WO2009104312A1 - マイクロカプセル化シランカップリング剤 - Google Patents

マイクロカプセル化シランカップリング剤 Download PDF

Info

Publication number
WO2009104312A1
WO2009104312A1 PCT/JP2008/070469 JP2008070469W WO2009104312A1 WO 2009104312 A1 WO2009104312 A1 WO 2009104312A1 JP 2008070469 W JP2008070469 W JP 2008070469W WO 2009104312 A1 WO2009104312 A1 WO 2009104312A1
Authority
WO
WIPO (PCT)
Prior art keywords
silane coupling
coupling agent
epoxy resin
ethyl cellulose
compound
Prior art date
Application number
PCT/JP2008/070469
Other languages
English (en)
French (fr)
Inventor
稔 長島
Original Assignee
ソニーケミカル&インフォメーションデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーケミカル&インフォメーションデバイス株式会社 filed Critical ソニーケミカル&インフォメーションデバイス株式会社
Priority to CN200880127549XA priority Critical patent/CN101952364B/zh
Priority to US12/734,970 priority patent/US8333910B2/en
Publication of WO2009104312A1 publication Critical patent/WO2009104312A1/ja
Priority to HK11102488.2A priority patent/HK1148298A1/xx

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/188Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using encapsulated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • C08K5/5477Silicon-containing compounds containing nitrogen containing nitrogen in a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0239Coupling agent for particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Definitions

  • the present invention provides a microencapsulation that can improve the adhesion of the cured product of the epoxy resin composition to the inorganic surface and the organic surface of the cured product of the epoxy resin composition without impairing the storage stability of the epoxy resin composition.
  • the present invention relates to a silane coupling agent.
  • Paste or film-like anisotropic conductive adhesives are widely used for connection between semiconductor chip connection terminals and circuit patterns on a connection substrate.
  • anisotropic conductive adhesive is used.
  • a general silane coupling agent having an organic reactive group such as vinyltrimethoxysilane and epoxytrimethoxysilane and a trialkoxy group and having a relatively low boiling point may be blended in the anisotropic conductive adhesive.
  • an organic reactive group such as vinyltrimethoxysilane and epoxytrimethoxysilane and a trialkoxy group and having a relatively low boiling point
  • the adhesion to the passivation film is sufficient, such as a solder reflow process.
  • peeling occurs at the bonding interface due to heat shock, and voids are generated in the cured adhesive due to vaporization of the silane coupling agent.
  • Patent Document 1 a silane coupling agent having an imidazole residue in the molecule instead of the conventional general silane coupling agent
  • the object of the present invention is to solve the above-mentioned problems of the prior art, and when blended in an epoxy resin composition, the cured product of the epoxy resin composition is good for the passivation film of a semiconductor chip.
  • An adhesive strength is exhibited, generation
  • the present inventors paid attention to microencapsulation of an imidazole-based silane coupling agent, and intensively studied how to make microencapsulation.
  • ethyl cellulose is allowed to coexist, and a specific saturated hydrocarbon solvent that does not dissolve or mix them at room temperature but dissolves uniformly by heating is used as a solvent.
  • ethyl cellulose not only contributes to stabilizing the dispersion of adduct particles composed of an epoxy resin and an imidazole-based silane coupling agent, but also functions as a shell of adduct particles and is multifunctional.
  • An imi which reacts with an isocyanate compound and, as a result, achieves the above objectives. It found that tetrazole-based silane coupling agent is obtained, thereby completing the present invention.
  • the present invention relates to a microcapsule comprising adduct particles of an epoxy compound and an imidazole silane coupling agent, and an ethyl cellulose film covering the periphery thereof, wherein the ethyl cellulose film is crosslinked with a polyfunctional isocyanate compound.
  • a silane coupling agent is provided.
  • the present invention also relates to a method for producing the above-described microencapsulated silane coupling agent, wherein an epoxy compound, the imidazole silane coupling agent and ethyl cellulose are distilled at an aniline point of 75 to 85 ° C. and an initial distillation point of 150. Heating to 110 to 130 ° C. while stirring in a saturated hydrocarbon solvent at ⁇ 230 ° C., and further causing an adduct reaction between the epoxy compound and the imidazole silane coupling agent, Provided is a production method characterized in that a slurry is obtained, the temperature of the slurry is cooled to 80 to 100 ° C., and then a polyfunctional isocyanate compound is added to crosslink the ethylcellulose membrane.
  • thermosetting epoxy resin composition containing a thermosetting epoxy resin, the above-described microencapsulated silane coupling agent, and a latent curing agent for epoxy resin, and the thermosetting epoxy.
  • An anisotropic conductive adhesive containing a resin composition and conductive particles dispersed therein is provided.
  • adduct particles of an epoxy compound and an imidazole silane coupling agent are coated with an ethyl cellulose film, and the surface thereof is crosslinked with a polyfunctional isocyanate compound. Therefore, while maintaining the good characteristics of the imidazole-based silane coupling agent, it exhibits good solvent resistance and can improve the storage stability of the blended epoxy resin composition.
  • ethyl cellulose contributes to dispersion stability when an epoxy compound and an imidazole silane coupling agent produce adduct particles, and further, as a shell of adduct particles. It functions and becomes a reaction site with the polyfunctional isocyanate compound.
  • a microencapsulated silane coupling agent having a particle shape mainly composed of an imidazole-based silane coupling agent exhibiting excellent solvent resistance can be produced in one batch. This also has the attendant effect that it is not necessary to use an amphiphilic polymer compound that requires troublesome trial and error in selection.
  • the microencapsulated silane coupling agent of the present invention mainly composed of an imidazole-based silane coupling agent is composed of adduct particles of an epoxy compound and an imidazole-based silane coupling agent, and an ethyl cellulose film covering the periphery thereof, The ethyl cellulose membrane is crosslinked with a polyfunctional isocyanate compound.
  • Preferred examples of the epoxy compound constituting the adduct particle include compounds or resins having two or more epoxy groups in the molecule. These may be liquid or solid. Specifically, bisphenol A, bisphenol F, bisphenol S, hexahydrobisphenol A, tetramethylbisphenol A, diaryl bisphenol A, hydroquinone, catechol, resorcin, cresol, tetrabromobisphenol A, trihydroxybiphenyl, benzophenone, bisresorcinol, Glycidyl ether obtained by reacting polychlorophenol and epichlorohydrin such as bisphenol hexafluoroacetone, tetramethylbisphenol A, tetramethylbisphenol F, tris (hydroxyphenyl) methane, bixylenol, phenol novolak, cresol novolak, or glycerin, Neopentyl glycol, ethylene glycol, propylene glycol, tylene glycol Polyglycidyl ether
  • One imidazole silane coupling agent constituting the adduct particle is a silane compound having an imidazolyl group and a dialkoxy group or a trialkoxy group in the molecule, and preferably a compound represented by the following formula (1) It is.
  • R 1 and R 2 are each independently a hydrogen atom or a lower alkyl group such as methyl, ethyl, propyl, butyl and the like, and R 3 is a lower alkyl group such as methyl, ethyl, propyl, butyl and the like.
  • R1 and R2 are hydrogen atoms
  • R3 is a methyl group.
  • the imidazole silane coupling agent is preferably 150 to 5 parts by weight, more preferably 100 to 10 parts by weight, particularly preferably 100 parts by weight of the epoxy compound. 70 to 25 parts by mass.
  • the degree of substitution of three hydroxyl groups in the ⁇ -glucose repeating unit constituting the cellulose skeleton is preferably 2.25 as an average value per repeating unit.
  • the numerical value of 2.40 to 2.52 indicates that the ratio of ethoxy groups to the total amount of hydroxyl groups and ethoxy groups in the ethylcellulose constituting the ethylcellulose membrane before being crosslinked by the polyfunctional isocyanate compound is 80 to This corresponds to a value of 84 mol%.
  • ethyl cellulose When the substitution degree of the hydroxyl group is outside this range, the solubility of ethyl cellulose in the reaction system is affected.
  • ethyl cellulose include N300, N200, N100, and N50 from Hercules.
  • the amount of ethyl cellulose used is preferably 1 to 50 parts by mass, more preferably 2.5 to 25 parts by mass, and particularly preferably 5 to 10 parts by mass with respect to 100 parts by mass of the total amount of the compound and the imidazole silane coupling agent.
  • the presence of the ethyl cellulose film can be confirmed by the presence of a characteristic peak of ethyl cellulose by gas chromatography analysis with thermal decomposition of the sample.
  • the ethylcellulose film is cross-linked with a polyfunctional isocyanate compound.
  • a polyfunctional isocyanate compound conventionally, a microencapsulation of an epoxy-based latent curing agent has been used.
  • toluene diisocyanate, methylene diphenyl diisocyanate, hydrogenated methylene diphenyl diisocyanate, 1,5-naphthalene diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate can be used.
  • the amount of the polyfunctional isocyanate compound used is preferably 0.5 to 50 parts by mass, more preferably 1 to 20 parts by mass, and particularly preferably 2 to 12 parts by mass with respect to 100 parts by mass of the particles.
  • the shape of the microencapsulated silane coupling agent thus obtained is preferably spherical, and the particle size is preferably 1 to 10 ⁇ m, more preferably 2 to 7 ⁇ m from the viewpoints of curability and dispersibility. It is.
  • microencapsulated silane coupling agent of the present invention can be produced in one batch as follows.
  • an epoxy compound, an imidazole silane coupling agent, and ethyl cellulose are stirred at 110 to 130 ° C. while stirring in a saturated hydrocarbon solvent having an aniline point of 75 to 85 ° C. and a solubility initial distillation point of 150 to 230 ° C. Then, an adduct reaction is caused between the epoxy compound and the imidazole silane coupling agent to obtain an adduct slurry.
  • Saturated hydrocarbon solvents do not dissolve epoxy compounds, imidazole silane coupling agents, and ethyl cellulose at room temperature, but they begin to dissolve at temperatures above 50 ° C and all dissolve at 100 ° C. And a polyfunctional isocyanate compound which will be described later is dissolved at least at 80 to 100 ° C.
  • the adduct body particles can be coated with ethyl cellulose and further crosslinked with a polyfunctional isocyanate compound.
  • Specific examples of such saturated hydrocarbon solvents include No. 1 kerosene according to Japanese Industrial Standards, saturated hydrocarbon cleaning solvents (Shellsol MC-311, Shell Chemicals Japan; No. 0 Solvent-L, Shin Nippon Oil Co., Ltd.) ; Mineral Spirit A, Nippon Oil Co., Ltd.) can be used.
  • the amount of the saturated hydrocarbon solvent used can be determined in consideration of the solubility of the epoxy compound, the imidazole silane coupling agent and ethyl cellulose, and the concentration and viscosity of the slurry to be produced.
  • the amount is 300 to 2000 parts by mass per 100 parts by mass.
  • Stirring in the production of adduct particles can be performed using a propeller stirrer, a homogenizer, or the like, and is preferably performed under conditions of 1000 to 20000 rpm from the viewpoint of particle diameter control.
  • the reaction temperature during the production of adduct particles is 110 to 130 ° C. This is because if the temperature is too low, the reaction tends to be insufficient, and if it is too high, the generated adduct tends to be decomposed. Because there is.
  • the adduct reaction is terminated when the reaction solution turns brown.
  • the reaction is usually completed by heating for 20 minutes to 2 hours. Thereby, a slurry of adduct body particles is obtained.
  • the slurry of the adduct body particles is cooled to 80 to 100 ° C., which is a temperature at which the adduct reaction between the epoxy compound and the imidazole silane coupling agent does not substantially occur while stopping heating and stirring.
  • a polyfunctional isocyanate compound is added to the slurry, and a crosslinking reaction is carried out with the hydroxyl group of the ethylcellulose membrane.
  • the crosslinking reaction is completed by reacting for 20 minutes to 2 hours.
  • the slurry is cooled to room temperature, the solid matter is filtered off, washed with an organic medium such as hexane, and dried to provide a latent curing for epoxy resins having a particle size of 1 to 10 ⁇ m, which has excellent solvent resistance.
  • An agent powder can be obtained.
  • the microencapsulated silane coupling agent of the present invention is a known thermosetting epoxy resin, a latent curing agent for epoxy resin, and other additives that are added as necessary (for example, pigments, fillers, etc.)
  • a low-temperature fast-curing thermosetting epoxy resin composition can be obtained by uniformly mixing and stirring according to a conventional method.
  • the microencapsulated silane coupling agent is blended in an amount of preferably 1 to 20 parts by mass, more preferably 3 to 10 parts by mass with respect to 100 parts by mass of the thermosetting epoxy resin.
  • the latent curing agent for epoxy resin is preferably blended in an amount of 10 to 100 parts by mass, more preferably 25 to 70 parts by mass.
  • latent curing agents for epoxy resins examples include imidazole-based latent curing agents (Novacure Series, Asahi Kasei Corporation; Amicure, Ajinomoto Fine Techno Co., Ltd.), polyamine-based latent curing agents (Fujicure, Fuji Kasei Kogyo Co., Ltd.), and the like. .
  • thermosetting epoxy resin composition uses a microencapsulated silane coupling agent with excellent solvent resistance and adhesion, so it has excellent storage stability despite being a one-component type. ing. In addition, interface isolation is unlikely to occur and generation of voids is also suppressed.
  • thermosetting epoxy resin composition by adding conductive particles such as known nickel particles for anisotropic conductive connection to the thermosetting epoxy resin composition, known film forming resins such as phenoxy resin, etc. It can be used as a conductive conductive adhesive. If formed into a film, it can also be used as an anisotropic conductive film.
  • the kind of conductive particles, the particle size, the blending amount, the kind of film forming component, the blending amount, the film thickness, and the like can be the same as those of a known anisotropic conductive paste or anisotropic conductive film.
  • anisotropic conductive paste or film blending are 8 to 12 parts by weight of latent curing agent for epoxy resin, 50 to 80 parts by weight of phenoxy resin, 20 to 50 parts by weight of epoxy compound, 5 to 5 parts of epoxy-modified polyolefin, 30 parts by mass, 1 to 20 parts by mass of a microencapsulated silane coupling agent, and 1 to 20 parts by mass of conductive particles.
  • a solvent, a monomer for dilution, etc. can be suitably mix
  • Such an anisotropic conductive paste or anisotropic conductive film enables a low-temperature short-time connection of about 5 seconds at 150 ° C., a low conduction resistance, and a good adhesive strength.
  • Example 1 Preparation of microencapsulated silane coupling agent
  • a liquid epoxy resin EP828, Japan Epoxy Resin
  • imidazole silane IS1000, Japan Energy
  • R1 and R2 are H
  • 7 parts by mass equivalent to the compound of the formula (1)
  • 30 parts by mass of 10% ethyl cellulose solution N100, Hercules; substitution degree of hydroxyl group 80 to 105
  • 70 parts by mass of mineral spirit Shin Nippon Oil
  • the flask When the solvent is refluxed and the temperature of the mixture reaches about 120 ° C., the flask is cooled in a water bath, and when the temperature of the mixture reaches about 80 ° C., the polyfunctional isocyanate compound (Coronate L45, Nippon Polyurethane). Co.) 0.3 g was added and cooled to room temperature with stirring to obtain a slurry-like microencapsulated silane coupling agent mixture. The obtained slurry mixture was separated by filtration, and the obtained solid was washed with hexane, and then dried under reduced pressure at 50 ° C. for 12 hours in a vacuum oven to obtain a microsphere-encapsulated silane coupling having an average particle diameter of 4.6 ⁇ m. An agent was obtained.
  • thermosetting epoxy resin composition 5 parts by mass of the microencapsulated silane coupling agent obtained in Example 1, 20 parts by mass of phenoxy resin (YP-50, Toto Kasei Co., Ltd.), 50 parts by mass of liquid epoxy resin (EP828, Japan Epoxy Resin Co., Ltd.), spherical fused silica 80 parts by mass (DF-5V, Tatsumori) and 30 parts by mass of a latent curing agent for epoxy resin (Novacure HX-3941HP, Asahi Kasei) were mixed to prepare a thermosetting epoxy resin composition.
  • phenoxy resin YP-50, Toto Kasei Co., Ltd.
  • liquid epoxy resin EP828, Japan Epoxy Resin Co., Ltd.
  • spherical fused silica 80 parts by mass DF-5V, Tatsumori
  • a latent curing agent for epoxy resin Novacure HX-3941HP, Asahi Kasei
  • thermosetting epoxy resin composition A thermosetting epoxy resin composition was prepared in the same manner as in Example 2 except that the amount of the microencapsulated silane coupling agent obtained in Example 1 was changed from 5 parts by mass to 10 parts by mass.
  • thermosetting epoxy resin composition Preparation of thermosetting epoxy resin composition
  • an imidazole silane coupling agent IS1000, Japan Energy
  • a curable epoxy resin composition was prepared.
  • thermosetting epoxy resin composition Example 2 except that 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (A-187, Nippon Unicar) was used in place of the microencapsulated silane coupling agent obtained in Example 1. In the same manner, a thermosetting epoxy resin composition was prepared.
  • thermosetting epoxy resin composition was coated on a release sheet with a thickness of 25 ⁇ m, put in a thermostatic bath at 55 ° C., and taken out after 24 hours, was immersed in room temperature methyl ethyl ketone and visually observed. .
  • the case where the film shape disappeared was determined to have good storage stability, and the case where the film shape was maintained was determined to be defective (cured).
  • ⁇ Adhesive strength test> Using a thermosetting epoxy resin composition, a test semiconductor chip is pressure-bonded to a predetermined conduction resistance evaluation pattern to prepare a pressure-bonded sample, and the adhesive properties after the pressure-bonding are measured with a strength tester (BT-2400, Dage Die shear strength was measured and confirmed. Practically, it is desired that the die shear strength is 40 kgf / 3 mm 2 or more.
  • a pressure-bonded sample was prepared in the same manner as in the above adhesive strength test, and the initial insulation resistance value was measured. It is desirable that it is 10 10 ⁇ or more. Subsequently, a pressure cooker test (PCT: 110 ° C., 85% RH, 500 hours) and a temperature cycle test (TCT: ⁇ 55 ° C. ⁇ ⁇ 125 ° C.) were performed on separate pressure-bonded samples, and a predetermined number of times (1000 Measurement of discontinuous conduction resistance and whether or not openness is observed. A state where the conduction resistance value max was 1 ⁇ or less (without OPEN) was determined to be good.
  • the microencapsulated silane coupling agent of Example 1 is obtained by coating adduct particles of an epoxy resin and an imidazole-based silane coupling agent with ethyl cellulose and crosslinking with a polyfunctional isocyanate compound. Therefore, the thermosetting epoxy resin compositions of Examples 2 and 3 using the microencapsulated silane coupling agent of Example 1 gave good results for any test items.
  • the thermosetting epoxy resin composition of Comparative Example 1 has a problem in storage stability because it uses an imidazole silane coupling agent that is not microencapsulated.
  • the thermosetting epoxy resin composition of Comparative Example 2 uses a conventional silane coupling agent that is not microencapsulated as a silane coupling agent, there is no problem in storage stability. The die shear strength was low, and there was a problem with adhesive strength. For this reason, the problem of peeling, PCT resistance, and TCT resistance also occurred.
  • microencapsulated silane coupling agent of the present invention adduct particles of an epoxy compound and an imidazole silane coupling agent are coated with an ethyl cellulose film, and the surface thereof is further crosslinked with a polyfunctional isocyanate compound.
  • adduct particles of an epoxy compound and an imidazole silane coupling agent are coated with an ethyl cellulose film, and the surface thereof is further crosslinked with a polyfunctional isocyanate compound.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Epoxy Resins (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

マイクロカプセル化シランカップリング剤は、エポキシ系化合物とイミダゾール系シランカップリング剤とのアダクト体粒子と、その周囲を被覆するエチルセルロース膜とからなり、そのエチルセルロース膜が多官能イソシアナート化合物により架橋されているものである。好ましいイミダゾール系シランカップリング剤としては、式(1)の化合物が挙げられる。 式中、R1及びR2はそれぞれ独立的に水素原子または低級アルキル基であり、R3は低級アルキル基である。    

Description

マイクロカプセル化シランカップリング剤
 本発明は、エポキシ樹脂組成物の貯蔵安定性を損なうことなく、エポキシ樹脂組成物の硬化物の無機表面並びに有機表面に対するエポキシ樹脂組成物の硬化物の密着性を向上させることのできるマイクロカプセル化シランカップリング剤に関する。
 半導体チップの接続端子と接続基板上の回路パターンとの接続の際に、ペースト状あるいはフィルム状の異方性導電接着剤が広く使用されるようになっており、この場合、異方性導電接着剤に対しては、半導体チップの接続側表面のパッシベーション膜との接着力を向上させ、異方性導電接着剤と半導体チップとの間、異方性導電接着剤と有機基板との間、そして配線回路の配線金属表面と異方性導電接着剤との間の密着性を向上させることが求められている。
 このため、ビニルトリメトキシシランやエポキシトリメトキシシラン等の有機反応性基とトリアルコキシ基とを備え、比較的沸点の低い一般的なシランカップリング剤を異方性導電接着剤に配合することが行われている。しかし、このような一般的なシランカップリング剤を含有する異方性導電接着剤を介して半導体チップを配線基板に実装した場合、パッシベーション膜に対する接着性が十分とは言えず、半田リフロー処理等のヒートショックにより接着界面に剥離が生じたり、シランカップリング剤の気化のために硬化した接着剤中にボイドが生じたりするという問題があった。
 そこで、従来の一般的なシランカップリング剤に代えて、分子内にイミダゾール残基を有するシランカップリング剤を使用することが提案されている(特許文献1)。
特開平9-12683号公報
 しかしながら、特許文献1のイミダゾール系シランカップリング剤をエポキシ樹脂組成物に配合した場合、エポキシ樹脂用硬化剤として潜在性硬化剤を使用しても、シランカップリング剤にグリシジル基反応性のイミダゾール残基が存在するために、エポキシ樹脂組成物の貯蔵安定性の確保が困難になるという問題があった。
 本発明の目的は、以上の従来の技術の課題を解決しようとするものであり、エポキシ樹脂組成物に配合したときに、そのエポキシ樹脂組成物の硬化物が半導体チップのパッシベーション膜に対して良好な接着力を示し、接着界面での剥離の発生や硬化物にボイドの発生を抑制し、しかもエポキシ樹脂組成物に良好な貯蔵安定性を実現できるようにすることである。
 本発明者らは、上述の目的を達成するために、イミダゾール系シランカップリング剤をマイクロカプセル化することに着目し、どのようにマイクロカプセル化すべきであるかを鋭意研究したところ、エポキシ系化合物とイミダゾール系シランカップリング剤とのアダクト体粒子を調製する際に、エチルセルロースを共存させ、更に、溶剤としてそれらを常温では溶解もしくは混和しないが加熱により均一に溶解する特定の飽和炭化水素系溶剤を使用した場合、意外にも、エチルセルロースが、エポキシ樹脂とイミダゾール系シランカップリング剤とからなるアダクト体粒子の分散安定化に寄与するだけでなく、アダクト体粒子のシェルとしても機能し、しかも多官能イソシアナート化合物とも反応し、その結果、上述の目的を達成するイミダゾール系シランカップリング剤が得られることを見出し、本発明を完成させた。
 即ち、本発明は、エポキシ系化合物とイミダゾール系シランカップリング剤とのアダクト体粒子と、その周囲を被覆するエチルセルロース膜とからなり、該エチルセルロース膜が多官能イソシアナート化合物により架橋されているマイクロカプセル化シランカップリング剤を提供する。
 また、本発明は、上述のマイクロカプセル化シランカップリング剤の製造方法であって、エポキシ系化合物と該イミダゾール系シランカップリング剤とエチルセルロースとを、アニリン点75~85℃で蒸留初留点150~230℃の飽和炭化水素系溶剤中で撹拌しながら110~130℃に加熱して溶解させ、更にエポキシ系化合物とイミダゾール系シランカップリング剤との間にアダクト反応を生じさせて、アダクト体のスラリーを得、該スラリーの温度を80~100℃に冷却した後、多官能イソシアナート化合物を投入してエチルセルロース膜を架橋することを特徴とする製造方法を提供する。
 更に、本発明は、熱硬化型エポキシ樹脂と、上述のマイクロカプセル化シランカップリング剤と、エポキシ樹脂用潜在性硬化剤とを含有する熱硬化型エポキシ樹脂組成物、並びに、この熱硬化型エポキシ樹脂組成物と、それに分散している導電性粒子とを含有する異方性導電接着剤を提供する。
 本発明のマイクロカプセル化シランカップリング剤は、エポキシ系化合物とイミダゾール系シランカップリング剤とのアダクト体粒子がエチルセルロース膜で被覆され、更に多官能イソシアナート化合物でその表面が架橋されている。従って、イミダゾール系シランカップリング剤の良好な特性を維持しながらも、良好な耐溶剤性を示し、配合されたエポキシ樹脂組成物の貯蔵安定性を向上させることができる。また、本発明の製造方法によれば、エチルセルロースが、エポキシ系化合物とイミダゾール系シランカップリング剤とがアダクト体粒子を生成する際の分散安定性に寄与し、更に、アダクト体粒子のシェルとしても機能し、そして多官能イソシアナート化合物との反応サイトとなる。よって、優れた耐溶剤性を示すイミダゾール系シランカップリング剤を主体とする粒子形状のマイクロカプセル化シランカップリング剤を一つのバッチで製造できる。このことは、選択の際に面倒な試行錯誤を必要とする両親媒性高分子化合物を使用しなくてもよいという付随的な効果もある。
 イミダゾール系シランカップリング剤を主体とする本発明のマイクロカプセル化シランカップリング剤は、エポキシ系化合物とイミダゾール系シランカップリング剤とのアダクト体粒子と、その周囲を被覆するエチルセルロース膜とからなり、該エチルセルロース膜が多官能イソシアナート化合物により架橋されているものである。
 アダクト体粒子を構成するエポキシ系化合物としては、分子内に2つ以上のエポキシ基を有する化合物もしくは樹脂が好ましく挙げられる。これらは液状であっても、固体状であってもよい。具体的には、ビスフェノールA、ビスフェノールF、ビスフェノールS、ヘキサヒドロビスフェノールA、テトラメチルビスフェノールA、ジアリールビスフェノールA、ハイドロキノン、カテコール、レゾルシン、クレゾール、テトラブロモビスフェノールA、トリヒドロキシビフェニル、ベンゾフェノン、ビスレゾルシノール、ビスフェノールヘキサフルオロアセトン、テトラメチルビスフェノールA、テトラメチルビスフェノールF、トリス(ヒドロキシフェニル)メタン、ビキシレノール、フェノールノボラック、クレゾールノボラックなどの多価フェノールとエピクロルヒドリンとを反応させて得られるグリシジルエーテル、またはグリセリン、ネオペンチルグリコール、エチレングリコール、プロピレングリコール、チレングリコール、ヘキシレングリコール、ポリエチレングリコール、ポリプロピレングリコールなどの脂肪族多価アルコールとエピクロルヒドリンとを反応させて得られるポリグリシジルエーテル; p-オキシ安息香酸、β-オキシナフトエ酸のようなヒドロキシカルボン酸とエピクロルヒドリンとを反応させて得られるグリシジルエーテルエステル、あるいはフタル酸、メチルフタル酸、イソフタル酸、テレフタル酸、テトラハイドロフタル酸、ヘキサハイドロフタル酸、エンドメチレンテトラハイドロフタル酸、エンドメチレンヘキサハイドロフタル酸、トリメリット酸、重合脂肪酸のようなポリカルボン酸から得られるポリグリシジルエステル; アミノフェノール、アミノアルキルフェノールから得られるグリシジルアミノグリシジルエーテル; アミノ安息香酸から得られるグリシジルアミノグリシジルエステル; アニリン、トルイジン、トリブロムアニリン、キシリレンジアミン、ジアミノシクロヘキサン、ビスアミノメチルシクロヘキサン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホンなどから得られるグリシジルアミン; エポキシ化ポリオレフィン等の公知のエポキシ樹脂類が挙げられる。
 アダクト体粒子を構成する一方のイミダゾール系シランカップリング剤は、分子内にイミダゾリル基と、ジアルコキシ基又はトリアルコキシ基とを有するシラン化合物であり、好ましくは、以下の式(1)に示す化合物である。
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
 式(1)中、R1及びR2はそれぞれ独立的に水素原子またはメチル、エチル、プロピル、ブチルなどの低級アルキル基であり、R3はメチル、エチル、プロピル、ブチルなどの低級アルキル基である。具体的な式(1)の好ましい化合物としては、R1及びR2が水素原子であり、R3がメチル基の化合物である。
 アダクト体粒子を構成する際に用いるエポキシ系化合物とイミダゾール系シランカップリング剤との使用割合は、前者が多すぎるとアダクト体の反応性が低くなりすぎる傾向があり、逆に後者が多すぎるとアダクト体の反応性が過剰になる傾向があるので、エポキシ系化合物100質量部に対し、イミダゾール系シランカップリング剤を好ましくは150~5質量部、より好ましくは100~10質量部、特に好ましくは70~25質量部である。
 アダクト体粒子を被覆するエチルセルロース膜を構成するエチルセルロースとしては、セルロース骨格を構成するβ-グルコース繰り返し単位中に3つ存在する水酸基の置換度が、繰り返し単位当たりの平均値として、好ましくは2.25~2.60、より好ましくは2.30~2.55、特に好ましくは2.40~2.52である。この2.40~2.52という数値は、換言すると、多官能イソシアナート化合物により架橋される前のエチルセルロース膜を構成するエチルセルロース中の水酸基とエトキシ基との合計量に対するエトキシ基の割合が80~84モル%という数値に相当する。水酸基の置換度がこの範囲を外れると、エチルセルロースの反応系中での溶解性に影響を生じる。このようなエチルセルロースの具体例としては、ハーキュレス社のN300、N200、N100、N50等を挙げることができる。
 エチルセルロースの使用量は、少なすぎるとアダクト体の粒子径が大きくなって分散安定性が低くなる傾向があり、多すぎるとシェルとならず残渣として残る傾向があるので、アダクト体粒子を構成するエポキシ系化合物とイミダゾール系シランカップリング剤との合計量100質量部に対し、好ましくは1~50質量部、より好ましくは2.5~25質量部、特に好ましくは5~10質量部である。なお、エチルセルロース膜の存在は、試料の熱分解を伴うガスクロ分析によりエチルセルロースの特徴的なピークの存在により確認できる。
 本発明のマイクロカプセル化シランカップリング剤においては、エチルセルロース膜が多官能イソシアナート化合物により架橋されているが、多官能イソシアナート化合物としては、従来より、エポキシ系潜在性硬化剤のマイクロカプセル化の際に用いられているものを使用することができ、トルエンジイソシアナート、メチレンジフェニルジイソシアナート、水添メチレンジフェニルジイソシアナート、1,5-ナフタレンジイソシアナート、イソホロンジイソシアナート、ヘキサメチレンジイソシアナート、キシリレンジイソシアナート、水添キシリレンジイソシアナート、テトラメチルキシレンジイソシアナート、1,3,6-ヘキサメチレントリイソシアナート、リジンジイソシアナート、トリフェニルメタントリイソシアナート、トリス(イソシアナートフェニル)チオホスフェート等を挙げることができる。これらは1種又は2種以上を組み合わせて使用してもよい。
 多官能イソシアナート化合物の使用量は、少なすぎるとマイクロカプセル化シランカップリング剤の耐溶剤性が不充分となる傾向があり、多すぎるとマイクロカプセルの皮膜が硬くなる傾向があるので、アダクト体粒子100質量部に対して好ましくは0.5~50質量部、より好ましくは1~20質量部、特に好ましくは2~12質量部である。
 このようにして得られたマイクロカプセル化シランカップリング剤の形状は好ましくは球状であり、その粒子径は硬化性及び分散性の点から、好ましくは1~10μmであり、より好ましくは2~7μmである。
 本発明のマイクロカプセル化シランカップリング剤は、以下のように一つのバッチで製造することができる。
 先ず、エポキシ系化合物とイミダゾール系シランカップリング剤とエチルセルロースとを、アニリン点75~85℃で蒸留初留点150~230℃の溶解度パラメーターの飽和炭化水素系溶剤中で撹拌しながら110~130℃に加熱して溶解させ、更にエポキシ系化合物とイミダゾール系シランカップリング剤との間にアダクト反応を生じさせて、アダクト体のスラリーを得る。
 飽和炭化水素系溶剤としては、室温では、エポキシ系化合物、イミダゾール系シランカップリング剤及びエチルセルロースを溶解しないが、50℃を超えると溶解しはじめ、100℃までには全て溶解するような特性を有し、且つ後述する多官能イソシアナート化合物を少なくとも80~100℃で溶解するものを使用する。このような溶剤を使用することにより、アダクト体粒子をエチルセルロースで被覆でき、更に多官能イソシアナート化合物で架橋することができる。このような飽和炭化水素系溶剤の具体例としては、日本工業規格による1号灯油、飽和炭化水素系洗浄溶剤(シェルゾールMC-311、シェルケミカルズジャパン社; 0号ソルベント-L、新日本石油社; ミネラルスピリットA、新日本石油社)等を使用することができる。
 飽和炭化水素系溶剤の使用量は、エポキシ系化合物とイミダゾール系シランカップリング剤とエチルセルロースに対する溶解力や生成するスラリーの濃度や粘度を考慮して決定することができ、通常、これらの成分の合計量100質量部に対し、300~2000質量部である。
 アダクト体粒子生成の際の撹拌は、プロペラ式撹拌機、ホモジナイザー等を用いて行うことができ、粒子径の制御の点から、1000~20000rpmという条件で行うことが好ましい。
 アダクト体粒子生成の際の反応温度は110~130℃であるが、これは、この温度が低すぎると反応が不十分となる傾向があり、高すぎると生成したアダクト体の分解を招く傾向があるためである。
 アダクト体反応は、反応液が茶褐色に変化した時点で終了させる。通常20分~2時間の加熱により終了する。これにより、アダクト体粒子のスラリーを得る。
 次に、アダクト体粒子のスラリーを、加熱を止め撹拌しながら、エポキシ系化合物とイミダゾール系シランカップリング剤との間のアダクト反応が実質的に生じない温度である80~100℃に冷却する。
 この温度を保ちつつ、スラリーに多官能イソシアナート化合物を添加し、エチルセルロース膜の水酸基との間で架橋反応を行う。通常、20分~2時間反応させることにより架橋反応は終了する。終了後、スラリーを室温まで冷却し、固形物を濾別し、ヘキサンなどの有機媒体で洗浄し、乾燥することにより、耐溶剤性に優れた、粒子径1~10μmのエポキシ樹脂用潜在性硬化剤の粉末を得ることができる。
 本発明のマイクロカプセル化シランカップリング剤は、公知の熱硬化型エポキシ樹脂に、エポキシ樹脂用潜在性硬化剤と、必要に応じて添加される他の添加剤(例えば、顔料、フィラー剤など)と共に常法に従って均一に混合撹拌させることにより低温速硬化型の熱硬化性エポキシ樹脂組成物を与えることができる。通常、熱硬化型エポキシ樹脂100質量部に対し、マイクロカプセル化シランカップリング剤を好ましくは1~20質量部、より好ましくは3~10質量部の割合で配合する。他方、エポキシ樹脂用潜在性硬化剤を好ましくは10~100質量部、より好ましくは25~70質量部の割合で配合する。エポキシ樹脂用潜在性硬化剤としては、イミダゾール系潜在性硬化剤(ノバキュアシリーズ、旭化成社;アミキュア、味の素ファインテクノ社)、ポリアミン系潜在性硬化剤(フジキュアー、富士化成工業社)等が挙げられる。
 この熱硬化型エポキシ樹脂組成物は、耐溶剤性に優れ、密着力に優れたマイクロカプセル化シランカップリング剤を使用しているので、一剤型であるにもかかわらず、貯蔵安定性に優れている。しかも、界面隔離が生じにくく、ボイドの発生も抑制されている。
 なお、この熱硬化型エポキシ樹脂組成物に、更に、異方性導電接続用の公知のニッケル粒子等の導電性粒子や、フェノキシ樹脂等の公知の成膜樹脂などを配合することにより、異方性導電接着剤として使用することができる。フィルム状に成形すれば、異方性導電フィルムとしても使用することができる。導電性粒子の種類、粒径、配合量、成膜成分の種類、配合量、フィルム厚等は、公知の異方性導電ペーストや異方性導電フィルムと同じ構成とすることができる。代表的な異方性導電ペースト若しくはフィルムの配合例は、エポキシ樹脂用潜在性硬化剤8~12質量部、フェノキシ樹脂50~80質量部、エポキシ系化合物20~50質量部、エポキシ変性ポリオレフィン5~30質量部、マイクロカプセル化シランカップリング剤1~20質量部、導電性粒子1~20質量部である。その他、必要に応じて溶剤、希釈用モノマーなどを適宜配合することができる。このような異方性導電ペーストや異方性導電フィルムは、150℃で5秒程度の低温短時間接続を可能とし、導通抵抗も低く、接着強度も良好なものとなる。
 以下、本発明を実施例により具体的に説明する。
  実施例1(マイクロカプセル化シランカップリング剤の調製)
 熱電対、撹拌装置、及び冷却装置を備えたガラス製の三口フラスコに、液状エポキシ樹脂(EP828、ジャパンエポキシレジン社)23質量部、イミダゾールシラン(IS1000、ジャパンエナジー社;R1及びR2がHである式(1)の化合物に相当)7質量部、及び10%エチルセルロース溶液(N100、ハーキュレス社; 水酸基の置換度80~105)30質量部、及びミネラルスピリット(新日本石油社)70質量部を投入し、1800rpmで撹拌しながら加熱した。溶剤が環流し、混合物の温度が約120℃になった時点で、フラスコをウォーターバスで冷却し、混合物の温度が約80℃になった時点で、多官能イソシアナート化合物(コロネートL45,日本ポリウレタン社)0.3gを投入し、撹拌しながら常温まで冷却し、スラリー状のマイクロカプセル化シランカップリング剤混合液を得た。得られたスラリー混合物を濾別し、得られた固体をヘキサンで洗浄した後、真空オーブンにて50℃で12時間減圧乾燥し、真球状の平均粒径4.6μmのマイクロカプセル化シランカップリング剤を得た。
  実施例2(熱硬化型エポキシ樹脂組成物の調製)
 実施例1で得たマイクロカプセル化シランカップリング剤5質量部、フェノキシ樹脂(YP-50、東都化成社)20質量部、液状エポキシ樹脂(EP828、ジャパンエポキシレジン社)50質量部、球状溶融シリカ(DF-5V、龍森社)80質量部、及びエポキシ樹脂用潜在性硬化剤(ノバキュアー HX-3941HP、旭化成社)30質量部を、混合し、熱硬化型エポキシ樹脂組成物を調製した。
  実施例3(熱硬化型エポキシ樹脂組成物の調製)
 実施例1で得たマイクロカプセル化シランカップリング剤の使用量を5質量部から10質量部に変更する以外は、実施例2と同様にして熱硬化型エポキシ樹脂組成物を調製した。
  比較例1(熱硬化型エポキシ樹脂組成物の調製)
 実施例1で得たマイクロカプセル化シランカップリング剤に代えて、イミダゾールシランカップリング剤(IS1000、ジャパンエナジー社)をマイクロカプセル化せずに使用すること以外は、実施例2と同様にして熱硬化型エポキシ樹脂組成物を調製した。
  比較例2(熱硬化型エポキシ樹脂組成物の調製)
 実施例1で得たマイクロカプセル化シランカップリング剤に代えて、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(A-187、日本ユニカー社)を使用すること以外は、実施例2と同様にして熱硬化型エポキシ樹脂組成物を調製した。
  評価試験
 実施例2、3及び比較例1、2で得られた熱硬化型エポキシ樹脂組成物について、以下の試験・評価を行った。得られた結果を表1に示す。
<貯蔵安定性試験>
 熱硬化型エポキシ樹脂組成物を、剥離シート上に25μm厚で塗工し、それを55℃の恒温槽に入れ、24時間後に取り出したものを、室温のメチルエチルケトンに浸漬し、目視にて観察した。膜の形状が消失した状態である場合を貯蔵安定性が良好と判定し、膜の形状が保たれた状態である場合を不良(硬化)と判定した。
<接着強度試験>
 熱硬化型エポキシ樹脂組成物を用いて、試験用半導体チップを所定の導通抵抗評価用パターンに圧着して圧着サンプルを作成し、その圧着後の接着特性について、強度試験機(BT-2400、Dage社)を用いてダイシェア強度を測定して確認した。実用上、ダイシェア強度が40Kgf/3mm以上であることが望まれる。
<界面剥離試験>
 上記の接着強度試験と同様に圧着サンプルを作成し、それを85℃、85%RHの雰囲気中に放置した後、リフロー処理(最高温度250℃)を3回施した。その後、半導体チップの接続界面の剥離の有無を、超音波顕微鏡(HYE-FOCUS、日立建機社)にて観察した。
<接続信頼性試験>
 上記の接着強度試験と同様に圧着サンプルを作成し、初期絶縁抵抗値を測定した。1010Ω以上であることが望まれる。続いて、プレッシャークッカー試験(PCT:110℃、85%RH、500時間)と、温度サイクル試験(TCT:-55℃←→125℃)とを別々の圧着サンプルに対して行い、所定回数(1000回)にて不連続導通抵抗測定を行い、オープンが観察されるか否かを観察した。なお、導通抵抗値maxが1Ω以下(OPENなし)という状態を良好と判定した。
Figure JPOXMLDOC01-appb-T000005
 実施例1のマイクロカプセル化シランカップリング剤は、エポキシ樹脂とイミダゾール系シランカップリング剤とのアダクト体の粒子をエチルセルロースで被覆し、多官能イソシアナート化合物で架橋して得られたものである。従って、実施例1のマイクロカプセル化シランカップリング剤を使用した実施例2及び3の熱硬化型エポキシ樹脂組成物は、いずれの試験項目についても良好な結果が得られた。それに対し、比較例1の熱硬化型エポキシ樹脂組成物は、マイクロカプセル化されていないイミダゾールシランカップリング剤を使用しているので、貯蔵安定性に問題があった。また、比較例2の熱硬化型エポキシ樹脂組成物は、シランカップリング剤として、マイクロカプセル化されていない従来タイプのシランカップリング剤を使用しているので、貯蔵安定性にも問題がないものの、ダイシェア強度が低く、接着力にも問題があった。このため、剥離の問題や耐PCT、TCT性にも問題が生じていた。
 本発明のマイクロカプセル化シランカップリング剤は、エポキシ系化合物とイミダゾール系シランカップリング剤とのアダクト体粒子がエチルセルロース膜で被覆され、更に多官能イソシアナート化合物でその表面が架橋されている。このため、本発明のマイクロカプセル化シランカップリング剤をエポキシ樹脂組成物に配合した場合、エポキシ樹脂組成物の硬化物と半導体チップのパッシベーション膜との間に良好な接着性を実現でき、接着界面での剥離の発生や硬化物にボイドの発生を抑制し、しかもエポキシ樹脂組成物に良好な貯蔵安定性を実現できる。

Claims (6)

  1.  エポキシ系化合物とイミダゾール系シランカップリング剤とのアダクト体粒子と、その周囲を被覆するエチルセルロース膜とからなり、該エチルセルロース膜が多官能イソシアナート化合物により架橋されているマイクロカプセル化シランカップリング剤。
  2.  該イミダゾール系シランカップリング剤が、式(1)の化合物である請求項1記載のマイクロカプセル化シランカップリング剤。
    Figure JPOXMLDOC01-appb-I000001
    Figure JPOXMLDOC01-appb-I000002
    (R1及びR2はそれぞれ独立的に水素原子または低級アルキル基であり、R3は低級アルキル基である。)
  3.  多官能イソシアナート化合物により架橋される前のエチルセルロース膜を構成するエチルセルロース中の水酸基とエトキシ基との合計量に対するエトキシ基の割合が80~84モル%である請求項1又は2記載のマイクロカプセル化シランカップリング剤。
  4.  請求項1記載のマイクロカプセル化シランカップリング剤の製造方法であって、
     エポキシ系化合物と該イミダゾール系シランカップリング剤とエチルセルロースとを、アニリン点75~85℃で蒸留初留点150~230℃の飽和炭化水素系溶剤中で撹拌しながら110~130℃に加熱して溶解させ、更にエポキシ系化合物とイミダゾール系シランカップリング剤との間にアダクト反応を生じさせて、アダクト体のスラリーを得、該スラリーの温度を80~100℃に冷却した後、多官能イソシアナート化合物を投入してエチルセルロース膜を架橋することを特徴とする製造方法。
  5.  熱硬化型エポキシ樹脂と、請求項1~3のいずれかに記載のマイクロカプセル化シランカップリング剤と、エポキシ樹脂用潜在性硬化剤とを含有する熱硬化型エポキシ樹脂組成物。
  6.  請求項5記載の熱硬化型エポキシ樹脂組成物と、それに分散している導電性粒子とを含有する異方性導電接着剤。
PCT/JP2008/070469 2008-02-20 2008-11-11 マイクロカプセル化シランカップリング剤 WO2009104312A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200880127549XA CN101952364B (zh) 2008-02-20 2008-11-11 微囊化硅烷偶联剂
US12/734,970 US8333910B2 (en) 2008-02-20 2008-11-11 Microencapsulated silane coupling agent
HK11102488.2A HK1148298A1 (en) 2008-02-20 2011-03-11 Microencapsulated silane coupling agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008038629A JP5417715B2 (ja) 2008-02-20 2008-02-20 マイクロカプセル化シランカップリング剤
JP2008-038629 2008-02-20

Publications (1)

Publication Number Publication Date
WO2009104312A1 true WO2009104312A1 (ja) 2009-08-27

Family

ID=40985206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/070469 WO2009104312A1 (ja) 2008-02-20 2008-11-11 マイクロカプセル化シランカップリング剤

Country Status (6)

Country Link
US (1) US8333910B2 (ja)
JP (1) JP5417715B2 (ja)
CN (1) CN101952364B (ja)
HK (1) HK1148298A1 (ja)
TW (1) TW200936600A (ja)
WO (1) WO2009104312A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6307294B2 (ja) * 2014-02-04 2018-04-04 デクセリアルズ株式会社 回路接続材料、及び電子部品の製造方法
JP6114893B1 (ja) * 2015-10-26 2017-04-12 積水化学工業株式会社 液晶表示素子用シール剤、上下導通材料及び液晶表示素子
US20170294395A1 (en) * 2016-04-07 2017-10-12 Kabushiki Kaisha Toshiba Semiconductor device that includes a molecular bonding layer for bonding elements
CN113136173B (zh) * 2021-04-09 2022-10-04 浙江理工大学 碗状有机硅热储能相变微胶囊及制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912683A (ja) * 1995-07-04 1997-01-14 Japan Energy Corp エポキシ樹脂組成物およびそのための硬化剤
JPH10237079A (ja) * 1997-02-21 1998-09-08 Japan Energy Corp 表面処理剤または樹脂への添加剤
JPH1192482A (ja) * 1997-09-22 1999-04-06 Japan Energy Corp 新規有機ケイ素化合物およびその製造方法並びにそれを用いる表面処理剤および樹脂添加剤
WO2004037885A1 (ja) * 2002-10-25 2004-05-06 Asahi Kasei Chemicals Corporation カプセル型硬化剤及び組成物
JP2005002000A (ja) * 2003-06-09 2005-01-06 Nikko Materials Co Ltd 新規イミダゾールシラン化合物、その製造方法およびその利用
JP2005112822A (ja) * 2003-10-10 2005-04-28 Nikko Materials Co Ltd 新規シランカップリング剤用反応生成物
JP2007204669A (ja) * 2006-02-03 2007-08-16 Asahi Kasei Chemicals Corp 特定小粒径粒度分布エポキシ樹脂用硬化剤およびエポキシ樹脂組成物
JP2008255219A (ja) * 2007-04-04 2008-10-23 Sony Chemical & Information Device Corp エポキシ樹脂用潜在性硬化剤及びその製造方法
JP2008255246A (ja) * 2007-04-05 2008-10-23 Sony Chemical & Information Device Corp エポキシ樹脂用潜在性硬化剤及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357008A (en) * 1992-01-22 1994-10-18 W. R. Grace & Co.-Conn. Latent curing agent for epoxy resin and its preparation
JP5267757B2 (ja) 2006-02-07 2013-08-21 デクセリアルズ株式会社 潜在性硬化剤
US8067484B2 (en) * 2010-03-12 2011-11-29 Trillion Science, Inc. Latent hardener with improved barrier properties and compatibility

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912683A (ja) * 1995-07-04 1997-01-14 Japan Energy Corp エポキシ樹脂組成物およびそのための硬化剤
JPH10237079A (ja) * 1997-02-21 1998-09-08 Japan Energy Corp 表面処理剤または樹脂への添加剤
JPH1192482A (ja) * 1997-09-22 1999-04-06 Japan Energy Corp 新規有機ケイ素化合物およびその製造方法並びにそれを用いる表面処理剤および樹脂添加剤
WO2004037885A1 (ja) * 2002-10-25 2004-05-06 Asahi Kasei Chemicals Corporation カプセル型硬化剤及び組成物
JP2005002000A (ja) * 2003-06-09 2005-01-06 Nikko Materials Co Ltd 新規イミダゾールシラン化合物、その製造方法およびその利用
JP2005112822A (ja) * 2003-10-10 2005-04-28 Nikko Materials Co Ltd 新規シランカップリング剤用反応生成物
JP2007204669A (ja) * 2006-02-03 2007-08-16 Asahi Kasei Chemicals Corp 特定小粒径粒度分布エポキシ樹脂用硬化剤およびエポキシ樹脂組成物
JP2008255219A (ja) * 2007-04-04 2008-10-23 Sony Chemical & Information Device Corp エポキシ樹脂用潜在性硬化剤及びその製造方法
JP2008255246A (ja) * 2007-04-05 2008-10-23 Sony Chemical & Information Device Corp エポキシ樹脂用潜在性硬化剤及びその製造方法

Also Published As

Publication number Publication date
CN101952364A (zh) 2011-01-19
CN101952364B (zh) 2013-04-24
HK1148298A1 (en) 2011-09-02
TW200936600A (en) 2009-09-01
US20100243962A1 (en) 2010-09-30
JP2009197090A (ja) 2009-09-03
JP5417715B2 (ja) 2014-02-19
US8333910B2 (en) 2012-12-18

Similar Documents

Publication Publication Date Title
JP4753934B2 (ja) エポキシ樹脂用潜在性硬化剤およびエポキシ樹脂組成物
JP4583373B2 (ja) エポキシ樹脂用硬化剤及びエポキシ樹脂組成物
JP4326524B2 (ja) カプセル型硬化剤及び組成物
JP4911981B2 (ja) 高含水含溶剤エポキシ樹脂用硬化剤およびエポキシ樹脂組成物
JP5558118B2 (ja) マイクロカプセル型エポキシ樹脂用硬化剤、及びそれを含むマスターバッチ型エポキシ樹脂用硬化剤組成物
JP6484446B2 (ja) エポキシ樹脂用硬化剤、エポキシ樹脂組成物及びこれを含有する材料
JP5045896B2 (ja) エポキシ樹脂用潜在性硬化剤及びその製造方法
JP2010053353A (ja) エポキシ樹脂用マイクロカプセル型潜在性硬化剤及びその製造方法、一液性エポキシ樹脂組成物、エポキシ樹脂硬化物、接着剤、接合用フィルム、導電性材料並びに異方導電性材料
WO2016158828A1 (ja) 樹脂組成物、導電性樹脂組成物、接着剤、導電性接着剤、電極形成用ペースト、半導体装置
US8067484B2 (en) Latent hardener with improved barrier properties and compatibility
JP4877716B2 (ja) 速硬化性エポキシ樹脂用硬化剤およびエポキシ樹脂組成物
JP2007091901A (ja) 緩反応性エポキシ樹脂用硬化剤およびエポキシ樹脂組成物
JP5540559B2 (ja) 回路接続用フィルム接着剤の製造方法
JP5045895B2 (ja) エポキシ樹脂用潜在性硬化剤及びその製造方法
JP5417715B2 (ja) マイクロカプセル化シランカップリング剤
CN1267317A (zh) 导电环氧树脂组合物、各向异性导电粘合剂薄膜及电连接方法
KR101385077B1 (ko) 에폭시 조성물용 잠재성 하드너
JP2010132840A (ja) 接着シート用エポキシ樹脂組成物
JP4947305B2 (ja) エポキシ樹脂用潜在性硬化剤の製造方法
JP4947229B2 (ja) フィルム状回路接続材料の製造方法
JP2013053228A (ja) エポキシ樹脂用硬化剤及びマイクロカプセル型エポキシ樹脂用硬化剤
JP2015151442A (ja) カチオン重合性組成物、フィルム状接続材料、接続構造体の製造方法、接続構造体及び非プロトン性カチオン発生剤
JP5013028B2 (ja) フィルム状回路接続材料の製造方法
JP2013053230A (ja) エポキシ樹脂組成物、及びこれを用いたペースト状組成物、フィルム状組成物
WO2006109831A1 (ja) 接着剤の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880127549.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08872596

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12734970

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08872596

Country of ref document: EP

Kind code of ref document: A1