WO2009104501A1 - 現像装置、電子写真画像形成装置 - Google Patents

現像装置、電子写真画像形成装置 Download PDF

Info

Publication number
WO2009104501A1
WO2009104501A1 PCT/JP2009/052254 JP2009052254W WO2009104501A1 WO 2009104501 A1 WO2009104501 A1 WO 2009104501A1 JP 2009052254 W JP2009052254 W JP 2009052254W WO 2009104501 A1 WO2009104501 A1 WO 2009104501A1
Authority
WO
WIPO (PCT)
Prior art keywords
developer
particles
developer carrier
resin
less
Prior art date
Application number
PCT/JP2009/052254
Other languages
English (en)
French (fr)
Inventor
松田拓真
嶋村正良
明石恭尚
大竹智
伊藤稔
若林和仁
吉羽大輔
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to CN2009800004620A priority Critical patent/CN101932978B/zh
Priority to EP09709443.7A priority patent/EP2246748B1/en
Priority to US12/486,273 priority patent/US7796926B2/en
Publication of WO2009104501A1 publication Critical patent/WO2009104501A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/083Magnetic toner particles
    • G03G9/0831Chemical composition of the magnetic components
    • G03G9/0833Oxides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/083Magnetic toner particles
    • G03G9/0835Magnetic parameters of the magnetic components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/06Developing structures, details
    • G03G2215/0602Developer
    • G03G2215/0604Developer solid type
    • G03G2215/0607Developer solid type two-component
    • G03G2215/0609Developer solid type two-component magnetic brush

Definitions

  • the present invention relates to a developing device used for developing an electrostatic latent image formed on an electrostatic latent image carrier such as a photoreceptor or an electrostatic recording derivative, and an electrophotographic image forming apparatus.
  • Electrophotographic methods generally use a photoconductive substance, and form an electrostatic latent image on an electrostatic latent image carrier (photosensitive drum) by various means. Next, a development bias is applied to the development area, the electrostatic latent image is developed with a developer to form a toner image, and the toner image is transferred to a transfer material such as paper as necessary. A toner image is fixed on a transfer material by pressure to obtain a copy. Development methods in electrophotography are mainly divided into a one-component development method that does not require a carrier and a two-component development method that has a carrier.
  • the developing device using the one-component developing method does not require a carrier, toner replacement due to toner deterioration can be reduced, and the developing device does not require a toner and carrier density adjusting mechanism, and thus the developing device. It has the advantage that it can be made smaller and lighter.
  • Japanese Patent Application Laid-Open No. 2005-0 1 5 7 3 1 8 discloses that the developer (toner) is made finer and the saturation magnetization of the developer is reduced in order to further improve the image quality of the copy. is doing.
  • the developer becomes immobile due to the mirroring force with the surface of the developing sleeve, and is developed from the developing sleeve to a latent image on the photosensitive drum.
  • the image density may be reduced.
  • Japanese Patent Application Laid-Open No. 20 0 3 _ 3 2 3 0 4 2 has a graphitization degree P (0 0 2) of 0.20 to 0.95 and an indentation hardness value HU
  • a developer carrier containing graphitized particles having a T [68] of 15 to 60 in a resin layer is proposed.
  • the charge-up of the developer is improved by the effect of enhancing the quick and stable charge imparting property to the developer that the graphitized particles have.
  • the predetermined printing mode is a printing condition in which a continuous durability of 100 or more sheets is again provided after a continuous durability of 100 or more sheets and a pause time of 30 minutes to 2 hours is provided. It was found that when an electrophotographic image was formed in this printing mode, the image density of the first sheet after the pause was much higher than the image density before the pause. In addition, it was found that the image density gradually returned to the image density before the pause by performing subsequent image formation. Disclosure of the invention
  • An object of the present invention is to provide a developing device and an electrophotographic image forming apparatus that can suppress irregular fluctuations in image density as described above.
  • a developing device includes a photosensitive drum for forming an electrostatic latent image, a developer for developing the electrostatic latent image, a developer carrier for carrying and transporting the developer,
  • the developer comprises: It has magnetic toner particles containing at least a binder resin and magnetic iron oxide particles, has a saturation magnetic field of 20 Am 2 / kg or more and 40 Am 2 Zkg or less in a magnetic field of 7958.
  • the diameter (D 4 ) is 4.0 / zm or more and 8.0 ⁇ m or less, and the magnetic iron oxide particles are dissolved until the Fe element dissolution rate reaches 10% by mass.
  • a proportion of Fe (2+) in the amount X is a negatively chargeable one-component magnetic toner in which X is 34% or more and 50% or less, and the developer carrying member At least a base, a resin layer as a surface layer formed on the base, and a magnetic member disposed inside the base, and the resin layer negatively rubs the developer.
  • a plurality of protrusions having an average value of the three-dimensional height (H) Height as a reference is independently exceeds D 4 Z4 measured at the intersection of the straight lines when the equally divided between 725 straight lines you orthogonal to
  • An electrophotographic image forming apparatus includes the above developing device.
  • FIG. 1 is a schematic view showing an embodiment of the developing device of the present invention.
  • Figure 2 is a schematic diagram of a confocal optical laser microscope.
  • Fig. 3 is a schematic diagram showing the state of laser light from the confocal optical laser microscope during focusing.
  • Fig. 4 is a schematic diagram showing the state of laser light from the confocal optical laser microscope when not focused.
  • FIG. 5 is a schematic view showing a cross section of an example of a polishing apparatus according to the present invention.
  • FIG. 6 is an explanatory diagram of the transition of image density in the discontinuous printing mode with a pause time.
  • Figure 7 is a plan view schematically showing a cut surface at a height of [H + (D 4/4 )] in a unit area of the developer surface of the carrier layer resin according to the present invention.
  • FIG. 8 is a cross-sectional view schematically showing a cut surface taken along line 8-8 in FIG.
  • FIG. 9 is an explanatory diagram of an image used for evaluating the initial image quality in the example.
  • the present inventors have provided a pause time of 30 minutes to 2 hours after continuous durability of 100 or more sheets, and before and after the pause. It was found that a difference in image density tends to occur.
  • the density difference at this time is As shown in Fig. 6, this is a phenomenon in which the image density when restarting after pause is higher than the image density before pause for continuous printing endurance and returns to the image density before pause after approximately 100 sheets of continuous printing. .
  • the electrical characteristics of the developer, the constituent material of the developer carrier, and the surface shape were examined in order to suppress fluctuations in the image density before and after the rest.
  • it is effective to keep the triboelectric charge amount of the developer constant.
  • it is effective to quickly perform frictional charging of the developer and to suppress excessive frictional charging.
  • the present inventors have made extensive studies while paying attention to the magnetic iron oxide particles of the developer and the constituent materials of the developer carrier, and the relationship between the particle size of the developer and the surface shape of the developer carrier. As a result, it has been found that a developing device in which a specific developer and a specific developer carrier are combined can better suppress the variation in the image density.
  • the present invention will be described in detail with reference to preferred embodiments.
  • the developing device according to the present invention includes the following.
  • Containers containing the developer (developer containers) 1 0 9;
  • a developer layer thickness regulating member (magnetic blade) 10 7 disposed in the vicinity of the developer carrier in order to regulate the amount of the developer carried / conveyed on the developer carrier.
  • the developing device forms a developer layer on the developer carrier 10 05 by the magnetic blade 107, and transfers the developer on the developer carrier 10 05 to the electrostatic latent image carrier. 1 0 Transport to development area D opposite to 6.
  • the electrostatic latent image on the electrostatic latent image carrier 106 is developed by the conveyed developer to form a toner image.
  • the developer has a binder resin and a magnetic toner particle containing magnetic iron oxide particles. And a negatively chargeable monocomponent magnetic toner satisfying the following requirements (A1) to (A3).
  • the weight average particle diameter (D 4 ) is 4. ⁇ ⁇ or more and 8. ⁇ or less.
  • the magnetic iron oxide particles have a Fe element solubility of 10 mass.
  • the ratio X of Fe (2+) in the total amount of Fe dissolved up to 0 is 34% or more and 50% or less.
  • the saturation magnetization exceeds 40 AmVkg, it is necessary to add a relatively large amount of magnetic iron oxide particles. Due to the magnetic cohesion between the toner particles, an excessive amount of the developing agent is easily developed. , Image defects such as scattering are likely to occur. On the other hand, when the saturation magnetization is less than 20 Am 2 Zkg, the magnetic restraint force by the magnetic member is weakened. Defects are likely to occur.
  • the negatively chargeable one-component magnetic toner according to the present invention has a weight average particle diameter (D 4 ) of 4.0 ⁇ or more and 8. ⁇ or less.
  • D 4 weight average particle diameter
  • the weight average particle diameter (D 4 ) is less than 4.0 ⁇ m, the amount of magnetic powder contained in each toner particle is relatively reduced, so the effect of using magnetic iron oxide particles is small. Become.
  • the surface area of the toner particles is increased, the developer is likely to be charged up during continuous durability. This is disadvantageous in suppressing image density fluctuations before and after the pause.
  • the weight average particle diameter (D 4 ) exceeds 8.0 / m, the surface area of the toner particles is reduced, and the charge amount of the developer tends to be insufficient. For this reason, it is disadvantageous for suppressing fluctuation and decrease in image density.
  • the Fe element dissolution rate is an index representing the degree of dissolution when magnetic iron oxide particles are dissolved from the surface.
  • the state where the Fe element dissolution rate is 0% by mass is a state in which the magnetic iron oxide particles are not dissolved at all.
  • the state in which the Fe element dissolution rate is 10% by mass is a state in which the surface is dissolved so that 90% by mass of Fe remains with respect to the total Fe amount of the magnetic iron oxide particles. Therefore, the total amount of Fe dissolved until the Fe element dissolution rate reaches 10% by mass means the total amount of Fe present in the dissolved region of the magnetic iron oxide particles. .
  • the ratio X is the ratio of Fe (2+) in the total Fe amount.
  • the Fe element dissolution rate of 100% by mass is a state in which the magnetic iron oxide particles are completely dissolved.
  • the ratio X When the ratio X is less than 34%, the developer is likely to be charged up during continuous durability, and the image density is likely to fluctuate before and after the pause. If the ratio X exceeds 50%, it is easily affected by oxidation, and image density fluctuations are also likely to occur.
  • the magnetic iron oxide particles preferably have a ratio of X to Y (XZY) defined below that is greater than 1.00 and not greater than 1.30.
  • F e (2+) (hereinafter also referred to as “surface F e (2+) j” relative to the total amount of Fe dissolved when the Fe element dissolution rate is 10% by mass with respect to the total amount of Fe
  • Y Ratio of F e (2+) (hereinafter also referred to as “internal F e (2+) j”) to the total amount of Fe in the remaining 90% by mass.
  • the ratio XZY indicates the ratio of Fe (2+) abundance between the surface and the interior of magnetic iron oxide particles.
  • the ratio XZY is more than 1.00, the surface has a larger amount of Fe (2+) than the inside of the magnetic iron oxide particles, so the effect of suppressing the developer charge-up is further enhanced.
  • the ratio XZY is 1.30 or less, the amount of Fe (2+) inside the magnetic iron oxide particles is also appropriate, so that the balance of the amount of Fe (2+) does not collapse and friction Chargeability is easy to stabilize.
  • a metal element is contained in magnetic iron oxide particles to form core particles, and the core particle surface It is preferable to form a coating layer containing various metal elements.
  • the developer is used in the present invention to form a coating layer containing silicon inside the magnetic iron oxide particles and forming a coating layer containing silicon and aluminum on the surface of the magnetic iron oxide particles. This is particularly preferable because the triboelectric charging property of is stable.
  • the amount of the key element contained in the core particle is preferably 0.20% by mass or more and 1.50% by mass or less, more preferably 0.25% by mass as a key element with respect to the entire magnetic iron oxide particle. It is more than mass% and 1.00 mass%.
  • the amount of silicon contained in the coating layer is 0.05% by mass or more and 0.50% by mass or more as the Si element with respect to the entire magnetic iron oxide particles. / 0 or less is preferable.
  • the amount of aluminum contained in the coating layer is preferably 0.05% by mass or more and 0.50% by mass or less, more preferably 0.1% by mass or less as aluminum element with respect to the entire magnetic iron oxide particles. Above, it is 0.25 mass% or less.
  • the frictional charging property with the developer carrying member used in the present invention is stable.
  • the magnetic iron oxide particles used in the present invention are more preferably octahedral from the viewpoint of dispersibility and darkness in the magnetic toner particles.
  • the magnetic iron oxide particles used in the present invention have an average primary particle size of 0.10 ⁇ m or more. It is preferably 30 ⁇ or less, more preferably from 0.10 / 111 to 0.20 m.
  • the average primary particle size of the magnetic iron oxide particles By setting the average primary particle size of the magnetic iron oxide particles to 0.20 ⁇ or less, the magnetic powder is easily dispersed uniformly in the magnetic toner particles, and the effect of suppressing the charge-up of the developer is further enhanced.
  • the average primary particle size of the magnetic iron oxide particles is 0.10 ⁇ or more, it becomes easy to suppress the oxidation of Fe (2+), and the amount of Fe (2+) can be controlled stably. Become.
  • the magnetic iron oxide particles preferably have a magnetization value of 86. OAm 2 kg or more, more preferably 87.0 Am 2 Zkg or more, in an external magnetic field of 795.8 kA, m.
  • the formation of magnetic spikes on the developing sleeve is particularly good, and good developability is obtained.
  • the content of the magnetic iron oxide particles is preferably used in an amount of 20 parts by mass or more and 150 parts by mass or less, more preferably 50 parts by mass or more and 120 parts by mass or less, with respect to 100 parts by mass of the binder resin of the developer. It is. By making it within this range, the saturation magnetization amount of the developer can be easily controlled to a desired value.
  • the magnetic iron oxide particles used in the present invention can be produced by oxidizing a ferrous hydroxide slurry obtained by neutralizing and mixing a ferrous salt aqueous solution and an alkaline solution.
  • a ferrous salt any water-soluble salt can be used, and examples thereof include ferrous sulfate and ferrous chloride.
  • the ferrous salt has a water-soluble silicate salt so that the final magnetic iron oxide particle amount is 0.20% by mass or more and 1.50% by mass or less in terms of a key element. Add (for example, sodium silicate) and mix.
  • ferrous salt aqueous solution containing the key component and the Alri solution are neutralized. Mix well to produce ferrous hydroxide slurry.
  • an aqueous alkali hydroxide solution such as an aqueous sodium hydroxide solution or an aqueous lithium hydroxide solution can be used.
  • spherical particles can be obtained by adjusting the pH of the ferrous hydroxide slurry to be less than 8.0. If the pH is adjusted to 8.0 or more and 9.5 or less, hexahedral particles can be obtained. If the pH is adjusted to more than 9.5, octahedral particles can be obtained.
  • an oxidation reaction is performed while blowing an oxidizing gas, preferably air, into the slurry.
  • an oxidizing gas preferably air
  • the ratio X in the magnetic iron oxide particles it is important to control the oxidation reaction. Specifically, it is preferable to gradually reduce the amount of oxidizing gas blown as the oxidation of ferrous hydroxide proceeds and to reduce the amount blown at the final stage. By carrying out the multi-step oxidation reaction in this way, it becomes possible to selectively increase the amount of Fe (2+) on the surface of the iron oxide particles.
  • air it is preferable to control the blowing amount as follows for a slurry containing 100 mol of iron element. Note that the blowing rate is gradually reduced within the following range.
  • ferrous hydroxide • Until more than 50% and less than 75% of ferrous hydroxide is iron oxide: 5-50 liters in, preferably 5-30 liters Zm in;
  • ferrous hydroxide is iron oxide: 1-30 litres / min, preferably 2-20 liters Zmin in; • Stages in which more than 90% of ferrous hydroxide is iron oxide: 1 to 15 liters in, especially 2 to 8 liters Zmin.
  • the coating layer comprising Kei Moto ⁇ beauty aluminum on the surface of the particles Form.
  • the slurry of magnetic iron oxide particles having the obtained coating layer is subjected to conventional filtration, washing, drying, and pulverization to obtain magnetic iron oxide particles.
  • the binder resin will be described.
  • the following can be used as the binder resin.
  • styrene copolymer resins styrene copolymer resins, polyester resins, mixtures of polyester resins and styrene copolymer resins, or hybrid resins in which a polyester resin and a styrene copolymer resin are partially reacted.
  • Examples of the monomer constituting the polyester unit in the polyester resin or the hybrid resin include the following compounds.
  • alcohol component examples include the following. Ethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, diethyleneglycol, triethyleneglycol ⁇ /, 1,5-pentanediol, 1,6 —Hexanionole, Neopentinoreglycol, 2-Ethyl-1,3-Hexanediol, Hydrogen Bispheal A, Bisphenol derivatives represented by the structural formula (1) and diols represented by the following structural formula (2).
  • R represents an ethylene or propylene group
  • X and y are each an integer of 1 or more, and the average value of x + y is 2 to 10).
  • the acid component examples include the following. Benzene dicarboxylic acids such as phthalic acid, terephthalic acid, isophthalic acid, and phthalic anhydride or anhydrides thereof; alkyl dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, and azelaic acid or anhydrides thereof; carbon number 6 Succinic acid substituted with an alkyl group or alkenyl group of less than 18 or an anhydride thereof; unsaturated dicarboxylic acid such as fumaric acid, maleic acid, citraconic acid, and itaconic acid, or an anhydride thereof.
  • Benzene dicarboxylic acids such as phthalic acid, terephthalic acid, isophthalic acid, and phthalic anhydride or anhydrides thereof
  • alkyl dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, and azelaic acid or anhydrides thereof
  • the polyester resin or the polyester-based unit preferably includes a bridge structure composed of a trivalent or higher polyvalent carboxylic acid or its anhydride and / or a trivalent or higher polyhydric alcohol.
  • the trivalent or higher polyvalent carboxylic acid or its anhydride include the following. 1, 2, 4_benzenetricarboxylic acid, 1, 2,4-cyclohexanetricarboxylic acid, 1,2,4 mononaphthalene tricarboxylic acid, pyromellitic acid and acid anhydrides or lower alkyl esters thereof.
  • the trihydric or higher polyhydric alcohol include the following. 1, 2, 3—Penetration pantriol, trimethylolpropane, hexanetriol, pentaerythritol.
  • aromatic alcohols such as 1,2,4-benzenetricarboxylic acid and its anhydride are particularly preferable because of high frictional stability due to environmental fluctuations.
  • Examples of the bull monomer constituting the styrene copolymer resin unit of the styrene copolymer resin or the hybrid resin include the following compounds.
  • Styrene o-Methylenostyrene, m-Methylenostyrene, p-Methylstyrene, p-Methoxystyrene, p-Phenenostyrene, p-Chronolestyrene, 3, 4—Dichloronostyrene, p-Ethenorestyrene, 2, 4-Dimethylenostyrene, p- n-Butino styrene, p- tert-Pinanol styrene, p _ n _Hexyl styrene, p- n-Octino styrene, p- n-Nonino styrene, p _ n— Styrene and its derivatives such as decinole styrene and pn-dodecyl styrene; styrene uns
  • Unsaturated dibasic acids such as maleic acid, citraconic acid, itaconic acid, alkenyl succinic acid, fumaric acid, mesaconic acid
  • unsaturated such as maleic anhydride, citraconic anhydride, itaconic anhydride, alkenyl succinic anhydride
  • Dibasic acid anhydride maleic acid methyl half ester, maleic acid ethyl half ester, maleic acid butyl half ester, citraconic acid methinore half estenole, citraconic acid ethinore half estenole, citraconic acid butyral half ester
  • Half-esters of unsaturated dibasic acids such as methyl itaconate half-ester, alkenyl succinic acid methylolene ester, fumanoleic acid methylolene ester, mesaconic acid methylolene ester
  • unsaturated compounds such as dimethylmaleic acid and dimethylfumaric acid
  • acrylic acid or methacrylic acid esters such as 2-hydroxychetyl acrylate, 2-hydroxychetyl methacrylate, 2-hydroxypropyl methacrylate; 4 _ (1-hydroxy 1-hydroxy Methylbutyl) Styrene, 4- (1-Hydroxyl 1-Methylenohexole) Hydroxy groups such as styrene The monomer which has is mentioned.
  • Styrenic copolymer resin or styrene copolymer resin unit has a vinyl group.
  • the crosslinking agent used in this case include the following. Aromatic divinyl compounds (diphenylbenzene, divinylnaphthalene); Diacrylate compounds linked by alkyl chains (ethylene glycol ditalylate, 1,3-butylene glycol ditalylate, 1,4_butanedioloacrylate , 1,5-pentanedioe ⁇ atalylate, 1,6-hexanediatalylate, neopentyl glycalyl acrylate, and acrylates of the above compounds in place of metatalylate); with an alkyl chain containing an ether bond Bonded dichlorate compounds (for example, diethylene glycol ditalylate, triethylene glycol ditalylate, tetraethylene glycol ditalylate, polyethylene glycol # 4 0 0 diacrylate, polyethylene dallicol # 6 0 0 Lithrate
  • polyfunctional crosslinking agent examples include the following. Pentaerythritol triatalylate, trimethylolethane triacrylate, trimethylol propane triacrylate, tetramethylol methane tetraacrylate, oligoester acrylate, and acrylates of the above compounds are replaced by methacrylates; Lucianurate, Triaryl trimellitate.
  • crosslinking agents are preferably added to 100 parts by mass of other monomer components. 0 to 10 parts by mass, more preferably 0.03 to 5 parts by mass can be used.
  • these cross-linking agents those that are preferably used for the binder resin from the viewpoint of fixability and offset resistance, are aromatic dibule compounds (particularly divinylbenzene), and are connected by a chain containing an aromatic group and an ether bond. And diacrylate compounds.
  • Examples of the polymerization initiator used for the polymerization of the styrene copolymer resin or the styrene copolymer resin unit include the following. 2,2'-azobisybutyronitrile, 2,2'-azobis (4-methoxy-1,4-dimethylvaleronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (2-methylbutyronitrile), dimethyl _ 2, 2'-azobisisobutyrate, 1, 1'-azobis (1-cyclohexanecarbonitryl), 2- (carbamoylazo) monoisobutyronitrile, 2, 2 ' —Azobis (2,4,4 —trimethylpentane), 2-phenazol 2,4-dimethyl-4-methoxy nitronitrile, 2,2-azobis (2-methylpropane), methyl ethyl keton peroxide, acetyl Ketone peroxides such as acetone per
  • a hybrid resin When a hybrid resin is used as the binder resin, it is preferable to include a monomer component capable of reacting with both resin components in the styrene copolymer resin component and the Z or polyester resin component.
  • a monomer component capable of reacting with both resin components in the styrene copolymer resin component and the Z or polyester resin component include unsaturated dicarboxylic acids such as phthalic acid, maleic acid, citraconic acid, and itaconic acid, or anhydrides thereof.
  • those capable of reacting with the polyester resin component include those having a carboxyl group or a hydroxyl group, and acrylic acid esters or methacrylic acid esters.
  • one or both of the above-described styrene copolymer resin and polyester resin can be used in the presence of a polymer containing a monomer component capable of reacting with each of the styrene copolymer resin and the polyester resin.
  • a method of polymerizing the resin is preferred.
  • the mass ratio of the polyester unit to the styrene copolymer unit is preferably from 50 0 50 to 9 0 10. More preferably, it is 60 40 to 85/15.
  • the ratio of the polyester unit to the styrene copolymer unit is within the above range, good triboelectric chargeability is easily obtained, and preservability and dispersibility of the release agent are likely to be suitable.
  • the binder resin has a weight average molecular weight Mw in GPC of tetrahydrofuran (THF) soluble content from 5,000 to 1,000,000, and a ratio between the weight average molecular weight Mw and the number average molecular weight Mn from the viewpoint of fixing properties.
  • M w / M n is preferably 1 or more and 50 or less.
  • the glass transition temperature of the binder resin is preferably 45 ° C. or more and 60 ° C. or less, more preferably 45 ° C. or more and 58 ° C. or less, from the viewpoints of fixability and storage stability.
  • High soft point resin means a resin having a softening point of 10 ° C or higher
  • low softening point resin means a resin having a softening point of less than 100 ° C.
  • a release agent can be used as necessary to obtain releasability.
  • wax hydrocarbon waxes such as low molecular weight polyethylene, low molecular weight polypropylene, mica mouth crystal wax, and paraffin wax are preferably used because of their high dispersion in magnetic toner particles and high releasability. It is done. If necessary, one or more release agents may be used in combination. Examples include the following:
  • Oxides of aliphatic hydrocarbon waxes such as oxidized polyethylene wax or block copolymers thereof; carnauba wax, sazol wax, mon Waxes based on fatty acid esters such as tannic acid ester wax; fatty acid esters such as deoxidized carnauba wax are partially or fully deoxidized.
  • aliphatic hydrocarbon waxes such as oxidized polyethylene wax or block copolymers thereof; carnauba wax, sazol wax, mon Waxes based on fatty acid esters such as tannic acid ester wax; fatty acid esters such as deoxidized carnauba wax are partially or fully deoxidized.
  • fatty acid esters such as deoxidized carnauba wax are partially or fully deoxidized.
  • Saturated linear fatty acids such as palmitic acid, stearic acid, and montanic acid; unsaturated fatty acids such as brassic acid, eleostearic acid, and linulinic acid; stearyl alcohol, aralkyl alcohol, behenyl alcohol, Saturated alcohols such as strong norenauviranolol, serino-leanolecole, merisyl alcohol; long-chain alkyl alcohols; polyhydric alcohols such as sol / bitol; linoleic acid amide, oleic acid amide, Fatty acid amides such as lauric acid amide; methylene bis stearic acid amide, ethylene bis-succinic acid amide, ethylene bis lauric acid amide, saturated fatty acid bis amides such as hexamethylene bis stearic acid amide; ethylene Bisoleic acid amide, hexamethylenebisoleic acid Unsaturated fatty acid amides
  • the mold release agent include aliphatic hydrocarbon-based soot.
  • aliphatic hydrocarbon waxes include the following. Low molecular weight alkylene polymer obtained by radical polymerization of alkylene under high pressure or using a catalyst catalyst under low pressure; alkylene polymer obtained by thermal decomposition of high molecular weight alkylene polymer; carbon monoxide and hydrogen Including Synthetic hydrocarbon wax obtained from the distillation residue of hydrocarbon obtained by gas from gas, and synthetic hydrocarbon wax obtained by hydrogenating it; press sweating method, solvent method, these aliphatic hydrocarbon waxes, Wax separated by vacuum distillation or fractional crystallization.
  • a linear saturated hydrocarbon having a small number of branches is preferable, and a hydrocarbon synthesized by a method not using polymerization of alkylene is particularly preferable from its molecular weight distribution.
  • release agents include the following.
  • the timing of adding the release agent may be at the time of melt-kneading during the production of the magnetic toner particles, but may be at the time of producing the binder resin, and is appropriately selected from existing methods. These release agents may be used alone or in combination.
  • the release agent is preferably added in an amount of 1 to 20 parts by mass with respect to 100 parts by mass of the binder resin. If it is within the above range, a release effect can be sufficiently obtained. Further, good dispersibility in the magnetic toner particles can be obtained, and the developer adhesion of the photosensitive member and the surface contamination of the developing member and the cleaning member can be suppressed.
  • the developer can contain a charge control agent in order to stabilize its triboelectric chargeability.
  • the amount of charge control agent added depends on the type and other magnetic toner particles Generally, it is preferably 0.1 parts by mass or more and 10 parts by mass or less, more preferably 0.1 parts by mass or more and 5 parts by mass or less per 100 parts by mass of the binder resin, although it varies depending on the physical properties of the material. preferable.
  • controlling the developer to be negatively charged examples include the following.
  • Organic metal complex for example, monoazo metal complex; acetylacetone metal complex); metal complex or metal salt of aromatic hydroxycarboxylic acid or aromatic dicarboxylic acid.
  • examples of controlling the developer to be negatively charged include aromatic mono- and polycarboxylic acids and metal salts and anhydrides thereof; phenol derivatives such as esters and bisphenol. Of these, metal complexes or metal salts of aromatic hydroxycarboxylic acids that can provide stable charging performance are particularly preferred.
  • a charge control resin can also be used.
  • charge control agents that can be used include the following. Spi 1 on B 1 ack TRH, T-77, T-95 (Hodogaya Chemical); BON TRON (registered trademark) S-34, S-44, S-54, E-84, E_88, E-89 (Orient Chemical).
  • an external additive to the magnetic toner particles in order to improve charging stability, developability, fluidity, and durability, and it is particularly preferable to externally add silica fine powder.
  • the fine silica powder preferably has a specific surface area of 30 m 2 / g or more (especially 50 m 2 Zg or more and 40 Om 2 Zg or less) by the BET method by nitrogen adsorption.
  • Silica fine powder is preferably used in an amount of 0.01 parts by weight or more and 8.00 parts by weight or less, more preferably 0.10 parts by weight or more and 5.0 parts by weight or less based on 100 parts by weight of magnetic toner particles.
  • the BET specific surface area of the silica fine powder is Nitrogen gas is adsorbed on the surface and can be calculated using the BET multipoint method.
  • specific surface area measuring device (trade name: Auto Soap 1; manufactured by Yuasa Ionics, Inc., product name: GEMINI 2 3 6 0 2 3 7 5; manufactured by Micrometric Co., Ltd., product name: Tristar 3 0 0 0 ; Manufactured by Micrometric Co., Ltd.) can be used.
  • Silica fine powder may be treated with a treating agent for hydrophobization and triboelectric charge control.
  • a treating agent for hydrophobization and triboelectric charge control examples include unmodified silicone varnish, modified silicone varnish, unmodified silicone oil, various modified silicone oils, silane coupling agents, silane compounds having a functional group, and other organic silicon compounds.
  • external additives may be added to the developer as necessary.
  • external additives include charging aids, conductivity-imparting agents, fluidity-imparting agents, anti-caking agents, release agents for heat rollers, lubricants, abrasives, etc. Fine particles are mentioned.
  • Examples of the lubricant include polyvinylidene fluoride powder, zinc stearate powder, and polyvinylidene fluoride powder. Among these, polyvinylidene fluoride powder is preferable.
  • Examples of the abrasive include cerium oxide powder, silicon carbide powder, and titanium titanate powder. Of these, strontium titanate powder is preferable.
  • Examples of the fluidity-imparting agent include titanium oxide powder and aluminum oxide powder. Of these, a hydrophobized one is preferable.
  • Examples of the conductivity imparting agent include carbon black powder, zinc oxide powder, antimony oxide powder, and tin oxide powder.
  • a small amount of white and black fine particles having opposite polarity can be used as a developing improver.
  • the method for producing the developer of the present invention is not particularly limited, and can be obtained, for example, by the pulverization method as follows. First, binder resin, colorant, The other additives are sufficiently mixed by a Henschel mixer or a mixer such as a ball mill, and then melt-kneaded using a heat kneader such as a heating roll, a kneader, or an extruder. After cooling and solidifying, powdering and classification are performed to obtain magnetic toner particles. Further, if necessary, an external additive is sufficiently mixed with the magnetic toner particles by a mixer such as a Henschel mixer to obtain a developer.
  • Examples of the mixer include the following. Henschel mixer (Mitsui Mining Co., Ltd.); Super mixer (Rikita Co., Ltd.); Ribocorn (Okawara Seisakusho Co., Ltd.); Nauta Mixer, Turbulizer 1, Cyclomix (Hosokawa Micron Co.); Spiral Pin Mixer (Pacific Energy) Earthenware); Ladige mixer (manufactured by Matsubo).
  • Examples of the kneader include the following. KRC kneader (manufactured by Kurimoto Tekkosho); Bus. K. kneader (manufactured by Buss); TEM type extruder (manufactured by Toshiba Machine); TEX twin-screw kneader (manufactured by Nippon Steel); PCM kneader (Ikegai Iron Works Co., Ltd.); Three roll mill, mixing roll mill, kneader (Inoue Seisakusho Co., Ltd.); Needex (Mitsui Mining Co., Ltd.); MS iOW pressure aider, Niida Iruder (Moriyama Seisakusho Co., Ltd.); (Made by Kobe Steel).
  • Counter jet mill Counter jet mill, Mikron jet, Inomizer (made by Hosokawa Micron); IDS type mill, PJM jet mill powder (made by Nippon Pneumatic Industrial Co., Ltd.); Cross jet mill (made by Kurimoto Iron Works); Urmax (Nisso Engineering Co., Ltd.) SK Jet 'Oichi' Mill (manufactured by Seishin Enterprise Co., Ltd.); Cribtron (manufactured by Kawasaki Heavy Industries, Ltd.); Turbo Mill (manufactured by Turbo Industry Co., Ltd.);
  • classifiers include the following. Classifier, Micron Classifier, Spedic Classifier (Seishin Enterprise Co., Ltd.); Turbo Classifier (Nisshin Engineering Co., Ltd.); Micron Separator, Turboplex (ATP), TSP Separator (Hosokawa Micron Corp.); elbow IJET (manufactured by Nippon Steel & Mining Co., Ltd.), Diespuryon separator (manufactured by Nippon Pneumatic Industry Co., Ltd.); YM Microcut (manufactured by Yaskawa Shoji Co., Ltd.).
  • the sieving device used for sieving coarse particles include the following.
  • Ultrasonic manufactured by Sakae Sangyo Co., Ltd.
  • Resonator Sheave, Gyroshifter Tokuju Kosakusha Co., Ltd.
  • Vibrasonic System manufactured by Dalton Co.
  • Micro shifter manufactured by Hadano Sangyo Co., Ltd.
  • Circular vibration sieve
  • the developer carrying member according to the present invention has at least a base, a resin layer as a surface layer formed on the base, and a magnetic member disposed inside the base.
  • the resin layer contains the following (B 1) to (B4), and negatively triboelectrically charges the developer.
  • (B2) a quaternary ammonium salt that reduces the negative triboelectric chargeability of the resin layer to the developer
  • the developer carrying member has a surface shape in which the entire region carrying the developer satisfies the following requirements (C 1) to (C3).
  • (C 1) For a square area with a side of 0.50 mm on the surface of the developer carrier, 725 straight lines parallel to one side of the square and 725 straight lines perpendicular to the straight line are equal. It shall have a plurality of independent protrusions whose height exceeds D 4 Z4 with reference to the average value (H) of the three-dimensional height measured at the intersection of each straight line.
  • (C 2) The total area of the convex portions at the height D 4 Z 4 is not less than 5% and not more than 30% of the area of the region.
  • Arithmetic mean roughness R a (A) obtained only from the convex portion is 0.25 Aim or more and 0.5 5 ⁇ or less, and the arithmetic average obtained by excluding the convex portion Roughness R a ( ⁇ ) is 0.6 5 111 or more and 1.20 / xm or less.
  • the resin layer as the surface layer of the developer bearing member according to the present invention includes the following (B 1) to (B 4), and has a negative frictional charge imparting property to the developer.
  • Binder resin having at least one selected from —NH 2 group, —NH group and —NH— bond in the structure
  • (B2) a quaternary ammonium salt that reduces the negative triboelectric chargeability of the resin layer to the developer
  • (B 3) Graphitized particles having a graphitization degree p (002) of 0.22 or more and 0.75 or less.
  • (B4) Conductive spherical carbon particles having a volume average particle diameter of 4.0 ⁇ or more and 8.0 Xm or less as particles for imparting irregularities to the resin layer surface.
  • the graphitized particles used in the present invention have a graphitization degree P (002) of 0.22 ⁇ p (0 0 2) ⁇ 0.75.
  • This p-value indicates the proportion of the disordered portion of the carbon hexagonal mesh stacking. The smaller the p-value, the greater the degree of graphitization.
  • the degree of graphitization P (002) is 0.22 or more and 0.75 or less, the triboelectric chargeability to the developer becomes good, and the developer can be triboelectrically charged quickly. Further, when the graphitized particles are within the above range, the hardness of the graphitized particles is high, and the wear resistance of the resin layer can be improved. If p (0 0 2) exceeds 0.75, the wear resistance is excellent, but the conductivity and lubricity are reduced and the developer is likely to be charged up. Concentration fluctuations are likely to occur. When P (0 0 2) is less than 0.22, the wear resistance of the graphitized particles deteriorates the wear resistance of the resin layer surface, the mechanical strength of the resin layer, and the charge imparting property to the developer. It may decrease, and image density fluctuations are likely to occur.
  • Such graphitized particles are preferably graphitized particles obtained by firing mesocarbon microphone mouth bead particles or Barta mesophase pitch particles, and bulk mesophase pitch in terms of wear resistance.
  • Graphitized particles obtained by firing the particles are more preferable. Since these particles are optically anisotropic and composed of a single phase, the graphitized particles obtained by graphitizing the particles have an increased degree of black lead and a massive (substantially spherical) shape. Can be held.
  • the optical anisotropy of mesocarbon bon mic mouth bead particles and bulk mesophase pitch particles arises from the lamination of aromatic molecules, and the ordering is further achieved by graphitization, and graphitization with a high degree of graphitization. Particles are obtained.
  • the graphitized particles obtained by the above method are crystalline graphite made of artificial graphite or natural graphite, which has been used in a resin layer on the surface of a developer carrier, and Raw materials and manufacturing processes are different. Therefore, although the graphitized particles have a slightly lower degree of graphitization than the crystalline graphite used in the past, they have high conductivity and lubricity similar to the crystalline graphite used in the past. Yes.
  • the shape of the particles is different from the scaly shape or needle shape of the crystalline graphite used in the past, and is characterized in that the particle itself has a relatively high hardness.
  • the graphitized particles used in the present invention are easily dispersed uniformly in the resin layer, uniform surface roughness and wear resistance can be imparted to the resin layer surface, and the change in the surface shape can be suppressed to a small level.
  • the friction band to the developer is more than that in the case of using the conventional crystalline graphite. It is possible to improve the power imparting ability.
  • mesocarbon microbead particles may be mechanically primarily dispersed with a mild force that does not cause destruction. preferable. This is because coalescence of the graphitized particles can be prevented and a uniform particle size can be obtained.
  • the mesocarbon microphone mouth bead particles after the primary dispersion are subjected to primary heat treatment at a temperature of 2100 ° C. to 1500 ° C. in an inert atmosphere to be carbonized.
  • primary heat treatment it is preferable to mechanically disperse the carbide with a mild force not to destroy the carbide in order to prevent coalescence of the particles after graphitization and to obtain a uniform particle size.
  • the carbonized carbide after the secondary dispersion treatment is subjected to secondary heat treatment at about 20 ° C. to 3500 ° C. in an inert atmosphere to obtain desired graphitized particles.
  • Representative methods for obtaining the mesocarbon microbead particles are shown below.
  • coal-based heavy oil or petroleum-based heavy oil is heat-treated at a temperature of 300 ° C. to 500 ° C. and polycondensed to produce crude mesocarbon microphone mouth bead particles.
  • the generated mesocarbon microbead particles are separated by a process such as filtration, stationary sedimentation, and centrifugation, and then washed with a solvent such as benzene, toluene, or xylene, and then dried. Obtained by.
  • bulk mesophase pitch particles are finely pulverized to 2 / xm to 25 ⁇ , and this is about 200 ° C. in air.
  • Lightly oxidize by heat treatment at C ⁇ 35 ° C. By this oxidation treatment, the bulk mesophase pitch particles are infusibilized only on the surface, and melting and fusing during the next graphitization heat treatment are prevented.
  • the oxidized mesophase pitch particles preferably have an oxygen content of 5% by mass to 15% by mass.
  • the desired graphitized particles can be obtained by heat-treating the oxidized bartamesophase pitch particles in an inert atmosphere such as nitrogen or argon at about 200 ° C. to 35 ° C. can get.
  • an inert atmosphere such as nitrogen or argon
  • Examples of methods for obtaining the bulk mesophase pitch particles include the following methods.
  • the bulk mesophase pitch particles used in the present invention preferably have a quinoline soluble content of 95% by mass or more. 9 If less than 5% by mass is used, the inner part of the particles is difficult to liquid-phase carbonize, and solid-phase carbonization causes the particles to remain in a crushed state, making it impossible to obtain a spherical product.
  • the firing temperature of the graphitized particles is preferably from 20 00 ° C. to 3500 ° C., and from 2 300 ° C. to 3 2 0 0 Is more preferable.
  • the firing temperature is less than 200 ° C.
  • the graphitized particles are insufficiently graphitized, resulting in a decrease in conductivity and lubricity, and developer charge-up during continuous durability may occur. Yes, the image density before and after the pause tends to fluctuate. If the firing temperature exceeds 3500 ° C, the graphitized particles may have a too high degree of graphitization.
  • the hardness of the graphitized particles decreases, and the deterioration of the wear resistance of the graphitized particles may reduce the wear resistance of the resin layer surface, the mechanical strength of the resin layer, and the charge imparting property of the developer. It tends to fluctuate.
  • the graphitized particles obtained from any of the above raw materials have a uniform particle size distribution by classification to some extent, regardless of the production method. That's right.
  • the graphitized particles used in the present invention have an arithmetic average particle diameter (D n) of not less than 0.5 ⁇ and not more than 3.00 / m when measured at the cut surface of the resin layer. I like it.
  • D n arithmetic average particle diameter
  • the effect of imparting uniform roughness to the surface of the resin layer and the effect of enhancing the charging performance are high, and rapid and stable charging to the developer becomes sufficient.
  • developer charge-up, developer contamination, and developer fusion due to wear of the resin layer are less likely to occur. Therefore, it is possible to effectively suppress fluctuations and reductions in image density. Furthermore, fluctuations in image density before and after the pause can be more effectively suppressed.
  • a conductive agent may be dispersed and contained in the resin layer in combination with the graphitized particles.
  • the conductive agent used in the present invention include conductive fine particles having a number average particle diameter of 1 // m or less, preferably from 0.01 to 0.8 ⁇ m. When the number average particle diameter of the conductive fine particles exceeds 1 ⁇ m, it is difficult to control the volume resistance of the resin layer to be low, and developer contamination due to developer change is likely to occur.
  • Examples of the conductive agent include the following. Fine powder of metal powder such as aluminum, copper, nickel, silver, antimony oxide, indium oxide, soot oxide, titanium oxide, zinc oxide, molybdenum oxide, metal oxide such as potassium titanate, carbon fiber, furnace black , Lamp Black, Thermal Black, Acetylene Black, Carbon Black such as Channel Black, Carbide such as Graf Eye, Metal Fiber.
  • Fine powder of metal powder such as aluminum, copper, nickel, silver, antimony oxide, indium oxide, soot oxide, titanium oxide, zinc oxide, molybdenum oxide, metal oxide such as potassium titanate, carbon fiber, furnace black , Lamp Black, Thermal Black, Acetylene Black, Carbon Black such as Channel Black, Carbide such as Graf Eye, Metal Fiber.
  • carbon black in particular, conductive amorphous carbon is preferably used.
  • the addition amount of these conductive materials suitable in the present invention is 1 quality with respect to 100 parts by mass of the binder resin.
  • the amount is preferably in the range of part by mass to 100 parts by mass. If it is less than 1 part by mass, it is usually difficult to lower the resistance value of the resin layer to a desired level. When the amount exceeds 100 parts by mass, the strength (abrasion resistance) of the resin layer may be deteriorated particularly when a fine powder having a particle size of submicron order is used.
  • the volume resistance of the resin layer is preferably 10 4 ⁇ ⁇ cm or less, more preferably 10 ⁇ 3 ⁇ ⁇ cm or more and 10 3 ⁇ ⁇ cm or less.
  • volume resistance of the resin layer exceeds 10 4 ⁇ ⁇ cm, developer charge-up may occur during continuous durability, and the image density before and after the pause tends to fluctuate.
  • the binder resin in which the quaternary ammonium salt is incorporated exhibits the charge polarity of the force ion of the quaternary ammonium ion.
  • the resin layer has the ability to negatively charge the developer according to the present invention (hereinafter also referred to as “negative friction charge imparting property”)
  • the negative friction of the developer during continuous printing durability It works to prevent the charge amount from gradually becoming excessive. That is, the negative triboelectric chargeability of the resin layer to the developer is lowered. As a result, the negative triboelectric charge amount of the developer can be controlled.
  • Examples of the substance having 2 NH groups include the following. • R—Primary amine represented by NH 2 or a polyamine having them, RCO—Primary amide represented by NH 2 or a polyamide having them.
  • R NH 2nd amine or polyamine having them
  • (RCO) 2 NH 2nd amide or polyamide having them.
  • Examples of substances having an NH— bond include the following.
  • phenol resin, polyamide resin, and urethane resin using ammonia as a medium are preferable from the viewpoint of versatility, and phenol resin is more preferable from the viewpoint of strength when formed into a resin layer.
  • the nitrogen-containing compound as a catalyst is directly involved in the polymerization reaction and is present in the phenolic resin even after the reaction is completed.
  • an intermediate called ammonia resol is formed.
  • a structure represented by the following structural formula (3) is obtained. It exists in phenolic resin.
  • the nitrogen-containing compound preferably used in the present invention may be either an acidic catalyst or a basic catalyst.
  • the acidic catalyst include the following. Ammonium sulfate, Ammonium salts or amine salts such as ammonium phosphate, ammonium sulfate, ammonium carbonate, ammonium acetate, and ammonium maleate.
  • the basic catalyst include the following.
  • Ammonia dimethylamine, jetylamine, diisopropylamine, diisobutylamine, diamylamine, trimethylamine, triethylamine, tri-n-butylamine, triamylamine, dimethylbenzylamine, dimethylbenzylamine, dimethylaniline, jetylaniline, N, N —Di-n-Butylaniline, N, N-Diamylaniline, N, N—Di t —Amilaniline, N_Methylethanolamine, N—Ethylethanolamine, Diethanolamine, Triethanolamine, Dimethinorethano Noreamine, cetinorethananolamine, ethenoresetethanolamine, n-butyljetanolamine, di-n-butylethanolamine, triisopropanolamine, ethylenediamine, hexamethylene Amino compounds such as tetramine; pyridine and its derivatives such as pyridine, ⁇ -pic
  • Polyamide resins include nylon 6, 6 6, 6 10, 11, 1 2, 9, 13, Q 2 nylon, nylon copolymers based on these, or ⁇ -alkyl modified nylon , And ⁇ -alkoxylalkyl-modified nylon can be preferably used. Further, various resins modified with polyamide such as polyamide-modified phenolic resin, or epoxy resin using polyamide resin as a curing agent, resins containing a polyamide resin component. Any of them can be suitably used.
  • Any urethane resin can be used as long as it is a resin containing a urethane bond.
  • This urethane bond is obtained by polymerization addition reaction of polyisocyanate and polyol.
  • Examples of the polyisocyanate used as the main raw material for this polyurethane resin include the following. Diphenylene methane 1,4'-diisocyanate (MD I), isophorone diisocyanate (IPDI), polymethylene polyphenyl polyisocyanate, tolylene diisocyanate, hexamethylene diisocyanate, 1, 5 _ Naphthalene diisocyanate, 4,4'-dicyclohexylmethane disolyanate, carbodiimide-modified diphenylmethane-1,4'-diisocyanate, trimethylhexamethylene diisocyanate, orthotoluidine diisocyanate, naphthylene diisocyanate , Xylene diisocyanate, paraphenylene diisocyanate, lysine diisocyanate methyl ester, dimethyl diisocyanate.
  • MD I Diphenylene methane 1,4'-diisocyanate
  • polyols that are the main raw materials for polyurethane resins include the following.
  • Polyester polyols such as polyethylene adipate esterolate, polybutylene adipate esterolate, polydiethyleneglycolene adipate esterolate, polyhexene adipate esterolate, polystrength aprolate ester, polytetramethylene glycolate, polypropylene glycolol .
  • B 2 4th grade ammonium salt >>>
  • Examples of the quaternary ammonium salt include those represented by the following structural formula (4). Structural formula (4) t I * 4-
  • R 1 to R 4 each independently represents an alkyl group which may have a substituent, an aryl group which may have a substituent, or an aralkyl group
  • X represents an acid anion.
  • examples of the X— acid ion include the following. Organic sulfate ion, organic sulfonate ion, organic phosphate ion, molybdate ion, tungstate ion, heteropolyacid containing molybdenum atom or tungsten atom.
  • quaternary ammonium salt examples include those listed in Tables I to IV below.
  • the developer is excessively charged by friction. It works in the direction of preventing the negative triboelectric charge of the developer. Thereby, it is possible to prevent the developer from being charged up on the developer carrying member and to maintain the triboelectric charging stability of the developer. As a result, fluctuations in image density can be suppressed.
  • the quaternary ammonium salt in the resin layer preferably contains 5 to 50 parts by mass with respect to 100 parts by mass of the binder resin in the resin layer. This makes it easy to control the triboelectric charge amount of the developer used in the present invention to a stable value. By making the content of the quaternary ammonium salt within the above range, the developer charge can be effectively suppressed. In addition, it is possible to suppress a decrease in image density due to an excessively low triboelectric charge amount of the developer.
  • the unevenness-imparting particles used in the present invention are conductive spherical carbon particles having a volume average particle diameter of 4. ⁇ to 8.0 ⁇ m.
  • the conductive spherical carbon particles impart a desired surface shape, which will be described later, to the surface of the resin layer of the developer carrying member, and at the same time, the change in the surface roughness of the resin layer is reduced, and the developer contamination is fused with the developer. It is added to make it difficult to generate.
  • the conductive spherical carbon particles enhance the effect of the charging performance of the graphitized particles by interacting with the graphitized particles contained in the resin layer, and improve the quick and stabilized chargeability. This has the effect of suppressing fluctuations in image density.
  • the spherical shape in the conductive spherical carbon particles used in the present invention is not limited to a true spherical shape, but means a particle having a major axis / minor axis ratio of 1.0 to 1.5. In the present invention, it is more preferable to use spherical particles having a major axis / minor axis ratio of 1.0 to 1.2, and particularly preferably spherical particles. When the ratio of the major axis to the minor axis of the spherical particles is within the above numerical range, the dispersibility of the spherical particles in the resin layer is good. Therefore, it is effective in terms of uniforming the surface roughness of the resin layer, providing stable charging performance to the developer, and maintaining the strength of the resin layer.
  • an enlarged photograph taken with an electron microscope at an enlargement magnification of 6,00 ⁇ is used for measurement of the long and short diameters of the conductive spherical carbon particles.
  • the major axis and minor axis were measured for 100 samples randomly sampled from this enlarged photograph to determine the ratio of major axis to minor axis, and the average value was taken as the ratio of major axis to minor axis of the spherical particles.
  • the volume average particle diameter of the conductive spherical carbon particles is less than 4. ⁇ , the effect of imparting the desired roughness to the resin layer surface and the effect of improving the charging performance are small, and the developer used in the present invention Rapid and stable charging is insufficient, and image density fluctuations are likely to occur. Also, it is not preferable because the developer transport force is weakened and the image density is liable to decrease.
  • the volume average particle size exceeds 8.0 / m, the resin surface cannot obtain the desired roughness, and the developer used in the present invention is not sufficiently charged. As a result, the image density tends to decrease.
  • the coefficient of variation obtained from the volume-based particle size distribution of the conductive spherical carbon particles is preferably 40% or less, more preferably 30% or less. By making it 40% or less, it becomes easy to impart a desired surface shape.
  • the following methods are preferred, but are not necessarily limited to these methods.
  • spherical resin particles, low-density and good-conductive spherical carbon particles obtained by carbonizing and carbonizing or graphitizing mesocarbon microphone mouth beads are obtained.
  • the method of obtaining is mentioned.
  • Examples of the resin used for the spherical resin particles include the following. Phenol resin, naphthalene resin, furan resin, xylene resin, divinylbenzene polymer, styrene-dibutylbenzene copolymer, polyacrylonitrile.
  • a preferable method for obtaining conductive spherical carbon particles first, bulk mesophase pitch is coated on the surface of the spherical resin particles by a mechanochemical method. Next, the coated particles are heat-treated in an oxidizing atmosphere, and then fired in an inert atmosphere or in a vacuum, thereby carbonizing and graphitizing and carbonizing the inside, and the outside becoming black lead. Spherical carbon particles are obtained. This method is preferable because crystallization of the coated portion of the conductive spherical carbon particles obtained by graphitization proceeds and the conductivity is improved.
  • the conductive spherical carbon particles obtained by the above method can control the conductivity of the obtained conductive spherical carbon particles by changing the firing conditions, and are preferably used in the present invention.
  • the reason why the surface shape of the resin layer is specified by the three-dimensional height is as follows.
  • the three-dimensional height can be measured using a confocal optical laser microscope.
  • the confocal optical system laser microscope applies the laser emitted from the light source to the object, and reflects the laser reflected from the object by the objective lens position information that maximizes the amount of reflected light received by the light receiving element at the confocal position.
  • the shape is measured. Although it depends on the magnification of the lens, the surface shape of the developer carrier can be measured at intervals of 1 ⁇ or less, making it suitable for microscopic measurements.
  • Fig. 2 is a schematic diagram showing the configuration of the confocal optical laser microscope. Note that E in the figure schematically shows the path of the laser beam. Since the laser light source 2 0 1 is a point light source, the observation area is divided into 1 0 2 4 x 7 6 8 pixels via the X—Y scan optical system 2 0 2 and the observation object (developer carrier) 2 0 Scan 9. The reflected light of each pixel is detected by the light receiving element 20 4 through the condenser lens 20 3.
  • the reflected light from the observation object 309 passes through the pinhole 305 and enters the light receiving element 304 during focusing, and from the observation object 409 during out-of-focus. Only a part of the reflected light passes through the pinhole 405 and enters the light receiving element 404. This difference in the amount of received light makes it possible to distinguish between in-focus and out-of-focus, and obtain height information.
  • the amount of reflected light at each Z-axis position of each pixel is obtained.
  • the focal position of the lens (the position where the objective lens was focused) is stored, and the reflected light amount of the laser at that time is stored in the memory and the lens position information is height information
  • the lens position information is height information
  • three-dimensional height data in the observation area can be obtained.
  • 207, 208, 308 and 408 are half mirrors
  • 30 1 and 40 1 are laser light sources
  • 303 and 403 are condensing lenses.
  • the three-dimensional height is 725 straight lines parallel to one side of the square and 725 straight lines orthogonal to the straight line in a square area of 0.5 Omm on one side on the developer carrier surface. Measured at each intersection (725x 725) of each straight line.
  • the average value (H) of these values is set as a reference indicating the uneven state of the resin layer. Then, on the basis of the average value (H), a plurality of independent convex portions having a height exceeding 1/4 of the above-mentioned weight average particle diameter D 4 of the developer are provided in the region.
  • convex portions having a height exceeding H + greatly contribute to the triboelectric chargeability of the developer, and portions other than the convex portions are transportability of the developer. It has been found that it contributes greatly. Therefore, having a plurality of independent protrusions in the region having a height exceeding H + (D 4 Z4) is an important premise for controlling the triboelectric chargeability of the developer.
  • the ratio of the total area of H + D 4 Z4 to the area of the above-mentioned area of the convex part with a height exceeding H + (D 4/4 ) according to the requirement (C2) is as follows. It is a measure of whether there are many or few contact opportunities with the. By making this value 5% or more and 30% or less, particularly 10% or more and 20% or less, the chance of contact between the convex portion and the developer becomes appropriate. Therefore, it is extremely important to control the chargeability of the developer. In addition, by setting in this range, the height contributes to the conveyance of the developer is a this is also sufficient area of H + (D 4/4) following parts. Therefore, this requirement is extremely important for maintaining good developer transportability.
  • the arithmetic average roughness R a (A) obtained only from the convex part with a height exceeding the above H + (D 4/4 ) according to the requirement (C3) is calculated according to the above requirements (C 1) and (C2).
  • the triboelectric charging performance of the developer by the projections is determined.
  • Ra (A) in the range of 0.25 / in to 0.55 ⁇ , frictional charging due to contact between the convex portions and the developer becomes appropriate.
  • the developer can be charged to a sufficient level for good image formation while suppressing the developer charge-up due to excessive frictional charging.
  • the arithmetic average roughness R a (B) obtained by removing the convex portion determines the developer transport performance of the developer carrying member according to the present invention.
  • Ra (B) in the range of 0.65 ⁇ to 1.20 m, the developer can be reliably conveyed. Further, charging failure of the developer due to excessive developer transportability can be suppressed.
  • the arithmetic average roughness R a (To ta 1) calculated without dividing the above-mentioned convex portion exceeding H + (D 4/4 ) and other portions is used.
  • the value is preferably in the range of 0.601 to 1.40 ⁇ m.
  • the arithmetic average roughness Ra is 0.60 // m or more, it is difficult to cause insufficient developer conveyance force and excessive frictional charging of the developer, and it is possible to further suppress fluctuations in image density.
  • the arithmetic average roughness Ra is 1.40 m or less, it is difficult to cause excessive conveyance of the developer and frictional charging failure of the developer, and it is possible to further suppress fluctuations in image density.
  • the average value (U) of the universal hardness (HU) specified in IS OZFD IS 1 4 5 7 7 of the resin layer of the developer carrier is 4 0 ON / nim 2 or more 6 5 O NZmm 2 or less
  • the universal hardness HU of the surface of the resin layer was measured with a Fisher Scope HI 0 0 V (trade name) manufactured by Fischer 'Instrument Co., Ltd. conforming to ISO / FD IS 1 4 5 7 7. The measurement was performed using a square pyramid diamond indenter with a facing angle of 13.6 °. The indenter is pushed into the film while applying the measurement load step by step, and the indentation depth h (unit: mm) with the load applied is measured. Then, universal hardness HU is obtained by substituting test load F (unit: N) and indentation depth h into the following equation (5). Where the coefficient K is 1Z26.4 3
  • the universal hardness HU can be measured with a load smaller than other hardnesses (for example, Rockwell hardness, Vickers hardness, etc.). Also, a material having elasticity and plasticity is preferable for evaluating the hardness of the resin layer because hardness including elastic deformation and plastic deformation can be obtained.
  • the average value (U) of the universal hardness HU of the resin layer By making the average value (U) of the universal hardness HU of the resin layer within the above numerical range, it is possible to sufficiently ensure the durability of the resin layer and effectively suppress fluctuations in image density due to use. . In addition, with this degree of hardness, it is not necessary to add a large amount of high-hardness particles for improving durability. Therefore, the developer layer of the resin layer There is no loss of triboelectricity.
  • a resin layer satisfying the above requirements (B 1) to (B 4) and (C 1) to (C 3) can be prepared by dispersing and mixing the components of the resin layer in a solvent to form a paint. It can be formed by coating, drying, solidifying, or curing. Further, polishing the surface of the resin layer obtained by drying, solidifying or curing by a predetermined method described later is an extremely effective method for obtaining a developer carrying member satisfying the above requirements.
  • a known dispersing apparatus using beads such as a sand mill, a paint shaker, a dyno mill, and a pearl mill can be suitably used for dispersing and mixing the components constituting the resin layer into the paint.
  • the particle diameter of the beads is preferably 0.8 mm or less in order to uniformly disperse and mix each component in the coating liquid, and more preferably 0.6 mm or less.
  • the spray method is preferred.
  • the method for atomizing the paint when applied by the spray method include the following methods. A method of atomizing with air; A method of rotating a disk etc. at high speed and mechanically atomizing; A method of atomizing by applying pressure to the paint itself and causing it to collide with the outside air; A method of atomizing by ultrasonic vibration .
  • the air spray method which atomizes by air, has a strong ability to atomize paint and is easy to apply uniformly. Therefore, it is preferable as a method for forming the resin layer of the developer carrying member according to the present invention.
  • the base should be perpendicular to the direction of movement of the spray gun. Stand up and keep the distance between the base and the tip of the spray gun nozzle constant while rotating the base. Then, the paint dispersed and mixed while the spray gun is raised or lowered at a constant speed is applied to the substrate by the air spray method.
  • the moving speed of the spray gun is preferably 1 OrmZ s or more and 5 O mmZ s or less. By setting it within this range, unevenness and wrinkles during coating are likely to be reduced, and it is preferable because the resin layer is uniformly formed.
  • the rotation speed of the substrate is preferably set appropriately depending on the diameter of the substrate to be used. However, by setting the rotation speed to 500 rpm or more and 20 00 rpm or less, coating unevenness hardly occurs and a desired surface is obtained. Easy to get shape.
  • the distance between the substrate and the nozzle tip is preferably set as appropriate depending on the paint to be used. However, when the distance is 3 O mm or more and 7 O mm or less, a desired surface shape can be easily obtained. The shape of the surface of the resin layer tends to become rougher as the distance is removed from the substrate.
  • the thickness of the resin layer is preferably 50 ⁇ or less, more preferably 4 O wm or less, and even more preferably 4 ⁇ ! By setting it to ⁇ 30 ⁇ , it is possible to obtain a uniform resin layer having a surface shape suitable for the present invention.
  • the resin layer having a specific surface shape according to the present invention is formed, the above requirement (C) is appropriately adjusted by adjusting the solid content concentration in the paint and the distance between the substrate and the nozzle tip of the spray gun.
  • a resin layer having a surface shape according to 1) to (C3) can be produced.
  • FIG. 5 is a sectional view schematically showing an example of a polishing apparatus according to the present invention.
  • the developer carrier 5 0 1 is rotated clockwise or counterclockwise, and the belt-like abrasive 5 0 2 is fed out by the roller 5 0 3 While being drawn out, it is brought into pressure contact with the developer carrier 5 0 1 and moved in the direction of arrow F toward the take-up roller 5 0 4.
  • the belt-like abrasive 50 2 rubs the developer carrier 5 0 1 at a position where it comes into contact with the developer carrier 5 0 1.
  • the convex portions of the resin layer of the developer carrier 51 are mainly polished, and the surface shape according to the present invention can be easily formed.
  • the pressing load on the developer carrying member at the contact position is 0.1 N or more and 0.5 N or less in order to control the surface shape of the resin layer.
  • the width of the strip abrasive is preferably 3 cm or more and 10 cm or less.
  • the moving speed of the band-shaped abrasive in the direction of arrow F is preferably 5 mm / s or more and 60 mmZ s or less. By setting the amount within this range, the developer carrying member is appropriately rubbed with the new surface of the belt-like polishing material, so that the unevenness of rubbing hardly occurs and a desired surface shape can be easily obtained.
  • the rotation speed of the developer carrying member is preferably set as appropriate depending on the diameter of the developer carrying member to be used, but if it is set to 500 rpm or more and 200 rpm or less, friction unevenness occurs. It is difficult to obtain a desired surface shape.
  • the belt-like abrasive used in the present invention a material obtained by applying and fixing abrasive particles such as aluminum oxide, silicon carbide, chromium oxide, and diamond on a film such as polyester can be used.
  • the primary average particle size of the abrasive particles is preferably 0.5 zni to 15.
  • Examples of the substrate of the developer carrying member used in the present invention include a cylindrical member, a columnar member, and a benolet-shaped member. Among them, a rigid cylindrical tube or a solid rod such as a metal is preferable because of its excellent processing accuracy and durability. As such a substrate, a non-magnetic metal or alloy such as aluminum, stainless steel, or brass formed into a cylindrical shape or a cylindrical shape and subjected to processing such as polishing or grinding is preferably used. Further, a substrate in which a rubber layer or a resin layer is formed on the substrate may be used as the substrate of the present invention.
  • the straightness in the longitudinal direction is preferably 30 ⁇ or less, preferably 20 / m or less, more preferably 10 ⁇ or less.
  • the gap between the developer carrier (sleeve) and the photosensitive drum is also abutted against the vertical surface via a uniform spacer, and the gap between the vertical surface when the sleeve is rotated is 3 It is preferably 0 ⁇ or less, preferably 20 / im or less, and more preferably 10 ⁇ m or less.
  • the substrate of the development carrier aluminum is preferably used because of material costs and processing difficulty.
  • the substrate used in the present invention has an arithmetic average roughness Ra (reference length (reference length)) measured based on JIS (B 0 60 1 ⁇ 2 0 0 1) in controlling the surface shape of the resin layer.
  • Ra reference length (reference length)
  • Electrophotographic image forming apparatus electrophotographic image forming method
  • An electrostatic latent image carrier 10 06 that carries an electrostatic latent image, for example, the photosensitive drum 10 6 rotates in the direction of arrow B.
  • a developer carrier 1 0 5 carries a developer (magnetic toner) 1 1 6 having magnetic toner particles contained in a developer container 10 9, and is in the direction of arrow A.
  • the developer is transported to the development area D where the developer carrier 10 5 and the photosensitive drum 10 6 face each other.
  • a magnetic member (magnet roller) 1 0 4 is disposed in the development sleeve 1 0 3 in order to magnetically attract and hold the developer on the developer carrier 1 0 5.
  • a resin layer 100 1 is formed on a metal cylindrical tube which is a base body 102.
  • the developer is fed from a developer supply container (not shown) via a developer supply member (such as a screw) 1 1 5.
  • the developer container 1 0 9 is divided into a first chamber 1 1 2 and a second chamber 1 1 1, and the developer fed into the first chamber 1 1 2 is developed into the developer container 1 0 by the stirring and conveying member 1 1 0. 9 and the partition member 1 1 3 are passed through the gap formed by the partition member 1 1 3 and sent to the second chamber 1 1 1.
  • the developer is carried on the developer carrying member 10 5 by the action of magnetic force by the magnet roller 10 4.
  • a stirring member 1 14 is provided in the second chamber 1 1 1 to prevent the developer from staying there.
  • the electrostatic latent image on the photosensitive drum 10 6 is developed by friction between the magnetic toner particles and the resin layer 10 1 on the surface of the developer carrier 10 1.
  • a magnetic blade (doctor blade) made of a ferromagnetic metal as a developer layer thickness regulating member 107 is attached.
  • the magnetic blade 10 7 usually develops so as to face the developer carrier 10 5 with a gap of about 50 ⁇ m or more and 500 ⁇ m or less from the surface of the developer carrier 10 5.
  • a magnetic force line from the magnetic pole N 1 of the magnet roller 104 is concentrated on the magnetic blade 10 7, whereby a thin layer of developer is formed on the developer carrier 10 5.
  • a nonmagnetic developer layer thickness regulating member can be used instead of the magnetic blade 107.
  • the thickness of the thin layer of developer formed on the developer carrier 10 5 is It is preferably thinner than the minimum gap between the developer carrier 10 5 and the photosensitive drum 10 6.
  • a development bias voltage is applied to the developer carrier 1 0 5 by a development bias power source 10 8 as a bias means.
  • a developing bias voltage a voltage having a value between the potential of the image portion of the electrostatic latent image (the region visualized as the developer adheres) and the potential of the background portion is loaded with the developer.
  • Application to the body 10 5 is preferred.
  • an alternating bias voltage is applied to the developer carrier 10 5 to form an oscillating electric field whose direction reverses alternately in the development area D. May be.
  • an alternating bias voltage in which a DC voltage component having an intermediate value between the potential of the developed image portion and the potential of the background portion is superimposed is applied to the image agent carrier 105.
  • the particle size was measured using a particle size measuring device (trade name: Coulter Multisizer III; manufactured by Beckman Coulter, Inc.).
  • a particle size measuring device (trade name: Coulter Multisizer III; manufactured by Beckman Coulter, Inc.).
  • As the electrolytic solution an approximately 1% NaC1 aqueous solution prepared using primary sodium chloride was used.
  • the electrolyte in which the sample is suspended is dispersed for about 1 minute with an ultrasonic disperser, and the volume and number of the measurement sample are measured using the 100 / im aperture with the measurement device, and the volume distribution and number are measured. Distribution was calculated. From this result, the weight-based weight average particle diameter (D 4 ) obtained from the volume distribution was obtained.
  • the Fe element is quantified using a plasma emission analyzer I CP S 2000 manufactured by Shimadzu Corporation. Then, for each sample collected, the Fe element dissolution rate (% by mass) of the magnetic iron oxide particles is calculated by the following formula (6).
  • the ratio X (%) is obtained by the method described above.
  • the ratio Y (%) of Fe (2+) to the total Fe amount in / 0 is calculated by the following method.
  • the concentration of Fe (2+) (mgZ liters) when the magnetic iron oxide particles were completely dissolved, and the Fe element dissolution rate of 10 mass, obtained by the above X measurement. /.
  • the Fe element dissolution rate is 10 masses according to the following formula (8). / Percentage Y (%) of 0 and to the total F e of the remaining 9 in 0 wt%, excluding the F e amount of dissolved until F e (2+) is calculated.
  • the softening point of the binder resin is measured using a flow characteristic evaluation apparatus (trade name: Flow Tester CFT-500D; manufactured by Shimadzu Corporation) in accordance with the measurement method shown in JISK 7210. A specific measurement method is shown below. While a sample of 1 cm 3 was heated at a rate of temperature increase of 6 ° CZ with the above flow characteristic evaluation device, a load of 19 60 N / m 2 (20 kg / cm 2 ) was applied with a plunger, and the diameter was 1 mm Extrude from a nozzle of length lmm. Create a temperature curve of the plunger drop (flow value) at this time. When the height of the curve is h, the softening point is the temperature relative to h / 2 (the temperature at which half of the resin flows out).
  • a flow characteristic evaluation apparatus trade name: Flow Tester CFT-500D; manufactured by Shimadzu Corporation
  • the column is stabilized in a heat chamber at a temperature of 40 ° C, and THF is flowed through the column at this temperature as a solvent at a flow rate of 1 m 1 / min.
  • the molecular weight distribution of the sample was calculated from the relationship between the logarithmic value of the calibration curve prepared from several monodisperse polystyrene standard samples and the count value.
  • a standard polystyrene sample for preparing a calibration curve for example, a sample of about 10 2 to 10 7 is used, and it is appropriate to use at least about 10 standard polystyrene samples.
  • Examples of standard polystyrene samples include:
  • Type F-850, F- of TSK standard polystyrene (trade name; manufactured by Tosoh Corporation)
  • F- 288, F— 128, F_80 F— 40, F— 20, F— 10, F-4, F— 2, F- 1, A- 5000, A- 2500, A— 1000, A—
  • the detector is a RI (refractive index) detector.
  • the column it is preferable to combine a plurality of commercially available polystyrene gel columns.
  • commercially available polystyrene gel columns include the following. Shode X GPC KF-801, 802, 803, 804, 805, 806, 807, 800 P (all trade names; Showa Denko); TSKg el G 100 OH (H XL ), G 200 OH ( H XL ), G 3000 H (H XL ), G4000H (H XL ), G5000 H (H XL ), G 600 OH (H XL ), G 700 OH (H XL ), TSK guardcol umn (all trade names; Manufactured by Tosoh Corporation).
  • sample solution so that the concentration of the component soluble in THF is about 0.8% by mass, and leave it at a temperature of 25 ° C for several hours. Then shake well and mix well with THF (until the sample is no longer united), and let stand for more than 12 hours. At that time, leave it in THF for 24 hours. Then, use a sample processing filter (pore size of about 0.5 / m, for example, Mysori Disc H-25-2 (manufactured by Tosoh Corporation)) as a GPC sample. The sample concentration should be adjusted so that the resin component is 5 mgZnil.
  • DSC differential scanning calorimeter
  • the measurement sample use a precisely weighed sample of 2 mg to 10 mg, preferably about 3 mg. Put this in an aluminum pan and use an empty aluminum pan as a reference.
  • the measurement temperature range is 30 ° C or more and 200 ° C or less. Once the temperature is increased from 30 ° to 200 ° C at a temperature increase rate of 10 ° C Zmin, the temperature is decreased from 200 ° C to 30 ° at 10 ° C / min. The temperature is lowered to C, and again at a heating rate of 10 ° CZmin. Raise the temperature to 200 ° C.
  • the intersection of the baseline midline before and after the specific heat change and the differential heat curve is expressed as the glass transition temperature Tg of the binder resin. To do.
  • THF insoluble matter (mass%) [(Wl -W2) / Wl] 1 00
  • the measurement of the resin layer surface shape is performed by measuring unit “VK— 8 7 1 0” (Keyence Corporation; product name) and controller “ VK_8 700 ”was connected to a control PC.
  • analysis of the surface shape of the resin layer with the observation application software (product name: VK—H 1 V 1; manufactured by Keyence Co., Ltd.) and shape analysis application software (product name: VK—H 1 A 1; manufactured by Keyence Corporation) Went.
  • the developer carrier was placed on the stage of the measurement unit, and the height of the stage was controlled to adjust the focus.
  • the magnification of the objective lens at this time was 20 times.
  • the stage was controlled so that the top of the arc was the measurement position. The focus was confirmed on the observation application software.
  • the measurement range in the Z-axis direction was adjusted by adjusting the lens position on the observation application software. Move the lens position upwards so that it is out of focus (height) in the entire observation area. The lens position at that time is set as the upper limit of measurement in the Z-axis direction. Similarly, move the lens downward to make the entire observation area Set the out-of-focus position (height) as the lower limit of measurement in the Z-axis direction.
  • the measurement pitch in the Z-axis direction is 0.1 l / m
  • the height is 1 0 2 4 x 7 6 8 pixels (7 0 6. 5 6 ⁇ 5 2 9. 9 2 ⁇ ⁇ ) Data (3D data) was acquired.
  • the acquired 3D data was analyzed on the shape analysis application software.
  • filter processing and tilt correction were performed to remove noise during measurement. Filtering was performed by smoothing by means of simple averaging in units of 55 pixels.
  • surface tilt correction and quadratic surface correction were performed.
  • Surface tilt correction was performed by obtaining an approximate plane using the least square method based on the height data of the entire region and correcting the tilt so that the obtained approximate plane was horizontal.
  • the quadric surface correction was performed by obtaining an approximate surface using the least square method based on the height data of the entire region and correcting the slope so that the obtained approximate surface was horizontal.
  • the average height (H) is the average value obtained from data obtained by removing noise from these measured values.
  • the area to be measured was specified from the observation area.
  • the specified area is 0.5 0 mm X 0.5 0 It was mm, and the center of the observation area was used as a reference.
  • Arithmetic average roughness was measured from the 3D data from which noise was removed, using the surface roughness program of the shape analysis application software.
  • the area to be measured was specified from the observation area.
  • the area to be specified is 0.50mm x 0.5 Omm, and the center of the observation area is used as a reference.
  • the arithmetic average roughness R a is defined by the following formula (1 1).
  • the analysis uses 3D data from which noise has been removed, and the analysis area specification method and arithmetic average roughness measurement method are the same as described above. Went in the way. Similarly, 10 points are measured 10 points in the axial direction of the developer carrier and 10 points in the circumferential direction, and the average value is calculated from the arithmetic average roughness Ra (A) and Ra ( B).
  • Universal hardness HU of the resin layer surface is based on I SOZFD I S 14577.
  • K is a constant, 1 / 26.43.
  • the measurement sample a sample in which a resin layer is formed on the surface of the substrate is used, but in order to improve the measurement accuracy, it is better that the resin layer surface is smooth. More preferably, the post-measurement is performed. Therefore, in the present invention, the surface of the resin layer is subjected to polishing treatment with a wrapping film sheet # 2000 (trade name, Sumitomo Zuriem, using 9 ⁇ aluminum oxide as abrasive particles), and the surface after polishing treatment What was adjusted so that the roughness Ra was 0.2 m or less was measured.
  • a wrapping film sheet # 2000 trade name, Sumitomo Zuriem, using 9 ⁇ aluminum oxide as abrasive particles
  • the test load F and the maximum indentation depth h of the indenter are preferably in a range that is not affected by the surface roughness of the resin layer surface and that is not affected by the underlying substrate.
  • Maximum indentation depth h is 1! Measured with a test load F of ⁇ 2 m.
  • the measurement environment was 23 ° C, 50%, the number of measurements was 100 at different measurement points, and the average value obtained from the measured values was taken as the resin layer. Universal hardness U.
  • a laser diffraction type particle size distribution meter (trade name: Coulter LS-230 type particle size distribution meter; manufactured by Beckman Coalter Co., Ltd.) was used. A small amount module was used for the measurement, and isopropyl alcohol (IPA) was used as the measurement solvent.
  • IPA isopropyl alcohol
  • the sample concentration in the measurement system was adjusted to 55%. Thereafter, measurement was performed to calculate the volume average particle diameter calculated from the volume distribution.
  • the degree of graphitization P (002) is the lattice spacing obtained from the X-ray diffraction spectrum of graphite using the powerful full-automatic X-ray diffractometer manufactured by Mac Science Co., Ltd. and MX P 18 'system (trade name). Measure (002), and use the following formula (13).
  • the lattice spacing d (002) CuKa is used as an X-ray source, and Cu ⁇ rays are removed by a nickel filter.
  • the lattice spacing d (002) is calculated from the peak positions of the C (002) and S i (1 1 1) diffraction patterns.
  • the main measurement conditions are as follows.
  • Goniometer Horizontal goniometer
  • Tube voltage 30.0 kV
  • Tube current 1 0. 0mA
  • the cross section of the developer carrier is taken every 20 nm in a plane perpendicular to the axial direction of the developer carrier. Disconnected. Each cut section was photographed using an electron microscope (trade name: H-7500; manufactured by Hitachi, Ltd.).
  • the particle diameter of each of the graphitized particles was measured using the measured value of the image in which the sum of the major axis and the minor axis is the maximum for each particle from a plurality of photographed images.
  • the particle diameter of the particles was the average value of the measured major axis and minor axis.
  • the arithmetic average particle size was obtained from each particle size. Note that the measurement magnification was set at 100 thousand times.
  • the four-necked flask was equipped with a decompression device, a water separation device, a nitrogen gas introduction device, a temperature measurement device, and a stirring device, and stirred at a temperature of 130 ° C. in a nitrogen atmosphere.
  • a monomer component having the following composition to produce a styrene copolymer resin unit with 100 parts by mass of the monomer component was mixed with a polymerization initiator (benzoyl peroxide). The thing was dripped in the said 4-neck flask from the dropping funnel over 4 hours.
  • Binder resin a-1 containing a polyester resin component, a styrene copolymer component, and a hybrid resin component.
  • Table 1 shows the physical properties of Binder Resin a-1.
  • Kishiruakuri to 2 Echiru rate 1 5 mass 0/0, acrylic acid 2 mass. / 0 .
  • ferrous sulfate 50 L of an iron sulfate aqueous solution containing 2. Omo 1 ZL of Fe 2+ was prepared.
  • sodium silicate was used to prepare sodium silicate aqueous solution 1 OL containing 0.24 mol / L of 3 14 + , which was added to the aqueous iron sulfate solution and mixed. Then, 42 L of 5.
  • Omol ZL aqueous NaOH solution was stirred and mixed with the mixed aqueous solution to obtain a ferrous hydroxide slurry. Adjust this ferrous hydroxide slurry to pH 12.0, temperature 90 ° C, blow in 30 LZmin air, and oxidize until 50% of the ferrous hydroxide becomes magnetic iron oxide particles. went.
  • the temperature of the slurry was adjusted to 80 ° C., and the pH was adjusted to 5 or more and 9 or less with dilute sulfuric acid to form a coating layer containing silicon and aluminum on the surface of the core particles.
  • the obtained magnetic iron oxide particles were filtered by a conventional method, dried and pulverized to obtain magnetic iron oxide particles b-1.
  • Table 3 shows the physical properties of magnetic iron oxide particles b-1.
  • magnetic iron oxide particles b-1 In the production example of magnetic iron oxide particles b-1, magnetic iron oxide particles b-2 to b-6 were obtained by adjusting the production conditions as shown in Table 2. Table 3 shows the 14 values of magnetic iron oxide particles b-2 to b-6 obtained.
  • the number of stages in the blown air amount in Table 2 represents the state shown below.
  • Generation rate of magnetic iron oxide particles is 0% or more and 50% or less
  • Second stage the production rate of magnetic iron oxide particles exceeds 50% and 75% or less
  • Magnetic iron oxide particle production rate is over 75%, 90% or less
  • the pH of the ferrous hydroxide slurry is 1
  • the magnetic iron oxide particles b-7 were obtained in the same manner except that the oxidation reaction was completed under the conditions of 30 L Ztn in at 90 ° C without adjusting the oxidation reaction to 1.5 and making the oxidation reaction multistage. It was. Table 3 shows the physical properties of the magnetic iron oxide particles b-7 obtained.
  • Core particle reaction Coating treatment Magnetic iron oxide Water-soluble silicate Salt blowing air flow rate Sodium silicate Aluminum sulfate particles Dissolved; 3 ⁇ 4 1 (L7 minutes) Liquid 1 ⁇ 2
  • the following materials were premixed with a Henschel mixer and then melt-kneaded with a twin-screw kneading extruder. At this time, the residence time was controlled so that the temperature of the kneaded resin was 150 ° C.
  • Binder resin a 1 90 parts by mass
  • Binder resin a— 2 1 0 parts by mass
  • Wax Fischer-Tropsch wax (maximum endothermic peak temperature 105 ° C, number average molecular weight 1500, weight average molecular weight 2500)] 4 parts by mass;
  • Charge control agent negatively chargeable charge control agent having the structure of the following structural formula (14)
  • the obtained kneaded product is cooled, coarsely pulverized with a hammer mill, and then pulverized with a turbo mill.
  • the resulting finely pulverized powder is classified using a multi-division classifier utilizing the Coanda effect, and the weight average particle diameter (D 4 ) 6. 1 ⁇ negatively chargeable magnetic toner particles were obtained.
  • the following substances were externally added and mixed with 100 parts by mass of the obtained magnetic toner particles, and sieved with a mesh having a mesh size of 150 ⁇ m to obtain a developer c-11 having a negative charge.
  • Table 4 shows the composition and physical properties of Developer c 1.
  • 'Hydrophobic silica fine powder BET specific surface area 140m 2 Zg, hydrophobized with 30 parts by mass of hexamethyldisilazane (HMDS) and 10 parts by mass of dimethyl silicone oil to 100 parts by mass of silica base: 1.0 mass Part;
  • Strontium titanate (number average particle size 1.2 ⁇ ): 3.0 parts by mass.
  • Developers c_2 to c 17 were obtained in the same manner as in Example 1 except that the formulation shown in Table 4 was used. Table 4 shows the composition and physical properties of Developers c 1 2 to c-17.
  • ⁇ -resin was extracted from coal tar pitch by solvent fractionation, hydrogenated and heavyized, and then the solvent-soluble component was removed with toluene to obtain mesophase pitch.
  • the bulk mesophase pitch is finely pulverized, oxidized in air at about 300 ° C, heat treated at a firing temperature of 300 ° C in a nitrogen atmosphere, and further classified and graphitized.
  • Particle d-1 was obtained. Table 5 shows the various physical properties of graphitized particles.
  • graphitized particles d-1 and d-2 graphitized particles d-3 to d-7 were obtained by adjusting the raw materials and firing temperature of the graphitized particles as shown in Table 2.
  • Table 5 shows the physical property values of the graphitized particles d-3 to d-7.
  • Toka Black # 5 5 0 0 (trade name, manufactured by Tokai Carbon Co., Ltd.) was used.
  • a resol-type phenol resin (trade name: GF 90 00; manufactured by Dainippon Ink & Chemicals, Inc.) synthesized using a NaOH catalyst was used.
  • a polyol (trade name: Nipponporan 50 3 7; manufactured by Nippon Polyurethane Industry) and a curing agent (trade name: Coronate L; manufactured by Nippon Polyurethane Industry Co., Ltd.) mixed at 10: 1 were used.
  • Developer carrier g-1 combined with developer c1 prepared earlier was produced by the following method.
  • First, the following materials were mixed and treated with a horizontal sand mill (glass beads having a diameter of 0.6 mm with a filling rate of 85%) to obtain a primary dispersion h_l.
  • the following materials were mixed and treated with a vertical sand mill (glass beads with a diameter of 0.8 mm filled at 50%) to obtain a secondary dispersion i-11. Further, this dispersion was diluted with methanol to obtain a coating liquid j-11 having a solid content of 37%.
  • the substrate was rotated at 1200 rpm, and an air spray gun (trade name: GP 05-23; manufactured by Mesac Co., Ltd.) was applied while descending at a rate of 30 mm nos.
  • the thickness after curing was 12 / xm.
  • a coating film was formed as follows. Subsequently, the coating film was cured by heating in a hot air drying oven at 150 ° C. for 30 minutes to produce developer carrier intermediate k1-1. Next, the surface of the developer carrier intermediate k1-1 was polished using the apparatus shown in FIG.
  • a tape-like abrasive having a width of 5 cm (trade name: wrapping film sheet # 3000; manufactured by Sumitomo 3EM Co., Ltd.) was used. Then, tape winding speed 15 mmZ seconds, sleeve axial feed speed 3 O mmZ seconds, developer carrier intermediate k 1 1 pressing load 0.2 N, developer carrier intermediate k— Polishing was performed at a rotation speed of 1 at 1000 rpm. Then, developer carrying body g-1 having a specific surface shape shown in Table 6 was obtained.
  • the tape-shaped abrasive is made of aluminum oxide having an average primary particle size of 5 ⁇ as abrasive particles.
  • developer c-1 was introduced as a developer into the electrophotographic image forming apparatus, and the following image evaluation was performed.
  • a print image test of 5 0 0 0 continuous copies of a character image with a printing ratio of 5% was performed with A 4 horizontal feed, and paused for 1 hour. went. After that, up to 49,500 sheets, we performed a continuous copying image-drawing test while temporarily stopping during the replenishment of developer and paper. Furthermore, a continuous copying image print test was performed up to 500,000 sheets, and the image was paused for 1 hour.
  • Image evaluation includes initial image density, initial image quality, density difference before and after pause at 5 00 0, density recovery after pause at 5 00 0, density difference before and after pause at 5 million, 5 Density recovery after a pause of 0,000 sheets, difference in image density between 500,000 sheets and 500,000 sheets, and was judged by the following evaluation method and evaluation criteria.
  • the image evaluation was performed in a normal temperature and humidity environment (23 ° C, 50% RH; N / N).
  • A4 office planner paper manufactured by Canon Sales; 64 g Zm 2 ) was used. The results are shown in Table 7.
  • the image output test a solid image is output at the initial stage, and its density is measured at five points and averaged. The value was taken as the image density, and the relative density for the image of the white background where the document density was 0.00 was measured. From the results, evaluation was made according to the following criteria.
  • the image density was “Macbeth reflection densitometer RD918” (manufactured by Macbeth).
  • A A clear image that does not scatter even when viewed with a magnifying glass with a magnification of 10x.
  • the density difference is less than 0.10.
  • the density difference is 0.20 or more.
  • A Recovered when the image density is 10 or less.
  • the density difference before and after the pause at 500,000 sheets was ranked and evaluated based on the following criteria.
  • A The density difference is less than 0.10.
  • the density difference is from 0.10 to less than 0.15.
  • A Recovered when the image density is 10 or less.
  • the image density before pausing at 10,000 sheets and before pausing at 500,000 sheets was ranked and evaluated based on the following criteria.
  • A The density difference is less than 0.10.
  • the density difference is 0.10 or more and less than 0.15.
  • the density difference is 0.20 or more.
  • the developer used in combination with the developer carrier g-1 was changed as shown in Table 6.
  • Various numerical values representing the surface shape of the developer carrier g-1 in relation to each developer are shown in Table 6.
  • image evaluation was performed in the same manner as in Example 1 except that the electrophotographic image forming apparatus according to each combination was used. The results are shown in Table 7.
  • Developer carrier g-2 combined with developer c-1 was produced as follows. That is, the developer carrier g-1 was the same as the developer carrier g-1, except that the graphitized particles d-1 used in the production of the developer carrier g-1 were changed to graphitized particles d-2. -Manufactured two. Table 6 shows various numerical values representing the surface shape of developer carrier g-2 in relation to developer c-1. Further, image evaluation was performed in the same manner as in Example 1 except that an electrophotographic image forming apparatus in which developer c 1 1 and developer carrier g 1 2 were combined was used. The results are shown in Table 7.
  • Developer carrier g-3 combined with developer c-1 was produced as follows. That is, the developer carrier g-1 was the same as the developer carrier g-1, except that the graphitized particles d-1 used for the production of the developer carrier g-1 were changed to graphitized particles d-3. -Manufactured 3 Various numerical values representing the surface shape of developer carrier g-3 in relation to developer c-1 are shown in Table 6. Further, image evaluation was performed in the same manner as in Example 1 except that an electrophotographic image forming apparatus in which developer c 1 1 and developer carrier g 1 3 were combined was used. The results are shown in Table 7. (Example 1 1)
  • Developer carrier g-9 combined with developer c-1 was produced as follows. That is, a tape-like abrasive having a primary average particle size of 3 / z m (trade name: Lappin Da Film Sheet # 400, manufactured by Sumitomo 3EM Co., Ltd.) was used as the tape-like abrasive. Otherwise, developer carrier g-9 was produced in the same manner as developer carrier g-1. Various values representing the surface shape of developer carrier g-9 in relation to developer c-1 are shown in Table 6. Further, image evaluation was performed in the same manner as in Example 1 except that an electrophotographic image forming apparatus in which developer c 1 1 and developer carrier g-9 were combined was used. The results are shown in Table 7.
  • Developer carrier g-1 10 combined with developer c-1 was produced as follows. That is, a tape-like abrasive having a primary average particle size of 9 ⁇ (trade name: Wrapping Film Sheet # 2 0 00; manufactured by Sumitomo 3EM Co., Ltd.) was used as the tape-like abrasive. Otherwise, developer carrier g-1 0 was produced in the same manner as developer carrier g-1.
  • Various numerical values representing the surface shape of the developer carrier g-1 10 in relation to the developer c 1 are shown in Table 6. Further, image evaluation was performed in the same manner as in Example 1 except that an electrophotographic image forming apparatus in which developer c 1 1 and developer carrier g 1 10 were combined was used. The results are shown in Table 7.
  • a developer carrier g_ 1 2 combined with developer c 1 1 was produced as follows. That is, the conductive spherical carbon particles e-1 used for the production of the developer carrier g-1 described above were changed to conductive spherical carbon particles e-2, 120 parts by mass. Otherwise, a developer carrier g-12 was produced in the same manner as the developer carrier g-1. Table 6 shows various numerical values representing the surface shape of the developer carrier g-12 in relation to the developer c1-1. Further, image evaluation was performed in the same manner as in Example 1 except that an electrophotographic image forming apparatus in which the developer c 1 1 and the developer carrier g_l 0 were combined was used. The result Table 7 shows.
  • a developer carrier g_ 1 1 combined with developer c 1 1 was produced as follows. That is, the conductive spherical carbon particles e-1 used for the production of the developer carrier g-1 described above were changed to conductive spherical carbon particles e-3, 70 parts by mass. Otherwise, a developer carrier g-11 was produced in the same manner as the developer carrier g-1. Various values representing the surface shape of the developer carrier g-11 in relation to the developer c1-1 are shown in Table 6. Further, image evaluation was performed in the same manner as in Example 1 except that an electrophotographic image forming apparatus in which developer c 1 1 and developer carrier g-1 1 were combined was used. The results are shown in Table 7.
  • a developer carrier g_2 2 combined with developer c-1 was produced as follows. That is, the quaternary ammonium salt f-1 used in the production of the developer carrier g_1 was changed to a quaternary ammonium salt f-2. Further, the conductive spherical carbon particle e-1 was set to 30 parts by mass of the conductive spherical carbon particle e-2. Further, a tape-like abrasive having a primary average particle diameter of 3 ⁇ m (trade name: Rubbing film sheet # 400, manufactured by Sumitomo 3EM Co., Ltd.) was used as the tape-like abrasive. Otherwise, a developer carrier g-22 was produced in the same manner as the developer carrier g_l.
  • a developer carrier g_ 2 3 combined with developer c 1 1 was produced as follows. That is, instead of the conductive spherical carbon particles e-2 used for the production of the developer carrier g-22, conductive spherical carbon particles e-3, 125 parts by mass were used. Furthermore, tape-like polishing As the material, a tape-shaped abrasive having a primary average particle size of 9 ⁇ m (trade name: Rubbing film sheet # 2 0 0 0; manufactured by Sumitomo 3EM Co., Ltd.) was used. Otherwise, developer carrier g-2 3 was produced in the same manner as developer carrier g-22. Various numerical values representing the surface shape of the developer carrier g-2 3 in relation to the developer c-1 are shown in Table 6. Further, image evaluation was performed in the same manner as in Example 1 except that an electrophotographic image forming apparatus in which developer c 1 1 and developer carrier g-2 2 were combined was used. The results are shown in Table 7.
  • Developer carrier g-1 15 combined with developer c-1 was produced as follows. That is, the amount of the quaternary ammonium salt f-1 used in the production of the developer carrier g-1 was 12.5 parts by mass, and the amount of the conductive spherical carbon particles e_l was 80 parts by mass. Otherwise, developer carrier g-15 was produced in the same manner as developer carrier g-1. Various values representing the surface shape of developer carrier g-15 in relation to developer c-1 are shown in Table 6. Further, image evaluation was carried out in the same manner as in Example 1 except that an electrophotographic image forming apparatus in which developer c 1 1 and developer carrier g-1 15 were combined was used. The results are shown in Table 7.
  • a developer carrier g_ 1 6 combined with developer c 1 1 was produced as follows. That is, the amount of the quaternary ammonium salt f-1 used in the production of the developer carrying member g-1 was 125 parts by mass, and the amount of the conductive spherical carbon particles e-1 was 115 parts by mass. Otherwise, developer carrier g-16 was produced in the same manner as developer carrier g-1. Various values representing the surface shape of developer carrier g-16 in relation to developer c-1 are shown in Table 6. In addition, image evaluation was performed in the same manner as in Example 1 except that an electrophotographic image forming apparatus in which developer c 1 1 and developer carrier g-16 was used in combination was used. The results are shown in Table 7.
  • Example 1 9-2 2 The developer used in combination with developer carrier g-1 was changed as shown in Table 6.
  • Table 6 shows various numerical values representing the surface shape of developer carrier g-1 in relation to each developer. Further, image evaluation was performed in the same manner as in Example 1 except that the electrophotographic image forming apparatus according to each combination was used. The results are shown in Table 7.
  • a developer carrier g_2 4 combined with developer c-1 was produced as follows. That is, the binder-resin I 1-1 used in the production of the developer carrier g-1 was changed to the binder-resin I-13. Otherwise, developer carrier g-2 4 was produced in the same manner as developer carrier g-1.
  • Various values representing the surface shape of the developer carrier g-2-4 in relation to developer c-1 are shown in Table 6. Further, image evaluation was carried out in the same manner as in Example 1 except that an electrophotographic image forming apparatus in which developer c 1 1 and developer carrier g-2 4 were combined was used. The results are shown in Table 7.
  • Developer carrier g-2 1 combined with developer c_3 was produced as follows. That is, instead of the conductive spherical carbon particles e-1 used in the production of the developer carrier g-1, conductive spherical carbon particles e-2 and 25 parts by mass were used. In addition, a tape-shaped abrasive having a primary average particle size of 9 ⁇ (trade name: Wrapping Film Sheet # 2200; manufactured by Sumitomo 3EM Co., Ltd.) was used as the tape-shaped abrasive. Otherwise, developer carrier g-2 1 was produced in the same manner as developer carrier g-1. Table 6 shows various numerical values representing the surface shape of developer carrier g-21 in relation to developer c-1. Further, image evaluation was performed in the same manner as in Example 1 except that an electrophotographic image forming apparatus in which developer c 1 3 and developer carrier g-2 1 were combined was used. The results are shown in Table 7.
  • Developer carrier g_20 combined with developer c-3 was produced as follows. That is, the conductive spherical carbon particles e-1 used in the production of the developer carrier g-1 Instead, conductive spherical carbon particles e-2, 30 parts by mass were used. Otherwise, a developer carrier g-20 was produced in the same manner as the developer carrier g-1. Table 6 shows various numerical values representing the surface shape of the developer carrier g-20 in relation to the developer c-3. Further, image evaluation was carried out in the same manner as in Example 1 except that an electrophotographic image forming apparatus in which developer c 1 3 and developer carrier g-20 were combined was used. The results are shown in Table 7.
  • Developer carrier g-1 8 combined with developer c 1-2 was produced as follows. That is, instead of the conductive spherical carbon particles e — 1 used in the production of the developer carrier g-1, conductive spherical carbon particles e-3 and 1 25 parts by mass were used. Further, a tape-like abrasive having a primary average particle size of 3 ⁇ m (trade name: wrapping film sheet # 400, manufactured by Sumitomo 3EM Co., Ltd.) was used as the tape-like abrasive. Otherwise, developer carrier g-1 18 was produced in the same manner as developer carrier g-1. Table 6 shows various numerical values representing the surface shape of the developer bearing member g-18 in relation to the developing agent c-12. Further, image evaluation was performed in the same manner as in Example 1 except that an electrophotographic image forming apparatus in which developer c 1 2 and developer carrier g-1 18 were combined was used. The results are shown in Table 7.
  • Developer carrier g-1 9 combined with developer c1-2 was produced as follows. That is, the amount of the conductive spherical carbon particles e-3 used in the production of the developer carrying member g-18 according to Example 26 was 150 parts by mass. Otherwise, developer carrier g- 19 was produced in the same manner as developer carrier g-18. Table 6 shows various numerical values representing the surface shape of the developer carrier g- 19 in relation to developer c-12. Further, image evaluation was performed in the same manner as in Example 1 except that an electrophotographic image forming apparatus in which developer c 1 2 and developer carrier g-19 was used in combination was used. The results are shown in Table 7. (Example 2 8)
  • Developer carrier g-6 combined with developer c-1 was produced as follows. That is, the graphitized particles d-1 used in the production of the developer carrier g-1 were changed to graphitized particles d-4. Also, the 4th grade ammonium salt f _ 1 was changed to 4th grade ammonium salt f 1 2. Otherwise, developer carrier g-6 was produced in the same manner as developer carrier g-1. Table 6 shows various numerical values representing the surface shape of developer carrier g-6 in relation to developer c-1. Further, image evaluation was performed in the same manner as in Example 1 except that an electrophotographic image forming apparatus in which developer c 1 1 and developer carrier g 16 was combined was used. The results are shown in Table 7.
  • Developer carrier g-7 combined with developer c-1 was produced as follows. That is, the graphitized particles d-1 used in the production of the developer carrier g-1 were changed to graphitized particles d-5. In addition, the 4th grade ammonium salt f 1-1 was changed to the 4th grade ammonium salt f 1-2. Otherwise, developer carrier g-7 was produced in the same manner as developer carrier g-1. Table 6 shows various numerical values representing the surface shape of developer carrier g-7 in relation to developer c-1. Further, image evaluation was carried out in the same manner as in Example 1 except that an electrophotographic image forming apparatus in which developer c 1 1 and developer carrier g 1 7 were combined was used. The results are shown in Table 7.
  • Table 9 shows various numerical values representing the surface shape of developer carrier g-1 in relation to each developer. Further, image evaluation was performed in the same manner as in Example 1 except that the electrophotographic image forming apparatus according to each combination was used. The results are shown in Table 9.
  • Example 2 Developer carrier g-6 according to 8 was combined with developer c 1-3.
  • Table 8 shows various numerical values representing the surface shape of the developer carrier g-6 in relation to the developer c-13. Further, image evaluation was performed in the same manner as in Example 1 except that an electrophotographic image forming apparatus in which developer c-1 and developer carrier g-6 were combined was used. The results are shown in Table 9.
  • Developer carrier g-1 10 according to Example 1 2 was combined with developer c1-2.
  • Table 8 shows various numerical values representing the surface shape of developer carrier g-10 in relation to developer c-12. Further, image evaluation was carried out in the same manner as in Example 1 except that an electrophotographic image forming apparatus in which developer c-12 and developer carrier g-10 were combined was used. The results are shown in Table 9.
  • developer carrier g-1 In the same manner as in Example 1, developer carrier g-1 3 was produced. Table 8 shows various numerical values representing the surface shape of the developer carrier g- 13 in relation to the developer c-2. Further, image evaluation was performed in the same manner as in Example 1 except that an electrophotographic image forming apparatus in which developer c-2 and developer carrier g-13 were combined was used. The results are shown in Table 9.
  • developer carrier g-1 14 was produced in the same manner as developer carrier g-1.
  • Table 8 shows various numerical values representing the surface shape of developer carrier g-1 4 in relation to developer c-3. Further, image evaluation was carried out in the same manner as in Example 1 except that an electrophotographic image forming apparatus in which developer c 1 3 and developer carrier g-1 14 were combined was used. The results are shown in Table 9.
  • Developer carrier g-2 2 according to Example 1-5 was combined with Developer c 1-3.
  • Table 8 shows various numerical values representing the surface shape of the developer carrier g-22 in relation to the developer c-3. Further, image evaluation was performed in the same manner as in Example 1 except that an electrophotographic image forming apparatus in which developer c 1 3 and developer carrier g-2 2 were combined was used. The results are shown in Table 9.
  • Developer carrier g-2 3 according to Example 16 was combined with developer c-2.
  • Table 8 shows various numerical values representing the surface shape of developer carrier g-2 3 in relation to developer c-2. Further, image evaluation was performed in the same manner as in Example 1 except that the electrophotographic image forming apparatus in which the developer c_2 and the developer carrier g-2 3 were combined was used. The results are shown in Table 9.
  • developer carrier g _ 1 Without using the quaternary ammonium salt used in the production of developer carrier g _ 1 The amount of the spherical carbon particles e-1 was 80 parts by mass. Otherwise, a developer carrier g-17 was produced in the same manner as the developer carrier g-1. Table 8 shows various numerical values representing the surface shape of the developer carrier g-17 in relation to the developer c-11. Further, image evaluation was performed in the same manner as in Example 1 except that an electrophotographic image forming apparatus in which developer c-1 and developer carrier g-17 were combined was used. The results are shown in Table 9.
  • Developer carrier g_ 2 5 was changed in the same manner as developer carrier g-1 except that binder one resin I 1-1 used in the production of developer carrier g-1 was changed to binder one resin I 1-2.
  • Table 8 shows various numerical values representing the surface shape of the developer carrier g-25 in relation to the developer c1-1. Further, image evaluation was performed in the same manner as in Example 1 except that an electrophotographic image forming apparatus in which developer c-1 and developer carrier g 1 25 was combined was used. The results are shown in Table 9.
  • Example 1 c-1 gi 0.38 0.84 18 14
  • Example 2 c-8 gi 0.45 0.75 19 22.6
  • Example 3 C- 9 g- 1 0.36 0.93 15 6.6
  • Example 4 c-4 gi 0.38 0.83 18 12.8
  • Example 5 c-5 0.39 0.84 19 1 6
  • Example 6 c-7 R-1 0.4 0.85 19 16.4
  • Example 7 c-2 g-1 0.45 0.76 21 22.8
  • Example 8 c -3 g-1 0.35 0.94 16 6.2
  • Example 9 c-1 R-2 0.38 0.87 18 13.8
  • Example 10 c-1 R-3 0.37 0.85 17 13.8
  • Example 12 c-1 R-10 0.48 0.79 1 1 29.2
  • Example 13 c-1 R-12 0.37 0.68 17 23.2
  • Example 14 c-1 R-1 1 0.38 1.18 14 1 1.2
  • Example 1 5 c-1 R -22 0.25 0.65 15 13.6
  • Example 1 6 c-1 R-23 0.54 0.95 18 20.0
  • Example 1 7 c-1 g-15 0.37 0.8 19 16.8
  • Example 1 8 c-1 g-16 0.39 0.9 18 15.2
  • Example 1 9 c-6 g-1 0.4 0.85 17 16.8
  • Example 20 c-10 gi 0.39 0.83 18 15.6
  • Example 21 c-1 1 gi 0.39 0.84 17 14.4
  • Example 22 c-12 gi 0.38 0.84 17 14.4
  • Example 23 c -1 R-24 0.041 0.072 18 20.8
  • Example 24 c-3 R-21 0.35 0.73 10 9.48
  • Example 25 c-3 R-20 0.34 0.74 8 8.96
  • Example 26 c-2 R-18 0.43

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)

Abstract

休止時間を設けた不連続な印字モードにおいても、画像濃度の変動を抑制することが出来る現像装置を提供する。該現像装置は、感光ドラムに形成された静電潜像を現像する現像剤と、該現像剤を担持・搬送する現像剤担持体と、該現像剤担持体に担持・搬送された現像剤の量を規制するために該現像剤担持体に近接して配置された現像剤層厚規制手段を少なくとも有する。該現像剤として、結着樹脂及び磁性酸化鉄粒子を少なくとも含有する磁性トナー粒子を有し、かつ、特定の飽和磁化、重量平均粒径および組成を有する負帯電性の一成分磁性トナーを用いる。該現像剤担持体として、バインダー樹脂と、第4級アンモニウム塩と、黒鉛化粒子と、導電性球状樹脂粒子とを含む表面層を具備し、かつ、特定の表面形状を有する現像剤担持体を用いる。

Description

現像装置、 電子写真画像形成装置
技術分野
本発明は、 感光体又は静電記録誘導体等の静電潜像担持体上に形成された静 電潜像を現像するために用いられる現像装置、 及び電子写真画像形成装置に関 明
するものである。 書
背景技術
電子写真法は、 一般的に光導電性物質を利用し、 種々の手段により静電潜像 担持体 (感光体ドラム) 上に静電潜像を形成する。 次いで現像領域に現像バイ ァスを作用させ、 該静電潜像を現像剤にて現像してトナー像を形成し、 必要に 応じて紙の如き転写材にトナー像を転写した後、 熱 ·圧力により転写材にトナ 一画像を定着して複写物を得る。 電子写真法における現像方法は、 主としてキ ャリァが不要な一成分現像方法とキヤリァを有する二成分現像方法に分けられ る。 一成分現像方法を用いた現像装置は、 キャリアが不要なため、 トナー劣化 によるトナー交換を少なくすることができると共に、 現像装置にトナーとキヤ リァの濃度調整機構等が不必要なため、 現像装置自体を小型化 ·軽量化できる という利点がある。
ところで、 特開 2 0 0 5— 1 5 7 3 1 8は、 複写物の更なる高画質化のため に、 現像剤 (トナー) の微粒子化、 並びに現像剤の飽和磁化を小さくすること を開示している。
しかし、 磁性体量を少なくし、 且つ現像剤の微粒子化を行った場合、 現像剤 が現像スリーブ表面との鏡映力により不動状態となり、 現像スリーブ上から感 光ドラム上の潜像に現像されにくくなる、 所謂チャージアップ現象が起こりや すくなる。 その結果、 画像濃度低下を招来することがある。
現像剤のチャージァップ対策として、 特開 2 0 0 3 _ 3 2 3 0 4 2は、 黒鉛 化度 P ( 0 0 2 ) が 0 . 2 0〜0 . 9 5であり且つ押し込み硬さ値 HU T [ 6 8 ] が 1 5〜6 0である黒鉛化粒子を樹脂層に含有する現像剤担持体を提案し ている。 黒鉛化粒子の持つ、 現像剤への迅速且つ安定した帯電付与性を高める 効果により、 現像剤のチャージアップが良化する。
し力 し、 本発明者らの検討によれば、 小粒径かつ飽和磁化が小さい一成分磁 性トナーを用いた場合において、 所定の印字モードで電子写真画像を形成した ときに図 6に示すように、 休止後の画像濃度が休止前と比較して大きく変動す る現象が発生した。 ここで所定の印字モードとは、 1 0 0 0枚以上の連続耐久 後、 3 0分から 2時間の休止時間を設けて、 再度 1 0 0 0枚以上の連続耐久を 行う印字条件である。 この印字モードで電子写真画像を形成すると、 休止前の 画像濃度に比べて、 休止後 1枚目の画像濃度が非常に濃くなることが分かつた。 また、 画像濃度は、 その後に連続して画像形成を行うことで徐々に休止前の画 像濃度に戻ることが分かった。 発明の開示
そこで本発明の課題は、 上記したような不規則な画像濃度の変動を抑制する ことのできる現像装置、 並びに電子写真画像形成装置を提供することにある。 上記した休止後に生じる画像濃度の増大について本発明者らの検討の結果、 現像剤のチャージアップとの相関を見出した。 すなわち、 連続耐久によりチヤ ージアップした現像剤が、 休止時間を設けることで、 鏡映力が弱まり、 休止後 の印字時に現像剤が現像されやすくなり、 結果画像濃度が濃くなつたものと考 察した。
本発明者らは、 上記の考察に基づき検討を重ねた結果、 特定の現像剤と特定 の表面形状を有する現像剤担持体との組み合わせが上記の課題の解決に有効で あることを見出した。
即ち、 本発明にかかる現像装置は、 静電潜像を形成するための感光体ドラム と、 該静電潜像を現像する現像剤と、 該現像剤を担持,搬送する現像剤担持体 と、 該現像剤担持体に担持 ·搬送された現像剤の量を規制するために該現像剤 担持体に近接して配置された現像剤層厚規制手段を少なくとも有する現像装置 において、 該現像剤は、 結着樹脂及び磁性酸化鉄粒子を少なくとも含有する磁 性トナー粒子を有し、 磁場 795. 8 k AZmにおける飽和磁ィ匕が 20 Am2/ k g以上 40 Am2Zk g以下であり、 重量平均粒径 (D4) が 4. 0 /z m以上 8. 0 μ m以下であり、 かつ、 該磁性酸化鉄粒子が、 F e元素溶解率が 10質 量%となるまでに溶解された総 F e量に占める F e (2+) の割合 Xが 34% 以上 50 %以下である負帯電性の一成分磁性トナーであり、 該現像剤担持体は、 少なくとも、 基体と、 該基体上に形成された表面層としての樹脂層と、 該基体 内部に配設された磁性部材とを有しており、 該樹脂層は、 該現像剤を負に摩擦 帯電させるものであって、 構造中に一 NH2基、 ==NH基、 および一 NH—結合 力 ら選ばれる少なくとも 1つを有しているバインダー樹脂と、 該樹脂層の該現 像剤に対する負摩擦帯電付与性を低下させる第 4級アンモニゥム塩と、 黒鉛化 度 p (002) が 0. 22≤p (002) ≤ 0. 75である黒鉛化粒子と、 該 樹脂層表面に凹凸を付与する粒子としての体積平均粒径が 4. 0 μπι乃至 8. 0 μ mの導電性球状炭素粒子とを含有し、 該現像剤担持体の前記現像剤を担持 する部分の全域が、 該現像剤担持体の表面における 1辺が 0. 5 Ommの正方 形の領域について該正方形の一辺と平行な 725本の直線と、 該直線と直交す る 725本の直線とで等分したときの各直線の交点で測定される 3次元高さの 平均値 (H) を基準として高さが D4Z4を越える独立した凸部を複数個有し、 該凸部の該高さ D4Z 4における面積の総和が該領域の面積の 5%以上 30% 以下であり、 該凸部のみから求められる算術平均粗さ R a (A) が 0. 25 m以上 0. 55 /zm以下であり、 かつ、 該凸部を除いて求められる算術平均粗 さ R a ( B ) が 0 . 6 5 μ πι以上 1 . 2 0 μ m以下である表面形状を有してい ることを特徴とする。
また本発明にかかる電子写真画像形成装置は、 上記の現像装置を具備してい ることを特徴とする。
以上説明したように、 本発明によれば、 休止時間を設けた不連続な印字モー ドにおいても、 画像濃度の変動を抑制することが出来る。 図面の簡単な説明
図 1は、 本発明の現像装置の実施形態を示す模式図である。
図 2は、 共焦点光学系レーザー顕微鏡の模式図である。
図 3は、 合焦時の共焦点光学系レーザー顕微鏡のレーザー光の様子を示した 模式図である。
図 4は、 非合焦時の共焦点光学系レーザー顕微鏡のレーザー光の様子を示し た模式図である。
図 5は、 本発明における磨き加工装置の一例の断面を示した模式図である。 図 6は、 休止時間を設けた不連続な印字モードにおける画像濃度の推移につ いての説明図である。
図 7は、本発明にかかる現像剤担持体の樹脂層の表面の単位面積における [H + (D 4/ 4 ) ] の高さでの切断面を模式的に示した平面図である。
図 8は、 図 7における線分 8— 8での切断面を模式的に示した断面図である。 図 9は、 実施例において初期画質の評価に用いた画像の説明図である。 発明を実施するための最良の形態
本発明者らは、 休止時間を設けた不連続な印字モードの検討を進めた結果、 1 0 0 0枚以上の連続耐久後に 3 0分間から 2時間の休止時間を設けることで、 休止前後の画像濃度に差が生じやすいことを見出した。 この時の濃度差は、 図 6に示すように、 連続印字耐久の休止前の画像濃度より休止後に再スタートし た時の画像濃度が高くなり、 およそ 1 0 0 0枚の連続印字で休止前の画像濃度 に戻る現象である。
本発明においては、 休止前後の画像濃度の変動を抑制させるベく、 現像剤の 電気的特性と現像剤担持体の構成材料及び表面形状について検討を行った。 画像濃度の変動を抑制させるためには、 現像剤の摩擦帯電量を一定にするこ とが有効である。 つまり、 現像剤の摩擦帯電を迅速に行い、 且つ過剰な摩擦帯 電を抑制することが有効である。
そこで、本発明者等は、現像剤の磁性酸化鉄粒子と現像剤担持体の構成材料、 及び現像剤の粒径と現像剤担持体の表面形状の関係に着目し、 鋭意検討を進め た。 その結果、 特定の現像剤と特定の現像剤担持体とを組み合わせた現像装置 が前記画像濃度の変動をより良く抑制できることを見出した。 以下、 好ましい 実施の形態を挙げて本発明について詳述する。
まず、 本発明にかかる現像装置についての概略断面を示した図 1を用いて説 明する。 本発明にかかる現像装置は、 以下のものを具備している。
•現像剤 1 1 6 ;
•該現像剤を収容している容器 (現像容器) 1 0 9 ;
'該現像剤を担持し、 現像領域 D ^搬送するための現像剤担持体 1 0 5 ;
•該現像剤担持体に担持 ·搬送された現像剤の量を規制するために該現像剤担 持体に近接して配置された現像剤層厚規制部材 (磁性ブレード) 1 0 7。
そして、 この現像装置は、 磁性ブレード 1 0 7により前記現像剤担持体 1 0 5上に現像剤の層を形成しながら現像剤担持体 1 0 5上の現像剤を静電潜像担 持体 1 0 6と対向する現像領域 D と搬送する。 次いで前記静電潜像担持体 1 0 6の静電潜像を搬送された現像剤により現像し、 トナー像を形成する。
く現像剤 >
現像剤は、 結着樹脂と、 磁性酸化鉄粒子を含有する磁性卜ナ一粒子とを有し ており、 かつ以下の各要件 (A1) 〜 (A3) を満たしている負帯電性の一成 分磁性トナーである。
(A1) 磁場 795. 8 k AZmにおける飽和磁化が 20 Am2/k g以上 40 AmVk g以下であること。
(A2) 重量平均粒径 (D4) が 4. Ο μπι以上 8. Ο πι以下であること。
( A 3 ) 該磁性酸化鉄粒子が、 F e元素溶解率が 10質量。 /0となるまでに溶解 された総 F e量に占める F e (2+) の割合 Xが 34 %以上 50 %以下である こと。
<<要件 (A1) >>
飽和磁化量が 40 AmVk gを超える場合には、磁性酸化鉄粒子を比較的多 量に添加する必要があり、 トナー粒子間での磁気的凝集性により必要過多の現 像剤が現像されやすくなり、 飛び散りの如き画像不良が発生しやすくなる。 一 方、 飽和磁化量が 20 Am2Zk g未満の場合には、 磁性部材による磁気的拘束 力が弱まる為、 現像剤担持体による搬送力の低下及び不安定化が生じやすく、 飛び散りの如き画像不良が発生しやすくなる。
<<要件 (A2) 〉>
本発明にかかる負帯電性の一成分磁性トナーは、 重量平均粒径 (D4) が 4. 0 μπι以上 8. Ομπι以下である。 重量平均粒径 (D4) が 4. 0 μ m未満の場 合は、 トナー粒子一粒当たりに含有する磁性粉体の量が相対的に減少するため 磁性酸化鉄粒子の使用の効果が少なくなる。 また、 トナー粒子の表面積が増え ることにより、 連続耐久時の現像剤のチャージアップが生じやすくなる。 その ため、休止前後の画像濃度の変動の抑制に不利となる。 一方、 重量平均粒径 (D 4) が 8. 0 / mを超える場合にはトナー粒子の表面積が減ることにより、 現像 剤の帯電量不足が起こりやすくなる。 そのため、 画像濃度の変動や低下の抑制 に不利となる。
<<要件 (A3) >> 要件 (A3) に関して、 F e元素溶解率とは磁性酸化鉄粒子を表面から溶解 させていったときの溶解の程度を表す指標である。 F e元素溶解率が、 0質量% の状態とは、 磁性酸化鉄粒子が全く溶解されていない状態である。
F e元素溶解率が 10質量%の状態とは、 磁性酸化鉄粒子の総 F e量に対し て 90質量%の F eが残存するようにその表面が溶解された状態である。 した がって、 F e元素溶解率が 10質量%となるまでに溶解された総 F e量とは、 磁性酸化鉄粒子の、 溶解された領域に存在している総 F e量を意味する。 そし て、 割合 Xとは、 その総 F e量に占める F e (2+) の割合である。
なお、 F e元素溶解率が 100質量%とは、 磁性酸化鉄粒子が完全に溶解さ れた状態である。
割合 Xが 34%未満の場合は、 連続耐久時の現像剤のチャージアップが起こ りやすく、 休止前後の画像濃度の変動が生じやすい。 割合 Xが 50%を超える と、 酸化の影響を受けやすく、 同様に画像濃度の変動が生じやすい。
また、該磁性酸化鉄粒子は、 以下で定義される Xと Yとの比 (XZY) が 1. 00超で且っ1. 30以下であることが好ましい。
X:全 F e量に対して F e元素溶解率が 10質量%のときの、 溶解された総 F e量に対する F e (2+) (以下 「表面の F e (2+)j とも称す) の割合; Y:残りの 90質量%中における総 F e量に対する F e (2+) (以下 「内部の F e (2+)j とも称す) の割合。
比 XZYは、 磁性酸化鉄粒子の表面と内部との F e (2+) 存在割合比を示 している。 比 XZYが 1. 00超の場合、 磁性酸化鉄粒子の内部より、 表面の 方が、 割合として F e (2+) 量が多いため、 現像剤のチャージアップを抑制 する効果がより高まる。 また、 比 XZYが 1. 30以下の場合、 磁性酸化鉄粒 子の内部の F e (2+) 量も適当となる為、 F e (2+) 量のバランスが大き くは崩れず、 摩擦帯電性が安定しやすい。
表面の F e (2+) 量を高めた磁性酸化鉄粒子を有する現像剤に用いること で、 上記の効果が得られることは、 理論的には未だ明らかでないが以下のよう に推察される。
表面の F e (2+) 量を本発明で規定した範囲内とした磁性酸化鉄粒子を現 像剤に用いることで、 F e (2+) と F e (3+) との電荷授受が磁性酸化鉄 粒子の表面近傍で効率的に行われる。 その結果、 磁性酸化鉄粒子中の電荷移動 がスムーズになり、 現像剤としての摩擦帯電性がより安定化すると考えられる。 そして、 本発明に用いられる現像剤担持体との相乗効果により、 画像濃度の変 動を抑制することが出来る。
また、 表面の F e (2+) の割合 Xをより安定的に本発明の範囲内に制御す るには、 磁性酸化鉄粒子中に金属元素を含有させてコア粒子とし、 コア粒子表 面に各種金属元素を含む被覆層を形成することが好ましレ、。 金属元素の中でも、 磁性酸化鉄粒子の内部にケィ素を含有し、 磁性酸化鉄粒子の表面にケィ素及び アルミニウムを含む被覆層を形成させることが、 本発明に用いられる現像剤担 持体との摩擦帯電性が安定する為、 特に好ましい。
コア粒子に含まれるケィ素の量は、 磁性酸化鉄粒子全体に対し、 ケィ素元素 として 0. 20質量%以上1. 50質量%以下であることが好ましく、 より好 ましくは、 0. 25質量%以上、 1. 00質量%である。 該被覆層に含まれる ケィ素の量が磁性酸化鉄粒子の全体に対し、 S i元素として 0. 05質量%以 上 0. 50質量。 /0以下であることが好ましい。 さらに、 被覆層に含まれるアル ミニゥムの量が磁性酸化鉄粒子の全体に対しアルミニウム元素として 0. 05 質量%以上 0. 50質量%以下であることが好ましく、 より好ましくは 0. 1 0質量%以上、 0. 25質量%以下である。 金属元素の含有量を、 上記範囲に することで、 本発明に用いられる現像剤担持体との摩擦帯電性が安定しゃすレ、。 また、 本発明で使用する磁性酸化鉄粒子は、 磁性トナー粒子中 の分散性や黒 味の面から、 八面体状であることがより好ましい。
本発明で使用する磁性酸化鉄粒子は、平均一次粒子径が 0. 10 μ m以上 0 · 30 μπι以下であることが好ましく、 より好ましくは 0. 10 / 111以上0. 2 0 m以下である。 磁性酸化鉄粒子の平均一次粒子径を 0. 20 μη以下とす ることで磁性トナー粒子中に磁性粉が均一に分散されやすく、 現像剤のチャ一 ジアップを抑制する効果がより高まる。 また、 磁性酸化鉄粒子の平均一次粒子 径を 0. 10 μπι以上とすることで F e ( 2 +) の酸化を抑制しやすくなり、 F e (2+) の量を安定的に制御しやすくなる。
また、 磁性酸化鉄粒子は、 外部磁場 795. 8 k A,mにおける磁化の値が 86. OAm2 k g以上であることが好ましく、 より好ましくは 87. 0 Am 2Zk g以上である。 この場合、 現像スリーブ上における磁気穂立ちの形成が特 に良好となり、 良好な現像性が得られる。
磁性酸化鉄粒子の含有量は、 現像剤の結着樹脂 100質量部に対して、 20 質量部以上 150質量部以下の量で用いられるのが好ましく、 より好ましくは 50質量部以上 120質量部以下である。 この範囲内にすることで、 現像剤の 飽和磁化量を所望の値に制御しやすくなる。
<<製造方法 >>
本発明で用いられる磁性酸化鉄粒子の製造方法は、 一般的なマグネタイト粒 子の製造方法を用いることができるが、 特に好ましい製造方法を以下に具体的 に説明する。
本発明に用いる磁性酸化鉄粒子は、 第一鉄塩水溶液とアルカリ溶液とを中和 混合して得られた水酸ィヒ第一鉄スラリ一を酸化して製造することができる。 第一鉄塩としては、 水可溶性塩であれば利用でき、 硫酸第一鉄、 塩化第一鉄 を挙げることができる。 そして、 好ましくは、 この第一鉄塩に、 最終的な磁性 酸化鉄粒子総量に対して、 ケィ素元素換算で 0. 20質量%以上 1. 50質量% 以下となるように水溶性ケィ酸塩 (例えばケィ酸ナトリウム) を添加し、 混合 する。
次に、 得られたケィ素成分を含有する第一鉄塩水溶液とアル力リ溶液とを中 和混合して、 水酸化第一鉄スラリーを生成させる。 ここでアルカリ溶液は、 水 酸化ナトリゥム水溶液や水酸化力リゥム水溶液の如き水酸化アルカリ水溶液を 用いることが出来る。
水酸化第一鉄スラリーを生成させる際のアルカリ溶液量は、 求める磁性酸化 鉄粒子の形状に応じて調整すればよい。 具体的には、 水酸化第一鉄スラリーの pHが 8. 0未満となるように調整すれば球状粒子が得られる。 また、 pH8. 0以上 9. 5以下となるように調整すれば六面体状粒子が得られ、 pH9. 5 を超えるように調整すれば八面体状粒子が得られるので、 適宣調整する。
こうして得られた水酸化第一鉄スラリ一から酸化鉄粒子を得るために、 酸化 性ガス、 好ましくは空気をスラリー中に吹き込みながら酸化反応を行う。 酸化 性ガスの吹込み中はスラリーを加熱して、 60〜100°C、 特に 80〜95°C に保つことが好ましい。
磁性酸化鉄粒子における割合 Xを本発明の範囲内に制御するには、 前記の酸 化反応を制御することが重要である。 具体的には、 水酸化第一鉄の酸化の進行 に合わせて酸化性ガスの吹き込み量を漸次減少させ、 最終段階での吹き込み量 を少なくすることが好ましい。 このように多段階の酸化反応を行うことで酸化 鉄粒子の表面の F e (2+) 量を選択的に高めることが可能となる。 酸化性ガ スとして空気を用いる場合には、 鉄元素 100モルを含有するスラリーに対し て、 吹き込み量を以下のように制御することが好ましい。 尚、 吹き込み量は、 下記の範囲で、 漸次減少させる。
•水酸化第一鉄の 50%が酸化鉄となるまで: 10〜80リツトル Zm i n、 好ましくは 10〜 50リツトル Zm i n ;
•水酸化第一鉄の 50%より高く 75%以下が酸化鉄となるまで: 5〜50リ ッ トル i n、 好ましくは 5〜 30リ ツ トル Zm i n ;
'水酸化第一鉄の 75%より高く 90%以下が酸化鉄となるまで: 1〜30リ ットル/ m i n、 好ましくは 2〜 20リツトノレ Zm i n ; •水酸化第一鉄の 9 0 %超が酸化鉄である段階: 1 〜 1 5リツトル i n、 特に 2〜 8リッ トル Zm i n。
次に、 得られた酸化鉄粒子のスラリーにケィ酸ナトリゥム水溶液と硫酸アル ミニゥム水溶液を同時に投入し、 P Hを 5以上 9以下に調整し、 粒子の表面に ケィ素及びアルミニウムを含む被覆層を形成する。 得られた被覆層を有する磁 性酸化鉄粒子のスラリーに対して、 常法のろ過、 洗浄、 乾燥、 粉砕処理を行い、 磁性酸化鉄粒子を得る。 また、 磁性酸化鉄粒子は磁性トナー粒子中 の微分散 性を向上させる目的で、 製造時のスラリーにせん断をかけ、 磁性酸化鉄粒子を ー且ほぐす処理を施すことが好ましい。
次に、 結着樹脂について記載する。 結着樹脂としては、 以下のものを用いる ことができる。 スチレン系樹脂、 スチレン系共重合樹脂、 ポリエステル樹脂、 ポリオール樹脂、 ポリ塩化ビュル樹脂、 フエノール樹脂、 天然変性フエノール 樹脂、 天然樹脂変性マレイン酸樹脂、 アクリル樹脂、 メタクリル樹脂、 ポリ酢 酸ビエル、 シリコーン樹脂、 ポリウレタン樹脂、 ポリアミ ド樹脂、 フラン樹脂、 エポキシ樹脂、 キシレン樹脂、 ポリビュルプチラール、 テルペン樹脂、 クマ口 ンインデン樹脂、 石油系樹脂。 中でも好ましく用いられる樹脂として、 スチレ ン系共重合樹脂、 ポリエステル樹脂、 ポリエステル樹脂とスチレン系共重合榭 脂との混合物、 またはポリエステル樹脂とスチレン系共重合樹脂とがー部反応 したハイプリッド樹脂。
ポリエステル樹脂、 或いは上記ハイブリッド樹脂におけるポリエステル系ュ ニットを構成するモノマーとしては、 以下の化合物が挙げられる。
アルコール成分としては、 以下のものが挙げられる。 エチレングリコール、 プロピレングリ コーノレ、 1 , 3—ブタンジォーノレ、 1 , 4一ブタンジオール、 2 , 3—ブタンジオール、 ジエチレングリコーノレ、 トリエチレングリコー^/、 1 , 5—ペンタンジォーノレ、 1 , 6—へキサンジォーノレ、 ネオペンチノレグリコ ール、 2—ェチル一 1 , 3—へキサンジオール、 水素ィ匕ビスフェール A、 下記 構造式 (1 ) で表されるビスフエノール誘導体及び下記構造式 (2 ) 式で示さ れるジオール類。
Figure imgf000014_0001
(上記構造式 (1 ) 中、 Rはエチレンまたはプロピレン基を示し、 X及び yは それぞれ 1以上の整数であり、 かつ x + yの平均値は 2〜1 0である。)。
Figure imgf000014_0002
酸成分としては、 以下のものが挙げられる。 フタル酸、 テレフタル酸、 イソ フタル酸、 無水フタル酸の如きベンゼンジカルボン酸類またはその無水物; こ はく酸、 アジピン酸、 セバシン酸、 ァゼライン酸の如きアルキルジカルボン酸 類またはその無水物;炭素数 6以上 1 8未満のアルキル基またはアルケニル基 で置換されたこはく酸もしくはその無水物; フマル酸、 マレイン酸、 シトラコ ン酸、 ィタコン酸の如き不飽和ジカルボン酸またはその無水物。
また、 ポリエステル樹脂或いはポリエステル系ユニットは、 三価以上の多価 カルボン酸またはその無水物及び または三価以上の多価アルコールによる架 橋構造を含むことが好ましい。 三価以上の多価カルボン酸またはその無水物と しては、 以下のものが挙げられる。 1 , 2 , 4 _ベンゼントリカルボン酸、 1 , 2, 4—シクロへキサントリカルボン酸、 1 , 2, 4一ナフタレントリカ^^ボ ン酸、 ピロメリット酸及びこれらの酸無水物または低級アルキルエステル。 三 価以上の多価アルコールとしては、 以下のものが挙げられる。 1 , 2 , 3—プ 口パントリオール、 トリメチロールプロパン、 へキサントリオール、 ペンタエ リスリ トール。
中でも、 環境変動による摩擦安定性が高いために、 1 , 2, 4—ベンゼント リカルボン酸及びその無水物の如き芳香族系アルコールが特に好ましい。
スチレン系共重合樹脂或いはハイプリッド樹脂のスチレン系共重合樹脂ュニ ットを構成するビュル系モノマーとしては、 次の化合物が挙げられる。
スチレン; o—メチノレスチレン、 m—メチノレスチレン、 p—メチルスチレン、 p—メ トキシスチレン、 p—フエニノレスチレン、 p—クロノレスチレン、 3 , 4 —ジクロノレスチレン、 p—ェチノレスチレン、 2, 4—ジメチノレスチレン、 p— n—ブチノレスチレン、 p— t e r t—プチノレスチレン、 p _ n _へキシルスチ レン、 p— n—ォクチノレスチレン、 p— n—ノニノレスチレン、 p _ n—デシノレ スチレン、 p— n—ドデシルスチレンの如きスチレン及びその誘導体;ェチレ ン、 プロピレン、 ブチレン、 イソブチレンの如きスチレン不飽和モノォレフィ ン類;ブタジエン、 ィソプレンの如き不飽和ポリェン類;塩化ビュル、 塩化ビ ニリデン、臭化ビュル、 フッ化ビニルの如きハロゲン化ビュル類;酢酸ビニル、 プロピオン酸ビニル、 ベンゾェ酸ビニルの如きビニルエステル類;メタクリル 酸メチル、 メタクリル酸ェチル、 メタクリル酸プロピル、 メタクリル酸 n—ブ チル、 メタクリル酸ィソブチル、 メタクリル酸 n—オタチル、 メタタリル酸ド デシル、 メタクリル酸 2—ェチルへキシル、 メタクリル酸ステアリル、 メタク リノレ酸フエニル、 メタクリノレ酸ジメチノレアミノエチル、 メタクリル酸ジェチル アミノエチルの如き α—メチレン脂肪族モノカルボン酸エステル類;ァクリル酸 メチル、 アクリル酸ェチル、 アクリル酸 η—ブチル、 アクリル酸イソブチル、 アクリル酸プロピル、 アクリル酸 η—ォクチル、 アクリル酸ドデシル、 ァクリ ノレ酸 2—ェチルへキシル、 アクリル酸ステアリル、 アクリル酸 2 _クロルェチ ノレ、ァクリル酸フエニルの如きァクリル酸エステル類;ビュルメチルエーテル、 ビニノレエチルエーテル、 ビ二/レイソプチ/レエーテノレの如きビニルエーテル類; ビニルメチルケトン、 ビニルへキシルケトン、 メチルイソプロぺニルケトンの 如きビニルケトン類; N -ビュルピ口ール、 N—ビュル力ルバゾール、 N -ビ ニノレインドール、 N—ビニルピロリ ドンの如き N—ビニル化合物; ビュルナフ タリン類;アクリロニトリル、 メタクリロニトリル、 ァクリルアミ ドの如きァ クリル酸もしくはメタクリル酸誘導体。
さらに、 以下のものが挙げられる。 マレイン酸、 シトラコン酸、 ィタコン酸、 アルケニルコハク酸、 フマル酸、 メサコン酸の如き不飽和二塩基酸;マレイン 酸無水物、 シトラコン酸無水物、 ィタコン酸無水物、 アルケニルコハク酸無水 物の如き不飽和二塩基酸無水物;マレイン酸メチルハーフエステル、 マレイン 酸ェチルハーフエステル、 マレイン酸ブチルハーフエステル、 シトラコン酸メ チノレハーフエステノレ、 シトラコン酸ェチノレハーフエステノレ、 シトラコン酸ブチ ルハーフエステル、 ィタコン酸メチルハーフエステル、 アルケニルコハク酸メ チノレノヽーフエステノレ、 フマノレ酸メチノレノヽーフエステノレ、 メサコン酸メチノレハー フェステルの如き不飽和二塩基酸のハーフエステル; ジメチルマレイン酸、 ジ メチルフマル酸の如き不飽和二塩基酸エステル; ァクリル酸、 メタクリル酸、 クロ トン酸、 ケィヒ酸の如き α, β—不飽和酸; クロトン酸無水物、 ケィヒ酸無 水物の如き α, β—不飽和酸無水物、該 α, β—不飽和酸と低級脂肪酸との無水物; アルケニルマロン酸、 ァルケニルダルタル酸、 アルケニルアジピン酸、 これら の酸無水物及びこれらのモノエステルの如きカルボキシル基を有するモノマー。 さらに、 2—ヒ ドロキシェチルアタリ レート、 2—ヒ ドロキシェチルメタク リ レート、 2—ヒ ドロキシプロピルメタクリ レートの如きァクリル酸またはメ タクリル酸エステル類; 4 _ ( 1ーヒ ドロキシー 1—メチルブチル) スチレン、 4— ( 1ーヒ ドロキシ一 1 —メチノレへキシノレ) スチレンの如きヒ ドロキシ基を 有するモノマーが挙げられる。
スチレン系共重合樹脂或いはスチレン系共重合樹脂ュニットは、 ビニル基を
2個以上有する架橋剤で架橋された架橋構造を有してもよい。 この場合に用レ、 られる架橋剤としては、 以下のものが挙げられる。 芳香族ジビニル化合物 (ジ ビエルベンゼン、 ジビニルナフタレン) ; アルキル鎖で結ばれたジァクリレート 化合物類 (エチレングリコールジアタリレート、 1 , 3—ブチレングリコール ジアタリレート、 1, 4 _ブタンジォーノレジァクリレート、 1, 5—ペンタン ジオー^ ^アタリレート、 1 , 6—へキサンジォー ジアタリレート、 ネオペン チルダリコールジァクリレート、 及び以上の化合物のァクリレートをメタタリ レートに代えたもの) ;エーテル結合を含むアルキル鎖で結ばれたジァクリレー ト化合物類 (例えば、 ジエチレングリコールジアタリレート、 トリエチレング リコールジアタリレート、 テトラエチレングリコールジアタリレート、 ポリエ チレングリコール # 4 0 0ジァクリレート、 ポリエチレンダリコール # 6 0 0 ジアタリレート、 ジプロピレングリコールジアタリレート、 及び以上の化合物 のァクリレー卜をメタクリレートに代えたもの) ;芳香族基及びエーテル結合を 含む鎖で緒ばれたジアタリレート化合物類 [ポリオキシエチレン (2 ) - 2 , 2—ビス (4ヒ ドロキシフエニル) プロパンジアタリ レート、 ポリオキシェチ レン (4 ) ー 2, 2—ビス (4ヒ ドロキシフェニ^^) プロパンジァクリ レート、 及び以上の化合物のァクリレートをメタクリレートに代えたもの];ポリエステ ル型ジァクリレート化合物類 (日本化薬社製 「MA N D A」)。
多官能の架橋剤としては、 以下のものが挙げられる。 ペンタエリスリ トール トリアタリレート、 トリメチロールェタントリアクリレート、 トリメチロール プロパントリァクリ レート、 テトラメチロールメタンテトラアタリ レート、 ォ リゴエステルァクリレート、 及び以上の化合物のァクリレートをメタクリレー トに代えたもの; トリァリルシアヌレート、 トリァリルトリメリテート。
これらの架橋剤は、他のモノマー成分 1 0 0質量部に対して、好ましくは 0 . 0 1質量部以上 1 0質量部以下、 さらに好ましくは 0 . 0 3質量部以上 5質量 部以下用いることができる。 これらの架橋剤のうち、 結着樹脂に定着性、 耐ォ フセット性の点から好適に用いられるものとして、 芳香族ジビュル化合物 (特 にジビニルベンゼン)、 芳香族基及びエーテル結合を含む鎖で結ばれたジァクリ レート化合物類が挙げられる。
上記スチレン系共重合樹脂或いはスチレン系共重合樹脂ュニットの重合に用 いられる重合開始剤としては、 以下のものが挙げられる。 2 , 2 '—ァゾビスィ ソブチロニトリル、 2 , 2 '—ァゾビス (4—メ トキシ一 2, 4—ジメチルバレ ロニトリル)、 2 , 2 '—ァゾビス (2 , 4—ジメチルバレロニトリル)、 2 , 2 ' —ァゾビス (2—メチルブチロニトリル)、 ジメチル _ 2, 2 '—ァゾビスイソ ブチレート、 1 , 1 '—ァゾビス ( 1—シクロへキサンカルボ二トリル)、 2 - (カーバモイルァゾ) 一イソブチロニトリル、 2, 2 '—ァゾビス (2, 4 , 4 —トリメチルペンタン)、 2—フエ二ルァゾ一 2, 4—ジメチルー 4ーメ トキシ ノくレロニトリル、 2, 2—ァゾビス (2—メチルプロパン)、 メチルェチルケト ンパーオキサイド、 ァセチルアセトンパーオキサイド、 シクロへキサノンパー ォキサイドの如きケトンパーォキサイド類、 2 , 2—ビス (t e r t —ブチル パーォキシ) ブタン、 t e r t _ブチルハイ ドロパーォキサイ ド、 クメンハイ ドロパーオキサイ ド、 1, 1 , 3 , 3—テトラメチルブチルハイ ド口パーォキ サイ ド、 ジ一 t e r t —ブチルパーォキサイ ド、 t e r t—ブチルクミルパー ォキサイド、 ジクミルパーォキサイド、 α, α'—ビス (t e r t —ブチルバーオ キシイソプロピル) ベンゼン、 イソブチルパーオキサイ ド、 ォクタノィルパー ォキサイド、 デカノィルパーォキサイ ド、 ラウロイルパーォキサイド、 3, 5 , 5—トリメチルへキサノィルパーォキサイ ド、 ベンゾィルパーォキサイド、 m —トリオイルパーォキサイ ド、 ジーィソプロピルパーォキシジカーボネート、 ジー 2—ェチルへキシルバーォキシジカーボネート、 ジー n—プロピルバーオ キシジカーボネート、 ジ一 2 _エトキシェチルパーォキシカーボネート、 ジメ トキシイソプロピルパーォキシジカーボネート、 ジ (3—メチル一3—メ トキ シブチ /レ) パーォキシカーボネート、 ァセチ /レシクロへキシルス/レホニノレパー ォキサイ ド、 t e r t—ブチルバ一ォキシァセテ一ト、 t e r t—ブチルパー ォキシイソブチレート、 t e r t _ブチルパーォキシネオデカノエイト、 t e r t—ブチルパーォキシ 2 _ェチルへキサノエイト、 t e r t—ブチルバーオ キシラウレート、 t e r t—ブチルパーォキシベンゾエイ ト、 t e r t—ブチ ルバーオキシィソプロピルカーボネート、 ジ一 t e r t—ブチルバーォキシィ ソフタレート、 t e r t—ブチルパーォキシァリルカーボネート、 t e r t— ァミルパーォキシ 2 _ェチルへキサノエート、 ジ一 t e r t—プチルパーォキ シへキサノ、ィ ドロテレフタレート、 ジ一 t e r t—ブチノレパーォキシァゼレー 卜 Q
結着樹脂としてハイブリッド樹脂を用いる場合には、 スチレン系共重合樹脂 成分及び Zまたはポリエステル樹脂成分中に、 両樹脂成分と反応し得るモノマ 一成分を含ませることが好ましい。 ポリエステル樹脂成分を構成するモノマー のうちスチレン系共重合樹脂と反応し得るものとしては、 フタル酸、 マレイン 酸、 シトラコン酸、 ィタコン酸の如き不飽和ジカルボン酸またはその無水物が 挙げられる。 スチレン系共重合樹脂成分を構成するモノマーのうちポリエステ ル樹脂成分と反応し得るものとしては、 カルボキシル基またはヒ ドロキシ基を 有するものや、 ァクリル酸エステルもしくはメタクリル酸エステル類が挙げら れる。
スチレン系共重合樹脂とポリエステル樹脂との反応方法としては、 先に挙げ たスチレン系共重合樹脂及びポリエステル樹脂の各々と反応可能なモノマー成 分を含むポリマーの存在下で、 どちらか一方もしくは両方の樹脂の重合反応を させる方法が好ましい。
このハイブリッド樹脂においては、 ポリエステル系ユニットとスチレン系共 重合ュニットとの質量比は、 5 0 5 0から 9 0 1 0であることが好ましく、 より好ましくは 60 40から 85/15である。 ポリエステル系ュニットと スチレン系共重合ュニットとの比率が上記の範囲内であると、 良好な摩擦帯電 性が得られやすく、 保存性や離型剤の分散性も好適になりやすい。
また、 該結着樹脂は、 定着性の観点からテトラヒ ドロフラン (THF) 可溶 分の GPCにおける重量平均分子量 Mwが 5000以上 100万以下、 重量平 均分子量 M wと数平均分子量 M nとの比 M w/M nが 1以上 50以下であるこ とが好ましい。
また、 該結着樹脂のガラス転移温度は、 定着性及び保存性の観点から 45 °C 以上 60°C以下であることが好ましく、 より好ましくは 45°C以上 58°C以下 である。
また、 上記のような結着樹脂は単独で使用できる。 また、 軟化点の異なる 2 種類の高軟化点樹脂 (H) と低軟化点樹脂 (L) とを、 質量比 HZLが 100 /0から 30Z70、 好ましくは HZしが 1 O OZOから 40/60の範囲で 混合して使用しても良い。 高軟ィ匕点樹脂とは軟化点 10 o°c以上の樹脂を示し、 低軟化点樹脂とは軟化点 100°C未満の樹脂を示す。 このような系では、 現像 剤の分子量分布の設計を比較的容易に行うことができ、 幅広い定着領域を持た せることができるので好ましい。 また、 上記の範囲であれば、 混鍊時の適度な シェアがかかるため、 良好な磁性酸化鉄粒子の分散性を得やすレ、。
現像剤には、 離型性を得るために必要に応じて離型剤 (ワックス) を用いる ことができる。 該ワックスとしては、 磁性トナー粒子中での分散のしゃすさ、 離型性の高さから、 低分子量ポリエチレン、 低分子量ポリプロピレン、 マイク 口クリスタリンワックス、 パラフィンワックスの如き炭化水素系ワックスが好 ましく用いられる。 必要に応じて一種または二種以上の離型剤を、 併用しても かまわない。 例としては次のものが挙げられる。
酸化ポリエチレンワックスの如き脂肪族炭化水素系ワックスの酸化物、 また は、 それらのブロック共重合物; カルナバワックス、 サゾールワックス、 モン タン酸エステルワックスの如き脂肪酸エステルを主成分とするワックス類;脱 酸カルナバワックスの如き脂肪酸エステル類を一部または全部を脱酸化したも の。 さらに、 以下のものが挙げられる。 パルミチン酸、 ステアリン酸、 モンタ ン酸の如き飽和直鎖脂肪酸類;ブラシジン酸、 エレォステアリン酸、 ノくリナリ ン酸の如き不飽和脂肪酸類;ステアリルアルコール、 ァラルキルアルコール、 ベへニルアルコール、 力ノレナウビルァノレコール、 セリノレアノレコーノレ、 メリシル アルコールの如き飽和アルコール類;長鎖アルキルアルコール類; ソ^/ビトー ルの如き多価アルコール類; リノール酸アミ ド、 ォレイン酸アミ ド、 ラウリン 酸アミ ドの如き脂肪酸アミ ド類;メチレンビスステアリン酸アミ ド、 エチレン ビス力プリン酸アミ ド、 エチレンビスラウリン酸アミ ド、 へキサメチレンビス ステアリン酸アミ ドの如き飽和脂肪酸ビスアミ ド類;エチレンビスォレイン酸 アミ ド、 へキサメチレンビスォレイン酸アミ ド、 N, N '—ジォレイノレアジピン 酸アミ ド、 N, N—ジォレイルセバシン酸アミ ドの如き不飽和脂肪酸アミ ド類; m—キシレンビスステアリン酸アミ ド、 N, N—ジステアリルイソフタル酸ァ ミ ドの如き芳香族系ビスアミ ド類;ステアリン酸カルシウム、 ラウリン酸カル シゥム、 ステアリン酸亜鉛、 ステアリン酸マグネシウムの如き脂肪酸金属塩(一 般に金属石けんといわれているもの) ;脂肪族炭化水素系ワックスにスチレンや ァクリル酸の如きビュル系モノマーを用いてグラフト化させたワックス類;ベ へニン酸モノグリセリ ドの如き脂肪酸と多価アルコールの部分エステル化物; 植物性油脂の水素添加によって得られるヒ ドロキシル基を有するメチルエステ ル化合物。
特に好ましく用いられる離型剤としては、 脂肪族炭化水素系ヮッタスが挙げ られる。 このような脂肪族炭化水素系ワックスとしては、 以下のものが挙げら れる。 アルキレンを高圧下でラジカル重合し、 又は低圧下でチ一ダラー触媒を 用いて重合した低分子量のアルキレンポリマー;高分子量のアルキレンポリマ 一を熱分解して得られるアルキレンポリマー;一酸化炭素及び水素を含む合成 ガスからァーゲ法により得られる炭化水素の蒸留残分から得られる合成炭化水 素ワックス及びそれを水素添加して得られる合成炭化水素ワックス ; これらの 脂肪族炭化水素系ワックスをプレス発汗法、 溶剤法、 真空蒸留の利用や分別結 晶方式により分別したワックス。 中でも、 分岐が少なくて小さい直鎖状飽和炭 化水素であることが好ましく、 特にアルキレンの重合によらない方法により合 成された炭化水素がその分子量分布からも好ましい。 使用できる離型剤の具体 的な例としては、 以下のものが挙げられる。
ビスコール (登録商標) 3 30 _P、 5 50— P、 6 60— P、 TS— 20 0 (三洋化成工業社);ハイワックス 400 P、 200 P、 1 00 P、 4 1 0 P、 420 P、 320 P、 220 P、 2 1 0 P、 1 1 0 P (三井化学社) ;サゾール H l、 H2、 C 80、 C 1 05、 C 7 7 (;サゾール社) ;、 HN P— 1、 HN P— 3、 HNP— 9、 HNP— 1 0、 HNP— 1 1、 HNP- 1 2 (日本精蠟 株式会社) ;ュニリン (登録商標) 350、 425、 550、 700、 ュニシッ ド (登録商標)、 ュニシッド (登録商標) 3 50、 4 25、 550、 700 (東 洋ペトロライ ト社);木ろう、蜜ろう、ライスワックス、 キャンデリラワックス、 カルナバワックス (株式会社セラリカ NOD A)。
該離型剤を添加するタイミングは、 磁性トナー粒子の製造中の溶融混練時で あっても良いが、 結着樹脂の製造時であっても良く、 既存の方法から適宜選ば れる。 また、 これらの離型剤は単独で使用しても併用しても良い。
該離型剤は結着樹脂 1 00質量部に対して、 1質量部以上 20質量部以下添 加することが好ましい。 上記の範囲内であれば、 離型効果を十分に得ることが できる。 また、 磁性トナー粒子中における良好な分散性を得ることができ、 感 光体 の現像剤付着や現像部材ゃクリ一ニング部材の表面汚染を抑制すること ができる。
現像剤には、 その摩擦帯電性を安定化させるために電荷制御剤を含有させる ことができる。 電荷制御剤の添加量は、 その種類や他の磁性トナ一粒子構成材 料の物性によっても異なるが、 一般に、 結着樹脂 100質量部当たり 0. 1質 量部以上 10質量部以下であることが好ましく、 0. 1質量部以上 5質量部以 下であることがより好ましい。 電荷制御剤としては、 現像剤を負帯電性に制御 するものと、 正帯電性に制御するものとがあり、 本発明では、 現像剤の種類や 用途に応じて負帯電性に制御するものを一種又は二種以上用いることが好まし レ、。
現像剤を負帯電性に制御するものとしては、 以下のものが挙げられる。 有機 金属錯体 (例えば、 モノァゾ金属錯体;ァセチルアセトン金属錯体) ;芳香族ヒ ドロキシカルボン酸又は芳香族ジカルボン酸の金属錯体又は金属塩。 その他に も、 現像剤を負帯電性に制御するものとしては、 芳香族モノ及びポリカルボン 酸及びその金属塩や無水物;エステル類やビスフエノール等のフエノール誘導 体が挙げられる。 この中でも特に、 安定な帯電性能が得られる芳香族ヒ ドロキ シカルボン酸の金属錯体又は金属塩が好ましく用いられる。 また、 上記のもの に加えて、 電荷制御樹脂も用いることができる。
使用できる電荷制御剤の具体的な例としては、 以下のものが挙げられる。 S p i 1 o n B 1 a c k TRH、 T— 77、 T— 95 (保土谷化学社) ; BON TRON (登録商標) S— 34、 S— 44、 S— 54、 E— 84、 E_88、 E-89 (オリエント化学社) が挙げられる。
また、 現像剤においては、 帯電安定性、 現像性、 流動性、 耐久性向上のため に磁性トナー粒子に外添剤を添加することが好ましく、 特にシリカ微粉末を外 添することが好ましい。
シリカ微粉末は、 窒素吸着による BET法による比表面積が 30m2/g以上 (特に 50m2Zg以上 40 Om2Zg以下) の範囲内のものが好ましい。 磁性 トナー粒子 100質量部に対してシリカ微粉体 0. 01質量部以上 8. 00質 量部以下で用いることが好ましく、 より好ましくは 0. 10質量部以上 5. 0 0質量部以下である。 前記シリカ微粉末の BET比表面積は、 シリカ微粉末の 表面に窒素ガスを吸着させ、 B E T多点法を用いて算出することができる。 測 定には、 比表面積測定装置 (商品名:オートソープ 1 ;湯浅アイォニクス社製、 商品名 : G E M I N I 2 3 6 0 2 3 7 5 ;マイクロメティリック社製、 商品 名 : トライスター 3 0 0 0 ;マイクロメティリック社製) 等を用いることがで きる。
また、 シリカ微粉末は、 疎水化、 摩擦帯電性コントロールの為に処理剤で処 理されていてもよい。 処理剤としては、 未変性のシリコーンワニス、 変性シリ コーンワニス、 未変性のシリコーンオイル、 各種変性シリコーンオイル、 シラ ンカップリング剤、 官能基を有するシラン化合物、 その他の有機ケィ素化合物 が挙げられる。
現像剤には、 必要に応じて他の外部添加剤を添加しても良い。 このような外 部添加剤としては、 帯電補助剤、 導電性付与剤、 流動性付与剤、 ケーキング防 止剤、 熱ローラに対する離型剤、 滑剤、 研磨剤等の働きをする樹脂微粒子や無 機微粒子が挙げられる。
滑剤としては、 ポリフッ化工チレン粉末、 ステアリン酸亜鉛粉末、 ポリフッ 化ビニリデン粉末が挙げられ、 中でもポリフッ化ビニリデン粉末が好ましい。 また研磨剤としては、 酸化セリウム粉末、 炭化ケィ素粉末、 チタン酸スト口 ンチウム粉末が挙げられ、 中でもチタン酸ストロンチウム粉末が好ましい。 流動性付与剤としては、酸化チタン粉末、酸化アルミニウム粉末が挙げられ、 中でも疎水化処理したものが好ましい。
導電性付与剤としては、 カーボンブラック粉末、 酸化亜鉛粉末、 酸化アンチ モン粉末、 酸化スズ粉末が挙げられる。
またさらに、 逆極性の白色微粒子及び黒色微粒子を現像性向上剤として少量 用いることもできる。
本発明の現像剤の製造方法は、 特に限定されるものではなく、 例えば、 粉砕 法によって以下のようにして得ることができる。 先ず、 結着樹脂、 着色剤、 そ の他の添加剤を、 ヘンシェルミキサー又は、 ボールミルの如き混合機により十 分混合してから加熱ロール、 ニーダー、 ェクス トルーダーの如き熱混練機を用 いて溶融混練する。冷却固化後、粉碎及び分級を行い、磁性トナー粒子を得る。 更に、 必要に応じて、 磁性トナー粒子に外添剤をヘンシェルミキサーの如き混 合機により十分混合し、 現像剤を得る。
混合機としては、 以下のものが挙げられる。 ヘンシェルミキサー (三井鉱山 社製) ;スーパーミキサー (力ヮタ社製) ; リボコーン (大川原製作所社製) ;ナ ウタ一ミキサー、 タービュライザ一、 サイクロミックス (ホソカワミクロン社 製) ;スパイラルピンミキサー (太平洋機エネ土製) ; レーディゲミキサー (マツ ボー社製)。
混練機としては、 以下のものが挙げられる。 K R Cニーダー (栗本鉄工所社 製) ;ブス . コ .ニーダー (B u s s社製) ; T E M型押し出し機 (東芝機械社 製) ; T E X二軸混練機 (日本製鋼所社製) ; P CM混練機 (池貝鉄工所社製) ; 三本ロールミル、 ミキシングロールミル、 ニーダー (井上製作所社製) ;ニーデ ックス (三井鉱山社製) ; M S iOW圧エーダー、 ニダ一ルーダー (森山製作所社 製) ;バンバリ一ミキサー (神戸製鋼所社製)。
粉碎機としては、 以下のものが挙げられる。 カウンタージェットミル、 ミク ロンジエツト、 イノマイザ (ホソカワミクロン社製) ; I D S型ミル、 P J Mジ エツト粉浦 (日本ニューマチック工業社製) ;クロスジェットミル (栗本鉄工 所社製) ; ウルマックス (日曹エンジニアリング社製) ; S Kジエツト 'ォ一' ミル (セイシン企業社製) ; クリブトロン (川崎重工業社製) ;ターボミル (タ ーボ工業社製) ;スーパーローター (日清エンジニアリング社製)。
分級機としては、 以下のものが挙げられる。 クラッシール、 マイクロンクラ ッシファイア一、 スぺディッククラシファイア一 (セイシン企業社製) ;ターボ クラッシファイア一 (日清エンジニアリング社製) ; ミクロンセパレータ、 ター ボプレックス (A T P )、 T S Pセパレータ (ホソカワミクロン社製) ;エルボ 一ジェット (日鉄鉱業社製)、 デイスパージヨンセパレータ (日本ニューマチッ ク工業社製) ; YMマイクロカット (安川商事社製)。 粗粒子をふるい分けるた めに用いられる篩い装置としては、 以下のものが挙げられる。 ウルトラソニッ ク (晃栄産業社製) ; レゾナシーブ、 ジャイロシフター (徳寿工作所社) ;バイ ブラソニックシステム (ダルトン社製) ; ソニクリーン (新東工業社製) ;ター ボスクリーナー (ターボ工業社製) ; ミクロシフター (檳野産業社製) ; 円形振 動篩い。
<現像剤担持体 105 >
本発明にかかる現像剤担持体は、 少なくとも、 基体と、 該基体上に形成され た表面層としての樹脂層と、 該基体内部に配設された磁性部材とを有している。 そして該樹脂層は、 下記 (B 1) 〜 (B4) を含有し、 上記の現像剤を負に摩 擦帯電させるものである。
(B 1) 構造中に— NH2基、 =NH基、 および一 NH_結合から選ばれる少な くとも 1つを有しているバインダ一樹脂;
(B 2) 該樹脂層の該現像剤に対する負摩擦帯電付与性を低下させる第 4級ァ ンモニゥム塩;
(B 3) 黒鉛化度 p (002) が 0. 22≤p (002) ≤ 0. 75である黒 鉛化粒子;
(B4) 該樹脂層表面に凹凸を付与する粒子としての体積平均粒径が 4. 0 μ m乃至 8. 0 mの導電性球状炭素粒子。
更に、 該現像剤担持体は、 前記現像剤を担持する部分の全域が以下の各要件 (C 1) 〜 (C3) を満たす表面形状を有している。
(C 1 ) 現像剤担持体の表面における 1辺が 0. 50 mmの正方形の領域につ いて該正方形の一辺と平行な 725本の直線と、 該直線と直交する 725本の 直線とで等分したときの各直線の交点で測定される 3次元高さの平均値 (H) を基準として高さが D4Z4を越える独立した凸部を複数個有すること。 (C 2) 該凸部の該高さ D4Z 4における面積の総和が該領域の面積の 5%以上 30%以下であること。
(C 3) 該凸部のみから求められる算術平均粗さ R a (A) が 0. 2 5 Ai m以 上 0. 5 5 μπι以下であり、 かつ、 該凸部を除いて求められる算術平均粗さ R a (Β) が 0. 6 5 111以上1. 20 /x m以下であること。
<<要件 (B) >>
本発明にかかる現像剤担持体の表面層としての樹脂層は、 下記 (B 1) 〜 (B 4) を含み、 上記現像剤に対して負摩擦帯電付与性を有するものである。
(B 1) 構造中に— NH2基、 =NH基及び— NH—結合から選ばれる少なく とも 1つを有しているバインダー樹脂;
(B 2) 該樹脂層の該現像剤に対する負摩擦帯電付与性を低下させる第 4級ァ ンモニゥム塩;
(B 3) 黒鉛化度 p (002) が 0. 22以上 0. 75以下の黒鉛化粒子。 (B 4) 樹脂層表面に凹凸を付与する粒子としての体積平均粒径が 4. 0 πι 以上 8. 0 X m以下の導電性球状炭素粒子。
<<<要件 (B 3) :黒鉛化粒子 >〉>
本発明に用いられる黒鉛化粒子は、 黒鉛化度 P (002) が 0. 22≤p (0 0 2) ≤ 0. 75である。 黒鉛化度 p (00 2) とは、 F r a n k l i nの p 値といわれるもので、 黒鉛の X線回折スペク トルから得られる格子間隔 d (0 0 2) を測定することで、 d (002) = 3. 440— 0. 086 (1 - p 2) で求められる。 この p値は、 炭素の六方網目平面積み重なりのうち、 無秩序な 部分の割合を示すもので、 p値が小さいほど黒鉛化度は大きレ、。
黒鉛化度 P (002) が 0. 2 2以上 0. 7 5以下であることで、 現像剤へ の摩擦帯電性が良好となり、 現像剤を迅速に摩擦帯電させることが出来る。 ま た、 黒鉛化粒子が前記の範囲内にあると、 黒鉛化粒子の硬度が高く、 樹脂層の 耐摩耗性を向上させることが出来る。 p ( 0 0 2 ) が 0 . 7 5を超える場合は、 耐摩耗性には優れているが、 導電 性や潤滑性が低下して現像剤のチャージアップを発生しやすく、 休止前後の画 像濃度の変動が生じやすくなる。 P ( 0 0 2 ) が 0 . 2 2未満の場合は、 黒鉛 化粒子の耐摩耗性の悪化により樹脂層表面の耐摩耗性、 樹脂層の機械的強度及 び現像剤への帯電付与性が低下してしまう場合があり、 画像濃度の変動が生じ やすくなる。
このような黒鉛化粒子は、 該黒鉛化粒子としては、 メソカーボンマイク口ビ ーズ粒子又はバルタメソフェーズピッチ粒子を焼成して得られた黒鉛化粒子が 好ましく、 耐摩耗性の点でバルクメソフェーズピッチ粒子を焼成して得られた 黒鉛化粒子がより好ましい。 これら粒子は光学的に異方性で、 しかも単一の相 からなる粒子であるため、 該粒子を黒鉛化してなる黒鉛化粒子においては、 黒 鉛化度を高め且つ塊状 (略球形) の形状を保持させることができる。 メソカー ボンマイク口ビーズ粒子及びバルクメソフェーズピッチ粒子の光学的異方性は、 芳香族分子の積層から生じるものであり、 その秩序性が黒鉛化処理でさらに発 達し、 高度の黒鉛化度を有する黒鉛化粒子が得られる。
上記の方法で得られた黒鉛化粒子は、 従来、 現像剤担持体表面の樹脂層中に 用いられていた、人造黒鉛、或いは天然黒鉛からなる結晶性グラフアイ トとは、 該黒鉛化粒子の原材料及び製造工程が異なる。 そのため、 該黒鉛化粒子は従来 用いていた結晶性グラフアイ トより黒鉛化度は若干低いものの、 従来に用いら れていた結晶性グラフアイ トと同様に高い導電性や潤滑性を有している。 さら に粒子の形状が従来に用いられていた結晶性グラフアイ トの燐片状或いは針状 とは異なり塊状であり、 しかも粒子自身の硬度が比較的高いのが特徴である。 従って、 本発明で用いられる黒鉛化粒子は樹脂層中で均一に分散しやすくなる ため、 均一な表面粗度と耐摩耗性を樹脂層表面に与え、 表面形状の変化を小さ く抑えることができる。 さらに、 現像剤担持体表面の樹脂層中に該黒鉛化粒子 を用いると、 従来の結晶性グラフアイ トを用いた場合よりも現像剤への摩擦帯 電付与能を向上することが可能となる。
本発明に用いられる黒鉛化粒子を得る原材料としてメソカーボンマイク口ビ ーズ粒子を用いる場合、 メソカーボンマイクロビーズ粒子を、 破壊させない程 度の温和な力で機械的に一次分散させておくことが好ましい。 黒鉛化後の粒子 の合一を防止し、 また、 均一な粒度を得ることができるためである。
この一次分散を終えたメソカーボンマイク口ビーズ粒子は、 不活性雰囲気下 において 2 0 0 °C〜1 5 0 0 °Cの温度で一次加熱処理され、 炭化される。 一次 加熱処理を終えた炭化物は、 やはり炭化物を破壊させない程度の温和な力で炭 化物を機械的に分散させることが黒鉛化後の粒子の合一防止や均一な粒度を得 るために好ましい。
二次分散処理を終えた炭化物は、 不活性雰囲気下において約 2 0 0 0 °C〜3 5 0 0 °Cで二次加熱処理することにより所望の黒鉛化粒子が得られる。 該メソ カーボンマイクロビーズ粒子得る方法として、 代表的なものを以下に示す。 ま ず、 石炭系重質油または石油系重質油を 3 0 0 °C〜5 0 0 °Cの温度で熱処理し、 重縮合させて粗メソカーボンマイク口ビーズ粒子を生成する。 生成された粗メ ソカーボンマイクロビーズ粒子を濾過、 静置沈降、 遠心分離の如き処理により メソカーボンマイクロビーズ粒子を分離した後、 ベンゼン、 トルエン、 キシレ ンの如き溶剤で洗浄し、 さらに乾燥することによって得られる。
次に、 本発明に用いられる黒鉛化粒子を得る原材料として、 バルクメソフエ ーズピッチ粒子を用いる場合について説明する。 バルクメソフェーズピッチ粒 子を用いて黒鉛化する方法としては、 先ず、 バルクメソフヱーズピッチ粒子を 2 /x m〜2 5 μ ιηに微粉砕して、 これを空気中で約 2 0 0 °C〜3 5 0 °Cで熱処 理することにより、 軽度に酸化処理する。 この酸化処理によって、 バルクメソ フェーズピッチ粒子は表面のみ不融化され、 次工程の黒鉛化熱処理時の溶融、 融着が防止される。 この酸化処理されたバルクメソフェーズピッチ粒子は酸素 含有量が 5質量%〜1 5質量%であることが好ましい。 5質量%未満であると 熱処理時の粒子同士の融着が促進されることがあり、 また 1 5質量%を超える と粒子内部まで酸化されてしまい、 形状が破砕状のまま黒鉛化してしまい、 球 状のものが得られにくい場合がある。
次に上記の酸化処理したバルタメソフェーズピッチ粒子を窒素、 アルゴン等 の不活性雰囲気下にて、 約 2 0 0 0 °C〜3 5 0 0 °Cで熱処理することにより所 望の黒鉛化粒子が得られる。
該バルクメソフェーズピッチ粒子を得る方法としては、 以下の方法が挙げら れる。 コールタールピッチから溶剤分別により β—レジンを抽出し、 これを水素 添加、 重質化処理を行うことによってバルクメソフェーズピッチ粒子を得る方 法。 さらに、 前記重質化処理後、 微粉砕し、 次いでベンゼンまたはトルエン等 により溶剤可溶分を除去することでバルクメソフェーズピッチ粒子を得る方法。 本発明で用いられるバルクメソフェーズピッチ粒子はキノリン可溶分が 9 5 質量%以上であることが好ましい。 9 5質量%未満のものを用いると、 粒子内 部が液相炭化しにくく、 固相炭化するため粒子が破砕状のままとなり、 球状の ものが得られないことがある。
上記いずれの原材料を用いた黒鉛化粒子の生成方法においても、 黒鉛化粒子 の焼成温度は 2 0 0 0 °C〜 3 5 0 0 °Cが好ましく、 2 3 0 0 °C〜 3 2 0 0でが より好ましい。 焼成温度が 2 0 0 0 °C未満の場合は、 黒鉛化粒子の黒鉛化度が 不十分であり、 導電性や潤滑性が低下し、 連続耐久時の現像剤のチャージァッ プが発生する場合があり、 休止前後の画像濃度が変動しやすくなる。 焼成温度 が 3 5 0 0 °Cを超える場合は黒鉛化粒子の黒鉛化度が高すぎてしまう場合があ る。 そのため黒鉛化粒子の硬度が下がり、 黒鉛化粒子の耐摩耗性の悪化により 樹脂層表面の耐摩耗性、 樹脂層の機械的強度及び現像剤 の帯電付与性が低下 することがあり、 画像濃度が変動しやすくなる。 また、 前記のいずれの原材料 から得られた黒鉛化粒子は、 いずれの製法にかかわらず、 分級により粒度分布 をある程度均一にしておくことが、 樹脂層の表面形状を均一にするために好ま しい。
本発明に使用される黒鉛化粒子としては、 樹脂層の裁断面で測定した時の、 算術平均粒径 (D n ) が 0 . 5 0 μ πι以上 3 . 0 0 / m以下であることが好ま しい。 樹脂層の表面への均一な粗さを付与する効果と帯電性能を高める効果が 高く、 前記した現像剤への迅速且つ安定した帯電が十分となる。 また、 樹脂層 の摩耗に伴う現像剤のチャージァップ、 現像剤汚染及び現像剤融着が発生し難 くなる。 そのため、画像濃度の変動や低下を有効に抑えることができる。更に、 休止前後の画像濃度の変動をより一層有効に抑制することができる。
< < <導電剤 >〉>
本発明においては、 樹脂層の体積抵抗値を調整する目的で、 樹脂層中に前記 の黒鉛化粒子と併用して、 導電剤を分散含有させても良い。 本発明に用いられ る導電剤としては、 個数平均粒径が 1 // m以下、 好ましくは 0 . 0 1〜0 . 8 μ mの導電性微粒子が挙げられる。 該導電性微粒子の個数平均粒径が 1 μ mを 超える場合には、 樹脂層の体積抵抗を低く制御しづらくなり、 現像剤のチヤ一 ジアップによる現像剤汚染が発生しやすくなる。
また、 導電剤としては、 以下のものが挙げられる。 アルミニウム、 銅、 ニッ ケル、 銀の如き金属粉体の微粉末、 酸化アンチモン、 酸化インジウム、 酸化ス ズ、 酸化チタン、 酸化亜鉛、 酸化モリブデン、 チタン酸カリウムの如き金属酸 化物、 カーボンファイバー、 ファーネスブラック、 ランプブラック、 サーマル ブラック、 アセチレンブラック、 チャネルブラックの如きカーボンブラック、 グラフアイ 卜の如き炭化物、 金属繊維。
これらの中でも本発明においては、 カーボンブラック、 特には、 導電性のァ モルファスカーボンが好適に用いられる。 電気伝導性に特に優れ、 高分子材料 に充填して導電性を付与したり、 その添加量をコントロールするだけで、 ある 程度任意の導電性を得ることができるためである。 また、 本発明において好適 なこれらの導電性物質の添加量は、 バインダー樹脂 1 0 0質量部に対して 1質 量部〜 100質量部の範囲とすることが好ましい。 1質量部未満では榭脂層の 抵抗値を所望のレベルに下げることは、 通常困難である。 100質量部を超え る場合は、 特にサブミクロンオーダーの粒度を有する微粉体を用いた場合、 榭 脂層の強度 (耐摩耗性) が低下することがある。
なお、 樹脂層の体積抵抗は、 好ましくは 104Ω · cm以下、 より好ましくは 10— 3Ω · c m以上 103Ω · c m以下である。 樹脂層の体積抵抗が 104Ω · c mを超えると、 連続耐久時に現像剤のチャージァップが発生する場合があり、 休止 前後の画像濃度が変動しやすくなる。
<<<要件 (B l)、 要件 (B 2) >>>
本発明に用いる樹脂層には少なくとも構造中に、 _NH2基、 =NH基、 もし くは一 NH—結合のいずれかを有するバインダー樹脂と、 該バインダー樹脂の 負摩擦帯電付与性を低下させる第 4級アンモニゥム塩を有している。
明確な理由は定かではないが、 本発明で好適に用いられる第 4級アンモニゥ ム塩は、 構造中に— NH2基、 =NH基、 もしくは— NH—結合のいずれかを有 する樹脂中に均一に分散される。 この樹脂を加熱硬化させ架橋が進む際に、 一 NH2基、 =NH基または一 NH—結合と何らかの相互作用を及ぼし、 第 4級ァ ンモニゥム塩がバインダー樹脂骨格中に入り込む。 そして、 第 4級アンモニゥ ム塩が取り込まれたバインダ一樹脂は、 第 4級ァンモニゥムイオンの力ゥンタ 一イオンの帯電極性が発現するようになる。 その結果、 当該樹脂層は、 上記し た本発明に係る現像剤を負に摩擦帯電させる性能 (以降 「負摩擦帯電付与性」 ともいう) を有するものの、 連続印字耐久時の現像剤の負摩擦帯電量が徐々に 過剰となることを妨げる方向に働く。 即ち、 該樹脂層の該現像剤に対する負摩 擦帯電付与性が低下する。 その結果、 該現像剤の負摩擦帯電量を制御すること ができる。
<<<要件 (B 1) :バインダー樹脂 >>>
一 NH2基を有する物質としては、 以下のものが挙げられる。 • R— NH2で表される第 1ァミンもしくはそれらを有するポリアミン、 RCO — NH2で表される第 1アミ ドもしくはそれらを有するポリアミ ド。
=NH基を有する物質としては、 以下のものが挙げられる。
• R = NHで表される第 2ァミンもしくはそれらを有するポリアミン、 (RCO) 2 = NHで表される第 2アミ ドもしくはそれらを有するポリアミ ド。
一 NH—結合を有する物質としては、 以下のものが挙げられる。
•前述したポリアミン、 ポリアミ ドの他に一 NHCOO—結合を有するポリゥ レタンが挙げられる。 以上の物質を 1種又は 2種以上、 あるいは共重合体とし て含有し、 工業的に合成された樹脂。
それらのうち汎用性の面から、 アンモニアを媒体としたフヱノール樹脂、 ポ リアミ ド樹脂、 及びウレタン樹脂が好ましく、 樹脂層にしたときの強度の面で フエノール樹脂がより好ましい。 一NH2基、 =NH基、 もしくは一 NH—結合 のいずれかを有するフエノール樹脂としては、 その製造工程において、 触媒と してアンモニアの如く含窒素化合物を用いて製造されたフエノール樹脂が挙げ られる。 触媒である含窒素化合物は、 重合反応に直接関与し反応終了後に於い てもフエノール樹脂中に存在する。 例えば、 アンモニア触媒の存在下にて重合 された場合は、 アンモニアレゾールと呼ばれる中間体が生成されることが一般 的に確認されており、 反応終了後においても下記構造式 (3) のような構造と してフヱノール樹脂中に存在する。
Figure imgf000033_0001
本発明に好適に用いられる含窒素化合物は、 酸性触媒、 塩基性触媒のいずれ でもよレ、。 酸性触媒としては、 以下のものが挙げられる。 硫酸アンモニゥム、 リン酸アンモニゥム、 スルフアミ ド酸アンモニゥム、 炭酸アンモニゥム、 酢酸 アンモニゥム、 マレイン酸アンモニゥムの如きアンモニゥム塩又はアミン塩類。 塩基性触媒としては、以下のものが挙げられる。 アンモニア;ジメチルァミン、 ジェチルァミン、 ジイソプロピルァミン、 ジイソブチルァミン、 ジァミルアミ ン、 トリメチルァミン、 トリェチルァミン、 トリ n—ブチルァミン、 トリアミ ルァミン、 ジメチルベンジルァミン、 ジェチルベンジルァミン、 ジメチルァニ リン、 ジェチルァニリン、 N, N—ジ n—ブチルァニリン、 N , N—ジァミル ァニリン、 N, N—ジ t —アミルァニリン、 N _メチルエタノールァミン、 N —ェチルエタノールァミン、 ジエタノールァミン、 トリエタノールァミン、 ジ メチノレエタノーノレアミン、 ジェチノレエタノーノレアミン、 ェチノレジエタノーノレア ミン、 n—ブチルジェタノーノレアミン、 ジ n—ブチルエタノールァミン、 トリ イソプロパノールァミン、 エチレンジァミン、 へキサメチレンテトラミンの如 きァミノ化合物; ピリジン、 α—ピコリン、 β—ピコリン、 γ—ピコリン、 2, 4 —ルチジン、 2 , 6—ルチジンの如きピリジン及びその誘導体;キノリン化合 物、 イミダゾール、 2—メチノレイミダゾール、 2 , 4—ジメチルイミダゾール、 2—ェチノレ _ 4一メチルイミダゾーノレ、 2 —フエ二ルイミダゾ一ノレ、 2—フエ ニル一 4ーメチルイミダゾール、 2—ヘプタデシルイミダゾールの如きィミダ ゾール及びその誘導体等の含窒素複素環式化合物。 これらフエノール樹脂に関 しては、 I R (赤外吸収分光法) や NMR (核磁気共鳴分光法) 等で測定する ことにより、 その構造の分析を実施することが可能である。
ポリアミ ド樹脂としては、 ナイロン 6 , 6 6 , 6 1 0 , 1 1 , 1 2 , 9 , 1 3 , Q 2ナイロン、 或いはこれらを主成分とするナイロンの共重合体、 或いは Ν—アルキル変性ナイロン、 Ν—アルコキシルアルキル変性ナイロン、 いずれ も好適に用いることができる。 更にはポリアミ ド変性フエノール樹脂のように ポリアミ ドにて変性された各種樹脂、 或いは、 硬化剤としてポリアミ ド樹脂を 用いたエポキシ樹脂、 といったように、 ポリアミ ド樹脂分を含有している樹脂 であれば、 いずれも好適に用いることができる。
ウレタン樹脂としてはウレタン結合を含んだ樹脂で有れば、 いずれも好適に 用いることができる。 このウレタン結合はポリイソシァネートとポリオールと の重合付加反応によって得られる。
このポリウレタン樹脂の主原料となるポリイソシァネートとしては、 以下の ものが挙げられる。ジフエ二レンメタン一 4, 4 '—ジイソシァネート(MD I )、 イソホロンジイソシァネート (I P D I )、 ポリメチレンポリフエニルポリイソ シァネート、 トリレンジイソシァネート、 へキサメチレンジイソシァネート、 1 , 5 _ナフタリンジイソシァネート、 4, 4 'ージシクロへキシルメタンジィ ソリアネート、 カルボジイミ ド変性ジフエニルメタン一 4, 4 '—ジイソシァネ ート、 トリメチルへキサメチレンジイソシァネート、 オルトトルイジンジイソ シァネート、 ナフチレンジイソシァネート、 キシレンジイソシァネート、 パラ フエ二レンジイソシァネート、 リジンジイソシァネートメチルエステル、 ジメ チルジィソシァネート。
またポリウレタン樹脂の主原料となるポリオールとしては、 以下のものが挙 げられる。
ポリエチレンアジペートエステノレ、 ポリブチレンアジペートエステノレ、 ポリ ジエチレングリコーノレアジペー トエステノレ、 ポリへキセンアジペートエステノレ、 ポリ力プロラタ トンエステルの如きポリエステルポリオール、 ポリテトラメチ レングリコーノレ、 ポリプロピレングリコーノレの如きポリエーテノレポリオ一ノレ。 < < <要件 (B 2 ) :第 4級アンモニゥム塩 >〉>
第 4級アンモニゥム塩としては、 下記構造式 (4 ) で表されるものが挙げら れる。 構造式 (4) t I* 4 -
R— — R · X
R3 上記構造式 (4) において、 R1乃至 R4は、 それぞれ独立に、 置換基を有し てもよいアルキル基、 置換基を有してもよいァリール基、 アルアルキル基を表 し、 X は酸の陰イオンを表す。 上記構造式(4) で、 X—の酸イオンとしては、 以下のものが挙げられる。 有機硫酸イオン、 有機スルホン酸イオン、 有機リン 酸イオン、 モリブデン酸イオン、 タングステン酸イオン、 モリブデン原子或い はタングステン原子を含むへテ口ポリ酸。
本発明に好適に用いられる、 第 4級アンモユウム塩として下記表 I乃至表 ΙΠに 記載するものが挙げられる。
例示 No. m
Figure imgf000038_0001
df/X3d IOStoi/600Z OAV 表 in
Figure imgf000039_0001
現像剤担持体上に上記の第 4級アンモニゥム塩と前記の特定の構造を有する 樹脂を併用して形成した樹脂層を現像剤担持体上に設けることで、 現像剤の過 剰な摩擦帯電を防ぐ方向に働き、 現像剤の負摩擦帯電量を制御することができ る。 これにより、 現像剤担持体上での現像剤のチャージアップを防ぎ、 現像剤 の摩擦帯電安定性を保持できる。 その結果、 画像濃度の変動を抑制することが 可能となる。
樹脂層中の第 4級アンモニゥム塩は、 樹脂層中のバインダー樹脂 1 0 0質量 部に対して 5質量部乃至 5 0質量部、 含有していることが好ましい。 これによ り、 本発明に用いる現像剤の摩擦帯電量を安定した値に制御しやすくなる。 第 4級アンモニゥム塩の含有量を上記の範囲内とすることによって、 現像剤のチ ヤージアップを有効に抑制できる。 また、 現像剤の摩擦帯電量が低くなりすぎ ることによる画像濃度の低下を抑制できる。
くく ( B 4 ) :導電性球状炭素粒子 > > 本発明で用いられる凹凸付与粒子は、 体積平均粒径が 4 . Ο μ πι乃至 8 . 0 μ mの導電性球状炭素粒子である。
該導電性球状炭素粒子は、 現像剤担持体の樹脂層表面に後述する所望の表面 形状を付与すると同時に、 樹脂層の表面粗度の変化を少なくし、 且つ現像剤汚 染ゃ現像剤融着を発生しにくくする為に添加するものである。 また、 該導電'性 球状炭素粒子は、 樹脂層中に含有する黒鉛化粒子との相互作用により、 黒鉛化 粒子の帯電性能の効果をより高め、 迅速且つ安定化した帯電性をより向上させ、 画像濃度の変動を抑制する効果がある。
本発明に用いる導電性球状炭素粒子における球状とは、 真球状に限られるも のではなく、 粒子の長径/短径の比が 1 . 0〜1 . 5のものを意味している。 本発明においては、 長径 短径の比が 1 . 0〜1 . 2の球状粒子を用いること がより好ましく、 特に好ましくは真球状の粒子を使用する。 球状粒子の長径ノ 短径の比を上記数値範囲内とした場合、 樹脂層中 の球状粒子の分散性が良好 である。 そのため、 樹脂層表面の粗さの均一化、 現像剤への安定した帯電付与 性能及び樹脂層の強度維持の点で有効である。
本発明において、 導電性球状炭素粒子の長径及び短径の測定には、 電子顕微 鏡を用いて拡大倍率 6, 0 0 0倍で撮影した拡大写真を用いた。 この拡大写真 からランダムにサンプリングしたサンプル 1 0 0個について長径及ぴ短径を測 定して、 長径 Z短径の比を求め、 その平均値をもって球状粒子の長径 短径の 比とした。
導電性球状炭素粒子の体積平均粒径が 4 . Ο μ ηι未満では、 樹脂層表面に所 望の粗さを付与する効果と帯電性能を高める効果が少なく、 本発明に用いられ る現像剤 の迅速且つ安定な帯電が不十分となり、 画像濃度の変動が生じやす い。 また、 現像剤の搬送力が弱くなり、 画像濃度低下を生じやすくなるため好 ましくない。 体積平均粒径が 8 . 0 / mを超える場合には、 樹脂表面が所望の 粗さを得られず、 本発明に用いられる現像剤の帯電が十分に行なわれにくくな つてしまい、 画像濃度の低下が生じやすくなる。
また、 導電性球状炭素粒子の体積基準の粒度分布から求められる変動係数は、 4 0 %以下が好ましく、 より好ましくは 3 0 %以下である。 4 0 %以下とする ことで、 所望の表面形状を付与させやすくなる。
本発明の導電性球状炭素粒子を得る方法としては、 以下に示す様な方法が好 ましいが、 必ずしもこれらの方法に限定されるものではない。
本発明に使用される導電性球状炭素粒子を得る方法としては、 球状樹脂粒子 ゃメソカーボンマイク口ビーズを焼成して炭素化及びノ又は黒鉛化して得た低 密度且つ良導電性の球状炭素粒子を得る方法が挙げられる。
球状樹脂粒子に用いられる樹脂としては、 以下のものが挙げられる。 フエノ ール樹脂、 ナフタレン樹脂、 フラン樹脂、 キシレン樹脂、 ジビニルベンゼン重 合体、 スチレン一ジビュルべンゼン共重合体、 ポリアクリロニトリル。
好ましい導電性球状炭素粒子を得る方法としては、 まず、 前記球状樹脂粒子 表面に、 メカノケミカル法によってバルクメソフェーズピッチを被覆する。 次 に被覆された粒子を酸化性雰囲気下で熱処理した後に不活性雰囲気下又は真空 下で焼成することで、 炭素化及びノ又は黒鉛化し内部が炭素化され、 外部が黒 鉛化された導電性球状炭素粒子を得る。 この方法は、 黒鉛化して得られる導電 性球状炭素粒子の被覆部の結晶化が進んだものとなり、 導電性が向上するため 好ましい。 上記の方法で得られる導電性球状炭素粒子は、 焼成条件を変化させ ることによって、 得られる導電性球状炭素粒子の導電性を制御することが可能 であり、 本発明において好ましく使用される。
< <要件 (C 1 ) 〜 (C 3 ) > >
現像剤担持体の現像剤を搬送する部分の全域が有する ^き表面形状を特定す る要件 (C 1 ) 〜 (C 3 ) について説明する。
< < <要件 (C 1 ) > > >
現像剤担持体の表面における 1辺が 0 . 5 0 mmの正方形の領域について該 正方形の一辺と平行な 7 2 5本の直線と、 該直線と直交する 7 2 5本の直線と で等分したときの各直線の交点で測定される 3次元高さの平均値 (H) を基準 として高さが D 4Z 4を越える独立した凸部を複数個有する。
ここで、 3次元高さにより樹脂層の表面形状を特定する理由は以下による。 現像剤担持体の表面形状の測定方法としては、 J I S ( B 0 6 0 1 - 2 0 0
1 ) で規定されている。 J I S ( B 0 6 0 1— 2 0 0 1 ) では、 2次元の測定 方法しか記載されておらず、 本発明者らは、 実際の現像剤担持体と現像剤との 接触の現象を正確に捉えるには不十分と考えた。 また、 現像剤担持体は、 粒径 が数/ mの現像剤との接触により摩擦帯電する。 これらより、 本発明者らは、 微視的に現像剤担持体の表面形状は 3次元で測定することが現像剤担持体と現 像剤との現像性の関係性をより良く現すと考えた。
3次元高さは、 共焦点光学系レーザー顕微鏡を用いて測定することができる。 共焦点光学系レーザー顕微鏡は、 光源から出たレーザーを対象物にあて、 対象 物から反射したレーザーを共焦点位置にある受光素子での反射受光量が最大と なる対物レンズ位置情報により対象物の形状を測定するものである。 レンズの 倍率によっても異なるが、 1 μ ηι以下の間隔で現像剤担持体の表面形状を測定 することが可能な為、 微視的に測定するのに適している。
以下に、 後述する実施例において現像剤担持体の樹脂層の表面形状の測定に 使用した共焦点光学系レーザー顕微鏡 (商品名: V K— 8 7 1 0 ;キーエンス 社製) を例に、 共焦点光学系レーザー顕微鏡の測定原理について詳述する。 図 2は、 共焦点光学系レーザー顕微鏡の装置構成を示した模式図である。 尚、 図 中の Eは、 レーザー光の経路を模式的に示している。 レーザー光源 2 0 1は点 光源のため、 X— Yスキャン光学系 2 0 2を介して、 観察領域を 1 0 2 4 x 7 6 8ピクセルに分割して観察対象物 (現像剤担持体) 2 0 9をスキャンする。 各 ピクセルの反射光は集光レンズ 2 0 3を介して受光素子 2 0 4で検出される。 このとき、 集光レンズ 2 0 3と受光素子 2 0 4との間に設けられたピンホール 205により、 合焦点位置以外からのレーザー光を排除することができる為、 受光量により合焦位置の変位量 (高さ情報) のセンシングが可能となる。 具体 的には、 図 3、 4に示すように、 合焦時は観察対象物 30 9からの反射光がピ ンホール 305を抜けて受光素子 304に入り、 ピンボケ時は観察対象物 40 9からの反射光の一部のみがピンホール 40 5を抜けて受光素子 404に入る。 この受光量の差により、 合焦時と非合焦時の区別が可能となり、 高さ情報が得 られる。 対物レンズ 206を垂直 (Z軸) 方向に駆動しながらスキャンを繰り 返すことにより各ピクセルの Z軸位置毎の反射光量を得る。 最もレーザーの反 射光量が強くかえってきた時をレンズの合焦点位置 (対物レンズのフォーカス があった位置) として、 そのときのレーザーの反射光量をメモリに記憶すると 共に、 レンズ位置情報を高さ情報として記憶する。 これにより、 観察領域にお ける 3次元の高さのデータが得られる。 なお、 図 2〜図 4において、 20 7、 208、 308及び 408は、 ハーフミラー、 30 1及び 40 1は、 レーザー 光源、 303及び 403は、 集光レンズである。
3次元高さは、 現像剤担持体表面における 1辺が 0. 5 Ommの正方形の領 域について、 該正方形の一辺と平行な 7 25本の直線と、 該直線と直交する 7 25本の直線とで等分したときの各直線の交点 (725x 725) の各々につい て測定した。 そしてそれらの値の平均値 (H) を樹脂層の凹凸状態を示す基準 として設定する。 そして、 当該平均値 (H) を基準として、 前記した現像剤の 重量平均粒径 D4の 1/4を越える高さの独立した凸部が該領域内に複数個あ るようにする。 即ち、 本発明者らの検討によれば、 H+ (D4/4) を越える高 さの凸部が現像剤の摩擦帯電性に大きく寄与し、 当該凸部以外の部分が現像剤 の搬送性に大きく寄与していることを知見した。 従って、 H+ (D4Z4) を越 える高さを有する独立した凸部を上記領域内に複数個有することは、 現像剤の 摩擦帯電性を制御するうえで重要な前提となるものである。
<<<要件 (C 2) >>> 次に、 要件 (C2) にかかる、 H+ (D4/4) を越える高さの凸部の、 H + D4Z4における面積の総和の上記領域の面積に対する割合は、 当該凸部と現像 剤との接触機会が多いか、 少ないかの目安となるものである。 この値を 5%以 上 30%以下、 特には 10%以上 20%以下とすることにより当該凸部と現像 剤との接触機会が適度なものとなる。 そのため、 現像剤の帯電性を制御するう えで極めて重要なものである。 また、 この数値範囲内とすることで、 現像剤の 搬送に寄与する高さが H+ (D4/4) 以下の部分の面積も十分に確保されるこ ととなる。 そのため、 本要件は、 現像剤の良好な搬送性を維持する上でも極め て重要である。
<<<要件 (C 3) >>>
更に要件 (C3) にかかる、 上記 H+ (D4/4) を越える高さの凸部のみか ら求められる算術平均粗さ R a (A) は、 上記要件 (C 1) 及び (C2) にか かる規定の下で、 当該凸部による現像剤の摩擦帯電性能を決定付けるものであ る。 そして、 上記 Ra (A) を 0. 25 / in以上 0. 55 μπι以下の範囲内と することにより、 当該凸部と現像剤との接触による摩擦帯電が適度なものとな る。 その結果、 過剰な摩擦帯電による現像剤のチャージアップを抑制しつつ、 良好な画像形成に十分な程度に帯電させることができる。
一方、 該凸部を除いて求められる算術平均粗さ R a (B) は、 本発明に係る 現像剤担持体の現像剤の搬送性能を決定付けるものである。 そして、 上記 Ra (B) を 0. 65 μπι以上 1. 20 m以下の範囲内とすることにより、 現像 剤を確実に搬送できる。 また現像剤の搬送性が大きすぎることによる現像剤の 帯電不良も抑制することができる。
また、 表面層の表面形状として、 上記した H+ (D4/4) を越える高さの凸 部と、 それ以外の部分とを分けることなく算出した算術平均粗さ R a (To t a 1 ) の値は、 0. 60 01以上1. 40 μ m以下の範囲内とすることが好ま しい。 Ra (To t a l ) を当該数値範囲内にすることで、 本発明の凸部の算 術平均粗さ R a (A)、 凸部の領域の面積、 凹部の算術平均粗さ R a (B) がよ り好ましい範囲に調整される。 即ち、 算術平均粗さ R aが 0. 6 0 // m以上で は、 現像剤の搬送力不足や現像剤の過剰な摩擦帯電を起こし難く、 画像濃度の 変動を更に抑制することが出来る。算術平均粗さ R aが 1. 40 m以下では、 現像剤の過剰な搬送や現像剤の摩擦帯電不良を起こし難く、 画像濃度の変動を 更に抑制することが出来る。
また、 現像剤担持体の樹脂層の I S OZFD I S 1 4 5 7 7に規定されるュ 二バーサル硬さ (HU) の平均値 (U) が 4 0 O N/nim2以上 6 5 O NZmm 2以下であることが好ましい。 なお、 本発明では、 樹脂層の表面のユニバーサル 硬さ HUは、 I S O/FD I S 1 4 5 7 7に準拠するフィッシャー 'インスト ルメンッ社製フィッシャースコープ H I 0 0 V (商品名) により測定した。 測 定は、 対面角度が 1 3 6 °である四角錘のダイヤモンド圧子を用いた。 当該圧子 を、 測定荷重を段階的にかけて皮膜に押し込んで行き、 荷重をかけた状態での 押し込み深さ h (単位: mm) を測定する。 そして、 試験荷重 F (単位: N) と押し込み深さ hを下記式 (5) に代入してユニバーサル硬さ HUを求める。 ここで係数 Kは 1Z26. 4 3である。
式 (5)
Figure imgf000045_0001
なお、 ユニバーサル硬さ HUは、 他の硬さ (例えば、 ロックウェル硬さ、 ビ ッカース硬さ等) よりも微小な荷重で測定できる。 また、 弾性、 塑性を有する 材料に関しても、 弾性変形や塑性変形分を含んだ硬度が得られるので、 樹脂層 の硬さを評価するのに好ましいものである。
樹脂層表面のユニバーサル硬さ HUの平均値 (U) を上記数値範囲内とする ことにより、 樹脂層の耐久性を十分に確保し、 使用に伴う画像濃度の変動を有 効に抑えることができる。 また、 この程度の硬度であれば、 耐久性向上のため の高硬度の粒子を多量に添加する必要がない。 そのため、 樹脂層の現像剤の摩 擦帯電性を損なうこともない。
< <樹脂層の製造方法〉〉
次に、 上記要件 (B 1 ) 〜 (B 4 ) 及び (C 1 ) 〜 (C 3 ) を備えた現像剤 担持体の樹脂層の製造方法について説明する。
上記の要件 (B 1 ) 〜 (B 4 ) 及び (C 1 ) 〜 (C 3 ) を充足した樹脂層は、 例えば、 樹脂層の各成分を溶剤中に分散混合して塗料化し、 基体上に塗工し、 乾燥固化あるいは硬化することにより形成することが可能である。 さらに、 乾 燥固化あるいは硬化させて得た樹脂層の表面を後述する所定の方法により磨き 加工することは、 上記の要件を満たした現像剤担持体を得る上で極めて有効な 方法である。
まず、前記した樹脂層をなす各成分の塗料中への分散混合には、サンドミル、 ペイントシェーカー、 ダイノミル、 パールミルの如きビーズを利用した公知の 分散装置が好適に利用可能である。 この時、 ビーズの粒径としては、 0 . 8 m m以下が各成分を塗料液中 均一に分散混合する為に好ましく、 0 . 6 mm以 下がより好ましい。
また得られた塗料の基体への塗工方法としては、 デイツビング法、 スプレー 法、 ロールコート法の如き公知の方法が適用可能であるが、 本発明に用いる現 像剤担持体の樹脂層の表面形状を形成する為には、 スプレー法が好ましい。 スプレー法により塗工する際の塗料を霧化させる方法としては例えば次のよ うな方法が挙げられる。 エアーにより霧化する方法;ディスク等を高速回転し メカ的に霧化する方法;塗料自体に圧力を与えて噴出させて外気と衝突させる ことにより霧化する方法;超音波振動により霧化する方法。 これらの中でもェ ァ一により霧化するエアースプレー法は、 塗料を微粒子化する力が強く、 均一 に塗工しやすい。 その為、 本発明にかかる現像剤担持体の樹脂層を形成する方 法として好ましい。
エアースプレー法としては、 基体をスプレーガンの移動方向に平行に垂直に 立てて、 基体を回転させつつ、 基体とスプレーガンのノズル先端との距離を一 定に保つ。 そして、 スプレーガンを一定速度で上昇もしくは下降させながら分 散混合した塗料をエアースプレー法により基体に塗布する。 スプレーガンの移 動速度としては、 1 O rnmZ s以上 5 O mmZ s以下が好ましい。 この範囲内 にすることで、 塗工時のムラやシヮが少なくなりやすく、 均一に樹脂層を形成 しゃすい為好ましい。 基体の回転速度としては、 用いる基体の直径により、 適 宜設定することが好ましいが、 5 0 0 r p m以上 2 0 0 0 r p m以下にするこ とで、 塗工ムラが発生し難く、 所望の表面形状が得られやすい。
また、 基体とノズル先端との距離としては、 使用する塗料により、 適宜設定 することが好ましいが、 3 O mm以上 7 O mm以下とすることで、 所望の表面 形状が得られやすくなる。 なお樹脂層の表面の形状は、 当該距離を基体から離 すほどに粗面化する傾向にある。
さらにまた、 樹脂層の膜厚は、 好ましくは 5 0 μ πι以下、 より好ましくは 4 O w m以下、 さらに好ましくは 4 μ π!〜 3 0 μ πιとすることで、 本発明に適し た表面形状を有する均一な樹脂層を得ることが可能となる。
ところで、 塗料中の固形分濃度を低下させると塗膜の表面の粗さは増す傾向 にある。 また、 基体とスプレーガンのノズル先端との距離を離すと、 やはり塗 膜の表面の粗さは増す傾向にある。 従って、 本発明にかかる、 特定の表面形状 を有する樹脂層を形成する際は、 塗料中の固形分濃度、 及び基体とスプレーガ ンのノズル先端との距離の適宜調整することで、 上記要件 (C 1 ) 〜 (C 3 ) にかかる表面形状を有する樹脂層を製造することができる。
また、 本発明に用いる現像剤担持体を得る上では、 上記した所定の方法によ り得られた所定の表面形状を有する樹脂層に対して、 研磨粒子を表面に担持し た帯状研磨材で磨き加工することが好ましい。 図 5は本発明における磨き加工 装置の一例を模式的に断面図で示したものである。 現像剤担持体 5 0 1を時計 方向或いは反時計方向に回転させ、 帯状研磨材 5 0 2を送り出しローラ 5 0 3 から繰り出しながら現像剤担持体 5 0 1に圧接させ、 巻き取りローラ 5 0 4へ 向けて矢印 Fの向きに移動させる。 この際に帯状研磨材 5 0 2は、 現像剤担持 体 5 0 1との当接位置で現像剤担持体 5 0 1を摺擦する。 この摺擦により、 主 に現像剤担持体 5 0 1の樹脂層の凸部が研磨され、 本発明にかかる表面形状を 形成しやすくなる。
また、 当接位置における現像剤担持体への押し付け荷重を 0 . 1 N以上 0 . 5 N以下にすることが、 樹脂層の表面形状を制御する上で好ましい。
帯状研磨材の幅としては、 3 c m以上 1 0 c m以下が好ましい。 この範囲内 の幅の帯状研磨材を矢印 Fの向きへの移動と共に、 軸方向へ移動させることで 摺擦ムラを少なくすることが出来、 本発明の樹脂層の凸部の面積の総和及び凸 部の算術平均表面粗さを制御しやすくなる。 帯状研磨材を軸方向 移動させる 速度としては、 使用する帯状研磨材により、 適宜設定することが好ましいが、 5 mmZ s以上 6 0 mm, s以下にすることで、 所望の表面形状が得られやす くなる。
帯状研磨材を矢印 Fの向きに移動させる速度としては、 5 mm/ s以上 6 0 mmZ s以下にすることが好ましい。 この範囲内にすることで、 適度に帯状研 磨材の新しい面で現像剤担持体と摺擦される為、 摺擦ムラが発生し難く、 所望 の表面形状が得られやすい。 ' 現像剤担持体の回転速度としては、 用いる現像剤担持体の直径により、 適宜 設定することが好ましいが、 5 0 0 r p m以上 2 0 0 0 r p m以下にすること で、 摺擦ムラが発生し難く、 所望の表面形状が得られやすい。
本発明に用いる帯状研磨材としては、 酸化アルミニウム、 シリコンカーバイ ト、 酸化クロム、 ダイヤモンドの如き研磨粒子をポリエステルの如きフィルム に塗布 ·固定したものを用いることができる。 また、 該研磨粒子の一次平均粒 径としては、 0 . 5 z ni乃至 1 5 . であるものが好ましい。 一次平均粒 径が上記数値範囲内にあるような^磨粒子を用いて研磨することで、 樹脂層の 凸部の算術平均粗さ R a (A) を 0 . 2 5 m以上 0 . 5 5 μ m以下に制御す ることが容易となる。
< <基体 > >
本発明に用いる現像剤担持体の基体としては、 円筒状部材、 円柱状部材、 ベ ノレト状部材がある。 中でも金属のような剛体の円筒管もしくは中実棒は、 加工 精度と耐久性が優れている為好ましい。 このような基体はアルミニウム、 ステ ンレス鋼、 真鍮の如き非磁性の金属又は合金を円筒状あるいは円柱状に成型し、 研磨、 研削の如き加工を施したものが好適に用いられる。 また、 前記基体上に ゴム層又は樹脂層を形成したものを、 本発明の基体として用いても良い。
これらの基体は画像の均一性を良くするために、 高精度に成型あるいは加工 されて用いられる。 例えば長手方向の真直度が 3 0 μ πι以下、 好ましくは 2 0 / m以下、 さらに好ましくは 1 0 μ πι以下であることが好適である。 現像剤担 持体 (スリーブ) と感光ドラムとの間隙の振れとしては、 垂直面に対し均一な スぺーサーを介して突き当て、 スリーブを回転させた場合の垂直面との間隙の 振れも 3 0 μ πι以下、 好ましくは 2 0 /i m以下、 さらには 1 0 μ m以下である ことが好ましい。 現像担持体の基体は、 材料コス トや加工のしゃすさからアル ミニゥムが好ましく用いられる。
また、 本発明に用いられる基体は、 樹脂層の表面形状を制御する上で、 J I S ( B 0 6 0 1— 2 0 0 1 ) に基づき測定された算術平均粗さ R a (基準長さ ( 1 r ) = 4 mm) が 0 . 5 μ m以下であることが好ましい。
ぐ電子写真画像形成装置、 電子写真画像形成方法〉
最後に本発明にかかる現像装置を用いた電子写真画像形成装置並びにそれを 用いた電子写真画像形成方法について図 1を用いて説明する。
静電潜像を担持する静電潜像担持体 1 0 6、 例えば、 感光ドラム 1 0 6は、 矢印 B方向に回転する。 現像剤担持体 1 0 5は、 現像容器 1 0 9に収容された 磁性トナ一粒子を有する現像剤 (磁性トナー) 1 1 6を担持して、 矢印 A方向 に回転することによって、 現像剤担持体 1 0 5と感光ドラム 1 0 6とが対向し ている現像領域 Dに現像剤を搬送する。 現像剤担持体 1 0 5においては、 現像 剤を現像剤担持体 1 0 5上に磁気的に吸引しかつ保持するため、 現像スリーブ 1 0 3内に磁性部材 (マグネットローラ) 1 0 4が配置されている。 なお、 現 像スリーブ 1 0 3は、 基体 1 0 2である金属円筒管上に樹脂層 1 0 1が被覆形 成されている。
現像容器 1 0 9内 、 現像剤補給容器 (不図示) から現像剤供給部材 (スク リユーなど) 1 1 5を経由して現像剤が送り込まれてくる。現像容器 1 0 9は、 第一室 1 1 2と第二室 1 1 1に分割されており、 第一室 1 1 2に送り込まれた 現像剤は攪拌搬送部材 1 1 0により現像容器 1 0 9及び仕切り部材 1 1 3によ り形成される隙間を通過して第二室 1 1 1に送られる。 現像剤はマグネット口 ーラ 1 0 4による磁力の作用により現像剤担持体 1 0 5上に担持される。 第二 室 1 1 1中には現像剤が滞留するのを防止するための攪拌部材 1 1 4が設けら れている。
現像剤が磁性トナー粒子を含む場合、 磁性トナー粒子相互間及び現像剤担持 体 1 0 5表面の樹脂層 1 0 1との摩擦により、 感光ドラム 1 0 6上の静電潜像 を現像することが可能な摩擦帯電電荷を得る。 現像領域 Dに搬送される現像剤 の層厚を規制するために、 現像剤層厚規制部材 1 0 7としての強磁性金属製の 磁性ブレード(ドクターブレード) が装着されている。磁性ブレード 1 0 7は、 通常、 現像剤担持体 1 0 5の表面から約 5 0 μ m以上 5 0 0 μ m以下の間隙を 有して現像剤担持体 1 0 5に対向するように現像容器 1 0 9に装着される。 マ グネットローラ 1 0 4の磁極 N 1からの磁力線が磁性ブレード 1 0 7に集中す ることにより、 現像剤担持体 1 0 5上に現像剤の薄層が形成される。 なお、 本 発明においては、 この磁性ブレード 1 0 7に替えて非磁性の現像剤層厚規制部 材を使用することもできる。
現像剤担持体 1 0 5上に形成される現像剤の薄層の厚みは、 現像領域 Dにお ける現像剤担持体 1 0 5と感光ドラム 1 0 6との間の最小間隙よりも更に薄い ものであることが好ましい。
また、 現像剤担持体 1 0 5に担持された現像剤を飛翔させるため、 現像剤担 持体 1 0 5にはバイアス手段としての現像バイアス電源 1 0 8により現像バイ ァス電圧が印加される。 この現像バイアス電圧として直流電圧を使用するとき は、 静電潜像の画像部 (現像剤が付着して可視化される領域) の電位と背景部 の電位との間の値の電圧を現像剤担持体 1 0 5に印加するのが好ましい。
現像された画像の濃度を高め、 かつ階調性を向上させるためには、 現像剤担 持体 1 0 5に交番バイアス電圧を印加し、 現像領域 Dに向きが交互に反転する 振動電界を形成してもよい。 この場合には、 上記した現像画像部の電位と背景 部の電位との中間の値を有する直流電圧成分を重畳した交番バイアス電圧を現 像剤担持体 1 0 5に印加するのが好ましい。
実施例
以下実施例によって本発明を説明するが、 本発明はこれらの実施例に限定さ れるものではない。 尚、以下の配合における部、 %は、特にことわらない限り、 それぞれ質量部、 質量%である。
以下に、 本発明に関わる物性の測定方法について説明する。
ぐ現像剤 >
( i ) 現像剤 (磁性トナー) の飽和磁化
振動試料型磁力計 (商品名 : V S M—P 7 ;東英工業社製) を使用し、 試料温 度 2 5 °C、 外部磁場 7 9 5 . 8 k A/mにて測定した。
( i i ) 現像剤 (磁性トナー) の重量平均粒径 D 4
粒径測定装置 (商品名 : コールターマルチサイザ一 I I I ;ベックマン · コー ルター社製) を用いて測定した。 電解液としては、 1級塩化ナトリウムを用い て調製した約 1 % N a C 1水溶液を使用した。 電解液約 1 0 0 m 1中に、 分散 剤としてアルキルベンゼンスルホン酸塩約 0 . 5 m l を加え、 さらに測定試料 約 5mgを加え試料を懸濁する。 試料を懸濁した電解液は、 超音波分散器で約 1分間分散処理を行い、 前記測定装置により、 100 /imアパーチャ一を用い て、 測定試料の体積、 個数を測定して体積分布と個数分布とを算出した。 この 結果より、 体積分布から求めた重量基準の重量平均粒径 (D4) を求めた。
( i i i ) 磁性酸化鉄粒子が F e元素溶解率が 10質量%となるまでに溶解さ れた総 F e量に占める F e (2+) の割合 X
3. 8リツトルの脱イオン水に試料である磁性酸化鉄粒子 25 gを加え、 ゥォ 一ターバスで温度 40°Cに保ちながら撹拌速度 200回転 Zni i nで撹拌する。 このスラリー中に特級塩酸試薬 (濃度 35%) 424m 1を溶解した塩酸水溶 液 (脱イオン水) 1 25 Om 1を加え、 撹拌下、 磁性酸化鉄粒子を溶解する。 溶解開始から磁性酸化鉄粒子が全て溶解して透明になるまで、 10分毎に塩酸 水溶液 5 Om 1を分散する磁性酸化鉄粒子ごとサンプリングし、 直ちに 0. 1 μπιメンブランフィルターで濾過して、 濾液を採取する。 採取した濾液の 25 m lを用いて、 島津製作所製プラズマ発光分析装置 I CP S 2000によつ て F e元素の定量を行う。 そして、 採取された各サンプルに関して、 磁性酸化 鉄粒子の F e元素溶解率 (質量%) を下記式 (6) によって算出する。
式 (6) ,„ΘΟ/ 採取サンプル中の鉄元素濃度 (mgZリットル) 1ΛΛ Fe兀辦解 羅%) =完全溶解した時の鉄元素濃度 (mgZリットル) XlQQ また、 F e (2+) の濃度は採取したろ液の残り 25m lを用いて測定する。 この 25m Iの液に脱イオン水 75m Iを加えて試料を調製して、 指示薬とし てジフエニルァミンスルホン酸ナトリウムを加える。 そして 0. 05モル リ ットルの重クロム酸力リゥムを用いて酸化還元滴定し、 該試料が青紫色に着色 したところを終点として滴定量を求め、 滴定量から、 F e (2+) (mgZリツ トル) 濃度を算出する。
上述の方法で求めた各採取サンプル中の鉄元素濃度と、 同じ時点でのサンプ ルより求められた F e (2+) の濃度とを用いて、 下記式 (7) から、 そのサ ンプルが採取された時点での F e (2+) の割合を算出する。
式 (7) 、の 1八 (o/0) -採取サンプル中の (2+)濃度 (mg リットル)
Fe(2+)の (/0) _採取サンプル中の鉄元素濃度 (mgZリットル) 0 そして、 各採取サンプルについて、 得られた F e元素溶解率と F e (2+) の割合とをプロットし、 各点を滑らかに結んで、 F e元素溶解率対 F e (2+) の割合のグラフを作成する。 このグラフを用いて、 F e元素溶解率が 10質量% となるまでに溶解された総 F e量に占める F e (2+) の割合 X (%) を求め る。
( i v) F e (2+) の含有割合の比 (X/Y) の算出
割合 X (%) に関しては、 上述した方法により求める。
F e元素溶解率が 10質量%となるまでに溶解された F e量を除く残りの 90 質量。 /0中の総 F e量に占める F e (2+) の割合 Y (%) に関しては、 以下の 方法で算出する。
即ち、 上述した Xの測定において得た、 磁性酸化鉄粒子が完全に溶解した時 の鉄元素濃度 (mgZリットル) と、 F e元素溶解率 10質量%の時の鉄元素 濃度 (mg/リッ トル) との差を、 残りの 90質量%中の鉄元素濃度 (mg リットル) とする。
上述の Xの測定で得た、 磁性酸化鉄粒子が完全に溶解した時の F e (2+) の濃度 (mgZリットル) と、 F e元素溶解率 10質量。/。の時の F e (2+) の濃度 (mgZリッ トル) との差を、 残りの 90質量0 /0中における F e (2+) の濃度 (mgZリットル) とする。 こうして得た値を用いて、 下記式 (8) よ り、 F e元素溶解率が 10質量。 /0となるまでに溶解された F e量を除く残り 9 0質量%中の総 F e量に占める F e (2+) の割合 Y (%) を算出する。
式 (8) 完全溶解時の Fe (2+)濃度一鉄元素溶解率 10質量%時の Fe (2+)濃度 、 、 =完全溶解時の鉄元素濃度一鉄元素溶解率 10質量%時の鉄元素濃度 上記により算出した割合 X (%)、 γ (%) を用いて、 比 (χζγ) を算出す る。
( V ) 磁性酸化鉄粒子の総異種元素 (例えばケィ素) 含有量の定量
サンプル 1. 00 gに特級塩酸試薬 (濃度 35%) 16m lが溶解した塩酸水 溶液 26m lを加え、 サンプルを加熱 (80°C以下) 溶解し、 その後室温まで 放冷する。 特級フッ酸試薬 (濃度 4 %) 2 m 1を溶解したフッ酸水溶液を 4 m
1添加後、 20分放置する。 T r i t o n X—100 ( 10 %濃度) (ACR OS ORGAN I CS社製) を 10m l添加後、 100m lポリメスフラス コへ移し、 純水を添加し、 全溶液を 10 Om 1に合わせる。
島津製作所製プラズマ発光分析装置 I C P S 2000を使用し、 溶液試薬 中の異種元素 (例えばケィ素) 量を定量する。
(V i ) 被覆層中の異種元素 (例えばケィ素、 アルミニウム) 量の定量 サンプル 0. 900 gを秤量し、 1モル リットル一 N a OH溶液 25 m 1を 加える。 液を撹拌しながら温度 45°Cに加温し、 磁性酸化鉄粒子表面の異種元 素 (例えばケィ素成分やアルミニウム成分) を溶解する。 未溶解物を濾別した 後、 溶出液に純水を加えて 1 25m l とし、 溶出液に含まれるケィ素やアルミ 二ゥムを上記プラズマ発光分析 (I CP) で定量する。 被覆層の異種元素 (例 えばケィ素成分やアルミニウム成分) は以下の式 (9) を用いて算出する。 式 (9) 被覆層異種元素成分 ( %) =
溶出液における 異種元素濃度 (gZリ ットル) X125 + 1000
X100
0.900 (g)
( V i i ) コア粒子の異種元素 (例えば、 ケィ素) 量の定量 上記 (ォ) の総異種元素含有量と上記 (力) の被覆層中の異種元素量の差をコ ァ粒子の異種元素量とした。
( V i i i ) 磁性酸化鉄粒子の個数平均一次粒子径の測定
走査型電子顕微鏡 (倍率 40000倍) で磁性酸化鉄粒子を観察し、 200 個の粒子のフェレ径を計測し、 その個数平均粒子径を求める。 本実施例におい ては、 走査型電子顕微鏡としては、 S— 4700 (日立製作所製) を用いた。
( i X) 結着樹脂の軟化点の測定
結着樹脂の軟化点は J I S K 7210に示される測定方法に則り、 流動 特性評価装置 (商品名 : フローテスタ CFT— 500D ;島津製作所社製) を 用いて測定する。 具体的な測定方法を以下に示す。 上記流動特性評価装置によ り 1 cm 3の試料を昇温速度 6 °CZ分で加熱しながら、 プランジャーにより 19 60 N/m2 (20 k g/c m2) の荷重を与え、 直径 1 mm、 長さ lmmのノ ズルから押出す。 このときのプランジャー降下量 (流れ値) 一温度曲線を作成 する。 当該曲線の高さを hとするとき、 h/2に対する温度 (樹脂の半分が流 出した温度) を軟化点とする。
( X) G PCによる分子量分布の測定
温度 40°Cのヒートチャンバ一中でカラムを安定化させ、 この温度における カラムに溶媒として THFを毎分 1 m 1の流速で流し、 THF試料溶液を約 1 00 ^ 1注入して測定する。 試料の分子量測定にあたっては試料の有する分子 量分布を数種の単分散ポリスチレン標準試料により作成された検量線の対数値 とカウント値との関係から算出した。 検量線作成用の標準ポリスチレン試料と しては例えば、 102以上 107以下程度のものを用い、 少なくとも 10点程度 の標準ポリスチレン試料を用いるのが適当である。
標準ポリスチレン試料の例としては、 以下のものが挙げられる。
TSK標準ポリスチレン (商品名 ;東ソ一社製) のタイプ F— 850, F—
450, F- 288, F— 128, F_80, F— 40, F— 20, F— 10, F-4, F— 2, F- 1 , A- 5000, A- 2500, A— 1000, A—
500。
また、 検出器は R I (屈折率) 検出器を用いる。 尚、 カラムとしては市販の ポリスチレンゲルカラムを複数本組み合わせるのが良い。 市販のポリスチレン ゲルカラムとしては、 例えば以下のものが挙げられる。. S h o d e X GPC KF- 801 , 802, 803, 804, 805, 806, 807, 800 P (何れも商品名 ;昭和電工社製) ; TSKg e l G 100 OH (HXL)、 G 2 00 OH (HXL)、 G 3000 H (HXL)、 G4000H (HXL)、 G5000 H (HXL)、 G 600 OH (HXL), G 700 OH (HXL)、 TSK g u a r d c o l umn (何れも商品名 ;東ソ一社製)。
また、 サンプル溶液は、 THFに可溶な成分の濃度が約 0. 8質量%となる ように調整し、 温度 25 °Cで数時間放置する。 その後、 十分振とうし THFと よく混ぜ (試料の合一体が無くなるまで)、 更に 12時間以上静置する。 その時 THF中への放置時間が 24時間となるようにする。 その後、 サンプル処理フ ィルター (ポアサイズ約 0. 5 / m、 例えばマイシヨリディスク H— 25— 2 (東ソ一社製) など使用できる。) を通過させたものを GPCの試料とする。 ま た、 試料濃度は、 樹脂成分が 5mgZni l となるように調整する。
( X i ) 結着樹脂のガラス転移温度の測定
示差走査型熱量計 (D S C) (商品名 : MDSC_2920 ; TA I n s t r ume n t s社製) を用いて、 ASTM D 3418— 82に準じて、 常温 常湿下で測定する。
測定試料としては、 2 m g以上 10 m g以下、 好ましくは約 3 m gを精密に 秤量したものを用いる。 これをアルミパン中に入れ、 リファレンスとして空の アルミパンを用いる。 測定温度範囲を 30°C以上 200°C以下とし、 一旦、 昇 温速度 10 °CZm i nで 30でから 200 °Cまで昇温した後、 降温速度 10 °C /m i nで 200 °Cから 30 °Cまで降温し、 再度、 昇温速度 10 °CZm i nで 200°Cまで昇温させる。 2回目の昇温過程で得られる DS C曲線において、 比熱変化が出る前と出た後のベースラインの中間点の線と示差熱曲線との交点 を、 結着樹脂のガラス転移温度 T gとする。
( X i i ) THF不溶分の測定
1. O gの結着樹脂を秤量し ("Wl〃gとする)、 円筒濾紙 (例えば、 東洋濾 紙製 No. 8 6 R) に入れてソックスレー抽出器にかけ、 THF 200m lを 用いて 20時間ソックスレー抽出する。 その後、 抽出された成分を温度 40°C で 20時間真空乾燥した後、 秤量し (、、W2〃gとする)、 以下の式 (1 0) に従 つて計算する。
式 (1 0)
THF不溶分 (質量%) = [(Wl -W2) /Wl] 1 00
ぐ現像剤担持体 >
( X i i i ) 共焦点光学系レーザー顕微鏡を用いた樹脂層の表面形状の測定 樹脂層の表面形状の測定は、測定部「VK— 8 7 1 0」 (株式会社キーエンス ; 商品名) とコントローラ 「VK_8 700」 と制御用パソコンを接続した装置 を用いた。 更に観察アプリケーションソフト (商品名 : VK— H 1 V 1 ;株式 会社キーエンス製)、 形状解析アプリケーションソフト (商品名 : VK— H 1 A 1 ;株式会社キーエンス製) により、 樹脂層の表面形状の解析を行った。
現像剤担持体を測定部のステージに乗せ、 ステージの高さを制御してピント 調節を行った。 この時の対物レンズの倍率は、 20倍とした。 また、 円筒状の 現像剤担持体を測定する為、 円弧の頂点が測定位置となるようステージを制御 した。 尚、 ピントの確認は、 観察アプリケーションソフト上で行った。
次に、 観察アプリケーションソフト上で、 Z軸方向の測定範囲をレンズ位置 調整によって行った。 レンズ位置を上方へ移動させていき、 観察領域すべてで ピントがずれる位置 (高さ) にする。 そのときのレンズ位置を Z軸方向の測定 上限としてセットする。 同様にレンズを下方へ移動させていき、 観察領域すベ てでピントがずれる位置 (高さ) を Z軸方向の測定下限としてセットする。 上 下限をセットした後、 Z軸方向の測定ピッチを 0. l / mとし、 1 0 2 4 x 7 6 8ピクセル (7 0 6. 5 6 μιηχ 5 2 9. 9 2 μ πι) の高さデータ ( 3次元デー タ) を取得した。 取得した高さデータにおいて、 測定値が 0のピクセルが存在 すれば、 樹脂層が正しく測定されていない為、 測定下限を更に下方 移動させ 再度測定を行うこととした。 同様に、 測定値が測定上下限の幅と同じ値のピク セルが存在した時は、 測定上限を更に上方へ移動させ再度測定を行うこととし た。
取得した 3次元データは、 形状解析アプリケーションソフト上で解析を行つ た。 まず、測定時のノイズを除去する為、 フィルタ処理及び傾き補正を行った。 フィルタ処理は、 5 5ピクセルを単位として単純平均を行うことで平滑化して 行った。 傾き補正は、 面傾き補正と 2次曲面補正を行った。 面傾き補正は、 全 領域の高さデータを元に、 最小二乗法で近似平面を求め、 求めた近似平面が水 平になるように傾きを補正することで行った。 2次曲面補正は、 全領域の高さ データを元に、 最小二乗法で近似曲面を求め、 求めた近似曲面が水平になるよ うに傾きを補正することで行った。
尚、 本発明において、 現像剤担持体の表面の 3次元高さは、 現像剤担持体の 表面における一辺が当該現像剤担持体の回転方向に対して平行な一辺 0. 5 0 mmの正方形の領域について、 該正方形の一辺と平行な 7 2 5本の直線と、 該 直線と直交する 7 2 5本の直線とで等分したときの各直線の交点 (7 2 5 x 7 2 5 = 5 2 5 6 2 5点) で測定した。 そして高さの平均値 (H) は、 これらの測 定値のからノィズを除去したデータより求めた平均値である。
また、 H+ (D4/4 ) を越える高さを有する凸部の、 H+ (D4Z4) の高 さにおける面積の総和は、 ノイズを除去した 3次元データより、 形状解析アブ リケ一シヨンソフ トの体積 '面積のプログラムを用いて測定した。 まず、 観察 領域から、 測定する領域を指定した。 指定する領域は、 0. 5 0mmX 0. 5 0 mmであり、 観察領域の中心を基準となるようにした。 次に、 下限高さに H + (D4/4) を入力し、 上下限の面積を含めた表面積から上下限の面積を含めな い表面積を引くことで、 H+ (D4/4) の高さに相当する断面の領域の総面積 を算出した。
算術平均粗さは、 ノイズを除去した 3次元データより、 形状解析アプリケー シヨンソフトの表面粗さのプログラムを用いて測定した。 観察領域から、 測定 する領域を指定した。 指定する領域は、 0. 50mmx0. 5 Ommであり、 観 察領域の中心を基準となるようにした。 算術平均粗さ R aは、 下記式 (1 1) により定義される。
式 (1 1)
Figure imgf000059_0001
(Znは、 「各点の高さ一基準面の高さ」 を示し、 Nは指定した領域のピクセル 数 (725x725) を示す。 尚、 基準面の定義は、 指定した領域の 725x7 25ピクセルの全データを平均した高さの平面とした。)
尚、 J I S B 0601— 2001で規定しているカットオフ値 (Xc = 0.
8mm) を使用しても、 測定結果にほとんど差がなかったことから、 カットォ フ無しの値を測定値とした。 . 同様に、現像剤担持体の軸方向に 10点 周方向に 10点の 100点測定を行 レ、、その平均値を、樹脂層の表面形状から求められる算術平均粗さ R aとした。 R a (A)は、 しきい値の下限に H+ (D4/4)の値を入力することで求めた。 R a (B)は、 しきい値の上限に H+ (D4/4)の値を入力することで求めた。 しきい値を入力することで、 しきい値により選択されたピクセルのみで上記算 術平均粗さの測定を行うことになる。 解析は、 ノイズを除去した 3次元データ を用い、 解析する領域の指定方法や算術平均粗さの測定方法は、 上記と同様の 方法で行った。 同様に、 現像剤担持体の軸方向に 10点 周方向に 10点の 10 0点測定を行い、 その平均値を、 樹脂層の表面形状から求められる算術平均粗 さ Ra (A) 及び Ra (B) とした。
(x i v) 樹脂層のユニバーサル硬さ
樹脂層表面のユニバーサル硬さ HUは、 I SOZFD I S 14577に準拠 するフィッシヤー ·ィンスト^^メンッ社製のフィッシヤースコープ H 100 V
(商品名) を用いる表面被膜物' 試験から求めた。 測定には、 対面角度が 13 6°に規定されている四角錘のダイヤモンド圧子を使用した。 そして、 当該圧子 を、 測定荷重 F (単位: N) を段階的にかけて測定試料に押し込んでいき、 荷 重をかけた状態での押し込み深さ h (単位: mm) を測定する。 測定値 hを下 記式 (12) に代入してユニバーサル硬さ HUを求める。
式 (12)
Figure imgf000060_0001
ここで、 Kは定数であり、 1/26. 43である。
測定用試料は、 基体表面に樹脂層を形成した試料を用いるが、 測定精度を向 上させるためには、 樹脂層表面が平滑である方がよいので、 研磨処理等の平滑 化処理を施した後測定することが、 更に好ましい。 したがって、 本発明におい ては、 樹脂層表面をラッピングフィルムシート # 2000 (商品名、 住友ズリ 一ェム、 研磨粒子に 9 μπιの酸化アルミニウムを使用) にて研磨処理を施し、 研磨処理後の表面粗さ R aが 0. 2 m以下になるように調整したものを測定 した。
試験荷重 Fおよび圧子の最大押し込み深さ hは、 樹脂層表面の表面粗さの影 響を受けず、 且つ下地の基体の影響を受けない程度の範囲が好ましいので、 本 発明においては、 圧子の最大押し込み深さ hを 1 !〜 2 m程度になるよう 試験荷重 Fをかけて測定した。 なお、 測定環境は 23°C、 50%とし、 測定回 数は異なる測定点にて 100回とし、 その測定値から求めた平均値を樹脂層の ユニバーサル硬さ Uとした。
( X V ) 導電性球状炭素粒子の体積平均粒径
導電性球状炭素粒子の粒径の測定装置として、 レーザー回折型粒度分布計(商 品名 : コールタ一 L S— 230型粒度分布計;ベックマン ' コ一ルター株式会 社製) を用いた。 測定には、 少量モジュールを用い、 測定溶媒はイソプロピル アルコール (I PA) を使用した。 まず、 I PAにて測定装置の測定系内を約 5分間洗浄し、 洗浄後バックグラウンドファンクションを実行した。 次に I P A 50 m 1中に、 測定試料約 10 m gを加える。 試料を懸濁した溶液を超音波 分散機で約 2分間分散処理し、 試料液を得た後、 測定装置の測定系内に試料液 を徐々に加えて、 装置の画面上の P I D Sが 45%乃至 55%になるように測 定系内の試料濃度を調整した。 その後に測定を行い、 体積分布から算術した体 積平均粒径を求めた。
( X V i ) 黒鉛化粒子の黒鉛化度
黒鉛化度 P (002) は、 マックサイエンス社製の強力型全自動 X線回折装 置、、 MX P 18' 'システム (商品名) により、 黒鉛の X線回折スペク トルから得 られる格子間隔 d (002) を測定し、 下記式 (13) で求める。
式 (13)
d (002) =3. 440-0. 086 [1-p (002) 2〕
格子間隔 d (002) は、 CuKaを X線源とし、 C u Κβ線はニッケルフィル ターにより除去している。 標準物質に高純度シリコンを使用し、 C (002) 及び S i (1 1 1) 回折パターンのピーク位置から、 格子間隔 d (002) は、 算出する。 主な測定条件は以下のとおりである。
X線発生装置: 18 k w
ゴニォメータ :横型ゴニォメータ
モノクロメータ :使用
管電圧: 30. 0 k V 管電流: 1 0. 0mA
測定法:連続法
スキャン軸: 2Q/Q
サンプリング間隔: 0. 0 2 0 d e g
スキャン速度: 6. 0 0 0 d e g/m i n
発散スリット : 0. 5 0 d e g
散乱スリット : 0. 5 0 d e g
受光スリット : 0. 3 Omm
( X V i i ) 樹脂層の裁断面から求める黒鉛化粒子の算術平均粒径
集束イオンビーム (商品名 : F B— 2 0 0 0 C ;株式会社日立製作所製) を 用いて、 現像剤担持体の断面を、 現像剤担持体の軸方向に対して垂直面で 2 0 nm毎に切断した。 切断した各裁断面を、 電子顕微鏡 (商品名: H— 7 5 0 0 ; 株式会社日立製作所製) を用いて撮影した。 撮影した複数枚の画像より各粒子 において、 長径と短径の和が最大となる画像の測定値をその粒子の形状として、 1 0 0個の黒鉛化粒子の粒子径をそれぞれ測定した。 当該粒子の粒子径は、 測 定した粒子の長径と短径の平均値とした。 各粒子径により、 算術平均粒子径を 求めた。 尚、 測定倍率は、 1 0万倍とした。
( 1 ) 現像剤 (磁性トナー) の製造
<結着樹脂 a— 1の製造例 >
ポリエステルュニットを生成するためのモノマーとしての下記成分及び触媒 としての 2—ェチルへキサン酸錫を 4つ口フラスコに投入した。
テレフタル酸 2 5 mo 1 % ; ドデセニルコハク酸 1 5mo 1 % ; 無水トリメリット酸 7mo 1 %; 前記式 ( I一 1 ) で示されるビスフエノール誘導体 3 2mo l % ; (プロピレンオキサイド 2. 5mo l付加物) 前記式 ( I— 1 ) で示されるビスフヱノール誘導体 22 m o 1 %。
(エチレンォキサイド 2. 5mo 1付加物)
当該 4つ口フラスコに減圧装置、 水分離装置、 窒素ガス導入装置、 温度測定 装置及び攪拌装置を装着し、 窒素雰囲気下にて温度 1 30°Cで攪拌した。 撹拌 中に、 上記モノマー成分 100質量部に対してスチレン系共重合樹脂ュニット を生成するための下記の組成のモノマー成分の 25質量部を重合開始剤 (ベン ゾィルパーォキサイド) と混合したものを滴下ロートから 4時間かけて当該 4 つ口フラスコ中に滴下した。
スチレン 83質量%; 2—ェチルへキシルァクリレート 15質量0 /0; アクリル酸 2質量%。
上記材料を温度 1 30 °Cに保持したまま 3時間熟成し、 230 °Cに昇温して 反応させた。 反応終了後、 生成物を容器から取り出し、 粉碎し、 ポリエステル 樹脂成分、 スチレン系共重合成分、 及び、 ハイブリッド樹脂成分を含有した結 着樹脂 a— 1を得た。 結着樹脂 a - 1の諸物性を表 1に示す。
<結着樹脂 a— 2の製造例 >
ポリエステルュニットを生成するためのモノマーとしての下記成分及び触媒 として 2—ェチルへキサン酸錫を 4つ口フラスコに投入した。
テレフタル酸 27 mo 1 %; ドデセニノレコハク酸 13 mo 1 %; 無水トリメリット酸 2mo 1 %; 前記式 (1— 1) で示されるビスフエノール誘導体 32mo l % ;
(プロピレンォキサイド 2. 5 mo 1付加物)
前記式 ( I— 1 ) で示されるビスフエノール誘導体 26 m o 1 %。
(エチレンオキサイド 2. 5mo l付加物)
当該 4つロフヲスコに減圧装置、 水分離装置、 窒素ガス導入装置、 温度測定装 置及び攪拌装置を装着し、 窒素雰囲気下にて温度 1 30°Cの温度で攪拌した。 撹拌中に、 上記モノマー成分 1 00質量部に対してスチレン系共重合樹脂ュニ ッ トを生成するための下記の組成のモノマー成分の 2 5質量部を重合開始剤 (ベンゾィルパーォキサイド) と混合したものを滴下ロートから 4時間かけて 当該 4つ口フラスコ中に滴下した。
スチレン 83質量%;
2—ェチルへキシルァクリ レート 1 5質量0 /0; アクリル酸 2質量。 /0
上記材料を温度 1 30°Cに保持したまま 3時間熟成し、 230°Cに昇温して 反応を行った。 反応終了後、 生成物を容器から取り出し後粉砕し、 ポリエステ ル樹脂成分、 スチレン系共重合成分、 及び、 ハイブリッド樹脂成分を含有した 結着樹脂 a— 2を得た。 結着樹脂 a— 2の諸物性を表 1に示す。
Figure imgf000064_0001
<磁性酸化鉄粒子 b - 1の製造例 >
硫酸第一鉄を用い、 F e 2 +を 2. Omo 1 ZL含有する硫酸鉄水溶液 50 L を調製した。 また、 ケィ酸ナトリウムを用い、 3 14 +を0. 23mo l /L含 有するケィ酸ナトリウム水溶液 1 O Lを調製し、 これを前記硫酸鉄水溶液に添 カロし、 混合した。 次いで、 混合した水溶液に 5. Omo l ZLのN a OH水溶 液 42 Lを撹拌混合し、 水酸化第一鉄スラリーを得た。 この水酸化第一鉄スラ リーを pH 1 2. 0、温度 90°Cに調整し、 30 LZm i nの空気を吹き込み、 水酸化第一鉄の 50%が磁性酸化鉄粒子になるまで酸化反応を行った。 次いで、 磁性酸化鉄粒子が 75%生成するまで 20 L/m i nの空気を吹き込んだ。 次 いで磁性酸化鉄粒子が 90%生成するまで 9 L/m i nの空気を吹き込んだ。 更に、 磁性酸化鉄粒子の割合が 9 0 %を超えた時点で、 空気を 6 L /m i n吹 き込んで酸化反応を完結させ、 八面体形状のコア粒子を含むスラリーを得た。 得られたコア粒子を含むスラリーに、 ケィ酸ナトリウムの水溶液 (3 1を1 3 . 4質量0 /0含有) を 0 · 0 9 4 Lと、 硫酸アルミニゥム水溶液 ( A 1を 4 . 2質量0 /0含有) を 0 . 2 8 8 L同時に投入する。 その後、 スラリーの温度を 8 0 °Cに、 p Hを希硫酸によって 5以上 9以下に調整し、 コア粒子の表面にケィ 素及びアルミニゥムを含む被覆層を形成した。 得られた磁性酸化鉄粒子を常法 により濾過し、 乾燥、 粉砕を行い、 磁性酸化鉄粒子 b— 1を得た。 磁性酸化鉄 粒子 b— 1の諸物性を表 3に示す。
く磁性酸化鉄粒子 13— 2乃至1)— 6の製造例 >
磁性酸化鉄粒子 b— 1の製造例において、 製造条件を表 2の如く調整するこ とで磁性酸化鉄粒子 b— 2乃至 b— 6を得た。 得られた磁性酸化鉄粒子 b— 2 乃至 b— 6の物' 14値を表 3に示す。
なお、 表 2中の吹き込み空気量における各段数は以下に示す状態を表す。
1段目 :磁性酸化鉄粒子の生成率が 0 %以上 5 0 %以下;
2段目 :磁性酸化鉄粒子の生成率が 5 0 %超、 7 5 %以下;
3段目 :磁性酸化鉄粒子の生成率が 7 5 %超、 9 0 %以下;
4段目 :磁性酸化鉄粒子の生成率が 9 0 %超、 1 0 0 %まで。
<磁性酸化鉄粒子 b— 7の製造例 >
磁性酸化鉄粒子 b _ 1の製造例において、 水酸化第一鉄スラリーの p Hを 1
1 . 5に調整し、 酸化反応を多段階にせず、 9 0 °Cにて 3 0 L Ztn i nの条件 で酸化反応を完結させた以外は同様にして、 磁性酸化鉄粒子 b— 7を得た。 得 られた磁性酸化鉄粒子 b— 7の物性値を表 3に示す。 コア粒子反応 被覆処理 磁性酸化鉄 水溶性ケィ酸塩 吹き込み空気流量 ケィ酸ナトリウム 硫酸アルミ 粒子 溶; ¾ 1 (L7分) 液 ½
反応 pH 水溶液 水溶液 濃度 液量 °C 液量
1段目 2段目 3段目 4段目 液量 (L) (mol/L) し (L)
b- 1 0.23 10 30 20 9 6 90 12.0 0.094 0.288 b-2 0.30 10 20 12 7 3 90 12.5 0.094 0.288 b-3 0.25 10 30 20 12 6 90 11.5 0.094 0.288 b-4 0.28 10 30 20 9 6 90 13.0 0.094 0.288 b-5 0.23 10 20 13 4 3 90 12.5 0.094 0.288 b-6 0.47 10 10 6 5 3 90 13.5 0.094 0.288 b-7 0.23 10 30 30 30 30 90 11.5 0.094 0.288
Figure imgf000066_0001
<現像剤 c一 1の製造例 >
下記材料をヘンシェルミキサ一で前混合した後、 二軸混練押し出し機によつ て、 溶融混練した。 この時、 混練された樹脂の温度が 1 5 0 °Cになるように滞 留時間をコント口ールした。
•結着樹脂 a— 1 9 0質量部;
•結着樹脂 a— 2 1 0質量部;
•磁性酸化鉄粒子 b— 1 6 5質量部; .ワックス [フィッシヤートロプシュワックス (最大吸熱ピーク温度 105°C、 数平均分子量 1500、 重量平均分子量 2500)] 4質量部;
•下記構造式 (14) の構造を有する電荷制御剤 (負帯電性の電荷制御剤)
2質量部
Figure imgf000067_0001
得られた混練物を冷却し、 ハンマーミルで粗粉碎した後、 ターボミルで粉砕 し、 得られた微粉砕粉末をコアンダ効果を利用した多分割分級機を用いて分級 し、 重量平均粒径 (D4) 6. 1 μπιの負帯電性の磁性トナー粒子を得た。 得ら れた磁性トナー粒子 100質量部に対し、 下記の各物質を外添混合し、 目開き 1 50 μ mのメッシュで篩い、 負帯電†¾の現像剤 c一 1を得た。 現像剤 c一 1 の構成と物性を表 4に示す。
'疎水性シリカ微粉末 (BET比表面積 140m2Zg、 シリカ母体 100質量 部に対してへキサメチルジシラザン (HMDS) 30質量部及びジメチルシリ コーンオイル 10質量部で疎水化処理) : 1. 0質量部;
•チタン酸ストロンチウム (個数平均粒径 1. 2 μπι) : 3. 0質量部。
<現像剤 c一 2乃至 c _ l 7の製造例〉
表 4に記載の処方とした以外は実施例 1と同様に現像剤 c_2乃至 c一 1 7 を得た。 現像剤 c一 2乃至 c— 1 7の構成と物性を表 4に示す。 4
Figure imgf000068_0001
( 2 ) 現像剤担持体の製造
<黒鉛化粒子 >
< <黒鉛化粒子 d - 1の製造例 > >
コールタールピッチから溶剤分別により β—レジンを抽出し、これを水素添加 及び重質化処理を行った後、 次いでトルエンにより溶剤可溶分を除去すること でメソフェーズピッチを得た。 そのバルクメソフェーズピッチを微粉砕し、 そ れを空気中において約 3 0 0 °Cで酸化処理した後、 窒素雰囲気下にて焼成温度 3 0 0 0 °Cで熱処理し、 更に分級して黒鉛化粒子 d— 1を得た。 黒鉛化粒子 d 一 1の諸物性を表 5に示す。
< <黒鉛化粒子 d— 2の製造例〉 >
石炭系重質油を熱処理することで得られたメソカーボンマイクロビーズを、 洗浄 ·乾燥した後、 アトマイザ一ミルで機械的に分散を行い、 窒素雰囲気下に おいて 1 2 0 0 °Cで一次加熱処理を行い炭化させた。 次いで、 マトマイザーミ ルで二次分散を行った後窒素雰囲気下において焼成温度 3 1 0 0 °Cで熱処理し、 更に分級して黒鉛化粒子 d— 2を得た。 黒鉛化粒子 d— 2の諸物性を表 5に示 す。
< <黒鉛化粒子 d— 3乃至 d— 7の製造例 > >
黒鉛化粒子 d— 1及び d— 2の製造例において、 黒鉛化粒子の原材料及ぴ焼 成温度を表 2の如く調整することで黒鉛化粒子 d— 3乃至 d— 7を得た。 得ら れた黒鉛化粒子 d— 3乃至 d— 7の物性値を表 5に示す。
5
Figure imgf000069_0001
<導電性球状炭素粒子〉
導電性球状炭素粒子として以下のものを使用した。
• e—丄 :
二力ビーズ PC— 0520 (商品名 ; 日本カーボン株式会社) を分級したもの を用いた。 (体積平均粒径 =5. 9 ^m)
• e -2 :
二力ビーズ PC— 0520 (商品名 ; 日本カーボン株式会社) を分級したもの を用いた。 (体積平均粒径 =4. 1 μπι)
• e— 3 :
二力ビーズ PC— 0520 (商品名 ; 日本カーボン株式会社) を分級したもの を用いた。 (体積平均粒径 =8. 0 μπι)
• e -4 :
二力ビーズ PC— 0520 (商品名 ; 日本カーボン株式会社) を分級したもの を用いた。 (体積平均粒径 =3. 7 //m) • e - 5 :
二力ビーズ P C— 1 0 2 0 (商品名 ; 日本カーボン株式会社) を分級したもの を用いた。 (体積平均粒径 = 8 . 5 μ χη)
<カーボンブラック >
カーボンブラックとして、 トーカブラック # 5 5 0 0 (商品名、 東海カーボ ン株式会社製) を用いた。
く第 4級アンモニゥム塩 >
第 4級アンモユウム塩として以下のものを使用した。
• f — 1 :
表 1の例示 1の化合物を用いた。
• f - 2 :
表 1の例示 2の化合物を用いた。
<バインダー樹脂〉
バインダ一樹脂として以下のものを使用した。
· 1 - 1 :
ァンモユア触媒を使用して合成されたレゾール型フエノール樹脂のメタノール 4 0 %含有溶液 (商品名 : J一 3 2 5 ;大日本インキ株式会社) を用いた。 • 1 - 2 :
N a O H触媒を使用して合成されたレゾール型フエノール樹脂 (商品名 : G F 9 0 0 0 ;大日本インキ化学工業社製) を用いた。
• 1 - 3 :
ポリオール (商品名 :ニッポラン 5 0 3 7 ; 日本ポリウレタン工業製) と硬化 剤 (商品名 : コロネート L ; 日本ポリウレタン工業製) を 1 0 : 1で配合した ものを用いた。
( 3 ) 実施例
(実施例 1 ) ぐ現像剤担持体 g - 1の製造 >
先に調製した現像剤 c 1と組み合わせる現像剤担持体 g— 1を以下の方法に より製造した。 先ず、 下記の各材料を、 混合し、 横型サンドミル (直径 0. 6 mmのガラスビーズを充填率 85%) にて処理し、 一次分散液 h_lを得た。 バインダ一樹脂 1— 1 , 166. 7質量部(固形分 100質量部); 黒鉛化粒子 b— 1 90質量部; カーボンブラック 10質量部; メタノ一ル 133. 3質量部。 次いで、 下記の各材料を混合し、 縦型サンドミル (直径 0. 8 mmのガラス ビーズを充填率 50%) にて処理して二次分散液 i一 1を得た。 更にこの分散 液をメタノールで希釈して固形分 37 %の塗工液 j一 1を得た。
一次分散液 h— 1 400質量部 (固形分 200質量部) ; バインダ一樹脂 1一 1 250質量部 (固形分 150質量部) ; 第 4級アンモニゥム塩 f — 62. 5質量部; 導電性球状炭素粒子 95質量部; メタノール 250質量部。 基体として長さ 320mm、 外径 24. 5 mmのアルミニウム製円筒管 (R a = 0. 3 μ m ;基準長さ (l r) = 4 mm) を用意した。 当該基体の両端部 6 mmをマスキングした後、 当該基体を、 その軸が鉛直と平行となるように配 置した。 そして、 当該基体を 1200 r pmで回転させ、 エアスプレーガン (商 品名 : G P 05— 23 ;メサック社製) を 30 mmノ秒で下降させながら塗布 して硬化後の厚さが 12 /xmとなるように塗膜を形成した。 続いて 150°Cの 熱風乾燥炉中で 30分間加熱して塗膜を硬化させて現像剤担持体中間体 k一 1 を作製した。 次いで、 図 5に示した装置を用いて現像剤担持体中間体 k一 1の 表面の磨き加工を行った。研磨材として幅 5 cmのテープ状の研磨材(商品名 : ラッピングフィルムシート # 3000;住友スリーェム株式会社製)を用いた。 そして、 テープ巻き取り速度 1 5 mmZ秒、 スリーブの軸方向への送り速度 3 O mmZ秒、 現像剤担持体中間体 k一 1 の押し付け荷重 0 . 2 N、 現像剤担 持体中間体 k— 1の回転数 1 0 0 0 r p mにて磨き加工を行った。 そして表 6 に示した特定の表面形状を有する現像剤担持体 g— 1を得た。 尚、 上記テープ 状の研磨材は、 研磨粒子として一次平均粒径が 5 μ πιの酸化アルミニウムを用 いたものである。
<電子写真画像形成装置の形成、 及びそれを用いた画像評価 >
得られた現像剤担持体 g— 1にマグネットローラを挿入し、 両端にフランジ を取り付けて、 電子写真画像形成装置 (商品名 : i R 6 0 1 0 ;商品名、 キヤ ノン株式会社製) の現像器の現像ローラとして装着した。 なお、 磁性ドクター ブレードと現像剤担持体 g _ 1との間隙は 2 5 0 μ mとした。
また、 上記の電子写真画像形成装置に現像剤として現像剤 c - 1を投入し、 下記の画像評価を行った。 即ち、 印字比率 5 %の文字画像を A 4横送りで 5 0 0 0枚連続複写の画出し試験を行い、 1時間休止させ、 休止後 1 0 0 0枚連続 複写の画出し試験を行った。 その後 4 9万 5 0 0 0枚までは、 現像剤補給や用 紙の補充の間は、一次停止させながら連続複写の画出し試験を行った。 さらに、 5 0万枚まで連続複写の画出し試験を行い、 1時間休止させ、 休止後 1 0 0 0 枚連続複写の画出し試験を行った。 画像評価は、 初期画像濃度、 初期画質、 5 0 0 0枚時の休止前後の濃度差、 5 0 0 0枚時の休止後の濃度回復、 5 0万枚 時の休止前後の濃度差、 5 0万枚時の休止後の濃度回復、 5 0 0 0枚時と 5 0 万枚時との画像濃度差であり、 下記評価方法及び評価基準で判定した。 画像評 価は、 常温常湿環境 (2 3 °C、 5 0 % R H; N/N) で実施した。 尚、 画像評 価には、 A 4のオフィスプランナー用紙 (キャノン販売製; 6 4 g Zm2) を使 用した。 その結果を表 7に示す。
( 1 ) 初期画像濃度
画出し試験において初期にベタ画像を出力し、 その濃度を 5点測定して平均 値を取って画像濃度とし、 原稿濃度が 0. 00の白地部分の画像に対する相対 濃度を測定した。 その結果から、 下記基準にて評価した。 なお、 画像濃度は 「マ クべス反射濃度計 RD918」 (マクベス社製) を用いた。
A: 1. 40以上。
B : 1. 30以上、 1. 40未満。
C : 1. 00以上、 1. 30未満。
D: 1. 00未満。
(2) 初期画質
画出し試験の初期において、 サイズが 4ポイントの、 図 9に示した漢字の画 像を出力し、 画像のカスレや飛び散りを目視評価し、 下記基準にて画質を評価 した。
A:倍率が 10倍のルーペで見ても飛び散りのない鮮明な画像である。
B : 目視で見る限り鮮明な画像である。
C :若干飛び散りが見られるものの実用上問題ない。
D :飛び散り以外に文字のカスレが目立つ。
(3) 5000枚時の休止前後の濃度差
画出し試験において 5000枚時にベタ画像を出力し、 (1) の評価同様に画 像濃度を測定した。 5000枚時のベタ画像を出力後、 電源を入れたままで複 写機 1時間休止させ、 休止後にベタ画像を出力し、 (1) の評価同様に画像濃度 を測定した。 5000枚時の画像濃度と休止後の画像濃度の差分を下記基準に 基づいてランク付けを行い評価した。
八:濃度差が0. 10未満。
B :濃度差が 0. 10以上 0. 15未満。
C :濃度差が 0. 1 5以上 0. 20未満。
D :濃度差が 0. 20以上。
(4) 5000枚時の休止後の濃度回復 画出し試験において、 (3)の画出し試験後更にベタ画像を 1000枚出力し、 (1) の評価同様に画像濃度を測定した。 休止前の画像濃度との差が 0. 05 以内になった枚数を画像濃度が回復した時とし、 下記基準に基づいてランク付 けを行い評価した。
A:画像濃度が 10枚以下で回復。
B :画像濃度が 10枚超 100枚以下で回復。
C :画像濃度が 100枚超 500以下で回復。
D:画像濃度が 500枚超 1000枚以下で回復。
E : 1000枚時でも画像濃度が回復しない
(5) 50万枚時の休止前後の濃度差
画出し試験において、 (3) と同様に 50万枚時の休止前後の濃度差を下記基 準に基づいてランク付けを行い評価した。
A:濃度差が 0. 10未満。
B :濃度差が 0. 10以上 0. 15未満。
C :濃度差が 0. 1 5以上 0. 20未満。
D:濃度差が 0. 20以上。
(6) 50万枚時の休止後の濃度回復
画出し試験において、 (4) と同様に 50万枚時の休止後の濃度回復を下記基 準に基づいてランク付けを行レ 平価した。
A:画像濃度が 10枚以下で回復。
B :画像濃度が 10枚超 100枚以下で回復。
C :画像濃度が 100枚超 500以下で回復。
D :画像濃度が 500枚超 1000枚以下で回復。
E : 1000枚時でも画像濃度が回復しない。
(7) 1万枚時と 50万枚時との濃度差
画出し試験において、 1万枚時の休止前の画像濃度と 50万枚時の休止前の 画像濃度との差分を下記基準に基づいてランク付けを行い評価した。
A:濃度差が 0 . 1 0未満。
B :濃度差が 0 . 1 0以上 0 . 1 5未満。
C :濃度差が 0 . 1 5以上 0 . 2 0未満。
D:濃度差が 0 . 2 0以上。
(実施例 2〜 8 )
上記現像剤担持体 g— 1と組み合わせる現像剤を表 6に示したように変えた。 各現像剤との関係における現像剤担持体 g— 1の表面形状を表す各種の数値を 表 6に記載した。 また、 各々の組み合わせにかかる電子写真画像形成装置を用 いた以外は実施例 1と同様にして画像評価を行った。 その結果を表 7に示す。
(実施例 9 )
現像剤 c一 1と組み合わせる現像剤担持体 g— 2を以下のように製造した。 即ち、 上記した現像剤担持体 g— 1の製造に用いた黒鉛化粒子 d— 1を黒鉛化 粒子 d— 2に変えた以外は現像剤担持体 g— 1と同様にして現像剤担持体 g - 2を製造した。 現像剤 c― 1との関係における現像剤担持体 g— 2の表面形状 を表す各種の数値を表 6に記載した。 また、 現像剤 c一 1及び現像剤担持体 g 一 2とを組合せた電子写真画像形成装置を用いた以外は実施例 1と同様にして 画像評価を行った。 その結果を表 7に示す。
(実施例 1 0 )
現像剤 c - 1と組み合わせる現像剤担持体 g— 3を以下のように製造した。 即ち、 上記した現像剤担持体 g— 1の製造に用いた黒鉛化粒子 d - 1を黒鉛化 粒子 d— 3に変えた以外は現像剤担持体 g— 1と同様にして現像剤担持体 g - 3を製造した。 現像剤 c一 1との関係における現像剤担持体 g— 3の表面形状 を表す各種の数値を表 6に記載した。 また、 現像剤 c一 1及び現像剤担持体 g 一 3とを組合せた電子写真画像形成装置を用いた以外は実施例 1と同様にして 画像評価を行った。 その結果を表 7に示す。 (実施例 1 1 )
現像剤 c一 1と組み合わせる現像剤担持体 g— 9を以下のように製造した。 即ち、 テープ状の研磨材として一次平均粒径が 3 /z mであるテープ状の研磨材 (商品名 : ラッピンダフイルムシート # 4 0 0 0 ;住友スリーェム株式会社製) を用いた。 それ以外は現像剤担持体 g— 1と同様にして現像剤担持体 g— 9を 製造した。 現像剤 c一 1との関係における現像剤担持体 g— 9の表面形状を表 す各種の数値を表 6に記載した。 また、 現像剤 c一 1及び現像剤担持体 g— 9 とを組合せた電子写真画像形成装置を用いた以外は実施例 1と同様にして画像 評価を行った。 その結果を表 7に示す。
(実施例 1 2 )
現像剤 c— 1と組み合わせる現像剤担持体 g— 1 0を以下のように製造した。 即ち、 テープ状の研磨材として一次平均粒径が 9 μ πιであるテープ状の研磨材 (商品名 : ラッピングフィルムシート # 2 0 0 0 ;住友スリーェム株式会社製) を用いた。 それ以外は現像剤担持体 g— 1と同様にして現像剤担持体 g— 1 0 を製造した。 現像剤 c一 1との関係における現像剤担持体 g— 1 0の表面形状 を表す各種の数値を表 6に記載した。 また、 現像剤 c一 1及び現像剤担持体 g 一 1 0とを組合せた電子写真画像形成装置を用いた以外は実施例 1と同様にし て画像評価を行った。 その結果を表 7に示す。
(実施例 1 3 )
現像剤 c一 1と組み合わせる現像剤担持体 g _ 1 2を以下のように製造した。 即ち、 上記した現像剤担持体 g— 1の製造に用いた導電性球状炭素粒子 e— 1 を導電性球状炭素粒子 e— 2、 1 2 0質量部に変えた。 それ以外は現像剤担持 体 g— 1と同様にして現像剤担持体 g— 1 2を製造した。 現像剤 c一 1との関 係における現像剤担持体 g— 1 2の表面形状を表す各種の数値を表 6に記載し た。 また、 現像剤 c一 1及び現像剤担持体 g _ l 0とを組合せた電子写真画像 形成装置を用いた以外は実施例 1と同様にして画像評価を行った。 その結果を 表 7に示す。
(実施例 1 4 )
現像剤 c 一 1と組み合わせる現像剤担持体 g _ 1 1を以下のように製造した。 即ち、 上記した現像剤担持体 g— 1の製造に用いた導電性球状炭素粒子 e— 1 を導電性球状炭素粒子 e — 3、 7 0質量部に変えた。 それ以外は現像剤担持体 g— 1と同様にして現像剤担持体 g— 1 1を製造した。 現像剤 c 一 1との関係 における現像剤担持体 g— 1 1の表面形状を表す各種の数値を表 6に記載した。 また、 現像剤 c 一 1及び現像剤担持体 g— 1 1とを組合せた電子写真画像形成 装置を用いた以外は実施例 1と同様にして画像評価を行った。 その結果を表 7 に示す。
(実施例 1 5 )
現像剤 c— 1と組み合わせる現像剤担持体 g _ 2 2を以下のように製造した。 即ち、 上記した現像剤担持体 g _ 1の製造に用いた 4級アンモニゥム塩 f — 1 を 4級アンモニゥム塩 f —2に変えた。 また、 導電性球状炭素粒子 e— 1を導 電性球状炭素粒子 e— 2を 3 0質量部とした。 更に、 テープ状の研磨材として 一次平均粒径が 3 μ mであるテープ状の研磨材 (商品名 : ラッビングフィルム シート # 4 0 0 0 ;住友スリーェム株式会社製) を用いた。 それ以外は現像剤 担持体 g _ lと同様にして現像剤担持体 g— 2 2を製造した。 現像剤 c _ lと の関係における現像剤担持体 g— 2 2の表面形状を表す各種の数値を表 6に記 載した。 また、 現像剤 c - 1及び現像剤担持体 g— 2 2とを組合せた電子写真 画像形成装置を用いた以外は実施例 1と同様にして画像評価を行った。 その結 果を表 7に示す。
(実施例 1 6 )
現像剤 c 一 1と組み合わせる現像剤担持体 g _ 2 3を以下のように製造した。 即ち、 現像剤担持体 g— 2 2の製造に用いた導電性球状炭素粒子 e— 2に代え て導電性球状炭素粒子 e— 3、 1 2 5質量部を用いた。 更に、 テープ状の研磨 材として一次平均粒径が 9 μ mであるテープ状の研磨材 (商品名 : ラッビング フィルムシート # 2 0 0 0 ;住友スリーェム株式会社製) を用いた。 それ以外 は現像剤担持体 g— 2 2と同様にして現像剤担持体 g— 2 3を製造した。 現像 剤 c— 1との関係における現像剤担持体 g— 2 3の表面形状を表す各種の数値 を表 6に記載した。 また、 現像剤 c一 1及び現像剤担持体 g— 2 2とを組合せ た電子写真画像形成装置を用いた以外は実施例 1と同様にして画像評価を行つ た。 その結果を表 7に示す。
(実施例 1 7 )
現像剤 c一 1と組み合わせる現像剤担持体 g— 1 5を以下のように製造した。 即ち、 現像剤担持体 g— 1の製造において用いた 4級アンモニゥム塩 f — 1の 量を 1 2 . 5質量部、 導電性球状炭素粒子 e _ lの量を 8 0質量部とした。 そ れ以外は現像剤担持体 g— 1と同様にして現像剤担持体 g— 1 5を製造した。 現像剤 c一 1との関係における現像剤担持体 g— 1 5の表面形状を表す各種の 数値を表 6に記載した。 また、 現像剤 c一 1及び現像剤担持体 g— 1 5とを組 合せた電子写真画像形成装置を用いた以外は実施例 1と同様にして画像評価を 行った。 その結果を表 7に示す。
(実施例 1 8 )
現像剤 c一 1と組み合わせる現像剤担持体 g _ 1 6を以下のように製造した。 即ち、 現像剤担持体 g— 1の製造において用いた 4級アンモニゥム塩 f — 1の 量を 1 2 5質量部、 導電性球状炭素粒子 e— 1の量を 1 1 5質量部とした。 そ れ以外は現像剤担持体 g— 1と同様にして現像剤担持体 g— 1 6を製造した。 現像剤 c一 1との関係における現像剤担持体 g— 1 6の表面形状を表す各種の 数値を表 6に記載した。 また、 現像剤 c一 1及び現像剤担持体 g— 1 6とを組 合せた電子写真画像形成装置を用いた以外は実施例 1と同様にして画像評価を 行った。 その結果を表 7に示す。
(実施例 1 9〜 2 2 ) 現像剤担持体 g— 1と組み合わせる現像剤を表 6に示したように変えた。 各 現像剤との関係における現像剤担持体 g— 1の表面形状を表す各種の数値を表 6に記載した。 また、 各々の組み合わせにかかる電子写真画像形成装置を用い た以外は実施例 1と同様にして画像評価を行った。 その結果を表 7に示す。
(実施例 2 3 )
現像剤 c - 1と組み合わせる現像剤担持体 g _ 2 4を以下のように製造した。 即ち、 現像剤担持体 g— 1の製造において用いたバインダ一樹脂 I一 1をバイ ンダ一樹脂 I一 3に変えた。 それ以外は現像剤担持体 g— 1と同様にして現像 剤担持体 g— 2 4を製造した。 現像剤 c一 1との関係における現像剤担持体 g —2 4の表面形状を表す各種の数値を表 6に記載した。 また、 現像剤 c一 1及 び現像剤担持体 g— 2 4とを組合せた電子写真画像形成装置を用いた以外は実 施例 1と同様にして画像評価を行った。 その結果を表 7に示す。
(実施例 2 4 )
現像剤 c _ 3と組み合わせる現像剤担持体 g— 2 1を以下のように製造した。 即ち、 現像剤担持体 g— 1の製造において用いた導電性球状炭素粒子 e— 1に 代えて導電性球状炭素粒子 e— 2、 2 5質量部を用いた。 また、 テープ状の研 磨材として一次平均粒径が 9 μ πιであるテープ状の研磨材 (商品名 : ラッピン グフィルムシート # 2 0 0 0 ;住友スリーェム株式会社製) を用いた。 それ以 外は現像剤担持体 g— 1と同様にして現像剤担持体 g— 2 1を製造した。 現像 剤 c一 3との関係における現像剤担持体 g— 2 1の表面形状を表す各種の数値 を表 6に記載した。 また、 現像剤 c一 3及び現像剤担持体 g— 2 1とを組合せ た電子写真画像形成装置を用いた以外は実施例 1と同様にして画像評価を行つ た。 その結果を表 7に示す。
(実施例 2 5 )
現像剤 c— 3と組み合わせる現像剤担持体 g _ 2 0を以下のように製造した。 即ち、 現像剤担持体 g— 1の製造において用いた導電性球状炭素粒子 e— 1に 代えて導電性球状炭素粒子 e— 2、 3 0質量部を用いた。 それ以外は現像剤担 持体 g— 1と同様にして現像剤担持体 g— 2 0を製造した。 現像剤 c— 3との 関係における現像剤担持体 g— 2 0の表面形状を表す各種の数値を表 6に記載 した。 また、 現像剤 c一 3及び現像剤担持体 g— 2 0とを組合せた電子写真画 像形成装置を用いた以外は実施例 1と同様にして画像評価を行った。 その結果 を表 7に示す。
(実施例 2 6 )
現像剤 c一 2と組み合わせる現像剤担持体 g— 1 8を以下のように製造した。 即ち、 現像剤担持体 g— 1の製造において用いた導電性球状炭素粒子 e _ 1に 代えて導電性球状炭素粒子 e— 3、 1 2 5質量部を用いた。 また、 テープ状の 研磨材として一次平均粒径が 3 μ mであるテープ状の研磨材 (商品名 : ラッピ ングフィルムシート # 4 0 0 0 ;住友スリーェム株式会社製) を用いた。 それ 以外は現像剤担持体 g— 1と同様にして現像剤担持体 g— 1 8を製造した。 現 像剤 c一 2との関係における現像剤担持体 g— 1 8の表面形状を表す各種の数 値を表 6に記載した。 また、 現像剤 c一 2及び現像剤担持体 g— 1 8とを組合 せた電子写真画像形成装置を用いた以外は実施例 1と同様にして画像評価を行 つた。 その結果を表 7に示す。
(実施例 2 7 )
現像剤 c一 2と組み合わせる現像剤担持体 g— 1 9を以下のように製造した。 即ち、 上記実施例 2 6にかかる現像剤担持体 g— 1 8の製造において用いた導 電性球状炭素粒子 e— 3の量を 1 5 0質量部とした。 それ以外は現像剤担持体 g— 1 8と同様にして現像剤担持体 g— 1 9を製造した。 現像剤 c一 2との関 係における現像剤担持体 g— 1 9の表面形状を表す各種の数値を表 6に記載し た。 また、 現像剤 c一 2及び現像剤担持体 g— 1 9とを組合せた電子写真画像 形成装置を用いた以外は実施例 1と同様にして画像評価を行った。 その結果を 表 7に示す。 (実施例 2 8 )
現像剤 c - 1と組み合わせる現像剤担持体 g— 6を以下のように製造した。 即ち、 現像剤担持体 g— 1の製造において用いた黒鉛化粒子 d— 1を黒鉛化粒 子 d— 4に変えた。 また、 4級アンモニゥム塩 f _ 1を 4級アンモニゥム塩 f 一 2に変えた。 それ以外は現像剤担持体 g— 1と同様にして現像剤担持体 g— 6を製造した。 現像剤 c一 1 との関係における現像剤担持体 g— 6の表面形状 を表す各種の数値を表 6に記載した。 また、 現像剤 c一 1及び現像剤担持体 g 一 6とを組合せた電子写真画像形成装置を用いた以外は実施例 1と同様にして 画像評価を行った。 その結果を表 7に示す。
(実施例 2 9 )
現像剤 c一 1と組み合わせる現像剤担持体 g— 7を以下のように製造した。 即ち、 現像剤担持体 g— 1の製造において用いた黒鉛化粒子 d— 1を黒鉛化粒 子 d— 5に変えた。 また、 4級アンモニゥム塩 f 一 1を 4級アンモニゥム塩 f 一 2に変えた。 それ以外は現像剤担持体 g— 1と同様にして現像剤担持体 g— 7を製造した。 現像剤 c一 1 との関係における現像剤担持体 g— 7の表面形状 を表す各種の数値を表 6に記載した。 また、 現像剤 c一 1及び現像剤担持体 g 一 7とを組合せた電子写真画像形成装置を用いた以外は実施例 1と同様にして 画像評価を行った。 その結果を表 7に示す。
(比較例 1〜 5 )
現像剤担持体 g— 1と組み合わせる現像剤を表 8に示したように変えた。 各 現像剤との関係における現像剤担持体 g— 1の表面形状を表す各種の数値を表 9に示す。 また各々の組み合わせにかかる電子写真画像形成装置を用いた以外 は実施例 1と同様にして画像評価を行った。 その結果を表 9に示す。
(比較例 6 )
現像剤担持体 g— 1の製造に用いた黒鉛化粒子 d— 1を黒鉛化粒子 d— 6に 変えた以外は現像剤担持体 g— 1と同様にして現像剤担持体 g— 4を製造した。 現像剤 c一 1との関係における現像剤担持体 g— 4の表面形状を表す各種の数 値を表 8に記載した。 また、 現像剤 c一 1及び現像剤担持体 g— 4とを組合せ た電子写真画像形成装置を用いた以外は実施例 1と同様にして画像評価を行つ た。 その結果を表 9に示す。
(比較例 7 )
現像剤担持体 g— 1の製造に用いた黒鉛化粒子 d - 1を黒鉛化粒子 d— 7に 変えた以外は現像剤担持体 g— 1と同様にして現像剤担持体 g— 5を製造した。 現像剤 c一 1との関係における現像剤担持体 g— 5の表面形状を表す各種の数 値を表 8に記載した。 また、 現像剤 c一 1及び現像剤担持体 g— 5とを組合せ た電子写真画像形成装置を用いた以外は実施例 1と同様にして画像評価を行つ た。 その結果を表 9に示す。
(比較例 8 )
実施例 2 8にかかる現像剤担持体 g— 6を現像剤 c一 3と組み合わせた。 現 像剤 c一 3との関係における現像剤担持体 g— 6の表面形状を表す各種の数値 を表 8に記載した。 また、 現像剤 c— 1及び現像剤担持体 g— 6とを組合せた 電子写真画像形成装置を用いた以外は実施例 1と同様にして画像評価を行った。 その結果を表 9に示す。
(比較例 9 )
実施例 1 2にかかる現像剤担持体 g— 1 0を現像剤 c一 2と組み合わせた。 現像剤 c一 2との関係における現像剤担持体 g— 1 0の表面形状を表す各種の 数値を表 8に記載した。 また、 現像剤 c一 2及び現像剤担持体 g— 1 0とを組 合せた電子写真画像形成装置を用いた以外は実施例 1と同様にして画像評価を 行った。 その結果を表 9に示す。
(比較例 1 0 )
現像剤担持体 g— 1の製造に用いた導電性球状炭素粒子 e— 1に代えて導電 性球状炭素粒子 e— 4、 1 2 5質量部を用いた。 それ以外は現像剤担持体 g— 1と同様にして現像剤担持体 g— 1 3を製造した。 現像剤 c— 2との関係にお ける現像剤担持体 g— 1 3の表面形状を表す各種の数値を表 8に記載した。 ま た、 現像剤 c - 2及び現像剤担持体 g— 1 3とを組合せた電子写真画像形成装 置を用いた以外は実施例 1と同様にして画像評価を行った。 その結果を表 9に 示す。
(比較例 1 1 )
現像剤担持体 g— 1の製造に用いた導電性球状炭素粒子 e— 1に代えて導電 性球状炭素粒子 e— 5、 6 5質量部を用いた。 それ以外は現像剤担持体 g— 1 と同様にして現像剤担持体 g— 1 4を製造した。 現像剤 c — 3との関係におけ る現像剤担持体 g— 1 4の表面形状を表す各種の数値を表 8に記載した。 また、 現像剤 c 一 3及び現像剤担持体 g— 1 4とを組合せた電子写真画像形成装置を 用いた以外は実施例 1と同様にして画像評価を行った。 その結果を表 9に示す。
(比較例 1 2 )
実施例 1 5にかかる現像剤担持体 g— 2 2を現像剤 c 一 3と組み合わせた。 現像剤 c— 3との関係における現像剤担持体 g— 2 2の表面形状を表す各種の 数値を表 8に記載した。 また、 現像剤 c 一 3及び現像剤担持体 g— 2 2とを組 合せた電子写真画像形成装置を用いた以外は実施例 1と同様にして画像評価を 行った。 その結果を表 9に示す。
(比較例 1 3 )
実施例 1 6にかかる現像剤担持体 g— 2 3を現像剤 c 一 2と組み合わせた。 現像剤 c— 2との関係における現像剤担持体 g— 2 3の表面形状を表す各種の 数値を表 8に記載した。 また、 現像剤 c _ 2及び現像剤担持体 g— 2 3とを組 合せた電子写真画像形成装置を用いた以外は実施例 1と同様にして画像評価を 行った。 その結果を表 9に示す。
(比較例 1 4 )
現像剤担持体 g _ 1の製造に用いた 4級アンモニゥム塩を用いず、 また導電 性球状炭素粒子 e - 1の量を 8 0質量部とした。 それ以外は現像剤担持体 g— 1と同様にして現像剤担持体 g— 1 7を製造した。 現像剤 c一 1との関係にお ける現像剤担持体 g— 1 7の表面形状を表す各種の数値を表 8に記載した。 ま た、 現像剤 c - 1及び現像剤担持体 g— 1 7とを組合せた電子写真画像形成装 置を用いた以外は実施例 1と同様にして画像評価を行った。 その結果を表 9に 示す。
(比較例 1 5 )
現像剤担持体 g— 1の製造に用いたバインダ一樹脂 I一 1をバインダ一樹脂 I一 2に変えた以外は現像剤担持体 g— 1と同様にして現像剤担持体 g _ 2 5 を製造した。 現像剤 c一 1との関係における現像剤担持体 g— 2 5の表面形状 を表す各種の数値を表 8に記載した。 また、 現像剤 c - 1及び現像剤担持体 g 一 2 5とを組合せた電子写真画像形成装置を用いた以外は実施例 1と同様にし て画像評価を行った。 その結果を表 9に示す。
また、 上記実施例、 比較例に用いた現像剤担持体 g l〜g 7、 g 9〜g 2 5 の R a (T o t a 1 )、 黒鉛化粒子の算術平均粒径 (D n ) 及びユニバーサル硬 さ (HU) を表 1 0に示す。
表 6
単位面積におけ H+(D4 4)を越える高さの る H+ (D4 4) 凸部の、 H + ( D4 4)におけ 現像剤 Ra(A) Ra(B)
現像剤 を越える凸部の る凸部の面積の総和の単位 担持体
個数 面積に対する割合
( < m) ( m) (個) (%) 実施例 1 c-1 g-i 0.38 0.84 18 14 実施例 2 c-8 g-i 0.45 0.75 19 22.6 実施例 3 C- 9 g- 1 0.36 0.93 15 6.6 実施例 4 c-4 g-i 0.38 0.83 18 12.8 実施例 5 c-5 0.39 0.84 19 1 6 実施例 6 c-7 R-1 0.4 0.85 19 16.4 実施例 7 c-2 g-1 0.45 0.76 21 22.8 実施例 8 c-3 g-1 0.35 0.94 16 6.2 実施例 9 c-1 R-2 0.38 0.87 18 13.8 実施例 10 c-1 R-3 0.37 0.85 17 13.8 実施例 1 1 C- 1 . R-9 0.32 0.88 9 5.12 実施例 12 c-1 R-10 0.48 0.79 1 1 29.2 実施例 13 c-1 R-12 0.37 0.68 17 23.2 実施例 14 c-1 R-1 1 0.38 1.18 14 1 1.2 実施例 1 5 c-1 R-22 0.25 0.65 15 13.6 実施例 1 6 c-1 R-23 0.54 0.95 18 20.0 実施例 1 7 c-1 g-15 0.37 0.8 19 16.8 実施例 1 8 c-1 g-16 0.39 0.9 18 15.2 実施例 1 9 c-6 g-1 0.4 0.85 17 16.8 実施例 20 c-10 g-i 0.39 0.83 18 15.6 実施例 21 c-1 1 g-i 0.39 0.84 17 14.4 実施例 22 c-12 g-i 0.38 0.84 17 14.4 実施例 23 c-1 R-24 0.041 0.072 18 20.8 実施例 24 c-3 R-21 0.35 0.73 10 9.48 実施例 25 c-3 R-20 0.34 0.74 8 8.96 実施例 26 c-2 R-18 0.43 0.91 13 26.8 実施例 27 c-2 R-19 0.44 0.95 14 28.0 実施例 28 c-1 R-6 0.39 0.97 17 13.2 実施例 29 c-1 S—7 0.38 0.78 18 15.2
Figure imgf000086_0001
表 8
単位面積におけ H+(D4/4)を越える高さの る H+(D4 4) 凸部の、 H+(D4 4)におけ 現像剤 Ra(A) Ra(B)
現像剤 を越える凸部の る凸部の面積の総和の単位 担持体
個数 面積に対する割合
(jt m) (jUm) (個) (%) 比較例 1 c-13 g-1 0.4 0.84 19 16 比較例 2 c-14 R-1 0.38 0.84 16 12.4 比較例 3 c- 5 R-1 0.39 0.86 17 15.2 比較例 4 c-16 0.5 0.68 21 26 比較例 5 c-17 g-i 0.29 1.05 17 5.2 比較例 6 c-1 g-4 0.38 0.84 16 14 比較例 7 c-1 g-5 0.37 0.84 18 13.8 比較例 8 c-3 R-6 0.48 1.02 7 4.48 比較例 9 c-2 K-10 0.53 0.77 9 32.4 比較例 10 c-2 K-13 0.4 0.61 12 28.8 比較例 11 c-3 R-14 0.34 1.23 9 5.2 比較例 12 c-3 R-22 0.23 0.73 6 5.92 比較例 13 c-2 R-23 0.6 0.84 10 30.4 比較例 14 c-1 fi-17 0.38 0.82 15 12.8 比較例 15 c-1 K-25 0.39 0.82 18 15.2
表 9
初期 5000枚時 50万枚時 5000枚時と 飛び散り 回復 回復 50万枚時の濃度差 比較例 1 D D c E D E B 比較例 2 D C D D D E B 比較例 3 B B C D D D B 比較例 4 B C D D D E C 比較例 5 D C C E D E B 比較例 6 C A B B C E D 比較例 7 B B B E B E A 比較例 8 D A C E C E B 比較例 9 A A D B D B B 比較例 10 D A C E D E C 比較例 11 C A D E D E B 比較例 12 A B D D D E D 比較例 13 B B B E C E C 比較例 14 A B D D D E B 比較例 15 B D D E D E C
Figure imgf000088_0001
この出願は 2 0 0 8年 2月 1 9日に出願された日本国特許出願第 2 0 0 8 - 0 3 7 4 1 9号からの優先権を主張するものであり、 その内容を引用してこの 出願の一部とするものである。

Claims

請 求 の 範 囲
1 . 感光ドラムに形成された静電潜像を現像する現像剤と、 該現像剤を担 持 ·搬送する現像剤担持体と、 該現像剤担持体に担持 ·搬送された現像剤の量 を規制するために該現像剤担持体に近接して配置された現像剤層厚規制手段を 少なくとも有する現像装置において、
該現像剤は、
結着樹脂及び磁性酸化鉄粒子を少なくとも含有する磁性トナー粒子を有し、 磁場 7 9 5. 8 k AZmにおける飽和磁化が 2 0 AmVk g以上 40 AmV k g以下であり、重量平均粒径(D4)が 4. Ο μπι以上 8. 0 μ m以下であり、 かつ、 該磁性酸化鉄粒子が、 F e元素溶解率が 1 0質量%となるまでに溶解さ れた総 F e量に占める F e (2 +) の割合 Xが 3 4 %以上 5 0 %以下である負 帯電性の一成分磁性トナーであり、
該現像剤担持体は、
少なくとも、 基体と、 該基体上に形成された表面層としての樹脂層と、 該基体 内部に配設された磁性部材とを有しており、 該樹脂層は、 該現像剤を負に摩擦 帯電させるものであって、
構造中に— NH2基、 =NH基、 および一 NH—結合から選ばれる少なくとも 1 つを有しているバインダ一樹脂と、 該樹脂層の該現像剤に対する負摩擦帯電付 与性を低下させる第 4級アンモニゥム塩と、 黒鉛化度 p (0 0 2) が 0. 2 2 ≤ p (0 0 2) ≤ 0. 7 5である黒鉛化粒子と、 該樹脂層表面に凹凸を付与す る粒子としての体積平均粒径が 4. 0 μ m乃至 8. 0 μ mの導電性球状炭素粒 子とを含有し、
該現像剤担持体の前記現像剤を担持する部分の全域が、
該現像剤担持体の表面における 1辺が 0. 5 0 mmの正方形の領域について該 正方形の一辺と平行な 7 2 5本の直線と、 該直線と直交する 7 2 5本の直線と で等分したときの各直線の交点で測定される 3次元高さの平均値 (H) を基準 として高さが D4/4を越える独立した凸部を複数個有し、 該凸部の該高さ D4 Z4における面積の総和が該領域の面積の 5%以上 30%以下であり、 該凸部 のみから求められる算術平均粗さ R a (A) が 0. 25 /im以上 0. 55 μ m 以下であり、 かつ、 該凸部以外の部分から求められる算術平均粗さ R a (B) が 0. 65 111以上1. 20 μπι以下である表面形状を有していることを特徴 とする現像装置。
2. 前記磁性酸化鉄粒子は、 F e元素溶解率が 10質量%となるまでに溶解 された F e量を除く残りの 90質量%中の総 F e量に占める F e (2+) の割 合を Yとした時、 比 (XZY) 力 1. 00より大きく 1. 30以下である請 求項 1に記載の現像装置。
3. 前記バインダー樹脂がフエノール樹脂である請求項 1または 2に記載 の現像装置。
4. 前記現像剤担持体の現像剤を担持する部分は、該現像剤担持体の表面に おける一辺が 0. 5 Ommの正方形の領域について該正方形の一辺と平行な 7 25本の直線と、 該直線と直交する 725本の直線とで等分したときの各直線 の交点で測定される 3次元高さから求めた算術平均粗さ R a (To t a l) 力 S 0. 60 111以上1. 40 πι以下である請求項 1乃至 3のいずれかに記載の 現像装置。
5. 前記樹脂層の断面を電子顕微鏡で測定した時の、該黒鉛化粒子の算術平 均粒径 (Dn) が 0. 以上 3. 00/ m以下であり、
該樹脂層の表面のユニバーサル硬さ (HU) の平均値 (U) が 400NZmm2 以上 65 ON/mm2以下である請求項 1乃至 4のいずれかに記載の現像装置。
6. 該樹脂層は研磨粒子を表面に担持した帯状研磨材を用いて磨き加工さ れていることを特徴とする請求項 1乃至 5のいずれかに記載の現像装置。
7. 請求項 1乃至 6のいずれかに記載の現像装置を具備していることを特 特徴とする電子写真画像形成装置。
PCT/JP2009/052254 2008-02-19 2009-02-04 現像装置、電子写真画像形成装置 WO2009104501A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009800004620A CN101932978B (zh) 2008-02-19 2009-02-04 显影设备和电子照相图像形成设备
EP09709443.7A EP2246748B1 (en) 2008-02-19 2009-02-04 Developing apparatus and electronic photograph image forming apparatus
US12/486,273 US7796926B2 (en) 2008-02-19 2009-06-17 Developing apparatus and electrophotographic image-forming apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008037419 2008-02-19
JP2008-037419 2008-02-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/486,273 Continuation US7796926B2 (en) 2008-02-19 2009-06-17 Developing apparatus and electrophotographic image-forming apparatus

Publications (1)

Publication Number Publication Date
WO2009104501A1 true WO2009104501A1 (ja) 2009-08-27

Family

ID=40985384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052254 WO2009104501A1 (ja) 2008-02-19 2009-02-04 現像装置、電子写真画像形成装置

Country Status (7)

Country Link
US (1) US7796926B2 (ja)
EP (1) EP2246748B1 (ja)
JP (1) JP4328831B1 (ja)
KR (1) KR101073779B1 (ja)
CN (1) CN101932978B (ja)
RU (1) RU2438154C1 (ja)
WO (1) WO2009104501A1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5300362B2 (ja) * 2008-07-29 2013-09-25 キヤノン株式会社 現像装置及びそれを用いた現像方法
US20110177446A1 (en) * 2008-10-01 2011-07-21 Nippon Aerosil Co., Ltd. Hydrophobic silica microparticles and composition for electrophotographic toner
JP2010151679A (ja) * 2008-12-25 2010-07-08 Polyplastics Co 樹脂成形品の内部組織観察方法
KR20110097668A (ko) * 2010-02-23 2011-08-31 주식회사 엘지화학 중합 토너 및 이의 제조 방법
EP2659311B1 (en) 2010-12-28 2017-11-22 Canon Kabushiki Kaisha Toner
JP5079134B2 (ja) * 2010-12-28 2012-11-21 キヤノン株式会社 現像ローラ、プロセスカートリッジおよび電子写真装置
WO2012091148A1 (en) 2010-12-28 2012-07-05 Canon Kabushiki Kaisha Toner
CN103733142B (zh) 2011-08-03 2016-08-17 佳能株式会社 显影剂承载构件及其生产方法和显影组件
JP5748619B2 (ja) * 2011-09-06 2015-07-15 キヤノン株式会社 現像剤担持体
CN103890663B (zh) * 2011-10-31 2017-11-07 佳能株式会社 显影剂承载构件、其制造方法和显影装置
CN103890662B (zh) * 2011-10-31 2017-03-29 佳能株式会社 显影剂承载构件、其制造方法和显影装置
KR102004260B1 (ko) * 2012-03-29 2019-07-26 디아이씨 가부시끼가이샤 도전성 잉크 조성물, 도전성 패턴의 제조 방법 및 도전성 회로
JP5631447B2 (ja) * 2012-06-27 2014-11-26 キヤノン株式会社 電子写真用部材、プロセスカートリッジおよび電子写真装置
RU2566607C2 (ru) * 2012-06-29 2015-10-27 Кэнон Кабусики Кайся Электрофотографический светочувствительный элемент, рабочий картридж и электрофотографическое устройство
WO2015033774A1 (en) * 2013-09-06 2015-03-12 Ricoh Company, Ltd. Toner
JP6231875B2 (ja) 2013-12-26 2017-11-15 キヤノン株式会社 現像装置、現像方法、画像形成装置、および画像形成方法
US9971263B2 (en) 2016-01-08 2018-05-15 Canon Kabushiki Kaisha Toner
US10162281B2 (en) 2016-06-27 2018-12-25 Canon Kabushiki Kaisha Liquid developer and manufacturing method of liquid developer
CN110072965B (zh) * 2016-12-12 2022-01-28 保德科技股份有限公司 制动器摩擦材料用氧化铁粉末
US10295921B2 (en) 2016-12-21 2019-05-21 Canon Kabushiki Kaisha Toner
US10289016B2 (en) 2016-12-21 2019-05-14 Canon Kabushiki Kaisha Toner
WO2019027039A1 (ja) 2017-08-04 2019-02-07 キヤノン株式会社 トナー
JP2019032365A (ja) 2017-08-04 2019-02-28 キヤノン株式会社 トナー
JP7091033B2 (ja) 2017-08-04 2022-06-27 キヤノン株式会社 トナー
JP7034780B2 (ja) 2018-03-16 2022-03-14 キヤノン株式会社 液体現像剤
EP3582018B1 (en) 2018-06-13 2024-03-27 Canon Kabushiki Kaisha Positive-charging toner
US20190384199A1 (en) * 2018-06-19 2019-12-19 Lexmark International, Inc. Toner with Controlled Wax Dispersion
JP7237644B2 (ja) 2019-02-25 2023-03-13 キヤノン株式会社 液体現像剤及び液体現像剤の製造方法
JP7467219B2 (ja) 2019-05-14 2024-04-15 キヤノン株式会社 トナー
JP7292978B2 (ja) 2019-05-28 2023-06-19 キヤノン株式会社 トナーおよびトナーの製造方法
JP2022012247A (ja) * 2020-07-01 2022-01-17 ヒューレット-パッカード デベロップメント カンパニー エル.ピー. 現像ローラ用の磁極を有する現像装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005077870A (ja) * 2003-09-02 2005-03-24 Canon Inc 現像剤担持体およびそれを用いた現像方法
JP2005099703A (ja) * 2003-09-02 2005-04-14 Canon Inc 現像剤担持体及びそれを用いた現像方法
JP2005134750A (ja) * 2003-10-31 2005-05-26 Canon Inc 現像方法
JP2006276714A (ja) * 2005-03-30 2006-10-12 Canon Inc 現像方法および該現像方法に用いる現像剤担持体
JP2007206647A (ja) * 2006-02-06 2007-08-16 Canon Inc 電子写真現像方法、これに用いる現像剤担持体、これを用いたプロセスカートリッジ及び電子写真装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60301084T2 (de) * 2002-05-07 2006-05-24 Canon K.K. Entwicklerträger, Entwicklungsapparatur worin dieser Entwicklerträger eingesetzt ist und Verfahrenskassette worin dieser Entwicklerträger eingesetzt ist
JP3984861B2 (ja) 2002-05-07 2007-10-03 キヤノン株式会社 現像剤担持体及び該現像剤担持体を用いた現像装置及びプロセスカートリッジ
US7223511B2 (en) * 2003-09-02 2007-05-29 Canon Kabushiki Kaisha Developer carrying member and developing method by using thereof
EP1684123B1 (en) * 2003-10-31 2012-01-11 Canon Kabushiki Kaisha Magnetic toner
JP4596880B2 (ja) 2003-10-31 2010-12-15 キヤノン株式会社 磁性トナー
WO2007011064A1 (ja) 2005-07-21 2007-01-25 Canon Kabushiki Kaisha 現像剤担持体及び現像装置
WO2007116537A1 (ja) 2006-04-11 2007-10-18 Canon Kabushiki Kaisha 現像方法及び現像装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005077870A (ja) * 2003-09-02 2005-03-24 Canon Inc 現像剤担持体およびそれを用いた現像方法
JP2005099703A (ja) * 2003-09-02 2005-04-14 Canon Inc 現像剤担持体及びそれを用いた現像方法
JP2005134750A (ja) * 2003-10-31 2005-05-26 Canon Inc 現像方法
JP2006276714A (ja) * 2005-03-30 2006-10-12 Canon Inc 現像方法および該現像方法に用いる現像剤担持体
JP2007206647A (ja) * 2006-02-06 2007-08-16 Canon Inc 電子写真現像方法、これに用いる現像剤担持体、これを用いたプロセスカートリッジ及び電子写真装置

Also Published As

Publication number Publication date
JP2009223296A (ja) 2009-10-01
EP2246748A4 (en) 2013-07-17
RU2438154C1 (ru) 2011-12-27
CN101932978B (zh) 2012-07-11
KR101073779B1 (ko) 2011-10-13
JP4328831B1 (ja) 2009-09-09
US7796926B2 (en) 2010-09-14
KR20100045506A (ko) 2010-05-03
US20090257788A1 (en) 2009-10-15
EP2246748B1 (en) 2016-10-19
CN101932978A (zh) 2010-12-29
EP2246748A1 (en) 2010-11-03

Similar Documents

Publication Publication Date Title
WO2009104501A1 (ja) 現像装置、電子写真画像形成装置
KR101503575B1 (ko) 현상 장치 및 현상 방법
JP6231875B2 (ja) 現像装置、現像方法、画像形成装置、および画像形成方法
JP6910805B2 (ja) トナー、画像形成装置及び画像形成方法
JP6408907B2 (ja) 画像形成装置、画像形成方法、現像装置および現像方法
US9354545B2 (en) Developing apparatus, developing method, image-forming apparatus, and image-forming method
JP6341660B2 (ja) 磁性トナー
JP6391458B2 (ja) 現像装置、現像方法、画像形成装置、および画像形成方法
US11360426B2 (en) Electrophotographic apparatus, process cartridge, and cartridge set
WO2007116537A1 (ja) 現像方法及び現像装置
JP2001142258A (ja) 非磁性ブラックトナー及び画像形成方法
JP6381424B2 (ja) 画像形成装置および画像形成方法
JP5464994B2 (ja) 画像形成方法
JP6234219B2 (ja) 現像装置、現像方法、画像形成装置および画像形成方法
JP2016114849A (ja) 現像剤担持体、現像剤担持体の製造方法、及び現像装置
JP5300362B2 (ja) 現像装置及びそれを用いた現像方法
JP5566091B2 (ja) 画像形成方法
JP2015125284A (ja) 現像装置、現像方法、画像形成装置および画像形成方法
JP2019028299A (ja) 磁性キャリア、二成分系現像剤、補給用現像剤、及び画像形成方法
JP2022049937A (ja) 磁性キャリア、二成分系現像剤、補給用現像剤、及び画像形成方法
JP2019028298A (ja) 磁性キャリア、二成分系現像剤、補給用現像剤、及び画像形成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000462.0

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2009709443

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009709443

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09709443

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107005280

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 5102/CHENP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010138541

Country of ref document: RU