JP2022125089A - 光学ガラス、プリフォーム及び光学素子 - Google Patents

光学ガラス、プリフォーム及び光学素子 Download PDF

Info

Publication number
JP2022125089A
JP2022125089A JP2022100601A JP2022100601A JP2022125089A JP 2022125089 A JP2022125089 A JP 2022125089A JP 2022100601 A JP2022100601 A JP 2022100601A JP 2022100601 A JP2022100601 A JP 2022100601A JP 2022125089 A JP2022125089 A JP 2022125089A
Authority
JP
Japan
Prior art keywords
component
less
glass
refractive index
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022100601A
Other languages
English (en)
Other versions
JP7354362B2 (ja
Inventor
道子 荻野
Michiko Ogino
敦 永岡
Atsushi Nagaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Publication of JP2022125089A publication Critical patent/JP2022125089A/ja
Application granted granted Critical
Publication of JP7354362B2 publication Critical patent/JP7354362B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】高屈折率低分散の光学特性を有し、且つ、相対屈折率の温度係数が低い値をとり、温度変化による結像特性への影響の補正に寄与できる光学ガラスを提供する。【解決手段】光学ガラスは、質量%で、SiO2成分を5.0%以上30.0%以下、B2O3成分を0%超25.0%以下、BaO成分を38.0%以上63.0%以下含有し、Ln2O3成分を合計で10.0%以上35.0%以下含有し(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)、1.65以上の屈折率(nd)を有し、40以上62以下のアッベ数(νd)を有し、相対屈折率(589.29nm)の温度係数(40~60℃)が+2.0×10-6~-10.0×10-6(℃-1)の範囲内にある。【選択図】なし

Description

本発明は、光学ガラス、プリフォーム及び光学素子に関する。
近年、車載カメラ等の車載用光学機器に組み込まれる光学素子や、プロジェクタ、コピー機、レーザプリンタ及び放送用機材等のような多くの熱を発生する光学機器に組み込まれる光学素子では、より高温の環境での使用が増えている。このような高温の環境では、光学系を構成する光学素子の使用時の温度が大きく変動し易く、その温度が100℃以上に達する場合も多い。このとき、温度変動による光学系の結像特性等への悪影響が無視出来ないほど大きくなるため、温度変動によっても結像特性等に影響が生じ難い光学系を構成することが求められている。
光学系を構成する光学素子の材料として、1.65以上の屈折率(n)と40以上62以下のアッベ数(ν)を有する高屈折率低分散ガラスの需要が非常に高まっている。このような高屈折率低分散ガラスとしては、例えば特許文献1~3に代表されるようなガラス組成物が知られている。
特開昭60-221338号公報 特開平05-201743号公報 特開2005-179142号公報
温度変動による結像性能等への影響が生じ難い光学系を構成するにあたっては、温度が上昇したときに屈折率が低くなり、相対屈折率の温度係数がマイナスとなるガラスから構成される光学素子と、温度が高くなったときに屈折率が高くなり、相対屈折率の温度係数がプラスとなるガラスから構成される光学素子を併用することが、温度変化による結像特性等への影響を補正できる点で好ましい。
特に、1.65以上の屈折率(n)と40以上62以下のアッベ数(ν)を有する高屈折率低分散ガラスとしては、温度変化による結像特性への影響の補正に寄与できる観点から、相対屈折率の温度係数が低いガラスが望まれており、より具体的には、相対屈折率の温度係数がマイナスとなるガラスや、相対屈折率の温度係数の絶対値の小さなガラスが望まれている。
本発明は、上記問題点に鑑みてなされたものであって、その目的とするところは、高屈折率低分散の光学特性を有し、且つ、相対屈折率の温度係数が低い値をとり、温度変化による結像特性への影響の補正に寄与できる光学ガラスと、これを用いたプリフォーム及び光学素子を提供することにある。
本発明者らは、上記課題を解決するために、鋭意試験研究を重ねた結果、SiO2成分、B23成分及びBaO成分と、Ln23成分のうち少なくともいずれかを併用し、各成分の含有量を調整することによって、所望の屈折率及びアッベ数を有しながらも、相対屈折率の温度係数が低い値をとることを見出し、本発明を完成するに至った。具体的には、本発明は以下のようなものを提供する。
(1)質量%で、
SiO2成分を5.0%以上30.0%以下、
23成分を0%超25.0%以下、
BaO成分を38.0%以上63.0%以下
含有し、
Ln23成分を合計で10.0%以上35.0%以下含有し(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)、
1.65以上の屈折率(n)を有し、40以上62以下のアッベ数(ν)を有し、
相対屈折率(589.29nm)の温度係数(40~60℃)が+2.0×10-6~-10.0×10-6(℃-1)の範囲内にある光学ガラス。
(2)質量%で、
MgO成分 0~5.0%
CaO成分 0~10.0%
SrO成分 0~10.0%
2O成分 0~10.0%
TiO2成分 0~10.0%
Nb25成分 0~10.0%
WO3成分 0~10.0%
ZrO2成分 0~10.0%
ZnO成分 0~10.0%
La23成分 0~35.0%
Gd23成分 0~20.0%
23成分 0~20.0%
Yb23成分 0~10.0%
Li2O成分 0~3.0%
Na2O成分 0~5.0%
Al23成分 0~15.0%
Ga23成分 0~10.0%
25成分 0~10.0%
GeO2成分 0~10.0%
Ta25成分 0~5.0%
Bi23成分 0~10.0%
TeO2成分 0~10.0%
SnO2成分 0~3.0%
Sb23成分 0~1.0%
であり、
上記各元素の1種又は2種以上の酸化物の一部又は全部と置換した弗化物のFとしての含有量が0~10.0質量%である(1)記載の光学ガラス。
(3)質量%で、RO成分の含有量の和が40.0%以上65.0%以下である(1)又は(2)記載の光学ガラス(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)。
(4)質量和(RO+K2O)が40.0%以上65.0%以下である(1)から(3)のいずれか記載の光学ガラス(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)。
(5)質量和(SiO2+B23)が15.0%以上40.0%以下である(1)から(4)のいずれか記載の光学ガラス。
(6)質量和TiO2+Nb25+WO3+ZrO2が10.0%以下である(1)から(5)のいずれか記載の光学ガラス。
(7)質量比(RO+K2O)/(TiO2+Nb25+WO3+ZrO2+ZnO+SiO2+B23)が1.00以上3.00以下である(1)から(6)のいずれか記載の光学ガラス(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)。
(8)質量%で、Rn2O成分の含有量の和が10.0%以下である(1)から(7)のいずれか記載の光学ガラス(式中、RnはLi、Na、Kからなる群より選択される1種以上)。
(9)(1)から(8)のいずれか記載の光学ガラスからなるプリフォーム材。
(10)(1)から(8)のいずれか記載の光学ガラスからなる光学素子。
(11)(10)に記載の光学素子を備える光学機器。
本発明によれば、高屈折率低分散の光学特性を有し、且つ、相対屈折率の温度係数が低い値をとり、温度変化による結像特性への影響の補正に寄与することが可能な光学ガラスと、これを用いたプリフォーム及び光学素子を得ることができる。
本発明の光学ガラスは、質量%で、SiO2成分を5.0%以上30.0%以下、B23成分を0%超25.0%以下、BaO成分を38.0%以上63.0%以下含有し、Ln23成分を合計で10.0%以上35.0%以下含有し(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)、1.65以上の屈折率(n)を有し、40以上62以下のアッベ数(ν)を有し、相対屈折率(589.29nm)の温度係数(40~60℃)が+2.0×10-6~-10.0×10-6(℃-1)の範囲内にある。SiO2成分、B23成分及びBaO成分と、Ln23成分のうち少なくともいずれかを併用し、各成分の含有量を調整することによって、所望の屈折率及びアッベ数を有しながらも、相対屈折率の温度係数が低い値をとる。そのため、高屈折率低分散の光学特性を有し、且つ、相対屈折率の温度係数が低い値をとり、温度変化による結像特性への影響の補正に寄与することが可能な光学ガラスを得ることができる。
以下、本発明の光学ガラスの実施形態について詳細に説明する。本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。なお、説明が重複する箇所について、適宜説明を省略する場合があるが、発明の趣旨を限定するものではない。
[ガラス成分]
本発明の光学ガラスを構成する各成分の組成範囲を以下に述べる。本明細書中において、各成分の含有量は、特に断りがない場合、全て酸化物換算組成の全質量に対する質量%で表示されるものとする。ここで、「酸化物換算組成」は、本発明のガラス構成成分の原料として使用される酸化物、複合塩、金属弗化物等が熔融時に全て分解され酸化物へ変化すると仮定した場合に、当該生成酸化物の総質量数を100質量%として、ガラス中に含有される各成分を表記した組成である。
<必須成分、任意成分について>
SiO2成分は、ガラス形成酸化物として必須の成分である。特に、SiO2成分を5.0%以上含有することで、化学的耐久性を高められ、熔融ガラスの粘度を高められ、ガラスの着色を低減できる。また、ガラスの安定性を高めて量産に耐えるガラスを得易くできる。従って、SiO2成分の含有量は、好ましくは5.0%以上、より好ましくは6.0%超、さらに好ましくは8.0%超、さらに好ましくは10.0%超とする。
他方で、SiO2成分の含有量を30.0%以下にすることで、相対屈折率の温度係数を小さくでき、ガラス転移点の上昇を抑えられ、且つ屈折率の低下を抑えられる。従って、SiO2成分の含有量は、好ましくは30.0%以下、より好ましくは27.0%未満、さらに好ましくは24.0%未満、さらに好ましくは20.0%未満、さらに好ましくは18.0%未満とする。
23成分は、ガラス形成酸化物として必須の成分である。特に、B23成分を0%超含有することで、ガラスの失透を低減でき、且つガラスのアッベ数を高められる。従って、B23成分の含有量は、好ましくは0%超、より好ましくは3.0%以上、さらに好ましくは5.0%超、さらに好ましくは7.0%超、さらに好ましくは10.0%超とする。
他方で、B23成分の含有量を25.0%以下にすることで、より大きな屈折率を得易くでき、相対屈折率の温度係数を小さくでき、且つ化学的耐久性の悪化を抑えられる。従って、B23成分の含有量は、好ましくは25.0%以下、より好ましくは22.0%未満、さらに好ましくは20.0%未満、さらに好ましくは17.0%未満とする。
Ln23成分(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)の含有量の和(質量和)は、10.0%以上35.0%以下である。
特に、この和を10.0%以上にすることで、ガラスの屈折率及びアッベ数が高められるため、所望の屈折率及びアッベ数を有するガラスを得易くすることができる。従って、Ln23成分の質量和は、好ましくは10.0%以上、より好ましくは13.0%超、さらに好ましくは15.0%超、さらに好ましくは18.0%超とする。
他方で、この和を35.0%以下にすることで、ガラスの液相温度が低くなるため、ガラスの失透を低減できる。また、アッベ数の必要以上の上昇を抑えられる。従って、Ln23成分の質量和は、好ましくは35.0%以下、より好ましくは30.0%未満、さらに好ましくは25.0%未満、さらに好ましくは23.0%未満とする。
BaO成分は、ガラス原料の熔融性を高められ、ガラスの失透を低減でき、屈折率を高められ、相対屈折率の温度係数を小さくできる必須成分である。従って、BaO成分の含有量は、好ましくは38.0%以上、より好ましくは39.0%超、さらに好ましくは40.0%超、さらに好ましくは42.0%超、さらに好ましくは45.0%超、さらに好ましくは48.0%超とする。
他方で、BaO成分の含有量を63.0%以下にすることで、過剰な含有によるガラスの屈折率の低下や、化学的耐久性の低下、失透を低減できる。従って、BaO成分の含有量は、好ましくは63.0%以下、より好ましくは60.0%以下、さらに好ましくは58.0%未満、さらに好ましくは55.0%未満とする。
MgO成分、CaO成分及びSrO成分は、0%超含有する場合に、ガラスの屈折率や熔融性、耐失透性を調整できる任意成分である。
他方で、MgO成分の含有量を5.0%以下に、又は、CaO成分若しくはSrO成分の含有量を10.0%以下にすることで、屈折率の低下を抑えることができ、且つこれらの成分の過剰な含有による失透を低減できる。従って、MgO成分の含有量は、好ましくは5.0%以下、より好ましくは4.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。また、CaO成分及びSrO成分の含有量は、好ましくは10.0%以下、より好ましくは7.0%未満、さらに好ましくは4.0%未満、さらに好ましくは1.0%未満とする。
Li2O成分、Na2O成分及びK2O成分は、0%超含有する場合に、ガラスの熔融性を改善でき、ガラス転移点を低くできる任意成分である。特に、K2O成分を0%超含有する場合、相対屈折率の温度係数を小さくできる。
他方で、Li2O成分、Na2O成分及びK2O成分の含有量を低減させることで、ガラスの屈折率を低下し難くし、且つガラスの失透を低減できる。また、特にLi2O成分の含有量を低減させることで、ガラスの粘性が高められるため、ガラスの脈理を低減できる。従って、Li2O成分の含有量は、好ましくは3.0%以下、より好ましくは2.0%未満、さらに好ましくは1.1%未満、さらに好ましくは0.6%未満、さらに好ましくは0.3%未満としてもよい。また、Na2O成分の含有量は、好ましくは5.0%以下、より好ましくは3.0%未満、さらに好ましくは2.0%未満、さらに好ましくは1.0%未満としてもよい。また、K2O成分の含有量は、好ましくは10.0%以下、より好ましくは7.0%未満、さらに好ましくは4.0%未満、さらに好ましくは2.0%未満としてもよい。
TiO2成分は、0%超含有する場合に、ガラスの屈折率を高め、且つガラスの失透を低減できる任意成分である。
他方で、TiO2成分の含有量を10.0%以下にすることで、相対屈折率の温度係数を小さくでき、TiO2成分の過剰な含有による失透を低減でき、ガラスの可視光(特に波長500nm以下)に対する透過率の低下を抑えられる。また、これによりアッベ数の低下を抑えられる。従って、TiO2成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.5%未満、さらに好ましくは2.0%未満としてもよい。
Nb25成分は、0%超含有する場合に、ガラスの屈折率を高め、且つガラスの液相温度を低くすることで耐失透性を高められる任意成分である。
他方で、Nb25成分の含有量を10.0%以下にすることで、相対屈折率の温度係数を小さくでき、Nb25成分の過剰な含有による失透を低減でき、且つ、ガラスの可視光(特に波長500nm以下)に対する透過率の低下を抑えられる。また、これによりアッベ数の低下を抑えられる。従って、Nb25成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満としてもよい。
WO3成分は、0%超含有する場合に、他の高屈折率成分によるガラスの着色を低減しながら、屈折率を高め、ガラス転移点を低くでき、且つ失透を低減できる任意成分である。
他方で、WO3成分の含有量を10.0%以下にすることで、相対屈折率の温度係数を小さくでき、且つ材料コストを抑えられる。また、WO3成分によるガラスの着色を低減して可視光透過率を高められる。従って、WO3成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満、さらに好ましくは0.5%未満としてもよい。
ZrO2成分は、0%超含有する場合に、ガラスの屈折率及びアッベ数を高められ、且つ失透を低減できる任意成分である。
他方で、ZrO2成分の含有量を10.0%以下にすることで、相対屈折率の温度係数を小さくでき、ZrO2成分の過剰な含有による失透を低減できる。従って、ZrO2成分の含有量は、好ましくは10.0%以下、より好ましくは8.0%未満、さらに好ましくは5.0%未満、さらに好ましくは3.0%以下としてもよい。
ZnO成分は、0%超含有する場合に、原料の熔解性を高め、溶解したガラスからの脱泡を促進し、また、ガラスの安定性を高められる任意成分である。また、ガラス転移点を低くでき、且つ化学的耐久性を改善できる成分でもある。
他方で、ZnO成分の含有量を10.0%以下にすることで、相対屈折率の温度係数を小さくでき、熱による膨張を低減でき、屈折率の低下を抑えられ、且つ、過剰な粘性の低下による失透を低減できる。従って、ZnO成分の含有量は、好ましくは10.0%以下、より好ましくは6.0%未満、さらに好ましくは4.5%未満、さらに好ましくは3.0%未満、さらに好ましくは2.5%未満、さらに好ましくは1.0%未満としてもよい。
23成分は、0%超含有する場合に、高屈折率及び高アッベ数を維持しながらも、他の希土類元素に比べてガラスの材料コストを抑えられ、且つ、他の希土類成分よりもガラスの比重を低減できる任意成分である。
他方で、Y23成分の含有量を20.0%以下にすることで、ガラスの屈折率の低下を抑えられ、且つガラスの安定性を高められる。また、ガラス原料の熔解性の悪化を抑えられる。従って、Y23成分の含有量は、好ましくは20.0%以下、より好ましくは15.0%未満、さらに好ましくは10.0%未満、さらに好ましくは5.0%未満としてもよい。
La23成分は、0%超含有する場合に、ガラスの屈折率及びアッベ数を高められる任意成分である。従って、La23成分の含有量は、好ましくは0%超、より好ましくは5.0%以上、さらに好ましくは8.0%超、さらに好ましくは10.0%超、さらに好ましくは13.0%超、さらに好ましくは15.0%超、さらに好ましくは17.0%超としてもよい。
他方で、La23成分の含有量を35.0%以下にすることで、ガラスの安定性を高めることで失透を低減でき、アッベ数の必要以上の上昇を抑えられる。また、ガラス原料の熔解性を高められる。従って、La23成分の含有量は、好ましくは35.0%以下、より好ましくは30.0%未満、さらに好ましくは26.0%未満、さらに好ましくは23.0%未満とする。
Gd23成分及びYb23成分は、0%超含有する場合に、ガラスの屈折率を高められる任意成分である。
他方で、Gd23成分及びYb23成分は希土類の中でも原料価格が高く、その含有量が多いと生産コストが高くなる。また、Gd23成分やYb23成分の含有を低減させることで、ガラスのアッベ数の上昇を抑えられる。従って、Gd23成分の含有量は、好ましくは20.0%以下、より好ましくは15.0%未満、さらに好ましくは10.0%未満、さらに好ましくは7.0%未満、さらに好ましくは4.0%未満としてもよい。また、Yb23成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満としてもよい。
Al23成分及びGa23成分は、0%超含有する場合に、ガラスの化学的耐久性を向上でき、且つ熔融ガラスの耐失透性を向上できる任意成分である。そのため、特にAl23成分の含有量は、好ましくは0%超、より好ましくは0.5%超、さらに好ましくは1.0%超としてもよい。
他方で、Al23成分の含有量を15.0%以下にし、又は、Ga23成分の含有量をそれぞれ10.0%以下にすることで、ガラスの液相温度を下げて耐失透性を高められる。従って、Al23成分の含有量は、好ましくは15.0%以下、より好ましくは10.0%未満、さらに好ましくは6.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満としてもよい。また、Ga23成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満としてもよい。
25成分は、0%超含有する場合に、ガラスの液相温度を下げて耐失透性を高められる任意成分である。
他方で、P25成分の含有量を10.0%以下にすることで、ガラスの化学的耐久性、特に耐水性の低下を抑えられる。従って、P25成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満としてもよい。
GeO2成分は、0%超含有する場合に、ガラスの屈折率を高められ、且つ耐失透性を向上できる任意成分である。
しかしながら、GeO2は原料価格が高く、その含有量が多いと生産コストが高くなる。従って、GeO2成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満、さらに好ましくは0.1%未満としてもよい。
Ta25成分は、0%超含有する場合に、ガラスの屈折率を高められ、且つ耐失透性を高められる任意成分である。
他方で、Ta25成分の含有量を5.0%以下にすることで、光学ガラスの原料コストを低減でき、また、原料の熔解温度が低くなり、原料の熔解に要するエネルギーが低減されるため、光学ガラスの製造コストも低減できる。従って、Ta25成分の含有量は、好ましくは5.0%以下、より好ましくは3.0%未満、さらに好ましくは1.0%未満、さらに好ましくは0.5%未満、さらに好ましくは0.1%未満としてもよい。特に材料コストを低減させる観点では、Ta25成分を含有しないことが最も好ましい。
Bi23成分は、0%超含有する場合に、屈折率を高められ、且つガラス転移点を下げられる任意成分である。
他方で、Bi23成分の含有量を10.0%以下にすることで、ガラスの液相温度を下げて耐失透性を高められる。従って、Bi23成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満としてもよい。
TeO2成分は、0%超含有する場合に、屈折率を高められ、且つガラス転移点を下げられる任意成分である。
他方で、TeO2は白金製の坩堝や、熔融ガラスと接する部分が白金で形成されている熔融槽でガラス原料を熔融する際、白金と合金化しうる問題がある。従って、TeO2成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満としてもよい。
SnO2成分は、0%超含有する場合に、熔融ガラスの酸化を低減して清澄し、且つガラスの可視光透過率を高められる任意成分である。
他方で、SnO2成分の含有量を3.0%以下にすることで、熔融ガラスの還元によるガラスの着色や、ガラスの失透を低減できる。また、SnO2成分と熔解設備(特にPt等の貴金属)の合金化が低減されるため、熔解設備の長寿命化を図れる。従って、SnO2成分の含有量は、好ましくは3.0%以下、より好ましくは1.0%未満、さらに好ましくは0.5%未満、さらに好ましくは0.1%未満としてもよい。
Sb23成分は、0%超含有する場合に、熔融ガラスを脱泡できる任意成分である。
他方で、Sb23成分の含有量を1.0%以下にすることで、可視光領域の短波長領域における透過率の低下や、ガラスのソラリゼーション、内部品質の低下を抑えられる。従って、Sb23成分の含有量は、好ましくは1.0%以下、より好ましくは0.5%未満、さらに好ましくは0.2%未満としてもよい。
なお、ガラスを清澄し脱泡する成分は、上記のSb23成分に限定されるものではなく、ガラス製造の分野における公知の清澄剤、脱泡剤或いはそれらの組み合わせを用いることができる。
F成分は、0%超含有する場合に、ガラスのアッベ数を高め、ガラス転移点を低くし、且つ耐失透性を向上できる任意成分である。
しかし、F成分の含有量、すなわち上述した各金属元素の1種又は2種以上の酸化物の一部又は全部と置換した弗化物のFとしての合計量が10.0%を超えると、F成分の揮発量が多くなるため、安定した光学恒数が得られ難くなり、均質なガラスが得られ難くなる。また、アッベ数が必要以上に上昇する。
従って、F成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満としてもよい。
RO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)の含有量の和(質量和)は、40.0%以上65.0%以下が好ましい。
特に、RO成分の質量和を40.0%以上にすることで、ガラスの失透を低減でき、且つ、相対屈折率の温度係数を小さくできる。従って、RO成分の質量和は、好ましくは40.0%以上、より好ましくは41.0%超、さらに好ましくは42.0%超、さらに好ましくは45.0%超、さらに好ましくは48.0%超とする。
他方で、RO成分の質量和を65.0%以下にすることで、屈折率の低下を抑えられ、また、ガラスの安定性を高められる。従って、RO成分の質量和は、好ましくは65.0%以下、より好ましくは60.0%未満、さらに好ましくは57.0%未満とする。
RO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)と、K2O成分の含有量の和(質量和)は、40.0%以上65.0%以下が好ましい。
特に、質量和(RO+K2O)の質量和を40.0%以上にすることで、ガラスの失透を低減でき、且つ、相対屈折率の温度係数を小さくできる。従って、質量和(RO+K2O)は、好ましくは40.0%以上、より好ましくは41.0%超、さらに好ましくは42.0%超、さらに好ましくは45.0%超、さらに好ましくは48.0%超とする。
他方で、質量和(RO+K2O)を65.0%以下にすることで、屈折率の低下を抑えられ、また、ガラスの安定性を高められる。従って、質量和(RO+K2O)は、好ましくは65.0%以下、より好ましくは60.0%未満、さらに好ましくは57.0%未満とする。
SiO2成分及びB23の合計量は、15.0%以上40.0%以下が好ましい。
特に、この合計量を15.0%以上にすることで、安定なガラスを得易くできる。従って、質量和(SiO2+B23)は、好ましくは15.0%以上、より好ましくは18.0%超、さらに好ましくは20.0%超、さらに好ましくは23.0%超、さらに好ましくは25.0%超とする。
他方で、この合計量を40.0%以下にすることで、相対屈折率の温度係数を小さくできる。従って、質量和(SiO2+B23)は、好ましくは40.0%以下、より好ましくは35.0%未満、さらに好ましくは33.0%未満、さらに好ましくは30.0%未満とする。
TiO2成分、Nb25成分、WO3成分及びZrO2成分の合計量(質量和)は、10.0%以下が好ましい。これにより、相対屈折率の温度係数を小さくできる。従って、質量和TiO2+Nb25+WO3+ZrO2は、好ましくは10.0%以下、より好ましくは7.0%未満、さらに好ましくは5.0%以下とする。
SiO2成分及びB23成分の合計含有量に対する、TiO2成分、Nb25成分、WO3成分、ZrO2成分及びZnO成分の合計含有量の比率(質量比)は、0超であることが好ましい。
この比率を大きくすることで、相対屈折率の温度係数を小さくできる。従って、質量比(TiO2+Nb25+WO3+ZrO2+ZnO)/(SiO2+B23)は、好ましくは0超、より好ましくは0.05超、さらに好ましくは0.10超とする。
他方で、この質量比は、安定なガラスを得る観点から、好ましくは0.50未満、より好ましくは0.40未満、さらに好ましくは0.30未満、さらに好ましくは0.20未満としてもよい。
TiO2成分、Nb25成分、WO3成分、ZrO2成分、ZnO成分、SiO2成分及びB23成分の合計含有量に対する、RO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)及びK2O成分の合計含有量の比率(質量比)は、1.00以上3.00以下が好ましい。
この比率を大きくすることで、相対屈折率の温度係数を小さくできる。従って、質量比(RO+K2O)/(TiO2+Nb25+WO3+ZrO2+ZnO+SiO2+B23)は、好ましくは1.00以上、より好ましくは1.10超、さらに好ましくは1.20超、さらに好ましくは1.30超、さらに好ましくは1.40超、さらに好ましくは1.53以上とする。
他方で、この質量比は、安定なガラスを得る観点から、好ましくは3.00未満、より好ましくは2.80未満、さらに好ましくは2.50未満としてもよい。
Rn2O成分(式中、RnはLi、Na、Kからなる群より選択される1種以上)の含有量の和(質量和)は、10.0%以下が好ましい。これにより、溶融ガラスの粘性の低下を抑えられ、ガラスの屈折率を低下し難くでき、且つガラスの失透を低減できる。従って、Rn2O成分の質量和は、好ましくは10.0%以下、よりに好ましくは7.0%未満、さらに好ましくは4.0%未満、さらに好ましくは2.0%未満とする。
<含有すべきでない成分について>
次に、本発明の光学ガラスに含有すべきでない成分、及び含有することが好ましくない成分について説明する。
他の成分を本願発明のガラスの特性を損なわない範囲で必要に応じ、添加することができる。ただし、Ti、Zr、Nb、W、La、Gd、Y、Yb、Luを除く、V、Cr、Mn、Fe、Co、Ni、Cu、Ag及びMo等の各遷移金属成分は、それぞれを単独又は複合して少量含有した場合でもガラスが着色し、可視域の特定の波長に吸収を生じる性質があるため、特に可視領域の波長を使用する光学ガラスにおいては、実質的に含まないことが好ましい。
また、PbO等の鉛化合物及びAs23等の砒素化合物は、環境負荷が高い成分であるため、実質的に含有しないこと、すなわち、不可避な混入を除いて一切含有しないことが望ましい。
さらに、Th、Cd、Tl、Os、Be、及びSeの各成分は、近年有害な化学物資として使用を控える傾向にあり、ガラスの製造工程のみならず、加工工程、及び製品化後の処分に至るまで環境対策上の措置が必要とされる。従って、環境上の影響を重視する場合には、これらを実質的に含有しないことが好ましい。
[製造方法]
本発明の光学ガラスは、例えば以下のように作製される。すなわち、上記各成分の原料として、酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、水酸化物、メタ燐酸化合物等の通常の光学ガラスに使用される高純度原料を、各成分が所定の含有量の範囲内になるように均一に混合し、作製した混合物を白金坩堝に投入し、ガラス原料の熔解難易度に応じて電気炉で900~1500℃の温度範囲で2~5時間熔解させて攪拌均質化した後、適当な温度に下げてから金型に鋳込み、徐冷することにより作製される。
ここで、本発明の光学ガラスは、原料として硫酸塩を用いないことが好ましい。これにより、熔解後のガラス原料からの脱泡が促進されるため、光学ガラスへの気泡の残留を抑えられる。
<物性>
本発明の光学ガラスは、高屈折率及び高アッベ数(低分散)を有する。
特に、本発明の光学ガラスの屈折率(n)は、好ましくは1.65、より好ましくは1.67、さらに好ましくは1.68を下限とする。この屈折率(n)は、好ましくは2.00、より好ましくは1.90、より好ましくは1.80、より好ましくは1.75を上限としてもよい。また、本発明の光学ガラスのアッベ数(ν)は、好ましくは40、より好ましくは45、さらに好ましくは47、さらに好ましくは49を下限とする。このアッベ数(ν)は、好ましくは62、より好ましくは60、さらに好ましくは57、さらに好ましくは55、さらに好ましくは53を上限としてもよい。
このような高屈折率を有することで、光学素子の薄型化を図っても大きな光の屈折量を得ることができる。また、このような低分散を有することで、単レンズとして用いたときに光の波長による焦点のずれ(色収差)を小さくできる。そのため、例えば高分散(低いアッベ数)を有する光学素子と組み合わせて光学系を構成した場合に、その光学系の全体として収差を低減させて高い結像特性等を図ることができる。
このように、本発明の光学ガラスは、光学設計上有用であり、特に光学系を構成したときに、高い結像特性等を図りながらも、光学系の小型化を図ることができ、光学設計の自由度を広げることができる。
本発明の光学ガラスは、相対屈折率の温度係数(dn/dT)が低い値をとる。
より具体的には、本発明の光学ガラスの相対屈折率の温度係数は、好ましくは+2.0×10-6-1、より好ましくは+1.0×10-6-1、さらに好ましくは0、さらに好ましくは-1.0×10-6-1を上限値とし、この上限値又はそれよりも低い(マイナス側)の値をとりうる。
他方で、本発明の光学ガラスの相対屈折率の温度係数は、好ましくは-10.0×10-6-1、より好ましくは-8.0×10-6-1、さらに好ましくは-5.0×10-6-1、さらに好ましくは-3.0×10-6-1を下限値とし、この下限値又はそれよりも高い(プラス側)の値をとりうる。
このうち、相対屈折率の温度係数がマイナスとなるガラスは殆ど知られておらず、温度変化による結像のずれ等の補正の選択肢を広げられる。また、相対屈折率の温度係数の絶対値の小さなガラスは温度変化による結像のずれ等の補正をより容易にできる。したがって、このような範囲の相対屈折率の温度係数にすることで、温度変化による結像のずれ等の補正に寄与することができる。
本発明の光学ガラスの相対屈折率の温度係数は、光学ガラスと同一温度の空気中における、波長589.29nmの光についての屈折率の温度係数のことであり、40℃から60℃に温度を変化させた際の、1℃当たりの変化量(℃-1)で表される。
[プリフォーム及び光学素子]
作製された光学ガラスから、例えば研磨加工の手段、又は、リヒートプレス成形や精密プレス成形等のモールドプレス成形の手段を用いて、ガラス成形体を作製することができる。すなわち、光学ガラスに対して研削及び研磨等の機械加工を行ってガラス成形体を作製したり、光学ガラスからモールドプレス成形用のプリフォームを作製し、このプリフォームに対してリヒートプレス成形を行った後で研磨加工を行ってガラス成形体を作製したり、研磨加工を行って作製したプリフォームや、公知の浮上成形等により成形されたプリフォームに対して精密プレス成形を行ってガラス成形体を作製したりすることができる。なお、ガラス成形体を作製する手段は、これらの手段に限定されない。
このように、本発明の光学ガラスは、様々な光学素子及び光学設計に有用である。その中でも特に、本発明の光学ガラスからプリフォームを形成し、このプリフォームを用いてリヒートプレス成形や精密プレス成形等を行い、レンズやプリズム等の光学素子を作製することが好ましい。これにより、径の大きなプリフォームの形成が可能になるため、光学素子の大型化を図りながらも、光学機器に用いたときに高精細で高精度な結像特性及び投影特性を実現できる。
本発明の光学ガラスからなるガラス成形体は、例えばレンズ、プリズム、ミラー等の光学素子の用途に用いることができ、典型的には車載用光学機器やプロジェクタやコピー機等の、高温になり易い機器に用いることができる。
本発明の実施例(No.1~No.53)の組成、並びに、これらのガラスの屈折率(n)、アッベ数(ν)及び相対屈折率の温度係数(dn/dT)の結果を表1~表8に示す。なお、以下の実施例はあくまで例示の目的であり、これらの実施例のみ限定されるものではない。
本発明の実施例のガラスは、いずれも各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、水酸化物、メタ燐酸化合物等の通常の光学ガラスに使用される高純度原料を選定し、表に示した各実施例の組成の割合になるように秤量して均一に混合した後、白金坩堝に投入し、ガラス原料の熔解難易度に応じて電気炉で900~1500℃の温度範囲で2~5時間熔解させた後、攪拌均質化してから金型等に鋳込み、徐冷して作製した。
実施例のガラスの屈折率(n)及びアッベ数(ν)は、日本光学硝子工業会規格JOGIS01-2003に基づいて測定した。なお、本測定に用いたガラスは、徐冷降温速度を-25℃/hrとして、徐冷炉にて処理を行ったものを用いた。
実施例のガラスの相対屈折率の温度係数(dn/dT)は、日本光学硝子工業会規格JOGIS18-1994「光学ガラスの屈折率の温度係数の測定方法」に記載された方法のうち干渉法により、波長589.29nmの光についての、40℃から60℃に温度を変化させた際における、相対屈折率の温度係数の値を測定した。
Figure 2022125089000001
Figure 2022125089000002
Figure 2022125089000003
Figure 2022125089000004
Figure 2022125089000005
Figure 2022125089000006
Figure 2022125089000007
Figure 2022125089000008
表に表されるように、実施例の光学ガラスは、いずれも相対屈折率の温度係数が+2.0×10-6~-10.0×10-6(℃-1)の範囲内、より詳細には0×10-6~-3.0×10-6(℃-1)の範囲内にあり、所望の範囲内であった。他方で、比較例のガラスは、いずれも相対屈折率の温度係数が+2.0×10-6を超えていた。そのため、実施例の光学ガラスは、比較例のガラスよりも相対屈折率の温度係数が低い値(マイナス寄りの値)をとることがわかる。
また、実施例の光学ガラスは、いずれも屈折率(n)が1.65以上、より詳細には1.68以上であり、所望の範囲内であった。また、本発明の実施例の光学ガラスは、いずれもアッベ数(ν)が40以上62以下の範囲内、より詳細には44以上54以下の範囲内にあり、所望の範囲内であった。
また、実施例の光学ガラスは、安定なガラスを形成しており、ガラス作製時において失透が起こり難いものであった。
従って、実施例の光学ガラスは、屈折率(n)及びアッベ数(ν)が所望の範囲内にあり、相対屈折率の温度係数が低い値をとることが明らかになった。このことから、本発明の実施例の光学ガラスは、高温の環境で用いられる車載用光学機器やプロジェクタ等の光学系の小型化に寄与し、且つ温度変化による結像特性のずれ等の補正に寄与することが推察される。
さらに、本発明の実施例の光学ガラスを用いて、ガラスブロックを形成し、このガラスブロックに対して研削及び研磨を行い、レンズ及びプリズムの形状に加工した。その結果、安定に様々なレンズ及びプリズムの形状に加工することができた。
以上、本発明を例示の目的で詳細に説明したが、本実施例はあくまで例示の目的のみであって、本発明の思想及び範囲を逸脱することなく多くの改変を当業者により成し得ることが理解されよう。

Claims (5)

  1. 質量%で、
    SiO2成分を10.0%超27.0%未満、
    23成分を0%超20.0%未満、
    BaO成分を45.0%超63.0%以下、
    含有し、
    Ln23成分を合計で10.0%以上25.0%未満含有し(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)、
    SiO2成分及びB23の合計量が15.0%以上30.0%以下、
    TiO2成分、Nb25成分、WO3成分及びZrO2成分の合計量(質量和)が5.0%以下、
    であり
    MgO成分 0~5.0%
    CaO成分 0~10.0%
    SrO成分 0~10.0%
    2O成分 0~10.0%
    TiO2成分 0~5.0%未満
    Nb25成分 0~5.0%未満
    WO3成分 0~5.0%未満
    ZrO2成分 0~5.0%未満
    ZnO成分 0~10.0%
    La23成分 0~23.0%未満
    Gd23成分 0~20.0%
    23成分 0~20.0%
    Yb23成分 0~10.0%
    Li2O成分 0~3.0%
    Na2O成分 0~5.0%
    Al23成分 0~15.0%
    Ga23成分 0~10.0%
    25成分 0~10.0%
    GeO2成分 0~10.0%
    Ta25成分 0~5.0%
    Bi23成分 0~10.0%
    TeO2成分 0~10.0%
    SnO2成分 0~3.0%
    Sb23成分 0~1.0%
    であり、
    上記各元素の1種又は2種以上の酸化物の一部又は全部と置換した弗化物のFとしての含有量が0~10.0質量%であり、
    1.65以上の屈折率(n)を有し、40以上62以下のアッベ数(ν)を有し、
    相対屈折率(589.29nm)の温度係数(40~60℃)が+2.0×10-6~-10.0×10-6(℃-1)の範囲内にある光学ガラス。
  2. 質量和(RO+K2O)が40.0%以上65.0%以下である請求項1記載の光学ガラス(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)。
  3. 質量比(RO+K2O)/(TiO2+Nb25+WO3+ZrO2+ZnO+SiO2+B23)が1.00以上3.00以下である請求項1又は2のいずれか記載の光学ガラス(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)。
  4. 請求項1から3のいずれか記載の光学ガラスからなる光学素子。
  5. 請求項4に記載の光学素子を備える光学機器。
JP2022100601A 2016-06-29 2022-06-22 光学ガラス、プリフォーム及び光学素子 Active JP7354362B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2016129088 2016-06-29
JP2016129088 2016-06-29
JP2017090156 2017-04-28
JP2017090156 2017-04-28
JP2017119839A JP7096648B2 (ja) 2016-06-29 2017-06-19 光学ガラス、プリフォーム及び光学素子

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017119839A Division JP7096648B2 (ja) 2016-06-29 2017-06-19 光学ガラス、プリフォーム及び光学素子

Publications (2)

Publication Number Publication Date
JP2022125089A true JP2022125089A (ja) 2022-08-26
JP7354362B2 JP7354362B2 (ja) 2023-10-02

Family

ID=64107902

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017119839A Active JP7096648B2 (ja) 2016-06-29 2017-06-19 光学ガラス、プリフォーム及び光学素子
JP2022100601A Active JP7354362B2 (ja) 2016-06-29 2022-06-22 光学ガラス、プリフォーム及び光学素子

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017119839A Active JP7096648B2 (ja) 2016-06-29 2017-06-19 光学ガラス、プリフォーム及び光学素子

Country Status (1)

Country Link
JP (2) JP7096648B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109205616B (zh) * 2018-11-21 2021-06-25 成都光明光电股份有限公司 光学玻璃、玻璃预制件、光学元件和光学仪器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860640A (ja) * 1981-10-01 1983-04-11 Hoya Corp 光学ガラス
JPS58194755A (ja) * 1982-05-07 1983-11-12 Ohara Inc 光学ガラス
JPS6042245A (ja) * 1983-08-10 1985-03-06 Nippon Kogaku Kk <Nikon> 直接成形可能な光学ガラス
JPS60221338A (ja) * 1984-04-12 1985-11-06 Ohara Inc 光学ガラス
JP2958919B2 (ja) * 1991-11-25 1999-10-06 キヤノン株式会社 光学レンズ
JP2795334B2 (ja) * 1992-11-05 1998-09-10 株式会社オハラ 光学ガラス
JPH1143344A (ja) * 1997-06-03 1999-02-16 Ohara Inc 光学ガラス
DE19848077C1 (de) 1998-10-19 2000-01-27 Schott Glas Bleifreie optische Gläser
JP4286652B2 (ja) 2002-12-27 2009-07-01 Hoya株式会社 光学ガラス、プレス成形用ガラスゴブおよび光学素子
AU2003299892A1 (en) 2003-01-03 2004-08-10 Battelle Memorial Institute Glass-ceramic material and method of making
US7175700B2 (en) 2004-07-02 2007-02-13 Den-Mat Corporation Ytterbium-barium silicate radiopaque glasses
JP2008019103A (ja) 2006-07-10 2008-01-31 Ohara Inc ガラス
JP5237534B2 (ja) 2006-07-10 2013-07-17 株式会社オハラ ガラス
JP5727689B2 (ja) 2008-03-31 2015-06-03 株式会社オハラ 光学ガラス、光学素子及び光学機器
CN102674686B (zh) 2012-04-23 2014-07-16 湖北新华光信息材料有限公司 光学玻璃
JP2016052971A (ja) 2014-09-04 2016-04-14 株式会社オハラ ガラスの製造方法およびガラス
JP6727692B2 (ja) 2014-10-29 2020-07-22 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP6006894B1 (ja) 2016-02-02 2016-10-12 株式会社住田光学ガラス イメージガイドファイバ

Also Published As

Publication number Publication date
JP7354362B2 (ja) 2023-10-02
JP2018172261A (ja) 2018-11-08
JP7096648B2 (ja) 2022-07-06

Similar Documents

Publication Publication Date Title
JP7325927B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP7233844B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP7112856B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2017088482A (ja) 光学ガラス、プリフォーム材及び光学素子
JP7048348B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP7224099B2 (ja) 光学ガラス、プリフォーム及び光学素子
WO2018003582A1 (ja) 光学ガラス、プリフォーム及び光学素子
JP2023054181A (ja) 光学ガラス、プリフォーム及び光学素子
JP6363141B2 (ja) 光学ガラス、プリフォーム材及び光学素子
JP5875572B2 (ja) 光学ガラス、プリフォーム材及び光学素子
JP7227693B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP7085316B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2018203605A (ja) 光学ガラス、プリフォーム及び光学素子
JP7354362B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP7094095B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP7027002B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2022171696A (ja) 光学ガラス、プリフォーム及び光学素子
TW201441174A (zh) 光學玻璃、預成形材及光學元件
JP7174536B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP7126350B2 (ja) 光学ガラス、光学素子およびプリフォーム
JP2018012631A (ja) 光学ガラス、プリフォーム材及び光学素子
JP7446052B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP7089870B2 (ja) 光学ガラス、光学素子およびプリフォーム
WO2019031095A1 (ja) 光学ガラス、光学素子及び光学機器
JP7010856B2 (ja) 光学ガラス、プリフォーム及び光学素子

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220623

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230920

R150 Certificate of patent or registration of utility model

Ref document number: 7354362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150