WO2009096533A1 - 光学ガラス及び光ファイバ用コア材 - Google Patents

光学ガラス及び光ファイバ用コア材 Download PDF

Info

Publication number
WO2009096533A1
WO2009096533A1 PCT/JP2009/051597 JP2009051597W WO2009096533A1 WO 2009096533 A1 WO2009096533 A1 WO 2009096533A1 JP 2009051597 W JP2009051597 W JP 2009051597W WO 2009096533 A1 WO2009096533 A1 WO 2009096533A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
component
mass
optical
optical glass
Prior art date
Application number
PCT/JP2009/051597
Other languages
English (en)
French (fr)
Inventor
Michiko Ogino
Original Assignee
Ohara Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc. filed Critical Ohara Inc.
Priority to CN2009801038785A priority Critical patent/CN101925549A/zh
Publication of WO2009096533A1 publication Critical patent/WO2009096533A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/078Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine

Definitions

  • the present invention relates to an optical glass and an optical fiber core material.
  • Optical glass with excellent light transmittance has been used in various devices in recent years.
  • these optical glasses are used in medical light guides and core parts of multicomponent glass fibers used as image guides, or glass lenses for i-rays (OHARA INC.) Used in semiconductor exposure apparatuses. Used in the published i-line catalog).
  • OHARA INC. glass lenses for i-rays
  • an optical glass with reduced environmental pollutants such as arsenic and lead has been desired among such optical glasses having excellent light transmittance.
  • n d refractive index
  • cladding portion a material having a low refractive index
  • Patent Document 1 discloses an optical glass containing 0.1 to 4% by mass of Ta 2 O 5 with respect to the total mass of the glass having an oxide conversion composition. 95 ⁇ Ta 2 O 5 / (Ta 2 O 5 + (ZrO 2 + TiO 2 + Nb 2 O 5 + WO 3 ) ⁇ 5) ⁇ 1.00 and SiO 2 + B 2 O 3 + Al 2 O 3 + BaO is 81% or more An optical glass is disclosed. JP 2006-117504 A
  • the optical glass disclosed in Patent Document 1 has a problem that the internal transmittance is not sufficiently high in a short wavelength region, particularly in a wavelength range around 400 nm.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an optical glass having an increased internal transmittance particularly in a short wavelength region.
  • the present inventors have conducted intensive test studies, and as a result, the GeO 2 component is contained and the content of the Al 2 O 3 component is set to 0 to 10%, particularly around 400 nm.
  • the present inventors have found that the internal transmittance in the wavelength range can be increased and have completed the present invention.
  • optical glass according to (1) which contains 0.1 to 30% of GeO 2 component expressed in mass% with respect to the total mass of the glass having an oxide equivalent composition.
  • the mass sum Al 2 O 3 + SiO 2 + B 2 O 3 + BaO is mass% with respect to the total glass mass of the oxide equivalent composition, and is less than 81%, according to any one of (1) to (3) Optical glass.
  • the total amount of F in which a part or all of the oxide is substituted with fluoride is in the range of 0 to 0.5 parts by mass with respect to 100 parts by mass of the oxide equivalent composition. Any one of the optical glasses.
  • optical glass according to any one of (1) to (6) which does not substantially contain a lead compound and an arsenic compound.
  • the optical glass contains the GeO 2 component and the content of the Al 2 O 3 component is 0 to 10%, so that the internal transmittance is increased in the short wavelength region, particularly in the wavelength range around 400 nm. Therefore, there is little optical transmission loss, and an optical glass that can be suitably used as a core material glass for fibers can be provided.
  • composition range of each component is limited as described above in the optical glass of the present invention.
  • content of each component is expressed in mass%.
  • the optical glass of the present invention contains the GeO 2 component, and the content of the Al 2 O 3 component is 10% or less with respect to the total glass mass of the oxide equivalent composition. Accordingly, by suppressing the content of the Al 2 O 3 component within the above range, the internal transmittance of the glass that has been lowered due to the inclusion of the GeO 2 component is increased, so that the refractive index (n d ) of the optical glass is 1.50. While increasing the above, it is possible to further increase the internal transmittance particularly in a wavelength range around 400 nm.
  • the GeO 2 component is an effective component for increasing the refractive index (n d ) of the glass, increasing the transmittance, and improving the devitrification resistance.
  • the content of the GeO 2 component is 0.1% or more, the effect appears remarkably.
  • the content of the GeO 2 component with respect to the total glass mass of the oxide conversion composition is preferably 0.1%, more preferably 2%, most preferably 5%, and preferably 30%, more preferably 25%. Most preferably, the upper limit is 21%.
  • the GeO 2 component can be contained in the glass using, for example, GeO 2 as a raw material.
  • the Al 2 O 3 component is an effective component for increasing the chemical durability of the glass, but is a component that decreases the internal transmittance of the glass and is an optional component in the optical glass of the present invention.
  • the content of the Al 2 O 3 component is preferably 10%, more preferably 5%, and most preferably not contained.
  • the Al 2 O 3 component can be contained in the glass using, for example, Al (OH) 3 , Al 2 O 3 , AlF 3 or the like as a raw material.
  • the SiO 2 component is a component that increases chemical durability and light transmittance, and is an optional component in the optical glass of the present invention.
  • the content of the SiO 2 component is 20% or more, desired chemical durability and light transmittance of glass can be achieved.
  • the content of the SiO 2 component is 45% or less, the melting property of the glass can be improved and a desired optical constant can be obtained.
  • the content of the SiO 2 component with respect to the total glass mass of the oxide-converted composition is preferably 20%, more preferably 21%, most preferably 22.5%, and preferably 45%, more preferably 44%. Most preferably, the upper limit is 43%.
  • the SiO 2 component can be contained in the glass using, for example, SiO 2 , K 2 SiF 6 , ZrSiO 4 or the like as a raw material.
  • the B 2 O 3 component is an optional component having an effect of reducing the expansion of the glass and increasing the homogeneity of the glass.
  • the chemical durability of the glass can be further increased by setting the content of the B 2 O 3 component to 15% or less. Therefore, the content of the B 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 15%, more preferably 13%, and most preferably 11.5%.
  • a desired glass can be produced without containing the B 2 O 3 component.
  • the content of the B 2 O 3 component is preferably 1 %, More preferably 3%, and most preferably 5%.
  • the B 2 O 3 component can be contained in the glass using, for example, H 3 BO 3 as a raw material.
  • the BaO component is a component that increases the light transmittance of the glass, stabilizes the glass during melting, and maintains the optical constant, and is an optional component in the optical glass of the present invention.
  • the content of the BaO component is 20% or more, the effect is remarkably exhibited.
  • the content of the BaO component with respect to the total glass mass of the oxide conversion composition is preferably 20%, more preferably 22%, and most preferably 23%, preferably 50%, more preferably 47%, most preferably Up to 45%.
  • the BaO component can be contained in the glass using, for example, Ba (NO 3 ) 2 , BaCO 3 , BaF or the like as a raw material.
  • the mass sum of the content of each component of Al 2 O 3 , SiO 2 , B 2 O 3 and BaO is preferably less than 81% with respect to the total glass mass of the oxide equivalent composition. .
  • the mass sum of the content of each component of Al 2 O 3 , SiO 2 , B 2 O 3 and BaO is preferably less than 81%, more preferably less than 80%, and most preferably less than 79%.
  • the Ta 2 O 5 component is a component that improves the homogeneity of the glass and makes it difficult to cause phase separation in the glass of the present invention, and improves the devitrification resistance, and is an optional component in the optical glass of the present invention. is there.
  • the light transmittance of the glass can be further improved by setting the content of the Ta 2 O 5 component to 20% or less. Therefore, the content of the Ta 2 O 5 component with respect to the total glass mass of the oxide conversion composition is preferably 20%, more preferably 10%, and most preferably 5%.
  • the content of Ta 2 O 5 component is preferably 1%, More preferably, the lower limit is 1.5%, and most preferably 2%.
  • the Ta 2 O 5 component can be contained in the glass using, for example, Ta 2 O 5 as a raw material.
  • the Sb 2 O 3 component is a component that increases the internal transmittance of the glass regardless of the oxidation-reduction state in the molten glass, and is an optional component in the optical glass of the present invention.
  • the content of the Sb 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 1%, more preferably 0.5%, and most preferably 0.2%. From the viewpoint of reducing environmental load, it is preferred not to include Sb 2 O 3 component.
  • the Sb 2 O 3 component can be contained in the glass using, for example, Sb 2 O 3 as a raw material.
  • the ZnO component is a component that improves meltability and chemical durability, particularly water resistance, and is an optional component in the optical glass of the present invention. At this time, by making the content of the ZnO component 10% or less, the meltability and transmittance of the glass can be improved. Accordingly, the content of the ZnO component with respect to the total glass mass of the oxide conversion composition is preferably 10%, more preferably 7%, and most preferably 5%. In the present invention, a desired glass can be produced without containing a ZnO component. However, in order to facilitate the above effect, the content of the ZnO component is preferably 1%, more preferably 1 The lower limit is 0.5%, and most preferably 2%.
  • the ZnO component can be contained in the glass using, for example, ZnO as a raw material.
  • the MgO component is a component that adjusts the optical constant and improves the chemical durability of the glass, and is an optional component in the optical glass of the present invention. At this time, the meltability of the glass can be improved by setting the content of the MgO component to 10% or less. Therefore, the upper limit of the content of the MgO component with respect to the total glass mass of the oxide conversion composition is preferably 10%, more preferably 6%, and most preferably 1%.
  • the MgO component can be contained in the glass using, for example, MgO, MgF 2 or the like as a raw material.
  • the CaO component is a component that adjusts the optical constant, improves the chemical durability of the glass, and improves the light transmittance, and is an optional component in the optical glass of the present invention.
  • the meltability and transmittance of the glass can be improved by setting the content of the CaO component to 10% or less.
  • the content of the CaO component with respect to the total glass mass of the oxide conversion composition is preferably 10%, more preferably 7%, and most preferably 5%.
  • a desired glass can be produced without containing a CaO component, but in order to facilitate the above effect, the content of the CaO component is preferably 1%, more preferably 1 The lower limit is 0.5%, and most preferably 2%.
  • the CaO component can be contained in the glass using, for example, CaCO 3 , CaF 2 or the like as a raw material.
  • the SrO component is a component that adjusts the optical constant and improves the chemical durability of the glass, and is an optional component in the optical glass of the present invention. At this time, the meltability of the glass can be improved by setting the content of the SrO component to 10% or less. Accordingly, the content of the SrO component with respect to the total glass mass of the oxide conversion composition is preferably 10%, more preferably 6%, and most preferably 1%.
  • the SrO component can be contained in the glass using, for example, Sr (NO 3 ) 2 , SrF 2 or the like as a raw material.
  • Li 2 O component is a component for improving the meltability is any component of the optical glass of the present invention.
  • the content of the Li 2 O component 5% or less the chemical durability of the glass can be improved and the expansion of the glass can be reduced. Therefore, the content of the Li 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 5%, more preferably 2%, and even more preferably 1%.
  • the Li 2 O component can be contained in the glass using, for example, Li 2 CO 3 as a raw material.
  • Na 2 O component is a component for improving the meltability is any component of the optical glass of the present invention.
  • the content of the Na 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 10%, more preferably 8%, and most preferably 7.8%.
  • the Na 2 O component uses, for example, Na 2 B 4 O 7 , Na 2 B 4 O 7 ⁇ 10H 2 O, Na 2 H 2 Sb 2 O 7 ⁇ 5H 2 O, Na 2 CO 3 , NaNO 3 and the like as raw materials. Can be contained in the glass.
  • K 2 O component is a component for improving the meltability is any component of the optical glass of the present invention.
  • the upper limit of the content of the K 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 5%, more preferably 3%, and most preferably 1%.
  • the K 2 O component can be contained in the glass using, for example, K 2 CO 3 , KNO 3 , KHF 2 , K 2 SiF 6 or the like as a raw material.
  • each component such as ZrO 2 , TiO 2 , Nb 2 O 5 , and WO 3 is arbitrarily added to increase the refractive index without using PbO.
  • phase separation, foreign matter, bubbles and the like are likely to occur during melting of the glass.
  • the absorption in the short wavelength region is further increased. Therefore, when added excessively, desired optical characteristics are easily impaired as optical glass for optical fibers.
  • the content of each component of ZrO 2 , TiO 2 , Nb 2 O 5 , and WO 3 with respect to the total glass mass of the oxide equivalent composition is preferably 0.01%, more preferably 0.005% as the upper limit. Most preferably, it does not contain. Since the optical glass of the present invention contains a GeO 2 component, it has a sufficient refractive index even if it does not contain them.
  • the Bi 2 O 3 component is an optional component that has an effect of increasing the refractive index.
  • the upper limit of the content of the Bi 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 40%, more preferably 30%, and most preferably 20%.
  • the optical glass of the present invention in addition to the essential components and optional components mentioned above, can contain the components of the La 2 O 3, Y 2 O 3 as an optional component.
  • these contents when these components are contained, the meltability of the glass is remarkably deteriorated, and it becomes difficult to obtain a glass having excellent light transmittance. Therefore, these contents with respect to the total glass mass of the oxide conversion composition preferably have an upper limit of 2%, and most preferably do not contain.
  • the optical glass of this invention can contain F as an arbitrary component other than the said essential component and arbitrary components.
  • F the transmittance of the glass can be improved.
  • the total amount of F in which a part or all of the oxide is fluoride-substituted is 0.5 parts by mass or less with respect to 100 parts by mass of the oxide equivalent composition, thereby improving the internal quality of the glass and refraction.
  • the rate can be increased. Therefore, the total amount of F in which a part or all of the above oxide is fluoride-substituted is preferably 0.5 parts by mass, more preferably 0.3 parts by mass, with 100 parts by mass of the total mass of the glass in terms of oxide composition. Parts, more preferably 0.2 parts by mass, and most preferably not contained.
  • F can be contained in the glass using, for example, BaF 2 , CaF 2 or the like as a raw material.
  • Lead compounds such as PbO increase the meltability of the glass to suppress devitrification
  • arsenic compounds such as As 2 O 3 are components that improve the foaming (defoaming properties) when melting the glass.
  • the optical glass it is preferable that these are not substantially contained. As a result, the optical glass is substantially free of substances that pollute the environment. Therefore, the optical glass can be manufactured, processed, and discarded without taking any special environmental measures.
  • the Pt component works to lower the transmittance particularly in the short wavelength region, the Pt content in the glass should be suppressed as much as possible.
  • a melting device in which part or all of the glass in contact with the molten glass is made of platinum or a platinum alloy material from the viewpoint of clarity and homogenization or freedom of molding. If the contact with the glass becomes higher and longer, platinum ions may dissolve in the glass. Accordingly, the Pt content with respect to the total glass mass of the oxide-converted composition is preferably 10 ppm or less, more preferably 5 ppm or less, and most preferably not contained.
  • the “oxide equivalent composition” is assumed that oxides, composite salts, metal fluorides, etc. used as a raw material of the glass component of the present invention are all decomposed and changed to oxides when melted.
  • the total weight of the generated oxide is 100% by mass, and each component contained in the glass is expressed as "total amount of F in which a part or all of the oxide is substituted with fluoride.”
  • composition of the glass composition of the present invention is expressed by mass%, it cannot be expressed directly in the description of mol%, but in the glass composition satisfying various characteristics required in the present invention.
  • the composition represented by mol% of each component present generally takes the following values in terms of oxide equivalent composition.
  • the optical glass of the present invention is manufactured as follows. That is, the above raw materials were mixed so that each component was within a predetermined content range, and the prepared mixture was put in a quartz crucible and adjusted to the size of the crucible to be melted at 800 ° C. to 1300 ° C. for 1 to 20 hours. Under conditions, coarsely dissolve to produce cullet. The produced cullet is heated and melted at 850 to 1300 ° C. using a heating device, stirred and homogenized to remove bubbles, and then cast into a mold preheated to an appropriate temperature. It is preferable that the heating device used at this time is a device in which at least a part in contact with the cullet and the molten glass is formed of platinum or a platinum alloy.
  • the cullet produced by the quartz crucible by the above procedure is spun using a known method together with the clad material.
  • the oxygen concentration in the melting atmosphere furnace is more preferably 10% or more, and most preferably 15% or more.
  • O 2 is sent into the molten glass through a tube made of a component that does not affect the transmittance, such as quartz, and bubbling is performed. Thus, it is preferable to increase the O 2 concentration on the glass surface.
  • the optical glass of the present invention requires as high a light transmittance as possible.
  • the internal transmittance in the vicinity of 400 nm, more specifically in the wavelength range of 395 to 400 nm, is preferably 0.9950 or more, more preferably 0.9980 or more.
  • transmits optical glass becomes smaller. Therefore, in an optical system using an optical material (for example, an optical lens) made of this optical glass, the optical design is easier.
  • the internal transmittance at 395 to 400 nm means the minimum value of the internal transmittance at each wavelength of 395 to 400 nm.
  • the refractive index (n d ) is preferably 1.50 or more, more preferably 1.55 or more, and more preferably 1.58 or more in order to realize a high numerical aperture.
  • the optical glass of the present invention requires as high a refractive index ( nd ) as possible.
  • a refractive index (n d ) of 1.50 or more
  • the difference in refractive index from the cladding material becomes large, and light leaking into the cladding material Therefore, the change in the waveform of the transmitted light can be reduced.
  • the optical glass when used as an optical lens or the like, the device can be thinned.
  • the optical glass of the present invention is used as a core material for an optical fiber in particular, the ratio of light transmitted through the inside of the core material is increased, so that a core material for an optical fiber with less optical transmission loss can be provided.
  • a known method such as a double crucible method can be used using a coarsely dissolved cullet.
  • optical glass of Examples (No. 1 to No. 8) of the present invention and the glass of Comparative Example (No. A) are used for ordinary optical glasses such as oxides, carbonates, nitrates and fluorides.
  • a high-purity raw material is selected, weighed and mixed so as to have the composition shown in Table 1, and then roughly melted in a quartz crucible so that the part in contact with the glass is formed of platinum or a platinum alloy (some part) May be formed of quartz or the like), melted at 850 ° C. to 1300 ° C., cast into a preheated mold and slowly cooled.
  • the refractive index (n d ) and the Abbe number ( ⁇ d ) of the optical glasses of the examples (No. 1 to No. 8) and the glass of the comparative example (No. A) are the slow cooling rate- It calculated
  • the internal transmittance at 395 to 400 nm was obtained from two samples having different thicknesses according to JOGIS17-1982 “Measurement method of internal transmittance of optical glass” by Japan Optical Glass Industry Association.
  • the samples used for measuring the internal transmittance are samples having a thickness of 10 mm and 50 mm.
  • the optical glasses of Examples (No. 1 to 8) of the present invention are all in the short wavelength region, particularly 395 to 400 nm, compared with the glass of Comparative Example (No. A).
  • the internal transmittance in the wavelength range was increased and was 0.9880 or more.
  • the optical glasses of Examples (Nos. 1 to 8) of the present invention all have a refractive index of 1.50 or more, and the Abbe number ( ⁇ d ) is lower than that of the glass of the comparative example, which is 55 or less. It was.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

 本発明の課題は、短波長領域、特に395~400nmの波長範囲において内部透過率の高められた光学ガラスを提供することである。  この光学ガラスは、GeO2成分を含有するとともに、酸化物換算組成のガラス全質量に対して、質量%で表して、Al2O3成分の含量が10%以下である。この光学ガラスは、短波長領域、特に400nm近辺の波長範囲において内部透過率が高められるため、光伝送損失が少なく、ファイバ用のコア材ガラスとして好適に用いられる。

Description

光学ガラス及び光ファイバ用コア材
 本発明は、光学ガラス及び光ファイバ用コア材に関する。
 光線透過率が優れた光学ガラスは、近年様々な装置に組み込まれて用いられている。特にこれらの光学ガラスは、医療用ライトガイドや、イメージガイドとして用いられる多成分系ガラスファイバのコア部に用いられたり、半導体の露光装置に使用されるi線用のガラスレンズ((株)オハラ発行のi線用カタログ参照)に用いられたりする。このような光線透過率が優れた光学ガラスにおいて、近年、砒素や鉛のような環境汚染物質を削減した光学ガラスが望まれている。
 このうち多成分系ガラスファイバでは、光の伝達量を増やす為、コア部には屈折率(n)が高い材料を用いるとともに、クラッド部分には屈折率が低い材料を用いて開口数を上げる必要がある。また、光ファイバは伝送経路を長くして使用されることも多く、透過率が悪くなると伝送損失が大きくなる為、可視域全体で透過率が良いことも重要である。
 このような光学ガラスとしては、特許文献1に、酸化物換算組成のガラス全質量に対して、質量%で0.1~4%のTaを含有する光学ガラスであって、0.95<Ta/(Ta+(ZrO+TiO+Nb+WO)×5)≦1.00、かつSiO+B+Al+BaOが81%以上である光学ガラスが開示されている。
特開2006-117504号公報
 しかしながら、特許文献1で開示された光学ガラスでは、短波長領域、特に400nm近辺の波長範囲における内部透過率が十分に高くないという問題点があった。短波長領域、特に400nm近辺の波長範囲における内部透過率は、たとえ微差であっても光ファイバ特性に大きく影響する。
 本発明は上記問題点に鑑みてなされたものであって、その目的とするところは、特に短波長領域において内部透過率の高められた光学ガラスを提供することにある。
 本発明者らは、上記課題を解決するために、鋭意試験研究を重ねた結果、GeO成分を含有するとともに、Al成分の含量を0~10%とすることにより、特に400nm近辺の波長範囲における内部透過率を高められることを見出し、本発明を完成するに至った。
 (1) GeO成分を含有するとともに、酸化物換算組成のガラス全質量に対して、質量%で表して、Al成分の含量が10%以下である光学ガラス。
 (2) 酸化物換算組成のガラス全質量に対して、質量%で表して、GeO成分を0.1~30%含有する(1)記載の光学ガラス。
 (3) 酸化物換算組成のガラス全質量に対して、質量%で
SiO   20~45%、
   0~15%、及び
BaO    20~50%
の各成分をさらに含有する(2)記載の光学ガラス。
 (4) 質量和Al+SiO+B+BaOが、酸化物換算組成のガラス全質量に対して質量%で、81%未満である(1)から(3)のいずれか記載の光学ガラス。
 (5) 酸化物換算組成のガラス全質量に対して、質量%で
Ta  0~20%及び/又は
Sb  0~1%及び/又は
ZnO    0~10%及び/又は
MgO    0~10%及び/又は
CaO    0~10%及び/又は
SrO    0~10%及び/又は
LiO   0~5%及び/又は
NaO   0~10%及び/又は
O    0~5%
の各成分をさらに含有する(1)から(4)のいずれか記載の光学ガラス。
 (6) 上記酸化物の一部又は全部を弗化物置換したFの合計量が、酸化物換算組成100質量部に対し0~0.5質量部の範囲である(1)から(5)のいずれか記載の光学ガラス。
 (7) 実質的に鉛化合物及びヒ素化合物を含有しない(1)から(6)のいずれか記載の光学ガラス。
 (8) 395~400nmでの内部透過率が0.9950以上である(1)から(7)のいずれか記載の光学ガラス。
 (9) 395~400nmでの内部透過率が0.9980以上である(8)のいずれか記載の光学ガラス。
 (10) 1.50以上の屈折率(n)を有する(1)から(9)のいずれか記載の光学ガラス。
 (11) (1)から(10)のいずれか記載の光学ガラスからなる光ファイバ用コア材。
 本発明によれば、光学ガラスにGeO成分を含有するとともに、Al成分の含量を0~10%とすることにより、短波長領域、特に400nm近辺の波長範囲において内部透過率が高められるため、光伝送損失が少なく、ファイバ用のコア材ガラスとして好適に用いられる光学ガラスを提供することができる。
発明を実施するための形態
 次に本発明の光学ガラスにおいて、各成分の組成範囲を前記のとおり限定した理由を説明する。なお、本明細書中においては、特に断らない限り、各成分の含量は質量%にて表されるものとする。
 本発明の光学ガラスは、GeO成分を含有するとともに、酸化物換算組成のガラス全質量に対して、Al成分の含量を10%以下とする。これにより、Al成分の含量を上記範囲内に抑えることで、GeO成分の含有によって低下したガラスの内部透過率が高められるため、光学ガラスの屈折率(n)を1.50以上に高めつつ、特に400nm近辺の波長範囲における内部透過率をより高めることができる。
 GeO成分は、ガラスの屈折率(n)を高めるとともに、透過率を高め、耐失透性を高めるのに効果的な成分である。特に、GeO成分の含量を0.1%以上にすることで、その効果が顕著に現れる。一方、GeO成分の含量を30%以下にすることで、光学ガラスをより安価にすることができる。従って、酸化物換算組成のガラス全質量に対するGeO成分の含量は、好ましくは0.1%、より好ましくは2%、最も好ましくは5%を下限とし、好ましくは30%、より好ましくは25%、最も好ましくは21%を上限とする。GeO成分は、原料として例えばGeO等を用いてガラス内に含有させることができる。
 Al成分は、ガラスの化学的耐久性を高めるのに有効な成分であるが、ガラスの内部透過率を低下する成分であり、本発明の光学ガラス中の任意成分である。このとき、Al成分の含量を10%以下にすることで、ガラスの溶融性を悪化することなく、またガラス中に分相が生じにくくすることができる。従って、酸化物換算組成のガラス全質量に対するAl成分の含量は、好ましくは10%、より好ましくは5%を上限とし、最も好ましくは含まない。Al成分は、原料として例えばAl(OH)、Al、AlF等を用いてガラス内に含有させることができる。
 SiO成分は、化学的耐久性と光線透過率を高める成分であり、本発明の光学ガラス中の任意成分である。特に、SiO成分の含量を20%以上にすることで、所望のガラスの化学的耐久性及び光線透過率を達成することができる。一方、SiO成分の含量を45%以下にすることで、ガラスの溶融性を良くし、かつ所望の光学恒数を得ることができる。従って、酸化物換算組成のガラス全質量に対するSiO成分の含量は、好ましくは20%、より好ましくは21%、最も好ましくは22.5%を下限とし、好ましくは45%、より好ましくは44%、最も好ましくは43%を上限とする。SiO成分は、原料として例えばSiO、KSiF、ZrSiO等を用いてガラス内に含有させることができる。
 B成分は、ガラスの膨張を小さくしてガラスの均質性を増す効果を有する任意成分である。特に、B成分の含量を15%以下にすることで、ガラスの化学的耐久性をより高めることができる。従って、酸化物換算組成のガラス全質量に対するB成分の含量は、好ましくは15%、より好ましくは13%、最も好ましくは11.5%を上限とする。また、本発明においては、B成分を含有しなくとも所望のガラスを作製することはできるが、上記効果を発揮しやすくするために、B成分の含量は、好ましくは1%、より好ましくは3%、最も好ましくは5%を下限とする。B成分は、原料として例えばHBO等を用いてガラス内に含有させることができる。
 BaO成分は、ガラスの光線透過率を高め、溶融中のガラスを安定化して光学恒数を維持する成分であり、本発明の光学ガラス中の任意成分である。特に、BaO成分の含量を20%以上にすることで、その効果が顕著に現れる。一方、BaO成分の含量を50%以下にすることで、溶融性を高めて耐失透性を増すことができる。従って、酸化物換算組成のガラス全質量に対するBaO成分の含量は、好ましくは20%、より好ましくは22%、最も好ましくは23%を下限とし、好ましくは50%、より好ましくは47%、最も好ましくは45%を上限とする。BaO成分は、原料として例えばBa(NO、BaCO、BaF等を用いてガラス内に含有させることができる。
 本発明の光学ガラスは、Al、SiO、B及びBaOの各成分の含量の質量和が、酸化物換算組成のガラス全質量に対して81%未満であることが好ましい。これにより、GeO成分を必須とした本組成系において、高い屈折率を維持したまま、非常に高い内部透過率を持ったガラスを得ることができる。従って、Al、SiO、B及びBaOの各成分の含量の質量和は、好ましくは81%未満、より好ましくは80%未満、最も好ましくは79%未満である。
 Ta成分は、本発明のガラスにおいて、ガラスの均質性を向上して分相を生じ難くするとともに、耐失透性を向上する成分であり、本発明の光学ガラス中の任意成分である。特に、Ta成分の含量を20%以下にすることで、ガラスの光線透過率をさらに向上することができる。従って、酸化物換算組成のガラス全質量に対するTa成分の含量は、好ましくは20%、より好ましくは10%、最も好ましくは5%を上限とする。また、本発明においては、Ta成分を含有しなくとも所望のガラスを作製することはできるが、上記効果を発揮するために、Ta成分の含量は、好ましくは1%、より好ましくは1.5%、最も好ましくは2%を下限とする。Ta成分は、原料として例えばTa等を用いてガラス内に含有させることができる。
 Sb成分は、溶融ガラス中での酸化還元の状態によらずにガラスの内部透過率を高める成分であり、本発明の光学ガラス中の任意成分である。このとき、Sb成分の含量を1%以下にすることで、Sb成分の短波長域での吸収が抑制されるため、透過率の低下を抑制することができる。従って、酸化物換算組成のガラス全質量に対するSb成分の含量は、好ましくは1%、より好ましくは0.5%、最も好ましくは0.2%を上限とする。なお、環境負荷軽減の観点からは、Sb成分を含まないことが好ましい。Sb成分は、原料として例えばSb等を用いてガラス内に含有させることができる。
 ZnO成分は、溶融性を向上するとともに、化学的耐久性、特に耐水性を向上する成分であり、本発明の光学ガラス中の任意成分である。このとき、ZnO成分の含量を10%以下にすることで、ガラスの溶融性及び透過率を良くすることができる。従って、酸化物換算組成のガラス全質量に対するZnO成分の含量は、好ましくは10%、より好ましくは7%、最も好ましくは5%を上限とする。また、本発明においては、ZnO成分を含有しなくとも所望のガラスを作製することはできるが、上記効果を発揮しやすくするために、ZnO成分の含量は、好ましくは1%、より好ましくは1.5%、最も好ましくは2%を下限とする。ZnO成分は、原料として例えばZnO等を用いてガラス内に含有させることができる。
 MgO成分は、光学恒数を調整するとともにガラスの化学的耐久性を向上する成分であり、本発明の光学ガラス中の任意成分である。このとき、MgO成分の含量を10%以下にすることで、ガラスの溶融性を良くすることができる。従って、酸化物換算組成のガラス全質量に対するMgO成分の含量は、好ましくは10%、より好ましくは6%、最も好ましくは1%を上限とする。MgO成分は、原料として例えばMgO、MgF等を用いてガラス内に含有させることができる。
 CaO成分は、光学恒数を調整するとともにガラスの化学的耐久性を向上し、光線透過率を向上する成分であり、本発明の光学ガラス中の任意成分である。このとき、CaO成分の含量を10%以下にすることで、ガラスの溶融性及び透過率を良くすることができる。従って、酸化物換算組成のガラス全質量に対するCaO成分の含量は、好ましくは10%、より好ましくは7%、最も好ましくは5%を上限とする。また、本発明においては、CaO成分を含有しなくとも所望のガラスを作製することはできるが、上記効果を発揮しやすくするために、CaO成分の含量は、好ましくは1%、より好ましくは1.5%、最も好ましくは2%を下限とする。CaO成分は、原料として例えばCaCO、CaF等を用いてガラス内に含有させることができる。
 SrO成分は、光学恒数を調整するとともにガラスの化学的耐久性を向上する成分であり、本発明の光学ガラス中の任意成分である。このとき、SrO成分の含量を10%以下にすることで、ガラスの溶融性を良くすることができる。従って、酸化物換算組成のガラス全質量に対するSrO成分の含量は、好ましくは10%、より好ましくは6%、最も好ましくは1%を上限とする。SrO成分は、原料として例えばSr(NO、SrF等を用いてガラス内に含有させることができる。
 LiO成分は、溶融性を改善する成分であり、本発明の光学ガラス中の任意成分である。このとき、LiO成分の含量を5%以下にすることで、ガラスの化学的耐久性を良くすることができるとともに、ガラスの膨張を小さくすることができる。従って、酸化物換算組成のガラス全質量に対するLiO成分の含量は、好ましくは5%、より好ましくは2%、さらに好ましくは1%を上限とする。LiO成分は、原料として例えばLiCO等を用いてガラス内に含有させることができる。
 NaO成分は、溶融性を改善する成分であり、本発明の光学ガラス中の任意成分である。このとき、NaO成分の含量を10%以下にすることで、化学的耐久性及び光線透過率を良くすることができるとともに、ガラスの膨張を小さくすることができ、ガラスの成形性も良くすることができる。従って、酸化物換算組成のガラス全質量に対するNaO成分の含量は、好ましくは10%、より好ましくは8%、最も好ましくは7.8%を上限とする。NaO成分は、原料として例えばNa、Na・10HO、NaSb・5HO、NaCO、NaNO等を用いてガラス内に含有させることができる。
 KO成分は、溶融性を改善する成分であり、本発明の光学ガラス中の任意成分である。このとき、KO成分の含量を5%以下にすることで、化学的耐久性及び光線透過率を良くすることができるとともに、ガラスの膨張を小さくすることができ、ガラスの成形性も良くすることができる。従って、酸化物換算組成のガラス全質量に対するKO成分の含量は、好ましくは5%、より好ましくは3%、最も好ましくは1%を上限とする。KO成分は、原料として例えばKCO、KNO、KHF、KSiF等を用いてガラス内に含有させることができる。
 本発明の光学ガラスには、前記の必須成分及び任意の成分以外に、PbOを用いずに屈折率を高めるために、ZrO、TiO、Nb、WO等の各成分を任意成分として含有できる。しかし、これらの成分を含有すると、ガラスを溶融する最中に分相、異物、泡等が生じやすくなる。また、TiO、Nb、WOの各成分を含有すると、短波長域領域の吸収がより大きくなるため、過剰に添加すると光ファイバ用光学ガラスとして所望の光学特性を損ない易い。また、ZrO成分を含有すると、溶融性が悪くなり、ガラス内に異物が生じやすくなり、溶解温度を著しく上がり、Ptイオン等の溶け込みが助長されるため、光線透過率が悪化しやすい。従って、酸化物換算組成のガラス全質量に対するZrO、TiO、Nb、WOの各成分のそれぞれの含量は、好ましくは0.01%、より好ましくは0.005%を上限とし、最も好ましくは含有しない。本発明の光学ガラスでは、GeO成分を含んでいるため、これらを含有しなくても十分な屈折率を有する。
 さらに、Bi成分は、屈折率を高める作用のある任意成分であるが、その量が多すぎると過度に着色し、内部透過率を悪化させる恐れがある。従って、酸化物換算組成のガラス全質量に対するBi成分の含量は、好ましくは40%、より好ましくは30%、最も好ましくは20%を上限とする。
 また、本発明の光学ガラスは、前記の必須成分及び任意の成分以外に、La、Yの各成分を任意成分として含有できる。しかし、これらの成分を含有すると、ガラスの溶融性が著しく悪くなり、優れた光線透過率を持つガラスを得ることが困難になる。従って、酸化物換算組成のガラス全質量に対するこれらの含量は、好ましくは2%を上限とし、最も好ましくは含有しない。
 また、本発明の光学ガラスは、前記の必須成分及び任意の成分以外に、Fを任意成分として含有できる。Fを含有することにより、ガラスの透過率を改善することができる。このとき、上記酸化物の一部又は全部を弗化物置換したFの合計量を酸化物換算組成100質量部に対して0.5質量部以下にすることで、ガラスの内部品質を高め、屈折率を高めることができる。従って、上記酸化物の一部又は全部を弗化物置換したFの合計量は、酸化物換算組成のガラス全質量を100質量部として、好ましくは0.5質量部、より好ましくは0.3質量部、さらに好ましくは0.2質量部を上限とし、最も好ましくは含有しない。Fは、原料として例えばBaF、CaF等を用いてガラス内に含有させることができる。
 次に、本発明の光学ガラスに含有すべきでない成分、及び含有することが好ましくない成分について説明する。
 PbO等の鉛化合物はガラスの溶融性を高めて失透を抑え、As等のヒ素化合物はガラスを溶融する際の泡切れ(脱泡性)を良くする成分であるが、本発明の光学ガラスでは、これらを実質的に含有しないことが好ましい。これにより、光学ガラスに環境を汚染する物質が実質的に含まれなくなる。そのため、特別な環境対策上の措置を講じなくとも、この光学ガラスを製造し、加工し、及び廃棄することができる。
 Pt成分は、特に短波長域における透過率を低下する働きがあるので、可能な限りガラス中のPtの含量を抑制すべきである。しかし、光学ガラスの製造においては、清澄さ及び均質化又は成形の自由度の観点より、溶融ガラスと接する一部又は全部が白金又は白金合金材料で構成させた溶解装置を用いることが好ましく、白金との接触がより高温及び長時間になると、ガラス中に白金イオンが溶け込むことがある。従って、酸化物換算組成のガラス全質量に対するPtの含量は、好ましくは10ppm以下、より好ましくは5ppm以下を上限とし、最も好ましくは含有しない。
 なお、本明細書中において「酸化物換算組成」とは、本発明のガラス構成成分の原料として使用される酸化物、複合塩、金属弗化物等が溶融時にすべて分解され酸化物へ変化すると仮定した場合に、当該生成酸化物の総重量を100質量%として、ガラス中に含有される各成分を表記した組成であり、「上記酸化物の一部又は全部を弗化物置換したFの合計量」とは、本発明のガラス組成物中に存在しうる弗素の含量を、前記酸化物換算組成100質量部を基準にして、F原子として計算した場合の質量部数で表したものである。
 また、本発明のガラス組成物は、その組成が質量%で表されているため直接的にモル%の記載に表せるものではないが、本発明において要求される諸特性を満たすガラス組成物中に存在する各成分のモル%表示による組成は、酸化物換算組成で概ね以下の値をとる。
GeO 0.1~25mol%
SiO 30~67mol%、及び
BaO 10~30mol%、
並びに
 0~20mol%及び/又は
Al 0~10mol%及び/又は
Ta 0~4mol%及び/又は
Sb 0~0.3mol%及び/又は
ZnO 0~10mol%及び/又は
MgO 0~15mol%及び/又は
CaO 0~15mol%及び/又は
SrO 0~15mol%及び/又は
LiO 0~8mol%及び/又は
NaO 0~12mol%及び/又は
O 0~5mol%
及び酸化物換算組成の総物質量に対する上記酸化物の一部又は全部を弗化物置換したF原子の物質量の比が0~0.015となるような範囲の量の弗素成分。
 本発明の光学ガラスは、以下のように作製される。すなわち、上記原料を各成分が所定の含量の範囲内になるように混合し、作製した混合物を石英坩堝に入れて800℃~1300℃で1~20時間、溶融する坩堝の大きさに合わせた条件で、粗溶解してカレットを作製する。作製したカレットを、加熱装置を用いて850~1300℃にて加熱して溶融し、攪拌して均質化して泡切れ等を行った後、適当な温度に予熱した金型に鋳込む。このとき用いる加熱装置は、カレット及びこれが溶融したガラスと接する少なくとも一部分が、白金又は白金合金で形成された装置であることが好ましい。
 なお、上記の手順により作製された光学ガラスを、光ファイバのコア材として使用する場合は、上記の手順により石英坩堝により作製されたカレットを、クラッド材とともに公知の方法を使用して紡糸する。
 本発明の光学ガラスは、混合物のバッチからカレットを作製する工程において、溶融雰囲気炉の酸素濃度を7%以上に保つことが好ましい。これにより、ガラス中の遷移金属(Cr等)の還元が抑制されるため、400~450nmと600~700nm近辺の吸収をより小さくすることができる。炉内の酸素濃度は、より好ましくは10%以上、最も好ましくは、15%以上である。また、ガス炉のように、炉内の酸素濃度の制御が難しい場合は、透過率に影響を与えない成分、例えば石英等で作製された管を通じ、Oを溶融ガラスに送り込んでバブリングを行って、ガラス表面のO濃度を上げることが好ましい。
 本発明の光学ガラスは、できるだけ高い光線透過率を必要とする。特に400nm近辺、より具体的には395~400nmの波長範囲における内部透過率が0.9950以上であることが好ましく、0.9980以上であることがより好ましい。これにより、光学ガラスを透過する短波長領域の光の損失がより小さくなる。そのため、この光学ガラスからなる光学材料(例えば光学レンズ)を用いた光学系では、光学設計がより容易である。なお、本明細書中において、395~400nmでの内部透過率とは、395~400nmの各波長における内部透過率の最低値を意味する。
 本発明の光学ガラスは、高い開口数を実現するために、屈折率(n)が好ましくは1.50以上、より好ましくは1.55以上、より好ましくは1.58以上である。
 また、本発明の光学ガラスは、できるだけ高い屈折率(n)が必要である。特に、1.50以上の屈折率(n)を有することにより、光学ガラスを光ファイバのコア材として用いたときに、クラッド材との屈折率の差が大きくなり、クラッド材に漏れる光が少なくなるため、伝送する光の波形の変化を小さくすることができる。それとともに、光学ガラスを光学レンズ等として用いたときに、素子の薄型化を図ることができる。
 本発明の光学ガラスは、特に光ファイバ用コア材として用いることにより、コア材の内部を透過する光の比率が高くなるため、より光伝送損失が少ない光ファイバ用コア材を提供することができる。ここで、本発明の光学ガラスから光ファイバを作製するには、粗溶解したカレットを用いて、二重坩堝法等の公知の方法を使用することができる。
 本発明の実施例(No.1~No.8)及び比較例(No.A)の組成、及び、これらのガラスの屈折率(n)、アッベ数(ν)及び395~400nmにおける内部透過率の結果を表1に示す。なお、以下の実施例はあくまで例示の目的であり、これらの実施例のみ限定されるものではない。
 本発明の実施例(No.1~No.8)の光学ガラス、及び比較例(No.A)のガラスは、酸化物、炭酸塩、硝酸塩、弗化物等の通常の光学ガラスに使用される高純度原料を選定し、表1に示した組成になるように秤量して混合した後、石英の坩堝で粗溶解して、ガラスと接する部分が白金又は白金合金で形成された装置(ある一部分が石英等で形成されていても可)で850℃~1300℃で溶解し、予熱した金型に鋳込み徐冷して得たものである。
 ここで、実施例(No.1~No.8)の光学ガラス、及び比較例(No.A)のガラスの屈折率(n)及びアッベ数(ν)は、徐冷降温速度を-25℃/hにして得られたガラスについて測定を行うことで求めた。
 また、日本光学硝子工業会規格JOGIS17-1982「光学ガラスの内部透過率の測定方法」により、厚みの異なる2つの試料より395~400nmにおける内部透過率を求めた。なお、内部透過率の測定に使用した試料は、厚みが10mmと50mmの試料である。
Figure JPOXMLDOC01-appb-T000001
 表1に表されるように、本発明の実施例(No.1~8)の光学ガラスは、比較例(No.A)のガラスに比べて、いずれも短波長領域、特に395~400nmの波長範囲における内部透過率が高められ、0.9880以上であった。また、本発明の実施例(No.1~8)の光学ガラスは、いずれも屈折率が1.50以上であり、アッベ数(ν)が比較例のガラスよりも低く、55以下であった。

Claims (11)

  1.  GeO成分を含有するとともに、酸化物換算組成のガラス全質量に対して、質量%で表して、Al成分の含量が10%以下である光学ガラス。
  2.  酸化物換算組成のガラス全質量に対して、質量%で表して、GeO成分を0.1~30%含有する請求項1記載の光学ガラス。
  3.  酸化物換算組成のガラス全質量に対して、質量%で
    SiO   20~45%、
       0~15%、及び
    BaO    20~50%
    の各成分をさらに含有する請求項2記載の光学ガラス。
  4.  質量和Al+SiO+B+BaOが、酸化物換算組成のガラス全質量に対して質量%で、81%未満である請求項1から3のいずれか記載の光学ガラス。
  5.  酸化物換算組成のガラス全質量に対して、質量%で
    Ta  0~20%及び/又は
    Sb  0~1%及び/又は
    ZnO    0~10%及び/又は
    MgO    0~10%及び/又は
    CaO    0~10%及び/又は
    SrO    0~10%及び/又は
    LiO   0~5%及び/又は
    NaO   0~10%及び/又は
    O    0~5%
    の各成分をさらに含有する請求項1から4のいずれか記載の光学ガラス。
  6.  上記酸化物の一部又は全部を弗化物置換したFの合計量が、酸化物換算組成100質量部に対し0~0.5質量部の範囲である請求項1から5のいずれか記載の光学ガラス。
  7.  実質的に鉛化合物及びヒ素化合物を含有しない請求項1から6のいずれか記載の光学ガラス。
  8.  395~400nmでの内部透過率が0.9950以上である請求項1から7のいずれか記載の光学ガラス。
  9.  395~400nmでの内部透過率が0.9980以上である請求項8記載の光学ガラス。
  10.  1.50以上の屈折率(n)を有する請求項1から9のいずれか記載の光学ガラス。
  11.  請求項1から10のいずれか記載の光学ガラスからなる光ファイバ用コア材。
PCT/JP2009/051597 2008-01-31 2009-01-30 光学ガラス及び光ファイバ用コア材 WO2009096533A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009801038785A CN101925549A (zh) 2008-01-31 2009-01-30 光学玻璃及光纤用芯材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-021556 2008-01-31
JP2008021556A JP5496460B2 (ja) 2008-01-31 2008-01-31 光学ガラス及び光ファイバ用コア材

Publications (1)

Publication Number Publication Date
WO2009096533A1 true WO2009096533A1 (ja) 2009-08-06

Family

ID=40912876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051597 WO2009096533A1 (ja) 2008-01-31 2009-01-30 光学ガラス及び光ファイバ用コア材

Country Status (3)

Country Link
JP (1) JP5496460B2 (ja)
CN (2) CN101925549A (ja)
WO (1) WO2009096533A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103228593B (zh) 2010-10-12 2015-07-29 奥林巴斯株式会社 光导纤维用玻璃
CN102515526B (zh) * 2011-11-24 2014-07-02 中国建筑材料科学研究总院 一种相容性好的硬质光纤用芯皮玻璃
CN109485256A (zh) * 2018-11-20 2019-03-19 广州宏晟光电科技股份有限公司 一种折射率为1.5-1.6的光纤面板芯料玻璃及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520214A (en) * 1978-07-26 1980-02-13 Nippon Telegr & Teleph Corp <Ntt> Optical glass for light communication
JPS56155041A (en) * 1980-04-24 1981-12-01 Nippon Sheet Glass Co Ltd Step-type optical transmitter
JPS593040A (ja) * 1982-06-16 1984-01-09 シヨツト・グラスヴエルケ シンチレ−シヨン・ガラス

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0018110B1 (en) * 1979-04-04 1985-10-09 The Post Office Optical fibre core glass, optical fibres containing such glass and process for the manufacture of such glass
EP1433757B1 (en) * 2002-12-27 2017-02-01 Hoya Corporation Optical glass, press-molding glass gob and optical element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520214A (en) * 1978-07-26 1980-02-13 Nippon Telegr & Teleph Corp <Ntt> Optical glass for light communication
JPS56155041A (en) * 1980-04-24 1981-12-01 Nippon Sheet Glass Co Ltd Step-type optical transmitter
JPS593040A (ja) * 1982-06-16 1984-01-09 シヨツト・グラスヴエルケ シンチレ−シヨン・ガラス

Also Published As

Publication number Publication date
CN103466936A (zh) 2013-12-25
CN101925549A (zh) 2010-12-22
JP2009179535A (ja) 2009-08-13
JP5496460B2 (ja) 2014-05-21

Similar Documents

Publication Publication Date Title
JP4731183B2 (ja) 光学ガラス
JP5727719B2 (ja) 光学ガラス及び光ファイバ用コア材
WO2012099168A1 (ja) 光学ガラス、プリフォーム及び光学素子
WO2010038597A1 (ja) 光学ガラス及び分光透過率の劣化抑制方法
JP6014301B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2016193828A (ja) 光学ガラス、プリフォーム材及び光学素子
JP2017190280A (ja) 光学ガラス
JP2008133189A (ja) 光学ガラスの製造方法
JP2016052971A (ja) ガラスの製造方法およびガラス
TW201331146A (zh) 光學玻璃、預成形體及光學元件
JP2011093731A (ja) 光学ガラス、プリフォーム及び光学素子
JP2023073465A (ja) 光学ガラス
JP2024003105A (ja) 光学ガラス、プリフォーム及び光学素子
JP2023054181A (ja) 光学ガラス、プリフォーム及び光学素子
JP6292877B2 (ja) 光学ガラス
US8329602B2 (en) Optical glass
JP7257345B2 (ja) 光学ガラスの製造方法
JP5496460B2 (ja) 光学ガラス及び光ファイバ用コア材
JP2016074558A (ja) 光学ガラス及び光学素子
JP2015127277A (ja) 光学ガラスの製造方法
WO2019021689A1 (ja) 光学ガラス、プリフォーム及び光学素子
JP7174536B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP7348711B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2012091983A (ja) 光学ガラス及び光学素子
JP7429622B2 (ja) 光学ガラスの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980103878.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09707094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09707094

Country of ref document: EP

Kind code of ref document: A1