交換器12から窒素ガス戻り配管36を通って導かれる窒素ガスを予冷する戻りガス冷却用交換器38が設けられている。この戻りガス冷却用熱交換器38は、液体窒素吐出配管32の途中位置から分岐された液体窒素分岐配管40と接続されており、過冷却が付けられた液体窒素が導かれるようになっている。また、戻りガス冷却用熱交換器38から流出した液体窒素は、冷凍機群入口配管42を介して冷凍機群20へと導かれる。
 以上の通り、二次冷媒である窒素の循環流路24は、主として、搬送ポンプ22、液体窒素吐出配管32、熱交換器12、窒素ガス戻り配管36、気液分離タンク26によって構成されている。
 二次冷媒として用いられる窒素は、図示しない窒素ガス発生装置から供給される。この窒素ガス供給装置から供給された窒素は、窒素ガスドライヤ51(図1の右下参照)にて、水分および炭酸ガスを除去された後、窒素ガス保存タンク53へと導かれる。なお、窒素ガス保存タンク53は、常温となっている。
 窒素ガス保存タンク53の上流側には、モータ54aによって回転駆動される圧縮機54が設けられている。圧縮機54としては、スクリュー式が好適に用いられる。この圧縮機54にて昇圧された窒素ガスは、窒素ガス吐出配管55を通過し、分岐点55aにて、第1窒素ガス供給配管13及び第2窒素ガス供給配管57へと導かれる。
 第1窒素ガス供給配管13を介して導かれた窒素ガスは、上述したように、予冷熱交換器14にてBOGによって予冷された後に、熱交換器12の直近に位置する窒素ガス戻り配管36上流側に合流するようになっている。
 第2窒素ガス供給配管57を介して導かれた窒素ガスは、戻りガス予冷熱交換器38の上流側の直近に位置するガス戻り配管36下流側に合流するようになっている。
 次に、上記構成のLNG再液化装置1の動作について説明する。
 気液分離タンク26にて貯留された液体窒素は、搬送ポンプ22によって、同タンク26の下端から液体窒素流出配管30を介して取り出され、液体窒素吐出配管32を介して熱交換器12へと導かれる。熱交換器12へと導く液体窒素の圧力は、圧力制御弁32aによって調整される。
 熱交換器12へと導かれた液体窒素は、バイパスライン9へと導かれたBOGと熱交換する。すなわち、熱交換器12にて液体窒素はBOGへ蒸発潜熱を与え、蒸発気化する。一方、BOGは、液体窒素の蒸発潜熱によって冷却され、凝縮液化する。凝縮液化したBOGは、再液化されたLNGとして、LNG返送配管16を介して各カーゴタンク3へと返送される。
 熱交換器12にて蒸発した窒素は、窒素ガスとして、窒素ガス戻り配管36を介して戻りガス予冷熱交換器38へと導かれる。この戻りガス予冷熱交換器38において、窒素ガスは、液体窒素分岐配管40から一部分岐された液体窒素によって冷却される。戻りガス予冷熱交換器38にて冷却された窒素ガスは、気液分離タンク26の上方から同タンク26内へと導かれる。同タンク26内の上部空間すなわち気相部では、冷凍機出口側上方配管28から導かれた液体窒素が噴霧され、これにより上方から供給された窒素ガスが凝縮液化して同タンク26の下方空間に貯留する。なお、同タンク26内に噴霧する液体窒素は、減圧弁28aによって流量調整することが可能となっている。
 液体窒素は、冷凍機群20によって冷却されるようになっている。すなわち、冷凍機群入口配管42を介して導かれた液体窒素は、直列かつ並列に多数接続されたパルスチューブ冷凍機21によって冷却され、過冷却される。過冷却後の液体窒素は、冷凍機群出口配管43を介して流出し、一部が冷凍機出口側上方配管28へと分岐し、残部が冷凍機出口側下方配管27へと流れる。液体窒素は、冷凍機出口側下方配管27を通過する際に、圧力制御弁27aによって圧力調整された後に、気液分離タンク26内へと流入する。
 一方、窒素は、循環流路24に対して、以下のように供給される。
 図示しない窒素ガス発生装置から導かれた窒素は、窒素ガスドライヤ51にて水分及び炭酸ガスが除去された後に、窒素ガス保存タンク53へと導かれる。モータ54aによって駆動される圧縮機54にて昇圧され、窒素ガス保存タンク53から導かれた窒素ガスは、分岐点55aにて、第1窒素ガス供給配管13及び第2窒素ガス供給配管57へと導かれる。
 第1窒素ガス供給配管13へと導かれた窒素ガスは、予冷熱交換器14にてBOGの顕熱によって予冷され、窒素ガス戻り配管36へと導かれる。予冷熱交換器14にて冷熱を与えた後のBOGは、図示しない燃焼手段によって燃焼処理された後に、大気へと放出される。なお、このようにBOGの一部を焼却処理するのは、カーゴタンク3内に滞留して濃縮される窒素分を排出するためである。
 第2窒素ガス供給配管57へと導かれた窒素ガスは、窒素ガス戻り配管36の下流側に合流した後に、戻りガス予冷熱交換器38によって冷却される。
 以上の通り、本実施形態にかかるLNG再液化装置1によれば、以下の作用効果を奏する。
 BOGを凝縮液化する熱交換器12をカーゴタンク3の近傍に設けることとしたので、カーゴタンク3にて発生したBOGをカーゴタンク3の近傍にて液化することができる。したがって、カーゴタンク3から離れた遠隔部に設置された冷却装置までBOGを導くための配管等の系統を可及的に排除することができる。これにより、BOGを冷却装置まで輸送する間にBOGが侵入熱によって温度上昇してしまうことを避けることができ、BOGを液化するための冷却動力を低減することができる。また、カーゴタンク3の近傍にて再液化するので、再液化したLNGをカーゴタンク3へと返送する際にはLNG返送配管16のみで済み、冗長な配管等の系統を排除することができる。
 冷凍機群20によって液化された二次冷媒(窒素)を搬送ポンプ22によって熱交換器12へと搬送し、二次冷媒循環流路24内を循環させるだけで済むので、熱交換器12まで二次冷媒(窒素)を搬送する構成が簡便に実現することができる。
 二次冷媒循環流路24によって熱交換器12から冷凍機群20を分離し、カーゴタンク3から遠隔配置することが可能となるので、冷凍機群20をガス危険区域外に配置することができ、冷凍機群20の取扱いがさらに簡便となる。
 熱交換器12がカーゴタンク3の上方に設けられているので、熱交換器12によって凝縮液化され再液化されたLNGを、重力を利用して下方のカーゴタンク3へと返送することができる。これにより、再液化されたLNGをカーゴタンク3へと押し込むためのポンプ等の設備を省略することができる。
 LNGタンクの上方に設けられたベイパーヘッダーライン7に並行して配置されたバイパスライン9を設け、このバイパスライン9内に熱交換器12を配置することとした。これにより、簡便な構成にてBOGの再液化を実現することができる。
 二次冷媒循環流路24の一つである窒素ガス戻り配管36に窒素ガス(二次冷媒)を供給するための第1窒素ガス供給配管13が設けられており、この供給される窒素ガスを予冷熱交換器14においてBOGが有する冷熱によって予冷することとしたので、窒素ガスを冷却液化するための動力を低減することができる。
 また、第2窒素ガス供給配管57から導かれる常温の窒素ガスを戻りガス予冷熱交換器38によって予冷することとしたので、窒素ガスを冷却液化するための動力を低減することができる。
 搬送ポンプ22によって液体窒素の流量を可変とすることとしたので、過冷却が過剰についた液体窒素が配管内で滞留することによって発生する固化を防止することができる。
 大規模な圧縮機や膨張器を必要とする従来のブレイトンサイクル式の冷凍システムに比べて、小規模で取扱いが極めて簡便であるパルスチューブ冷凍機21を複数用いて冷凍機群20を構成することとしたので、高い冗長性を得ることができるとともに、保守上の柔軟性を確保することができ、作業者の熟練度を要求しないシステムを実現することができる。
[第二実施形態]
 次に、本発明の第二実施形態について、図3を用いて説明する。
 本実施形態は、第1実施形態のように冷凍機群20によって液体窒素を過冷却する強制循環方式に代えて、冷凍機群20によって窒素ガスを冷却して凝縮液化する自然循環凝縮方式とした点が大きく異なる。したがって、第1実施形態と共通する構成要素については同一の符号を付すとともにその説明を省略する。
 本実施形態では、熱交換器12において蒸発気化した窒素ガスを返送する窒素ガス戻り配管36は、気液分離タンク26に直接接続されている。すなわち、窒素ガス戻り配管36から返送される窒素ガスは、予冷のための熱交換器(図1の符号38参照)を経由することなく気液分離タンク26内の気相部へ供給される。
 気液分離タンク26の上端には、冷凍機群入口配管42が接続されており、この位置から気液分離タンク26内の窒素ガスが抜き取られ、冷凍機群20へと導かれて冷却されて凝縮液化する。図3では、冷凍機群20を構成するパルスチューブ冷凍機21が並列に複数接続されているだけで、直列には接続されていないが、本発明は特にこのような構成に限定されるものではなく、並列にかつ直列に複数のパルスチューブ冷凍機21を接続しても良い。
 冷凍機群20にて冷却され凝縮液化した液体窒素は、冷凍機群出口配管43を介して気液分離タンク26内へと導かれ、同タンク26内に貯留される。
 一方、圧縮機54にて圧縮された窒素ガスは、窒素ガス吐出配管55を通り、ガス-ガス熱交換器60を通過した後に、冷凍機群20へと導かれる。ガス-ガス熱交換器60では、窒素ガス吐出配管55を流れる常温の窒素ガスと、冷凍機入口配管42から分岐した窒素ガス回収配管62を介して導かれた冷却後の窒素ガスとが熱交換される。このガス-ガス熱交換器60によって、圧縮機54から供給された窒素ガスは予冷され、冷凍機群20へと導かれる。これにより、窒素ガスを凝縮液化するための冷却動力が省力化される。
 次に、上記構成のLNG再液化装置1の動作について説明する。
 気液分離タンク26にて貯留された液体窒素は、搬送ポンプ22によって、同タンク26の下端から液体窒素流出配管30を介して取り出され、液体窒素吐出配管32を介して熱交換器12へと導かれる。
 熱交換器12へと導かれた液体窒素は、バイパスライン9へと導かれたBOGと熱交換する。すなわち、熱交換器12にて液体窒素はBOGへ蒸発潜熱を与え、蒸発気化する。一方、BOGは、液体窒素の蒸発潜熱によって冷却され、凝縮液化する。凝縮液化したBOGは、再液化されたLNGとして、LNG返送配管16を介して各カーゴタンク3へと返送される。
 熱交換器12にて蒸発した窒素は、窒素ガスとして、窒素ガス戻り配管36を介して、気液分離タンク26内の気相部へと導かれる。気液分離タンク26内に導かれた窒素ガスは、冷凍機群入口配管42から冷凍機群20へと導かれ、各パルスチューブ冷凍機21によって冷却されて凝縮液化される。このように、本実施形態では、窒素ガスを冷凍機群20にて凝縮液化させる自然循環凝縮方式が採用される。液化された液体窒素は、冷凍機群出口配管43を介して気液分離タンク26へと導かれ、同タンク26の下部に貯留される。
 気液分離タンク26から冷凍機群入口配管42を介して取り出された窒素ガスは、その一部が冷凍機群20へと流れずに分岐し、窒素ガス回収配管62を介して窒素ガス保存タンクへ53と導かれる。この窒素ガス回収配管62を通過する際に、ガス-ガス熱交換器60にて、モータ54aによって駆動される圧縮機54から窒素ガス吐出配管55を介して流れてくる常温の窒素ガスと熱交換する。これにより、圧縮機54から冷凍機群20へと送られる窒素ガスが予冷されることとなり、各パルスチューブ冷凍機21の冷却動力を低減することができる。
 以上の通り、本実施形態にかかるLNG再液化装置1によれば、以下の作用効果を奏する。
 BOGを凝縮液化する熱交換器12をカーゴタンク3の近傍に設けることとしたので、カーゴタンク3にて発生したBOGをカーゴタンク3の近傍にて液化することができる。したがって、カーゴタンク3から離れた遠隔部に設置された冷却装置までBOGを導くための配管等の系統を可及的に排除することができる。これにより、BOGを冷却装置まで輸送する間にBOGが侵入熱によって温度上昇してしまうことを避けることができ、BOGを液化するための冷却動力を低減することができる。また、カーゴタンク3の近傍にて再液化するので、再液化したLNGをカーゴタンク3へと返送する際にはLNG返送配管16のみで済み、冗長な配管等の系統を排除することができる。
 冷凍機群20によって液化された二次冷媒(窒素)を搬送ポンプ22によって熱交換器12へと搬送し、二次冷媒循環流路24内を循環させるだけで済むので、従来のように冷凍機によって液化された一次冷媒を搬送する場合に比べて液化冷媒の取扱いが容易となり、熱交換器12まで二次冷媒を搬送する構成が簡便に実現することができる。
 二次冷媒循環流路24によって熱交換器12から冷凍機群20を分離し、カーゴタンク3から遠隔配置することが可能となるので、冷凍機群20をガス危険区域外に配置することができ、冷凍機群20の取扱いがさらに簡便となる。
 熱交換器12がカーゴタンク3の上方に設けられているので、熱交換器12によって凝縮液化され再液化されたLNGを、重力を利用して下方のカーゴタンク3へと返送することができる。これにより、再液化されたLNGをカーゴタンク3へと押し込むためのポンプ等の設備を省略することができる。
 LNGタンクの上方に設けられたBOGが導かれるベイパーヘッダーライン7に並行して配置されたバイパスライン9を設け、このバイパスライン9内に熱交換器12を配置することとした。これにより、簡便な構成にてBOGの再液化を実現することができる。
 圧縮機54から冷凍機群20へと供給される窒素ガスを、ガス-ガス熱交換器60によって冷却することとしたので、冷凍機群20を構成するパルスチューブ冷凍機21の冷却動力を低減することができる。
 大規模な圧縮機や膨張器を必要とする従来のブレイトンサイクル式の冷凍システムに比べて、小規模で取扱いが極めて簡便であるパルスチューブ冷凍機21を複数用いて冷凍機群20を構成することとしたので、高い冗長性を得ることができるとともに、保守上の柔軟性を確保することができ、作業者の熟練度を要求しないシステムを実現することができる。
 なお、上述した各実施形態では、LNG船に用いるLNGガス再液化装置について説明したが、本発明はこれに限定されるものではなく、例えばLNG貯蔵設備、特に洋上に設置されるLNG貯蔵設備でもよい。
 また、再液化するガスとしてLNGを一例として説明したが、本発明はこれに限定されるものではなく、LNGに代えて、LPG、アンモニア等に対しても適用できる。
 また、二次冷媒として窒素を一例として説明したが、本発明はこれに限定されるものではなく、窒素に代えてアルゴン等の不活性ガスといった他のガスでもよい。
 また、バイパスライン9内に熱交換器12を配置する構成としたが、本発明はこれに限定されるものではなく、例えば、図1の符号Aで示したように、ベイパーヘッダーライン7内に(好ましくは、各カーゴタンク3間に1つずつ)、熱交換器12を複数設けることとしてもよい。これにより、バイパスライン9をも省略することができ、より一層構成を簡便化することができる。もちろん、この構成は、図3に示した第2実施形態に対しても適用可能である。
 また、熱交換器12を、バイパスライン9やベイパーヘッダーライン7内に挿入する構成を具体例として説明したが、これ以外の構成ももちろん可能である。例えば、カーゴタンク3またはカーゴタンク3の付属配管やフィッティングに液体窒素が流れる配管を巻き付けた構成としても良い。
 また、二次冷媒の蒸発によってBOGの凝縮が行われるように二次冷媒の組成および/または圧力が設定可能とされていることが好ましい。これにより、熱交換手段へ循環させる二次冷媒の量を大幅に低減することができる。
 また、カーゴタンク3内に設置された温度計、圧力計およびポンプ吐出流量計の少なくともいずれかの計測結果に基づいて、パルスチューブ冷凍機21の運転台数の制御、及び/又は、各パルスチューブ冷凍機21の冷凍能力の制御を行うようにされていることが好ましい。

Claims (11)

  1.  液化ガス貯蔵タンク内の液化ガスから気化したボイルオフガス(以下「BOG」という。)を再液化して前記液化ガス貯蔵タンクの内圧上昇を抑えるための液化ガス再液化装置において、
     前記BOGの凝縮温度よりも融点が低い液体である二次冷媒が循環する二次冷媒循環流路に設けられ、該二次冷媒を液化する冷却手段と、
     該冷却手段によって冷却された液化二次冷媒を前記二次冷媒循環流路内で搬送する液化二次冷媒搬送手段と、
     前記二次冷媒循環流路に設けられ、前記液化二次冷媒搬送手段によって搬送された液化二次冷媒と前記BOGとを熱交換させて該BOGを凝縮液化させる熱交換手段と、を備え、
     該熱交換手段は、前記液化ガス貯蔵タンクの近傍に設けられていることを特徴とする液化ガス再液化装置。
  2.  前記熱交換手段は、前記液化ガス貯蔵タンクの上方に設けられていることを特徴とする請求項1に記載の液化ガス再液化装置。
  3.  前記熱交換手段は、複数の前記液化ガス貯蔵タンクの上方に設けられたヘッダ配管内に設けられていることを特徴とする請求項2に記載の液化ガス再液化装置。
  4.  前記二次冷媒循環流路に供給される二次冷媒を、前記BOGによって予冷する予冷手段が設けられていることを特徴とする請求項1から3のいずれかに記載の液化ガス再液化装置。
  5.  液化二次冷媒搬送手段は、搬送する液化二次冷媒の流量を変更可能とされていることを特徴とする請求項1から4のいずれかに記載の液化ガス再液化装置。
  6.  前記冷却手段は、複数のパルスチューブ冷凍機を備えていることを特徴とする請求項1から5のいずれかに記載の液化ガス再液化装置。
  7.  前記液化ガス貯蔵タンク内に設置された温度計、圧力計およびポンプ吐出流量計の少なくともいずれかの計測結果に基づいて、前記パルスチューブ冷凍機の運転台数の制御、及び/又は、各前記パルスチューブ冷凍機の冷凍能力の制御を行うことを特徴とする請求項6に記載の液化ガス再液化装置。
  8.  二次冷媒の蒸発によってBOGの凝縮が行われるように二次冷媒の組成および/または圧力が設定可能とされていることを特徴とする請求項1に記載の液化ガス再液化装置。
  9.  液化ガス貯蔵タンクと、
     該液化ガス貯蔵タンク内の液化ガスから気化したBOGを再液化する請求項1から6のいずれかに記載された液化ガス再液化装置と、
     を備えていることを特徴とする液化ガス貯蔵設備。
  10.  液化ガス貯蔵タンクと、
     該液化ガス貯蔵タンク内の液化ガスから気化したBOGを再液化する請求項1から6のいずれかに記載された液化ガス再液化装置と、
    を備えていることを特徴とする液化ガス運搬船。
  11.  液化ガス貯蔵タンク内の液化ガスから気化したBOGを再液化する液化ガス再液化方法において、
     BOGの凝縮温度よりも融点が低い液体である二次冷媒が循環する二次冷媒循環流路に設けられ、該二次冷媒を液化する冷却手段と、
     該冷却手段によって冷却された液化二次冷媒を前記二次冷媒循環流路内で搬送する液化二次冷媒搬送手段と、
     前記二次冷媒循環流路に設けられ、前記液化二次冷媒搬送手段によって搬送された液化二次冷媒と前記BOGとを熱交換させて該BOGを凝縮液化させる熱交換手段と、を備え、
     該熱交換手段による熱交換が、前記液化ガス貯蔵タンクの近傍にて行われることを特徴とする液化ガス再液化方法。
PCT/JP2009/053594 2008-02-27 2009-02-26 液化ガス再液化装置、これを備えた液化ガス貯蔵設備および液化ガス運搬船、並びに液化ガス再液化方法 WO2009107743A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009800005799A CN101796343B (zh) 2008-02-27 2009-02-26 液化气再液化装置、具有该装置的液化气贮藏设备及液化气运输船、以及液化气再液化方法
EP09715741.6A EP2196722B1 (en) 2008-02-27 2009-02-26 Device for re-liquefaction of liquefied gas, liquefied gas storage facility and liquefied gas carrying vessel equipped with the device, and method of re-liquefaction of liquefied gas
KR1020107002140A KR101136709B1 (ko) 2008-02-27 2009-02-26 액화 가스 재액화 장치, 이것을 구비한 액화 가스 저장 설비 및 액화 가스 운반선 및 액화 가스 재액화 방법
US12/670,693 US8739569B2 (en) 2008-02-27 2009-02-26 Liquefied gas reliquefier, liquefied-gas storage facility and liquefied-gas transport ship including the same, and liquefied-gas reliquefaction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008046910A JP5148319B2 (ja) 2008-02-27 2008-02-27 液化ガス再液化装置、これを備えた液化ガス貯蔵設備および液化ガス運搬船、並びに液化ガス再液化方法
JP2008-046910 2008-02-27

Publications (1)

Publication Number Publication Date
WO2009107743A1 true WO2009107743A1 (ja) 2009-09-03

Family

ID=41016130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053594 WO2009107743A1 (ja) 2008-02-27 2009-02-26 液化ガス再液化装置、これを備えた液化ガス貯蔵設備および液化ガス運搬船、並びに液化ガス再液化方法

Country Status (6)

Country Link
US (1) US8739569B2 (ja)
EP (1) EP2196722B1 (ja)
JP (1) JP5148319B2 (ja)
KR (1) KR101136709B1 (ja)
CN (1) CN101796343B (ja)
WO (1) WO2009107743A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102155615A (zh) * 2011-01-24 2011-08-17 成都深冷科技有限公司 具有bog回收功能的lng无泵加气方法及设备
JP2013531774A (ja) * 2010-05-14 2013-08-08 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 冷凍車及び低温液化可燃性ガスを使用するその冷凍室の冷却方法
CN104329561A (zh) * 2014-11-03 2015-02-04 江苏克劳特低温技术有限公司 一种液氮液化天然气的系统及其方法
CN105546338A (zh) * 2016-01-22 2016-05-04 池州森大轻工制品有限公司 一种运输罐内剩余气体回收装置
CN105820851A (zh) * 2016-06-03 2016-08-03 鲁基春 一种利用煤层气制备lng的装置及工艺
JP2016185780A (ja) * 2015-03-27 2016-10-27 三菱重工業株式会社 液化ガス収容タンク、および、船舶
JP2019509937A (ja) * 2016-03-31 2019-04-11 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド 蒸発ガスの再液化装置及び蒸発ガスの再液化方法
DE102010000946B4 (de) 2010-01-15 2022-12-15 Tge Marine Gas Engineering Gmbh Verfahren und Tankanlage für das Verflüssigen von Boil-Off Gas

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101171261B1 (ko) * 2010-01-18 2012-08-06 아주대학교산학협력단 Lng운반선
US20120000242A1 (en) * 2010-04-22 2012-01-05 Baudat Ned P Method and apparatus for storing liquefied natural gas
CN101915494A (zh) * 2010-07-27 2010-12-15 华南理工大学 一种船运液货乙烯/乙烷蒸发气体的再液化方法
CN101975335B (zh) * 2010-09-26 2012-08-22 上海交通大学 液化天然气汽车加气站蒸发气体的再液化装置
JP5737894B2 (ja) * 2010-09-30 2015-06-17 三菱重工業株式会社 ボイルオフガス再液化装置
KR101106088B1 (ko) * 2011-03-22 2012-01-18 대우조선해양 주식회사 고압 천연가스 분사 엔진용 연료 공급 시스템의 재액화 장치에 사용되는 비폭발성 혼합냉매
EP2716542A4 (en) * 2011-05-31 2016-05-04 Daewoo Shipbuilding & Marine HEAT AND COLD RECOVERY APPARATUS USING LIQUEFIED NATURAL GAS FUEL AND LIQUEFIED GAS CARRIER INCLUDING THE SAME
KR101408357B1 (ko) * 2011-06-08 2014-06-18 대우조선해양 주식회사 Lng를 이용한 액화가스 재액화장치 및 이를 가지는 액화가스운반선
KR101304076B1 (ko) * 2011-06-15 2013-09-05 한국가스공사 액화천연가스 기지의 증발가스 설비
CN102230570A (zh) * 2011-06-29 2011-11-02 中国寰球工程公司 一种液化天然气转运站的蒸发气回收系统和方法
KR101302028B1 (ko) * 2011-09-02 2013-09-04 삼성중공업 주식회사 증발가스 재액화 시스템
GB2494627A (en) * 2011-09-07 2013-03-20 Liquid Gas Equipment Ltd Method and apparatus for cooling boil off gas on a ship, barge or floating platform
US20130180265A1 (en) * 2012-01-17 2013-07-18 Ron C. Lee Method for refueling and operating natural gas fueled truck
JP2013210045A (ja) * 2012-03-30 2013-10-10 Mitsubishi Heavy Ind Ltd 船舶、液化ガス蒸発装置およびその制御方法ならびにその改修方法
KR101325505B1 (ko) * 2012-06-29 2013-11-07 한국과학기술원 저장탱크의 가스 처리 장치
US20140174105A1 (en) * 2012-12-24 2014-06-26 General Electric Campany Systems and methods for re-condensation of boil-off gas
US9181077B2 (en) * 2013-01-22 2015-11-10 Linde Aktiengesellschaft Methods for liquefied natural gas fueling
JP2014224553A (ja) * 2013-05-15 2014-12-04 株式会社Ihi 低温液化ガスタンク
GB201316227D0 (en) * 2013-09-12 2013-10-30 Cryostar Sas High pressure gas supply system
GB2519594A (en) * 2013-10-28 2015-04-29 Highview Entpr Ltd Method and system for the re-liquefaction of boil-off gas
KR101682584B1 (ko) * 2013-12-30 2016-12-06 현대중공업 주식회사 액화가스 처리 시스템
JP6345965B2 (ja) * 2014-03-28 2018-06-20 千代田化工建設株式会社 気化ガス再液化設備、及び、気化ガス再液化方法
CN104061431B (zh) * 2014-04-03 2016-09-14 查特深冷工程系统(常州)有限公司 模块化低温液体贮罐bog气体再液化系统
KR20160133986A (ko) 2015-05-14 2016-11-23 대우조선해양 주식회사 부유식 해양 구조물에서의 lng 하역 시스템 및 방법
WO2016200181A1 (ko) * 2015-06-09 2016-12-15 현대중공업 주식회사 가스 처리 시스템을 포함하는 선박
WO2016200178A1 (ko) * 2015-06-09 2016-12-15 현대중공업 주식회사 가스 처리 시스템을 포함하는 선박
US10760560B2 (en) * 2015-08-28 2020-09-01 Cryovation, Llc. Gas displacement pump assembly
FR3041061B1 (fr) * 2015-09-15 2019-05-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Reservoir de stockage de fluide liquefie
FR3049331B1 (fr) 2016-03-22 2018-09-14 Gaztransport Et Technigaz Installation d'alimentation en gaz combustible d'un organe consommateur de gaz et de liquefaction dudit gaz combustible
FR3055692B1 (fr) * 2016-09-06 2018-08-24 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation, procede pour stocker et reliquefier un gaz liquefie et vehicule de transport associe
JP6728025B2 (ja) * 2016-11-15 2020-07-22 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード ボイルオフガス再凝縮装置およびそれを備えるlng供給システム
FR3060708B1 (fr) * 2016-12-21 2019-10-25 Engie Dispositif, systeme et procede de regulation de la pression pour un reservoir de stockage de gaz naturel liquefie
SG11201906786YA (en) * 2017-02-24 2019-09-27 Exxonmobil Upstream Res Co Method of purging a dual purpose lng/lin storage tank
KR102291924B1 (ko) * 2017-03-02 2021-08-20 대우조선해양 주식회사 선박
CA3055601A1 (en) * 2017-03-14 2018-09-20 Woodside Energy Technologies Pty Ltd A containerised lng liquefaction unit and associated method of producing lng
DE102017118951B4 (de) * 2017-08-18 2019-11-14 Arianegroup Gmbh Kühlung einer Abdampfung von Flüssiggas zum Antrieb von Maschinen, Anlagen oder Fahrzeugen
JP6831311B2 (ja) * 2017-09-15 2021-02-17 株式会社神戸製鋼所 ガス供給装置、およびガス供給装置の運転開始方法
EP3517869A1 (en) 2018-01-24 2019-07-31 Gas Technology Development Pte Ltd Process and system for reliquefying boil-off gas (bog)
CN111465553B (zh) * 2018-08-01 2021-08-17 日挥环球株式会社 浮体设备
CN109458788B (zh) * 2018-12-09 2023-05-26 大连海事大学 Lng储罐用bog自循环再液化回收换热系统及方法
FR3099815B1 (fr) * 2019-08-05 2021-09-10 Air Liquide Dispositif et installation de réfrigération
JP7352441B2 (ja) * 2019-10-30 2023-09-28 大陽日酸株式会社 冷却システム及び冷却方法
KR102304933B1 (ko) * 2020-03-03 2021-09-27 (주)발맥스기술 액화천연가스 충전시설의 냉매 재활용 시스템 및 재활용 방법
US20210348840A1 (en) * 2020-05-08 2021-11-11 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method for operating a reliquefaction system
US11717784B1 (en) 2020-11-10 2023-08-08 Solid State Separation Holdings, LLC Natural gas adsorptive separation system and method
JP2023034697A (ja) * 2021-08-31 2023-03-13 三菱造船株式会社 浮体
US11577191B1 (en) 2021-09-09 2023-02-14 ColdStream Energy IP, LLC Portable pressure swing adsorption method and system for fuel gas conditioning
CN113983348A (zh) * 2021-11-16 2022-01-28 江南造船(集团)有限责任公司 一种用于lng加注用液氮恒温式过冷器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2928254A (en) * 1954-09-20 1960-03-15 Garrett Corp Storage tank for low temperature liquids
US2978876A (en) * 1958-01-16 1961-04-11 Conch Int Methane Ltd Reliquefaction system for liquefied gases
US5415196A (en) * 1993-12-08 1995-05-16 Bryant; Billy O. Tank vapor pressure control system
JP2001304497A (ja) * 2000-03-09 2001-10-31 Cryostar-France Sa 液化天然ガスからボイル・オフした蒸気を再液化する方法及びその装置
JP2005265170A (ja) 2004-03-22 2005-09-29 Mitsubishi Heavy Ind Ltd ガス再液化装置およびガス再液化方法
JP2006200735A (ja) * 2005-01-18 2006-08-03 Daewoo Shipbuilding & Marine Engineering Co Ltd Lng船の蒸発ガス過冷液化運転システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3033003A (en) * 1959-02-27 1962-05-08 Philips Corp Apparatus for condensing shipboard cargos of vaporizable liquid
US3068657A (en) * 1959-07-24 1962-12-18 Texaco Inc Method for the transportation and maintenance of a normally gaseous hydrocarbon in solution with a liquid hydrocarbon
FR2122307B1 (ja) * 1971-01-19 1975-01-17 Denis Louis
GB2261316B (en) * 1991-10-18 1995-04-12 British Nuclear Fuels Plc Decontamination of a cementitious surface
JP2001174169A (ja) 1999-12-20 2001-06-29 Denso Corp 熱交換器
GB0001801D0 (en) * 2000-01-26 2000-03-22 Cryostar France Sa Apparatus for reliquiefying compressed vapour
US6336331B1 (en) * 2000-08-01 2002-01-08 Praxair Technology, Inc. System for operating cryogenic liquid tankage
US7165422B2 (en) * 2004-11-08 2007-01-23 Mmr Technologies, Inc. Small-scale gas liquefier
KR100699163B1 (ko) * 2005-11-17 2007-03-23 신영중공업주식회사 Lng bog의 재액화 장치 및 재액화 방법
KR20050094798A (ko) 2005-09-08 2005-09-28 주식회사 동화엔텍 엘엔지 휘발가스의 중간냉각시스템
EP2005094B1 (en) * 2006-04-07 2019-10-30 Wärtsilä Gas Solutions Norway AS Method and apparatus for pre-heating lng boil-off gas to ambient temperature prior to compression in a reliquefaction system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2928254A (en) * 1954-09-20 1960-03-15 Garrett Corp Storage tank for low temperature liquids
US2978876A (en) * 1958-01-16 1961-04-11 Conch Int Methane Ltd Reliquefaction system for liquefied gases
US5415196A (en) * 1993-12-08 1995-05-16 Bryant; Billy O. Tank vapor pressure control system
JP2001304497A (ja) * 2000-03-09 2001-10-31 Cryostar-France Sa 液化天然ガスからボイル・オフした蒸気を再液化する方法及びその装置
JP2005265170A (ja) 2004-03-22 2005-09-29 Mitsubishi Heavy Ind Ltd ガス再液化装置およびガス再液化方法
JP2006200735A (ja) * 2005-01-18 2006-08-03 Daewoo Shipbuilding & Marine Engineering Co Ltd Lng船の蒸発ガス過冷液化運転システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2196722A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010000946B4 (de) 2010-01-15 2022-12-15 Tge Marine Gas Engineering Gmbh Verfahren und Tankanlage für das Verflüssigen von Boil-Off Gas
JP2013531774A (ja) * 2010-05-14 2013-08-08 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 冷凍車及び低温液化可燃性ガスを使用するその冷凍室の冷却方法
CN102155615A (zh) * 2011-01-24 2011-08-17 成都深冷科技有限公司 具有bog回收功能的lng无泵加气方法及设备
CN104329561A (zh) * 2014-11-03 2015-02-04 江苏克劳特低温技术有限公司 一种液氮液化天然气的系统及其方法
JP2016185780A (ja) * 2015-03-27 2016-10-27 三菱重工業株式会社 液化ガス収容タンク、および、船舶
CN105546338A (zh) * 2016-01-22 2016-05-04 池州森大轻工制品有限公司 一种运输罐内剩余气体回收装置
JP2019509937A (ja) * 2016-03-31 2019-04-11 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド 蒸発ガスの再液化装置及び蒸発ガスの再液化方法
US11760462B2 (en) 2016-03-31 2023-09-19 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Boil-off gas re-liquefying device and method for ship
US12006017B2 (en) 2016-03-31 2024-06-11 Hanwha Ocean Co., Ltd. Boil-off gas reliquefication apparatus and method for vessel
CN105820851A (zh) * 2016-06-03 2016-08-03 鲁基春 一种利用煤层气制备lng的装置及工艺

Also Published As

Publication number Publication date
US20100170297A1 (en) 2010-07-08
EP2196722A4 (en) 2017-10-18
EP2196722A1 (en) 2010-06-16
US8739569B2 (en) 2014-06-03
CN101796343A (zh) 2010-08-04
KR101136709B1 (ko) 2012-04-19
EP2196722B1 (en) 2021-04-14
CN101796343B (zh) 2012-07-11
JP5148319B2 (ja) 2013-02-20
JP2009204080A (ja) 2009-09-10
KR20100043199A (ko) 2010-04-28

Similar Documents

Publication Publication Date Title
JP5148319B2 (ja) 液化ガス再液化装置、これを備えた液化ガス貯蔵設備および液化ガス運搬船、並びに液化ガス再液化方法
US7155917B2 (en) Apparatus and methods for converting a cryogenic fluid into gas
KR101194474B1 (ko) 증발가스 스트림을 냉각하기 위한 시스템 및 방법
JP5495697B2 (ja) 液化ガス燃料供給装置、この運転方法、これを備えた液化ガス運搬船およびこれを備えた液化ガス貯蔵設備
PL86303B1 (en) Powered mobile liquefied gas carriers[us3864918a]
JP2013087911A (ja) 貯蔵槽の圧力上昇抑制装置、これを備えた圧力上昇抑制システム、この抑制方法、これを備えた液化ガス運搬船およびこれを備えた液化ガス貯蔵設備
WO2013175906A1 (ja) 液体水素貯槽から発生するボイルオフガスの再液化方法
CN109154471A (zh) 用于处理来自低温液体的蒸发的气体且向气体马达供应加压气体的系统
KR20120045801A (ko) 선박
KR20090025514A (ko) Lng 운반선에 대한 bog 재액화 시스템
KR102336892B1 (ko) 수소 재액화시스템
CN113260811B (zh) 装备有再气化单元的接收终端的气体处理系统和对应的气体处理方法
KR20120045802A (ko) 선박
KR101883466B1 (ko) 선박의 증발가스 처리 시스템 및 방법
KR20120045803A (ko) 선박
KR101010329B1 (ko) Lng 운반선 내 lng 저장 탱크의 증발가스 냉각 시스템
JP2021507178A (ja) 液化ガスを容器内に貯蔵し蒸発ガスを容器から引き出す方法及び装置
JP2019117026A (ja) 超電導ケーブルの冷却装置及び初期冷却方法
KR102162163B1 (ko) 에틸렌 서브쿨링 시스템 및 이를 포함하는 선박
WO2022058543A1 (en) A system for conditioning of lng
KR102098875B1 (ko) 개방형 액화가스 재기화 시스템 및 방법
KR20120010334A (ko) 냉열발전을 이용한 증발가스 재액화 방법 및 장치
KR102087028B1 (ko) 폐쇄형 액화가스 재기화 시스템 및 방법
US20240200866A1 (en) Device for liquefying gaseous dihydrogen for offshore or onshore structure
RU2772630C2 (ru) Способ и система обработки газа в установке для хранения газа танкера для перевозки газа

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000579.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09715741

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009715741

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107002140

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12670693

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE