WO2009100830A1 - Vorrichtung und verfahren zum räumlichen hochauflösenden abbilden einer struktur einer probe - Google Patents

Vorrichtung und verfahren zum räumlichen hochauflösenden abbilden einer struktur einer probe Download PDF

Info

Publication number
WO2009100830A1
WO2009100830A1 PCT/EP2009/000677 EP2009000677W WO2009100830A1 WO 2009100830 A1 WO2009100830 A1 WO 2009100830A1 EP 2009000677 W EP2009000677 W EP 2009000677W WO 2009100830 A1 WO2009100830 A1 WO 2009100830A1
Authority
WO
WIPO (PCT)
Prior art keywords
excitation
light
sample
molecules
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2009/000677
Other languages
German (de)
English (en)
French (fr)
Inventor
Ralf Wolleschensky
Helmut Lippert
Christopher Power
Benno Radt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss Microscopy GmbH
Original Assignee
Carl Zeiss MicroImaging GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss MicroImaging GmbH filed Critical Carl Zeiss MicroImaging GmbH
Priority to JP2010546236A priority Critical patent/JP5826494B2/ja
Priority to US12/867,291 priority patent/US8362448B2/en
Priority to EP09709871.9A priority patent/EP2245494B1/de
Publication of WO2009100830A1 publication Critical patent/WO2009100830A1/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/10Condensers affording dark-field illumination
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • G02B21/367Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/58Optics for apodization or superresolution; Optical synthetic aperture systems

Definitions

  • SPIM technology Selective Plane Illumination Microscopy
  • SPIM allows the acquisition of 3D objects in the form of optical sections as a widefield technique, the advantages being the speed, the low bleaching of the sample and an extended penetration depth.
  • fluorophores in the sample are excited with laser light in the form of a light sheet for this purpose. The light sheet can be scanned through the sample.
  • the SPIM method is described with a periodically structured light sheet.
  • the periodically structured light sheet fluorescence excitation takes place at the high intensity locations.
  • the structuring is used to suppress scattered light from out-of-focus planes and to increase the resolution through structured illumination (see below in the text, Heintzmann et al.).
  • WO2006 / 127692 describes the so-called PALM process (photoactivated light microscopy). The method is based on the photoactivation of individual molecules separated according to the extents of the detection PSF and their highly accurate localization by fluorescence detection.
  • the PALM method as described in WO2006 / 127692 uses essentially the following primary steps to produce a microscopic image with an increased optical resolution compared to the standard microscope: 1.) Photoactivation of Single Molecules: Activation alters the fluorescence properties of the molecules Switching on / off, changing the emission spectrum, etc.), the activation being such that the distance between activated molecules is greater than or equal to the optical resolution of the standard microscope (given by Abbe's resolution limit). 2.) excitation of the activated molecules and localization of the molecules with a spatially resolving detector. 3.) deactivating the activated molecules.
  • the activation preferably takes place in wide-field illumination and distributed statistically. By choosing the activation energy, it is attempted to achieve as few / no molecules (1) as possible with overlapping diffraction disks (2) on the camera (see Fig. 1a). However, overlapping diffraction disks are accepted and can not be evaluated ((3) in Fig. 1 b). This results in regions in which the distance between the activated molecules is larger or much larger than the diffraction disc on the camera (4). Due to the statistical activation of the molecules, about 10,000 individual images must be evaluated for the generation of a high-resolution image to determine the positions of the molecules. As a result, large amounts of data must be processed and the measurement slowed down (about 1 min per high-resolution image). The billing of the single images to a high-resolution image requires about 4 hours.
  • Focusing plane is in WO2006 / 127692 the use of a
  • Another method used to avoid the autofluorescence problem is to combine the PALM method with the TIRF technology, where the
  • Waves is kept very small. With TIRF, however, no 3D imaging is feasible.
  • PALM initially only offers one due to the spatially resolved detection
  • the axial resolution is determined primarily by the extent of the detection PSF used. This is another
  • Heintzmann et al. (R. Heintzmann, TM Jovin and C. Cremer, "Saturated patterned excitation microscopy - a concept for optical resolution improvement", JOSA A 19, 1599-1609 (2002).) Suggest as a further concept for increasing resolution a nonlinear process in the form of direct saturation of a fluorescence transition.
  • the increased resolution is based on a periodically grid-like patterned illumination of the sample, whereby a transfer of high spatial frequencies of the object takes place in the range of the optical transfer function of the microscope. The transfer can be followed indirectly by theoretical post-processing of the data.
  • the object of the invention is to avoid the disadvantages of the method described above.
  • the invention describes methods and arrangements for realizing a PALM microscope with optimized photoactivation to realize a higher frame rate. Compared to PALM, high resolution 3D imaging without nonlinear photoactivation is achieved. A PALM-TI RF combination to reduce the extra-focal autofluorescence is not required.
  • the advantageous use of the MultiView method multiple illumination angles on the sample) for obtaining an increased penetration depth and an isotropic optical triggering in x, y, z can take place.
  • Fig. 2 An activation according to Fig. 2 occurs as many molecules as possible without “gaps" ((4) in Fig. 1b) and without the diffraction disks of the molecules being superimposed on the camera ((3) in Fig. 1b.) If the diffraction disks are set of the individual molecules to each other so preferably results in a dense sphere packing. This achieves an increase in the speed of the PALM process and a reduction in the number of individual images.
  • Fig. 3 shows schematically from the side (direction of incidence equal viewing direction) a planar light sheet LB, also called a lens, which is generated for example with a cylindrical lens (02 - ZL) and passes through the sample (P).
  • a planar light sheet LB also called a lens
  • the sample passes through the sample (P).
  • an objective O of a microscope for example a wide-field microscope with a CCD camera, a laser scanning microscope or a microscope with structured illumination.
  • the light sheet LB irradiated laterally into the sample in the form of the SPIM light sheet, which lies substantially exactly in the focal plane (F) of the objective O, is photoactivated in FIG. 3 perpendicular to the optical axis of fluorescence excitation and detection.
  • the fluorescence excitation can take place here only within the focal plane (F).
  • the fluorescence excitation and the fluorescence detection takes place according to WO2006 / 127692 via the microscope objective O.
  • a localized excitation in the z-direction takes place and samples can be examined three-dimensionally without nonlinear photoactivation with the PALM method.
  • the width of the light beam for photoactivation i. its extension in the z direction is adapted to be advantageously less than or equal to the axial extent of the PSF given by the numerical aperture of the objective O.
  • fluorescence molecules are activated and bleached outside the focal plane.
  • fluorescence can only come from this plane defined by the activation beam.
  • this arrangement is inherently 3D-resolving.
  • Detection is carried out by conventional means, such as classical wide-field microscopy, confocal microscopy or structured illumination (ZEISS APOTOM).
  • the excitation beam is able to excite autofluorescence over the entire sample space. This can be prevented in Fig. 3 in addition, the light beam for excitation of the fluorescence (after photoactivation) with a light sheet (LB) perpendicular to the detection via 02 - ZL is irradiated. This ensures that no out-of-focus autofluorescence signals are generated that interfere with imaging.
  • the fluorescent light can be detected particularly efficiently separated from the excitation light, since no spectral separation by means of a dichroic beam splitter is required. For some switchable dyes, such as DENTRA, photoactivation and fluorescence excitation occur at the same wavelength. This can be realized particularly easily hereby.
  • Non-focal autofluorescence which is generated by the activation beam, can be separated spectrally, but in particular also over time (the fluorescence excitation occurs after activation) from the actually interesting fluorescence signal.
  • the recording of the high-resolution image is carried out for the arrangements according to the invention as described in WO2006 / 127692 with the abovementioned steps 1-4.
  • the activatable fluorescent dyes used are preferably fluorescent proteins known from the prior art, such as PA-GFP or DRONPA.
  • the photoactivation takes place here with 405 nm, the fluorescence excitation at 488 nm and the detection in the range above 490 nm.
  • reversibly switchable synthetic dyes such as Alexa / Cyan constructs can be used.
  • Fig. 4a a further arrangement according to the invention with a lighting means of two light sheets LB 1 and LB 2 is shown schematically.
  • the interferometric superimposition of light sheets from several directions results in an interference pattern along the marked x direction in the focal plane.
  • the light sheets may in turn contain laser light for photoactivation and / or fluorescence excitation.
  • the superimposition forms a so-called standing wave field (SW), which is shown schematically in FIG. 4b as a stripe pattern. If, for example, two sheets of light are used for the photoactivation, it can be achieved that the distance of the fluorescence emitters to be activated is greater than or equal to the width of the PSF of the detection (O in FIG. 4a).
  • interference causes stripe-shaped activation located in x and z.
  • a dot pattern PM 1 is produced, as shown in FIG. 5, ie an activation localized in x, z and y_, so that the distance (1) the activated fluorescence emitter is greater than or equal to the width of the PSF of detection (O in Fig. 4a).
  • the fluorescence excitation can preferably also take place via one or more light sheets, which in turn avoids extra-focal autofluorescence.
  • the fluorescence excitation from the direction O in FIG. 4 a can also be structured in one or more directions and, for example, also have a hole pattern (structuring in x and y). In this way it can be ensured that the distance of the fluorescence emitters is greater than or equal to the width of the PSF of the detection.
  • Such structuring can be carried out, for example, with a lattice structure (DE 10257237A1) or with a multispot excitation (DE102006017841).
  • the photoactivation can take place via the objective O. and the fluorescence excitation can be realized with a plurality of light disk beams which form an interference pattern of the type described above.
  • Molecules that have been activated with overlapping diffraction disks are stimulated to different degrees. In this way, gaps in the camera image are avoided. Autofluorescence generated by the activation beam can be separated temporally and / or spectrally. After recording a layer, you must deactivate it for the 3D image over the sample area.
  • the structured activation can also be realized by a specific imaging (eg of a grating - as described above) or by a scanning mechanism.
  • the light beam can, for example, scan the image field and its intensity during movement is changed by, for example, a fast AOTF so that an activation pattern, for example, corresponding to FIG. 5, arises in the focal plane.
  • molecules are also activated outside the focal plane.
  • the intensity of the activation beam is ideally chosen so that on average only one molecule per activation spot (equivalent to approx. PSF size) is excited. This reduces the likelihood that 2 molecules with overlapping diffraction slices will be activated simultaneously. In the course of image acquisition, the activation pattern must of course be phase-shifted, so that all molecules are activated evenly. Autofluorescence generated by the activation beam can be separated temporally and / or spectrally. The activation intensities are usually so small that autofluorescence should not play a role.
  • the photoactivation and fluorescence excitation beam can be exchanged here. This has the advantage that no photoactivation occurs outside the focal plane. For this, activation can be unstructured across the light sheet and the excitation matched to the PSF structured across the lens be performed. Molecules that have been activated with overlapping diffraction disks are stimulated to different degrees. In this way, gaps in the camera image can be avoided. However, there is the problem of extra-focal autofluorescence.
  • a problem with all variants described is the axial resolution, which is generally determined by the width of the light sheet used in the SPIM method. Since the NA used to generate it is usually much smaller than the NA of the detection objective, the problem immediately arises of a highly elongated system PSF (lateral expansion determined by the resolution of the PALM method (nanometer range), axial expansion This is disadvantageous in the case of 3D imaging With the aid of the multiview technique known from the prior art (recording of stacks from different angles), this problem can be circumvented and an effective, largely homogeneous spatial resolution corresponding to the lateral PALM resolution are generated.
  • the photoactivated molecules in the edge regions of the light sheet used for activation are deactivated again by a further structured light sheet in the sense of a nonlinear interaction in order to achieve a higher z resolution.
  • a light sheet may also be used as the deactivation beam, but is structured such that it has a zero point in the focal plane over the area of the image area to be observed, as shown in FIG.
  • the pupil intensity distribution (I) of the light sheet beam corresponds here to a line which has been previously generated by a suitable optical system (eg Powell lens).
  • a phase plate (II) is introduced, which has over half of the line a region (III), which generates a pi-phase jump.
  • the light sheet (V) extended in the xy plane is generated by a suitable optical system (IV).
  • a zero-point plane (VI) results parallel to the focal plane of the detection optics (VII), in which no molecules are excited.
  • Figure 7 shows a general optical embodiment for using the described advantageous methods and applications with photoactivation / deactivation over (x-direction structured) light sheet and CCD wide-field detection.
  • the sample is marked, for example, with Dronpa and can be turned on (activated) above 405 nm and excited at 488 nm or switched off again.
  • the lasers (1) are designed for 405 nm (photoactivation) and 488 nm (fluorescence excitation and photodeactivation) and are combined via a beam union (2) and dichroic mirrors.
  • photoactivation and fluorescence excitation it is also possible to use one and the same wavelength as explained above using the example of DENTRA.
  • An AOTF (3) is used for wavelength selection and fast switching / attenuation of the laser wavelengths.
  • PBS pole splitter
  • the light is transmitted via cylinder optics (7) to produce a light sheet and imaging optics (8) via beam paths (10) or (11) for photoactivation (or else deactivation or excitation) via the single-mode fibers (6) to the sample (12). irradiated.
  • the optical path lengths are adjusted accordingly.
  • a displacement of the standing wave field in the focal plane to illuminate the sample in the intensity minima is done by adjusting the relative phase between the two sheets, for example with a phase modulator (PH).
  • the light generated in the sample (12) is detected via a detection objective (13) (microscope objective) in a detection beam path (14) via a tube lens (15) and emission filter (16) by means of a CCD camera. Dashed in the detection beam path is an optional (swivelable) color splitter (18) for reflection of a laser (22) or a wide-field light source (23). shown if the fluorescence excitation by the detection lens.
  • a laser or the wide-field light source (23) can also be used for activation, wherein instead of a wavelength of 488 nm, a wavelength of 405 nm is to be provided when DRONPA is used as the dye.
  • a scanner unit (21) is provided for the laser beam path (22), which allows a punctiform scanning of the image field. Between the scanner unit (21) and the color divider (18), an imaging optical system (19) adapted for this purpose is provided.
  • phase plates (9) can be introduced into the illumination beam paths.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Microscoopes, Condenser (AREA)
PCT/EP2009/000677 2008-02-13 2009-02-03 Vorrichtung und verfahren zum räumlichen hochauflösenden abbilden einer struktur einer probe Ceased WO2009100830A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010546236A JP5826494B2 (ja) 2008-02-13 2009-02-03 試料の構造を空間的に高分解能で結像するための装置および方法
US12/867,291 US8362448B2 (en) 2008-02-13 2009-02-03 Apparatus and method for high spatial resolution imaging of a structure of a sample
EP09709871.9A EP2245494B1 (de) 2008-02-13 2009-02-03 Vorrichtung und verfahren zum räumlichen hochauflösenden abbilden einer struktur einer probe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008009216.9 2008-02-13
DE102008009216A DE102008009216A1 (de) 2008-02-13 2008-02-13 Vorrichtung und Verfahren zum räumlich hochauflösenden Abbilden einer Struktur einer Probe

Publications (1)

Publication Number Publication Date
WO2009100830A1 true WO2009100830A1 (de) 2009-08-20

Family

ID=40635862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/000677 Ceased WO2009100830A1 (de) 2008-02-13 2009-02-03 Vorrichtung und verfahren zum räumlichen hochauflösenden abbilden einer struktur einer probe

Country Status (5)

Country Link
US (1) US8362448B2 (enExample)
EP (1) EP2245494B1 (enExample)
JP (2) JP5826494B2 (enExample)
DE (1) DE102008009216A1 (enExample)
WO (1) WO2009100830A1 (enExample)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093757A (ja) * 2010-10-22 2012-05-17 Leica Microsystems Cms Gmbh Sted光シートを用いるspim顕微鏡
WO2012027542A3 (en) * 2010-08-25 2012-05-18 California Institute Of Technology Simultaneous orthogonal light sheet microscopy and computed optical tomography
JP2013539074A (ja) * 2010-09-24 2013-10-17 カール・ツァイス・マイクロスコピー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 3d局在顕微鏡法並びに4d局在顕微鏡法及び追跡方法並びに追跡システム
JP2014501915A (ja) * 2010-11-16 2014-01-23 カール ツァイス マイクロスコピー ゲーエムベーハー 深さ分解能が向上した顕微鏡検査
DE102016104651A1 (de) 2015-03-24 2016-09-29 Abberior Instruments Gmbh Verfahren und Rasterfluoreszenzlichtmikroskop zum dreidimensional hochauflösenden Abbilden einer mit Fluorophoren markierten Struktur einer Probe
US10831012B2 (en) 2018-06-29 2020-11-10 Illumina, Inc. Predicting structured illumination parameters
US10901202B2 (en) 2018-09-19 2021-01-26 Illumina, Inc. Structured illumination of a sample
US10928322B2 (en) 2018-01-24 2021-02-23 Illumina, Inc. Structured illumination microscopy with line scanning
US10996453B2 (en) 2018-01-16 2021-05-04 Illumina, Inc. Pattern angle spatial selection structured illumination imaging
US11150455B2 (en) 2018-01-24 2021-10-19 Illumina, Inc. Reduced dimensionality structured illumination microscopy with patterned arrays of nanowells
US11226475B2 (en) 2018-01-16 2022-01-18 Illumina, Inc. Dual optical grating slide structured illumination imaging
US11585757B2 (en) 2018-06-14 2023-02-21 Illumina, Inc. Device for luminescent imaging
US11675175B2 (en) 2018-01-16 2023-06-13 Illumina, Inc. Multi-arm structured illumination imaging
US12241833B2 (en) 2018-01-08 2025-03-04 Illumina, Inc. Multiplexing of an active sensor detector using structured illumination

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008054317A1 (de) * 2008-11-03 2010-05-06 Carl Zeiss Microlmaging Gmbh Kombinationsmikroskopie
DE102008059328A1 (de) 2008-11-27 2010-06-02 Carl Zeiss Microimaging Gmbh Auflösungsgesteigerte Mikroskopie
WO2010125844A1 (ja) * 2009-04-30 2010-11-04 国立大学法人大阪大学 変位測定装置及び変位測定方法
DE102009031231A1 (de) * 2009-06-26 2010-12-30 Carl Zeiss Microlmaging Gmbh Verfahren und Anordnungen für die Fluoreszenzmikroskopie
DE102009044984A1 (de) * 2009-09-24 2011-03-31 Carl Zeiss Microimaging Gmbh Mikroskop
DE102009043747A1 (de) * 2009-09-30 2011-03-31 Carl Zeiss Microlmaging Gmbh Verfahren zur Erzeugung eines Mikroskopbildes und Mikroskop
DE102010028138A1 (de) * 2010-04-22 2011-10-27 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Bestimmen der Verteilung einer Substanz durch Abtasten mit einer Messfront
US10051240B2 (en) 2010-06-14 2018-08-14 Howard Hughes Medical Institute Structured plane illumination microscopy
US8711211B2 (en) 2010-06-14 2014-04-29 Howard Hughes Medical Institute Bessel beam plane illumination microscope
DE102010041426A1 (de) * 2010-09-27 2012-05-03 Siemens Aktiengesellschaft Messeinheit und Verfahren zur optischen Untersuchung einer Flüssigkeit zur Bestimmung einer Analyt-Konzentration
WO2012049831A1 (ja) * 2010-10-14 2012-04-19 株式会社ニコン 構造化照明装置、構造化照明顕微鏡装置、及び面形状測定装置
US10908403B2 (en) * 2011-02-14 2021-02-02 European Molecular Biology Laboratory (Embl) Light-pad microscope for high-resolution 3D fluorescence imaging and 2D fluctuation spectroscopy
DE102011017078B4 (de) * 2011-04-15 2019-01-31 Leica Microsystems Cms Gmbh Weitfeld-Mikroskop-Beleuchtungssystem, Verwendung desselben und Weitfeld-Beleuchtungsverfahren
DE102011007751B4 (de) * 2011-04-20 2023-10-19 Carl Zeiss Microscopy Gmbh Weitfeldmikroskop und Verfahren zur Weitfeldmikroskopie
DE102012201003B4 (de) * 2012-01-24 2024-07-25 Carl Zeiss Microscopy Gmbh Mikroskop und Verfahren für die hochauflösende 3-D Fluoreszenzmikroskopie
DE102012211943A1 (de) 2012-07-09 2014-06-12 Carl Zeiss Microscopy Gmbh Mikroskop
DE102012214568A1 (de) * 2012-08-16 2014-02-20 Leica Microsystems Cms Gmbh Optische Anordnung und ein Mikroskop
EP2898312B1 (en) * 2012-09-24 2021-03-24 Global Life Sciences Solutions USA LLC Methods for resolving positions in fluorescence stochastic microscopy using three-dimensional structured illumination.
US9404869B2 (en) 2012-10-09 2016-08-02 Howard Hughes Medical Institute Multiview light-sheet microscopy
DE102013213781A1 (de) * 2013-03-20 2014-09-25 Leica Microsystems Cms Gmbh Verfahren und optische Anordnung zum Manipulieren und Abbilden einer mikroskopischen Probe
WO2014147211A1 (en) * 2013-03-21 2014-09-25 ETH Zürich Method and device to achieve spatially confined photointeraction at the focal volume of a microscope
EP2801854B1 (en) 2013-05-10 2017-07-19 Ruprecht-Karls-Universität Heidelberg Method and apparatus for combination of localization microscopy and structured illumination microscopy
DE102013208926A1 (de) * 2013-05-14 2014-11-20 Carl Zeiss Microscopy Gmbh Verfahren zur 3D-hochauflösenden Lokalisierungsmikroskopie
DE102013009042A1 (de) 2013-05-28 2014-12-04 Carl Zeiss Microscopy Gmbh Lumineszenzmikroskopie
DE102013216124A1 (de) * 2013-08-14 2015-02-19 Carl Zeiss Microscopy Gmbh Hochauflösende 3D-Fluoreszenzmikroskopie
US10539772B2 (en) * 2013-10-09 2020-01-21 Howard Hughes Medical Institute Multiview light-sheet microscopy
GB201318598D0 (en) * 2013-10-21 2013-12-04 Univ Leicester Improvements in or relating to super-resolution microscopy
DE102013226277A1 (de) * 2013-12-17 2015-06-18 Leica Microsystems Cms Gmbh Verfahren und Vorrichtung zum Untersuchen einer Probe mittels optischer Projektionstomografie
DE102013114860B3 (de) 2013-12-23 2015-05-28 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren und Vorrichtung zur Bestimmung der Orte einzelner Moleküle einer Substanz in einer Probe
DE112015001154T5 (de) * 2014-04-24 2016-12-08 Olympus Corporation Mikroskop und Mikroskopie-Verfahren
JP6439089B2 (ja) * 2014-05-15 2018-12-19 キヤノン株式会社 光学系およびそれを備えた内視鏡装置
WO2016054118A1 (en) * 2014-09-29 2016-04-07 Howard Hughes Medical Institute Non-linear structured illumination microscopy
US10795144B2 (en) 2014-12-06 2020-10-06 Howard Hughes Medical Institute Microscopy with structured plane illumination and point accumulation for imaging and nanoscale topography
US9921161B1 (en) * 2015-01-08 2018-03-20 Daniel Feldkhun Structured light active localization microscopy
JP6635052B2 (ja) * 2015-02-05 2020-01-22 株式会社ニコン 構造化照明顕微鏡、及び観察方法
DE102015103802A1 (de) * 2015-03-16 2016-09-22 Carl Zeiss Microscopy Gmbh Verfahren und Anordnung zur lichtblattmikroskopischen Untersuchung einer Probe
US10989661B2 (en) * 2015-05-01 2021-04-27 The Board Of Regents Of The University Of Texas System Uniform and scalable light-sheets generated by extended focusing
JP6552881B2 (ja) * 2015-06-12 2019-07-31 オリンパス株式会社 顕微鏡および顕微鏡画像取得方法
JP6594437B2 (ja) 2015-09-15 2019-10-23 オリンパス株式会社 顕微鏡および顕微鏡観察方法
CN108292034B (zh) * 2015-10-09 2022-01-04 徕卡显微系统复合显微镜有限公司 用于利用结构化的光片照射检查试样的方法和设备
US10876970B2 (en) 2016-04-12 2020-12-29 The Board Of Regents Of The University Of Texas System Light-sheet microscope with parallelized 3D image acquisition
US11067781B2 (en) 2016-05-03 2021-07-20 Leica Microsystems Cms Gmbh Microscope and method for localizing fluorescent molecules in three spatial dimensions
JP2017203822A (ja) * 2016-05-09 2017-11-16 オリンパス株式会社 照明設定方法、シート照明顕微鏡装置、及びプログラム
US11320640B2 (en) 2016-06-24 2022-05-03 Howard Hughes Medical Institute Automated adjustment of light sheet geometry in a microscope
JP2018004777A (ja) * 2016-06-28 2018-01-11 オリンパス株式会社 光シート顕微鏡、及び、光シート顕微鏡の制御方法
LU93143B1 (de) 2016-07-06 2018-03-05 Leica Microsystems Verfahren zum Untersuchen einer Probe sowie Vorrichtung zum Ausführen eines solchen Verfahrens
EP3497502B1 (de) 2016-08-15 2022-10-26 Leica Microsystems CMS GmbH Lichtblattmikroskop
US11506877B2 (en) 2016-11-10 2022-11-22 The Trustees Of Columbia University In The City Of New York Imaging instrument having objective axis and light sheet or light beam projector axis intersecting at less than 90 degrees
SG11201909327QA (en) 2017-04-07 2019-11-28 Univ I Tromsoe Norges Arktiske Univ Optical component for generating a periodic light pattern
US11415528B2 (en) * 2017-10-10 2022-08-16 Wdi Wise Device Inc. Method and apparatus for automated in-line inspection of optically transparent materials
AU2019205496B2 (en) 2018-01-08 2021-08-19 Illumina, Inc. High-throughput sequencing with semiconductor-based detection
CN109143562B (zh) * 2018-09-12 2020-12-15 苏州大学 一种基于变焦原理的可变光片照明系统
DE102018215831B4 (de) * 2018-09-18 2020-04-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optische Anordnung für fluoreszenzmikroskopische Anwendungen
MX2022004774A (es) * 2019-10-21 2022-05-16 Illumina Inc Eficiencia aumentada de calculo para microscopia de iluminacion estructurada.
DE102019008989B3 (de) * 2019-12-21 2021-06-24 Abberior Instruments Gmbh Verfahren zur Störungskorrektur und Laserscanningmikroskop mit Störungskorrektur
GB2596145A (en) * 2020-06-19 2021-12-22 Oxford Nanoimaging Ltd A optical imaging method
DE102020130476A1 (de) * 2020-11-18 2022-05-19 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren und Laserscanningmikroskop zum Abbilden einer mit verschiedenen Fluoreszenzmarkern markierten Struktur einer Probe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053558A1 (de) * 2002-12-09 2004-06-24 Europäisches Laboratorium für Molekularbiologie (EMBL) Mikroskop mit beobachtungsrichtung senkrecht zur beleuchtungsrichtung
EP1617255A1 (de) * 2004-07-16 2006-01-18 CARL ZEISS JENA GmbH Anordnung zur mikroskopischen Beobachtung und / oder Detektion
WO2006127692A2 (en) * 2005-05-23 2006-11-30 Hess Harald F Optical microscopy with phototransformable optical labels
DE102006017841A1 (de) * 2006-04-18 2007-10-25 Carl Zeiss Microimaging Gmbh Laser-Scanning-Mikroskop mit Hauptstrahlteiler zur räumlichen Trennung von Beleuchtungs- und Detektionsstrahlung

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309886B1 (en) * 1999-06-04 2001-10-30 The Regents Of The University Of California High throughput analysis of samples in flowing liquid
US6888148B2 (en) 2001-12-10 2005-05-03 Carl Zeiss Jena Gmbh Arrangement for the optical capture of excited and /or back scattered light beam in a sample
JPWO2004036284A1 (ja) * 2002-09-30 2006-02-16 独立行政法人科学技術振興機構 共焦点顕微鏡、共焦点顕微鏡を用いた蛍光測定方法及び偏光測定方法
DE10254139A1 (de) * 2002-11-15 2004-05-27 Carl Zeiss Jena Gmbh Verfahren und Anordnung zur tiefenaufgelösten optischen Erfassung einer Probe
EP1581625A2 (en) 2002-12-11 2005-10-05 Eli Lilly And Company Junctional adhesion molecule splice variants
JP2005321347A (ja) * 2004-05-11 2005-11-17 Hitachi High-Technologies Corp 光検出装置
US7485875B2 (en) * 2005-07-22 2009-02-03 Carl Zeiss Microimaging Gmbh Resolution-enhanced luminescence microscopy
JP2007114542A (ja) * 2005-10-21 2007-05-10 Olympus Corp 顕微鏡観察装置および顕微鏡観察方法
WO2007135804A1 (ja) * 2006-05-22 2007-11-29 Tokyo Institute Of Technology レーザ誘起蛍光法を用いた流体計測装置及び流体計測方法
DE102007047464B4 (de) 2007-09-28 2023-03-02 Carl Zeiss Microscopy Gmbh Optische Anordnung zur Photomanipulation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053558A1 (de) * 2002-12-09 2004-06-24 Europäisches Laboratorium für Molekularbiologie (EMBL) Mikroskop mit beobachtungsrichtung senkrecht zur beleuchtungsrichtung
EP1617255A1 (de) * 2004-07-16 2006-01-18 CARL ZEISS JENA GmbH Anordnung zur mikroskopischen Beobachtung und / oder Detektion
WO2006127692A2 (en) * 2005-05-23 2006-11-30 Hess Harald F Optical microscopy with phototransformable optical labels
DE102006017841A1 (de) * 2006-04-18 2007-10-25 Carl Zeiss Microimaging Gmbh Laser-Scanning-Mikroskop mit Hauptstrahlteiler zur räumlichen Trennung von Beleuchtungs- und Detektionsstrahlung

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GREGER K ET AL: "Basic building units and properties of a fluorescence single plane illumination microscope", REVIEW OF SCIENTIFIC INSTRUMENTS, AIP, MELVILLE, NY, US, vol. 78, no. 2, 28 February 2007 (2007-02-28), pages 23705 - 23705, XP012103772, ISSN: 0034-6748 *
R. HEINTZMANN, T. JOVIN: "Saturated patterned excitation microscopy - a concept for optical resolution improvement", J. OPT. SOC. AM. A, vol. 19, no. 8, August 2002 (2002-08-01), pages 1599 - 1609, XP002529109 *
See also references of EP2245494A1 *
T. BREUNINGER ET AL: "Lateral modulation boosts image quality in single plane illumination fluorescence microscopy", OPTICS LETTERS, vol. 32, no. 13, 1 July 2007 (2007-07-01), pages 1938 - 1940, XP002529108 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8575570B2 (en) 2010-08-25 2013-11-05 California Institute Of Technology Simultaneous orthogonal light sheet microscopy and computed optical tomography
WO2012027542A3 (en) * 2010-08-25 2012-05-18 California Institute Of Technology Simultaneous orthogonal light sheet microscopy and computed optical tomography
US9523846B2 (en) 2010-09-24 2016-12-20 Carl Zeiss Microscopy Gmbh 3D localisation microscopy and 4D localisation microscopy and tracking methods and systems
JP2013539074A (ja) * 2010-09-24 2013-10-17 カール・ツァイス・マイクロスコピー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 3d局在顕微鏡法並びに4d局在顕微鏡法及び追跡方法並びに追跡システム
JP2016197260A (ja) * 2010-09-24 2016-11-24 カール・ツァイス・マイクロスコピー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングCarl Zeiss Microscopy GmbH 3d局在顕微鏡法並びに4d局在顕微鏡法及び追跡方法並びに追跡システム
US10007103B2 (en) 2010-09-24 2018-06-26 Carl Zeiss Microscopy Gmbh 3D localization microscopy and 4D localization microscopy and tracking methods and systems
US10571674B2 (en) 2010-09-24 2020-02-25 Carl Zeiss Microscopy Gmbh 3D localization microscopy and 4D localization microscopy and tracking methods and systems
JP2012108491A (ja) * 2010-10-22 2012-06-07 Leica Microsystems Cms Gmbh 連続的な光シートを用いるspim顕微鏡
JP2012093757A (ja) * 2010-10-22 2012-05-17 Leica Microsystems Cms Gmbh Sted光シートを用いるspim顕微鏡
JP2014501915A (ja) * 2010-11-16 2014-01-23 カール ツァイス マイクロスコピー ゲーエムベーハー 深さ分解能が向上した顕微鏡検査
US9201011B2 (en) 2010-11-16 2015-12-01 Carl Zeiss Microscopy Gmbh Increased depth-resolution microscopy
DE102016104651A1 (de) 2015-03-24 2016-09-29 Abberior Instruments Gmbh Verfahren und Rasterfluoreszenzlichtmikroskop zum dreidimensional hochauflösenden Abbilden einer mit Fluorophoren markierten Struktur einer Probe
US12241833B2 (en) 2018-01-08 2025-03-04 Illumina, Inc. Multiplexing of an active sensor detector using structured illumination
US11226475B2 (en) 2018-01-16 2022-01-18 Illumina, Inc. Dual optical grating slide structured illumination imaging
US10996453B2 (en) 2018-01-16 2021-05-04 Illumina, Inc. Pattern angle spatial selection structured illumination imaging
US11675175B2 (en) 2018-01-16 2023-06-13 Illumina, Inc. Multi-arm structured illumination imaging
US10928322B2 (en) 2018-01-24 2021-02-23 Illumina, Inc. Structured illumination microscopy with line scanning
US11150455B2 (en) 2018-01-24 2021-10-19 Illumina, Inc. Reduced dimensionality structured illumination microscopy with patterned arrays of nanowells
US11650156B2 (en) 2018-01-24 2023-05-16 Illumina, Inc. Reduced dimensionality structured illumination microscopy with patterned arrays of nanowells
US11933728B2 (en) 2018-01-24 2024-03-19 Illumina, Inc. Reduced dimensionality structured illumination microscopy with patterned arrays of nanowells
US11585757B2 (en) 2018-06-14 2023-02-21 Illumina, Inc. Device for luminescent imaging
US11119302B2 (en) 2018-06-29 2021-09-14 Illumina, Inc. Predicting structured illumination parameters
US11525993B2 (en) 2018-06-29 2022-12-13 Illumina, Inc. Predicting structured illumination parameters
US10831012B2 (en) 2018-06-29 2020-11-10 Illumina, Inc. Predicting structured illumination parameters
US10901202B2 (en) 2018-09-19 2021-01-26 Illumina, Inc. Structured illumination of a sample
US11604346B2 (en) 2018-09-19 2023-03-14 Illumina, Inc. Structured illumination of a sample

Also Published As

Publication number Publication date
JP5826494B2 (ja) 2015-12-02
JP2015215629A (ja) 2015-12-03
EP2245494B1 (de) 2021-01-27
DE102008009216A1 (de) 2009-08-20
US20110036996A1 (en) 2011-02-17
EP2245494A1 (de) 2010-11-03
JP2011511966A (ja) 2011-04-14
US8362448B2 (en) 2013-01-29
JP6039760B2 (ja) 2016-12-07

Similar Documents

Publication Publication Date Title
EP2245494B1 (de) Vorrichtung und verfahren zum räumlichen hochauflösenden abbilden einer struktur einer probe
EP2102695B1 (de) Verfahren und anordnung zur parallelisierten mikroskopischen bildgebung
EP2516993B1 (de) Hochauflösendes mikroskop und verfahren zur zwei- oder dreidimensionalen positionsbestimmung von objekten
EP2641078B1 (de) Tiefenauflösungsgesteigerte mikroskopie
EP2803977B1 (de) Verfahren zur 3D-hochauflösenden Lokalisierungsmikroskopie
EP2860566B1 (de) Hochauflösende Scanning-Mikroskopie
EP2097781B1 (de) Lasermikroskop mit räumlich trennendem strahlteiler
EP1907826B2 (de) Auflösungsgesteigerte lumineszenz-mikroskopie
EP1248132B1 (de) Verfahren und Anordnung zur tiefenaufgelösten optischen Erfassung einer Probe
EP2185919A1 (de) Sted-fluoreszenzmikroskopie mit zweiphotonen-anregung
DE102020209889A1 (de) Mikroskop und Verfahren zur mikroskopischen Bildaufnahme mit variabler Beleuchtung
WO2009043473A1 (de) Optische anordnung zur photomanipulation
EP2067020A1 (de) Auflösungsgesteigerte lumineszenzmikroskopie
DE102015103802A1 (de) Verfahren und Anordnung zur lichtblattmikroskopischen Untersuchung einer Probe
DE102016102286A1 (de) Vorrichtung und Verfahren zur Multispot-Scanning-Mikroskopie
DE102004039035A1 (de) Verfahren und Vorrichtung zur Fluoreszenz-Lebensdauer-Imaging-Nanoskopie
DE10155002A1 (de) Verfahren und Anordnung zur tiefenaufgelösten optischen Erfassung einer Probe
EP1720052A1 (de) Vorrichtung zur Steuerung von Lichtstrahlung
EP2803978A1 (de) Verfahren zur 3D-hochauflösenden Lokalisierungsmikroskopie
DE102006009831B4 (de) Verfahren und Mikroskop zur räumlich hochauflösenden Untersuchung von Proben
DE102013022026A1 (de) Mehrfarben-Scanning-Mikroskop
DE102005009188A1 (de) Punktscannendes Laser-Scanning-Mikroskop sowie Verfahren zur Einstellung eines Mikroskopes
WO2017220668A1 (de) Mikroskopieverfahren unter nutzung zeitlicher fokusmodulation und mikroskop
DE102016104651A1 (de) Verfahren und Rasterfluoreszenzlichtmikroskop zum dreidimensional hochauflösenden Abbilden einer mit Fluorophoren markierten Struktur einer Probe
DE10201388A1 (de) Verfahren und / oder Apparaturen für mikroskopische Abbildung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09709871

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010546236

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009709871

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12867291

Country of ref document: US