WO2009107303A1 - 電磁シールド構造およびそれを用いた無線装置、電磁シールドの製造方法 - Google Patents

電磁シールド構造およびそれを用いた無線装置、電磁シールドの製造方法 Download PDF

Info

Publication number
WO2009107303A1
WO2009107303A1 PCT/JP2008/072341 JP2008072341W WO2009107303A1 WO 2009107303 A1 WO2009107303 A1 WO 2009107303A1 JP 2008072341 W JP2008072341 W JP 2008072341W WO 2009107303 A1 WO2009107303 A1 WO 2009107303A1
Authority
WO
WIPO (PCT)
Prior art keywords
shield
electromagnetic
structure portion
top plate
side plate
Prior art date
Application number
PCT/JP2008/072341
Other languages
English (en)
French (fr)
Inventor
英二 半杭
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2010500535A priority Critical patent/JP5170232B2/ja
Priority to US12/866,224 priority patent/US8379408B2/en
Publication of WO2009107303A1 publication Critical patent/WO2009107303A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/002Casings with localised screening
    • H05K9/0022Casings with localised screening of components mounted on printed circuit boards [PCB]
    • H05K9/0024Shield cases mounted on a PCB, e.g. cans or caps or conformal shields
    • H05K9/0032Shield cases mounted on a PCB, e.g. cans or caps or conformal shields having multiple parts, e.g. frames mating with lids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • H04B15/02Reducing interference from electric apparatus by means located at or near the interfering apparatus
    • H04B15/04Reducing interference from electric apparatus by means located at or near the interfering apparatus the interference being caused by substantially sinusoidal oscillations, e.g. in a receiver or in a tape-recorder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing

Definitions

  • the present invention relates to an electromagnetic shield structure loaded on a digital device such as an integrated circuit (Large Scale Integration, hereinafter referred to as LSI) or a module in a device using wireless communication such as a mobile phone, and a wireless device using the electromagnetic shield structure It is about.
  • LSI Large Scale Integration
  • electromagnetic waves caused by harmonic components of the digital clock signal may be radiated into the space and affect surrounding electronic devices.
  • an electronic device in which a digital system circuit and an analog system circuit (or a wireless system circuit) are mixed when an electromagnetic wave that matches a radio frequency is mixed into a wireless system circuit among electromagnetic waves generated from an LSI that is a digital system circuit, Electromagnetic noise may occur and affect the signal quality of the receiving antenna. For this reason, in a wireless device in which a digital circuit and an analog circuit are mixed, a technique for suppressing electromagnetic noise radiated from an LSI is important for maintaining signal quality.
  • a power supply decoupling technique is known as an electromagnetic noise suppression technique from LSI.
  • An example is shown in FIG.
  • the power supply decoupling structure 100 suppresses electromagnetic noise radiated from the power supply terminal 103 of the LSI 102 mounted on the substrate 101.
  • the power supply decoupling structure 100 has a configuration in which a decoupling capacitor 104 is connected to a power supply terminal 103 and a ground terminal 105 of an LSI 102.
  • a ground terminal 105 provided on the surface of the substrate 101 is electrically connected to a ground layer 107 provided inside the substrate 101 via a via hole 106 extending in the thickness direction of the substrate 101.
  • the use of the capacitor 104 causes high-frequency electromagnetic noise generated from the power supply system of the LSI 102 to pass through the capacitor 104 to the ground terminal 105 and the substrate 101 on the surface of the substrate 101. As a result, leakage of the noise to other locations can be suppressed.
  • electromagnetic shielding technology is also used as a technology for suppressing electromagnetic noise from the LSI.
  • This electromagnetic shielding technique basically involves covering the entire LSI with a metal lid and connecting it to the ground of the substrate, an example of which is shown in FIG.
  • FIG. 6 the same reference numerals as those in FIG. 7 are assigned to portions corresponding to the elements in FIG.
  • FIG. 6A shows an example of a typical metal shield structure 200.
  • the metal shield structure 200 is provided on the substrate 101 and includes a metal shield 201.
  • the shield 201 has a top plate 202 having a size larger than that of the LSI 102 mounted on the substrate 101, and four pieces each covering the four side surfaces of the LSI 102 provided on the four sides of the top plate 202, respectively.
  • Side plate 203 Side plate 203.
  • the substrate 101 has a multilayer structure, and a solid pattern ground layer 107 is formed on the inner layer of the substrate 101 as shown in FIG. 6C.
  • a plurality of via holes 204 extending in the thickness direction are formed in the substrate 101. These via holes 204 are arranged in a wall shape at a narrow pitch along each side plate 203 of the shield 201.
  • the shield 201 is electrically connected (grounded) to the ground layer 107 via the via hole 204.
  • the upper and lower surfaces of the LSI 102 are sandwiched between the top plate 202 of the shield 201 and the ground layer 107 in the substrate 101, and the side surfaces thereof are connected to the side plate 203 of the shield 201 and via holes. 204 walls (via holes 204 arranged in a wall shape).
  • the entire circumference of the LSI 102 is surrounded by the conductor plate (metal plate), so that electromagnetic noise generated from the LSI 102 is shielded.
  • the amount of electromagnetic noise radiated around the LSI 102 is reduced. That is, electromagnetic noise radiation from the LSI 102 can be suppressed.
  • Japanese Patent No. 3738755 proposes a shield structure in which a pair of side plates 203 on two opposite sides of the shield 201 are removed and heat is radiated therefrom. This shield structure is said to be effective in reducing EMI (Electro-Magnetic Interference) generated from a single LSI.
  • EMI Electro-Magnetic Interference
  • the metal shield structure 200 of FIG. 6 and the shield structure of Japanese Patent No. 3738755 suppress only the radiation of electromagnetic noise from the LSI. That is, these shield structures consider only suppression of electromagnetic noise radiated from a single LSI, and do not consider a state in which wireless devices such as antennas that receive electromagnetic noise are mixed. In other words, it is not intended for a configuration in which an electromagnetic noise receiving element such as an antenna coexists on a substrate in addition to an electromagnetic noise radiation source such as an LSI. For this reason, there is a demand for an electromagnetic shield configuration that is effective in a wireless device in which a digital circuit (digital device) and an analog circuit (analog device) are mixedly mounted.
  • an object of the present invention is to provide an electromagnetic shield structure capable of suppressing mixing of electromagnetic noise generated from a digital device into a wireless device, and a wireless device using the electromagnetic shield structure.
  • Another object of the present invention is to provide an electromagnetic shield structure having a power supply decoupling function of a digital device in addition to an electromagnetic shield function, and a radio apparatus using the same.
  • the electromagnetic shield structure according to the first aspect of the present invention is: An electromagnetic shield structure comprising a first shield and a second shield disposed on the substrate so as to cover a digital device mounted on the substrate,
  • the first shield is formed from a conductor electrically connected to the ground terminal of the substrate, and is disposed on the outermost side of the electromagnetic shield structure
  • the second shield includes a conductive first structure part and a conductive second structure part formed separately from each other, and the first structure part and the second structure part are respectively formed on the substrate.
  • the first structure part and the second structure part are arranged so that the opening surfaces provided at one end thereof are opposed to each other with a predetermined gap,
  • the digital device is between the first structure portion and the second structure portion and is covered with the first structure portion and the second structure portion.
  • the digital device which is a source of electromagnetic noise
  • the first shield and the second shield are covered with the first shield and the second shield.
  • the electromagnetic noise radiated from the device is shielded. Therefore, mixing of the electromagnetic noise into the wireless device can be suppressed.
  • first structure portion and the second structure portion of the second shield are temporarily excited by the digital device, they are provided at one ends of the first structure portion and the second structure portion, respectively. Since the opening surfaces are opposed to each other, electromagnetic fields radiated from the opening surfaces are canceled out, and as a result, radiation of electromagnetic noise from the first structure portion and the second structure portion is reduced. Is possible. Thus, mixing of electromagnetic noise generated from the digital device into the wireless device can be effectively suppressed.
  • the first shield has a U-shaped cross section and has a size covering the digital device, and the top plate The first side plate disposed on one side of the top plate and the second side plate disposed on the other side of the top plate facing the one side.
  • each of the first structure portion and the second structure portion of the second shield has an L-shaped cross section, and It is formed from a top plate that covers the digital device and a side plate that is bent and connected to one side of the top plate.
  • a dielectric is provided between the top plate of the first shield and the top plate of the second shield.
  • the power supply decoupling function of the digital device can be obtained in addition to the electromagnetic shielding function.
  • the first shield and the second shield are such that the side plate of the first shield and the side plate of the second shield are orthogonal to each other. Or arranged so as to be parallel to each other.
  • the top plate of the first structure part and the top plate of the second structure part of the second shield are targeted electromagnetic waves. It has a length that is not approximately equal to 1 ⁇ 4 ( ⁇ / 4) of the noise wavelength ⁇ .
  • the DC power supplies having different values are connected to each other through the first structure portion and the second structure portion of the second shield.
  • a digital device can be connected.
  • the first shield, the second shield, and the dielectric are electromagnetic waves that suppress electromagnetic noise from the digital device.
  • the shield function it also has a power supply decoupling function that suppresses electromagnetic noise from the power supply of the digital device.
  • the second shield has an integrated configuration in which the gap between the first structure portion and the second structure portion is eliminated.
  • the first shield and the second shield are arranged so that the side plate of the first shield and the side plate of the second shield are orthogonal to each other, and the first shield and the second shield A dielectric is provided between the two.
  • the power supply decoupling function of the digital device can be obtained in addition to the electromagnetic shielding function.
  • a wireless device provides: A wireless device in which a wireless device and a digital device are mounted on a substrate, An electromagnetic shield structure including a first shield and a second shield disposed on the substrate so as to cover the digital device;
  • the first shield is formed from a conductor electrically connected to the ground terminal of the substrate, and is disposed on the outermost side of the electromagnetic shield structure,
  • the second shield includes a conductive first structure part and a conductive second structure part formed separately from each other, and the first structure part and the second structure part are respectively formed on the substrate.
  • the first structure part and the second structure part are arranged so that the opening surfaces provided at one end thereof are opposed to each other with a predetermined gap,
  • the digital device is between the first structure portion and the second structure portion and is covered with the first structure portion and the second structure portion.
  • the digital device that is a source of electromagnetic noise is covered with the electromagnetic shield structure including the first shield and the second shield. Therefore, electromagnetic noise radiated from the digital device can be shielded. Therefore, mixing of the electromagnetic noise into the wireless device can be suppressed.
  • the electromagnetic shield structure even if the first structure portion and the second structure portion of the second shield are temporarily excited by the digital device, the first structure portion and the second structure portion Since the opening surfaces provided at one end face each other, the electromagnetic fields radiated from the opening surfaces cancel each other, and as a result, electromagnetic noise from the first structure portion and the second structure portion. Can be reduced. Thus, mixing of electromagnetic noise generated from the digital device into the wireless device can be effectively suppressed.
  • the first shield is provided on a top plate that covers the digital device, and a first side and a second side of the top plate that face each other.
  • a first side plate and a second side plate disposed; the first side plate is disposed on a side closer to the wireless device; and the second side plate is disposed on a side farther from the wireless device.
  • the first shield has a U-shaped cross section and has a size covering the digital device, and the ceiling.
  • the first side plate is disposed on one side of the plate and the second side plate is disposed on the other side opposite to the one side of the top plate.
  • the first structure portion and the second structure portion of the second shield are each L-shaped in cross section, A top plate that covers the digital device and a side plate that is bent and connected to one side of the top plate.
  • a dielectric is provided between the top plate of the first shield and the top plate of the second shield.
  • the power supply decoupling function of the digital device can be obtained in addition to the electromagnetic shielding function.
  • the first shield and the second shield are arranged such that a side plate of the first shield and a side plate of the second shield are orthogonal to each other. Or it arrange
  • the top plate of the first structure part and the top plate of the second structure part of the second shield are subject to electromagnetic noise.
  • the digital power is supplied to the DC power sources having different values through the first structure portion and the second structure portion of the second shield.
  • System devices can be connected.
  • the first shield, the second shield, and the dielectric are electromagnetic shields that suppress electromagnetic noise from the digital device.
  • it also has a power supply decoupling function that suppresses electromagnetic noise from the power supply of the digital device.
  • the second shield has an integrated configuration in which the gap between the first structure portion and the second structure portion is eliminated.
  • the first shield and the second shield are arranged so that the side plate of the first shield and the side plate of the second shield are orthogonal to each other, and the first shield and the second shield A dielectric is provided between the two.
  • the first shield, the second shield, and the dielectric form a capacitor, the power supply decoupling function of the digital device can be obtained in addition to the electromagnetic shielding function.
  • a radio apparatus provides: A wireless device in which a wireless device and a digital device are mounted on a substrate, An electromagnetic shield having a U-shaped cross-section disposed so as to cover the digital device,
  • the electromagnetic shield includes a top plate having a size covering the digital device, and a pair of first side plates and second side plates respectively disposed on the first side and the second side of the top plate facing each other.
  • the first side plate is disposed on the side close to the wireless device, and the second side plate is disposed on the side far from the wireless device.
  • the digital device that is a source of electromagnetic noise is covered with the electromagnetic shield, and the first side plate has an electromagnetic shielding effect. Since it is arranged at an optimum position, electromagnetic noise radiated from the digital device can be shielded. Therefore, mixing of the electromagnetic noise into the wireless device can be suppressed with a simple configuration.
  • the manufacturing method of the electromagnetic shield of this invention is as follows.
  • a method of manufacturing an electromagnetic shield comprising a first shield and a second shield disposed on the substrate so as to cover a digital device mounted on the substrate,
  • the conductor forming the first shield is electrically connected to the ground terminal of the substrate, and the first shield is formed by arranging the first shield on the outermost side.
  • the electrically conductive first structure part and the electrically conductive second structure part formed separately from each other forming the second shield are electrically connected to the power supply terminals of the substrate, respectively, and the first structure part And at one end of the second structure portion, the opening surfaces face each other with a predetermined gap, and the digital device is between the first structure portion and the second structure portion, and the first structure portion and the second structure portion
  • the second shield is formed by arranging so as to be covered by the second structure portion.
  • the electromagnetic shield structure according to the first aspect of the present invention and the wireless device according to the second aspect have an effect that electromagnetic noise generated from the digital device can be prevented from being mixed into the wireless device.
  • the dielectric is provided between the first shield and the second shield, an effect that a power supply decoupling function of a digital device can be obtained in addition to an electromagnetic shielding function is obtained.
  • the wireless device according to the third aspect of the present invention has an effect that the electromagnetic noise generated from the digital device can be prevented from being mixed into the wireless device with a simple configuration.
  • Electromagnetic shield structure 2 Antenna (wireless device) 3 1st shield 3a Top plate 3b 1st side plate 3c 2nd side plate 4 2nd shield 4a 1st L-type structure part (1st structure part) 4b 2nd L type structure part (2nd structure part) 4c, 4e Top plate 4d 1st L type structure part side plate 4f 2nd L type structure part side plate 5 Dielectric 6a, 6b Ground terminal 7a, 7b Power supply terminal 42 Shield 101 Substrate 102 LSI (digital system device)
  • FIG. 1A is a perspective view thereof
  • FIG. 1B is an exploded perspective view thereof
  • FIG. 2 is a side view thereof.
  • the electromagnetic shield structure 1 is mounted on a known wireless device (for example, a wireless communication device such as a mobile phone), and from electromagnetic noise radiated from the LSI 102 which is a digital device, or from the power supply system of the LSI 102.
  • a known wireless device for example, a wireless communication device such as a mobile phone
  • An electromagnetic shielding function that suppresses conduction of electromagnetic noise to the antenna 2 that is a wireless device and a power supply decoupling function of the LSI 102 are provided.
  • the electromagnetic shield structure 1 used in the wireless device is electrically connected to a ground layer 107 inside a substrate 101 having a multilayer structure via ground terminals 6 a and 6 b on the substrate 101.
  • the first shield 3 connected (grounded), the second shield 4 electrically connected to the power terminals 7a and 7b of the substrate 101, and the dielectric provided between the first shield 3 and the second shield 4 And 5.
  • the LSI 102 that is an electromagnetic noise source mounted on the substrate 101 is covered in the order of the second shield 4, the dielectric 5, and the first shield 3 from a position close to that. .
  • the first shield 3 has a U-shaped cross section and is arranged so as to cover the LSI 102.
  • the first shield 3 is formed by bending a metal plate into a U-shaped cross section, and includes one rectangular top plate 3a, a rectangular first side plate 3b connected to one side of the top plate 3a, A rectangular second side plate 3c integrally connected to the other side of the top plate 3a facing the first side plate 3b (on the opposite side of the first side plate 3b).
  • the first side plate 3b and the second side plate 3c are connected to the top plate 3a at an angle of approximately 90 degrees and face each other.
  • the top plate 3 a is disposed substantially parallel to the substrate 101.
  • the first side plate 3 b and the second side plate 3 c are substantially perpendicular to the substrate 101.
  • first side plate 3b and second side plate 3c have the same shape and the same size, and are electrically connected to the ground terminals 6a and 6b on the substrate 101 by solder or the like at their lower ends. Connected to (grounded). The first shield 3 is thus fixed on the substrate 101.
  • the second shield 4 has a configuration in which a first L-type structure portion 4a and a second L-type structure portion 4b formed in an L-shaped cross section are combined.
  • Each of the first L-type structure portion 4a and the second L-type structure portion 4b is formed of a metal plate bent in an L-shaped cross section.
  • the first L-type structure portion 4a includes a rectangular top plate 4c, and a rectangular side plate connected to one side of the top plate 4c at an angle of about 90 degrees with respect to the top plate 4c (hereinafter referred to as a first L-type structure portion side plate). 4d).
  • the second L-type structure portion 4b has the same dimensions and shape as the first L-type structure portion 4a, and is connected to a rectangular top plate 4e and one side of the top plate 4e at an angle of approximately 90 degrees with respect to the top plate 4e. And a rectangular side plate (hereinafter also referred to as a second L-type structure portion side plate) 4f.
  • the top plates 4 c and 4 e are disposed substantially parallel to the substrate 101.
  • the side plates 4d and 4f are substantially perpendicular to the substrate 101.
  • the first L-type structure portion 4a and the second L-type structure portion 4b include an opening surface (notch portion) 4g provided at one end of the top plate 4c of the first L-type structure portion 4a (the side opposite to the side plate 4d), and the second L-type structure portion 4b.
  • An opening surface (notch portion) 4h provided at one end of the top portion 4e of the structure portion 4b (opposite side of the side plate 4f) is opposed with a slight gap G therebetween.
  • the opening surfaces (notches) 4g and 4h are substantially parallel.
  • the second shield 4 sandwiches the LSI 102 between the side plate 4d of the first L-type structure portion 4a and the side plate 4f of the second L-type structure portion 4b, and the top plate 4c of the first L-type structure portion 4a and the top of the second L-type structure portion 4b.
  • the LSI 102 is covered with a plate 4e.
  • power terminals 7a and 7b are formed on the outer sides of the two opposite side surfaces of the LSI 102, respectively.
  • the first L-type structure part side plate 4d and the second L-type structure part side plate 4f of the second shield 4 are electrically connected to the power supply terminals 7a and 7b, respectively, by solder or the like. In this way, the second shield 4 is fixed on the substrate 101.
  • ground terminals 6a and 6b are formed outside the other two side surfaces of the LSI 102 facing each other on the surface layer of the substrate 101, the ground terminals 6a and 6b and the power supply terminals 7a and 7b are in a direction orthogonal to each other. It is extended.
  • the first L-type structure part side plate 4d and the second L-type structure part side plate 4f of the second shield 4 are orthogonal to the first side plate 3b and the second side plate 3c of the first shield 3.
  • top plate 4c of the first L-type structure portion 4a of the second shield 4 and the top plate 4e of the second L-type structure portion 4b On the top plate 4c of the first L-type structure portion 4a of the second shield 4 and the top plate 4e of the second L-type structure portion 4b, a rectangular plate-like shape that is substantially equal in size to the top plate 3a of the first shield 3 A dielectric 5 is placed. The top plate 3 a of the first shield 3 is in close contact with the upper surface of the dielectric 5.
  • the ground terminals 6a and 6b to which the first shield 3 is connected are provided with a plurality of ground connection vias (described later) along their longitudinal directions.
  • the first shield 3 is electrically grounded to the ground layer 107 provided in the inner layer of the substrate 101 through these vias.
  • an LSI 102 that is a source of electromagnetic noise and an antenna 2 in which electromagnetic noise is mixed are mounted on the same substrate 101, and the first shield 3 and the second shield constituting the electromagnetic shield structure 1.
  • the shield 4 has a power decoupling function (power decoupling function) in addition to a function of suppressing the emission of electromagnetic noise (electromagnetic noise suppressing function).
  • the first shield 3 has a size larger than that of the LSI 102, and is mounted on the substrate 101 together with the LSI 102.
  • the substrate 101 is a multilayer substrate, having a ground layer 107 made of a solid pattern on the inner layer, and having rectangular ground terminals 6a and 6b for grounding on the surface layer.
  • the ground terminals 6a and 6b are electrically connected (grounded) to the ground layer 107 through the inner via holes 10, respectively.
  • the ground terminals 6a and 6b are selected to have substantially the same length as the first side plate 3b and the second side plate 3b of the first shield 3, and a plurality of via holes 10 are arranged at a narrow pitch inside the substrate 101 along the longitudinal direction thereof. To form a via hole row (not shown). This is to enhance the grounding between the ground terminals 6a and 6b and the ground layer 107.
  • this via hole row behaves equivalently as a metal wall. Therefore, when the first shield 3 is electrically connected to the ground terminals 6a and 6b, the upper and lower surfaces and the left and right surfaces of the LSI 102 are shielded by the metal plates, and therefore the first shield 3, the via hole row, and the ground layer 107 are formed. A shield structure is formed. As a result, electromagnetic noise from the LSI 102 can be effectively suppressed.
  • the second shield 4 is connected to the power supply system of the substrate 101, and here is electrically connected to power supply terminals 7 a and 7 b that supply a predetermined potential to the LSI power supply terminal 11.
  • a first shield 3 that is slightly larger in width is covered on the second shield 4, and the first side plate 3 b and the second side plate 3 c of the first shield 3 are the first L-type structure part side plates of the second shield 4. 4d and the second L-shaped structure side plate 4f.
  • a dielectric 5 having a size corresponding to the top plate 3a of the first shield 3 is provided between the first shield 3 and the second shield 4.
  • the top plate 3a of the first shield 3 and the top plates 4c and 4e of the second shield 4 behave like electrode plates, and the first shield 3 and the top plate 3a are provided by the dielectric 5 provided between the two electrode plates.
  • the insulating property of the second shield 4 is maintained.
  • the first shield 3 and the second shield 4 form a capacitor (capacitor) and have a function as power supply system decoupling.
  • the capacitor generally has a low impedance in a high frequency band
  • the power supply terminals 7a and 7b are equivalent to being grounded to the ground layer 107 by the second shield 4 in terms of high frequency.
  • the second shield 4 acts as an electromagnetic shield against high-frequency noise radiated from the LSI 102 even if it is configured to be connected to the power supply system.
  • the 2nd shield 4 is comprised from the combination of the 1st L type
  • the top plate 4c of the first L-type structure unit 4a and the top plate 4e of the second L-type structure unit 4b are arranged so as to cover the LSI 102, and the gap G between the top plates 4c and 4e is extremely narrow compared to the wavelength ⁇ . Has been. For this reason, electromagnetic noise at high frequencies radiated from the LSI 102 can be shielded not only by the first shield 3 but also by the first L-type structure portion 4a and the second L-type structure portion 4b arranged on the left and right sides of the LSI 102. .
  • the second shield 4 has a configuration in which the divided first L-type structure portion 4a and second L-type structure portion 4b are made non-conductive with a slight gap G therebetween. For this reason, in the second shield 4, the first L-type structure portion 4 a and the second L-type structure portion 4 b connected to the power source are divided in a direct current manner. Two power supply voltages having different values can be supplied.
  • this electromagnetic shield structure 1 it is possible to supply different voltages to the first L-type structure unit 4a and the second L-type structure unit 4b even when the LSI 102 is a two-power supply type LSI group, for example. Power decoupling is also possible.
  • the lengths L1 and L2 of the top plate are reduced by the electromagnetic noise to be radiated.
  • the resonance length is about 1 ⁇ 4 of the wavelength ⁇ (integer multiple of ⁇ / 4)
  • it resonates to behave like a patch antenna, and electromagnetic waves are generated from the opening surface 4g of the top plate 4c and the opening surface 4h of the top plate 4e. The field may be radiated.
  • the first L-type structure portion 4a and the second L-type structure portion 4b face each other so as to sandwich the LSI 102, and are provided at the tip of the top plate 4c of the first L-type structure portion 4a.
  • the opening surface 4g and the opening surface 4h provided at the tip of the top plate 4e of the second L-type structure portion 4b are configured to face each other.
  • the first shield 3 is configured in consideration of the relationship with the position of the antenna 2, and a greater shielding effect is drawn out. That is, as shown in FIG. 1A, FIG. 1B, and FIG. 2, the first shield 3 is disposed closer to the antenna 2 than the second shield 4, so the first shield 3 is as shown below. With special features.
  • the first shield 3 has a second side plate 3c arranged on one side of the four sides of the top plate 3a on the side where the antenna 2 is located, and one side opposite to the second side plate 3c.
  • the first side plate 3b is disposed on the side.
  • the present inventor uses electromagnetic field analysis to mix the amount of noise generated from the LSI 102 into the antenna 2. Evaluated.
  • Model A is the structure of the 1st shield 3 described in FIG. 1A, Comprising: Of the four sides of the top plate 3a, the side on which the antenna 2 is located (the side closest to the antenna 2) and the side opposite thereto A pair of the first side plate 3b and the second side plate 3c are arranged on each side (the side farthest from the antenna 2).
  • Model B the first side plate 3b and the second side plate 3c are present on the side where the antenna 2 is located (the side closest to the antenna 2) and the side facing it (the side farthest from the antenna 2).
  • An opening surface not to be disposed is disposed, and a pair of first side plate 3b and second side plate 3c are disposed on the other two sides, respectively.
  • a loop model was used with reference to that disclosed in Japanese Patent No. 3885830 (Japanese Patent Application No. 2006-162491).
  • the antenna 2 a monopole antenna was used.
  • a loop model of the LSI 102 was excited at a frequency of 1 GHz, and a noise current mixed into the antenna 2 was calculated as a noise amount.
  • the noise mixed into the antenna 2 was greatly reduced by about 40 dB compared to the model B by covering the LSI 102 with the first shield 3 as in the model A.
  • the shielding effect for suppressing the noise amount was about 8 dB lower, and that the shielding effect of the model A was much larger.
  • 20 dB of the shield effect said here is equivalent to an electric current becoming 1/10.
  • the model A in which the first side plate 3b and the second side plate 3c are arranged on a pair of sides including the side on which the antenna 2 is located is more preferable. A greater shielding effect was obtained, and it was confirmed that the configuration was effective.
  • the first side plate 3b and the second side plate 3c of the first shield 3 according to the positional relationship with the antenna 2. That is, in the case of the wireless device according to the first embodiment, in order to suppress the amount of noise generated from the LSI 102 and mixed into the antenna 2, it is desirable to simply provide the first side plate 3b and the second side plate 3c. It has been found that it is important to consider the positions of the first side plate 3b and the second side plate 3c with respect to the antenna 2 without necessarily obtaining the shielding effect.
  • the electromagnetic shield structure 1 In the electromagnetic shield structure 1 according to the present invention, an effective shield configuration with respect to the position of the antenna 2 is realized, and a double shield configuration including the first shield 3 and the second shield 4 is realized. Further, in addition to such a shielding function, a power source decoupling function of the LSI 102 is also provided by realizing a capacitor configuration using the dielectric 5. For this reason, the electromagnetic shield structure 1 is effective for suppressing noise radiated from the LSI 102 and suppressing noise mixed into the antenna 2, and in particular, the wireless device on which the antenna 2 is mounted is effective.
  • the electromagnetic shield structure 1 of the first embodiment includes the first shield 3 and the second shield 4 arranged so as to cover the LSI 102 mounted on the substrate 101.
  • the first shield 3 is formed of a conductor that is electrically connected to the ground terminals 6 a and 6 b of the substrate 101 and is disposed on the outermost side of the electromagnetic shield structure 1.
  • the second shield 4 includes a conductive first L-type structure portion 4a and a conductive second L-type structure portion 4b formed separately from each other, and the first L-type structure portion 4a and the second L-type structure portion. 4b are electrically connected to the power supply terminals 7a and 7b of the substrate 101, respectively.
  • first L-type structure portion 4a and the second L-type structure portion 4b are arranged so that the opening surfaces 4g and 4h provided at one end thereof face each other with a predetermined gap G, and the LSI 102
  • the first L-type structure portion 4a and the second L-type structure portion 4b are covered with the first L-type structure portion 4a and the second L-type structure portion 4b.
  • the electromagnetic shield structure 1 has a shield function that suppresses the influence of electromagnetic noise radiated from the LSI 102 by the first shield 3 and the second shield 4, and the first L-type structure portion 4 a and the second L-type structure. Even if the structure portion 4b is excited by the LSI 102, the opening surface 4g of the first L-type structure portion 4a and the opening surface 4h of the second L-type structure portion 4b are opposed to each other. As a result, it is possible to reduce the emission of electromagnetic noise from the first L-type structure part 4a and the second L-type structure part 4b.
  • the LSI 102 that is a source of electromagnetic noise is covered with a double shield structure of the first shield 3 and the second shield 4, and the second side plate 3 c of the first shield 3 close to the antenna 2 is covered. Since the configuration is such that the shield effect is arranged at an optimum position where the effect is further obtained, the effect of suppressing the noise entering the antenna 2 can be obtained together with the effect of shielding the noise radiated from the LSI 102.
  • the first shield 3 and the second shield 4 sandwiching the dielectric 5 form a capacitor.
  • the power supply decoupling function of the LSI 102 is also provided. That is, the first shield 3 and the second shield 4 behave like a pair of electrode plates across the dielectric 5 and also function as a capacitor. Therefore, the power terminals 7a and 7b and the ground terminals 6a and 6b of the LSI 102 are A capacitor is inserted between them, which is effective for decoupling noise from the power supply system.
  • the electromagnetic shielding structure 1 is effective for suppressing noise generated from a digital device such as the LSI 102 and suppressing noise mixing into the antenna 2 due to the shielding effect and the decoupling effect. This is effective in a wireless device equipped with a functional module, a wireless device antenna 2 and the like.
  • the first L-type structure part side plate 4d and the second L-type structure part side plate 4f of the second shield 4 are arranged so as to be orthogonal to the first side plate 3b and the second side plate 3c of the first shield 3.
  • the first L-type structure part side plate 4 d and the second L-type structure part side plate 4 f of the second shield 4 are parallel to the first side plate 3 b and the second side plate 3 c of the first shield 3. You may arrange in.
  • FIG. 3 shows an electromagnetic shield structure 21 according to a second embodiment of the present invention
  • FIG. 3A is a perspective view thereof
  • FIG. 3B is an exploded perspective view thereof
  • FIG. 3C is a side view thereof.
  • the same reference numerals are given to portions common to the configurations of FIGS. 1 and 2 described in the first embodiment.
  • the first L-type structure part side plate 4d and the second L-type structure part side plate 4f of the second shield 4 are parallel to the first side plate 3b and the second side plate 3c of the first shield 3. It is arranged to be.
  • the power terminals 22a and 22b on the substrate 101 are also arranged corresponding to the positions of the first L-type structure part side plate 4d and the second L-type structure part side plate 4f of the second shield 4.
  • the electromagnetic shield structure 21 of the present embodiment is different from the first embodiment described above in terms of the positions of the power supply terminals 22a and 22b and the arrangement position of the second shield 4, and other configurations and mounting structures are the same as those described above. The same as in the first embodiment.
  • the decoupling is performed.
  • a ring capacitor is also formed.
  • the first side plate 3b and the second side plate 3c of the first shield 3 are respectively provided on one side on which the antenna 2 is disposed and on the other side opposite to the one side.
  • the electromagnetic shield structure 21 according to the second embodiment also provides a shielding function and a decoupling function, suppresses noise generated from the LSI 102 mounted on the wireless device, and an antenna. This is effective for suppressing noise mixing into 2.
  • the second shield 4 may not be divided into two parts but may be integrated.
  • FIG. 4 shows an electromagnetic shield structure 31 according to a third embodiment of the present invention
  • FIG. 4A is a perspective view thereof
  • FIG. 4B is an exploded perspective view thereof.
  • the same reference numerals are given to the portions common to the configurations of FIGS. 1 and 2 described in the first embodiment.
  • the electromagnetic shield structure 31 according to the third embodiment has a configuration in which the second shield 32 is integrated. As shown in FIGS. 4A and 4B, this electromagnetic shield structure 31 is integrated such that the second shield 32 is formed in a U-shaped cross section and does not have the gap G (see FIG. 1B) as in the first embodiment. Have a configuration.
  • the pair of first L-type structure part side plates 32d and second L-type structure part side plates 32c provided on the two opposing sides of the rectangular top plate 32a of the second shield 32 are the first shield 3 first. It arrange
  • the electromagnetic shield structure 31 is effective for suppressing noise from the LSI 102 and suppressing mixing of noise into the antenna 2.
  • the electromagnetic shield structure according to the present invention may suppress electromagnetic noise radiated from the LSI and noise mixed into the antenna of the wireless device by using only the electromagnetic shield function.
  • FIG. 5 shows an example of the electromagnetic shield structure 41 of the fourth embodiment using only the electromagnetic shield function
  • FIG. 5A is a perspective view thereof
  • FIG. 5B is a side view thereof.
  • the same reference numerals are given to portions common to the configurations of FIGS. 1 and 2 described in the first embodiment.
  • This electromagnetic shield structure 41 is configured by only the shield 42 grounded to the ground layer 107 by removing the second shield 4 (see FIG. 1B) as in the first embodiment described above, and simplification of parts. It is illustrated.
  • the rectangular top plate 42a of the shield 42 is integrally formed with a rectangular first side plate 42d on one side where the antenna is located, and a rectangular second side plate 42c is integrally formed on the other side facing the one side. Is formed.
  • the shield 42 can suppress the noise mixed into the antenna 2 by the first side plate 42d and the second side plate 42c.
  • the above first to fourth embodiments show preferred examples of the present invention. Therefore, the present invention is not limited to these embodiments.
  • the electromagnetic shield structure may be applied to general noise radiation sources such as modules in addition to LSI, and various modifications are possible. Needless to say.
  • the present invention can be widely applied as an electromagnetic shield for high-frequency equipment that generates electromagnetic noise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

 無線機器において、デジタル系デバイスから発生する電磁ノイズの無線系デバイスへの混入を抑制し得る電磁シールド構造と、それを用いた無線機を提供する。第1シールド3と第2シールド4により、LSI102から放射されるノイズの影響を抑制するシールド機能を備える。第1L型構造部4aと第2L型構造部4bがLSI102によって仮に励振しても、第1L型構造部4aの開口面4gと、第2L型構造部4bの開口面4hとが対向していることから、開口面4gおよび4hからそれぞれ放射される電磁界が打ち消され、第1L型構造部4aと第2L型構造部4bからのノイズ放射を低くすることが可能となる。

Description

電磁シールド構造およびそれを用いた無線装置、電磁シールドの製造方法
 本発明は、携帯電話機などの無線通信を利用した機器において、集積回路(Large Scale Integration、以下、LSIという)やモジュールなどのデジタル系デバイスに装荷される電磁シールド構造と、それを用いた無線装置に関するものである。
 LSIなどのデジタル系デバイスからは、デジタルクロック信号の高調波成分に起因する電磁波が空間へ放射され、周囲の電子機器へ影響を与えることがある。特に、デジタル系回路とアナログ系回路(あるいは無線系回路)とが混在する電子機器では、デジタル系回路であるLSIから発生した電磁波のうち、無線周波数に一致した電磁波が無線系回路へ混入すると、電磁ノイズが発生し、受信アンテナの信号品質に影響を及ぼすことがある。このため、デジタル系回路とアナログ系回路が混在する無線機器においては、LSIから放射される電磁ノイズの抑制技術が信号品質を保つためにも重要である。
 LSIからの電磁ノイズ抑制技術としては、電源デカップリング技術が知られている。その一例を図7に示す。
 図7において、電源デカップリング構造100は、基板101に実装されたLSI102の電源端子103から放射される電磁ノイズを抑制するものである。電源デカップリング構造100は、デカップリング用のコンデンサ104を、LSI102の電源端子103とグランド端子105とに接続した構成を有している。基板101の表面に設けられたグランド端子105は、基板101の厚さ方向に延在するビアホール106を介して、基板101の内部に設けられたグランド層107に電気的に接続されている。
 影響を及ぼす電磁ノイズは高周波数であることが多いため、コンデンサ104を用いることにより、LSI102の電源系から発生した高周波電磁ノイズは、コンデンサ104を介して基板101の表面のグランド端子105、基板101の内部のビアホール106及びグランド層107へ順次流れるようになり、その結果、他の箇所への当該ノイズの漏洩を抑えることができる。
 ところで、LSIからの電磁ノイズを抑制する技術としては、電磁シールド技術も利用されている。この電磁シールド技術は、基本的には、LSI全体に金属の蓋を被せ、基板のグランドに接続する、というものであり、その一例を図6に示す。図6では、図7の各要素に対応する部分には図7と同一の符号を付している。
 図6Aは、代表的な金属シールド構造200の例を示している。金属シールド構造200は、基板101上に設けられており、金属製のシールド201を備えている。シールド201は、図6Bに示すように、基板101上に実装されているLSI102より寸法が大きい天板202と、天板202の四辺にそれぞれ設けられた、LSI102の四つの側面をそれぞれ覆う4枚の側板203とから構成されている。基板101は、図示を省略しているが、多層構造であって、図6Cに示すように、基板101の内層にベタパターンのグランド層107が形成されている。基板101には、その厚さ方向に延在する複数のビアホール204が形成されている。これらのビアホール204は、シールド201の各側板203に沿って狭ピッチで壁状に配置されている。シールド201は、ビアホール204を介してグランド層107に電気的に接続(接地)されている。
 このため、LSI102は、図6Cに示したように、その上下面がシールド201の天板202と基板101内のグランド層107とで挟まれていると共に、その側面がシールド201の側板203とビアホール204の壁(壁状に配置されたビアホール204)とで囲まれる。このように、金属シールド構造200では、LSI102の全周が導体板(金属板)で囲まれるため、LSI102から発生する電磁ノイズが遮蔽される。その結果、LSI102がその周囲に放射する電磁ノイズの量が少なくなる。つまり、LSI102からの電磁ノイズ放射を抑制することができるのである。
 しかしながら、金属シールド構造200では、LSI102に金属製の蓋を被せた構成になるため、LSI102から発生する熱の放熱効率が低くなる、という難点がある。このため、特許第3738755号では、シールド201の対向する二つの側面にある一対の側板203を取り外し、そこから放熱されるようにしたシールド構造を提案している。このシールド構造は、LSI単体から生じるEMI(Electro-Magnetic Interference:電磁妨害)の低減に効果的であると、されている。
特許第3738755号公報
 しかしながら、図6の金属シールド構造200や特許第3738755号のシールド構造は、LSIからの電磁ノイズの放射のみを抑制するものである。すなわち、これらのシールド構造は、LSI単体から放射される電磁ノイズの抑制のみを考慮したものであり、電磁ノイズを受信してしまうアンテナなどの無線系デバイスが混在した状態を考慮したものではない。換言すれば、LSIなどの電磁ノイズ放射源のほかに、アンテナのような電磁ノイズ受信要素が基板上に併存する構成を対象としていない。このため、デジタル系回路(デジタル系デバイス)とアナログ系回路(アナログ系デバイス)とが混載された無線機器において効果を発揮する電磁シールド構成が望まれるところである。
 そこで、本発明の目的は、デジタル系デバイスから発生する電磁ノイズの無線系デバイスへの混入を抑制することができる電磁シールド構造と、それを用いた無線装置を提供することにある。
 本発明の他の目的は、電磁シールド機能に加えてデジタル系デバイスの電源デカップリング機能をも備えた電磁シールド構造と、それを用いた無線装置を提供することにある。
 ここに明記しない本発明の他の目的は、以下の説明及び添付図面から明らかであろう。
 (1) 本発明の第1の観点による電磁シールド構造は、
 基板上に実装されたデジタル系デバイスを覆うように前記基板上に配置された、第1シールドおよび第2シールドを備えてなる電磁シールド構造であって、
 前記第1シールドは、前記基板のグランド端子に電気的に接続された導体から形成されていると共に、当該電磁シールド構造の最も外側に配置されており、
 前記第2シールドは、互いに別体として形成された導電性の第1構造部および導電性の第2構造部を備えていると共に、前記第1構造部および前記第2構造部はそれぞれ前記基板の電源端子に電気的に接続されており、
 前記第1構造部および前記第2構造部は、それらの一端にそれぞれ設けられた開口面が所定の間隙をおいて互いに対向するように配置されており、
 前記デジタル系デバイスは、前記第1構造部と前記第2構造部の間にあって前記第1構造部と前記第2構造部によって覆われていることを特徴とするものである。
 本発明の第1の観点による電磁シールド構造では、上述したように、電磁ノイズの発生源である前記デジタル系デバイスが、前記第1シールドと前記第2シールドにより覆われているので、前記デジタル系デバイスから放射される電磁ノイズを遮蔽される。したがって、当該電磁ノイズの無線系デバイスへの混入を抑制することができる。
 また、前記第2シールドの前記第1構造部および前記第2構造部が、前記デジタル系デバイスによって仮に励振せしめられても、前記第1構造部および前記第2構造部の一端にそれぞれ設けられた前記開口面が互いに対向していることから、それら開口面から放射される電磁界が互いに打ち消され、その結果、前記第1構造部および前記第2構造部からの電磁ノイズの放射を低減することが可能となる。こうして、前記デジタル系デバイスから発生する電磁ノイズの無線系デバイスへの混入を効果的に抑制することができる。
 (2) 本発明の第1の観点による電磁シールド構造の好ましい例では、前記第1シールドが、断面コ字状であって、前記デジタル系デバイスを覆う大きさを有する天板と、前記天板の一辺に配置された第1側板と、前記一辺に対向する前記天板の他の一辺に配置された第2側板とから形成される。
 (3) 本発明の第1の観点による電磁シールド構造の他の好ましい例では、前記第2シールドの前記第1構造部と前記第2構造部が、それぞれ、断面L字状であって、前記デジタル系デバイスを覆う天板と、前記天板の一辺に屈曲して接続された側板とから形成される。
 (4) 本発明の第1の観点による電磁シールド構造のさらに他の好ましい例では、前記第1シールドの天板と前記第2シールドの天板の間に、誘電体が設けられる。この例では、前記第1シールドと前記第2シールドと前記誘電体がコンデンサを形成するので、電磁シールド機能に加えて、前記デジタル系デバイスの電源デカップリング機能が得られる。
 (5) 本発明の第1の観点による電磁シールド構造のさらに他の好ましい例では、前記第1シールドと前記第2シールドが、前記第1シールドの側板と前記第2シールドの側板とが互いに直交するように、または互いに平行となるように配置される。
 (6) 本発明の第1の観点による電磁シールド構造のさらに他の好ましい例では、前記第2シールドの前記第1構造部の天板と前記第2構造部の天板が、対象とする電磁ノイズの波長λの概ね1/4(λ/4)に等しくない長さを持つ。
 (7) 本発明の第1の観点による電磁シールド構造のさらに他の好ましい例では、前記第2シールドの前記第1構造部と前記第2構造部を介して、互いに異なる値の直流電源に前記デジタル系デバイスを接続可能とされる。
 (8) 本発明の第1の観点による電磁シールド構造のさらに他の好ましい例では、前記第1シールドと前記第2シールドと前記誘電体とが、前記デジタル系デバイスからの電磁ノイズを抑制する電磁シールド機能に加えて、前記デジタル系デバイスの電源からの電磁ノイズを抑制する電源デカップリング機能をも有する。
 (9) 本発明の第1の観点による電磁シールド構造のさらに他の好ましい例では、前記第2シールドが、前記第1構造部と前記第2構造部の間の前記間隙を無くした一体型構成とされていて、前記第1シールドと前記第2シールドが、前記第1シールドの側板と前記第2シールドの側板とが互いに直交するように配置されるとともに、前記第1シールドと前記第2シールドの間に誘電体が設けられる。この例では、前記第1シールドと前記第2シールドと前記誘電体がコンデンサを形成するので、電磁シールド機能に加えて、前記デジタル系デバイスの電源デカップリング機能が得られる。
 (10) 本発明の第2の観点による無線装置は、
 無線系デバイスとデジタル系デバイスとが基板上に実装された無線装置であって、
 前記デジタル系デバイスを覆うように前記基板上に配置された、第1シールドおよび第2シールドを備えてなる電磁シールド構造を有し、
 前記第1シールドは、前記基板のグランド端子に電気的に接続された導体から形成されていると共に、当該電磁シールド構造の最も外側に配置されており、
 前記第2シールドは、互いに別体として形成された導電性の第1構造部および導電性の第2構造部を備えていると共に、前記第1構造部および前記第2構造部はそれぞれ前記基板の電源端子に電気的に接続されており、
 前記第1構造部および前記第2構造部は、それらの一端にそれぞれ設けられた開口面が所定の間隙をおいて互いに対向するように配置されており、
 前記デジタル系デバイスは、前記第1構造部と前記第2構造部の間にあって前記第1構造部と前記第2構造部によって覆われていることを特徴とするものである。
 本発明の第2の観点による無線装置では、上述したように、電磁ノイズの発生源である前記デジタル系デバイスが、前記第1シールドと前記第2シールドを備えてなる前記電磁シールド構造で覆われているので、前記デジタル系デバイスから放射される電磁ノイズを遮蔽することができる。したがって、当該電磁ノイズの無線系デバイスへの混入を抑制することができる。
 また、前記電磁シールド構造において、前記第2シールドの前記第1構造部および前記第2構造部が、前記デジタル系デバイスによって仮に励振せしめられても、前記第1構造部および前記第2構造部の一端にそれぞれ設けられた前記開口面が互いに対向していることから、それら開口面から放射される電磁界が互いに打ち消され、その結果、前記第1構造部および前記第2構造部からの電磁ノイズの放射を低減することが可能となる。こうして、前記デジタル系デバイスから発生する電磁ノイズの前記無線系デバイスへの混入を効果的に抑制することができる。
 (11) 本発明の第2の観点による無線装置の好ましい例では、前記第1シールドが、前記デジタル系デバイスを覆う天板と、前記天板の互いに対向する第1辺と第2辺にそれぞれ配置された一対の第1側板および第2側板とを有していて、前記第1側板が前記無線系デバイスに近い側に配置され、前記第2側板が前記無線系デバイスから遠い側に配置される。
 (12) 本発明の第2の観点による無線装置の他の好ましい例では、前記第1シールドが、断面コ字状であって、前記デジタル系デバイスを覆う大きさを有する天板と、前記天板の一辺に配置された第1側板と、前記天板の一辺に対向する他の一辺に配置された第2側板とから形成される。
 (13) 本発明の第2の観点による無線装置のさらに他の好ましい例では、前記第2シールドの前記第1構造部と前記第2構造部が、それぞれ、断面L字状であって、前記デジタル系デバイスを覆う天板と、前記天板の一辺に屈曲して接続された側板とからなる。
 (14) 本発明の第2の観点による無線装置のさらに他の好ましい例では、前記第1シールドの天板と前記第2シールドの天板の間に、誘電体が設けられる。この例では、前記第1シールドと前記第2シールドと前記誘電体がコンデンサを形成するので、電磁シールド機能に加えて、前記デジタル系デバイスの電源デカップリング機能が得られる。
 (15) 本発明の第2の観点による無線装置の好ましい例では、前記第1シールドと前記第2シールドが、前記第1シールドの側板と前記第2シールドの側板とが互いに直交するように、または互いに平行となるように配置される。
 (16) 本発明の第2の観点による無線装置のさらに他の好ましい例では、前記第2シールドの前記第1構造部の天板と前記第2構造部の天板が、対象とする電磁ノイズの波長λの概ね1/4(λ/4)に等しくない長さを持つ。
 (17) 本発明の第2の観点による無線装置のさらに他の好ましい例では、前記第2シールドの前記第1構造部と前記第2構造部を介して、互いに異なる値の直流電源に前記デジタル系デバイスを接続可能とされる。
 (18) 本発明の第2の観点による無線装置のさらに他の好ましい例では、前記第1シールドと前記第2シールドと前記誘電体とが、前記デジタル系デバイスからの電磁ノイズを抑制する電磁シールド機能に加えて、前記デジタル系デバイスの電源からの電磁ノイズを抑制する電源デカップリング機能をも有する。
 (19) 本発明の第2の観点による無線装置のさらに他の好ましい例では、前記第2シールドが、前記第1構造部と前記第2構造部の間の前記間隙を無くした一体型構成とされていて、前記第1シールドと前記第2シールドが、前記第1シールドの側板と前記第2シールドの側板とが互いに直交するように配置されていると共に、前記第1シールドと前記第2シールドの間に誘電体が設けられる。この例では、前記第1シールドと前記第2シールドと前記誘電体がコンデンサを形成するので、電磁シールド機能に加えて、前記デジタル系デバイスの電源デカップリング機能が得られる。
 (20) 本発明の第3の観点による無線装置は、
 無線系デバイスとデジタル系デバイスとが基板上に実装された無線装置であって、
 前記デジタル系デバイスを覆うように配置された、断面コ字状の電磁シールドを備え、
 前記電磁シールドは、前記デジタル系デバイスを覆う大きさを有する天板と、前記天板の互いに対向する第1辺と第2辺にそれぞれ配置された一対の第1側板および第2側板とを有していて、前記第1側板が前記無線系デバイスに近い側に配置され、前記第2側板が前記無線系デバイスから遠い側に配置されることを特徴とするものである。
 本発明の第3の観点による無線装置では、上述したように、電磁ノイズの発生源である前記デジタル系デバイスが、前記電磁シールドで覆われており、しかも、前記第1側板が電磁シールド効果に最適な位置に配置されているため、前記デジタル系デバイスから放射される電磁ノイズを遮蔽することができる。したがって、簡単な構成で、当該電磁ノイズの無線系デバイスへの混入を抑制することができる。
 (21) また、本発明の電磁シールドの製造方法は、
 基板上に実装されたデジタル系デバイスを覆うように前記基板上に配置された、第1シールドおよび第2シールドを備えてなる電磁シールドの製造方法であって、
 前記第1シールドを形成する導体を前記基板のグランド端子に電気的に接続すると共に、当該第1シールドを最も外側に配置することで前記第1シールドを形成し、
 前記第2シールドを形成する互いに別体として形成された導電性の第1構造部および導電性の第2構造部を、それぞれ前記基板の電源端子に電気的に接続すると共に、前記第1構造部および前記第2構造部の一端に開口面が所定の間隙をおいて互いに対向し、且つ、前記デジタル系デバイスが前記第1構造部と前記第2構造部の間にあって当該第1構造部と当該第2構造部により覆われるように配置する、ことで前記第2のシールドを形成する。
 本発明の第1の観点による電磁シールド構造と第2の観点による無線装置では、デジタル系デバイスから発生する電磁ノイズの無線系デバイスへの混入を抑制することができる、という効果がある。また、前記第1シールドと前記第2シールド間に前記誘電体が設けられた場合、電磁シールド機能に加えてデジタル系デバイスの電源デカップリング機能が得られる、という効果も得られる。
 本発明の第3の観点による無線装置では、簡単な構成で、デジタル系デバイスから発生する電磁ノイズの無線系デバイスへの混入を抑制することができる、という効果がある。
本発明の第1実施形態による電磁シールド構造を示す斜視図である。 本発明の第1実施形態による電磁シールド構造を分解した図である。 本発明の第1実施形態による電磁シールド構造の側面図である。 本発明の第2実施形態による電磁シールド構造を示す斜視図である。 本発明の第2実施形態による電磁シールド構造を分解した図である。 本発明の第2実施形態による電磁シールド構造を示す側面図である。 本発明の第3実施形態による電磁シールド構造を示す斜視図である。 本発明の第3実施形態による電磁シールド構造を分解した図である。 本発明の第4実施形態による電磁シールド構造を示す斜視図である。 本発明の第4実施形態による電磁シールド構造を示す側面図である。 背景技術の金属シールド構造を示す斜視図である。 背景技術の金属シールド構造を分解した図である。 背景技術の金属シールド構造の側面図である。 電源デカップリング技術を用いた構造の側面図である。
符号の説明
1、21、31、41 電磁シールド構造
2 アンテナ(無線系デバイス)
3 第1シールド
3a 天板
3b 第1側板
3c 第2側板
4 第2シールド
4a 第1L型構造部(第1構造部)
4b 第2L型構造部(第2構造部)
4c、4e 天板
4d 第1L型構造部側板
4f 第2L型構造部側板
5 誘電体
6a、6b グランド端子
7a、7b 電源端子
42 シールド
101 基板
102 LSI(デジタル系デバイス)
 以下、本発明の好適な実施の形態について添付図面を参照しながら説明する。
 (第1実施形態)
 図1及び図2は、本発明の第1実施形態による電磁シールド構造1を示しており、図1Aはその斜視図、図1Bはその分解斜視図、図2はその側面図である。
 本実施形態では、背景技術で説明した図6および図7の構成と共通する部分に同一符号を付して説明する。また、無線装置の全体構成については省略し、電磁シールド構造1の近傍についてのみ説明する。
 第1実施形態による電磁シールド構造1は、公知の無線装置(例えば携帯電話機などの無線通信装置)に搭載されており、デジタル系デバイスであるLSI102から放射される電磁ノイズや、LSI102の電源系から伝導する電磁ノイズが、無線系デバイスであるアンテナ2へ混入することを抑制する電磁シールド機能と、LSI102の電源デカップリング機能とを備えている。
 図1A及び図2に示すように、当該無線装置で用いられる電磁シールド構造1は、多層構造を有する基板101の内部のグランド層107に基板101上のグランド端子6aおよび6bを介して電気的に接続(接地)された第1シールド3と、基板101の電源端子7aおよび7bに電気的に接続された第2シールド4と、第1シールド3および第2シールド4の間に設けられた誘電体5とを備えている。また、図1Bに示すように、基板101上に実装された電磁ノイズの発生源であるLSI102は、それに近い位置から第2シールド4、誘電体5、第1シールド3の順で覆われている。
 第1シールド3は、断面コ字状を有し、LSI102を覆うように配置されている。第1シールド3は、金属板を断面コ字状に屈曲して形成されており、1枚の矩形の天板3aと、天板3aの一辺に接続された矩形の第1側板3bと、第1側板3bと向かい合う(第1側板3bとは反対側にある)天板3aの他の一辺に一体的に接続された矩形の第2側板3cとから構成されている。第1側板3bおよび第2側板3cは、天板3aに対して概ね90度の角度で接続されており、互いに対向している。天板3aは、基板101にほぼ平行に配置されている。第1側板3bと第2側板3cは、基板101に対してほぼ直角である。これら一対の第1側板3bおよび第2側板3cは、互いに同じ形状であると共に、大きさも同じであって、それらの下端において、半田などによって、基板101上のグランド端子6aおよび6bにそれぞれ電気的に接続(接地)されている。第1シールド3は、こうして基板101上に固定されている。
 第2シールド4は、断面L字状に形成された第1L型構造部4aおよび第2L型構造部4bを組み合わせた構成を持つ。第1L型構造部4aおよび第2L型構造部4bは、いずれも、断面L字状に屈曲された金属板から形成されている。第1L型構造部4aは、矩形の天板4cと、天板4cの一辺に天板4cに対して概ね90度の角度で接続された矩形の側板(以下、これを第1L型構造部側板とも呼ぶ)4dとから形成されている。第2L型構造部4bは、第1L型構造部4aと同一寸法および同一形状であり、矩形の天板4eと、天板4eの一辺に天板4eに対して概ね90度の角度で接続された矩形の側板(以下、これを第2L型構造部側板とも呼ぶ)4fとから形成されている。天板4cおよび4eは、基板101にほぼ平行に配置されている。側板4dおよび4fは、基板101にほぼ直角になっている。
 第1L型構造部4aと第2L型構造部4bは、第1L型構造部4aの天板4cの一端(側板4dの反対側)に設けられた開口面(切欠部)4gと、第2L型構造部4bの天板4eの一端(側板4fの反対側)に設けられた開口面(切欠部)4hとが、わずかな間隙Gを隔てて対向せしめられている。開口面(切欠部)4gと4hは、ほぼ平行である。
 第2シールド4は、第1L型構造部4aの側板4dと第2L型構造部4bの側板4fによってLSI102を挟み込むと共に、第1L型構造部4aの天板4cおよび第2L型構造部4bの天板4eによってLSI102を覆っている。
 基板101の表層には、LSI102の互いに対向する二つの側面の外側に、電源端子7aおよび7bがそれぞれ形成されている。第2シールド4の第1L型構造部側板4dおよび第2L型構造部側板4fは、半田などによって、電源端子7aおよび7bにそれぞれ電気的に接続されている。こうして、第2シールド4が基板101上に固定されている。
 グランド端子6aおよび6bは、基板101の表層において、LSI102の互いに対向する他の二つの側面の外側に形成されているため、グランド端子6aおよび6bと電源端子7aおよび7bは、互いに直交する方向に延在している。
 第2シールド4の第1L型構造部側板4dおよび第2L型構造部側板4fは、第1シールド3の第1側板3bおよび第2側板3cと直交している。
 第2シールド4の第1L型構造部4aの天板4cと第2L型構造部4bの天板4eの上には、第1シールド3の天板3aと概ね大きさが等しい、矩形板状の誘電体5が載置されている。誘電体5の上面には、第1シールド3の天板3aが密着している。
 図1A、図1Bでは省略しているが、第1シールド3が接続されるグランド端子6aおよび6bには、それらの長手方向に沿って複数のグランド接続用ビア(後述)が配設されており、これらのビアを介して第1シールド3は基板101の内層に設けられたグランド層107に電気的に接地されている。
 次に、図2を参照しながら、上述した電磁シールド構造1を搭載した、本発明の第1実施形態による無線装置について説明する。
 この無線装置は、電磁ノイズの発生源であるLSI102と、電磁ノイズが混入するアンテナ2とが、同一の基板101上に搭載されており、電磁シールド構造1を構成する第1シールド3と第2シールド4は、以下に詳述するように、電磁ノイズの放射を抑制する作用(電磁ノイズ抑制機能)に加え、電源デカップリングの作用(電源デカップリング機能)をも有するものである。
 第1シールド3は、図2に示すように、LSI102より大きい寸法からなり、LSI102とともに基板101上に実装されている。基板101は多層基板であり、内層にベタパターンからなるグランド層107を有し、表層に矩形のグランド接地用のグランド端子6aおよび6bを有している。グランド端子6aおよび6bは、内層のビアホール10により、それぞれ、グランド層107に電気的に接続(接地)されている。
 グランド端子6aおよび6bは、第1シールド3の第1側板3bおよび第2側板3bとほぼ同じ長さに選定されており、その長手方向に沿って複数のビアホール10が基板101の内部に狭ピッチで並べられて、ビアホール列(図示せず)を形成している。これは、グランド端子6aおよび6bとグランド層107との接地を強化するためである。
 このときのビアホール10の配列ピッチは、対象とする電磁ノイズの波長λに比べて十分に狭い間隔としているため、このビアホール列は等価的に金属壁として振舞う。したがって、第1シールド3をグランド端子6aおよび6bに電気的に接続すると、LSI102の上下両面および左右両面を金属板で遮蔽することになるので、第1シールド3、ビアホール列、グランド層107からなるシールド構造が形成される。その結果、LSI102からの電磁ノイズを効果的に抑制することができる。
 一方、第2シールド4は、基板101の電源系に接続されるものであり、ここでは、LSI電源端子11に所定の電位を供給する電源端子7aおよび7bに電気的に接続されている。第2シールド4の上には、幅が一回り大きな第1シールド3が被さっており、第1シールド3の第1側板3bおよび第2側板3cは、第2シールド4の第1L型構造部側板4dおよび第2L型構造部側板4fと直交している。
 第1シールド3および第2シールド4の間には、第1シールド3の天板3aに相当する大きさの誘電体5が設けられている。このとき、第1シールド3の天板3aと第2シールド4の天板4cおよび4eとは、電極板のように振る舞い、両電極板間に設けられた誘電体5により、第1シールド3および第2シールド4の絶縁性が保たれる。こうして、第1シールド3と第2シールド4はコンデンサ(キャパシタ)を形成し、電源系デカップリングとしての機能を持つ。
 コンデンサは一般に、高周波帯でインピーダンスが小さくなるため、電源端子7aおよび7bは、高周波的には、第2シールド4によってグランド層107に接地されているのと等価になる。このため、第2シールド4は、電源系に接続された構成であっても、LSI102から放射される高周波ノイズに対して電磁シールドとして作用する。
 第2シールド4は、図1Bに示したように、第1L型構造部4aおよび第2L型構造部4bの組み合わせから構成されている。第1L型構造部4aの天板4cおよび第2L型構造部4bの天板4eがLSI102に被さるように配置され、しかも天板4cと4eの間の間隙Gが波長λに比べて極端に狭くされている。このため、LSI102から放射された高周波における電磁ノイズは、第1シールド3による遮蔽に加え、LSI102の左右に配置された第1L型構造部4aおよび第2L型構造部4bによっても遮蔽することができる。
 さらに、第2シールド4は、分割された第1L型構造部4aおよび第2L型構造部4bをわずかな間隙Gを隔てて非導通とした構成としている。このため、第2シールド4では、電源に接続された第1L型構造部4aと第2L型構造部4bとが直流的に分割されていることにより、例えばLSI102に電源を供給する直流電圧を、値の異なる2系統の電源電圧として供給することができる。
 したがって、この電磁シールド構造1では、例えばLSI102が2電源系のLSI群の場合であっても、第1L型構造部4aおよび第2L型構造部4bに対して異なる電圧の供給が可能になるとともに、電源デカップリングも可能となる。
 ところで、第1L型構造部4aおよび第2L型構造部4bは、その内側に電磁ノイズ放射源であるLSI102が配置されているため、天板の長さL1およびL2が、放射される電磁ノイズの波長λの1/4程度の共振長(λ/4の整数倍)になると、共振してパッチアンテナのような振る舞いを起こし、天板4cの開口面4gおよび天板4eの開口面4hから電磁界を放射するようになってしまう場合がある。
 しかしながら、本発明による第2シールド4では、LSI102を挟み込むように第1L型構造部4aおよび第2L型構造部4bを向かい合わせると共に、第1L型構造部4aの天板4cの先端に設けられた開口面4gと、第2L型構造部4bの天板4eの先端に設けられた開口面4hとを対向させた構成としている。これにより、第2シールド4では、第1L型構造部4aおよび第2L型構造部4bが励振した場合でも、開口面4gおよび4hから放射される電磁界をそれぞれ打ち消しあうように作用する。その結果、第1L型構造部4aおよび第2L型構造部4bからの電磁ノイズの放射を低減することが可能となる。
 さらに、本実施形態1による電磁シールド構造1では、第1シールド3に対しても、アンテナ2の位置との関係を考慮した構成とし、より大きな遮蔽効果を引き出している。すなわち、図1Aと図1Bと図2に示したように、第1シールド3は、第2シールド4に比べてアンテナ2に近い側に配置されるため、第1シールド3は以下に示したような特徴を持つ。
 まず、図1Aに示したように、第1シールド3が、天板3aの四つの辺のうち、アンテナ2が位置する側の一辺に第2側板3cを配置し、これに対向する側の一辺に第1側板3bを配置しているのである。第1シールド3におけるこのような第1側板3bおよび第2側板3cの配置による効果を検証するため、本発明者は、電磁界解析を用いて、LSI102から発生するノイズのアンテナ2への混入量を評価した。
 この検証試験では、基板101の大きさを140mm四方(x=140mm、y=140mm)とし、基板101のほぼ中央にLSI102を配置し、アンテナ2は基板101のエッジ付近(x=70mm、y=10mmの位置)に配置した。
 次に、検証試験を行うモデルとして、ここでは第1シールド3の構成に着目し、モデルAおよびモデルBの2つについて検討した。
 モデルAは、図1Aに記載されている第1シールド3の構成であって、天板3aの四辺のうち、アンテナ2が位置する側の辺(アンテナ2に最も近い辺)およびそれに対向する辺(アンテナ2から最も遠い辺)に一対の第1側板3bおよび第2側板3cをそれぞれ配置した。これに対し、モデルBは、アンテナ2が位置する側の辺(アンテナ2に最も近い辺)およびそれに対向する辺(アンテナ2から最も遠い辺)に、第1側板3bおよび第2側板3cが存在しない開口面を配置し、他の2辺に一対の第1側板3bおよび第2側板3cをそれぞれ配置した。
 LSI102のノイズ源モデルとしては、特許第3885830号(特願2006-162491号)に開示されたものを参考とし、ループモデルを用いた。アンテナ2には、モノポールアンテナを用いた。LSI102のループモデルを周波数1GHzで励振し、アンテナ2へ混入するノイズ電流をノイズ量として計算した。
 その結果、アンテナ2へ混入するノイズは、モデルAのようにLSI102に第1シールド3を被せることにより、モデルBに比べて、約40dBも大幅に低下することが確認できた。
 また、モデルBについて検討したところ、ノイズ量を抑制させるシールド効果は約8dBの低下であり、モデルAのほうがシールド効果がはるかに大きいことが分かった。なお、ここで言うシールド効果の20dBは、電流が1/10になることに相当する。このため、20dBを一つの基準に考えると、この結果からは、アンテナ2が位置する側の辺を含めた一対の辺に第1側板3bおよび第2側板3cをそれぞれ配置したモデルAの方がより大きなシールド効果が得られ、有効な構成であることが確認できた。
 このように、第1シールド3の第1側板3bおよび第2側板3cの配置には、アンテナ2との位置関係に応じて最適なものがある。すなわち、本第1実施形態の無線装置の場合、LSI102から発生してアンテナ2へ混入するノイズ量を抑制するためには、第1側板3bおよび第2側板3cをただ単に設けただけでは、所望のシールド効果を得られるとは限らず、アンテナ2に対する第1側板3bおよび第2側板3cの位置を考慮することが重要であることが分かった。
 本発明による電磁シールド構造1では、アンテナ2の位置に対する効果的なシールド構成を実現しているとともに、第1シールド3および第2シールド4からなる2重のシールド構成を実現している。また、このようなシールド機能に加え、誘電体5を利用したコンデンサ構成も実現することにより、LSI102の電源デカップリング機能をも備えている。このため、この電磁シールド構造1では、LSI102から放射するノイズ抑制およびアンテナ2へ混入するノイズ抑制に対して効果的となり、特に、アンテナ2が搭載された無線装置では遺憾なく効果を発揮する。
 以上述べたように、本第1実施形態の電磁シールド構造1は、基板101上に実装されたLSI102を覆うように配置された第1シールド3および第2シールド4を備えている。そして、第1シールド3は、基板101のグランド端子6aおよび6bに電気的に接続された導体から形成されていると共に、電磁シールド構造1の最も外側に配置されている。第2シールド4は、互いに別体として形成された導電性の第1L型構造部4aおよび導電性の第2L型構造部4bを備えていると共に、第1L型構造部4aおよび第2L型構造部4bは、それぞれ、基板101の電源端子7aおよび7bに電気的に接続されている。さらに、第1L型構造部4aおよび第2L型構造部4bは、それらの一端にそれぞれ設けられた開口面4gおよび4hが所定の間隙Gをおいて互いに対向するように配置されており、LSI102は、第1L型構造部4aおよび第2L型構造部4bの間にあって第1L型構造部4aと第2L型構造部4bによって覆われている。
 このため、電磁シールド構造1は、第1シールド3および第2シールド4により、LSI102から放射される電磁ノイズの影響を抑制するシールド機能を有し、しかも、第1L型構造部4aおよび第2L型構造部4bがLSI102によって仮に励振しても、第1L型構造部4aの開口面4gと第2L型構造部4bの開口面4hとが対向していることから、各開口面4gおよび4hから放射される電磁界をそれぞれ打ち消しあうように作用し、結果として、第1L型構造部4aおよび第2L型構造部4bからの電磁ノイズの放射を低くすることが可能となる。
 また、電磁シールド構造1では、電磁ノイズの発生源であるLSI102を第1シールド3と第2シールド4の2重のシールド構造により覆うとともに、アンテナ2に近い第1シールド3の第2側板3cを、シールド効果が一段と得られる最適な位置に配置した構成としているため、LSI102から放射するノイズの遮蔽効果とともに、そのノイズのアンテナ2への混入の抑制効果が得られる。
 さらに、電磁シールド構造1では、第1シールド3および第2シールド4間には誘電体5が設けられているため、誘電体5が挟まれた第1シールド3および第2シールド4がコンデンサを形成する。よって、LSI102から放射するノイズの影響を抑制するシールド機能に加えて、LSI102の電源デカップリング機能も有するものとなる。すなわち、誘電体5を隔てて、第1シールド3および第2シールド4が一組の電極板のように振る舞い、コンデンサとしても作用するため、LSI102の電源端子7aおよび7bとグランド端子6aおよび6bの間にコンデンサが挿入された形となり、電源系からのノイズのデカップリングに対しても効果的になる。
 よって、電磁シールド構造1は、シールド効果およびデカップリング効果により、LSI102などのデジタル系デバイスから発生するノイズ抑制、およびアンテナ2へのノイズ混入抑制に対して効果的であり、デジタル系デバイスのLSI102や機能モジュールや、無線系デバイスのアンテナ2などが搭載された無線装置において遺憾なく効果を発揮する。
 (第2実施形態)
 次に、本発明によるシールド構造の変形例を示す。
 上述した第1実施形態では、第2シールド4の第1L型構造部側板4dおよび第2L型構造部側板4fを、第1シールド3の第1側板3bおよび第2側板3cと直交するように配置したが、図3に示すように、第2シールド4の第1L型構造部側板4dおよび第2L型構造部側板4fが、第1シールド3の第1側板3bおよび第2側板3cと平行するように配置しても良い。
 図3は、本発明の第2実施形態による電磁シールド構造21を示しており、図3Aはその斜視図、図3Bはその分解斜視図、図3Cはその側面図である。本実施形態では、第1実施形態で説明した図1および図2の構成と共通する部分に同一符号を付して説明する。
 本発明による電磁シールド構造21では、第2シールド4の第1L型構造部側板4dおよび第2L型構造部側板4fが、第1シールド3の第1側板3bおよび第2側板3cに対して平行となるように配置されている。また、基板101上の電源端子22aおよび22bも第2シールド4の第1L型構造部側板4dおよび第2L型構造部側板4f位置に対応した配置である。本実施例の電磁シールド構造21は、電源端子22aおよび22bの位置と、第2シールド4の配置位置との2点が上述した第1実施形態と異なり、他の構成や実装構造は上述した第1実施形態と同じである。
 すなわち、第2シールド4の上に第1シールド3が被さって2重のシールドが構成され、また、第1シールド3と第2シールド4との間に誘電体5が挿入されているため、デカップリング用コンデンサも形成される。さらには、第1シールド3の第1側板3bおよび第2側板3cは、アンテナ2が配置される側の一辺とそれに対向する他辺にそれぞれ設けられている。
 このため、第1実施形態の場合と同様に、第2実施形態による電磁シールド構造21においても、シールド機能およびデカップリング機能が得られ、無線装置に搭載されたLSI102から発生するノイズの抑制およびアンテナ2へのノイズの混入抑制に対して、遺憾なく効果を発揮する。
 (第3実施形態)
 その他の実施の形態として、第2シールド4を2分割構造としないで、一体化構造としても良い。
 図4は、本発明の第3実施形態による電磁シールド構造31を示しており、図4Aはその斜視図、図4Bはその分解斜視図である。本実施形態では、上述した第1実施形態で説明した図1および図2の構成と共通する部分に同一符号を付して説明する。
 第3実施形態による電磁シールド構造31では、第2シールド32が一体化された構成を有している。図4Aおよび図4Bに示すように、この電磁シールド構造31は、第2シールド32が断面コ字状に形成され、第1実施形態のような間隙G(図1B参照)を有しない一体化された構成を有する。この実施形態の場合、第2シールド32の矩形の天板32aの対向する2辺に設けた一対の第1L型構造部側板32dおよび第2L型構造部側板32cは、第1シールド3の第1側板3bおよび第2側板3cと直交するように配置されている。また、上述した第1実施形態の場合と同様に、第1シールド3および第2シールド32間に誘電体5が設けられ、シールド機能およびデカップリング機能が実現されている。
 よって、電磁シールド構造31では、LSI102からのノイズの抑制およびアンテナ2へのノイズの混入抑制に対し効果的となる。
 (第4実施形態)
 さらに、本発明による電磁シールド構造は、電磁シールド機能だけを利用して、LSIから放射する電磁ノイズの抑制、および無線装置のアンテナへ混入するノイズの抑制を行っても良い。
 図5は、電磁シールド機能だけを利用した第4実施形態の電磁シールド構造41の一例を示しており、図5Aはその斜視図、図5Bはその側面図である。本実施形態では、第1実施形態で説明した図1および図2の構成と共通する部分に同一符号を付して説明する。
 この電磁シールド構造41は、上述した第1実施形態のような第2シールド4(図1B参照)を取り除き、グランド層107に接地されるシールド42のみで構成したものであり、部品の簡略化が図られている。
 シールド42の矩形の天板42aには、アンテナが位置する側の一辺に矩形の第1側板42dが一体形成されているとともに、当該一辺に対向する他辺に矩形の第2側板42cが一体的に形成されている。これによりシールド42は、第1側板42dおよび第2側板42cによってアンテナ2へ混入するノイズの抑制が得られる。
 このように、図5Aおよび図5Bに示したような1重のシールド構成でも、シールド42によってLSI102による放射ノイズの抑制ができることに加え、シールド42の最適化によってアンテナ2への混入ノイズの抑制が実現でき、無線装置のシールド構成として効果を発揮するようになる。
 (他の実施形態)
 上記第1~4実施形態は、本発明の好適な例を示すものである。したがって、本発明はこれらの実施形態に限定されず、例えば、電磁シールド構造は、LSIのほかにモジュールなどの一般的なノイズ放射源に対して適用してもよく、種々の変形が可能なことは言うまでもない。
 この出願は、2008年2月28日に出願された日本出願特願2008-048888を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明は電磁ノイズが発生する高周波機器の電磁シールドとして広く適用することができる。

Claims (21)

  1.  基板上に実装されたデジタル系デバイスを覆うように前記基板上に配置された、第1シールドおよび第2シールドを備えてなる電磁シールド構造であって、
     前記第1シールドは、前記基板のグランド端子に電気的に接続された導体から形成されていると共に、当該電磁シールド構造の最も外側に配置されており、
     前記第2シールドは、互いに別体として形成された導電性の第1構造部および導電性の第2構造部を備えていると共に、前記第1構造部および前記第2構造部はそれぞれ前記基板の電源端子に電気的に接続されており、
     前記第1構造部および前記第2構造部は、それらの一端にそれぞれ設けられた開口面が所定の間隙をおいて互いに対向するように配置されており、
     前記デジタル系デバイスは、前記第1構造部と前記第2構造部の間にあって前記第1構造部と前記第2構造部によって覆われていることを特徴とする電磁シールド構造。
  2.  前記第1シールドが、断面コ字状であって、前記デジタル系デバイスを覆う大きさを有する天板と、前記天板の一辺に配置された第1側板と、前記一辺に対向する前記天板の他の一辺に配置された第2側板とから形成されている請求項1に記載の電磁シールド構造。
  3.  前記第2シールドの前記第1構造部と前記第2構造部が、それぞれ、断面L字状であって、前記デジタル系デバイスを覆う天板と、前記天板の一辺に屈曲して接続された側板とから形成されている請求項1に記載の電磁シールド構造。
  4.  前記第1シールドの天板と前記第2シールドの天板の間に、誘電体が設けられている請求項1に記載の電磁シールド構造。
  5.  前記第1シールドと前記第2シールドが、前記第1シールドの側板と前記第2シールドの側板とが互いに直交するように、または互いに平行となるように配置されている請求項1に記載の電磁シールド構造。
  6.  前記第2シールドの前記第1構造部の天板と前記第2構造部の天板が、対象とする電磁ノイズの波長λの概ね1/4(λ/4)に等しくない長さを持っている請求項1に記載の電磁シールド構造。
  7.  前記第2シールドの前記第1構造部と前記第2構造部を介して、互いに異なる値の直流電源に前記デジタル系デバイスを接続可能とされている請求項1に記載の電磁シールド構造。
  8.  前記第1シールドと前記第2シールドと前記誘電体とが、前記デジタル系デバイスからの電磁ノイズを抑制する電磁シールド機能に加えて、前記デジタル系デバイスの電源からの電磁ノイズを抑制する電源デカップリング機能をも有している請求項4に記載の電磁シールド構造。
  9.  前記第2シールドが、前記第1構造部と前記第2構造部の間の前記間隙を無くした一体型構成とされていて、前記第1シールドと前記第2シールドが、前記第1シールドの側板と前記第2シールドの側板とが互いに直交するように配置されるとともに、前記第1シールドと前記第2シールドの間に誘電体が設けられている請求項1に記載の電磁シールド構造。
  10.  無線系デバイスとデジタル系デバイスとが基板上に実装された無線装置であって、
     前記デジタル系デバイスを覆うように前記基板上に配置された、第1シールドおよび第2シールドを備えてなる電磁シールド構造を有し、
     前記第1シールドは、前記基板のグランド端子に電気的に接続された導体から形成されていると共に、当該電磁シールド構造の最も外側に配置されており、
     前記第2シールドは、互いに別体として形成された導電性の第1構造部および導電性の第2構造部を備えていると共に、前記第1構造部および前記第2構造部はそれぞれ前記基板の電源端子に電気的に接続されており、
     前記第1構造部および前記第2構造部は、それらの一端にそれぞれ設けられた開口面が所定の間隙をおいて互いに対向するように配置されており、
     前記デジタル系デバイスは、前記第1構造部と前記第2構造部の間にあって前記第1構造部と前記第2構造部によって覆われていることを特徴とする無線装置。
  11.  前記第1シールドが、前記デジタル系デバイスを覆う天板と、前記天板の互いに対向する第1辺と第2辺にそれぞれ配置された一対の第1側板および第2側板とを有していて、
     前記第1側板が前記無線系デバイスに近い側に配置され、前記第2側板が前記無線系デバイスから遠い側に配置されている請求項10に記載の無線装置。
  12.  前記第1シールドが、断面コ字状であって、前記デジタル系デバイスを覆う大きさを有する天板と、前記天板の一辺に配置された第1側板と、前記天板の一辺に対向する他の一辺に配置された第2側板とから形成されている請求項10に記載の無線装置。
  13.  前記第2シールドの前記第1構造部と前記第2構造部が、それぞれ、断面L字状であって、前記デジタル系デバイスを覆う天板と、前記天板の一辺に屈曲して接続された側板とから形成されている請求項10に記載の無線装置。
  14.  前記第1シールドの天板と前記第2シールドの天板の間に、誘電体が設けられている請求項10に記載の無線装置。
  15.  前記第1シールドと前記第2シールドが、前記第1シールドの側板と前記第2シールドの側板とが互いに直交するように、または互いに平行となるように配置されている請求項10に記載の無線装置。
  16.  前記第2シールドの前記第1構造部の天板と前記第2構造部の天板が、対象とする電磁ノイズの波長λの概ね1/4(λ/4)に等しくない長さを持っている請求項10に記載の無線装置。
  17.  前記第2シールドの前記第1構造部と前記第2構造部を介して、互いに異なる値の直流電源に前記デジタル系デバイスを接続可能である請求項10に記載の無線装置。
  18.  前記第1シールドと前記第2シールドと前記誘電体とが、前記デジタル系デバイスからの電磁ノイズを抑制する電磁シールド機能に加えて、前記デジタル系デバイスの電源からの電磁ノイズを抑制する電源デカップリング機能をも有している請求項14に記載の無線装置。
  19.  前記第2シールドが、前記第1構造部と前記第2構造部の間の前記間隙を無くした一体型構成とされていて、前記第1シールドと前記第2シールドが、前記第1シールドの側板と前記第2シールドの側板とが互いに直交するように配置されていると共に、前記第1シールドと前記第2シールドの間に誘電体が設けられている請求項10に記載の無線装置。
  20.  無線系デバイスとデジタル系デバイスとが基板上に実装された無線装置であって、
     前記デジタル系デバイスを覆うように配置された、断面コ字状の電磁シールドを備え、
     前記電磁シールドは、前記デジタル系デバイスを覆う大きさを有する天板と、前記天板の互いに対向する第1辺と第2辺にそれぞれ配置された一対の第1側板および第2側板とを有していて、前記第1側板が前記無線系デバイスに近い側に配置され、前記第2側板が前記無線系デバイスから遠い側に配置されることを特徴とする無線装置。
  21.  基板上に実装されたデジタル系デバイスを覆うように前記基板上に配置された、第1シールドおよび第2シールドを備えてなる電磁シールドの製造方法であって、
     前記第1シールドを形成する導体を前記基板のグランド端子に電気的に接続すると共に、当該第1シールドを最も外側に配置することで前記第1シールドを形成し、
     前記第2シールドを形成する互いに別体として形成された導電性の第1構造部および導電性の第2構造部を、それぞれ前記基板の電源端子に電気的に接続すると共に、前記第1構造部および前記第2構造部の一端に開口面が所定の間隙をおいて互いに対向し、且つ、前記デジタル系デバイスが前記第1構造部と前記第2構造部の間にあって当該第1構造部と当該第2構造部により覆われるように配置する、ことで前記第2のシールドを形成する、
    電磁シールドの製造方法。
PCT/JP2008/072341 2008-02-28 2008-12-09 電磁シールド構造およびそれを用いた無線装置、電磁シールドの製造方法 WO2009107303A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010500535A JP5170232B2 (ja) 2008-02-28 2008-12-09 電磁シールド構造およびそれを用いた無線装置、電磁シールドの製造方法
US12/866,224 US8379408B2 (en) 2008-02-28 2008-12-09 Electromagnetic shield structure, wireless device using the structure, and method of manufacturing electromagnetic shield

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-048888 2008-02-28
JP2008048888 2008-02-28

Publications (1)

Publication Number Publication Date
WO2009107303A1 true WO2009107303A1 (ja) 2009-09-03

Family

ID=41015710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072341 WO2009107303A1 (ja) 2008-02-28 2008-12-09 電磁シールド構造およびそれを用いた無線装置、電磁シールドの製造方法

Country Status (3)

Country Link
US (1) US8379408B2 (ja)
JP (1) JP5170232B2 (ja)
WO (1) WO2009107303A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012001084A3 (de) * 2010-07-02 2012-10-11 Phoenix Contact Gmbh & Co. Kg Abdeckung zum einhausen eines bereichs einer leiterplatte, entsprechendes elektronikgehäuse und montageverfahren
JP2017092177A (ja) * 2015-11-06 2017-05-25 株式会社村田製作所 半導体デバイスのシールド構造およびシールドカバーデバイスの製造方法
JP2017537452A (ja) * 2015-10-14 2017-12-14 小米科技有限責任公司Xiaomi Inc. シールドケース、pcbおよび端末装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011114944A1 (ja) * 2010-03-15 2013-06-27 日本電気株式会社 ノイズ抑制構造
US9048124B2 (en) * 2012-09-20 2015-06-02 Apple Inc. Heat sinking and electromagnetic shielding structures
TWI533793B (zh) * 2013-10-25 2016-05-11 緯創資通股份有限公司 電子裝置及其電磁波屏蔽模組
US20160309577A1 (en) 2015-04-14 2016-10-20 Laird Technologies, Inc. Circuit assemblies and related methods
US10359818B2 (en) * 2015-08-17 2019-07-23 Microsoft Technology Licensing, Llc Device faraday cage
FR3040854B1 (fr) * 2015-09-08 2019-06-07 Sagemcom Energy & Telecom Sas Support comportant un composant recouvert d'un blindage
KR101939663B1 (ko) * 2015-10-30 2019-01-17 주식회사 아모센스 무선충전용 자기장 차폐시트 및 이를 포함하는 무선전력 수신모듈
EP3419155A1 (en) * 2017-06-22 2018-12-26 NPC Tech ApS Power converter with insulating material
US10383266B2 (en) * 2017-09-25 2019-08-13 Audio Precision, Inc. Wireless signal isolation assembly
KR102476599B1 (ko) * 2018-02-21 2022-12-12 삼성전자주식회사 쉴드 캔 구조를 구비한 전자 장치
JP7054356B2 (ja) * 2018-03-20 2022-04-13 キヤノン株式会社 放射線撮影装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08204377A (ja) * 1995-01-24 1996-08-09 Nec Eng Ltd 遮蔽体
JPH09266394A (ja) * 1996-03-28 1997-10-07 Toshiba Corp 高周波用半導体装置
JPH10126168A (ja) * 1996-10-18 1998-05-15 Hitachi Denshi Ltd 高周波電力増幅器モジュール
JP2000059063A (ja) * 1998-08-11 2000-02-25 Canon Inc 開口付きシールドケース
JP2000341029A (ja) * 1999-05-26 2000-12-08 Matsushita Electric Works Ltd 受信装置
JP3738755B2 (ja) * 2002-08-01 2006-01-25 日本電気株式会社 チップ部品を備える電子装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3162156D1 (en) * 1980-04-17 1984-03-15 Tokyo Shibaura Electric Co Color picture tube provided with an inner magnetic shield
US4446372A (en) * 1981-07-01 1984-05-01 Honeywell Inc. Detector cold shield
JPH0832494B2 (ja) * 1990-08-18 1996-03-29 三菱電機株式会社 携帯形半導体記憶装置
US5206796A (en) * 1991-03-11 1993-04-27 John Fluke Mfg. Co. Inc. Electronic instrument with emi/esd shielding system
US5500789A (en) * 1994-12-12 1996-03-19 Dell Usa, L.P. Printed circuit board EMI shielding apparatus and associated methods
JP3373753B2 (ja) * 1997-03-28 2003-02-04 株式会社東芝 超高周波帯無線通信装置
KR100270869B1 (ko) * 1997-10-10 2001-01-15 윤종용 3차원복합입체회로기판
US6570086B1 (en) * 2000-06-06 2003-05-27 Mitsubishi Denki Kabushiki Kaisha Cooling structure of communication device
US6794769B2 (en) * 2001-05-01 2004-09-21 Sanmina-Sci Corporation Current mode coupler having a unitary casing
US6888235B2 (en) * 2001-09-26 2005-05-03 Molex Incorporated Power delivery system for integrated circuits utilizing discrete capacitors
JP2003140773A (ja) * 2001-10-31 2003-05-16 Toshiba Corp 無線通信デバイスおよび情報処理装置
TW511885U (en) * 2002-01-30 2002-11-21 Hon Hai Prec Ind Co Ltd Assembly of heat dissipation apparatus
US20040080917A1 (en) * 2002-10-23 2004-04-29 Steddom Clark Morrison Integrated microwave package and the process for making the same
JP4037810B2 (ja) * 2003-09-05 2008-01-23 Necアクセステクニカ株式会社 小型無線装置及びその実装方法
US7613010B2 (en) * 2004-02-02 2009-11-03 Panasonic Corporation Stereoscopic electronic circuit device, and relay board and relay frame used therein
US7349723B2 (en) * 2004-05-28 2008-03-25 Research In Motion Limited Keypad and microphone arrangement
SE0401800D0 (sv) * 2004-07-08 2004-07-08 Andrew Corp Shielding device in a base station
JP2006100302A (ja) * 2004-09-28 2006-04-13 Sharp Corp 高周波モジュールおよびその製造方法
JP4581726B2 (ja) * 2004-12-28 2010-11-17 ソニー株式会社 表示装置および携帯機器
US7280855B2 (en) * 2005-06-28 2007-10-09 Research In Motion Limited Microphone coupler for a communication device
US8061012B2 (en) * 2007-06-27 2011-11-22 Rf Micro Devices, Inc. Method of manufacturing a module
US7535726B2 (en) * 2006-03-08 2009-05-19 Research In Motion Limited System and method for assembling components in an electronic device
US7463496B2 (en) * 2006-03-09 2008-12-09 Laird Technologies, Inc. Low-profile board level EMI shielding and thermal management apparatus and spring clips for use therewith
US7310067B1 (en) * 2006-05-23 2007-12-18 Research In Motion Limited Mobile wireless communications device with reduced interfering RF energy into RF metal shield secured on circuit board
TWM313957U (en) * 2007-01-03 2007-06-11 Chin-Fu Horng Anti- electromagnetic interference shielding apparatus
TWM324049U (en) * 2007-05-21 2007-12-21 Universal Scient Ind Co Ltd Packaging structure of wireless communication module
US8150484B2 (en) * 2007-09-11 2012-04-03 Nokia Corporation Protective housings for wireless transmission apparatus and associated methods
JP2009141057A (ja) * 2007-12-05 2009-06-25 Fujitsu Ltd 電子機器及びスロット
US7642975B2 (en) * 2008-03-12 2010-01-05 Sikorsky Aircraft Corporation Frame assembly for electrical bond
US8059416B2 (en) * 2008-03-31 2011-11-15 Universal Scientific Industrial (Shanghai) Co., Ltd. Multi-cavity electromagnetic shielding device
US8112130B2 (en) * 2008-04-01 2012-02-07 Apple Inc. Receiver acoustic system
US8446705B2 (en) * 2008-08-18 2013-05-21 Avx Corporation Ultra broadband capacitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08204377A (ja) * 1995-01-24 1996-08-09 Nec Eng Ltd 遮蔽体
JPH09266394A (ja) * 1996-03-28 1997-10-07 Toshiba Corp 高周波用半導体装置
JPH10126168A (ja) * 1996-10-18 1998-05-15 Hitachi Denshi Ltd 高周波電力増幅器モジュール
JP2000059063A (ja) * 1998-08-11 2000-02-25 Canon Inc 開口付きシールドケース
JP2000341029A (ja) * 1999-05-26 2000-12-08 Matsushita Electric Works Ltd 受信装置
JP3738755B2 (ja) * 2002-08-01 2006-01-25 日本電気株式会社 チップ部品を備える電子装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012001084A3 (de) * 2010-07-02 2012-10-11 Phoenix Contact Gmbh & Co. Kg Abdeckung zum einhausen eines bereichs einer leiterplatte, entsprechendes elektronikgehäuse und montageverfahren
JP2017537452A (ja) * 2015-10-14 2017-12-14 小米科技有限責任公司Xiaomi Inc. シールドケース、pcbおよび端末装置
US10117324B2 (en) 2015-10-14 2018-10-30 Xiaomi Inc. Shielding case, PCB and terminal device
JP2017092177A (ja) * 2015-11-06 2017-05-25 株式会社村田製作所 半導体デバイスのシールド構造およびシールドカバーデバイスの製造方法

Also Published As

Publication number Publication date
US20110044019A1 (en) 2011-02-24
US8379408B2 (en) 2013-02-19
JP5170232B2 (ja) 2013-03-27
JPWO2009107303A1 (ja) 2011-06-30

Similar Documents

Publication Publication Date Title
JP5170232B2 (ja) 電磁シールド構造およびそれを用いた無線装置、電磁シールドの製造方法
KR101744605B1 (ko) 어레이 안테나
US8982003B2 (en) Slot antenna, electronic apparatus, and method for manufacturing slot antenna
KR100800100B1 (ko) 다주파공용 안테나
JP5969816B2 (ja) 構造部材及び通信装置
JP2004159029A (ja) 無線装置
JP2004201278A (ja) パターンアンテナ
US8525732B2 (en) Antenna device
CN111490333A (zh) 耦合天线装置及电子设备
JP2012191317A (ja) 水平方向放射アンテナ
WO2015122203A1 (ja) プリント基板
US20130027255A1 (en) Radio apparatus
CN112771727B (zh) 天线装置
CN115954654A (zh) 一种终端天线和电子设备
JP2002252515A (ja) アンテナ装置
US8362370B2 (en) Electronic circuit board and electronic circuit board shield method and construction
JP4670853B2 (ja) 送受信モジュール
JP3514305B2 (ja) チップアンテナ
US11557823B2 (en) Antenna component
JP3892189B2 (ja) 電子回路基板の電磁波遮蔽構造
KR20080006415A (ko) 광자밴드갭 구조의 안테나
JP2021132296A (ja) アンテナ装置
JP4661776B2 (ja) アンテナ構造およびそれを備えた無線通信装置
US20240063543A1 (en) Open loop antenna and electronic device
WO2023171180A1 (ja) 装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08872963

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12866224

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010500535

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08872963

Country of ref document: EP

Kind code of ref document: A1