WO2019021689A1 - 光学ガラス、プリフォーム及び光学素子 - Google Patents

光学ガラス、プリフォーム及び光学素子 Download PDF

Info

Publication number
WO2019021689A1
WO2019021689A1 PCT/JP2018/023227 JP2018023227W WO2019021689A1 WO 2019021689 A1 WO2019021689 A1 WO 2019021689A1 JP 2018023227 W JP2018023227 W JP 2018023227W WO 2019021689 A1 WO2019021689 A1 WO 2019021689A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
glass
less
refractive index
optical
Prior art date
Application number
PCT/JP2018/023227
Other languages
English (en)
French (fr)
Inventor
桃野浄行
Original Assignee
株式会社 オハラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 オハラ filed Critical 株式会社 オハラ
Priority to CN201880049865.3A priority Critical patent/CN110997583A/zh
Publication of WO2019021689A1 publication Critical patent/WO2019021689A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Definitions

  • the present invention relates to an optical glass, a preform and an optical element.
  • optical elements incorporated in in-vehicle optical devices such as in-vehicle cameras and optical elements incorporated in optical devices that generate a large amount of heat such as projectors, copiers, laser printers and broadcasting equipment, etc.
  • Use in the environment is increasing. In such a high temperature environment, the temperature at the time of use of the optical element constituting the optical system tends to fluctuate greatly, and the temperature often reaches 100 ° C. or more.
  • the adverse effect on the imaging characteristics and the like of the optical system due to the temperature fluctuation becomes so large that it can not be ignored, it is required to configure an optical system in which the imaging characteristics and the like are hardly affected even by the temperature fluctuation.
  • a medium refractive index glass for example, glass compositions as represented by Patent Documents 1 and 2 are known.
  • the optical element is made of glass whose refractive index decreases when the temperature rises and the temperature coefficient of the relative refractive index becomes negative.
  • the refractive index and low dispersion index glass in having 1.58 or more refractive index (n d) and 40 or more 58 or less in Abbe number ([nu d), contribute to the correction of the influence of the imaging characteristics due to the temperature change
  • a glass having a large temperature coefficient of relative refractive index is desired, and more specifically, a glass having a positive temperature coefficient of relative refractive index, and a glass having a large absolute value of the temperature coefficient of relative refractive index Is desired.
  • the present invention has been made in view of the above problems, and the object of the present invention is to have an optical characteristic of medium refractive index and low dispersion, and to have a high temperature coefficient of relative refractive index, An optical glass capable of contributing to correction of the influence of temperature change on imaging characteristics, and a preform and an optical element using the same.
  • the present inventors have intensively conducted researches to solve the above problems, and as a result, the content of each component including the B 2 O 3 component, the SiO 2 component, the ZnO component, and the La 2 O 3 component
  • the present invention provides the following.
  • B 2 O 3 ingredients over 10.0 to 45.0%, SiO 2 ingredient more than 0-25.0% ZnO component more than 25.0% to 70.0%, La 2 O 3 components 0-55.0%, Contains Optical glass having a relative refractive index (589.29 nm) and a temperature coefficient (40 to 60 ° C.) in the range of + 8.0 ⁇ 10 ⁇ 6 to + 15.0 ⁇ 10 ⁇ 6 (° C. ⁇ 1 ).
  • An optical element comprising the optical glass according to any one of (1) to (3).
  • the present invention has an optical characteristic of medium refractive index and low dispersion, and the temperature coefficient of the relative refractive index takes a high value, which can contribute to the correction of the influence of the temperature change on the imaging characteristic.
  • An optical glass, and a preform and an optical element using the same can be obtained.
  • the optical glass of the present invention is, by mass%, more than 10.0 to 45.0% of B 2 O 3 component, more than 0 to 25.0% of SiO 2 component, and more than 25.0 to 70.0 of ZnO component %, is from 0 to 55.0% of La 2 O 3 component, B 2 O 3 component, SiO 2 component, by adjusting the content of each component including ZnO component, the La 2 O 3 component,
  • the temperature coefficient of the relative refractive index takes a high value. Therefore, an optical glass having medium refractive index and low dispersion optical characteristics and having a high temperature coefficient of relative refractive index and capable of contributing to correction of the influence of temperature change on imaging characteristics is obtained. be able to.
  • Glass composition The composition range of each component which comprises the optical glass of this invention is described below. In the present specification, the contents of the respective components are all represented by mass% relative to the total mass of the oxide conversion composition, unless otherwise specified.
  • the "oxide conversion composition” is assumed that all oxides, composite salts, metal fluorides and the like used as raw materials of the glass component of the present invention are decomposed and converted into oxides during melting. It is the composition in which each component contained in glass is described by setting the total mass number of formation oxide to 100 mass%.
  • the B 2 O 3 component is an essential component as a glass-forming oxide in the optical glass of the present invention containing a large amount of rare earth oxide.
  • the content of the B 2 O 3 component is preferably more than 10.0%, more preferably 15.0% or more, and further preferably 18.0% or more.
  • the content of the B 2 O 3 component is set to 45.0% or less, a larger refractive index can be easily obtained, and the deterioration of the chemical durability can be suppressed.
  • the content of the B 2 O 3 component is preferably 45.0% or less, more preferably less than 40.0%, more preferably less than 38.0%, more preferably less than 35.0%, still more preferably Less than 30.0%.
  • the B 2 O 3 component H 3 BO 3 , Na 2 B 4 O 7 , Na 2 B 4 O 7 ⁇ 10H 2 O, BPO 4 or the like can be used as a raw material.
  • the SiO 2 component is an essential component that can increase the viscosity of the molten glass and can reduce the coloration of the glass when it contains more than 0%. It is also a component that enhances the stability of the glass and makes it easy to obtain a glass that can endure mass production. Therefore, the content of the SiO 2 component is preferably more than 0%, more preferably more than 1.0%, and more preferably 2.0% or more. On the other hand, by setting the content of the SiO 2 component to 25.0% or less, the rise of the glass transition point can be suppressed and the decrease of the refractive index can be suppressed. Therefore, the content of the SiO 2 component is preferably 25.0% or less, more preferably less than 23.0%, and still more preferably less than 20.0%. As the SiO 2 component, SiO 2 , K 2 SiF 6 , Na 2 SiF 6 or the like can be used as a raw material.
  • the content of ZnO exceeds 25.0%, the solubility of the raw material is enhanced, the defoaming from the melted glass is promoted, the stability of the glass is enhanced, and the temperature coefficient of relative refractive index is large. It is an essential ingredient that can be It is also a component that can lower the glass transition temperature and improve the chemical durability. Therefore, the content of the ZnO component is preferably more than 25.0%, more preferably more than 28.0%, still more preferably more than 30.0%. On the other hand, by setting the content of the ZnO component to 70.0% or less, the decrease in the refractive index of the glass can be suppressed, and the devitrification due to the decrease in the excess viscosity can be reduced.
  • the content of the ZnO component is preferably 70.0% or less, more preferably less than 65.0%, more preferably less than 63.0%.
  • ZnO component ZnO, ZnF 2 or the like can be used as a raw material.
  • the La 2 O 3 component is an optional component that raises the refractive index and the Abbe number of the glass when it contains more than 0%. Therefore, when an optical glass having a refractive index of less than 1.70 is desired, the content of the La 2 O 3 component is preferably more than 0%, more preferably more than 0.5%, more preferably 1.0. The lower limit is more than%. On the other hand, by setting the content of the La 2 O 3 component to 10.0% or less, the devitrification can be reduced by enhancing the stability of the glass, and an increase in Abbe number more than necessary can be suppressed. The upper limit is 10.0% or less, more preferably 8.0% or less, more preferably less than 5.0%.
  • the content of the La 2 O 3 component is preferably more than 11.0%, more preferably more than 13.0%, more preferably The lower limit is 16.0% or more.
  • the upper limit is 55.0% or less, more preferably less than 45.0%, more preferably less than 40.0%, and still more preferably less than 30.0%.
  • the TiO 2 component is an optional component that can increase the refractive index of the glass when it contains more than 0%. Therefore, the content of the TiO 2 component is preferably more than 0%, more preferably 0.1% or more, and still more preferably 0.5% or more. On the other hand, when the content of the TiO 2 component is 10.0% or less, the devitrification due to the excessive content of the TiO 2 component can be reduced, and the transmittance of the glass to visible light (particularly, wavelength 500 nm or less) decreases. It is suppressed. Moreover, the decrease in Abbe number can be suppressed by this. Therefore, the content of the TiO 2 component is preferably 10.0% or less, more preferably 8.0% or less, and further preferably less than 5.0%. TiO 2 component can be used such as TiO 2 as a raw material.
  • the ZrO 2 component is an optional component that can increase the refractive index and Abbe number of the glass when it contains more than 0%.
  • the content of the ZrO 2 component is preferably 10.0% or less, more preferably less than 8.0%, and still more preferably less than 5.0%.
  • ZrO 2 component ZrO 2 , ZrF 4 or the like can be used as a raw material.
  • the Nb 2 O 5 component is an optional component that can increase the refractive index of the glass when it contains more than 0%.
  • the content of the Nb 2 O 5 component is preferably less than 10.0%, more preferably less than 5.0%, and still more preferably less than 3.0%.
  • the Nb 2 O 5 component it is most preferable not to contain the Nb 2 O 5 component.
  • Nb 2 O 5 or the like can be used as a raw material.
  • the WO 3 component contains more than 0%, it is an optional component that can increase the refractive index, lower the glass transition point, and improve the devitrification resistance while reducing the coloration of the glass due to other high refractive index components. It is.
  • the content of the WO 3 component is preferably less than 10.0%, more preferably less than 5.0%, still more preferably less than 3.0%, and still more preferably less than 1.0%.
  • WO 3 components it is possible to use WO 3 or the like as a raw material.
  • the content of Y 2 O 3 is more than 0%, the material cost of the glass can be suppressed while maintaining the medium refractive index and the high Abbe number, and the specific gravity of the glass can be reduced more than other rare earth components. It is an optional component. Therefore, the content of the Y 2 O 3 component is preferably more than 0%, more preferably more than 3.0%, and still more preferably more than 5.0%. On the other hand, when the content of the Y 2 O 3 component is 20.0% or less, the decrease in the refractive index of the glass can be suppressed and the stability of the glass can be enhanced. In addition, the deterioration of the meltability of the glass material can be suppressed.
  • the content of the Y 2 O 3 component is preferably 20.0% or less, more preferably less than 18.0%, still more preferably less than 15.0%, and still more preferably less than 13.0%.
  • Y 2 O 3 component Y 2 O 3 , YF 3 or the like can be used as a raw material.
  • the Gd 2 O 3 component and the Yb 2 O 3 component are optional components that can increase the refractive index of the glass when they are contained in excess of 0%.
  • Gd 2 O 3 component and Yb 2 O 3 component are high in raw material price, and the production cost is high if their content is large, so the effect of reducing Nb 2 O 5 component and WO 3 component etc. Be done.
  • by reducing the content of the Gd 2 O 3 component and the Yb 2 O 3 component it is possible to suppress an increase in the Abbe number of the glass.
  • the content of each of the Gd 2 O 3 component and the Yb 2 O 3 component is preferably less than 4.0%, more preferably less than 2.0%, still more preferably less than 1.0%, still more preferably 0. It is less than 5%, preferably less than 0.1%. In particular, in terms of reducing the material cost, it is most preferable not to contain these components.
  • Gd 2 O 3 component and Yb 2 O 3 component can be used Gd 2 O 3, GdF 3, Yb 2 O 3 and the like as raw materials.
  • the Ta 2 O 5 component is an optional component capable of enhancing the refractive index of the glass and enhancing the devitrification resistance when it contains more than 0%.
  • the Ta 2 O 5 component has a high raw material price and a high content thereof causes a high production cost, the effect of reducing the Nb 2 O 5 component, the WO 3 component and the like is reduced. Further, by setting the content of the Ta 2 O 5 component to less than 5.0%, the melting temperature of the raw material is lowered, and the energy required for melting the raw material is reduced, so that the manufacturing cost of the optical glass can be reduced.
  • the content of the Ta 2 O 5 component is preferably less than 5.0%, more preferably less than 3.0%, still more preferably less than 1.0%, still more preferably less than 0.5%, still more preferably Less than 0.1%.
  • Ta 2 O 5 component Ta 2 O 5 or the like can be used as a raw material.
  • the MgO component, the CaO component, the SrO component, and the BaO component are optional components that can adjust the refractive index, the meltability, and the devitrification resistance of the glass when the content is more than 0%.
  • the content of each of the MgO component, the CaO component, the SrO component and the BaO component is preferably 10.0% or less, more preferably less than 5.0%, and still more preferably less than 3.0%.
  • MgO component, CaO component, SrO component and BaO components MgCO 3 as raw materials, MgF 2, CaCO 3, CaF 2, Sr (NO 3) 2, SrF 2, BaCO 3, Ba (NO 3) 2, BaF 2 and the like Can be used.
  • the Li 2 O component, the Na 2 O component, and the K 2 O component are optional components that can improve the meltability of the glass and can lower the glass transition point when the content is more than 0%.
  • the Li 2 O component, the Na 2 O component, and the K 2 O component 10.0% or less it is possible to make the refractive index of the glass difficult to reduce and to reduce the devitrification of the glass.
  • the viscosity of the glass can be increased, and therefore the striae of the glass can be reduced.
  • the content of each of the Li 2 O component, the Na 2 O component and the K 2 O component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, further preferably Is less than 1.5%.
  • the Li 2 O component, the Na 2 O component and the K 2 O component are, as raw materials, Li 2 CO 3 , LiNO 3 , Li 2 CO 3 , Na 2 CO 3 , NaNO 3 , NaF 3 , NaF, Na 2 SiF 6 , K 2 CO 3 KNO 3 , KF, KHF 2 , K 2 SiF 6 and the like can be used.
  • the P 2 O 5 component is an optional component capable of lowering the liquidus temperature of the glass to enhance the devitrification resistance when the P 2 O 5 component is contained more than 0%.
  • the content of the P 2 O 5 component is preferably 10.0% or less, more preferably less than 5.0%, and still more preferably less than 3.0%.
  • Al (PO 3 ) 3 , Ca (PO 3 ) 2 , Ba (PO 3 ) 2 , BPO 4 , H 3 PO 4 and the like can be used as raw materials.
  • the GeO 2 component is an optional component capable of enhancing the refractive index of the glass and improving the devitrification resistance when it is contained in excess of 0%.
  • GeO 2 has a high raw material price, and if the content is high, the production cost becomes high, so the effect of reducing the Gd 2 O 3 component, the Ta 2 O 5 component, etc. is diminished. Therefore, the content of the GeO 2 component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, still more preferably less than 1.0%, still more preferably 0. Less than 1%. From the viewpoint of reducing the material cost, the GeO 2 component may not be contained.
  • the GeO 2 component can use GeO 2 etc. as a raw material.
  • the Al 2 O 3 component is an optional component capable of improving the chemical durability of the glass and improving the devitrification resistance of the molten glass when the Al 2 O 3 content is more than 0%. Therefore, the content of the Al 2 O 3 component is preferably more than 0%, more preferably 0.5%. On the other hand, by setting the content of the Al 2 O 3 component to 15.0% or less, the liquidus temperature of the glass can be lowered to enhance the devitrification resistance. Therefore, the content of the Al 2 O 3 component is preferably 15.0% or less, more preferably less than 10.0%, still more preferably less than 5.0%, and still more preferably less than 3.0%.
  • Al 2 O 3 component Al 2 O 3 , Al (OH) 3 , AlF 3 or the like can be used as a raw material.
  • the Ga 2 O 3 component is an optional component that can improve the chemical durability of the glass and can improve the devitrification resistance of the molten glass when it contains more than 0%.
  • the content of the Ga 2 O 3 component is preferably 15.0% or less, more preferably less than 10.0%, still more preferably less than 5.0%, and still more preferably less than 3.0%.
  • Ga 2 O 3 component Ga 2 O 3 , Ga (OH) 3 or the like can be used as a raw material.
  • the Bi 2 O 3 component is an optional component capable of enhancing the refractive index and lowering the glass transition point when it is contained in excess of 0%.
  • the content of the Bi 2 O 3 component is preferably 15.0% or less, more preferably less than 10.0%, still more preferably less than 5.0%, still more preferably less than 3.0%, still more preferably Less than 1.0%.
  • Bi 2 O 3 component can be used Bi 2 O 3 and the like as raw materials.
  • the TeO 2 component is an optional component that can increase the refractive index and lower the glass transition point when it contains more than 0%.
  • TeO 2 has a problem that it can be alloyed with platinum when it melts a glass material in a crucible made of platinum or a melting tank in which a portion in contact with the molten glass is made of platinum. Therefore, the content of the TeO 2 component is preferably 15.0% or less, more preferably less than 10.0%, still more preferably less than 5.0%, still more preferably less than 3.0%, further preferably 1. Less than 0%.
  • TeO 2 component TeO 2 or the like can be used as a raw material.
  • the SnO 2 component is an optional component capable of reducing and clarifying the oxidation of the molten glass and enhancing the visible light transmittance of the glass when it contains more than 0%.
  • the content of the SnO 2 component is preferably 3.0% or less, more preferably less than 1.0%, still more preferably less than 0.5%, and still more preferably less than 0.1%.
  • SnO, SnO 2 , SnF 2 , SnF 4 or the like can be used as a raw material.
  • the Sb 2 O 3 component is an optional component capable of degassing the molten glass when it contains more than 0%.
  • the content of the Sb 2 O 3 component is preferably 1.0% or less, more preferably less than 0.5%, and still more preferably less than 0.3%.
  • Sb 2 O 3 component can be used Sb 2 O 3, Sb 2 O 5, Na 2 H 2 Sb 2 O 7 ⁇ 5H 2 O and the like as raw materials.
  • the components for clarifying and degassing the glass are not limited to the above-mentioned Sb 2 O 3 components, and known clarifiers, defoamers or combinations thereof known in the field of glass production can be used.
  • the F component is an optional component that can increase the Abbe's number of the glass, lower the glass transition temperature, and improve the devitrification resistance when the F component is more than 0%.
  • the content of the F component that is, the total amount as fluoride F substituted with part or all of one or more oxides of each metal element described above exceeds 15.0%, F Since the volatilization amount of the components increases, it becomes difficult to obtain stable optical constants and it becomes difficult to obtain homogeneous glass. Also, the Abbe number rises more than necessary. Therefore, the content of the F component is preferably 15.0% or less, more preferably less than 10.0%, still more preferably less than 5.0%, and still more preferably less than 3.0%.
  • the F component can be contained in the glass by using, for example, ZrF 4 , AlF 3 , NaF, CaF 2 or the like as a raw material.
  • the total content of the ZrO 2 component, the TiO 2 component, the Nb 2 O 5 component, the WO 3 component and the Ta 2 O 5 component is preferably 10.0% or less.
  • the mass sum (ZrO 2 + TiO 2 + Nb 2 O 5 + WO 3 + Ta 2 O 5 ) is preferably 10.0% or less, more preferably less than 5.0%, and still more preferably less than 2.0%.
  • the mass ratio Ln 2 O 3 / ZnO is preferably more than 0, more preferably 0.30 or more, and still more preferably 0.40 or more.
  • the mass ratio Ln 2 O 3 / ZnO is preferably 1.70 or less, more preferably 1.50 or less, and still more preferably 1.30 or less.
  • the ratio of the content of the ZnO component to the content of the B 2 O 3 and SiO 2 components is preferably more than 0 and 2.00 or less.
  • the mass ratio ZnO / (B 2 O 3 + SiO 2 ) is preferably more than 0, more preferably 0.5 or more, and still more preferably 1.00 or more.
  • the mass ratio ZnO / (B 2 O 3 + SiO 2 ) is preferably 2.00 or less, more preferably 1.90 or less, and still more preferably 1.80 or less.
  • the total amount of B 2 O 3 and SiO 2 is preferably 18.0% or more and 45.0% or less.
  • the mass sum (B 2 O 3 + SiO 2 ) is preferably 18.0% or more, more preferably 20.0% or more, more preferably 23.0% or more, and still more preferably 25.0% or more.
  • lowering the refractive index can be suppressed by setting the mass sum to 45.0% or less. Therefore, the mass sum is preferably 45.0% or less, more preferably 43.0% or less, and still more preferably 40.0% or less.
  • the total amount of the Ta 2 O 5 component, the Nb 2 O 5 component and the WO 3 component is preferably less than 10.0%.
  • the mass sum (Ta 2 O 5 + Nb 2 O 5 + WO 3 ) is preferably less than 10.0%, more preferably less than 8.0%, still more preferably less than 7.0%, still more preferably 5.0 %, More preferably less than 4.0%, still more preferably less than 1.0%.
  • the ratio of the content of the ZnO component to the content of the La 2 O 3 component and the Y 2 O 3 component is preferably 0.40 or more and 50.00 or less.
  • the mass ratio ZnO / (La 2 O 3 + Y 2 O 3 ) is set to 8.00 or more to melt the glass material. It is easy to obtain a more stable glass with enhanced properties. Therefore, the mass ratio ZnO / (La 2 O 3 + Y 2 O 3 ) is preferably 8.00 or more, more preferably 10.00 or more, and further preferably 13.00 or more.
  • the mass ratio is set to 50.00 or less, the liquidus temperature can be lowered, and devitrification due to the reduction of the glass transition point more than necessary can be reduced, so it is preferably 50.00 or less, more preferably Is 48.00 or less, more preferably 45.00 or less.
  • the mass ratio ZnO / (La 2 O 3 + Y 2 O 3 ) is set to 0.40 or more, whereby the meltability of the glass material is improved. It is easy to obtain enhanced and more stable glass.
  • the mass ratio ZnO / (La 2 O 3 + Y 2 O 3 ) is preferably 0.40 or more, more preferably 0.50 or more, and still more preferably 0.60 or more.
  • the mass ratio is preferably 3.40 or less, more preferably. Is 3.20 or less, more preferably 3.00 or less.
  • RO component (wherein R is one or more selected from the group consisting of Mg, Ca, Sr and Ba) and Rn 2 O component (wherein Rn is selected from the group consisting of Li, Na and K)
  • Rn is selected from the group consisting of Li, Na and K
  • the sum of the content of the species or more is preferably less than 10.0%.
  • the sum of mass (RO + Rn 2 O) is preferably less than 10.0%, more preferably less than 7.5%, still more preferably less than 5.0%.
  • the ratio of the content of the TiO 2 component to the content of the La 2 O 3 component and the ZnO component is preferably 0.020 or less.
  • the mass ratio TiO 2 / (La 2 O 3 + ZnO) is preferably 0.020 or less, more preferably 0.015 or less, and still more preferably 0.013 or less.
  • the sum of the content of the Ln 2 O 3 component (wherein, Ln is one or more selected from the group consisting of La, Gd, Y, Yb, and Lu) increases the refractive index when it contains more than 0% It is an optional ingredient that can be Since the refractive index and Abbe number of glass are raised by containing this sum more than 0%, it is possible to easily obtain glass having a desired refractive index and Abbe number. Therefore, when an optical glass having a refractive index of less than 1.70 is desired, the mass sum of Ln 2 O 3 components is preferably more than 0%, more preferably more than 0.5%, still more preferably 1.0. It will be more than%.
  • the liquidus temperature of the glass is lowered, so that the devitrification of the glass can be reduced, and an increase in Abbe number more than necessary can be suppressed.
  • It is made 10.0% or less, more preferably 8.0% or less, more preferably less than 5.0%.
  • optical glass having a refractive index of 1.70 or more when optical glass having a refractive index of 1.70 or more is desired, high refractive index and high Abbe number can be easily obtained by containing 10.0% or more of the mass sum of Ln 2 O 3 components. Therefore, in this case, it is preferably 10.0% or more, more preferably 15.0% or more, and more preferably 18.0 or more.
  • the liquidus temperature of the glass is lowered, so that the devitrification of the glass can be reduced, and the Abbe number can be suppressed more than necessary.
  • the upper limit is 55.0% or less, more preferably 50.0% or less, and more preferably 43.0% or less.
  • the sum of the content of the RO component (wherein R is one or more selected from the group consisting of Mg, Ca, Sr, and Ba) is preferably 10.0% or less. Thereby, the decrease in refractive index can be suppressed and the stability of the glass can be enhanced. Therefore, the sum of RO components is preferably 10.0% or less, more preferably 8.0% or less, more preferably less than 5.0%, and still more preferably less than 3.5%.
  • the sum of the content of the Rn 2 O component (wherein, Rn is one or more selected from the group consisting of Li, Na, and K) is preferably 10.0% or less.
  • Rn is one or more selected from the group consisting of Li, Na, and K
  • the mass sum of the Rn 2 O component is preferably 10.0% or less, more preferably less than 8.0%, still more preferably less than 5.0%, further preferably less than 3.0%.
  • each transition metal component such as Ti, Zr, Nb, W, La, Gd, Y, Yb, Lu excluding V, Cr, Mn, Fe, Co, Ni, Cu, Ag and Mo is independent.
  • the glass be substantially free of light, because the glass is colored even when contained in a small amount in a complex or causes absorption at a specific wavelength in the visible range. .
  • lead compounds and As 2 O 3 or the like arsenic compound such as PbO because environmental load is highly components, it does not substantially contained, i.e., it is desirable not to contain any except inevitable contamination.
  • Th, Cd, Tl, Os, Be, and Se components tend to refrain from being used as harmful chemicals in recent years, and they are not only used in glass manufacturing processes but also in processing processes and disposal after productization. All environmental measures are needed. Therefore, when emphasizing environmental impact, it is preferable not to contain these substantially.
  • the optical glass of the present invention is produced, for example, as follows. That is, as the raw materials of the above components, high purity raw materials used for ordinary optical glass such as oxides, hydroxides, carbonates, nitrates, fluorides and metaphosphoric acid compounds, each having a predetermined content of each component The mixture is uniformly mixed so as to be within the range, and the prepared mixture is put into a platinum crucible and melted in an electric furnace at a temperature range of 1000 to 1500 ° C. for 1 to 10 hours according to the melting difficulty of the glass material to stir and homogenize. The mixture is then cooled to a suitable temperature, poured into a mold, and slowly cooled.
  • high purity raw materials used for ordinary optical glass such as oxides, hydroxides, carbonates, nitrates, fluorides and metaphosphoric acid compounds, each having a predetermined content of each component
  • the mixture is uniformly mixed so as to be within the range, and the prepared mixture is put into a platinum crucible and melted in an electric furnace at
  • the optical glass of the present invention has a medium refractive index and a high Abbe number (low dispersion).
  • the refractive index (n d ) of the optical glass of the present invention is preferably 1.58 or more, more preferably 1.60 or more, and still more preferably 1.63 or more.
  • the refractive index (n d ) may be preferably 1.83 or less, more preferably 1.80 or less, and more preferably 1.78 or less.
  • the Abbe number ( ⁇ d ) of the optical glass of the present invention is preferably 40 or more, more preferably 44 or more, and still more preferably 45 or more.
  • the Abbe number ( ⁇ d ) is preferably 58 or less, more preferably 55 or less, and even more preferably 52 or less.
  • a medium refractive index By having such a medium refractive index, a large amount of light refraction can be obtained even if the thickness of the optical element is reduced. Further, by having such a low dispersion, the focal point can be appropriately shifted depending on the wavelength of light when used as a single lens. Therefore, for example, when an optical system is configured in combination with an optical element having high dispersion (low Abbe number), aberration can be reduced as a whole of the optical system, and high imaging characteristics and the like can be achieved.
  • the optical glass of the present invention is useful for optical design, and in particular, when the optical system is configured, the optical system can be miniaturized while achieving high imaging characteristics etc. Can expand the degree of freedom of
  • the optical glass of the present invention has a high temperature coefficient (dn / dT) of relative refractive index. More specifically, the temperature coefficient of the relative refractive index of the optical glass of the present invention is preferably + 7.5 ⁇ 10 ⁇ 6 ° C. ⁇ 1 , more preferably + 8.0 ⁇ 10 ⁇ 6 ° C. ⁇ 1 , more preferably The value may be + 8.5 ⁇ 10 ⁇ 6 ° C. ⁇ 1 or higher (plus side).
  • the temperature coefficient of the relative refractive index of the optical glass of the present invention is preferably + 15.0 ⁇ 10 -6 ° C -1 or less, more preferably + 14.0 ⁇ 10 -6 ° C -1 or less, still more preferably +12 .0 ⁇ and 10 -6 ° C. -1 or less, may take the value of the upper limit value or lower than (minus side).
  • n d refractive index
  • ⁇ d Abbe number
  • the temperature coefficient of the relative refractive index of the optical glass of the present invention is the temperature coefficient of the refractive index (589.29 nm) in air at the same temperature as the optical glass, and when the temperature is changed from 40 ° C. to 60 ° C. It is represented by the amount of change per 1 ° C. (° C. ⁇ 1 ).
  • the optical glass of the present invention preferably has high devitrification resistance, more specifically, low liquidus temperature. That is, the upper limit of the liquidus temperature of the optical glass of the present invention is preferably 1200 ° C., more preferably 1150 ° C., and still more preferably 1100 ° C. Thereby, even if the melted glass flows out at a lower temperature, the crystallization of the produced glass is reduced, so that the devitrification when forming the glass from the molten state can be reduced, and the optical using the glass The influence on the optical characteristics of the element can be reduced. Moreover, since the glass can be formed even if the melting temperature of the glass is lowered, the manufacturing cost of the glass can be reduced by suppressing the energy consumed at the time of forming the glass.
  • the lower limit of the liquidus temperature of the optical glass of the present invention is not particularly limited, but the liquidus temperature of the glass obtained by the present invention is about 800 ° C. or more, specifically 850 ° C. or more, more specifically It is often 900 ° C. or higher.
  • the term “liquid phase temperature” as used herein means that the temperature gradient furnace with a temperature gradient of 900 ° C. to 1300 ° C. is held for 30 minutes for 30 minutes, taken out of the furnace and cooled, and then observed with a microscope with 100 ⁇ magnification. It is the lowest temperature at which no crystals are observed when observing the presence or absence of crystals.
  • the optical glass of the present invention preferably has a high visible light transmittance, particularly high light transmittance on the short wavelength side of visible light, whereby the coloration is low.
  • the optical glass of the present invention preferably has a wavelength ( ⁇ 80 ) of about 430 nm, more preferably about 400 nm, still more preferably about 390 nm, which exhibits a spectral transmittance of 80% for a sample of 10 mm in thickness It is an upper limit.
  • the shortest wavelength ( ⁇ 5 ) showing a spectral transmittance of 5% for a sample with a thickness of 10 mm is preferably 400 nm, more preferably 380 nm, still more preferably 350 nm. Since the absorption edge of the glass is in the ultraviolet region or in the vicinity thereof and the transparency of the glass to visible light is enhanced, the optical glass can be preferably used for an optical element that transmits light such as a lens.
  • the optical glass of the present invention preferably has a small specific gravity. More specifically, the specific gravity of the optical glass of the present invention is 5.00 or less. Thereby, the mass of the optical element and the optical apparatus using the same can be reduced, which can contribute to weight reduction of the optical apparatus. Therefore, the specific gravity of the optical glass of the present invention is preferably 5.00, more preferably 4.70, more preferably 4.50, and still more preferably 4.40. The specific gravity of the optical glass of the present invention is often about 2.80 or more, more specifically 3.00 or more, and even more specifically 3.20 or more. The specific gravity of the optical glass of the present invention is measured based on Japan Optical Glass Industrial Standard JOGIS 05-1975 “Method of measuring specific gravity of optical glass”.
  • a glass molded body can be produced from the produced optical glass, for example, by means of polishing or means of mold press molding such as reheat press molding or precision press molding. That is, mechanical processing such as grinding and polishing is performed on optical glass to produce a glass molded body, or a preform for mold press molding is produced from optical glass, and reheat press molding is performed on this preform. After that, it is subjected to polishing processing to produce a glass molded product, or to a preform produced by polishing processing, or to a preform produced by publicly known float molding etc. by performing precision press molding on a glass molded product. Can be produced.
  • the means to produce a glass forming body is not limited to these means.
  • the optical glass of the present invention is useful for various optical elements and optical designs. Among them, it is particularly preferable to form a preform from the optical glass of the present invention, perform reheat press molding or precision press molding using this preform, and produce an optical element such as a lens or a prism. As a result, since a preform having a large diameter can be formed, it is possible to realize high definition and high precision imaging characteristics and projection characteristics when used in an optical device while achieving upsizing of the optical element.
  • the glass molded article made of the optical glass of the present invention can be used, for example, for applications of optical elements such as lenses, prisms and mirrors, and is typically susceptible to high temperatures such as in-vehicle optical devices, projectors and copiers It can be used for equipment.
  • compositions of the examples (No. 1 to No. 38) of the present invention, and the refractive index (n d ), Abbe number (v d ), relative refractive index temperature coefficient (dn / dT), and transmission of these glasses The results of the ratio ( ⁇ 5 , ⁇ 80 ) and the liquidus temperature are shown in Tables 1 to 6.
  • the following examples are for the purpose of illustration only, and are not limited to these examples.
  • the glass of the embodiment of the present invention is a high purity raw material used for ordinary optical glasses such as oxides, hydroxides, carbonates, nitrates, fluorides, metaphosphoric acid compounds, etc., each corresponding to the raw material of each component. Selected, weighed and uniformly mixed so that the composition proportions of the respective examples shown in the table are obtained, and then put into a platinum crucible, and according to the melting difficulty of the glass material, 1000 to 1500 ° C. in an electric furnace The mixture was melted in the temperature range of 1 to 10 hours, stirred and homogenized, and then cast in a mold or the like and gradually cooled.
  • ordinary optical glasses such as oxides, hydroxides, carbonates, nitrates, fluorides, metaphosphoric acid compounds, etc.
  • the refractive index (n d ) and the Abbe's number ( ⁇ d ) of the glasses of the examples are shown as measured values for the d-line (587.56 nm) of a helium lamp.
  • the Abbe number ([nu d), the refractive index with respect to the refractive index of the d line, hydrogen lamp F line (486.13nm) (n F), the refractive index for the C line (656.27nm) (n C) using the value, the Abbe number ( ⁇ d) calculated from the formula [(n d -1) / ( n F -n C)].
  • the temperature coefficient (dn / dT) of the relative refractive index of the glass of the embodiment is determined by the interferometry method among the methods described in Japan Optical Glass Industry Standard JOGIS 18-2008 “Method of measuring the temperature coefficient of the refractive index of optical glass”.
  • the value of the temperature coefficient of relative refractive index at 40 to 60 ° C. was measured for light of wavelength 589.29 nm.
  • the transmittance of the glass of the example was measured according to Japan Optical Glass Industrial Standard JOGIS 02-2003.
  • the transmittance of glass was measured to determine the presence or absence and degree of coloring of the glass.
  • a spectral transmittance of 200 to 800 nm is measured according to JIS Z 8722, and a ⁇ 5 (wavelength at 5% transmittance), ⁇ 80 (transmittance)
  • the wavelength of 80% hour was determined.
  • the liquidus temperature of the glass of the example is maintained in a temperature gradient furnace with a temperature gradient of 900 ° C. to 1300 ° C. for 30 minutes, taken out of the furnace and cooled, and then the presence or absence of crystals is observed with a 100 ⁇ magnification microscope. The lowest temperature at which no crystals were observed was determined. In addition, when it describes as "900 or less", it points out that a crystal
  • the specific gravity of the glass of the example and the comparative example was measured based on Japan Optical Glass Industrial Standard JOGIS 05-1975 “Method of measuring specific gravity of optical glass”.
  • the optical glasses of the examples have temperature coefficients of relative refractive index within the range of + 8.0 ⁇ 10 ⁇ 6 to + 16.0 ⁇ 10 ⁇ 6 (° C. ⁇ 1 ), It was within the desired range.
  • the temperature coefficient of the relative refractive index is in the range of + 8.0 ⁇ 10 ⁇ 6 to + 16.0 ⁇ 10 ⁇ 6 (° C. ⁇ 1 ) in all cases. It was outside.
  • optical glasses of Examples are both a refractive index (n d) of 1.58 or more, were within the desired range. Moreover, the Abbe's number ((nu) d ) of the optical glass of the Example of this invention was all in the range of 40-58.
  • the liquid glass of the optical glass of the Example of this invention was 1200 degrees C or less. For this reason, it became clear that the optical glass of the Example of this invention was a stable glass without devitrification.
  • the specific gravity of the optical glass of the Example of this invention was 5.00 or less. For this reason, it became clear that the optical glass of the Example of this invention has small specific gravity.
  • a glass block was formed using the optical glass of the embodiment of the present invention, and this glass block was ground and polished to be processed into a lens and a prism shape. As a result, it was possible to stably process into various lens and prism shapes.

Abstract

中屈折率低分散の光学特性を有し、且つ、相対屈折率の温度係数が高い値をとり、温度変化による結像特性への影響の補正に寄与できる光学ガラスと、これを用いたプリフォーム及び光学素子を提供する。 質量%で、B成分を10.0超~45.0%、SiO成分を0超~25.0%、ZnO成分を25.0超~70.0%、La成分を0~55.0%含有し、相対屈折率(589.29nm)の温度係数(40~60℃)が+8.0×10-6~+15.0×10-6(℃-1)の範囲内にある。

Description

光学ガラス、プリフォーム及び光学素子
 本発明は、光学ガラス、プリフォーム及び光学素子に関する。
 近年、車載カメラ等の車載用光学機器に組み込まれる光学素子や、プロジェクタ、コピー機、レーザプリンタ及び放送用機材等のような多くの熱を発生する光学機器に組み込まれる光学素子では、より高温の環境での使用が増えている。このような高温の環境では、光学系を構成する光学素子の使用時の温度が大きく変動し易く、その温度が100℃以上に達する場合も多い。このとき、温度変動による光学系の結像特性等への悪影響が無視出来ないほど大きくなるため、温度変動によっても結像特性等に影響が生じ難い光学系を構成することが求められている。
 光学系を構成する光学素子の材料として、1.58以上の屈折率(n)を有し、40以上58以下のアッベ数(ν)を有する中屈折率ガラスの需要が非常に高まっている。このような中屈折率ガラスとしては、例えば特許文献1~2に代表されるようなガラス組成物が知られている。
特開2006-321710号公報 特開平11-029338号公報
 温度変動による結像性能等への影響が生じ難い光学系を構成するにあたっては、温度が上昇したときに屈折率が低くなり、相対屈折率の温度係数がマイナスとなるガラスから構成される光学素子と、温度が上昇したときに屈折率が高くなり、相対屈折率の温度係数がプラスとなるガラスから構成される光学素子を併用することが、温度変化による結像特性等への影響を補正できる点で好ましい。
 特に、1.58以上の屈折率(n)と40以上58以下のアッベ数(ν)を有する中屈折率低分散率ガラスとしては、温度変化による結像特性への影響の補正に寄与できる観点から、相対屈折率の温度係数が大きいガラスが望まれており、より具体的には、相対屈折率の温度係数がプラスとなるガラスや、相対屈折率の温度係数の絶対値の大きなガラスが望まれている。
 本発明は、上記問題点に鑑みてなされたものであって、その目的とするところは、中屈折率低分散の光学特性を有し、且つ、相対屈折率の温度係数が高い値をとり、温度変化による結像特性への影響の補正に寄与できる光学ガラスと、これを用いたプリフォーム及び光学素子を提供することにある。
 本発明者らは、上記課題を解決するために、鋭意試験研究を重ねた結果、B成分、SiO成分、ZnO成分、La成分をはじめとした各成分の含有量を調整することによって、相対屈折率の温度係数が高い値をとることを見出し、本発明を完成するに至った。具体的には、本発明は以下のようなものを提供する。
(1)質量%で、
成分     10.0超~45.0%、
SiO成分     0超~25.0%
ZnO成分     25.0超~70.0%、
La成分 0~55.0%、
を含有し、
相対屈折率(589.29nm)の温度係数(40~60℃)が+8.0×10-6~+15.0×10-6(℃-1)の範囲内にある光学ガラス。
(2)質量和(Ta+Nb+WO)が10.0%未満であることを特徴とする(1)記載の光学ガラス。
(3)1.58以上1.83以下の屈折率(n)を有し、40以上58以下のアッベ数(ν)を有する(1)又は(2)記載の光学ガラス。
(4)(1)から(3)のいずれか記載の光学ガラスからなるプリフォーム。
(5)(1)から(3)のいずれか記載の光学ガラスからなる光学素子。
(6)(5)に記載の光学素子を備える光学機器。
 本発明によれば、中屈折率低分散の光学特性を有し、且つ、相対屈折率の温度係数が高い値をとり、温度変化による結像特性への影響の補正に寄与することが可能な光学ガラスと、これを用いたプリフォーム及び光学素子を得ることができる。
 本発明の光学ガラスは、質量%で、B成分を10.0超~45.0%、SiO成分を0超~25.0%、ZnO成分を25.0超~70.0%、La成分を0~55.0%であり、B成分、SiO成分、ZnO成分、La成分をはじめとした各成分の含有量を調整することによって、相対屈折率の温度係数が高い値をとる。そのため、中屈折率低分散の光学特性を有し、且つ、相対屈折率の温度係数が高い値をとり、温度変化による結像特性への影響の補正に寄与することが可能な光学ガラスを得ることができる。
 以下、本発明の光学ガラスの実施形態について詳細に説明する。本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。なお、説明が重複する箇所について、適宜説明を省略する場合があるが、発明の趣旨を限定するものではない。
[ガラス成分]
 本発明の光学ガラスを構成する各成分の組成範囲を以下に述べる。本明細書中において、各成分の含有量は、特に断りがない場合、全て酸化物換算組成の全質量に対する質量%で表示されるものとする。ここで、「酸化物換算組成」は、本発明のガラス構成成分の原料として使用される酸化物、複合塩、金属弗化物等が熔融時に全て分解され酸化物へ変化すると仮定した場合に、当該生成酸化物の総質量数を100質量%として、ガラス中に含有される各成分を表記した組成である。
<必須成分、任意成分について>
 B成分は、希土類酸化物を多く含む本発明の光学ガラスでは、ガラス形成酸化物として必須成分である。特に、B成分の含有量を10.0%超にすることで、ガラスの耐失透性を高め、且つガラスのアッベ数を高められる。従って、B成分の含有量は、好ましくは10.0%超、より好ましくは15.0%以上、さらに好ましくは18.0%以上とする。
 一方、B成分の含有量を45.0%以下にすることで、より大きな屈折率を得易くでき、且つ化学的耐久性の悪化を抑えられる。従って、B成分の含有量は、好ましくは45.0%以下、より好ましくは40.0%未満、より好ましくは38.0%未満、より好ましくは35.0%未満、さらに好ましくは30.0%未満とする。
 B成分は、原料としてHBO、Na、Na・10HO、BPO等を用いることができる。
 SiO成分は、0%超含有する場合に、熔融ガラスの粘度を高められ、ガラスの着色を低減できる必須成分である。また、ガラスの安定性を高めて量産に耐えるガラスを得易くする成分でもある。従って、SiO成分の含有量は、好ましくは0%超、より好ましくは1.0%超、より好ましくは2.0%以上とする。
 他方で、SiO成分の含有量を25.0%以下にすることで、ガラス転移点の上昇を抑えられ、且つ屈折率の低下を抑えられる。従って、SiO成分の含有量は、好ましくは25.0%以下、より好ましくは23.0%未満、さらに好ましくは20.0%未満とする。
 SiO成分は、原料としてSiO、KSiF、NaSiF等を用いることができる。
 ZnO成分は、25.0%超含有する場合に、原料の熔解性を高め、溶解したガラスからの脱泡を促進し、また、ガラスの安定性を高められ、相対屈折率の温度係数を大きくできる必須成分である。また、ガラス転移点を低くでき、且つ化学的耐久性を改善できる成分でもある。従って、ZnO成分の含有量は、好ましくは25.0%超、より好ましくは28.0%超、さらに好ましくは30.0%超とする。
 他方で、ZnO成分の含有量を70.0%以下にすることで、ガラスの屈折率の低下を抑えられ、且つ、過剰な粘性の低下による失透を低減できる。従って、ZnO成分の含有量は、好ましくは70.0%以下、より好ましくは65.0%未満、より好ましくは63.0%未満とする。
 ZnO成分は、原料としてZnO、ZnF等を用いることができる。
 La成分は、0%超含有する場合に、ガラスの屈折率及びアッベ数を高める任意成分である。
 従って、1.70未満の屈折率を有する光学ガラスを所望の場合は、La成分の含有量は、好ましくは0%超、より好ましくは0.5%超、より好ましくは1.0%超を下限とする。一方で、La成分の含有量を10.0%以下とすることで、ガラスの安定性を高めることで失透を低減でき、アッベ数の必要以上の上昇を抑えられるため、好ましくは10.0%以下、より好ましくは8.0%以下、より好ましくは5.0%未満を上限とする。
 他方で、1.70以上の屈折率を有する光学ガラスを所望の場合は、La成分の含有量は、好ましくは11.0%超、より好ましくは13.0%超、より好ましくは16.0%超を下限とする。一方で、La成分の含有量を55.0%以下とすることで、ガラスの安定性を高めることで失透を低減でき、アッベ数の必要以上の上昇を抑えられるため、好ましくは55.0%以下、より好ましくは45.0%未満、より好ましくは40.0%未満、さらに好ましくは30.0%未満を上限とする。
 TiO成分は、0%超含有する場合に、ガラスの屈折率を高められる任意成分である。従って、TiO成分の含有量は、好ましくは0%超、より好ましくは0.1%以上、さらに好ましくは0.5%以上とする。
 他方で、TiO成分の含有量を10.0%以下にすることで、TiO成分の過剰な含有による失透を低減でき、ガラスの可視光(特に波長500nm以下)に対する透過率の低下を抑えられる。また、これによりアッベ数の低下を抑えられる。従って、TiO成分の含有量は、好ましくは10.0%以下、より好ましくは8.0%以下、さらに好ましくは5.0%未満とする。
 TiO成分は、原料としてTiO等を用いることができる。
 ZrO成分は、0%超含有する場合に、ガラスの屈折率及びアッベ数を高められる任意成分である。他方で、ZrO成分の含有量を10.0%以下にすることで、ZrO成分の過剰な含有による失透を低減できる。従って、ZrO成分の含有量は、好ましくは10.0%以下、より好ましくは8.0%未満、さらに好ましくは5.0%未満とする。
 ZrO成分は、原料としてZrO、ZrF等を用いることができる。
 Nb成分は、0%超含有する場合に、ガラスの屈折率を高められる任意成分である。他方で、Nb成分の含有量を10.0%未満にすることで、ガラスの材料コストを抑えられる。また、Nb成分の過剰な含有による失透を低減でき、且つ、ガラスの可視光(特に波長500nm以下)に対する透過率の低下を抑えられる。また、これによりアッベ数の低下を抑えられる。従って、Nb成分の含有量は、好ましくは10.0%未満、より好ましくは5.0%未満、さらに好ましくは3.0%未満とする。特に、材料コストを低減させる観点では、Nb成分を含有しないことが最も好ましい。
 Nb成分は、原料としてNb等を用いることができる。
 WO成分は、0%超含有する場合に、他の高屈折率成分によるガラスの着色を低減しながら、屈折率を高め、ガラス転移点を低くでき、且つ耐失透性を高められる任意成分である。
 他方で、WO成分の含有量を10.0%未満にすることで、ガラスの材料コストを抑えられる。また、WO成分によるガラスの着色を低減して可視光透過率を高められる。従って、WO成分の含有量は、好ましくは10.0%未満、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。特に、材料コストを低減させる観点では、WO成分を含有しないことが最も好ましい。
 WO成分は、原料としてWO等を用いることができる。
 Y成分は、0%超含有する場合に、中屈折率及び高アッベ数を維持しながらも、ガラスの材料コストを抑えられ、且つ、他の希土類成分よりもガラスの比重を低減できる任意成分である。従って、Y成分の含有量は、好ましくは0%超、より好ましくは3.0%超、さらに好ましくは5.0%超としてもよい。
 他方で、Y成分の含有量を20.0%以下にすることで、ガラスの屈折率の低下を抑えられ、且つガラスの安定性を高められる。また、ガラス原料の熔解性の悪化を抑えられる。従って、Y成分の含有量は、好ましくは20.0%以下、より好ましくは18.0%未満、さらに好ましくは15.0%未満、さらに好ましくは13.0%未満とする。
 Y成分は、原料としてY、YF等を用いることができる。
 Gd成分及びYb成分は、0%超含有する場合に、ガラスの屈折率を高められる任意成分である。
 しかしながら、Gd成分及びYb成分は原料価格が高く、その含有量が多いと生産コストが高くなるため、Nb成分やWO成分等を低減することによる効果が減殺される。また、Gd成分やYb成分の含有量を低減させることで、ガラスのアッベ数の上昇を抑えられる。従って、Gd成分及びYb成分の含有量は、それぞれ好ましくは4.0%未満、より好ましくは2.0%未満、さらに好ましくは1.0%未満、さらに好ましくは0.5%未満、さらに好ましくは0.1%未満とする。特に、材料コストを低減させる観点では、これらの成分を含有しないことが最も好ましい。
 Gd成分及びYb成分は、原料としてGd、GdF、Yb等を用いることができる。
 Ta成分は、0%超含有する場合に、ガラスの屈折率を高められ、且つ耐失透性を高められる任意成分である。
 しかしながら、Ta成分は原料価格が高く、その含有量が多いと生産コストが高くなるため、Nb成分やWO成分等を低減することによる効果が減殺される。また、Ta成分の含有量を5.0%未満にすることで、原料の熔解温度が低くなり、原料の熔解に要するエネルギーが低減されるため、光学ガラスの製造コストも低減できる。従って、Ta成分の含有量は、好ましくは5.0%未満、より好ましくは3.0%未満、さらに好ましくは1.0%未満、さらに好ましくは0.5%未満、さらに好ましくは0.1%未満とする。特に、材料コストを低減させる観点では、Ta成分を含有しないことが最も好ましい。
 Ta成分は、原料としてTa等を用いることができる。
 MgO成分、CaO成分、SrO成分及びBaO成分は、0%超含有する場合に、ガラスの屈折率や熔融性、耐失透性を調整できる任意成分である。
 このうち、MgO成分、CaO成分、SrO成分及びBaO成分の含有量をそれぞれ10.0%以下にすることで、屈折率の低下を抑えることができ、且つこれらの成分の過剰な含有による失透を低減できる。従って、MgO成分、CaO成分、SrO成分及びBaO成分の含有量は、それぞれ好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満とする。
 MgO成分、CaO成分、SrO成分及びBaO成分は、原料としてMgCO、MgF、CaCO、CaF、Sr(NO、SrF、BaCO、Ba(NO、BaF等を用いることができる。
 LiO成分、NaO成分及びKO成分は、0%超含有する場合に、ガラスの熔融性を改善でき、ガラス転移点を低くできる任意成分である。
 他方で、LiO成分、NaO成分及びKO成分をそれぞれ10.0%以下にすることで、ガラスの屈折率を低下し難くし、且つガラスの失透を低減できる。また、特に、LiO成分の含有量を低減させることで、ガラスの粘性が高められるため、ガラスの脈理を低減できる。従って、LiO成分、NaO成分及びKO成分の含有量は、それぞれ好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.5%未満とする。
 LiO成分、NaO成分及びKO成分は、原料としてLiCO、LiNO、LiCO、NaCO、NaNO、NaF、NaSiF、KCO、KNO、KF、KHF、KSiF等を用いることができる。
 P成分は、0%超含有する場合に、ガラスの液相温度を下げて耐失透性を高められる任意成分である。
 他方で、P成分の含有量を10.0%以下にすることで、ガラスの化学的耐久性、特に耐水性の低下を抑えられる。従って、P成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満とする。
 P成分は、原料としてAl(PO、Ca(PO、Ba(PO、BPO、HPO等を用いることができる。
 GeO成分は、0%超含有する場合に、ガラスの屈折率を高められ、且つ耐失透性を向上できる任意成分である。
 しかしながら、GeOは原料価格が高く、その含有量が多いと生産コストが高くなるため、Gd成分やTa成分等を低減することによる効果が減殺される。従って、GeO成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満、さらに好ましくは0.1%未満とする。材料コストを低減させる観点で、GeO成分を含有しなくてもよい。
 GeO成分は、原料としてGeO等を用いることができる。
 Al成分は、0%超含有する場合に、ガラスの化学的耐久性を向上でき、且つ熔融ガラスの耐失透性を向上できる任意成分である。従って、Al成分の含有量は、好ましくは0%超、より好ましくは0.5%とする。
 他方で、Al成分の含有量を15.0%以下にすることで、ガラスの液相温度を下げて耐失透性を高められる。従って、Al成分の含有量は、好ましくは15.0%以下、より好ましくは10.0%未満、さらに好ましくは5.0%未満、さらに好ましくは3.0%未満とする。
 Al成分は、原料としてAl、Al(OH)、AlF等を用いることができる。
 Ga成分は、0%超含有する場合に、ガラスの化学的耐久性を向上でき、且つ熔融ガラスの耐失透性を向上できる任意成分である。
 他方で、Ga成分の含有量を15.0%以下にすることで、ガラスの液相温度を下げて耐失透性を高められる。従って、Ga成分の含有量は、好ましくは15.0%以下、より好ましくは10.0%未満、さらに好ましくは5.0%未満、さらに好ましくは3.0%未満とする。
 Ga成分は、原料としてGa、Ga(OH)等を用いることができる。
 Bi成分は、0%超含有する場合に、屈折率を高められ、且つガラス転移点を下げられる任意成分である。
 他方で、Bi成分の含有量を15.0%以下にすることで、ガラスの液相温度を下げて耐失透性を高められる。従って、Bi成分の含有量は、好ましくは15.0%以下、より好ましくは10.0%未満、さらに好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。
 Bi成分は、原料としてBi等を用いることができる。
 TeO成分は、0%超含有する場合に、屈折率を高められ、且つガラス転移点を下げられる任意成分である。
 他方で、TeOは白金製の坩堝や、熔融ガラスと接する部分が白金で形成されている熔融槽でガラス原料を熔融する際、白金と合金化しうる問題がある。従って、TeO成分の含有量は、好ましくは15.0%以下、より好ましくは10.0%未満、さらに好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。
 TeO成分は、原料としてTeO等を用いることができる。
 SnO成分は、0%超含有する場合に、熔融ガラスの酸化を低減して清澄し、且つガラスの可視光透過率を高められる任意成分である。
 他方で、SnO成分の含有量を3.0%以下にすることで、熔融ガラスの還元によるガラスの着色や、ガラスの失透を低減できる。また、SnO成分と熔解設備(特にPt等の貴金属)の合金化が低減されるため、熔解設備の長寿命化を図ることができる。従って、SnO成分の含有量は、好ましくは3.0%以下、より好ましくは1.0%未満、さらに好ましくは0.5%未満、さらに好ましくは0.1%未満とする。
 SnO成分は、原料としてSnO、SnO、SnF、SnF等を用いることができる。
 Sb成分は、0%超含有する場合に、熔融ガラスを脱泡できる任意成分である。
 他方で、Sb量が多すぎると、可視光領域の短波長領域における透過率が悪くなる。従って、Sb成分の含有量は、好ましくは1.0%以下、より好ましくは0.5%未満、さらに好ましくは0.3%未満とする。
 Sb成分は、原料としてSb、Sb、NaSb・5HO等を用いることができる。
 なお、ガラスを清澄し脱泡する成分は、上記のSb成分に限定されるものではなく、ガラス製造の分野における公知の清澄剤、脱泡剤或いはそれらの組み合わせを用いることができる。
 F成分は、0%超含有する場合に、ガラスのアッベ数を高め、ガラス転移点を低くし、且つ耐失透性を向上できる任意成分である。
 しかし、F成分の含有量、すなわち上述した各金属元素の1種又は2種以上の酸化物の一部又は全部と置換した弗化物のFとしての合計量が15.0%を超えると、F成分の揮発量が多くなるため、安定した光学恒数が得られ難くなり、均質なガラスが得られ難くなる。また、アッベ数が必要以上に上昇する。
 従って、F成分の含有量は、好ましくは15.0%以下、より好ましくは10.0%未満、さらに好ましくは5.0%未満、さらに好ましくは3.0%未満とする。
 F成分は、原料として例えばZrF、AlF、NaF、CaF等を用いることで、ガラス内に含有することができる。
 ZrO成分、TiO成分、Nb成分、WO成分及びTa成分の合計含有量は、10.0%以下が好ましい。特にこの合計含有量を10.0%以下とすることで、高分散化(アッベ数の低下)を抑えることができる。
 従って、質量和(ZrO+TiO+Nb+WO+Ta)は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは2.0%未満とする。
 ZnO成分の含有量に対するLn成分の含有量の比率は、0超含有する場合に、屈折率を高めることができる。
 特に、この比を0超とすることで、高い屈折率ならびに大きいアッベ数(低分散)が得られやすくなる。従って、質量比Ln/ZnOは、好ましくは0超、より好ましくは0.30以上、さらに好ましくは0.40以上とする。
 他方で、この質量比を1.70以下とすることで、耐失透性の悪化を抑えることができる。従って質量比Ln/ZnOは、好ましくは1.70以下、より好ましくは1.50以下、さらに好ましくは1.30以下とする。
 B及びSiO成分の含有量に対するZnO成分の含有量の比率は、0超以上2.00以下が好ましい。
 特にこの比を0超とすることで、熔融性を向上させつつ、屈折率を高めることができる。従って、質量比ZnO/(B+SiO)は、好ましくは0超、より好ましくは0.5以上、さらに好ましくは1.00以上とする。
 他方で、この質量比を2.00以下とすることで、失透性の悪化を抑えることができる。従って質量比ZnO/(B+SiO)は、好ましくは2.00以下、より好ましくは1.90以下、さらに好ましくは1.80以下とする。
 B及びSiOの合計量は、18.0%以上45.0%以下が好ましい。
 特に、この合計含有量を18.0%以上とすることで、失透性の悪化を抑えることができる。従って、質量和(B+SiO)は、好ましくは18.0%以上、より好ましくは20.0%以上、より好ましくは23.0%以上、さらに好ましくは25.0%以上とする。
 他方で、この質量和を45.0%以下とすることで、屈折率の低下を抑えることができる。従って、この質量和は、好ましくは45.0%以下、より好ましくは43.0%以下、さらに好ましくは40.0%以下とする。
 Ta成分、Nb成分及びWO成分の合計量は、10.0%未満が好ましい。これにより、これら高価な成分の含有量が低減されるため、ガラスの材料コストを抑えられる。従って、質量和(Ta+Nb+WO)は、好ましくは10.0%未満、より好ましくは8.0%未満、さらに好ましくは7.0%未満、さらに好ましくは5.0%未満、さらに好ましくは4.0%未満、さらに好ましくは1.0%未満とする。特に、材料コストの低廉なガラスを得る観点では、0.1%未満にすることがさらに好ましく、含有しないことが最も好ましい。
 La成分及びY成分の含有量に対する、ZnO成分の含有量の比率は、0.40以上50.00以下が好ましい。
 特に、屈折率を1.70未満の屈折率を有する光学ガラスを所望の場合は、質量比ZnO/(La+Y)を8.00以上にすることで、ガラス原料の熔解性を高められ、より安定なガラスを得易くできる。従って、質量比ZnO/(La+Y)は、好ましくは8.00以上、より好ましくは10.00以上、さらに好ましくは13.00以上とする。一方で、この質量比を50.00以下とすることで、液相温度を低くでき、且つ、ガラス転移点の必要以上の低下による失透を低減できるため、好ましくは50.00以下、より好ましくは48.00以下、さらに好ましくは45.00以下とする。
 他方で、1.70以上の屈折率を有する光学ガラスを所望の場合は、質量比ZnO/(La+Y)を0.40以上にすることで、ガラス原料の熔解性を高められ、より安定なガラスを得易くできる。従って、質量比ZnO/(La+Y)は、好ましくは0.40以上、より好ましくは0.50以上、さらに好ましくは0.60以上とする。一方で、この質量比を3.40以下とすることで、液相温度を低くでき、且つ、ガラス転移点の必要以上の低下による失透を低減できるため、好ましくは3.40以下、より好ましくは3.20以下、さらに好ましくは3.00以下とする。
 RO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)及びRnO成分(式中、RnはLi、Na、Kからなる群より選択される1種以上)の含有量の和は、10.0%未満が好ましい。これにより、耐失透性の悪化や化学的耐久性の悪化を抑えることができる。従って、質量和(RO+RnO)は、好ましくは10.0%未満、より好ましくは7.5%未満、さらに好ましくは5.0%未満が好ましい。
 La成分及びZnO成分の含有量に対する、TiO成分の含有量の比率は、0.020以下が好ましい。
 特に、この比を0.020以下にすることで、高分散化(アッベ数の低下)を抑えることができる。従って、質量比TiO/(La+ZnO)は、好ましくは0.020以下、より好ましくは0.015以下、さらに好ましくは0.013以下とする。
 Ln成分(式中、LnはLa、Gd、Y、Yb、Luからなる群より選択される1種以上)の含有量の和は、0%超含有する場合に、屈折率を高めることができる任意成分である。
 この和を0%超含有することで、ガラスの屈折率及びアッベ数が高められるため、所望の屈折率及びアッベ数を有するガラスを得易くすることができる。
 従って、1.70未満の屈折率を有する光学ガラスを所望の場合は、Ln成分の質量和は、好ましくは0%超、より好ましくは0.5%超、さらに好ましくは1.0%超とする。一方で、この和を10.0%以下とすることで、ガラスの液相温度が低くなるため、ガラスの失透を低減でき、また、アッベ数の必要以上の上昇を抑えられるため、好ましくは10.0%以下、より好ましくは8.0%以下、より好ましくは5.0%未満とする。
 他方で、1.70以上の屈折率を有する光学ガラスを所望の場合は、Ln成分の質量和を10.0%以上含有することで、高屈折かつ高いアッベ数を得られやすくできるため、この場合は、好ましくは10.0%以上、より好ましくは15.0%超、より好ましくは18.0以上とする。一方で、この和を55.0%以下にすることで、ガラスの液相温度が低くなるため、ガラスの失透を低減でき、また、アッベ数の必要以上の上昇を抑えられるため、好ましくは55.0%以下、より好ましくは50.0%以下、より好ましくは43.0%以下を上限とする。
 RO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)の含有量の和は、10.0%以下が好ましい。これにより、屈折率の低下を抑えられ、また、ガラスの安定性を高められる。従って、RO成分の和は、好ましくは10.0%以下、より好ましくは8.0%以下、より好ましくは5.0%未満、さらに好ましくは3.5%未満とする。
 RnO成分(式中、RnはLi、Na、Kからなる群より選択される1種以上)の含有量の和は、10.0%以下が好ましい。これにより、溶融ガラスの粘性の低下を抑えられ、ガラスの屈折率を低下し難くでき、且つガラスの失透を低減できる。従って、RnO成分の質量和は、好ましくは10.0%以下、よりに好ましくは8.0%未満、さらに好ましくは5.0%未満、さらに好ましくは3.0%未満とする。
<含有すべきでない成分について>
 次に、本発明の光学ガラスに含有すべきでない成分、及び含有することが好ましくない成分について説明する。
 他の成分を本願発明のガラスの特性を損なわない範囲で必要に応じ、添加することができる。ただし、Ti、Zr、Nb、W、La、Gd、Y、Yb、Luを除く、V、Cr、Mn、Fe、Co、Ni、Cu、Ag及びMo等の各遷移金属成分は、それぞれを単独又は複合して少量含有した場合でもガラスが着色し、可視域の特定の波長に吸収を生じる性質があるため、特に可視領域の波長を使用する光学ガラスにおいては、実質的に含まないことが好ましい。また、Rb、Csの各成分についても、ガラスの着色を抑制させる観点から、含有しないことが好ましい。
 また、PbO等の鉛化合物及びAs等の砒素化合物は、環境負荷が高い成分であるため、実質的に含有しないこと、すなわち、不可避な混入を除いて一切含有しないことが望ましい。
 さらに、Th、Cd、Tl、Os、Be、及びSeの各成分は、近年有害な化学物質として使用を控える傾向にあり、ガラスの製造工程のみならず、加工工程、及び製品化後の処分に至るまで環境対策上の措置が必要とされる。従って、環境上の影響を重視する場合には、これらを実質的に含有しないことが好ましい。
[製造方法]
 本発明の光学ガラスは、例えば以下のように作製される。すなわち、上記各成分の原料として、酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、メタ燐酸化合物等の通常の光学ガラスに使用される高純度原料を、各成分が所定の含有量の範囲内になるように均一に混合し、作製した混合物を白金坩堝に投入し、ガラス原料の熔解難易度に応じて電気炉で1000~1500℃の温度範囲で1~10時間熔解させて攪拌均質化した後、適当な温度に下げてから金型に鋳込み、徐冷することにより作製される。
 このとき、ガラス原料として熔解性の高いものを用いることが好ましい。これにより、より低温での熔解や、より短時間での熔解が可能になるため、ガラスの生産性を高め、生産コストを低減できる。また、成分の揮発や坩堝等との反応が低減されるため、着色の少ないガラスを得易くできる。
<物性>
 本発明の光学ガラスは、中屈折率及び高アッベ数(低分散)を有する。
 特に、本発明の光学ガラスの屈折率(n)は、好ましくは1.58以上、より好ましくは1.60以上、さらに好ましくは1.63以上とする。この屈折率(n)は、好ましくは1.83以下、より好ましくは1.80以下、より好ましくは1.78以下としてもよい。
また、本発明の光学ガラスのアッベ数(ν)は、好ましくは40以上、より好ましくは44以上、さらに好ましくは45以上とする。このアッベ数(ν)は、好ましくは58以下、より好ましくは55以下とし、さらに好ましくは52以下としてもよい。
 このような中屈折率を有することで、光学素子の薄型化を図っても大きな光の屈折量を得ることができる。また、このような低分散を有することで、単レンズとして用いたときに光の波長によって焦点を適切にずらすことができる。そのため、例えば高分散(低いアッベ数)を有する光学素子と組み合わせて光学系を構成した場合に、その光学系の全体として収差を低減させて高い結像特性等を図ることができる。
 このように、本発明の光学ガラスは、光学設計上有用であり、特に光学系を構成したときに、高い結像特性等を図りながらも、光学系の小型化を図ることができ、光学設計の自由度を広げることができる。
 本発明の光学ガラスは、相対屈折率の温度係数(dn/dT)が高い値をとる。
 より具体的には、本発明の光学ガラスの相対屈折率の温度係数は、好ましくは+7.5×10-6-1、より好ましくは+8.0×10-6-1、さらに好ましくは+8.5×10-6-1を又はそれよりも高い(プラス側)の値をとりうる。
他方で、本発明の光学ガラスの相対屈折率の温度係数は、好ましくは+15.0×10-6-1以下、より好ましくは+14.0×10-6-1以下、さらに好ましくは+12.0×10-6-1以下とし、この上限値又はそれよりも低い(マイナス側)の値をとりうる。
 1.58以上の屈折率(n)を有し、且つ40以上58以下のアッベ数(ν)を有するガラスにおいては、相対屈折率の温度係数の高いガラスは殆ど知られておらず、温度変化による結像のずれ等の補正の選択肢を広げられ、その補正をより容易にできる。したがって、このような範囲の相対屈折率の温度係数にすることで、温度変化による結像のずれ等の補正に寄与することができる。
 本発明の光学ガラスの相対屈折率の温度係数は、光学ガラスと同一温度の空気中における屈折率(589.29nm)の温度係数のことであり、40℃から60℃に温度を変化させた際の、1℃当たりの変化量(℃-1)で表される。
 本発明の光学ガラスは、耐失透性が高いこと、より具体的には、低い液相温度を有することが好ましい。すなわち、本発明の光学ガラスの液相温度は、好ましくは1200℃、より好ましくは1150℃、さらに好ましくは1100℃を上限とする。これにより、熔解後のガラスをより低い温度で流出しても、作製されたガラスの結晶化が低減されるため、熔融状態からガラスを形成したときの失透を低減でき、ガラスを用いた光学素子の光学特性への影響を低減できる。また、ガラスの熔解温度を低くしてもガラスを成形できるため、ガラスの成形時に消費するエネルギーを抑えることで、ガラスの製造コストを低減できる。一方で、本発明の光学ガラスの液相温度の下限は特に限定しないが、本発明によって得られるガラスの液相温度は、概ね800℃以上、具体的には850℃以上、さらに具体的には900℃以上であることが多い。
 なお、本明細書中における「液相温度」とは、900℃~1300℃の温度勾配のついた温度傾斜炉に30分間保持し、炉外に取り出して冷却した後、倍率100倍の顕微鏡で結晶の有無を観察したときに結晶が認められない一番低い温度である。
 本発明の光学ガラスは、可視光透過率、特に可視光のうち短波長側の光の透過率が高く、それにより着色が少ないことが好ましい。
 特に、本発明の光学ガラスは、ガラスの透過率で表すと、厚み10mmのサンプルで分光透過率80%を示す波長(λ80)は、好ましくは430nm、より好ましくは400nm、さらに好ましくは390nmを上限とする。
 また、本発明の光学ガラスにおける、厚み10mmのサンプルで分光透過率5%を示す最も短い波長(λ)は、好ましくは400nm、より好ましくは380nm、さらに好ましくは350nmを上限とする。
 これらにより、ガラスの吸収端が紫外領域又はその近傍になり、可視光に対するガラスの透明性が高められるため、この光学ガラスを、レンズ等の光を透過させる光学素子に好ましく用いることができる。
本発明の光学ガラスは、比重が小さいことが好ましい。より具体的には、本発明の光学ガラスの比重は5.00以下である。これにより、光学素子やそれを用いた光学機器の質量が低減されるため、光学機器の軽量化に寄与することができる。従って、本発明の光学ガラスの比重は、好ましくは5.00、より好ましくは4.70、より好ましくは4.50、さらに好ましくは4.40を上限とする。なお、本発明の光学ガラスの比重は、概ね2.80以上、より詳細には3.00以上、さらに詳細には3.20以上であることが多い。
本発明の光学ガラスの比重は、日本光学硝子工業会規格JOGIS05-1975「光学ガラスの比重の測定方法」に基づいて測定する。
[プリフォーム及び光学素子]
 作製された光学ガラスから、例えば研磨加工の手段、又は、リヒートプレス成形や精密プレス成形等のモールドプレス成形の手段を用いて、ガラス成形体を作製することができる。すなわち、光学ガラスに対して研削及び研磨等の機械加工を行ってガラス成形体を作製したり、光学ガラスからモールドプレス成形用のプリフォームを作製し、このプリフォームに対してリヒートプレス成形を行った後で研磨加工を行ってガラス成形体を作製したり、研磨加工を行って作製したプリフォームや、公知の浮上成形等により成形されたプリフォームに対して精密プレス成形を行ってガラス成形体を作製したりすることができる。なお、ガラス成形体を作製する手段は、これらの手段に限定されない。
 このように、本発明の光学ガラスは、様々な光学素子及び光学設計に有用である。その中でも特に、本発明の光学ガラスからプリフォームを形成し、このプリフォームを用いてリヒートプレス成形や精密プレス成形等を行い、レンズやプリズム等の光学素子を作製することが好ましい。これにより、径の大きなプリフォームの形成が可能になるため、光学素子の大型化を図りながらも、光学機器に用いたときに高精細で高精度な結像特性及び投影特性を実現できる。
 本発明の光学ガラスからなるガラス成形体は、例えばレンズ、プリズム、ミラー等の光学素子の用途に用いることができ、典型的には車載用光学機器やプロジェクタやコピー機等の、高温になり易い機器に用いることができる。
 本発明の実施例(No.1~No.38)の組成、並びに、これらのガラスの屈折率(n)、アッベ数(ν)、相対屈折率の温度係数(dn/dT)、透過率(λ、λ80)及び液相温度の結果を表1~表6に示す。なお、以下の実施例はあくまで例示の目的であり、これらの実施例にのみ限定されるものではない。
 本発明の実施例のガラスは、いずれも各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、メタ燐酸化合物等の通常の光学ガラスに使用される高純度原料を選定し、表に示した各実施例の組成の割合になるように秤量して均一に混合した後、白金坩堝に投入し、ガラス原料の熔解難易度に応じて電気炉で1000~1500℃の温度範囲で1~10時間熔解させた後、攪拌均質化してから金型等に鋳込み、徐冷して作製した。
 実施例のガラスの屈折率(n)及びアッベ数(ν)は、ヘリウムランプのd線(587.56nm)に対する測定値で示した。また、アッベ数(ν)は、上記d線の屈折率と、水素ランプのF線(486.13nm)に対する屈折率(n)、C線(656.27nm)に対する屈折率(n)の値を用いて、アッベ数(ν)=[(n-1)/(n-n)]の式から算出した。
 実施例のガラスの相対屈折率の温度係数(dn/dT)は、日本光学硝子工業会規格JOGIS18-2008「光学ガラスの屈折率の温度係数の測定方法」に記載された方法のうち干渉法により、波長589.29nmの光についての、40~60℃における相対屈折率の温度係数の値を測定した。
 実施例のガラスの透過率は、日本光学硝子工業会規格JOGIS02-2003に準じて測定した。なお、本発明においては、ガラスの透過率を測定することで、ガラスの着色の有無と程度を求めた。具体的には、厚さ10±0.1mmの対面平行研磨品をJISZ8722に準じ、200~800nmの分光透過率を測定し、λ(透過率5%時の波長)、λ80(透過率80%時の波長)を求めた。
 実施例のガラスの液相温度は、900℃~1300℃の温度勾配のついた温度傾斜炉に30分間保持し、炉外に取り出して冷却した後、倍率100倍の顕微鏡で結晶の有無を観察したときに結晶が認められない一番低い温度を求めた。
 なお、「900以下」と記載している場合は、少なくとも900℃で結晶が認められないことを指す。
 実施例及び比較例のガラスの比重は、日本光学硝子工業会規格JOGIS05-1975「光学ガラスの比重の測定方法」に基づいて測定した。






Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002





Figure JPOXMLDOC01-appb-T000003







Figure JPOXMLDOC01-appb-T000004







Figure JPOXMLDOC01-appb-T000005



Figure JPOXMLDOC01-appb-T000006




表に表されるように、実施例の光学ガラスは、いずれも相対屈折率の温度係数が+8.0×10-6~+16.0×10-6(℃-1)の範囲内にあり、所望の範囲内であった。一方で、比較例の光学ガラスは、ZnO成分の含有量が少ないため、いずれも相対屈折率の温度係数が+8.0×10-6~+16.0×10-6(℃-1)の範囲外であった。
また、実施例の光学ガラスは、いずれも屈折率(n)が1.58以上であり、所望の範囲内であった。また、本発明の実施例の光学ガラスは、いずれもアッベ数(ν)が、40以上58以下の範囲内であった。
また、本発明の実施例の光学ガラスは、λ80(透過率80%時の波長)がいずれも430nm以下であった。また、本発明の実施例の光学ガラスは、λ(透過率5%時の波長)がいずれも400nm以下であった。このため、本発明の実施例の光学ガラスは、可視光に対する透過率が高く着色し難いことが明らかになった。
また、本発明の実施例の光学ガラスは、液相温度が1200℃以下であった。このため、本発明の実施例の光学ガラスは、失透のない安定なガラスであったことが明らかとなった。
また、本発明の実施例の光学ガラスは、比重が5.00以下であった。このため、本発明の実施例の光学ガラスは、比重が小さいことが明らかとなった。
さらに、本発明の実施例の光学ガラスを用いて、ガラスブロックを形成し、このガラスブロックに対して研削及び研磨を行い、レンズ及びプリズムの形状に加工した。その結果、安定的に様々なレンズ及びプリズムの形状に加工することができた。
以上、本発明を例示の目的で詳細に説明したが、本実施例はあくまで例示の目的のみであって、本発明の思想及び範囲を逸脱することなく多くの改変を当業者により成し得ることが理解されよう。

Claims (6)

  1.  質量%で、
    成分   10.0超~45.0%、
    SiO成分   0超~25.0%
    ZnO成分    25.0超~70.0%、
    La成分      0~55.0%、
    を含有し、
    相対屈折率(589.29nm)の温度係数(40~60℃)が+8.0×10-6~+15.0×10-6(℃-1)の範囲内にある光学ガラス。
  2.  質量和(Ta+Nb+WO)が10.0%未満であることを特徴とする請求項1記載の光学ガラス。
  3.  1.58以上1.83以下の屈折率(n)を有し、40以上58以下のアッベ数(ν)を有する請求項1又は2記載の光学ガラス。
  4.  請求項1から3のいずれか記載の光学ガラスからなるプリフォーム。
  5.  請求項1から3のいずれか記載の光学ガラスからなる光学素子。
  6.  請求項5に記載の光学素子を備える光学機器。
PCT/JP2018/023227 2017-07-27 2018-06-19 光学ガラス、プリフォーム及び光学素子 WO2019021689A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880049865.3A CN110997583A (zh) 2017-07-27 2018-06-19 光学玻璃、预成形体以及光学元件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-145015 2017-07-27
JP2017145015 2017-07-27
JP2018-085448 2018-04-26
JP2018085448 2018-04-26

Publications (1)

Publication Number Publication Date
WO2019021689A1 true WO2019021689A1 (ja) 2019-01-31

Family

ID=65040152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023227 WO2019021689A1 (ja) 2017-07-27 2018-06-19 光学ガラス、プリフォーム及び光学素子

Country Status (3)

Country Link
JP (1) JP7446052B2 (ja)
CN (1) CN110997583A (ja)
WO (1) WO2019021689A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11802073B2 (en) 2020-09-10 2023-10-31 Corning Incorporated Silicoborate and borosilicate glasses with high refractive index and low density

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002362938A (ja) * 2001-06-06 2002-12-18 Ohara Inc 光学ガラス
JP2006137662A (ja) * 2004-10-12 2006-06-01 Hoya Corp 光学ガラス、精密プレス成形用プリフォームとその製造方法および光学素子とその製造方法
JP2007137701A (ja) * 2005-11-16 2007-06-07 Nippon Electric Glass Co Ltd モールドプレス成形用光学ガラス
JP2008179500A (ja) * 2007-01-24 2008-08-07 Konica Minolta Opto Inc 光学ガラス及び光学素子
JP2009537427A (ja) * 2006-10-17 2009-10-29 成都光明光▲電▼股▲分▼有限公司 高屈折率低色分散精密プレス成形用光学ガラス
WO2010035770A1 (ja) * 2008-09-25 2010-04-01 日本山村硝子株式会社 光学ガラス
JP2011079684A (ja) * 2009-10-02 2011-04-21 Sumita Optical Glass Inc 光学ガラス

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3458461B2 (ja) * 1994-07-07 2003-10-20 株式会社ニコン 光学ガラス
JP3219941B2 (ja) * 1994-08-26 2001-10-15 ホーヤ株式会社 光学ガラス
JP4305816B2 (ja) 2002-11-08 2009-07-29 Hoya株式会社 光学ガラス、プレス成形用ガラス成形体および光学素子
JP2012232874A (ja) * 2011-05-02 2012-11-29 Ohara Inc 光学ガラス、プリフォーム、及び光学素子
JP7174536B2 (ja) * 2017-05-16 2022-11-17 株式会社オハラ 光学ガラス、プリフォーム及び光学素子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002362938A (ja) * 2001-06-06 2002-12-18 Ohara Inc 光学ガラス
JP2006137662A (ja) * 2004-10-12 2006-06-01 Hoya Corp 光学ガラス、精密プレス成形用プリフォームとその製造方法および光学素子とその製造方法
JP2007137701A (ja) * 2005-11-16 2007-06-07 Nippon Electric Glass Co Ltd モールドプレス成形用光学ガラス
JP2009537427A (ja) * 2006-10-17 2009-10-29 成都光明光▲電▼股▲分▼有限公司 高屈折率低色分散精密プレス成形用光学ガラス
JP2008179500A (ja) * 2007-01-24 2008-08-07 Konica Minolta Opto Inc 光学ガラス及び光学素子
WO2010035770A1 (ja) * 2008-09-25 2010-04-01 日本山村硝子株式会社 光学ガラス
JP2011079684A (ja) * 2009-10-02 2011-04-21 Sumita Optical Glass Inc 光学ガラス

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11802073B2 (en) 2020-09-10 2023-10-31 Corning Incorporated Silicoborate and borosilicate glasses with high refractive index and low density

Also Published As

Publication number Publication date
JP7446052B2 (ja) 2024-03-08
CN110997583A (zh) 2020-04-10
JP2019194139A (ja) 2019-11-07

Similar Documents

Publication Publication Date Title
JP5979723B2 (ja) 光学ガラス及び光学素子
JP6096502B2 (ja) 光学ガラス及び光学素子
JP2017039640A (ja) 光学ガラス及び光学素子
WO2019131123A1 (ja) 光学ガラス、プリフォーム及び光学素子
JP6509525B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP7112856B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2017088482A (ja) 光学ガラス、プリフォーム材及び光学素子
JP6664826B2 (ja) 光学ガラス及び光学素子
JP2019001697A (ja) 光学ガラス、プリフォーム及び光学素子
JP6973902B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2017088479A (ja) 光学ガラス、プリフォーム材及び光学素子
JP2023054181A (ja) 光学ガラス、プリフォーム及び光学素子
JP7227693B2 (ja) 光学ガラス、プリフォーム及び光学素子
WO2020017275A1 (ja) 光学ガラス、プリフォーム及び光学素子
TWI621599B (zh) Optical glass, preforms and optical components
JP2018052763A (ja) 光学ガラス、プリフォーム及び光学素子
JP7094095B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2022171696A (ja) 光学ガラス、プリフォーム及び光学素子
JP2022125089A (ja) 光学ガラス、プリフォーム及び光学素子
JP6635667B2 (ja) 光学ガラス、レンズプリフォーム及び光学素子
TW201817691A (zh) 光學玻璃、預成形體以及光學元件
JP7446052B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP7174536B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2017171578A (ja) 光学ガラス及び光学素子
JP2018012631A (ja) 光学ガラス、プリフォーム材及び光学素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18837993

Country of ref document: EP

Kind code of ref document: A1