WO2012099168A1 - 光学ガラス、プリフォーム及び光学素子 - Google Patents

光学ガラス、プリフォーム及び光学素子 Download PDF

Info

Publication number
WO2012099168A1
WO2012099168A1 PCT/JP2012/050967 JP2012050967W WO2012099168A1 WO 2012099168 A1 WO2012099168 A1 WO 2012099168A1 JP 2012050967 W JP2012050967 W JP 2012050967W WO 2012099168 A1 WO2012099168 A1 WO 2012099168A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
glass
mass
optical
optical glass
Prior art date
Application number
PCT/JP2012/050967
Other languages
English (en)
French (fr)
Inventor
広明 巴
浄行 桃野
Original Assignee
株式会社オハラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オハラ filed Critical 株式会社オハラ
Priority to CN2012800055094A priority Critical patent/CN103313947A/zh
Publication of WO2012099168A1 publication Critical patent/WO2012099168A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths

Definitions

  • the present invention relates to an optical glass, a preform, and an optical element.
  • Optical systems such as digital cameras and video cameras, although large and small, contain blurs called aberrations. This aberration is classified into monochromatic aberration and chromatic aberration.
  • the chromatic aberration is strongly dependent on the material characteristics of the lens used in the optical system.
  • the partial dispersion ratio ( ⁇ g, F) is small in the optical glass in the high refractive index and low dispersion region.
  • the partial dispersion ratio ( ⁇ g, F) is expressed by the following equation (1).
  • ⁇ g, F (n g ⁇ n F ) / (n F ⁇ n C ) (1)
  • optical glass there is an approximately linear relationship between a partial dispersion ratio ( ⁇ g, F) representing partial dispersion in a short wavelength region and an Abbe number ( ⁇ d ).
  • the straight line representing this relationship plots the partial dispersion ratio and Abbe number of NSL7 and PBM2 on the Cartesian coordinates employing the partial dispersion ratio ( ⁇ g, F) on the vertical axis and the Abbe number ( ⁇ d ) on the horizontal axis. It is represented by a straight line connecting two points, and this straight line is called a normal line (see FIG. 1).
  • Normal glass which is the standard for normal lines, varies depending on the optical glass manufacturer, but each company defines it with almost the same slope and intercept.
  • NSL7 and PBM2 are optical glasses manufactured by OHARA, Inc., and the Abbe number ( ⁇ d ) of PBM2 is 36.3, the partial dispersion ratio ( ⁇ g, F) is 0.5828, and the Abbe number ( ⁇ d ) of NSL7. Is 60.5, and the partial dispersion ratio ( ⁇ g, F) is 0.5436.
  • examples of the glass having a high refractive index (n d ) of 1.80 or more and a low Abbe number ( ⁇ d ) of 30 or less include La 2 O 3 as disclosed in Patent Documents 1 to 6, for example.
  • Optical glasses containing a large amount of rare earth elements such as components are known.
  • the optical glasses of Patent Documents 1 to 6 have low dispersion among the glasses having a high refractive index, they have a large partial dispersion ratio and are sufficient for use as a lens for correcting the secondary spectrum. It was not. That is, there is a demand for an optical glass having a small partial dispersion ratio ( ⁇ g, F) while having a high refractive index (n d ) and a large Abbe number ( ⁇ d ).
  • the present invention has been made in view of the above problems, and its object is to correct chromatic aberration while the refractive index (n d ) and Abbe number ( ⁇ d ) are within the desired ranges.
  • the object is to obtain a preferably used optical glass and a lens preform using the same.
  • the present inventors have conducted intensive studies and studies.
  • the B 2 O 3 component and the rare earth element component represented by the Ln 2 O 3 component
  • the rare earth element component represented by the Ln 2 O 3 component
  • the present invention provides the following.
  • the entire mass of the glass in terms of oxide composition 1.0 to 31.0% of B 2 O 3 component in mass% and Ln 2 O 3 component contains 18.0 to 65.0%
  • An optical glass having a TiO 2 component content of 30.0% or less and an Nb 2 O 5 component content of 30.0% or less.
  • any description of the optical glass of the mass sums for glass total weight of oxide composition in terms of (TiO 2 + Nb 2 O 5 ) is 35.0% or less 8.0% or more (1) to (3).
  • SiO 2 component 0 to 20.0% and / or ZrO 2 component 0 to 15.0% in terms of mass% with respect to the total mass of the glass of oxide conversion composition The optical glass according to any one of (1) to (4).
  • the optical glass according to (5) which contains 1.0% or more of a SiO 2 component by mass% with respect to the total mass of the glass having an oxide equivalent composition.
  • optical glass according to (5) or (6) which contains 3.0% or more of a ZrO 2 component by mass% with respect to the total mass of the glass having an oxide equivalent composition.
  • GeO 2 component 0 to 10.0% and / or Ta 2 O 5 component 0 to 20.0% by mass% with respect to the total mass of the glass with an oxide equivalent composition The optical glass according to any one of (1) to (7).
  • an oxide weight ratio TiO 2 / in terms of composition (Nb 2 O 5 + Ta 2 O 5) is one wherein the optical glass of 0.80 or more (1) to (10).
  • Gd 2 O 3 component 0 to 30.0% and / or Y 2 O 3 component 0 to 20.0% and / or Yb 2 O 3 in mass% with respect to the total glass mass of the oxide equivalent composition Component 0-6.0% and / or Lu 2 O 3 component 0-6.0% The optical glass according to any one of (1) to (13).
  • the mass sum of the RO component (wherein R is one or more selected from the group consisting of Mg, Ca, Sr, and Ba) with respect to the total glass mass of the oxide equivalent composition is 35.0% or less
  • the optical glass as described is one or more selected from the group consisting of Mg, Ca, Sr, and Ba.
  • Li 2 O component 0 to 15.0% and / or Na 2 O component 0 to 15.0% and / or K 2 O component 0 to 0% by mass with respect to the total glass mass of the oxide equivalent composition 15.0% The optical glass according to any one of (1) to (16).
  • the mass sum of the Rn 2 O component (wherein Rn is one or more selected from the group consisting of Li, Na and K) with respect to the total glass mass of the oxide equivalent composition is 10.0% or less
  • the optical glass as described is 10.0% or less
  • optical glass according to any one of (1) to (19), which has a refractive index (n d ) of 1.80 or more and an Abbe number ( ⁇ d ) of 22 or more and 30 or less.
  • an optical glass which is preferably used for correcting chromatic aberration and has high devitrification resistance while using a refractive index (n d ) and an Abbe number ( ⁇ d ) within desired ranges, and the use thereof. Preforms and optical elements can be obtained.
  • the B 2 O 3 component is 1.0 to 31.0% and the Ln 2 O 3 component is 40.0 to 65.0% by mass with respect to the total mass of the oxide-converted glass. %,
  • the content of the TiO 2 component is 30.0% or less, and the content of the Nb 2 O 5 component is 30.0% or less.
  • the high refractive index and the low dispersion can be achieved by including the rare earth element component having a strong effect of reducing the dispersion.
  • the optical glass is obtained, and the liquidus temperature of the glass is lowered. Therefore, an optical glass that can be preferably used for correcting chromatic aberration and has high devitrification resistance while using a refractive index (n d ) and an Abbe number ( ⁇ d ) within a desired range, and the same is used. Preforms and optical elements can be obtained.
  • the composition range of each component constituting the optical glass of the present invention is described below.
  • the contents of the respective components are all expressed in mass% with respect to the total glass mass of the oxide conversion composition.
  • the “oxide equivalent composition” means that the oxide, composite salt, metal fluoride, etc. used as the raw material of the glass component of the present invention are all decomposed and changed into oxides when melted. It is the composition which described each component contained in glass by making the total mass of the said production
  • the B 2 O 3 component is a component that forms a network structure inside the glass and promotes stable glass formation.
  • the content of the B 2 O 3 component is 1.0% or more, the liquidus temperature of the glass is lowered to make it difficult to devitrify, and a stable glass can be easily obtained.
  • the content of the B 2 O 3 component is 31.0% or less, the refractive index is hardly lowered, and thus a desired refractive index can be easily obtained.
  • the content of the B 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 1.0%, more preferably 3.0%, and most preferably 5.0% as the lower limit, preferably 31
  • the upper limit is 0.0%, more preferably 25.0%, still more preferably 20.0%, and most preferably 14.0%.
  • the B 2 O 3 component can be contained in the glass using, for example, H 3 BO 3 , Na 2 B 4 O 7 , Na 2 B 4 O 7 .10H 2 O, BPO 4 or the like as a raw material.
  • the mass sum of the contents of the Ln 2 O 3 component (wherein Ln is one or more selected from the group consisting of La, Gd, Y, Yb, and Lu) is 18.0%.
  • the content is preferably 65.0% or less.
  • this mass sum is 18.0% or more, it is possible to easily obtain a desired high refractive index and low partial dispersion ratio and to reduce coloring.
  • the mass sum is 65.0% or less, devitrification of the glass due to excessive inclusion of these components can be reduced while suppressing a decrease in dispersion of the glass.
  • the mass sum of the content of the Ln 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 18.0%, more preferably 30.0%, still more preferably 40.0%, most preferably
  • the lower limit is 45.0%, preferably 65.0%, more preferably 62.0%, and most preferably 60.0%.
  • TiO 2 component increases the refractive index and dispersion of the glass is a component and improve the devitrification resistance of the glass.
  • the content of the TiO 2 component is preferably 30.0%, more preferably 25.0%, still more preferably 22.0%, and most preferably 20.0%.
  • the upper limit. TiO 2 component may be contained in the glass by using as the starting material for example TiO 2 or the like.
  • the content of the TiO 2 component is preferably 5.0%, more preferably 6.6%, still more preferably 8.0%, and most preferably 10.0% with respect to the total glass mass of the oxide equivalent composition. The lower limit.
  • the Nb 2 O 5 component is a component that increases the refractive index and dispersion of the glass and improves the devitrification resistance of the glass.
  • the content of the Nb 2 O 5 component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 25.0%, even more preferably 20.0%, and most preferably 15.0. % Is the upper limit.
  • the desired optical constant and devitrification resistance can be obtained by containing the Nb 2 O 5 component.
  • the content of the Nb 2 O 5 component is preferably 1.0%, more preferably 2.0%, still more preferably 3.0%, and most preferably 3.8 with respect to the total mass of the glass having an oxide equivalent composition. % Is the lower limit.
  • the Nb 2 O 5 component can be contained in the glass using, for example, Nb 2 O 5 as a raw material.
  • the ratio of the content of the Ln 2 O 3 component to the content of the TiO 2 component is preferably 3.00 or more.
  • the mass ratio Ln 2 O 3 / TiO 2 of the oxide conversion composition is preferably 3.00, more preferably 3.20, and most preferably 3.40.
  • the upper limit of this mass ratio is, for example, often 10.00 or less, more specifically 8.00 or less, and more specifically 6.00 or less.
  • the La 2 O 3 component is a component that increases the refractive index of the glass and decreases dispersion.
  • the content of the La 2 O 3 component is set to 18.0% or more, it is possible to easily obtain a glass having a high refractive index, a low partial dispersion ratio, and a high transmittance for visible light.
  • the content of the La 2 O 3 component is reduced to 60.0% or less, the decrease in the dispersion of the glass more than necessary is suppressed, and the liquidus temperature rises due to the excessive inclusion of the La 2 O 3 component. Can be suppressed.
  • the content of the La 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 18.0%, more preferably 25.0% as a lower limit, further preferably 28.0%, most preferably The lower limit is 31.0%, preferably 60.0%, more preferably 58.0%, and most preferably 55.0%.
  • the La 2 O 3 component can be contained in the glass using, for example, La 2 O 3 , La (NO 3 ) 3 .XH 2 O (X is an arbitrary integer) or the like as a raw material.
  • the mass sum of the TiO 2 component and the Nb 2 O 5 component is preferably 8.0% or more and 35.0% or less.
  • the mass sum is 3.0% or more, a desired high refractive index can be easily obtained.
  • this mass sum 35.0% or less the increase in dispersion due to excessive inclusion of these components can be suppressed, but the decrease in the stability of the glass can be suppressed, and the devitrification resistance of the glass. Can be further increased.
  • the raise of the partial dispersion ratio of glass is suppressed, the glass which has a desired low partial dispersion ratio can be obtained.
  • the mass sum (TiO 2 + Nb 2 O 5 ) with respect to the total glass mass of the oxide conversion composition is preferably 8.0%, more preferably 11.5%, and most preferably 15.0% as the lower limit. Is 35.0%, more preferably 30.0%, and most preferably 25.0%.
  • the SiO 2 component is a component that increases the viscosity of the molten glass and lowers the liquidus temperature of the glass to suppress devitrification (generation of crystal), and is an optional component in the optical glass of the present invention.
  • the content of the SiO 2 component is preferably 20.0%, more preferably 14.0%, still more preferably 10.0%, and most preferably 7.0%. The upper limit.
  • the content of the SiO 2 component with respect to the total glass mass of the oxide conversion composition is preferably more than 0%, more preferably 1.0%, still more preferably 3.0%, and most preferably 4%. More than 0%.
  • SiO 2 component may be contained in the glass by using as a raw material such as SiO 2, K 2 SiF 6, Na 2 SiF 6 or the like.
  • the ZrO 2 component is a component that improves the devitrification resistance by increasing the refractive index of the glass and lowering the liquidus temperature of the glass, and is an optional component in the optical glass of the present invention.
  • the content of the ZrO 2 component with respect to the total glass mass of the oxide conversion composition is preferably 15.0%, more preferably 10.0%, and most preferably 8.0%.
  • the content of the ZrO 2 component may be 0%, but that contain ZrO 2 component, by liquidus temperature of the glass is lowered, it is possible to easily improve the devitrification resistance . Therefore, the content of the ZrO 2 component with respect to the total glass mass of the oxide conversion composition is preferably more than 0%, more preferably 1.0%, still more preferably 3.0%, and most preferably 4.2. % Is the lower limit.
  • the ZrO 2 component can be contained in the glass using, for example, ZrO 2 , ZrF 4 or the like as a raw material.
  • the GeO 2 component is a component having an effect of increasing the refractive index of the glass and improving the devitrification resistance, and is an optional component in the optical glass of the present invention.
  • the content of the GeO 2 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 5.0%, still more preferably 3.0%, and most preferably 2.0%.
  • the GeO 2 component can be contained in the glass using, for example, GeO 2 as a raw material.
  • the Ta 2 O 5 component is a component that increases the devitrification resistance by lowering the liquidus temperature of the glass while increasing the refractive index of the glass, and is an optional component in the optical glass of the present invention.
  • the content of the Ta 2 O 5 component 20.0% or less, it is possible to reduce the material cost of the glass and to avoid melting at high temperature and to reduce energy loss during glass production. . Therefore, the content of the Ta 2 O 5 component with respect to the total glass mass of the oxide conversion composition is preferably 20.0%, more preferably 15.0%, still more preferably 10.0%, and most preferably 5.0. % Is the upper limit.
  • the Ta 2 O 5 component can be contained in the glass using, for example, Ta 2 O 5 as a raw material.
  • the ratio of the mass sum of the GeO 2 component and the Ta 2 O 5 component to the mass sum of the TiO 2 component and the Nb 2 O 5 component is preferably 1.00 or less. Accordingly, since the amount of expensive GeO 2 component and Ta 2 O 5 component among the components to enhance the refractive index is reduced, it is possible to reduce the material cost of the optical glass. Therefore, the mass ratio (GeO 2 + Ta 2 O 5 ) / (TiO 2 + Nb 2 O 5 ) in the oxide equivalent composition is preferably 1.00, more preferably 0.80, and most preferably 0.50. To do.
  • the mass sum of the Nb 2 O 5 component and the Ta 2 O 5 component is preferably 3.0% or more and 30.0% or less.
  • the mass sum of these components is preferably 3.0%, more preferably 3.5%, and most preferably 3.8%.
  • the upper limit is preferably 30.0%, more preferably 20.0%, and most preferably 15.0%.
  • the ratio of the content of the TiO 2 component to the sum of the contents of the Nb 2 O 5 component and the Ta 2 O 5 component is preferably 0.80 or more.
  • the mass ratio TiO 2 / (Nb 2 O 5 + Ta 2 O 5 ) of the oxide conversion composition is preferably 0.80, more preferably 1.20, and even more preferably 1.78.
  • the upper limit of this mass ratio is, for example, often 10.00 or less, more specifically 8.00 or less, and more specifically 5.00 or less.
  • the WO 3 component is a component that increases the devitrification resistance by lowering the liquidus temperature of the glass, and is a component that increases the refractive index and dispersion of the glass, and is an optional component in the optical glass of the present invention.
  • the content of the WO 3 component 10.0% or less, the increase in the partial dispersion ratio of the glass can be suppressed, and the light transmittance at a visible short wavelength (500 nm or less) can be made difficult to deteriorate.
  • the content of the WO 3 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 7.0%, still more preferably 5.0%, and most preferably 3.0%. The upper limit.
  • the content of the WO 3 component with respect to the total glass mass of the oxide conversion composition is preferably more than 0%, more preferably 0.1%, still more preferably 0.5%, and most preferably 0.6%. Is preferably the lower limit.
  • the WO 3 component can be contained in the glass using, for example, WO 3 as a raw material.
  • the SnO 2 component is a component that reduces the oxidation of the molten glass to clarify the molten glass, and is an optional component in the optical glass of the present invention.
  • the SnO 2 component is a component that reduces the oxidation of the molten glass to clarify the molten glass, and is an optional component in the optical glass of the present invention.
  • the content of the SnO 2 component is preferably 5.0%, more preferably 3.0%, and most preferably 1.5%.
  • the content of SnO 2 component may be 0%, but that contain SnO 2 component of 0.1% or more, can be hard to deteriorate the transmittance for visible light of the glass. Therefore, the content of the SnO 2 component with respect to the total glass mass of the oxide conversion composition is preferably 0.1%, more preferably 0.3% as the lower limit, and even more preferably more than 0.5%. Good.
  • the SnO 2 component can be contained in the glass using, for example, SnO, SnO 2 , SnF 2 , SnF 4 or the like as a raw material.
  • the ratio of the content of the WO 3 component to the content of the SnO 2 component is preferably 0.1 or more and 3.0 or less.
  • the mass ratio WO 3 / SnO 2 in the oxide equivalent composition is preferably 0.1, more preferably 0.3, most preferably 0.5, and preferably 3.0, more preferably 2. 5, Most preferably, the upper limit is 2.0.
  • the Gd 2 O 3 component is a component that increases the refractive index of the glass and decreases the dispersion.
  • the content of the Gd 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 28.0%, and most preferably 25.0%.
  • the Gd 2 O 3 component can be contained in the glass using, for example, Gd 2 O 3 , GdF 3 or the like as a raw material.
  • the Y 2 O 3 component, the Yb 2 O 3 component, and the Lu 2 O 3 component are components that increase the refractive index of the glass and reduce the dispersion.
  • the content of the Y 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 20.0%, more preferably 15.0%, still more preferably 10.0%, and even more preferably 9.0. %, More preferably 8.0%, still more preferably 4.0%, and most preferably less than 2.0%.
  • the contents of the Yb 2 O 3 component and the Lu 2 O 3 component with respect to the total glass mass of the oxide conversion composition are each preferably 6.0%, more preferably 2.0%, still more preferably 1.5%. Most preferably, the upper limit is 1.0%.
  • the Y 2 O 3 component, the Yb 2 O 3 component, and the Lu 2 O 3 component may be contained in the glass using, for example, Y 2 O 3 , YF 3 , Yb 2 O 3 , Lu 2 O 3 or the like as a raw material. it can.
  • the MgO component, CaO component, SrO component, and BaO component are components that improve the meltability of the glass and increase the devitrification resistance, and are optional components in the optical glass of the present invention.
  • the content of one or more of the MgO component, the CaO component or the SrO component is 15.0% or less, and / or the BaO component content is 35.0% or less. It is possible to make it difficult to lower the refractive index of the glass and to raise the liquidus temperature of the glass. Therefore, the content of the MgO component, CaO component and SrO component with respect to the total glass mass of the oxide conversion composition is preferably 15.0%, more preferably 10.0%, and most preferably 6.0%. To do.
  • the content of the BaO component with respect to the total glass mass of the oxide conversion composition is preferably 35.0%, more preferably 20.0%, still more preferably 10.0%, and most preferably 6.0%.
  • the MgO component, CaO component, SrO component and BaO component use, for example, MgCO 3 , MgF 2 , CaCO 3 , CaF 2 , Sr (NO 3 ) 2 , SrF 2 , BaCO 3 , Ba (NO 3 ) 2 and the like as raw materials. Can be contained in the glass.
  • the ZnO component is a component that improves the chemical durability of the glass, lowers the glass transition point, and facilitates the formation of a stable glass, and is an optional component in the optical glass of the present invention.
  • the content of the ZnO component with respect to the total glass mass of the oxide conversion composition is preferably 15.0%, more preferably 10.0%, and still more preferably 5.5%.
  • the content of the ZnO component with respect to the total glass mass of the oxide conversion composition is 0.08. % Or less.
  • the ZnO component can be contained in the glass using, for example, ZnO, ZnF 2 or the like as a raw material.
  • the mass sum of the content of the RO component (wherein R is one or more selected from the group consisting of Mg, Ca, Sr, Ba and Zn) is 35.0% or less. It is preferable. Thereby, the devitrification of the glass due to excessive inclusion of the RO component can be reduced, and the refractive index of the glass can be made difficult to decrease. Therefore, the mass sum of the content of the RO component with respect to the total glass mass of the oxide conversion composition is preferably 35.0%, more preferably 25.0%, still more preferably 15.0%, and even more preferably 8. The upper limit is 0%, and most preferably 4.7%.
  • the Li 2 O component is a component that lowers the partial dispersion ratio of the glass, improves the meltability of the glass, and lowers the glass transition point, and is an optional component in the optical glass of the present invention.
  • the content of the Li 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 15.0%, more preferably 5.0%, still more preferably 3.0%, and even more preferably 2.0%. Is the upper limit.
  • the Li 2 O component can be contained in the glass using, for example, Li 2 CO 3 , LiNO 3 , LiF or the like as a raw material.
  • the Na 2 O component is a component that improves the meltability of the glass and lowers the glass transition point, and is an optional component in the optical glass of the present invention.
  • the content of the Na 2 O component 15.0% or less, it is possible to increase the stability of the glass and make it difficult to cause devitrification while making it difficult to lower the refractive index of the glass. Therefore, the content of the Na 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 15.0%, more preferably 5.0%, still more preferably 3.0%, and most preferably 2.0%. Is the upper limit.
  • the Na 2 O component can be contained in the glass using, for example, Na 2 CO 3 , NaNO 3 , NaF, Na 2 SiF 6 or the like as a raw material.
  • the K 2 O component is a component that improves the meltability of the glass and lowers the glass transition point, and is an optional component in the optical glass of the present invention.
  • an increase in the partial dispersion ratio of the glass can be suppressed by setting the content of the K 2 O component to 15.0%.
  • the content of the K 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 15.0%, more preferably 5.0%, still more preferably 3.0%, and most preferably 2.0%. Is the upper limit.
  • the K 2 O component can be contained in the glass using, for example, K 2 CO 3 , KNO 3 , KF, KHF 2 , K 2 SiF 6 or the like as a raw material.
  • the total content of the Rn 2 O component (wherein Rn is one or more selected from the group consisting of Li, Na, and K) is 10.0% or less. It is difficult to lower the refractive index, and the stability of the glass can be increased to reduce the occurrence of devitrification and the like. Therefore, the upper limit of the mass sum of the Rn 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 5.0%, and most preferably 3.0%.
  • the mass sum of the B 2 O 3 component, the ZnO component, the WO 3 component, and the Li 2 O component is preferably 3.0% or more and 30.0% or less.
  • the mass sums are preferably 3.0% or more and 30.0% or less.
  • the mass sum (B 2 O 3 + ZnO + WO 3 + Li 2 O) with respect to the total glass mass of the oxide conversion composition is preferably 3.0%, more preferably 5.0%, and most preferably 7.0%.
  • the upper limit is preferably 30.0%, more preferably 20.0%, and most preferably 18.0%.
  • the B 2 O 3 component, the ZnO component, the WO 3 component, and the Li 2 O component with respect to the mass sum of the SiO 2 component, the GeO 2 component, the Ta 2 O 5 component, and the Nb 2 O 5 component.
  • the mass ratio is preferably 0.50 or more and 5.00 or less. By setting this ratio to 0.5 or more, the content of the component that lowers the glass transition point relative to the component that increases the glass transition point increases, so that it is easier to obtain a glass having a lower glass transition point. it can. On the other hand, by setting this ratio to 5.00 or less, the devitrification resistance of the glass can be easily improved.
  • the mass ratio (B 2 O 3 + ZnO + WO 3 + Li 2 O) / (SiO 2 + GeO 2 + Ta 2 O 5 + Nb 2 O 5 ) in the oxide equivalent composition is preferably 0.50, more preferably 0.55, Most preferably, 0.60 is the lower limit, preferably 5.00, more preferably 4.00, even more preferably 3.00, and most preferably 2.00.
  • P 2 O 5 component is a component having an effect of improving resistance to devitrification and lower the liquidus temperature of the glass, an optional component of the optical glass of the present invention.
  • the content of the P 2 O 5 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%.
  • the P 2 O 5 component can be contained in the glass using, for example, Al (PO 3 ) 3 , Ca (PO 3 ) 2 , Ba (PO 3 ) 2 , BPO 4 , H 3 PO 4 or the like as a raw material. .
  • the Bi 2 O 3 component is a component that increases the refractive index of the glass and lowers the glass transition point, and is an optional component in the optical glass of the present invention.
  • the content of the Bi 2 O 3 component 10.0% or less, the light transmittance of a visible short wavelength (500 nm or less) is suppressed while suppressing the deterioration of the devitrification resistance of the glass and the increase in the partial dispersion ratio. Can be made difficult to worsen. Therefore, the content of the Bi 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 5.0%, and most preferably 3.0%.
  • the Bi 2 O 3 component can be contained in the glass using, for example, Bi 2 O 3 as a raw material.
  • TeO 2 component is a component that raises the refractive index, which is an optional component of the optical glass of the present invention.
  • TeO 2 can be alloyed with platinum when melting a glass raw material in a platinum crucible or a melting tank in which a portion in contact with the molten glass is made of platinum, so that the strength and heat resistance of the crucible and the melting tank can be obtained.
  • the content of the TeO 2 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0% as an upper limit, more preferably 8.0%, and most preferably 5.0%.
  • the TeO 2 component can be contained in the glass using, for example, TeO 2 as a raw material.
  • the Al 2 O 3 component is a component that facilitates the formation of stable glass and increases the chemical durability of the glass.
  • the deterioration of the devitrification resistance of the glass can be suppressed by making the content of the Al 2 O 3 component 10.0% or less. Therefore, the upper limit of the content of the Al 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 5.0%, and most preferably 2.0%.
  • the Al 2 O 3 component can be contained in the glass using, for example, Al 2 O 3 , Al (OH) 3 , AlF 3 or the like as a raw material.
  • the Ga 2 O 3 component is a component that facilitates the formation of a stable glass and increases the refractive index, and is an optional component in the optical glass of the present invention.
  • the content of the Ga 2 O 3 component is preferably 10.0%, more preferably 5.0%, and most preferably 2.0%.
  • Ga 2 O 3 component may be contained in the glass by using as the starting material for example Ga 2 O 3, Ga (OH ) 3 and the like.
  • the Sb 2 O 3 component is a component that defoams the molten glass and is an optional component in the optical glass of the present invention.
  • the Sb 2 O 3 component can be contained in the glass using, for example, Sb 2 O 3 , Sb 2 O 5 , Na 2 H 2 Sb 2 O 7 ⁇ 5H 2 O, or the like as a raw material.
  • components defoamed fining glass is not limited to the above Sb 2 O 3 component, a known refining agents in the field of glass production, it is possible to use a defoamer or a combination thereof.
  • the total content of defoaming agents such as Sb 2 O 3 component and CeO 2 component is preferably 1.0%, more preferably 0.8%, and most preferably 0.5%.
  • the total content of the defoaming agent may be less than 0.1% from the viewpoint that it is easy to obtain a glass having a low environmental load.
  • the GeO 2 component is not substantially contained since it increases the dispersibility of the glass.
  • each transition metal component such as V, Cr, Mn, Fe, Co, Ni, Cu, Ag, and Mo, except Ti, Zr, Nb, W, La, Gd, Y, Yb, and Lu, is independent of each other. Or, even when it is contained in a small amount in combination, the glass is colored and has the property of causing absorption at a specific wavelength in the visible range. .
  • lead compounds such as PbO, arsenic compounds such as As 2 O 3 , and components of Th, Cd, Tl, Os, Be, and Se have been refraining from being used as harmful chemical substances in recent years.
  • Environmental measures are required not only in the manufacturing process but also in the processing process and disposal after commercialization. Therefore, when importance is placed on the environmental impact, it is preferable not to substantially contain them except for inevitable mixing.
  • the optical glass is substantially free of substances that pollute the environment. Therefore, the optical glass can be manufactured, processed, and discarded without taking any special environmental measures.
  • the glass composition of the present invention cannot be expressed directly in the description of mol% because the composition is expressed by mass% with respect to the total mass of the glass of oxide conversion composition, but various properties required in the present invention.
  • the composition expressed by mol% of each component present in the glass composition satisfying the above conditions generally takes the following values in terms of oxide conversion.
  • the optical glass of the present invention is produced, for example, as follows. That is, the above raw materials are uniformly mixed so that each component is within a predetermined content range, and the prepared mixture is put into a platinum crucible, a quartz crucible or an alumina crucible and roughly melted, then a gold crucible, a platinum crucible In a platinum alloy crucible or iridium crucible, melt in a temperature range of 1200-1500 ° C. for 3-5 hours, stir to homogenize, blow out bubbles, etc. This is produced by removing the striae and molding using a mold.
  • the optical glass of the present invention preferably has low dispersion (high Abbe number) while having a predetermined high refractive index. More specifically, the refractive index (n d ) of the optical glass of the present invention is preferably 1.80, more preferably 1.85, still more preferably 1.90, and most preferably 1.95. . On the other hand, the upper limit of the refractive index (n d ) of the optical glass of the present invention is not particularly limited, but is generally 2.20 or less, more specifically 2.10 or less, and more specifically 2.05 or less. There are many cases. In addition, the Abbe number ( ⁇ d ) of the optical glass of the present invention is preferably 22, more preferably 24, and most preferably 26.
  • the upper limit of the Abbe number ( ⁇ d ) of the optical glass of the present invention is not particularly limited, but is generally approximately 30 or less. As a result, the degree of freedom in optical design is increased, and a large amount of light refraction can be obtained even if the device is made thinner.
  • the optical glass of the present invention has a low partial dispersion ratio ( ⁇ g, F). More specifically, the optical glass of the present invention has a partial dispersion ratio ( ⁇ g, F) of 0.615 or less. As a result, an optical glass having a small partial dispersion ratio while being in a region of high refractive index and low dispersion can be obtained, so that chromatic aberration of an optical element formed from the optical glass can be reduced.
  • the partial dispersion ratio ( ⁇ g, F) of the optical glass is preferably 0.615, more preferably 0.610, and most preferably 0.605.
  • the lower limit of the partial dispersion ratio ( ⁇ g, F) of the optical glass of the present invention is not particularly limited, but is generally about 0.585 or more, more specifically 0.588 or more, and more specifically 0.590. This is often the case.
  • the partial dispersion ratio ( ⁇ g, F) of the optical glass of the present invention is measured based on Japanese Optical Glass Industry Association Standard JOGIS01-2003.
  • the glass used for this measurement is one that has been treated in a slow cooling furnace at a slow cooling rate of ⁇ 25 ° C./hr.
  • the optical glass of this invention has little coloring.
  • the wavelength ( ⁇ 70 ) indicating a spectral transmittance of 70% in a sample having a thickness of 10 mm is 520 nm or less, more preferably 500 nm or less, and most preferably. Is 480 nm or less.
  • a wavelength ( ⁇ 5 ) showing a spectral transmittance of 5% in a sample having a thickness of 10 mm is 420 nm or less, more preferably 400 nm or less, and most preferably 380 nm or less.
  • the transmittance of the optical glass of the present invention is measured according to Japan Optical Glass Industry Association Standard JOGIS02. Specifically, a face parallel polished product having a thickness of 10 ⁇ 0.1 mm was measured for a spectral transmittance of 200 to 800 nm according to JISZ8722, and ⁇ 70 (wavelength at 70% transmittance) and ⁇ 5 (transmittance). (Wavelength at 5%).
  • the optical glass of the present invention preferably has high devitrification resistance.
  • the optical glass of the present invention preferably has a low liquidus temperature of 1240 ° C. or lower. More specifically, the upper limit of the liquidus temperature of the optical glass of the present invention is preferably 1240 ° C, more preferably 1200 ° C, still more preferably 1180 ° C, and most preferably 1160 ° C.
  • the stability of the glass is increased and crystallization is reduced, so that the devitrification resistance when the glass is formed from the molten state can be improved, and the optical properties of the optical element using the glass are affected. Can be reduced.
  • the lower limit of the liquidus temperature of the optical glass of the present invention is not particularly limited, but the liquidus temperature of the glass obtained by the present invention is approximately 500 ° C. or higher, specifically 550 ° C. or higher, more specifically 600. Often above °C.
  • the liquid phase temperature of the optical glass of the present invention is such that a 30 cc cullet-shaped glass sample is placed in a platinum crucible in a platinum crucible having a capacity of 50 ml and completely melted at 1350 ° C. in steps of 10 ° C. from 1300 ° C. to 1000 ° C.
  • the temperature is lowered to one of the temperatures set in step 1, held for 12 hours, taken out of the furnace and cooled, and immediately after observing the presence of crystals in the glass surface and glass, from the lowest temperature at which no crystals are observed. Desired.
  • the devitrification resistance of the optical glass of the present invention is that, in addition to the liquidus temperature described above, the glass raw material is placed in a 50 cc platinum crucible and melted in a furnace at 1200 ° C. to 1400 ° C. for about 120 minutes and stirred. After the homogenization, the obtained glass is kept in a furnace set at 1000 to 1150 ° C. for 10 hours, and the temperature is maintained by observing crystals precipitated on the surface and inside of the glass and the contact surface with the inner wall of the crucible. It can also be determined by testing.
  • a glass molded body can be produced from the produced optical glass by means of mold press molding such as reheat press molding or precision press molding. That is, a preform for mold press molding is prepared from optical glass, and after performing reheat press molding on the preform, polishing is performed to prepare a glass molded body, or for example, polishing is performed.
  • the preform can be precision press-molded to produce a glass molded body.
  • the means for producing the glass molded body is not limited to these means.
  • the glass molded body produced in this manner is useful for various optical elements, and among them, it is particularly preferable to use for optical elements such as lenses and prisms.
  • optical elements such as lenses and prisms.
  • color bleeding due to chromatic aberration in the transmitted light of the optical system provided with the optical element is reduced. Therefore, when this optical element is used in a camera, a photographing object can be expressed more accurately, and when this optical element is used in a projector, a desired image can be projected with higher definition.
  • the glasses of Examples (No. 1 to No. 63) and Reference Examples (No. 1 to No. 3) of the present invention are all oxides, hydroxides, carbonates corresponding to the raw materials of the respective components, Select high-purity raw materials used in ordinary optical glass such as nitrates, fluorides, hydroxides, metaphosphate compounds, etc., so that the composition ratios of the examples and reference examples shown in Tables 1 to 9 are obtained.
  • the refractive index (n d ) and Abbe number ( ⁇ d ) and partial dispersion ratio ( ⁇ g, F) of the glasses of Examples (No. 1 to No. 63) and Reference Examples (No. 1 to No. 3) ) was measured based on Japan Optical Glass Industry Association Standard JOGIS01-2003.
  • the glass used in this measurement was a glass that had been treated in a slow cooling furnace at a slow cooling rate of ⁇ 25 ° C./hr.
  • the transmittance of the glass of Examples (No. 1 to No. 63) and Reference Examples (No. 1 to No. 3) was measured according to Japan Optical Glass Industry Association Standard JOGIS02.
  • the presence / absence and degree of coloration of the glass were determined by measuring the transmittance of the glass.
  • a face parallel polished product having a thickness of 10 ⁇ 0.1 mm was measured for a spectral transmittance of 200 to 800 nm in accordance with JISZ8722, and a wavelength ( ⁇ 70 ) and ⁇ 5 (transmittance) when the transmittance was 70%. Wavelength at 5%).
  • liquid phase temperature of the glass of Examples (No. 1 to No. 63) and Reference Examples (No. 1 to No. 3) is a platinum crucible having a capacity of 50 ml, and a 30 cc cullet glass sample is platinum. Put it in a crucible and make it completely melted at 1350 ° C. Decrease the temperature from 1300 ° C to 1000 ° C in 10 ° C increments and hold it for 12 hours. It was determined from the lowest temperature at which no crystals were observed when the presence or absence of crystals in the glass was observed.
  • Each of the optical glasses according to the examples of the present invention has an Abbe number ( ⁇ d ) of 30 or less, and the Abbe number ( ⁇ d ) is 22 or more, more specifically 28 or more. there were.
  • the optical glass of the example of the present invention had a partial dispersion ratio ( ⁇ g, F) of 0.615 or less, more specifically 0.604 or less. Therefore, the optical glass of the example of the present invention has low partial dispersion ratio ( ⁇ g, F) while having low dispersion, and it has been clarified that chromatic aberration can be reduced when an optical element is formed.
  • the optical glasses of the examples of the present invention all have a refractive index (n d ) of 1.90 or more, more specifically 1.98 or more, and this refractive index (n d ) of 2.20 or less. More specifically, it was 2.01 or less, and was within a desired range.
  • ⁇ 70 (wavelength at 70% transmittance) was 520 nm or less, more specifically, 487 nm or less.
  • ⁇ 5 (wavelength at 5% transmittance) was 420 nm or less, more specifically, 379 nm or less, and was in a desired range.
  • the glass of Reference Example (No. 1) had a ⁇ 70 of 501 nm. For this reason, it became clear that the optical glass of the Example of this invention has the high transmittance
  • the optical glasses of the examples of the present invention all have a liquidus temperature of 1240 ° C. or lower, more specifically 1220 ° C. or lower, and the liquidus temperature is 500 ° C. or higher, which is within a desired range. It was.
  • the glass of the reference examples No. 2 to No. 3 had a liquidus temperature of 1300 ° C., and particularly the glass of the reference example (No. 2) was devitrified. For this reason, it became clear that the optical glass of the examples of the present invention has higher devitrification resistance than the glasses of the reference examples (No. 2 to No. 3).
  • the optical glass of the example of the present invention has low chromatic aberration and high transparency to light in the visible wavelength range, while the refractive index (n d ) and Abbe number ( ⁇ d ) are within the desired ranges. And it became clear that devitrification resistance is high.
  • reheat press molding was performed, and then grinding and polishing were performed to form lenses and prisms.
  • a precision press-molding preform was formed using the optical glass of the example of the present invention, and the precision press-molding preform was precision press-molded. In either case, the glass after heat softening did not cause problems such as opacification and devitrification, and could be stably processed into various lens and prism shapes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

屈折率(n)及びアッベ数(ν)が所望の範囲内にありながら、色収差の補正に好ましく用いられる光学ガラスと、これを用いたレンズプリフォームを提供する。 光学ガラスは、酸化物換算組成のガラス全質量に対して、質量%でB成分を1.0~31.0%及びLn成分を40.0~65.0%を含有し、TiO成分の含有量が30.0%以下、Nb成分の含有量が30.0%以下である。レンズプリフォームは、この光学ガラスを母材とする。

Description

光学ガラス、プリフォーム及び光学素子
 本発明は、光学ガラス、プリフォーム及び光学素子に関する。
 デジタルカメラやビデオカメラ等の光学系は、その大小はあるが、収差と呼ばれるにじみを含んでいる。この収差は単色収差と色収差に分類されるが、特に色収差は、光学系に使用されるレンズの材料特性に強く依存している。ここで、色収差を改善するために、高屈折率低分散領域の光学ガラスに部分分散比(θg,F)が小さいことが望まれている。
 部分分散比(θg,F)は、下式(1)により示される。
θg,F=(n-n)/(n-n)・・・・・・(1)
 光学ガラスには、短波長域の部分分散性を表す部分分散比(θg,F)とアッベ数(ν)との間に、およそ直線的な関係がある。この関係を表す直線は、部分分散比(θg,F)を縦軸に、アッベ数(ν)を横軸に採用した直交座標上で、NSL7とPBM2の部分分散比及びアッベ数をプロットした2点を結ぶ直線で表され、この直線はノーマルラインと呼ばれている(図1参照)。ノーマルラインの基準となるノーマルガラスは、光学ガラスメーカー毎によっても異なっているが、各社ともほぼ同等の傾きと切片で定義している。(NSL7とPBM2は株式会社オハラ社製の光学ガラスであり、PBM2のアッベ数(ν)は36.3,部分分散比(θg,F)は0.5828、NSL7のアッベ数(ν)は60.5、部分分散比(θg,F)は0.5436である。)
 ここで、1.80以上の高い屈折率(n)と、30以下の低いアッベ数(ν)とを有するガラスとしては、例えば特許文献1~6に示されるような、La成分等の希土類元素成分を多く含有する光学ガラスが知られている。
特開昭60-033229号公報 特開2005-179142号公報 特開昭60-131845号公報 特開2006-137645号公報 特開2007-022846号公報 特開2007-112697号公報
 しかし、特許文献1~6の光学ガラスは、高屈折率を有するガラスの中でも低分散を有している一方で、部分分散比が大きく、前記二次スペクトルを補正するレンズとして使用するには十分でなかった。すなわち、高い屈折率(n)及び大きなアッベ数(ν)を有しながらも、部分分散比(θg,F)の小さい光学ガラスが求められている。
 本発明は、上記問題点に鑑みてなされたものであって、その目的とするところは、屈折率(n)及びアッベ数(ν)が所望の範囲内にありながら、色収差の補正に好ましく用いられる光学ガラスと、これを用いたレンズプリフォームを得ることにある。
 本発明者らは、上記課題を解決するために、鋭意試験研究を重ねた結果、B成分及び希土類元素成分(Ln成分で表される)にTiO成分及びNb成分を併用することで、高屈折率及び低分散を有しながらも部分分散比が小さく、可視光に対する透明性が高く、且つ、液相温度の低いガラスが得られることを見出し、本発明を完成するに至った。具体的には、本発明は以下のようなものを提供する。
 (1) 酸化物換算組成のガラス全質量に対して、質量%でB成分を1.0~31.0%及びLn成分を18.0~65.0%を含有し、TiO成分の含有量が30.0%以下、Nb成分の含有量が30.0%以下である光学ガラス。
 (2) 酸化物換算組成の質量比Ln/TiOが3.00以上である(1)記載の光学ガラス(式中、LnはLa、Gd、Y、Yb、Luからなる群より選択される1種以上)。
 (3) 酸化物換算組成のガラス全質量に対して、質量%でLa成分を18.0~60.0%含有する(1)又は(2)記載の光学ガラス。
 (4) 酸化物換算組成のガラス全質量に対する質量和(TiO+Nb)が8.0%以上35.0%以下である(1)から(3)のいずれか記載の光学ガラス。
 (5) 酸化物換算組成のガラス全質量に対して、質量%で
SiO成分 0~20.0%及び/又は
ZrO成分 0~15.0%
である(1)から(4)のいずれか記載の光学ガラス。
 (6) 酸化物換算組成のガラス全質量に対して、質量%でSiO成分を1.0%以上含有する(5)記載の光学ガラス。
 (7) 酸化物換算組成のガラス全質量に対して、質量%でZrO成分を3.0%以上含有する(5)又は(6)記載の光学ガラス。
 (8) 酸化物換算組成のガラス全質量に対して、質量%で
GeO成分 0~10.0%及び/又は
Ta成分 0~20.0%
である(1)から(7)のいずれか記載の光学ガラス。
 (9) 酸化物換算組成における質量比(GeO+Ta)/(TiO+Nb)が1.00以下である(8)記載の光学ガラス。
 (10) 酸化物換算組成のガラス全質量に対する質量和(Nb+Ta)が3.0%以上30.0%以下である(1)から(9)のいずれか記載の光学ガラス。
 (11) 酸化物換算組成における質量比TiO/(Nb+Ta)が0.80以上である(1)から(10)のいずれか記載の光学ガラス。
 (12) 酸化物換算組成のガラス全質量に対して、質量%で
WO成分 0~10.0%及び/又は
SnO成分 0~5.0%
である(1)から(11)のいずれか記載の光学ガラス。
 (13) 酸化物換算組成のガラス全質量に対して、WO成分を0.5%より多く含有する(12)記載の光学ガラス。
 (14) 酸化物換算組成のガラス全質量に対して、質量%で
Gd成分 0~30.0%及び/又は
成分 0~20.0%及び/又は
Yb成分 0~6.0%及び/又は
Lu成分 0~6.0%
である(1)から(13)のいずれか記載の光学ガラス。
 (15) 酸化物換算組成のガラス全質量に対して、質量%で
MgO成分 0~15.0%及び/又は
CaO成分 0~15.0%及び/又は
SrO成分 0~15.0%及び/又は
BaO成分 0~35.0%及び/又は
ZnO成分 0~15.0%
である(1)から(14)のいずれか記載の光学ガラス。
 (16) 酸化物換算組成のガラス全質量に対するRO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)の質量和が35.0%以下である(15)記載の光学ガラス。
 (17) 酸化物換算組成のガラス全質量に対して、質量%で
LiO成分 0~15.0%及び/又は
NaO成分 0~15.0%及び/又は
O成分 0~15.0%
である(1)から(16)いずれか記載の光学ガラス。
 (18) 酸化物換算組成のガラス全質量に対するRnO成分(式中、RnはLi、Na、Kからなる群より選択される1種以上)の質量和が10.0%以下である(17)記載の光学ガラス。
 (19) 酸化物換算組成のガラス全質量に対して、質量%で
成分 0~10.0%及び/又は
Bi成分 0~10.0%及び/又は
TeO成分 0~10.0%及び/又は
Al成分 0~10.0%及び/又は
Ga成分 0~10.0%及び/又は
Sb成分 0~1.0%
である(1)から(18)のいずれか記載の光学ガラス。
 (20) 1.80以上の屈折率(n)を有し、22以上30以下のアッベ数(ν)を有する(1)から(19)のいずれか記載の光学ガラス。
 (21) 0.615以下の部分分散比(θg,F)を有する(1)から(20)のいずれか記載の光学ガラス。
 (22) (1)から(21)のいずれか記載の光学ガラスからなるプリフォーム材。
 (23) (22)記載のプリフォーム材をプレス成形して作製する光学素子。
 (24) (1)から(21)のいずれか記載の光学ガラスを母材とする光学素子。
 (25) (23)又は(24)のいずれか記載の光学素子を備える光学機器。
 本発明によれば、屈折率(n)及びアッベ数(ν)が所望の範囲内にありながら、色収差の補正に好ましく用いられ、且つ耐失透性の高い光学ガラスと、これを用いたプリフォーム及び光学素子を得ることができる。
部分分散比(θg,F)が縦軸でアッベ数(νd)が横軸の直交座標に表されるノーマルラインを示す図である。
 本発明の光学ガラスは、酸化物換算組成のガラス全質量に対して、質量%でB成分を1.0~31.0%及びLn成分を40.0~65.0%を含有し、TiO成分の含有量が30.0%以下、Nb成分の含有量が30.0%以下である。B成分及び希土類元素成分(Ln成分)を所定の含有量の範囲で含有することによって、ガラスの部分分散比が小さくなり、且つ可視光に対する透明性が高められる。また、分散を大きくする作用のあるTiO成分及びNb成分を含有する場合であっても、分散を小さくする作用の強い希土類元素成分を含有することで、高屈折率及び低分散を有する光学ガラスが得られ、且つ、ガラスの液相温度が低くなる。このため、屈折率(n)及びアッベ数(ν)が所望の範囲内にありながら、色収差の補正に好ましく用いることができ、且つ耐失透性が高い光学ガラスと、これを用いたプリフォーム及び光学素子を得ることができる。
 以下、本発明の光学ガラスの実施形態について詳細に説明する。本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。なお、説明が重複する箇所については、適宜説明を省略する場合があるが、発明の趣旨を限定するものではない。
[ガラス成分]
 本発明の光学ガラスを構成する各成分の組成範囲を以下に述べる。本明細書中において、各成分の含有量は、特に断りがない場合、全て酸化物換算組成のガラス全質量に対する質量%で表示されるものとする。ここで、「酸化物換算組成」とは、本発明のガラス構成成分の原料として使用される酸化物、複合塩、金属弗化物等が溶融時に全て分解され酸化物へ変化すると仮定した場合に、当該生成酸化物の総質量を100質量%として、ガラス中に含有される各成分を表記した組成である。
<必須成分、任意成分について>
 B成分は、ガラス内部で網目構造を形成し、安定なガラス形成を促す成分である。特に、B成分の含有量を1.0%以上にすることで、ガラスの液相温度を下げて失透し難くし、安定なガラスを得易くすることができる。一方、B成分の含有量を31.0%以下にすることで、屈折率が低下し難くなるため、所望の屈折率を得易くすることができる。従って、酸化物換算組成のガラス全質量に対するB成分の含有量は、好ましくは1.0%、より好ましくは3.0%、最も好ましくは5.0%を下限とし、好ましくは31.0%、より好ましくは25.0%、さらに好ましくは20.0%、最も好ましくは14.0%を上限とする。B成分は、原料として例えばHBO、Na、Na・10HO、BPO等を用いてガラス内に含有することができる。
 本発明の光学ガラスは、Ln成分(式中、LnはLa、Gd、Y、Yb、Luからなる群より選択される1種以上)の含有量の質量和が、18.0%以上65.0%以下であることが好ましい。ここで、この質量和を18.0%以上にすることで、所望の高い屈折率及び低い部分分散比を得易くし、且つ着色を少なくすることができる。一方、この質量和を65.0%以下にすることで、ガラスの分散の低下を抑えつつ、これら成分の過剰な含有によるガラスの失透を低減することができる。従って、酸化物換算組成のガラス全質量に対するLn成分の含有量の質量和は、好ましくは18.0%、より好ましくは30.0%、さらに好ましくは40.0%、最も好ましくは45.0%を下限とし、好ましくは65.0%、より好ましくは62.0%、最も好ましくは60.0%を上限とする。
 TiO成分は、ガラスの屈折率及び分散を高め、且つガラスの耐失透性を向上する成分である。特に、TiO成分の含有量を30.0%以下にすることで、ガラスの部分分散比の上昇を抑え、且つ、可視短波長(500nm以下)の光線透過率を悪化し難くすることができる。従って、酸化物換算組成のガラス全質量に対するTiO成分の含有量は、好ましくは30.0%、より好ましくは25.0%、さらに好ましくは22.0%、最も好ましくは20.0%を上限とする。TiO成分は、原料として例えばTiO等を用いてガラス内に含有することができる。一方で、TiO成分を含有することで、所望の光学恒数及び耐失透性を得ることができる。従って、酸化物換算組成のガラス全質量に対するTiO成分の含有量は、好ましくは5.0%、より好ましくは6.6%、さらに好ましくは8.0%、最も好ましくは10.0%を下限とする。
 Nb成分は、ガラスの屈折率及び分散を高め、且つガラスの耐失透性を向上する成分である。特に、Nb成分の含有量を30.0%以下にすることで、Nb成分の過剰な含有による失透を抑え、且つガラスの部分分散比の上昇を抑えることができる。従って、酸化物換算組成のガラス全質量に対するNb成分の含有量は、好ましくは30.0%、より好ましくは25.0%、さらに好ましくは20.0%、最も好ましくは15.0%を上限とする。一方で、Nb成分を含有することで、所望の光学恒数及び耐失透性を得ることができる。従って、酸化物換算組成のガラス全質量に対するNb成分の含有量は、好ましくは1.0%、より好ましくは2.0%、さらに好ましくは3.0%、最も好ましくは3.8%を下限とする。Nb成分は、原料として例えばNb等を用いてガラス内に含有することができる。
 本発明の光学ガラスは、TiO成分の含有量に対するLn成分の含有量の比率が3.00以上であることが好ましい。これにより、高い屈折率を維持しながらも、ガラスの液相温度を下げて安定性を高め、且つガラス着色を低減することができる。従って、酸化物換算組成の質量比Ln/TiOは、好ましくは3.00、より好ましくは3.20、最も好ましくは3.40を下限とする。一方、この質量比の上限は、例えば10.00以下、より具体的には8.00以下、さらに具体的には6.00以下であることが多い。
 La成分は、ガラスの屈折率を高めて分散を小さくする成分である。特に、La成分の含有量を18.0%以上にすることで、高い屈折率及び低い部分分散比を有し、且つ、可視光に対する透過率の高いガラスを得易くすることができる。一方、La成分の含有量を60.0%以下にすることで、必要以上のガラスの分散の低下を抑制し、且つ、La成分の過剰な含有による液相温度の上昇を抑えることができる。従って、酸化物換算組成のガラス全質量に対するLa成分の含有量は、好ましくは18.0%、より好ましくは25.0%を下限とし、さらに好ましくは28.0%、最も好ましくは31.0%を下限とし、好ましくは60.0%、より好ましくは58.0%、最も好ましくは55.0%を上限とする。La成分は、原料として例えばLa、La(NO・XHO(Xは任意の整数)等を用いてガラス内に含有することができる。
 また、本発明の光学ガラスは、TiO成分及びNb成分の質量和が8.0%以上35.0%以下であることが好ましい。特に、この質量和を3.0%以上にすることで、所望の高屈折率を得易くすることができる。一方で、この質量和を35.0%以下にすることで、これらの成分の過剰な含有による分散の上昇が抑えられながらも、ガラスの安定性の低下が抑えられ、ガラスの耐失透性をより一層高めることができる。また、ガラスの部分分散比の上昇が抑えられるため、所望の低い部分分散比を有するガラスを得ることができる。従って、酸化物換算組成のガラス全質量に対する質量和(TiO+Nb)は、好ましくは8.0%、より好ましくは11.5%、最も好ましくは15.0%を下限とし、好ましくは35.0%、より好ましくは30.0%、最も好ましくは25.0%を上限とする。
 SiO成分は、溶融ガラスの粘度を高め、且つガラスの液相温度を低くして失透(結晶物の発生)を抑制する成分であり、本発明の光学ガラス中の任意成分である。特に、SiO成分の含有量を20.0%以下にすることで、高温での溶解を回避することができ、且つガラスの屈折率の低下を抑えることができる。従って、酸化物換算組成のガラス全質量に対するSiO成分の含有量は、好ましくは20.0%、より好ましくは14.0%、さらに好ましくは10.0%、最も好ましくは7.0%を上限とする。なお、SiO成分を含有しなくてもよいが、SiO成分を含有することで、ガラスの耐失透性を高めることができる。従って、酸化物換算組成のガラス全質量に対するSiO成分の含有量は、好ましくは0%より多くし、より好ましくは1.0%、さらに好ましくは3.0%を下限とし、最も好ましくは4.0%より多くする。SiO成分は、原料として例えばSiO、KSiF、NaSiF等を用いてガラス内に含有することができる。
 ZrO成分は、ガラスの屈折率を高め、ガラスの液相温度を低くして耐失透性を向上する成分であり、本発明の光学ガラス中の任意成分である。特に、ZrO成分の含有量を15.0%以下にすることで、ガラスのアッベ数の低下を抑えるとともに、ガラスの製造時における高温での溶解を回避し、ガラス製造時のエネルギー損失を低減することができる。従って、酸化物換算組成のガラス全質量に対するZrO成分の含有量は、好ましくは15.0%、より好ましくは10.0%、最も好ましくは8.0%を上限とする。なお、ZrO成分の含有量は0%であってもよいが、ZrO成分を含有することで、ガラスの液相温度が低くなることで、耐失透性を向上し易くすることができる。従って、酸化物換算組成のガラス全質量に対するZrO成分の含有量は、好ましくは0%よりも多くし、より好ましくは1.0%、さらに好ましくは3.0%、最も好ましくは4.2%を下限とする。ZrO成分は、原料として例えばZrO、ZrF等を用いてガラス内に含有することができる。
 GeO成分は、ガラスの屈折率を高め、耐失透性を向上させる効果を有する成分であり、本発明の光学ガラス中の任意成分である。しかしながら、GeO成分は原料価格が高いことから、その量が多いと材料コストが高くなるため、得られるガラスが実用的でなくなる。従って、酸化物換算組成のガラス全質量に対するGeO成分の含有量は、好ましくは10.0%、より好ましくは5.0%、さらに好ましくは3.0%、最も好ましくは2.0%を上限とする。GeO成分は、原料として例えばGeO等を用いてガラス内に含有することができる。
 Ta成分は、ガラスの屈折率を高めつつ、ガラスの液相温度を下げて耐失透性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、Ta成分の含有量を20.0%以下にすることで、ガラスの材料コストを低減するとともに、高温での溶解を回避してガラス製造時のエネルギー損失を低減することができる。従って、酸化物換算組成のガラス全質量に対するTa成分の含有量は、好ましくは20.0%、より好ましくは15.0%、さらに好ましくは10.0%、最も好ましくは5.0%を上限とする。Ta成分は、原料として例えばTa等を用いてガラス内に含有することができる。
 また、本発明の光学ガラスは、TiO成分及びNb成分の質量和に対する、GeO成分及びTa成分の質量和の比率が、1.00以下であることが好ましい。これにより、屈折率を高める成分の中でも高価なGeO成分及びTa成分の含有量が低減されるため、光学ガラスの材料コストを低減することができる。従って、酸化物換算組成における質量比(GeO+Ta)/(TiO+Nb)は、好ましくは1.00、より好ましくは0.80、最も好ましくは0.50を上限とする。
 また、本発明の光学ガラスは、Nb成分及びTa成分の質量和が3.0%以上30.0%以下であることが好ましい。これら成分の質量和を3.0%以上30.0%以下の範囲内にすることで、ガラスの液相温度が低くなるため、より耐失透性の高い光学ガラスを得易くすることができる。従って、酸化物換算組成のガラス全質量に対する質量和(Nb+Ta)は、好ましくは3.0%、より好ましくは3.5%、最も好ましくは3.8%を下限とし、好ましくは30.0%、より好ましくは20.0%、最も好ましくは15.0%を上限とする。
 また、本発明の光学ガラスは、Nb成分及びTa成分の含有量の和に対する、TiO成分の含有量の比率が0.80以上であることが好ましい。これにより、ガラスの安定性を高めながらも、より高い屈折率を得ることができる。従って、酸化物換算組成の質量比TiO/(Nb+Ta)は、好ましくは0.80、より好ましくは1.20、さらに好ましくは1.78を下限とする。特に、1160℃以下の低い液相温度を実現し易くできる点では、2.05を下限とすることがより一層好ましい。一方、この質量比の上限は、例えば10.00以下、より具体的には8.00以下、さらに具体的には5.00以下であることが多い。
 WO成分は、ガラスの液相温度を下げて耐失透性を高める成分であるとともに、ガラスの屈折率及び分散を高める成分であり、本発明の光学ガラス中の任意成分である。特に、WO成分の含有量を10.0%以下にすることで、ガラスの部分分散比の上昇を抑え、且つ、可視短波長(500nm以下)の光線透過率を悪化し難くすることができる。従って、酸化物換算組成のガラス全質量に対するWO成分の含有量は、好ましくは10.0%、より好ましくは7.0%、さらに好ましくは5.0%、最も好ましくは3.0%を上限とする。一方、酸化物換算組成のガラス全質量に対するWO成分の含有量は、好ましくは0%より多くし、より好ましくは0.1%、さらに好ましくは0.5%、最も好ましくは0.6%を下限とすることが好ましい。WO成分は、原料として例えばWO等を用いてガラス内に含有することができる。
 SnO成分は、溶融ガラスの酸化を低減して溶融ガラスを清澄する成分であり、本発明の光学ガラス中の任意成分である。特に、SnO成分の含有量を5.0%以下にすることで、溶融ガラスの還元によるガラスの着色や、ガラスの失透を生じ難くすることができる。また、SnO成分と溶解設備(特にPt等の貴金属)との合金化が低減されるため、溶解設備の長寿命化を図ることができる。従って、酸化物換算組成のガラス全質量に対するSnO成分の含有量は、好ましくは5.0%、より好ましくは3.0%、最も好ましくは1.5%を上限とする。なお、SnO成分の含有量は0%であってもよいが、SnO成分を0.1%以上含有することで、ガラスの可視光に対する透過率を悪化し難くすることができる。従って、酸化物換算組成のガラス全質量に対するSnO成分の含有量は、好ましくは0.1%、より好ましくは0.3%を下限とし、さらに好ましくは0.5%より多く含有してもよい。SnO成分は、原料として例えばSnO、SnO、SnF、SnF等を用いてガラス内に含有することができる。
 本発明の光学ガラスは、SnO成分の含有量に対するWO成分の含有量の比率が0.1以上3.0以下であることが好ましい。この比率を所定の範囲内にすることで、低いガラスの液相温度を得ながらも、ガラスの着色を抑えて可視光の透過性を高めることができる。従って、酸化物換算組成における質量比WO/SnOは、好ましくは0.1、より好ましくは0.3、最も好ましくは0.5を下限とし、好ましくは3.0、より好ましくは2.5、最も好ましくは2.0を上限とする。
 Gd成分は、ガラスの屈折率を高めて分散を小さくする成分である。特に、Gd成分の含有量を30.0%以下にすることで、ガラスの分相を抑制し、且つ、ガラスを作製する際にガラスを失透し難くすることができる。従って、酸化物換算組成のガラス全質量に対するGd成分の含有量は、好ましくは30.0%、より好ましくは28.0%、最も好ましくは25.0%を上限とする。Gd成分は、原料として例えばGd、GdF等を用いてガラス内に含有することができる。
 Y成分、Yb成分及びLu成分は、ガラスの屈折率を高めて分散を小さくする成分である。ここで、Y成分の含有量を20.0%以下にすること、又は、Yb成分若しくはLu成分の含有量を6.0%以下にすることで、ガラスを失透し難くすることができる。従って、酸化物換算組成のガラス全質量に対するY成分の含有量は、好ましくは20.0%、より好ましくは15.0%、さらに好ましくは10.0%、さらに好ましくは9.0%、さらに好ましくは8.0%、さらに好ましくは4.0%を上限とし、最も好ましくは2.0%未満とする。また、酸化物換算組成のガラス全質量に対するYb成分及びLu成分の含有量は、それぞれ好ましくは6.0%、より好ましくは2.0%、さらに好ましくは1.5%、最も好ましくは1.0%を上限とする。Y成分、Yb成分及びLu成分は、原料として例えばY、YF、Yb、Lu等を用いてガラス内に含有することができる。
 MgO成分、CaO成分、SrO成分及びBaO成分は、ガラスの溶融性を改善して耐失透性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、MgO成分、CaO成分若しくはSrO成分のうち1種以上の含有量を各々15.0%以下にすること、及び/又は、BaO成分の含有量を35.0%以下にすることで、ガラスの屈折率を低下し難くし、且つガラスの液相温度を上昇し難くすることができる。従って、酸化物換算組成のガラス全質量に対するMgO成分、CaO成分及びSrO成分の含有量は、それぞれ好ましくは15.0%、より好ましくは10.0%、最も好ましくは6.0%を上限とする。また、酸化物換算組成のガラス全質量に対するBaO成分の含有量は、好ましくは35.0%、より好ましくは20.0%、さらに好ましくは10.0%、最も好ましくは6.0%を上限とする。MgO成分、CaO成分、SrO成分及びBaO成分は、原料として例えばMgCO、MgF、CaCO、CaF、Sr(NO、SrF、BaCO、Ba(NO等を用いてガラス内に含有することができる。
 ZnO成分は、ガラスの化学的耐久性を改善し、ガラス転移点を低くし、且つ安定なガラスを形成し易くする成分であり、本発明の光学ガラス中の任意成分である。特に、ZnO成分の含有量を15.0%以下にすることで、ガラスの液相温度の上昇を抑えて耐失透性を高めることができる。従って、酸化物換算組成のガラス全質量に対するZnO成分の含有量は、好ましくは15.0%、より好ましくは10.0%、さらに好ましくは5.5%を上限とする。特に、光学ガラスの光弾性定数を低く抑えて、光学素子に用いたときの演色性が高いガラスを得ようとする場合、酸化物換算組成のガラス全質量に対するZnO成分の含有量は0.08%以下であってもよい。ZnO成分は、原料として例えばZnO、ZnF等を用いてガラス内に含有することができる。
 本発明の光学ガラスでは、RO成分(式中、RはMg、Ca、Sr、Ba及びZnからなる群より選択される1種以上)の含有量の質量和が、35.0%以下であることが好ましい。これにより、RO成分の過剰な含有によるガラスの失透を低減し、且つガラスの屈折率を低下し難くすることができる。従って、酸化物換算組成のガラス全質量に対するRO成分の含有量の質量和は、好ましくは35.0%、より好ましくは25.0%、さらに好ましくは15.0%、よりさらに好ましくは8.0%、最も好ましくは4.7%を上限とする。
 LiO成分は、ガラスの部分分散比を低くする成分であるとともに、ガラスの溶融性を改善し、且つガラス転移点を下げる成分であり、本発明の光学ガラス中の任意成分である。特に、LiO成分の含有量を15.0%以下にすることで、ガラスの屈折率の低下を抑えつつ、LiO成分の過剰な含有による失透等を生じ難くすることができる。従って、酸化物換算組成のガラス全質量に対するLiO成分の含有量は、好ましくは15.0%、より好ましくは5.0%、さらに好ましくは3.0%、さらに好ましくは2.0%を上限とする。LiO成分は、原料として例えばLiCO、LiNO、LiF等を用いてガラス内に含有することができる。
 NaO成分は、ガラスの溶融性を改善し、且つガラス転移点を下げる成分であり、本発明の光学ガラス中の任意成分である。特に、NaO成分の含有量を15.0%以下にすることで、ガラスの屈折率を低下し難くしつつ、ガラスの安定性を高めて失透等を生じ難くすることができる。従って、酸化物換算組成のガラス全質量に対するNaO成分の含有量は、好ましくは15.0%、より好ましくは5.0%、さらに好ましくは3.0%、最も好ましくは2.0%を上限とする。NaO成分は、原料として例えばNaCO、NaNO、NaF、NaSiF等を用いてガラス内に含有することができる。
 KO成分は、ガラスの溶融性を改善し、且つガラス転移点を下げる成分であり、本発明の光学ガラス中の任意成分である。特に、KO成分の含有量を15.0%にすることで、ガラスの部分分散比の上昇を抑えることができる。また、KO成分の含有量を15.0%以下にすることで、ガラスの屈折率を低下し難くして、ガラスの安定性を高めて失透等を生じ難くすることができる。従って、酸化物換算組成のガラス全質量に対するKO成分の含有量は、好ましくは15.0%、より好ましくは5.0%、さらに好ましくは3.0%、最も好ましくは2.0%を上限とする。KO成分は、原料として例えばKCO、KNO、KF、KHF、KSiF等を用いてガラス内に含有することができる。
 本発明の光学ガラスでは、RnO成分(式中、RnはLi、Na、Kからなる群より選択される1種以上)の合計含有量を10.0%以下にすることで、ガラスの屈折率を低下し難くし、ガラスの安定性を高めて失透等の発生を低減することができる。従って、酸化物換算組成のガラス全質量に対するRnO成分の質量和は、好ましくは10.0%、より好ましくは5.0%、最も好ましくは3.0%を上限とする。
 また、本発明の光学ガラスでは、B成分、ZnO成分、WO成分及びLiO成分の質量和が3.0%以上30.0%以下であることが好ましい。これらの質量和を3.0%以上にすることで、ガラス転移点が低くなるため、プレス成形を行い易いガラスを得ることができる。一方、この質量和を30.0%以下にすることで、ガラスの液相温度の上昇が抑えられるため、より耐失透性の高いガラスを得易くすることができる。従って、酸化物換算組成のガラス全質量に対する質量和(B+ZnO+WO+LiO)は、好ましくは3.0%、より好ましくは5.0%、最も好ましくは7.0%を下限とし、好ましくは30.0%、より好ましくは20.0%、最も好ましくは18.0%を上限とする。
 また、本発明の光学ガラスでは、SiO成分、GeO成分、Ta成分及びNb成分の質量和に対する、B成分、ZnO成分、WO成分及びLiO成分の質量和の比率が0.50以上5.00以下であることが好ましい。この比率を0.5以上にすることで、ガラス転移点を高くする成分に対してガラス転移点を低くする成分の含有量が増加するため、よりガラス転移点の低いガラスを得易くすることができる。一方、この比率を5.00以下にすることで、ガラスの耐失透性を高め易くすることができる。従って、酸化物換算組成における質量比(B+ZnO+WO+LiO)/(SiO+GeO+Ta+Nb)は、好ましくは0.50、より好ましくは0.55、最も好ましくは0.60を下限とし、好ましくは5.00、より好ましくは4.00、さらに好ましくは3.00、最も好ましくは2.00を上限とする。
 P成分は、ガラスの液相温度を下げて耐失透性を向上させる効果を有する成分であり、本発明の光学ガラス中の任意成分である。特に、P成分の含有量を10.0%以下にすることで、ガラスの化学的耐久性、特に耐水性の低下を抑えることができる。従って、酸化物換算組成のガラス全質量に対するP成分の含有量は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。P成分は、原料として例えばAl(PO、Ca(PO、Ba(PO、BPO、HPO等を用いてガラス内に含有することができる。
 Bi成分は、ガラスの屈折率を高め、且つガラス転移点を低くする成分であり、本発明の光学ガラス中の任意成分である。特に、Bi成分の含有量を10.0%以下にすることで、ガラスの耐失透性の悪化や部分分散比の上昇を抑えつつ、可視短波長(500nm以下)の光線透過率を悪化し難くすることができる。従って、酸化物換算組成のガラス全質量に対するBi成分の含有量は、好ましくは10.0%、より好ましくは5.0%、最も好ましくは3.0%を上限とする。Bi成分は、原料として例えばBi等を用いてガラス内に含有することができる。
 TeO成分は、屈折率を高める成分であり、本発明の光学ガラス中の任意成分である。しかしながら、TeOは白金製の坩堝や、熔融ガラスと接する部分が白金で形成されている熔融槽でガラス原料を熔融する際、白金と合金化しうることで、坩堝や熔融槽の強度や耐熱性が悪化しやすくなる問題がある。従って、酸化物換算組成のガラス全質量に対するTeO成分の含有率は、好ましくは10.0%を上限とし、より好ましくは8.0%、最も好ましくは5.0%を上限とする。TeO成分は、原料として例えばTeO等を用いてガラス内に含有することができる。
 Al成分は、安定なガラスを形成し易くし、且つガラスの化学的耐久性を高める成分である。特に、Al成分の含有量を10.0%以下にすることで、ガラスの耐失透性の悪化を抑制することができる。従って、酸化物換算組成のガラス全質量に対するAl成分の含有量は、好ましくは10.0%、より好ましくは5.0%、最も好ましくは2.0%を上限とする。Al成分は、原料として例えばAl、Al(OH)、AlF等を用いてガラス内に含有することができる。
 Ga成分は、安定なガラスを形成し易くし、且つ屈折率を高める成分であり、本発明の光学ガラス中の任意成分である。特に、Ga成分の含有量をそれぞれ10.0%以下にすることで、ガラスのアッベ数の低下を抑制し、且つガラスの材料コストを低減することができる。従って、酸化物換算組成のガラス全質量に対するGa成分の含有量は、それぞれ好ましくは10.0%、より好ましくは5.0%、最も好ましくは2.0%を上限とする。Ga成分は、原料として例えばGa、Ga(OH)等を用いてガラス内に含有することができる。
 Sb成分は、溶融ガラスを脱泡する成分であり、本発明の光学ガラス中の任意成分である。特に、Sb成分の含有量を1.0%以下にすることで、ガラス溶融時における過度の発泡を生じ難くすることができ、Sb成分が溶解設備(特にPt等の貴金属)と合金化し難くすることができる。従って、酸化物換算組成のガラス全質量に対するSb成分の含有量は、好ましくは1.0%、より好ましくは0.8%、最も好ましくは0.5%を上限とする。Sb成分は、原料として例えばSb、Sb、NaSb・5HO等を用いてガラス内に含有することができる。
 なお、ガラスを清澄し脱泡する成分は、上記のSb成分に限定されるものではなく、ガラス製造の分野における公知の清澄剤、脱泡剤或いはそれらの組み合わせを用いることができる。このとき、Sb成分やCeO成分等の脱泡剤の含有量の合計は、好ましくは1.0%、より好ましくは0.8%、最も好ましくは0.5%を上限とする。特に環境への負荷の少ないガラスを得易くできる観点では、脱泡剤の含有量の合計を0.1%未満としてもよい。
<含有すべきでない成分について>
 次に、本発明の光学ガラスに含有すべきでない成分、及び含有することが好ましくない成分について説明する。
 本発明の光学ガラスには、他の成分を本願発明のガラスの特性を損なわない範囲で必要に応じ、添加することができる。ただし、GeO成分はガラスの分散性を高めてしまうため、実質的に含まないことが好ましい。
 また、Ti、Zr、Nb、W、La、Gd、Y、Yb、Luを除く、V、Cr、Mn、Fe、Co、Ni、Cu、Ag及びMo等の各遷移金属成分は、それぞれを単独又は複合して少量含有した場合でもガラスが着色し、可視域の特定の波長に吸収を生じる性質があるため、特に可視領域の波長を使用する光学ガラスにおいては、実質的に含まないことが好ましい。
 さらに、PbO等の鉛化合物及びAs等のヒ素化合物、並びに、Th、Cd、Tl、Os、Be、Seの各成分は、近年有害な化学物資として使用を控える傾向にあり、ガラスの製造工程のみならず、加工工程、及び製品化後の処分に至るまで環境対策上の措置が必要とされる。従って、環境上の影響を重視する場合には、不可避な混入を除き、これらを実質的に含有しないことが好ましい。これにより、光学ガラスに環境を汚染する物質が実質的に含まれなくなる。そのため、特別な環境対策上の措置を講じなくとも、この光学ガラスを製造し、加工し、及び廃棄することができる。
 本発明のガラス組成物は、その組成が酸化物換算組成のガラス全質量に対する質量%で表されているため直接的にモル%の記載に表せるものではないが、本発明において要求される諸特性を満たすガラス組成物中に存在する各成分のモル%表示による組成は、酸化物換算組成で概ね以下の値をとる。
成分 2.0~55.0mol%、
TiO成分 0mol%超~55.0mol%及び
Nb成分 0mol%超~20.0mol%
並びに
La成分 0~30.0mol%及び/又は
SiO成分 0~50.0mol%及び/又は
ZrO成分 0~20.0mol%及び/又は
GeO成分 0~10.0mol%及び/又は
Ta成分 0~7.0mol%及び/又は
WO成分 0~7.0mol%及び/又は
SnO成分 0~5.0mol%及び/又は
Gd成分 0~12.0mol%及び/又は
成分 0~20.0mol%及び/又は
Yb成分 0~3.0mol%及び/又は
Lu成分 0~3.0mol%及び/又は
MgO成分 0~45.0mol%及び/又は
CaO成分 0~35.0mol%及び/又は
SrO成分 0~30.0mol%及び/又は
BaO成分 0~50.0mol%及び/又は
ZnO成分 0~30.0mol%及び/又は
LiO成分 0~55.0mol%及び/又は
NaO成分 0~40.0mol%及び/又は
O成分 0~30.0mol%及び/又は
成分 0~15.0mol%及び/又は
Bi成分 0~3.0mol%及び/又は
TeO成分 0~10.0mol%及び/又は
Al成分 0~20.0mol%及び/又は
Ga成分 0~10.0mol%及び/又は
Sb成分 0~0.5mol%
[製造方法]
 本発明の光学ガラスは、例えば以下のように作製される。すなわち、上記原料を各成分が所定の含有量の範囲内になるように均一に混合し、作製した混合物を白金坩堝、石英坩堝又はアルミナ坩堝に投入して粗溶融した後、金坩堝、白金坩堝、白金合金坩堝又はイリジウム坩堝に入れて1200~1500℃の温度範囲で3~5時間溶融し、攪拌均質化して泡切れ等を行った後、1200℃以下の温度に下げてから仕上げ攪拌を行って脈理を除去し、成形型を用いて成形することにより作製される。
[物性]
 本発明の光学ガラスは、所定の高屈折率を有しながらも低い分散(高いアッベ数)を有することが好ましい。より具体的には、本発明の光学ガラスの屈折率(n)は、好ましくは1.80、より好ましくは1.85、さらに好ましくは1.90、最も好ましくは1.95を下限とする。一方、本発明の光学ガラスの屈折率(n)の上限は、特に限定されないが、概ね2.20以下、より具体的には2.10以下、さらに具体的には2.05以下であることが多い。また、本発明の光学ガラスのアッベ数(ν)は、好ましくは22、より好ましくは24、最も好ましくは26を下限とする。一方、本発明の光学ガラスのアッベ数(ν)の上限は、特に限定されないが、概ね30以下であることが多い。これらにより、光学設計の自由度が広がり、さらに素子の薄型化を図っても大きな光の屈折量を得ることができる。
 また、本発明の光学ガラスは、低い部分分散比(θg,F)を有する。より具体的には、本発明の光学ガラスは、0.615以下の部分分散比(θg,F)を有する。これにより、高屈折率低分散の領域にありながらも部分分散比が小さい光学ガラスが得られるため、この光学ガラスから形成される光学素子の色収差を低減することができる。ここで、光学ガラスの部分分散比(θg,F)は、好ましくは0.615、より好ましくは0.610、最も好ましくは0.605を上限とする。一方で、本発明の光学ガラスの部分分散比(θg,F)の下限は、特に限定されないが、概ね0.585以上、より具体的には0.588以上、さらに具体的には0.590以上であることが多い。
 本発明の光学ガラスの部分分散比(θg,F)は、日本光学硝子工業会規格JOGIS01―2003に基づいて測定する。なお、本測定に用いるガラスは、徐冷降温速度を-25℃/hrとして、徐冷炉にて処理を行ったものを用いる。
 また、本発明の光学ガラスは、着色が少ないことが好ましい。特に、本発明の光学ガラスは、ガラスの透過率で表すと、厚み10mmのサンプルで分光透過率70%を示す波長(λ70)が520nm以下であり、より好ましくは500nm以下であり、最も好ましくは480nm以下である。また、本発明の光学ガラスは、厚み10mmのサンプルで分光透過率5%を示す波長(λ)が420nm以下であり、より好ましくは400nm以下であり、最も好ましくは380nm以下である。これにより、ガラスの吸収端が紫外領域の近傍に位置するようになり、可視域におけるガラスの透明性が高められるため、この光学ガラスをレンズ等の光学素子の材料として用いることができる。
 本発明の光学ガラスの透過率は、日本光学硝子工業会規格JOGIS02に準じて測定する。具体的には、厚さ10±0.1mmの対面平行研磨品をJISZ8722に準じ、200~800nmの分光透過率を測定し、λ70(透過率70%時の波長)及びλ(透過率5%時の波長)を求める。
 また、本発明の光学ガラスは、耐失透性が高いことが好ましい。特に、本発明の光学ガラスは、1240℃以下の低い液相温度を有することが好ましい。より具体的には、本発明の光学ガラスの液相温度は、好ましくは1240℃、より好ましくは1200℃、さらに好ましくは1180℃、最も好ましくは1160℃を上限とする。これにより、ガラスの安定性が高められて結晶化が低減されるため、溶融状態からガラスを形成したときの耐失透性を高めることができ、ガラスを用いた光学素子の光学特性への影響を低減することができる。一方、本発明の光学ガラスの液相温度の下限は特に限定しないが、本発明によって得られるガラスの液相温度は、概ね500℃以上、具体的には550℃以上、さらに具体的には600℃以上であることが多い。
 本発明の光学ガラスの液相温度は、50mlの容量の白金製坩堝に30ccのカレット状のガラス試料を白金坩堝に入れて1350℃で完全に熔融状態にし、1300℃~1000℃まで10℃刻みで設定したいずれかの温度まで降温して12時間保持し、炉外に取り出して冷却した後直ちにガラス表面及びガラス中の結晶の有無を観察したときの、結晶が認められない一番低い温度から求められる。
 なお、本発明の光学ガラスの耐失透性は、上述の液相温度の他、ガラス原料を50ccの白金製の坩堝に入れて1200℃~1400℃の炉内で120分程度溶解し、攪拌し均質化した後、得られたガラスを1000~1150℃に設定された炉内に10時間保持して、ガラスの表面及び内部、並びに坩堝の内壁との接触面に析出する結晶を観察する保温試験によっても求めることができる。
[プリフォーム及び光学素子]
 作製された光学ガラスから、例えばリヒートプレス成形や精密プレス成形等のモールドプレス成形の手段を用いて、ガラス成形体を作製することができる。すなわち、光学ガラスからモールドプレス成形用のプリフォームを作製し、このプリフォームに対してリヒートプレス成形を行った後で研磨加工を行ってガラス成形体を作製したり、例えば研磨加工を行って作製したプリフォームに対して精密プレス成形を行ってガラス成形体を作製したりすることができる。なお、ガラス成形体を作製する手段は、これらの手段に限定されない。
 このようにして作製されるガラス成形体は、様々な光学素子に有用であるが、その中でも特に、レンズやプリズム等の光学素子の用途に用いることが好ましい。これにより、光学素子が設けられる光学系の透過光における、色収差による色のにじみが低減される。そのため、この光学素子をカメラに用いた場合は撮影対象物をより正確に表現でき、この光学素子をプロジェクタに用いた場合は所望の映像をより高精彩に投影できる。
 本発明の実施例(No.1~No.63)及び参考例(No.1~No.3)の組成、並びに、これらのガラスの屈折率(n)及びアッベ数(ν)、部分分散比(θg,F)、透過率70%時の波長(λ70)[nm]、透過率5%時の波長(λ)[nm]及び液相温度[℃]の値を表1~表9に示す。なお、以下の実施例はあくまで例示の目的であり、これらの実施例のみ限定されるものではない。
 本発明の実施例(No.1~No.63)及び参考例(No.1~No.3)のガラスは、いずれも各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、水酸化物、メタ燐酸化合物等の通常の光学ガラスに使用される高純度原料を選定し、表1~表9に示した各実施例及び参考例の組成の割合になるように秤量して均一に混合した後、白金坩堝に投入し、ガラス組成の熔融難易度に応じて電気炉で1200~1500℃の温度範囲で3~5時間溶解し、攪拌均質化して泡切れ等を行った後、金型に鋳込み徐冷してガラスを作製した。
 ここで、実施例(No.1~No.63)及び参考例(No.1~No.3)のガラスの屈折率(n)及びアッベ数(ν)及び部分分散比(θg,F)は、日本光学硝子工業会規格JOGIS01―2003に基づいて測定した。なお、本測定に用いたガラスは、徐冷降温速度を-25℃/hrとして、徐冷炉にて処理を行ったものを用いた。
 また、実施例(No.1~No.63)及び参考例(No.1~No.3)のガラスの透過率については、日本光学硝子工業会規格JOGIS02に準じて測定した。なお、本発明においては、ガラスの透過率を測定することで、ガラスの着色の有無と程度を求めた。具体的には、厚さ10±0.1mmの対面平行研磨品をJISZ8722に準じ、200~800nmの分光透過率を測定し、透過率70%時の波長(λ70)及びλ(透過率5%時の波長)を求めた。
 また、実施例(No.1~No.63)及び参考例(No.1~No.3)のガラスの液相温度は、50mlの容量の白金製坩堝に30ccのカレット状のガラス試料を白金坩堝に入れて1350℃で完全に熔融状態にし、1300℃~1000℃まで10℃刻みで設定したいずれかの温度まで降温して12時間保持し、炉外に取り出して冷却した後直ちにガラス表面及びガラス中の結晶の有無を観察したときの、結晶が認められない一番低い温度から求めた。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 本発明の実施例の光学ガラスは、いずれもアッベ数(ν)が30以下であるとともに、このアッベ数(ν)は22以上、より詳細には28以上であり、所望の範囲内であった。
 また、本発明の実施例の光学ガラスは、部分分散比(θg,F)が0.615以下、より具体的には0.604以下であった。そのため、本発明の実施例の光学ガラスは、低分散を有しながらも部分分散比(θg,F)が小さく、光学素子を形成したときの色収差を小さくできることが明らかになった。
 また、本発明の実施例の光学ガラスは、いずれも屈折率(n)が1.90以上、より詳細には1.98以上であるとともに、この屈折率(n)は2.20以下、より詳細には2.01以下であり、所望の範囲内であった。
 また、本発明の実施例の光学ガラスは、いずれもλ70(透過率70%時の波長)が520nm以下、より詳細には487nm以下であった。また、本発明の実施例の光学ガラスは、いずれもλ(透過率5%時の波長)が420nm以下、より詳細には379nm以下であり、所望の範囲内であった。一方で、参考例(No.1)のガラスは、λ70が501nmであった。このため、本発明の実施例の光学ガラスは、参考例(No.1)のガラスに比べて可視光に対する透過率が高く、着色も少ないことが明らかになった。
 また、本発明の実施例の光学ガラスは、いずれも液相温度が1240℃以下、より詳細には1220℃以下であるとともに、この液相温度は500℃以上であり、所望の範囲内であった。一方で、参考例(No.2~No.3)のガラスは、液相温度が1300℃であり、特に参考例(No.2)のガラスは失透していた。このため、本発明の実施例の光学ガラスは、参考例(No.2~No.3)のガラスに比べて耐失透性が高いことが明らかになった。
 従って、本発明の実施例の光学ガラスは、屈折率(n)及びアッベ数(ν)が所望の範囲内にありながら、色収差が小さく、可視領域の波長の光に対する透明性が高く、且つ耐失透性が高いことが明らかになった。
 さらに、本発明の実施例で得られた光学ガラスを用いて、リヒートプレス成形を行った後で研削及び研磨を行い、レンズ及びプリズムの形状に加工した。また、本発明の実施例の光学ガラスを用いて、精密プレス成形用プリフォームを形成し、精密プレス成形用プリフォームを精密プレス成形加工した。いずれの場合も、加熱軟化後のガラスには乳白化及び失透等の問題は生じず、安定に様々なレンズ及びプリズムの形状に加工することができた。
 以上、本発明を例示の目的で詳細に説明したが、本実施例はあくまで例示の目的のみであって、本発明の思想及び範囲を逸脱することなく多くの改変を当業者により成し得ることが理解されよう。

Claims (25)

  1.  酸化物換算組成のガラス全質量に対して、質量%でB成分を1.0~31.0%及びLn成分を40.0~65.0%を含有し、TiO成分の含有量が30.0%以下、Nb成分の含有量が30.0%以下である光学ガラス。
  2.  酸化物換算組成の質量比Ln/TiOが3.00以上である請求項1記載の光学ガラス(式中、LnはLa、Gd、Y、Yb、Luからなる群より選択される1種以上)。
  3.  酸化物換算組成のガラス全質量に対して、質量%でLa成分を18.0~60.0%含有する請求項1又は2記載の光学ガラス。
  4.  酸化物換算組成のガラス全質量に対する質量和(TiO+Nb)が8.0%以上35.0%以下である請求項1から3のいずれか記載の光学ガラス。
  5.  酸化物換算組成のガラス全質量に対して、質量%で
    SiO成分 0~20.0%及び/又は
    ZrO成分 0~15.0%
    の各成分をさらに含有する請求項1から4のいずれか記載の光学ガラス。
  6.  酸化物換算組成のガラス全質量に対して、質量%でSiO成分を1.0%以上含有する請求項5記載の光学ガラス。
  7.  酸化物換算組成のガラス全質量に対して、質量%でZrO成分を3.0%以上含有する請求項5又は6記載の光学ガラス。
  8.  酸化物換算組成のガラス全質量に対して、質量%で
    GeO成分 0~10.0%及び/又は
    Ta成分 0~20.0%
    である請求項1から7のいずれか記載の光学ガラス。
  9.  酸化物換算組成における質量比(GeO+Ta)/(TiO+Nb)が1.00以下である請求項8記載の光学ガラス。
  10.  酸化物換算組成のガラス全質量に対する質量和(Nb+Ta)が3.0%以上30.0%以下である請求項1から9のいずれか記載の光学ガラス。
  11.  酸化物換算組成における質量比TiO/(Nb+Ta)が0.80以上である請求項1から10のいずれか記載の光学ガラス。
  12.  酸化物換算組成のガラス全質量に対して、質量%で
    WO成分 0~10.0%及び/又は
    SnO成分 0~5.0%
    である請求項1から11のいずれか記載の光学ガラス。
  13.  酸化物換算組成のガラス全質量に対して、WO成分を0.5%より多く含有する請求項12記載の光学ガラス。
  14.  酸化物換算組成のガラス全質量に対して、質量%で
    Gd成分 0~30.0%及び/又は
    成分 0~20.0%及び/又は
    Yb成分 0~6.0%及び/又は
    Lu成分 0~6.0%
    である請求項1から13のいずれか記載の光学ガラス。
  15.  酸化物換算組成のガラス全質量に対して、質量%で
    MgO成分 0~15.0%及び/又は
    CaO成分 0~15.0%及び/又は
    SrO成分 0~15.0%及び/又は
    BaO成分 0~35.0%及び/又は
    ZnO成分 0~15.0%
    である請求項1から14のいずれか記載の光学ガラス。
  16.  酸化物換算組成のガラス全質量に対するRO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)の質量和が35.0%以下である請求項15記載の光学ガラス。
  17.  酸化物換算組成のガラス全質量に対して、質量%で
    LiO成分 0~15.0%及び/又は
    NaO成分 0~15.0%及び/又は
    O成分 0~15.0%
    である請求項1から16いずれか記載の光学ガラス。
  18.  酸化物換算組成のガラス全質量に対するRnO成分(式中、RnはLi、Na、Kからなる群より選択される1種以上)の質量和が10.0%以下である請求項17記載の光学ガラス。
  19.  酸化物換算組成のガラス全質量に対して、質量%で
    成分 0~10.0%及び/又は
    Bi成分 0~10.0%及び/又は
    TeO成分 0~10.0%及び/又は
    Al成分 0~10.0%及び/又は
    Ga成分 0~10.0%及び/又は
    Sb成分 0~1.0%
    である請求項1から18のいずれか記載の光学ガラス。
  20.  1.80以上の屈折率(n)を有し、22以上30以下のアッベ数(ν)を有する請求項1から19のいずれか記載の光学ガラス。
  21.  0.615以下の部分分散比(θg,F)を有する請求項1から20のいずれか記載の光学ガラス。
  22.  請求項1から21のいずれか記載の光学ガラスからなるプリフォーム材。
  23.  請求項22記載のプリフォーム材をプレス成形して作製する光学素子。
  24.  請求項1から21のいずれか記載の光学ガラスを母材とする光学素子。
  25.  請求項23又は24のいずれか記載の光学素子を備える光学機器。
PCT/JP2012/050967 2011-01-18 2012-01-18 光学ガラス、プリフォーム及び光学素子 WO2012099168A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012800055094A CN103313947A (zh) 2011-01-18 2012-01-18 光学玻璃、预成型坯及光学元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-008253 2011-01-18
JP2011008253 2011-01-18

Publications (1)

Publication Number Publication Date
WO2012099168A1 true WO2012099168A1 (ja) 2012-07-26

Family

ID=46515790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050967 WO2012099168A1 (ja) 2011-01-18 2012-01-18 光学ガラス、プリフォーム及び光学素子

Country Status (4)

Country Link
JP (2) JP6230210B2 (ja)
CN (2) CN103313947A (ja)
TW (1) TWI545098B (ja)
WO (1) WO2012099168A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020045417A1 (ja) * 2018-08-31 2021-09-09 Agc株式会社 光学ガラスおよび光学部品
WO2022055709A1 (en) 2020-09-10 2022-03-17 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and high transmittance to blue light
EP4059901A1 (en) 2021-03-19 2022-09-21 Corning Incorporated High-index borate glasses
NL2028260B1 (en) 2021-03-19 2022-09-29 Corning Inc High-Index Borate Glasses
EP4071118A1 (en) 2021-04-05 2022-10-12 Corning Incorporated High-index silicoborate and borosilicate glasses
NL2028132B1 (en) 2021-04-05 2022-10-19 Corning Inc High-Index Silicoborate and Borosilicate Glasses
WO2023183140A1 (en) * 2022-03-25 2023-09-28 Corning Incorporated High-index silicoborate and borosilicate glasses
NL2031590B1 (en) * 2022-03-25 2023-10-06 Corning Inc High-Index Silicoborate and Borosilicate Glasses
US11802073B2 (en) 2020-09-10 2023-10-31 Corning Incorporated Silicoborate and borosilicate glasses with high refractive index and low density
US11999651B2 (en) 2020-09-10 2024-06-04 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and low density

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6136009B2 (ja) * 2013-07-16 2017-05-31 日本電気硝子株式会社 光学ガラス
JP6509525B2 (ja) * 2014-10-30 2019-05-08 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
CN107108768B (zh) * 2014-11-12 2019-07-05 日本电气硝子株式会社 立体造形用树脂组合物、立体造形物的制造方法及无机填料粒子
JP6400461B2 (ja) * 2014-12-18 2018-10-03 光ガラス株式会社 光学ガラス、光学ガラスを用いた光学素子、光学装置
EP3505499B1 (en) * 2016-08-26 2023-12-13 The University Of Tokyo Optical glass, optical element formed of optical glass, and optical device
WO2018235725A1 (ja) 2017-06-23 2018-12-27 Agc株式会社 光学ガラスおよび光学部品
TWI795418B (zh) * 2017-07-21 2023-03-11 日商小原股份有限公司 光學玻璃、預成形體及光學元件
JP7325927B2 (ja) 2017-12-27 2023-08-15 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP7048348B2 (ja) * 2018-02-28 2022-04-05 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP7112856B2 (ja) * 2018-02-28 2022-08-04 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
CN114956548A (zh) * 2018-09-27 2022-08-30 成都光明光电股份有限公司 光学玻璃及由其制成的玻璃预制件、光学元件和光学仪器
RU2759043C1 (ru) 2018-10-11 2021-11-09 Ниппон Стил Корпорейшн Резьбовое соединение для стальных труб
WO2021006072A1 (ja) * 2019-07-05 2021-01-14 日本電気硝子株式会社 光学ガラス
WO2021205927A1 (ja) * 2020-04-06 2021-10-14 日本電気硝子株式会社 光学ガラス
JP7234454B2 (ja) 2022-10-04 2023-03-07 Hoya株式会社 光学ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131845A (ja) * 1983-12-01 1985-07-13 シヨツト、グラスヴエルケ 1.90以上の屈折率、25以上のアツベ数および高い化学安定性を有する光学ガラス
JP2010030879A (ja) * 2008-06-27 2010-02-12 Hoya Corp 光学ガラス
JP2010202508A (ja) * 2009-02-27 2010-09-16 Schott Ag 光学ガラス

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4120732A (en) * 1977-12-12 1978-10-17 Kabushiki Kaisha Ohara Kogaku Garasu Seizosho Optical glass
JPS553329A (en) * 1978-06-21 1980-01-11 Ohara Inc Optical glass
JPS55121925A (en) * 1979-03-14 1980-09-19 Ohara Inc Optical glass
JPS6022656B2 (ja) * 1980-08-21 1985-06-03 ホ−ヤ株式会社 光学ガラス
DE3130039C2 (de) * 1981-07-30 1984-07-12 Schott Glaswerke, 6500 Mainz CdO-ThO↓2↓-freies, hochbrechendes optisches Glas mit der optischen Lage nd = 1,85 - 2,05 und vd 25-43
DE10227494C1 (de) * 2002-06-19 2003-12-04 Schott Glas Blei- und vorzugsweise Arsen-freie Lanthan-Schwerflint-Gläser sowie ihre Verwendung
CN100351193C (zh) * 2002-08-20 2007-11-28 Hoya株式会社 光学玻璃、预型件及其制造方法、光学元件及其制造方法
JP5926479B2 (ja) * 2002-12-27 2016-05-25 Hoya株式会社 光学ガラス、プレス成形用ガラスゴブおよび光学素子
JP4218804B2 (ja) * 2004-03-19 2009-02-04 Hoya株式会社 光学ガラス、精密プレス成形用プリフォームとその製造方法および光学素子とその製造方法
EP1604959A1 (en) * 2004-06-02 2005-12-14 Kabushiki Kaisha Ohara An optical glass
JP5078272B2 (ja) * 2006-03-31 2012-11-21 株式会社オハラ 光学ガラス
JP5290528B2 (ja) * 2007-03-05 2013-09-18 株式会社住田光学ガラス 精密プレス成形用光学ガラス
JP5317522B2 (ja) * 2007-04-24 2013-10-16 パナソニック株式会社 光学ガラス組成物、プリフォーム及び光学素子
JP5138401B2 (ja) * 2008-01-30 2013-02-06 Hoya株式会社 光学ガラス、プレス成形用ガラスゴブおよび光学素子とその製造方法ならびに光学素子ブランクの製造方法
JP2009203155A (ja) * 2008-01-31 2009-09-10 Ohara Inc 光学ガラス
JP5671776B2 (ja) * 2008-02-26 2015-02-18 日本電気硝子株式会社 光学ガラス
JP5180758B2 (ja) * 2008-09-30 2013-04-10 Hoya株式会社 光学ガラス、プレス成形用ガラスゴブおよび光学素子とその製造方法ならびに光学素子ブランクの製造方法
JP2010083702A (ja) * 2008-09-30 2010-04-15 Hoya Corp 光学ガラス、プレス成形用ガラス素材および光学素子
CN101386469B (zh) * 2008-10-16 2011-05-11 成都光明光电股份有限公司 高折射低色散光学玻璃
US8661853B2 (en) * 2008-11-10 2014-03-04 Hoya Corporation Method for producing glass, optical glass, glass material for press molding, optical element and methods for producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131845A (ja) * 1983-12-01 1985-07-13 シヨツト、グラスヴエルケ 1.90以上の屈折率、25以上のアツベ数および高い化学安定性を有する光学ガラス
JP2010030879A (ja) * 2008-06-27 2010-02-12 Hoya Corp 光学ガラス
JP2010202508A (ja) * 2009-02-27 2010-09-16 Schott Ag 光学ガラス

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7512893B2 (ja) 2018-08-31 2024-07-09 Agc株式会社 光学ガラスおよび光学部品
JPWO2020045417A1 (ja) * 2018-08-31 2021-09-09 Agc株式会社 光学ガラスおよび光学部品
US11802073B2 (en) 2020-09-10 2023-10-31 Corning Incorporated Silicoborate and borosilicate glasses with high refractive index and low density
WO2022055709A1 (en) 2020-09-10 2022-03-17 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and high transmittance to blue light
US11999651B2 (en) 2020-09-10 2024-06-04 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and low density
US11976004B2 (en) 2020-09-10 2024-05-07 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and high transmittance to blue light
EP4059901A1 (en) 2021-03-19 2022-09-21 Corning Incorporated High-index borate glasses
WO2022197495A1 (en) 2021-03-19 2022-09-22 Corning Incorporated High-index borate glasses
NL2028260B1 (en) 2021-03-19 2022-09-29 Corning Inc High-Index Borate Glasses
WO2022216567A1 (en) 2021-04-05 2022-10-13 Corning Incorporated High-index silicoborate and borosilicate glasses
NL2028132B1 (en) 2021-04-05 2022-10-19 Corning Inc High-Index Silicoborate and Borosilicate Glasses
EP4071118A1 (en) 2021-04-05 2022-10-12 Corning Incorporated High-index silicoborate and borosilicate glasses
EP4257562A1 (en) * 2022-03-25 2023-10-11 Corning Incorporated High-index silicoborate and borosilicate glasses
NL2031590B1 (en) * 2022-03-25 2023-10-06 Corning Inc High-Index Silicoborate and Borosilicate Glasses
WO2023183140A1 (en) * 2022-03-25 2023-09-28 Corning Incorporated High-index silicoborate and borosilicate glasses

Also Published As

Publication number Publication date
JP6594374B2 (ja) 2019-10-23
TW201236993A (en) 2012-09-16
JP2017145192A (ja) 2017-08-24
CN103313947A (zh) 2013-09-18
CN107879621A (zh) 2018-04-06
JP2012162448A (ja) 2012-08-30
TWI545098B (zh) 2016-08-11
JP6230210B2 (ja) 2017-11-15

Similar Documents

Publication Publication Date Title
JP6594374B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP6560650B2 (ja) 光学ガラス及び光学素子
JP5827067B2 (ja) 光学ガラス及び光学素子
JP6409039B2 (ja) 光学ガラス及び光学素子
JP6560651B2 (ja) 光学ガラス及び光学素子
JP2016193828A (ja) 光学ガラス、プリフォーム材及び光学素子
JP2012229148A (ja) 光学ガラス及び光学素子
JP5705175B2 (ja) 光学ガラス、プリフォーム及び光学素子
WO2013094619A1 (ja) 光学ガラス及び光学素子
JP6076594B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP5731358B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP6096409B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2012126586A (ja) 光学ガラス、プリフォーム及び光学素子
JP2013139372A (ja) 光学ガラス、プリフォーム及び光学素子
JP2015044724A (ja) 光学ガラス、プリフォーム材及び光学素子
JP5800766B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP6086804B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2018090473A (ja) 光学ガラス、プリフォーム及び光学素子
JP2012046410A (ja) 光学ガラス、プリフォーム及び光学素子
JP2012197211A (ja) 光学ガラス、プリフォーム及び光学素子
JP2012206891A (ja) 光学ガラス、プリフォーム及び光学素子
JP5748613B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP5748614B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2013209232A (ja) 光学ガラス及び光学素子
JP2011144065A (ja) 光学ガラス、プリフォーム、及び光学素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12736333

Country of ref document: EP

Kind code of ref document: A1