WO2009096203A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2009096203A1
WO2009096203A1 PCT/JP2009/050047 JP2009050047W WO2009096203A1 WO 2009096203 A1 WO2009096203 A1 WO 2009096203A1 JP 2009050047 W JP2009050047 W JP 2009050047W WO 2009096203 A1 WO2009096203 A1 WO 2009096203A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
impedance
semiconductor device
power supply
conductive plate
Prior art date
Application number
PCT/JP2009/050047
Other languages
English (en)
French (fr)
Inventor
Aya Ohmae
Yuichi Mabuchi
Atsushi Nakamura
Original Assignee
Renesas Technology Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp. filed Critical Renesas Technology Corp.
Priority to JP2009551443A priority Critical patent/JPWO2009096203A1/ja
Priority to US12/747,923 priority patent/US20100283124A1/en
Priority to CN2009801013542A priority patent/CN101919050B/zh
Publication of WO2009096203A1 publication Critical patent/WO2009096203A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Definitions

  • the present invention relates to a technology that makes it possible to reduce noise current in a semiconductor device.
  • a major cause of EMI generated by electronic devices and the like is a high-frequency current generated by a high-speed switching operation of an internal circuit such as an LSI.
  • the high-frequency current generated inside the LSI propagates to the circuit board and causes radiation from the circuit board. In addition, it may propagate to wiring or other boards through a connector connected to the circuit board, and may cause radiation.
  • a technique for preventing the propagation of high-frequency current from the LSI to the circuit board has been proposed.
  • a circuit board on which an LSI is mounted includes a first capacitor that electrically connects a power supply terminal and a via hole, a first power supply wiring, a second power supply wiring, and a second capacitor.
  • the characteristic impedance of the power supply wiring in the predetermined frequency range is set to be three times or more the impedance magnitude of the capacitor, and the length of the power supply wiring is 20 mm or more multiplied by the wavelength reduction rate of the circuit board, and
  • the effect of the low-frequency pass filter is enhanced by a configuration in which the wavelength is reduced to a value equal to or less than a quarter wavelength of the upper limit frequency of the predetermined frequency.
  • Patent Document 2 discloses a wiring board in which a predetermined wiring is disposed on a wiring board and an electromagnetic wave shielding film (metal foil) is disposed at a position close to the wiring, and an integrated circuit of a semiconductor chip.
  • An insulating film is disposed on the formed surface, a lead is disposed on the electromagnetic wave shielding film via the insulating film, the lead and an external terminal of the semiconductor chip are electrically connected, and a sealing material
  • the structure of a semiconductor device sealed with is described. With this configuration, it is possible to reduce wiring inductance and inductive crosstalk due to wiring or leads in the semiconductor package.
  • Non-Patent Document 1 As a method for suppressing a high-frequency current (common mode current) flowing in the same phase through a power supply wiring / ground (GND) wiring that is a main factor of radiation, a parasitic due to a wiring pattern of a printed circuit board A method to properly balance inductance and capacitance is proposed. This outline is shown in FIG.
  • FIG. 12 is a schematic diagram showing a state of common mode current generation in an electronic device.
  • the electronic device includes a circuit board 201 on which the semiconductor device 10 is mounted, a power cable 202, a power supply 203, and a reference GND 101.
  • the lower part of FIG. 12 is an equivalent circuit of this component circuit.
  • the circuit board 201 is represented by an equivalent circuit 501
  • the power cable 202 is represented by an equivalent circuit 502
  • the power source 203 is represented by an equivalent circuit 503.
  • the equivalent circuit 501 the equivalent circuit 510 of the semiconductor device 10 having the noise source 500, the parasitic wirings 531 and 532, and the parasitic inductance that the power supply wiring pattern 521 and the GND wiring pattern 522 of the circuit board 201 have with respect to the reference GND 101, respectively.
  • the equivalent circuit 502 of the power supply cable 202 and the equivalent circuit 503 of the power supply 203 are similarly represented by the parasitic capacitance with respect to the reference GND 101, the parasitic inductance, and the parasitic capacitance between the power supply wiring / GND wiring.
  • the equivalent circuit of this component circuit there are two noise current loops.
  • the noise current leaked from the semiconductor device 10 passes through the parasitic capacitance 531 of the power supply wiring pattern 521 of the circuit board 201, and the power supply side noise current loop 402 that flows to the reference GND 101 and the parasitic capacitance 532 of the GND wiring pattern 522 of the circuit board 201.
  • a GND-side noise current loop 403 that flows to the reference GND 101 is formed.
  • a common mode current which is a high-frequency current flowing in the same phase in the power supply wiring / GND wiring, is generated by the difference between the two noise currents.
  • the difference between the two noise currents is due to the difference in impedance between the two noise current loops.
  • the parasitic capacitance of the noise current loop and the parasitic inductance of the board wiring pattern are controlled. It is important to match the impedances of both noise current loops. This is called impedance balancing. Conversely, a state where there is a difference in impedance is expressed as an impedance being unbalanced.
  • the common mode current is suppressed by changing the wiring pattern of the circuit board and controlling the parasitic capacitance to balance the impedance.
  • Patent Document 3 discloses that the ground layer is provided with a hollow portion so as to be positioned below the communication line wired on the printed wiring board, thereby making the proximity to the hollow portion.
  • a technique has been proposed in which two magnetic fluxes flowing in opposite directions are generated by two loop currents flowing in the opposite direction, and the two magnetic fluxes cancel each other, thereby attenuating the level of the common mode current.
  • JP 2001-119110 A Japanese Patent Laid-Open No. 11-220056 JP 2000-307205 A IEICE Transactions Vol.J89-C No.11 pp.854-865
  • Patent Documents 1 and 2 propose a structure that prevents high-frequency current propagation from a semiconductor device to a circuit board.
  • propagation of high-frequency current to two loops can be suppressed.
  • the high-frequency current (common mode current) flowing in the same phase through the power supply wiring / ground (GND) wiring which is the main factor of radiation, cannot be effectively suppressed.
  • Non-Patent Document 1 discloses a method of suppressing the common mode current by suppressing the impedance imbalance of the circuit board.
  • balancing must be performed in the entire system including the semiconductor device and the circuit board. For this reason, it is necessary to adjust the impedance for each circuit board layout, which may be costly and time-consuming to design.
  • the technique disclosed in Patent Document 3 suppresses a common mode current in a circuit board by the structure of the circuit board.
  • an object of the present invention is to provide a semiconductor device capable of matching the impedance of the power supply wiring / GND wiring inside the semiconductor device, suppressing the common mode current, and reducing the noise current without depending on the mounting layout of the circuit board. To provide an apparatus.
  • a semiconductor device includes a package substrate, a semiconductor chip mounted on the package substrate, a first wiring for supplying a first power supply potential to the semiconductor chip, and the semiconductor chip. And a second wiring for supplying a second power supply potential lower than the first power supply potential, and a third wiring different from the first power supply potential and the second power supply potential.
  • the impedance imbalance of the semiconductor device is balanced only inside the semiconductor device, and the EMI of the semiconductor device is suppressed regardless of the wiring state of the external circuit board. Can do.
  • 1 and 2 are diagrams illustrating a configuration example of the semiconductor device of the present embodiment.
  • the power supply terminal of the semiconductor chip 12 is connected to the power supply wiring 15 formed in the wiring layer via the wire 13.
  • the power supply wiring 15 is connected to the power supply layer 22 through the impedance adjustment element 31.
  • the GND terminal of the semiconductor chip 12 is connected to the GND wiring 16 formed in the wiring layer via the wire 14.
  • the GND wiring 16 is connected to the GND layer 23 through the impedance adjustment element 32.
  • a dielectric 21 is filled between the layers of the package substrate.
  • the conductive plate 11 is disposed in the lowermost layer of the semiconductor device 10.
  • the conductive plate 11 has a potential different from that of the power supply wiring 15 / GND wiring 16 inside the semiconductor device 10 with respect to the reference GND 101, and generates a parasitic capacitance for the power supply wiring 15 / GND wiring 16.
  • the conductive plate 11 was provided on the contact surface side of the semiconductor device 10 with the circuit board immediately below the power supply wiring 15 / GND wiring 16.
  • the conductive plate 11 is arranged in this way, but the size of the conductive plate 11 may be arbitrary as long as parasitic capacitance is generated for the power supply wiring 15 / GND wiring 16.
  • the conductive plate 11 is preferably provided on the contact surface side of the semiconductor device 10 with the circuit board. However, the conductive plate 11 may be arbitrarily positioned as long as it generates parasitic capacitance with respect to the power supply wiring 15 / GND wiring 16 inside the semiconductor device 10. May be arranged.
  • FIG. 3 is a diagram showing an approximate equivalent circuit of the semiconductor device 10 of the present embodiment.
  • the equivalent circuit includes a semiconductor device 10, a circuit board 61 on which the semiconductor device 10 is mounted, and a power cable 62.
  • the semiconductor chip 12 shown in FIGS. 1 and 2 operates, a through current 100 flows in the semiconductor device 10.
  • Parasitic inductances 43 and 44 are generated in the power supply wiring 15 and the GND wiring 16 inside the semiconductor device 10, respectively, and parasitic capacitances 41 and 42 are generated between the semiconductor device 10 and the conductive plate 11, respectively.
  • the parasitic capacitance 45 is a parasitic capacitance between the power supply wiring 15 / GND wiring 16, and the parasitic capacitance 46 is a parasitic capacitance between the conductive plate 11 and the reference GND 101.
  • a parasitic capacitance 45 exists between VG in FIG. 3, a bypass capacitor may be mounted between VG.
  • the impedance between VG is set to a value sufficiently smaller than the wiring impedance of the impedance adjusting elements 31 and 32 and the parasitic inductances 43 and 44, and the same potential in terms of high frequency.
  • FIG. 4 is a diagram showing an equivalent circuit obtained by further approximating the equivalent circuit shown in FIG.
  • a connection point 102 is a point where the semiconductor device 10 and the circuit board 61 are connected, and further, a common mode impedance 52, a common mode current 53, and a common mode voltage 54 that are impedances of the circuit board 61 and the power cable 62. It is shown. A condition for suppressing the common mode current 53 in this circuit is derived.
  • the impedances of the parasitic capacitances 41 and 42 between the power supply wiring 15 / GND wiring 16 and the conductive plate 11 in the circuit of FIG. 4 are Z Cv and Z Cg , respectively.
  • combined impedances 47 and 48 which are impedance values obtained by combining the parasitic inductances 43 and 44 of the power supply wiring 15 / GND wiring 16 and the impedance adjustment elements 31 and 32, are defined as Z Lv and Z Lg .
  • the common mode impedance 52 which is the impedance of the circuit board and the power cable is Z C
  • the common mode voltage 54 is V C
  • the voltage of the noise source 51 is V d .
  • the common mode voltage 54 can be expressed by the following equation.
  • the common mode current 53 is proportional to the common mode voltage 54. Therefore, the condition for suppressing the common mode current 53 is obtained as the following equation.
  • the common mode current 53 can be suppressed by adjusting the impedance adjusting elements 31 and 32 so as to satisfy this condition.
  • the generation state of the common mode current when the semiconductor device 10 having the configuration in which the conductive plate 11 is not mounted is mounted on the circuit board.
  • the generation state of the common mode current when the semiconductor device 10 having the configuration in which the conductive plate 11 is mounted is mounted on a circuit board is shown.
  • FIG. 13 is a diagram showing the configuration of a measurement system that measures the occurrence of common mode current.
  • the measurement system includes a circuit board 201 on which the semiconductor device 10 is mounted, a power cable 202, a pseudo load circuit 204, and a power source 203.
  • the power cable 202 has a length of 1500 mm from the circuit board 201 and is at a height of 50 mm from the reference GND 101.
  • the circuit board 201 is also located at a height of 50 mm from the reference GND 101.
  • the current probe 302 is fixed at a position 50 mm from the circuit board 201.
  • the circuit board 201 was operated, and the common mode current 401 flowing through the power cable 202 was measured using the current probe 302 and the spectrum analyzer 301.
  • Inductor elements are used for the impedance adjustment elements 31 and 32 on the upper part of the semiconductor device 10 in FIG. 1, the value of the impedance adjustment element 32 on the GND terminal side is fixed to 10 nH, and the value of the impedance adjustment element 31 on the power supply terminal side is 1 nH.
  • the amount of change in the common mode current 401 when changing from 100 to 100 nH was measured.
  • FIG. 5 is a diagram illustrating a generation state of the common mode current 401 when the semiconductor device 10 having no conductive plate 11 is mounted on the circuit board 201.
  • FIG. 6 is a semiconductor having the conductive plate 11 mounted.
  • FIG. 6 is a diagram illustrating a generation state of a common mode current 401 when the device 10 is mounted on a circuit board 201.
  • the common mode current 401 can be suppressed by adjusting the impedance by the impedance adjusting elements 31 and 32.
  • the parasitic capacitances 41 and 42 shown in FIG. 3 are not uniquely determined due to the influence of the wiring pattern of the circuit board 201 on which the semiconductor device 10 is mounted. Therefore, there is a balance point at which the common mode current 401 is minimized. Different for each frequency. For this reason, variations in the suppression effect of the common mode current 401 occur depending on the layout of the circuit board 201.
  • the balance point is uniquely determined as shown in FIG. 6, and the common mode current 401 can be suppressed without being affected by the circuit board 201.
  • the impedance is adjusted and balanced only inside the semiconductor device 10 using the impedance adjusting elements 31 and 32, thereby providing a semiconductor.
  • the common mode current can be suppressed without being affected by the wiring pattern of the circuit board 201 on which the device 10 is mounted.
  • FIG. 7 is a diagram illustrating a configuration example of the semiconductor device of this embodiment.
  • the semiconductor device 10 of the present embodiment is an example where the power supply layer 22 and the GND layer 23 in the configuration of the semiconductor device 10 shown in FIG. 1 are not in the same plane but in different layers.
  • the semiconductor device 10 can be handled in the same manner as the equivalent circuit shown in FIG. 3, and is the same as in the first embodiment.
  • the common mode current can be suppressed by adjusting the impedance using the impedance adjusting elements 31 and 32.
  • FIG. 8 is a diagram illustrating a configuration example of the semiconductor device of the present embodiment.
  • the power supply terminal of the semiconductor chip 12 is connected to the power supply wiring 15 formed in the wiring layer via the wire 13.
  • the power supply wiring 15 is connected to the power supply layer 22 and to the conductive plate 11 through the impedance adjustment element 33.
  • the GND terminal of the semiconductor chip 12 is connected to the GND wiring 16 through the wire 14.
  • the GND wiring 16 is connected to the GND layer 23 and is connected to the conductive plate 11 via the impedance adjustment element 34.
  • a dielectric 21 is filled between the layers of the package substrate.
  • the conductive plate 11 is disposed in the lowermost layer of the semiconductor device 10.
  • the conductive plate 11 has a potential different from that of the power supply wiring 15 / GND wiring 16 inside the semiconductor device 10 with respect to the reference GND 101, and generates a parasitic capacitance for the power supply wiring 15 / GND wiring 16.
  • the size of the conductive plate 11 may be arbitrary as long as it generates parasitic capacitance for the power supply wiring 15 / GND wiring 16.
  • the conductive plate 11 is desirably provided on the contact surface side of the semiconductor device 10 with the circuit board. However, the conductive plate 11 is optional as long as it is a position where parasitic capacitance is generated with respect to the power supply wiring 15 / GND wiring 16 inside the semiconductor device 10. May be arranged.
  • FIG. 9 is a diagram showing an equivalent circuit of the semiconductor device 10 of the present embodiment.
  • An equivalent circuit of the power supply wiring 15 / GND wiring 16 of the semiconductor device 10 is represented by impedance adjusting elements 33 and 34 provided in the power supply wiring 15 / GND wiring 16, respectively, parasitic capacitance 41 generated in the power supply wiring 15 and the conductive plate 11, GND This is expressed using a parasitic capacitance 42 generated in the wiring 16 and the conductive plate 11, a parasitic inductance 43 of the power supply wiring 15, and a parasitic inductance 44 of the GND wiring 16.
  • the generation of the common mode voltage 54 may be suppressed.
  • the generation of the common mode voltage 54 can be suppressed if the bridge circuit composed of the noise source 51, the parasitic capacitors 41 and 42, the parasitic inductances 43 and 44, and the impedance adjusting elements 33 and 34 is balanced.
  • the bridge circuit can be balanced by adjusting the impedance adjusting elements 33 and 34. .
  • Z Cv and Z Cg are values obtained by combining the impedances of the parasitic capacitors 41 and 42 and the impedance adjusting elements 33 and 34 in the circuit of FIG. 9, and the impedances of the parasitic inductances 43 and 44 are Z Lv and Z Lg , respectively.
  • the conditions for balancing the bridge circuit are the same as those in the first embodiment, where the parasitic capacitances 41 and 42 are C v and C g , respectively, and the impedance adjustment elements 33 and 34 are C v ′ and C v ′, respectively.
  • C g ′ and the parasitic inductances 43 and 44 are L v and L g , respectively, the following equations are obtained.
  • the common mode current 53 can be suppressed by adjusting the impedance adjusting elements 33 and 34 so as to satisfy this condition.
  • the impedance adjusting elements 33 and 34 capacitive adjusting elements are used so that the power supply wiring 15 / GND wiring 16 and the conductive plate 11 are not short-circuited in a low frequency region.
  • FIG. 10 is a diagram illustrating a configuration example of the semiconductor device of the present embodiment.
  • the power supply terminal of the semiconductor chip 12 is connected to the power supply wiring 15 formed in the wiring layer via the wire 13.
  • the power supply wiring 15 is connected to the power supply layer 22 through the impedance adjustment element 31 and is connected to the conductive plate 11 through the impedance adjustment element 33.
  • the GND terminal of the semiconductor chip 12 is connected to the GND wiring 16 through the wire 14.
  • the GND wiring 16 is connected to the GND layer 23 via the impedance adjustment element 32 and to the conductive plate 11 via the impedance adjustment element 34.
  • a dielectric 21 is filled between the layers of the package substrate.
  • the conductive plate 11 is disposed in the lowermost layer of the semiconductor device 10.
  • the conductive plate 11 has a potential different from that of the power supply wiring 15 / GND wiring 16 inside the semiconductor device 10 with respect to the reference GND 101, and generates a parasitic capacitance for the power supply wiring 15 / GND wiring 16.
  • the size of the conductive plate 11 may be arbitrary as long as it generates parasitic capacitance for the power supply wiring 15 / GND wiring 16.
  • the conductive plate 11 is desirably provided on the contact surface side of the semiconductor device 10 with the circuit board. However, the conductive plate 11 is optional as long as it is a position where parasitic capacitance is generated with respect to the power supply wiring 15 / GND wiring 16 inside the semiconductor device 10. May be arranged.
  • FIG. 11 is a diagram showing an equivalent circuit of the semiconductor device 10 of the present embodiment.
  • An equivalent circuit of the power supply wiring 15 / GND wiring 16 of the semiconductor device 10 is connected to the impedance adjustment elements 31, 32 and impedance adjustment elements 33, 34, the power supply wiring 15 and the conductive plate 11 provided in the power supply wiring 15 / GND wiring 16, respectively. This is expressed by using the parasitic capacitance 41 generated, the parasitic capacitance 42 generated in the GND wiring 16 and the conductive plate 11, the parasitic inductance 43 of the power supply wiring 15, and the parasitic inductance 44 of the GND wiring 16.
  • the generation of the common mode voltage 54 may be suppressed.
  • the bridge circuit composed of the noise source 51, the parasitic capacitors 41 and 42, the parasitic inductances 43 and 44, and the impedance adjusting elements 31, 32, 33, and 34 is balanced, the common mode voltage 54 Generation can be suppressed.
  • the bridge circuit is balanced by adjusting the impedance adjustment elements 31, 32, 33, and 34. can do.
  • Z Cv and Z Cg are values obtained by combining the impedances of the parasitic capacitors 41 and 42 and the impedance adjustment elements 33 and 34 in the circuit of FIG. 11, and the parasitic inductances 43 and 44 and the impedance adjustment elements 31 and 32 are respectively set.
  • the combined impedance values are Z Lv and Z Lg
  • the conditions for balancing the bridge circuit are the same as in Equation 2 of the first embodiment, and the parasitic capacitances 41 and 42 are C v and C g , respectively.
  • the adjustment elements 33 and 34 are C v ′ and C g ′, the parasitic inductances 43 and 44 are L v and L g , respectively, and the impedance adjustment elements 31 and 32 are L v ′ and L g ′, respectively, The formula is obtained.
  • the common mode current 53 can be suppressed by adjusting the impedance adjusting elements 31, 32, 33, and 34 so as to satisfy this condition.
  • the impedance adjusting elements 33 and 34 capacitive adjusting elements are used so that the power supply wiring 15 / GND wiring 16 and the conductive plate 11 are not short-circuited in a low frequency region.
  • the impedance adjustment elements 31, 32, 33, and 34 are used only inside the semiconductor device 10. By adjusting and balancing the impedance, the common mode current can be suppressed and the noise current can be reduced without being affected by the wiring pattern of the circuit board 201 on which the semiconductor device 10 is mounted.
  • FIG. 14 to 17 are diagrams showing examples of mounting the semiconductor device of the present embodiment.
  • FIG. 14 is a diagram illustrating a mounting example of the semiconductor device 10
  • FIGS. 15 to 17 are diagrams illustrating mounting examples of the first layer to the third layer of the semiconductor device 10, respectively.
  • the power supply terminal of the semiconductor chip 12 is connected to the power supply wiring 25 formed in the first wiring layer via the wire 13.
  • the power supply wiring 25 is connected to the second-layer power supply wiring 152 through the via 17. Further, it is connected to the power wiring 15 of the first layer through the via 20 and connected to the power wiring 151 through the impedance adjusting element 31. Further, it is connected to the power wiring 153 of the second layer through the via 201.
  • the GND terminal of the semiconductor chip 12 is connected to the GND wiring 24 formed in the first wiring layer via the wire 14.
  • the GND wiring 24 is connected to the second-layer GND wiring 162 through the via 19. Further, it is connected to the GND wiring 16 of the first layer through the via 18 and connected to the GND wiring 161 through the impedance adjustment element 32. Further, it is connected to the second-layer GND wiring 163 through the via 181.
  • the third layer has a conductive plate 11 and is filled with a dielectric between the layers.
  • the bypass capacitor 49 may be mounted between the power supply wiring and the GND wiring.
  • FIG. 18 is a diagram illustrating a configuration example of the semiconductor device of the present embodiment.
  • the semiconductor device 10 of the present embodiment is an example in which the conductive plate 11 is not disposed on the contact surface side with the circuit board but between the semiconductor chip 12, the power supply layer 22 and the GND layer 23.
  • the equivalent circuit at this time is as shown in FIG. 19, and the power supply wiring 15 / GND wiring 16 on the package substrate has parasitic capacitances 411 and 421 with respect to the reference GND101.
  • the dielectric 211 is inserted to partially change the dielectric constant in the package substrate, the dielectric constant of the dielectric 21 is changed, the distance between the package substrates is reduced, or the package
  • the values of the parasitic capacitors 41 and 42 with respect to the parasitic capacitors 411 and 421 can be increased, and the influence of the parasitic capacitors 411 and 421 can be reduced. Accordingly, it is possible to handle the same equivalent circuit as in FIG. 4 as before.
  • FIG. 20 is a diagram illustrating a configuration example of the semiconductor device of the present embodiment.
  • the semiconductor device 10 according to the present embodiment is an example in the case where the impedance adjustment elements 31 and 32 are not provided.
  • FIG. 21 is a diagram showing an equivalent circuit of the semiconductor device 10 of the present embodiment.
  • An equivalent circuit of the power supply wiring 15 / GND wiring 16 of the semiconductor device 10 is represented by a parasitic capacitance 41 generated in the power supply wiring 15 and the conductive plate 11, a parasitic capacitance 42 generated in the GND wiring 16 and the conductive plate 11, and a parasitic inductance of the power supply wiring 15. 43, the parasitic inductance 44 of the GND wiring 16 is used.
  • the parasitic capacitances 41 and 42 and the parasitic inductances 43 and 44 generated with respect to the conductive plate 11 and the power supply wiring 15 / GND wiring 16 on the package substrate should satisfy the number 2 shown in the first embodiment.
  • the common mode current 53 can be reduced even when the impedance adjustment elements 31 and 32 are not provided.
  • the generation of the common mode voltage 54 may be suppressed.
  • the bridge circuit composed of the noise source 51, the parasitic capacitors 41 and 42, and the parasitic inductances 43 and 44 is balanced, the generation of the common mode voltage 54 can be suppressed.
  • the noise source 51, the parasitic capacitances 41 and 42, and the parasitic inductances 43 and 44 are predetermined depending on the structure of the semiconductor device 10, the bridge circuit is designed to be balanced when the semiconductor device 10 is designed. I understand that
  • the condition for the bridge circuit to be balanced is as follows. It becomes the same as the number 2 of. Accordingly, when the parasitic capacitances 41 and 42 are C v and C g respectively, and the parasitic inductances 43 and 44 are L v and L g respectively, the following equations are obtained.
  • the common mode current 53 can be reduced by designing so as to satisfy Equation (6).
  • FIG. 22 is a diagram illustrating a configuration example of the semiconductor device of this embodiment.
  • the conductive plate 11 is disposed between the semiconductor chip 12 and the power supply layer 23.
  • a capacitance is generated with respect to the reference GND 101 like the parasitic capacitances 411 and 421 shown in FIG.
  • the dielectric 211 is inserted to partially change the dielectric constant in the package substrate, the dielectric constant of the dielectric 21 is changed, the distance between the package substrates is reduced, or the package
  • the values of the parasitic capacitors 41 and 42 with respect to the parasitic capacitors 411 and 421 can be increased, and the influence of the parasitic capacitors 411 and 421 can be reduced. Accordingly, it is possible to handle the same equivalent circuit as in FIG. 11 as before.
  • FIG. 23 is a diagram illustrating a configuration example of the semiconductor device of the present embodiment.
  • the conductive plate 11 is disposed between the power supply layer 22 and the GND layer 23.
  • a capacitance is generated with respect to the reference GND 101 like the parasitic capacitances 411 and 421 shown in FIG.
  • the dielectric 211 is inserted to partially change the dielectric constant in the package substrate, the dielectric constant of the dielectric 21 is changed, the distance between the package substrates is reduced, or the package
  • the values of the parasitic capacitors 41 and 42 with respect to the parasitic capacitors 411 and 421 can be increased, and the influence of the parasitic capacitors 411 and 421 can be reduced. Accordingly, it is possible to handle the same equivalent circuit as in FIG. 11 as before.
  • Equation 2 is an expression that the common mode current can be reduced if the impedance products are made equal, but considering the impedance product ratio ⁇ expressed by the following expression: , ⁇ has a large reduction effect within an error range of 3%.
  • a radiation electromagnetic field is defined by a tolerance value of an interference characteristic for protection of an in-vehicle receiver and a measurement method (CISPR25) Class 5 which is a standard created by the International Committee on Radio Interference (CISPR).
  • CISPR25 measurement method
  • CISPR25 measurement method
  • it is necessary to set the radiated electromagnetic field distant by d 1 m from a wire harness such as the power cable 202 that connects the vehicle-mounted device and the power source to 12 dB ⁇ V / m or less.
  • FIG. 24 is a diagram illustrating a generation state of the common mode current 401 when the semiconductor device of the first embodiment is mounted on a circuit board.
  • FIG. 25 is a diagram showing an allowable error in the ratio of impedance products when the semiconductor device of the first embodiment is mounted on a circuit board.
  • the impedance ratio Z Cg / Z Cv was variable from 1 to 50.
  • the error needs to be 3% or less near the frequencies at which the power cable 202 resonates, 100 MHz, 200 MHz, and 300 MHz. You can see that you are satisfied.
  • the impedance adjustment elements 31, 32, 33, and 34 are not all necessary as long as the conditions for balancing the bridge circuits in FIGS. It may be a configuration without a gap. Further, the impedance adjusting elements 31, 32, 33, and 34 do not have to be elements, and may be configured by a circuit wiring pattern and use the wiring impedance.
  • the present invention is applicable to a semiconductor device that can reduce noise current.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Geometry (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Structure Of Printed Boards (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

 半導体装置の内部で電源配線/GND配線のインピーダンスの整合を取り、回路基板の実装レイアウトに依存せずにノイズ電流を低減させる半導体装置である。本発明の代表的な実施の形態の半導体装置は、パッケージ基板と半導体チップと電源配線とGND配線とを有する半導体装置であって、導電板を有し、さらに、第1のインピーダンス調整素子と第2のインピーダンス調整素子を有し、導電板によって電源配線、GND配線の寄生容量を定め、第1のインピーダンス調整素子と第2のインピーダンス調整素子とにより、電源配線とGND配線のインピーダンスが調整されている。

Description

半導体装置
 本発明は、半導体装置においてノイズ電流を低減させることを可能とする技術に関するものである。
 近年、LSI(Large Scale Integrated Circuit)を搭載した電子制御基板が増加する中、LSIの動作周波数の高調波が伝導、放射雑音となり他の機器に影響を与える電磁障害(EMI:Electro-Magnetic Interference)が問題となっている。
 電子機器等が発生するEMIの主因として、LSIなどの内部回路の高速スイッチング動作で発生する高周波電流があげられる。LSI内部で発生した高周波電流は、回路基板に伝播し、回路基板からの放射を引き起こす。また、回路基板に接続されたコネクタを介して配線や他の基板へと伝播し、放射を引き起こす可能性もある。この問題に対して、LSIから回路基板への高周波電流の伝播を防ぐ技術が提案されている。
 例えば、特許文献1では、LSIを実装する回路基板において、電源端子とビアホールを電気的に接続する第一のコンデンサ、第一の電源配線、第二の電源配線及び第二のコンデンサとを具備し、所定の周波数範囲において電源配線における特性インピーダンスの大きさをコンデンサにおけるインピーダンスの大きさの三倍以上にし、更に電源配線の長さを20mmに回路基板の波長短縮率をかけた値以上、かつ、所定の周波数の上限周波数の1/4波長に波長短縮率をかけた値以下とする構成により、低周波数通過型フィルタの効果を高めている。
 また、例えば、特許文献2には、配線基板上に所定の配線を配設し、該配線に近接する位置に電磁波遮断膜(金属箔)を配置した配線基板、及び、半導体チップの集積回路が形成されている面の上に絶縁膜を配置し、該電磁波遮断膜の上に絶縁膜を介してリードを配置し、このリードと半導体チップの外部端子とを電気的に接続し、封止材で封止してなる半導体装置の構成が記載されている。この構成により、配線または半導体パッケージ内のリードによる配線のインダクタンスの低減と誘導性クロストークの低減を可能としている。
 これに対し、非特許文献1では、放射の主要因である電源配線/グランド(GND)配線を同位相で流れる高周波電流(コモンモード電流)を抑制する方法として、プリント回路基板の配線パターンによる寄生インダクタンスと容量を適切にバランスさせる方法を提案している。この概要を図12に示す。
 図12は、電子機器におけるコモンモード電流発生の状況を示す模式図である。図12の上段に示すように、電子機器は、半導体装置10を搭載した回路基板201と、電源ケーブル202、電源203、及びリファレンスGND101で構成される。この構成回路をそれぞれ等価回路化したものが図12の下段の図である。
 回路基板201は等価回路501、電源ケーブル202は等価回路502、電源203は等価回路503で表す。等価回路501内は、ノイズ源500を持つ半導体装置10の等価回路510と、回路基板201の電源配線パターン521とGND配線パターン522がそれぞれリファレンスGND101に対して持つ寄生容量531、532、及び寄生インダクタンスによって表す。また電源ケーブル202の等価回路502、電源203の等価回路503も同様にリファレンスGND101に対する寄生容量と、寄生インダクタンス、及び電源配線/GND配線間の寄生容量によって表す。
 この構成回路の等価回路においては、2つのノイズ電流ループが存在する。半導体装置10から漏れ出たノイズ電流は、回路基板201の電源配線パターン521の寄生容量531を介し、リファレンスGND101に流れる電源側ノイズ電流ループ402と、回路基板201のGND配線パターン522の寄生容量532を介し、リファレンスGND101に流れるGND側ノイズ電流ループ403を形成する。電源配線/GND配線を同位相で流れる高周波電流であるコモンモード電流はこの二つのノイズ電流の差分によって発生する。
 二つのノイズ電流に差分が生じるのは、二つのノイズ電流ループのインピーダンスに差があるからであり、コモンモード電流低減のためにはノイズ電流ループの寄生容量と、基板配線パターンの寄生インダクタンスを制御し、両ノイズ電流ループのインピーダンスを整合させることが重要である。これをインピーダンスのバランス化という。逆にインピーダンスに差分がある状態をインピーダンスがアンバランスであると表現する。非特許文献1では回路基板の配線パターンを変化させ、寄生容量の値を制御してインピーダンスをバランス化することで、コモンモード電流を抑制している。
 また、コモンモード電流を抑制する別の方法として、特許文献3には、プリント配線基板上に配線された通信線の下部に位置するようにグランド層にくり抜き部分を設けることにより、くり抜き部分に近接して流れる2つのループ電流によって逆方向な2つの磁束を発生させ、この2つの磁束が相互に打ち消し合うことによってコモンモード電流のレベルを減衰させる技術が提案されている。
特開2001-119110号公報 特開平11-220056号公報 特開2000-307205号公報 電子情報通信学会論文誌C Vol.J89-C No.11 pp.854-865
 上記の特許文献1、2では、半導体装置から回路基板への高周波電流伝播を防ぐ構造を提案している。上記2つの方法により、高周波電流の2つのループへの伝播(ディファレンシャルモード電流)は抑制できる。しかし、放射の主要因である電源配線/グランド(GND)配線を同位相で流れる高周波電流(コモンモード電流)を効果的に抑制することはできない。
 また、非特許文献1では、回路基板のインピーダンスのアンバランスを抑制しコモンモード電流を抑制する方法が示されている。しかし、非特許文献1の方法では、半導体装置と回路基板を含めた全体の系でバランス化をしなければならない。その為、回路基板のレイアウトごとにインピーダンスの調整を行なう必要があり、コストや設計の手間がかかる場合がある。また、特許文献3に示されている技術は、回路基板の構造により、回路基板においてコモンモード電流を抑制するものである。
 そこで本発明の目的は、半導体装置の内部で電源配線/GND配線のインピーダンスの整合を取り、コモンモード電流を抑制し、回路基板の実装レイアウトに依存することなくノイズ電流を低減させることができる半導体装置を提供することにある。
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
 本発明の代表的な実施の形態による半導体装置は、パッケージ基板と、前記パッケージ基板に搭載された半導体チップと、前記半導体チップに第1の電源電位を供給する第1の配線と、前記半導体チップに前記第1の電源電位よりも低い第2の電源電位を供給する第2の配線とを有する半導体装置であって、前記第1の電源電位及び前記第2の電源電位とは異なる第3の電位を持つ導電板を有し、さらに、前記第1の配線の経路上に設置され、前記第1の配線と前記第2の配線のインピーダンスを調整するための第1の素子と、前記第2の配線の経路上に設置され、前記第1の配線と前記第2の配線のインピーダンスを調整するための第2の素子の少なくとも1つを有することを特徴とするものである。
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
 本発明の代表的な実施の形態によれば、半導体装置のインピーダンスのアンバランスを半導体装置の内部のみでバランス化し、外部の回路基板の配線状態によって左右されずに半導体装置のEMIを抑制することができる。
本発明の実施の形態1における半導体装置の構成例を示す図である。 本発明の実施の形態1における半導体装置の構成例を示す図である。 本発明の実施の形態1における半導体装置の近似的な等価回路を示す図である。 本発明の実施の形態1における半導体装置の等価回路を更に近似した等価回路を示す図である。 本発明の実施の形態1における導電板を搭載しない構成の半導体装置を回路基板に搭載した場合のコモンモード電流の発生状況を示す図である。 本発明の実施の形態1における導電板を搭載した構成の半導体装置を回路基板に搭載した場合のコモンモード電流の発生状況を示す図である。 本発明の実施の形態2における半導体装置の構成例を示す図である。 本発明の実施の形態3における半導体装置の構成例を示す図である。 本発明の実施の形態3における半導体装置の等価回路を示す図である。 本発明の実施の形態4における半導体装置の構成例を示す図である。 本発明の実施の形態4における半導体装置の等価回路を示す図である。 電子機器におけるコモンモード電流発生の状況を示す模式図である。 コモンモード電流の発生状況を測定する測定系の構成を示す図である。 本発明の実施の形態5における半導体装置の実装例を示す図である。 本発明の実施の形態5における半導体装置の第1層の実装例を示す図である。 本発明の実施の形態5における半導体装置の第2層の実装例を示す図である。 本発明の実施の形態5における半導体装置の第3層の実装例を示す図である。 本発明の実施の形態6における半導体装置の構成例を示す図である。 本発明の実施の形態6における半導体装置の等価回路を示す図である。 本発明の実施の形態7における半導体装置の構成例を示す図である。 本発明の実施の形態7における半導体装置の等価回路を示す図である。 本発明の実施の形態8における半導体装置の構成例を示す図である。 本発明の実施の形態9における半導体装置の構成例を示す図である。 本発明の実施の形態1における半導体装置を回路基板に搭載した場合のコモンモード電流401の発生状況を示す図である。 本発明の実施の形態1における半導体装置を回路基板に搭載した場合のインピーダンス積の比の許容誤差を示す図である。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一部には原則として同一の符号を付し、その繰り返しの説明は省略する。
 <実施の形態1>
 以下では、本発明の実施の形態1である半導体装置について説明する。図1および図2は、本実施の形態の半導体装置の構成例を示す図である。
 半導体チップ12の電源用端子は、ワイヤ13を介して配線層に形成した電源配線15に接続する。電源配線15はインピーダンス調整素子31を介して電源層22へ接続する。また、同様に半導体チップ12のGND端子は、ワイヤ14を介して配線層に形成したGND配線16に接続する。GND配線16はインピーダンス調整素子32を介してGND層23に接続する。パッケージ基板の各層間には誘電体21が充填されている。
 半導体装置10の最下層には導電板11を配置する。導電板11は、リファレンスGND101に対する半導体装置10内部の電源配線15/GND配線16とは異なる電位を持ち、電源配線15/GND配線16に対して寄生容量を発生させる。導電板11は、電源配線15/GND配線16の直下、半導体装置10の回路基板との接触面側に設けた。
 本実施の形態では導電板11をこのように配置したが、電源配線15/GND配線16に対して寄生容量を発生させるものであれば、導電板11の大きさは任意でよい。また、導電板11は半導体装置10の回路基板との接触面側に設けることが望ましいが、半導体装置10内部の電源配線15/GND配線16に対して寄生容量を発生させる位置であれば任意に配置してよい。
 図3は、本実施の形態の半導体装置10の近似的な等価回路を示す図である。図3において、等価回路は、半導体装置10、半導体装置10を搭載した回路基板61、電源ケーブル62から構成される。図1および図2に示す半導体チップ12が動作すると、半導体装置10に貫通電流100が流れる。半導体装置10の内部の電源配線15、GND配線16では、それぞれ寄生インダクタンス43、44が発生しており、また、導電板11との間にそれぞれ寄生容量41、42が発生している。
 寄生容量45は電源配線15/GND配線16間の寄生容量であり、寄生容量46は導電板11とリファレンスGND101との間の寄生容量である。図3におけるV-G間には寄生容量45が存在するが、V-G間にバイパスコンデンサを実装してもよい。この時、V-G間のインピーダンスは、インピーダンス調整素子31、32、寄生インダクタンス43、44の配線インピーダンスよりも十分小さい値とし、高周波的に同電位とする。
 図4は、図3に示す等価回路を更に近似した等価回路を示す図である。図4において、接続点102は半導体装置10と回路基板61が接続される点であり、さらに、回路基板61と電源ケーブル62のインピーダンスであるコモンモードインピーダンス52、コモンモード電流53、コモンモード電圧54が示されている。
この回路においてコモンモード電流53を抑制する条件を導出する。
 図4の回路における電源配線15/GND配線16と導電板11との間の寄生容量41、42のインピーダンスをそれぞれZCv、ZCgとする。また電源配線15/GND配線16の寄生インダクタンス43、44とインピーダンス調整素子31、32をそれぞれ合成したインピーダンスの値である合成インピーダンス47、48をZLv、ZLgとする。また、回路基板と電源ケーブルのインピーダンスであるコモンモードインピーダンス52をZ、コモンモード電圧54をV、ノイズ源51の電圧をVとする。この時コモンモード電圧54は、以下の式で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 コモンモード電流53はコモンモード電圧54に比例する。よってコモンモード電流53を抑制する為の条件は以下の式として得られる。
Figure JPOXMLDOC01-appb-M000002
 この式は、図4のブリッジ回路が平衡化する条件と同じである。ここで寄生容量41、42をそれぞれC、Cとし、電源配線15/GND配線16の寄生インダクタンス43、44をそれぞれL、Lとし、インピーダンス調整素子31、32をそれぞれL’、L’とすると、以下の式が得られる。
Figure JPOXMLDOC01-appb-M000003
 この条件を満たすようにインピーダンス調整素子31、32を調整することでコモンモード電流53を抑制できることが分かる。
 本実施の形態の半導体装置10に対する比較例として、図1に示す半導体装置10の構成のうち、導電板11を搭載しない構成の半導体装置10を回路基板に搭載した場合のコモンモード電流の発生状況と、導電板11を搭載した構成の半導体装置10を回路基板に搭載した場合のコモンモード電流の発生状況を示す。
 図13は、コモンモード電流の発生状況を測定する測定系の構成を示す図である。図13において、測定系は、半導体装置10を搭載した回路基板201、電源ケーブル202、擬似負荷回路204、電源203から構成される。電源ケーブル202は回路基板201から1500mmの長さであり、リファレンスGND101から高さ50mmの位置にある。また回路基板201もリファレンスGND101から高さ50mmの位置にある。カレントプローブ302は回路基板201から50mmの位置に固定する。
 回路基板201を動作させ、電源ケーブル202に流れるコモンモード電流401をカレントプローブ302とスペクトラムアナライザ301を用いて測定した。図1における半導体装置10の上部のインピーダンス調整素子31、32にはインダクタンス素子を利用し、GND端子側のインピーダンス調整素子32の値を10nH固定とし、電源端子側のインピーダンス調整素子31の値を1nHから100nHまで変化させた場合のコモンモード電流401の変化量を測定した。
 図5は、導電板11を搭載しない構成の半導体装置10を回路基板201に搭載した場合のコモンモード電流401の発生状況を示す図であり、図6は、導電板11を搭載した構成の半導体装置10を回路基板201に搭載した場合のコモンモード電流401の発生状況を示す図である。電源端子側のインピーダンス調整素子31の値をL、GND端子側のインピーダンス調整素子32の値をLとし、LとLの比をインピーダンス調整比として横軸にとり、コモンモード電流401を縦軸にとって比較を行なった。
 図5、図6の結果とも、インピーダンス調整素子31、32によってインピーダンスを調整することにより、コモンモード電流401を抑制できることが分かる。また、図5では、半導体装置10を搭載した回路基板201の配線パターンの影響を受け、図3に示す寄生容量41、42が一意に決定しない為、コモンモード電流401が最小となるバランス点が周波数ごとに異なっている。
このため、回路基板201のレイアウトによってコモンモード電流401の抑制効果にばらつきが生じる。これに対し、導電板11を搭載した構成の半導体装置10では、図6のようにバランス点が一意に定まり、回路基板201の影響を受けずにコモンモード電流401を抑制することができる。
 以上のように、導電板11を有する構成の本実施の形態の半導体装置10において、インピーダンス調整素子31、32を用いて半導体装置10の内部のみでインピーダンスを調整してバランス化することにより、半導体装置10を搭載する回路基板201の配線パターンの影響を受けずにコモンモード電流を抑制することができる。
 <実施の形態2>
 以下では、本発明の実施の形態2である半導体装置について説明する。図7は、本実施の形態の半導体装置の構成例を示す図である。本実施の形態の半導体装置10は、図1に示す半導体装置10の構成における電源層22、GND層23が同一面の層ではなく別層にある場合の例である。
 電源配線15/GND配線16が同一面内にある場合でも、もしくは多層化している場合でも、半導体装置10は図3に示す等価回路と同様に扱うことができ、実施の形態1の場合と同様に、インピーダンス調整素子31、32を用いてインピーダンスを調整することにより、コモンモード電流を抑制することができる。
 <実施の形態3>
 以下では、本発明の実施の形態3である半導体装置について説明する。図8は、本実施の形態の半導体装置の構成例を示す図である。半導体チップ12の電源用端子は、ワイヤ13を介して配線層に形成された電源配線15に接続する。電源配線15は電源層22へ接続すると共に、インピーダンス調整素子33を介して導電板11へ接続する。また、同様に半導体チップ12のGND端子はワイヤ14を介してGND配線16に接続する。GND配線16はGND層23に接続すると共に、インピーダンス調整素子34を介して導電板11へ接続する。パッケージ基板の各層間には誘電体21が充填されている。
 半導体装置10の最下層には導電板11を配置する。導電板11は、リファレンスGND101に対する半導体装置10内部の電源配線15/GND配線16とは異なる電位を持ち、電源配線15/GND配線16に対して寄生容量を発生させる。実施の形態1と同様に、導電板11の大きさは、電源配線15/GND配線16に対して寄生容量を発生させるものであれば任意でよい。また、導電板11は、半導体装置10の回路基板との接触面側に設けることが望ましいが、半導体装置10内部の電源配線15/GND配線16に対して寄生容量を発生させる位置であれば任意に配置してよい。
 図9は、本実施の形態の半導体装置10の等価回路を示す図である。半導体装置10の電源配線15/GND配線16の等価回路を、電源配線15/GND配線16にそれぞれ設けられたインピーダンス調整素子33、34、電源配線15と導電板11に発生する寄生容量41、GND配線16と導電板11に発生する寄生容量42、電源配線15の寄生インダクタンス43、GND配線16の寄生インダクタンス44を用いて表す。
 図9におけるコモンモード電流53を抑制する為には、コモンモード電圧54の発生を抑制すればよい。図9に示す等価回路では、ノイズ源51と寄生容量41、42、寄生インダクタンス43、44、インピーダンス調整素子33、34で構成されるブリッジ回路が平衡化すればコモンモード電圧54の発生を抑制できる。この時、ノイズ源51、寄生容量41、42、寄生インダクタンス43、44は半導体装置10の構造によって既定であるため、インピーダンス調整素子33、34を調整することによってブリッジ回路を平衡化することができる。
 すなわち、図9の回路における寄生容量41、42とインピーダンス調整素子33、34のインピーダンスをそれぞれ合成した値をZCv、ZCgとし、また、寄生インダクタンス43、44のインピーダンスをそれぞれZLv、ZLgとすると、ブリッジ回路が平衡化する条件は、実施の形態1の数2と同様になり、寄生容量41、42をそれぞれC、Cとし、インピーダンス調整素子33、34をそれぞれC’、C’とし、寄生インダクタンス43、44をそれぞれL、Lとすると、以下の式が得られる。
Figure JPOXMLDOC01-appb-M000004
 この条件を満たすようにインピーダンス調整素子33、34を調整することでコモンモード電流53を抑制できることが分かる。なお、この時インピーダンス調整素子33、34には、電源配線15/GND配線16と導電板11が低周波領域で短絡しないように容量性の調整素子を用いる。
 <実施の形態4>
 以下では、本発明の実施の形態4である半導体装置について説明する。図10は、本実施の形態の半導体装置の構成例を示す図である。半導体チップ12の電源用端子は、ワイヤ13を介して配線層に形成された電源配線15に接続する。電源配線15はインピーダンス調整素子31を介して電源層22へ接続すると共に、インピーダンス調整素子33を介して導電板11へ接続する。また、同様に半導体チップ12のGND端子はワイヤ14を介してGND配線16に接続する。GND配線16はインピーダンス調整素子32を介してGND層23に接続すると共にインピーダンス調整素子34を介して導電板11へ接続する。パッケージ基板の各層間には誘電体21が充填されている。
 半導体装置10の最下層には導電板11を配置する。導電板11は、リファレンスGND101に対する半導体装置10内部の電源配線15/GND配線16とは異なる電位を持ち、電源配線15/GND配線16に対して寄生容量を発生させる。実施の形態1と同様に、導電板11の大きさは、電源配線15/GND配線16に対して寄生容量を発生させるものであれば任意でよい。また、導電板11は、半導体装置10の回路基板との接触面側に設けることが望ましいが、半導体装置10内部の電源配線15/GND配線16に対して寄生容量を発生させる位置であれば任意に配置してよい。
 図11は、本実施の形態の半導体装置10の等価回路を示す図である。半導体装置10の電源配線15/GND配線16の等価回路を、電源配線15/GND配線16にそれぞれ設けられたインピーダンス調整素子31、32およびインピーダンス調整素子33、34、電源配線15と導電板11に発生する寄生容量41、GND配線16と導電板11に発生する寄生容量42、電源配線15の寄生インダクタンス43、GND配線16の寄生インダクタンス44を用いて表す。
 図11におけるコモンモード電流53を抑制する為には、コモンモード電圧54の発生を抑制すればよい。図11に示す等価回路では、ノイズ源51と寄生容量41、42、寄生インダクタンス43、44、インピーダンス調整素子31、32、33、34で構成されるブリッジ回路が平衡化すればコモンモード電圧54の発生を抑制できる。この時、ノイズ源51、寄生容量41、42、寄生インダクタンス43、44は半導体装置10の構造によって既定であるため、インピーダンス調整素子31、32、33、34を調整することによってブリッジ回路を平衡化することができる。
 すなわち、図11の回路における寄生容量41、42とインピーダンス調整素子33、34のインピーダンスをそれぞれ合成した値をZCv、ZCgとし、また、寄生インダクタンス43、44とインピーダンス調整素子31、32をそれぞれ合成したインピーダンスの値をZLv、ZLgとすると、ブリッジ回路が平衡化する条件は、実施の形態1の数2と同様になり、寄生容量41、42をそれぞれC、Cとし、インピーダンス調整素子33、34をそれぞれC’、C’とし、寄生インダクタンス43、44をそれぞれL、Lとし、インピーダンス調整素子31、32をそれぞれL’、L’とすると、以下の式が得られる。
Figure JPOXMLDOC01-appb-M000005
 この条件を満たすようにインピーダンス調整素子31、32、33、34を調整することでコモンモード電流53を抑制できることが分かる。なお、この時インピーダンス調整素子33、34には、電源配線15/GND配線16と導電板11が低周波領域で短絡しないように容量性の調整素子を用いる。
 以上のように、実施の形態1~4の例で説明したような導電板11を有する構成の半導体装置10において、インピーダンス調整素子31、32、33、34を用いて半導体装置10の内部のみでインピーダンスを調整してバランス化することにより、半導体装置10を搭載する回路基板201の配線パターンの影響を受けずにコモンモード電流を抑制し、ノイズ電流を低減させることができる。
 <実施の形態5>
 以下では、本発明の実施の形態5である半導体装置について説明する。図14~図17は、本実施の形態の半導体装置の実装例を示す図である。図14は、半導体装置10の実装例、図15~図17は、それぞれ、半導体装置10の第1層~第3層の実装例を示す図である。
 半導体チップ12の電源用端子は、ワイヤ13を介して第1層の配線層に形成した電源配線25に接続する。電源配線25は、ビア17を介して第2層の電源配線152に接続される。さらに、ビア20を介して第1層の電源配線15に接続され、インピーダンス調整素子31を介して電源配線151へ接続する。さらに、ビア201を介して第2層の電源配線153に接続する。
 また同様に、半導体チップ12のGND端子は、ワイヤ14を介して第1層の配線層に形成したGND配線24に接続する。GND配線24は、ビア19を介して第2層のGND配線162に接続される。さらに、ビア18を介して第1層のGND配線16に接続され、インピーダンス調整素子32を介してGND配線161へ接続する。さらに、ビア181を介して第2層のGND配線163に接続する。なお、第3層には導電板11を有しており、また、各層間には誘電体が充填されている。
 このように、電源配線/GND配線は、インピーダンス調整素子31、32を介してパッケージ外部の電源配線と接続するように引き回せば、実施の形態1~4と同様にコモンモード電流を低減することが可能である。また、本実施の形態の例に示すように、バイパスコンデンサ49を電源配線-GND配線間に実装してもよい。
 <実施の形態6>
 以下では、本発明の実施の形態6である半導体装置について説明する。図18は、本実施の形態の半導体装置の構成例を示す図である。本実施の形態の半導体装置10は、導電板11が回路基板との接触面側ではなく、半導体チップ12と電源層22およびGND層23との間に配置されている場合の例である。
 このときの等価回路は図19に示すようになり、パッケージ基板上の電源配線15/GND配線16は、リファレンスGND101に対して寄生容量411、421を持つ。しかし、例えば、パッケージ基板内の誘電率を部分的に変化させるために誘電体211を挿入する、もしくは、誘電体21の誘電率を変化させる、もしくは、パッケージ基板間の距離を縮める、もしくは、パッケージとリファレンスGND101との距離を離すことにより、寄生容量411、421に対する寄生容量41、42の値を大きくし、寄生容量411、421の影響を低減することができる。従って、これまでと同様に図4と同様の等価回路で扱うことが可能となる。
 <実施の形態7>
 以下では、本発明の実施の形態7である半導体装置について説明する。図20は、本実施の形態の半導体装置の構成例を示す図である。本実施の形態の半導体装置10は、インピーダンス調整用素子31、32がない場合の例である。また、図21は、本実施の形態の半導体装置10の等価回路を示す図である。半導体装置10の電源配線15/GND配線16の等価回路を、電源配線15と導電板11に発生する寄生容量41、GND配線16と導電板11に発生する寄生容量42、電源配線15の寄生インダクタンス43、GND配線16の寄生インダクタンス44を用いて表している。
 ここで、導電板11とパッケージ基板上の電源配線15/GND配線16に対して発生する寄生容量41、42、及び寄生インダクタンス43、44が実施の形態1で示した数2を満たす値であれば、インピーダンス調整素子31、32が無い場合であってもコモンモード電流53を低減することが可能である。
 図21に示す等価回路においてコモンモード電流53を抑制するためには、コモンモード電圧54の発生を抑制すればよい。ここでは、ノイズ源51と寄生容量41、42、寄生インダクタンス43、44で構成されるブリッジ回路が平衡化すればコモンモード電圧54の発生を抑制できる。この時、ノイズ源51、寄生容量41、42、寄生インダクタンス43、44は半導体装置10の構造によって既定であるため、半導体装置10の設計の際に上記のブリッジ回路を平衡化するように設計すればよいことが分かる。
 すなわち、図21の等価回路における寄生容量41、42をZCv、ZCgとし、また、寄生インダクタンス43、44をZLv、ZLgとすると、ブリッジ回路が平衡化する条件は、実施の形態1の数2と同様になる。従って、寄生容量41、42をそれぞれC、Cとし、寄生インダクタンス43、44をそれぞれL、Lとすると、以下の式が得られる。
Figure JPOXMLDOC01-appb-M000006
 このように、インピーダンス調整用素子31、32がない場合であっても、数6を満たすように設計することによってコモンモード電流53を低減することが可能である。
 <実施の形態8>
 以下では本発明の実施の形態8である半導体装置について説明する。実施の形態2において説明したように、導電板11は回路基板面側に配置することが望ましいが、電源配線15/GND配線16に対して寄生容量を発生させる位置であれば任意に配置してよい。図22は、本実施の形態の半導体装置の構成例を示す図である。本実施の形態の半導体装置10では、導電板11が半導体チップ12と電源層23との間に配置されている。この場合の等価回路では、図19に示した寄生容量411、421のように、リファレンスGND101に対して容量が発生する。
 しかし、例えば、パッケージ基板内の誘電率を部分的に変化させるために誘電体211を挿入する、もしくは、誘電体21の誘電率を変化させる、もしくは、パッケージ基板間の距離を縮める、もしくは、パッケージとリファレンスGND101との距離を離すことにより、実施の形態6と同様に、寄生容量411、421に対する寄生容量41、42の値を大きくし、寄生容量411、421の影響を低減することができる。従って、これまでと同様に図11と同様の等価回路で扱うことが可能となる。
 <実施の形態9>
 以下では本発明の実施の形態9である半導体装置について説明する。実施の形態2において説明したように、導電板11は回路基板面側に配置することが望ましいが、電源配線15/GND配線16に対して寄生容量を発生させる位置であれば任意に配置してよい。図23は、本実施の形態の半導体装置の構成例を示す図である。本実施の形態の半導体装置10では、導電板11が電源層22とGND層23との間に配置されている。この場合の等価回路では、図19に示した寄生容量411、421のように、リファレンスGND101に対して容量が発生する。
 しかし、例えば、パッケージ基板内の誘電率を部分的に変化させるために誘電体211を挿入する、もしくは、誘電体21の誘電率を変化させる、もしくは、パッケージ基板間の距離を縮める、もしくは、パッケージとリファレンスGND101との距離を離すことにより、実施の形態6と同様に、寄生容量411、421に対する寄生容量41、42の値を大きくし、寄生容量411、421の影響を低減することができる。従って、これまでと同様に図11と同様の等価回路で扱うことが可能となる。
 なお、上述した実施の形態1~9において、数2は、インピーダンスの積を等しくすればコモンモード電流を低減できるという式であるが、以下の式で表されるインピーダンス積の比βを考えると、βの誤差3%の範囲で低減効果が大きい。
Figure JPOXMLDOC01-appb-M000007
 例えば、車載機器では国際無線障害特別委員会(CISPR)が作成した規格である車載受信機の保護のための妨害特性の許容値及び測定法(CISPR25)のClass5によって放射電磁界が規定されている。これによれば、車載機器と電源をつなぐ電源ケーブル202などのワイヤハーネスからd=1m遠方の放射電磁界を12dBμV/m以下とする必要がある。この規制値から、例えば図13に示す測定系において、L=1.5mの電源ケーブル202に流れるコモンモード電流401の値を以下の式により計算すると、f=70MHzでは0.18dBμA以下とする必要がある。
Figure JPOXMLDOC01-appb-M000008
 ここで、図21に示す等価回路において、ZCv=1pF,ZCg=5pF,ZLg=10nH,ZLv=1~100nH可変、V=100mVとしたときの70MHzのコモンモード電流の値を計算すると、図24に示すような分布になる。図24は、実施の形態1の半導体装置を回路基板に搭載した場合のコモンモード電流401の発生状況を示す図である。
 この分布に対して上述の規制値を入れると、バランス点であるL/L=5の値からそれぞれ±2%以内であればコモンモード電流401を規制値以下に抑えることができる。同様に80MHzから300MHzまで規制値を満足するコモンモード電流401の値を計算し、インピーダンス積の比βの許容誤差を計算した。
 図25は、実施の形態1の半導体装置を回路基板に搭載した場合のインピーダンス積の比の許容誤差を示す図である。この時、インピーダンス比ZCg/ZCvを1~50と可変とした。図25に示すように、電源ケーブル202が共振する周波数、100MHz、200MHz、300MHz付近では、誤差は3%以下とする必要があり、逆に共振周波数以外の周波数では誤差が大きくても規制値を満足することが分かる。
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
 例えば、上述したように、図4、図9、図11などにおけるブリッジ回路を平衡化する条件を満たすことが可能であれば、インピーダンス調整素子31、32、33、34はすべて必要ではなく、いずれかがない構成であっても構わない。また、インピーダンス調整素子31、32、33、34は素子である必要は無く、回路の配線パターンによって構成し、その配線インピーダンスを利用するものであってもよい。
 本発明は、ノイズ電流を低減させることを可能とする半導体装置に利用可能である。

Claims (7)

  1.  パッケージ基板と、
     前記パッケージ基板に搭載された半導体チップと、
     前記半導体チップに第1の電源電位を供給する第1の配線と、
     前記半導体チップに前記第1の電源電位よりも低い第2の電源電位を供給する第2の配線とを有する半導体装置であって、
     前記第1の電源電位及び前記第2の電源電位とは異なる第3の電位を持つ導電板を有し、
     さらに、前記第1の配線の経路上に設置され、前記第1の配線と前記第2の配線のインピーダンスを調整するための第1の素子と、
     前記第2の配線の経路上に設置され、前記第1の配線と前記第2の配線のインピーダンスを調整するための第2の素子の少なくとも1つを有することを特徴とする半導体装置。
  2.  請求項1に記載の半導体装置において、
     前記第1の配線と前記導電板との間の寄生容量の第1のインピーダンスと、
     前記第2の配線と前記導電板との間の寄生容量の第2のインピーダンスと、
     前記第1の配線の寄生インダクタンスのインピーダンスと前記第1の素子のインピーダンスとを合成した第3のインピーダンスと、
     前記第2の配線の寄生インダクタンスのインピーダンスと前記第2の素子のインピーダンスとを合成した第4のインピーダンスとにおいて、
     前記第1のインピーダンスと前記第4のインピーダンスとの積が、前記第2のインピーダンスと前記第3のインピーダンスとの積と誤差3%の範囲で等しくなるように、前記第1の素子と前記第2の素子のインピーダンスが調整されていることを特徴とする半導体装置。
  3.  パッケージ基板と、
     前記パッケージ基板に搭載された半導体チップと、
     前記半導体チップに第1の電源電位を供給する第1の配線と、
     前記半導体チップに前記第1の電源電位よりも低い第2の電源電位を供給する第2の配線とを有する半導体装置であって、
     前記第1の電源電位及び前記第2の電源電位とは異なる第3の電位を持つ導電板を有し、
     さらに、前記第1の配線と前記導電板との間の経路上に設置され、前記第1の配線と前記第2の配線のインピーダンスを調整するための第1の素子と、
     前記第2の配線と前記導電板との間の経路上に設置され、前記第1の配線と前記第2の配線のインピーダンスを調整するための第2の素子の少なくとも1つを有することを特徴とする半導体装置。
  4.  請求項3に記載の半導体装置において、
     前記第1の配線と前記導電板との間の寄生容量のインピーダンスと前記第1の素子のインピーダンスとを合成した第1のインピーダンスと、
     前記第2の配線と前記導電板との間の寄生容量のインピーダンスと前記第2の素子のインピーダンスとを合成した第2のインピーダンスと、
     前記第1の配線の寄生インダクタンスの第3のインピーダンスと、
     前記第2の配線の寄生インダクタンスの第4のインピーダンスとにおいて、
     前記第1のインピーダンスと前記第4のインピーダンスとの積が、前記第2のインピーダンスと前記第3のインピーダンスとの積に誤差3%の範囲で等しくなるように、前記第1の素子と前記第2の素子のインピーダンスが調整されていることを特徴とする半導体装置。
  5.  パッケージ基板と、
     前記パッケージ基板に搭載された半導体チップと、
     前記半導体チップに第1の電源電位を供給する第1の配線と、
     前記半導体チップに前記第1の電源電位よりも低い第2の電源電位を供給する第2の配線とを有する半導体装置であって、
     前記第1の電源電位及び前記第2の電源電位とは異なる第3の電位を持つ導電板を有し、
     さらに、前記第1の配線の経路上に設置され、前記第1の配線と前記第2の配線のインピーダンスを調整するための第1の素子と、
     前記第1の配線と前記導電板との間の経路上に設置され、前記第1の配線と前記第2の配線のインピーダンスを調整するための第2の素子と、
     前記第2の配線の経路上に設置され、前記第1の配線と前記第2の配線のインピーダンスを調整するための第3の素子と、
     前記第2の配線と前記導電板との間の経路上に設置され、前記第1の配線と前記第2の配線のインピーダンスを調整するための第4の素子の少なくとも1つを有することを特徴とする半導体装置。
  6.  請求項5に記載の半導体装置において、
     前記第1の配線と前記導電板との間の寄生容量のインピーダンスと前記第2の素子のインピーダンスとを合成した第1のインピーダンスと、
     前記第2の配線と前記導電板との間の寄生容量のインピーダンスと前記第4の素子のインピーダンスとを合成した第2のインピーダンスと、
     前記第1の配線の寄生インダクタンスのインピーダンスと前記第1の素子のインピーダンスとを合成した第3のインピーダンスと、
     前記第2の配線の寄生インダクタンスのインピーダンスと前記第3の素子のインピーダンスとを合成した第4のインピーダンスとにおいて、
     前記第1のインピーダンスと前記第4のインピーダンスとの積が、前記第2のインピーダンスと前記第3のインピーダンスとの積に誤差3%の範囲で等しくなるように、前記第1~第4の素子のインピーダンスが調整されていることを特徴とする半導体装置。
  7.  請求項1~6のいずれか1項に記載の半導体装置において、
     前記第1の配線と前記第2の配線のインピーダンスを調整するための素子が配線パターンで構成されることを特徴とする半導体装置。
PCT/JP2009/050047 2008-02-01 2009-01-07 半導体装置 WO2009096203A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009551443A JPWO2009096203A1 (ja) 2008-02-01 2009-01-07 半導体装置
US12/747,923 US20100283124A1 (en) 2008-02-01 2009-01-07 Semiconductor device
CN2009801013542A CN101919050B (zh) 2008-02-01 2009-01-07 半导体器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-022750 2008-02-01
JP2008022750 2008-02-01

Publications (1)

Publication Number Publication Date
WO2009096203A1 true WO2009096203A1 (ja) 2009-08-06

Family

ID=40912556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050047 WO2009096203A1 (ja) 2008-02-01 2009-01-07 半導体装置

Country Status (4)

Country Link
US (1) US20100283124A1 (ja)
JP (1) JPWO2009096203A1 (ja)
CN (1) CN101919050B (ja)
WO (1) WO2009096203A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013216322A1 (de) 2012-08-29 2014-03-06 Denso Corporation Elektronische Vorrichtung
JP6052355B1 (ja) * 2015-08-24 2016-12-27 株式会社デンソーEmcエンジニアリングサービス 試験装置
WO2017217118A1 (ja) * 2016-06-17 2017-12-21 日立オートモティブシステムズ株式会社 電子制御装置、車両および電子制御装置製造方法
JP2019039870A (ja) * 2017-08-28 2019-03-14 ファナック株式会社 検出装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6075834B2 (ja) * 2012-08-16 2017-02-08 キヤノン株式会社 プリント回路板
US8990744B2 (en) 2013-04-16 2015-03-24 Infineon Technologies Ag Electrical measurement based circuit wiring layout modification method and system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204699A (ja) * 1998-01-09 1999-07-30 Sony Corp 半導体装置とその製造方法と電子装置
JP2001168266A (ja) * 1999-12-13 2001-06-22 Hitachi Ltd 半導体装置
JP2003297964A (ja) * 2002-03-28 2003-10-17 Toshiba Corp 高周波半導体装置
WO2006112010A1 (ja) * 2005-04-13 2006-10-26 Renesas Technology Corp. 電子装置
JP2006332683A (ja) * 2001-08-27 2006-12-07 Nec Corp 可変インダクタおよびそれを備えた高周波回路モジュール
JP2008311964A (ja) * 2007-06-14 2008-12-25 Hitachi Ltd コモンモード電位調整回路および伝送線路構造

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3456442B2 (ja) * 1999-04-21 2003-10-14 日本電気株式会社 プリント配線基板
JP3471679B2 (ja) * 1999-10-15 2003-12-02 日本電気株式会社 プリント基板
JPWO2004068577A1 (ja) * 2003-01-27 2006-05-25 松下電器産業株式会社 半導体装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204699A (ja) * 1998-01-09 1999-07-30 Sony Corp 半導体装置とその製造方法と電子装置
JP2001168266A (ja) * 1999-12-13 2001-06-22 Hitachi Ltd 半導体装置
JP2006332683A (ja) * 2001-08-27 2006-12-07 Nec Corp 可変インダクタおよびそれを備えた高周波回路モジュール
JP2003297964A (ja) * 2002-03-28 2003-10-17 Toshiba Corp 高周波半導体装置
WO2006112010A1 (ja) * 2005-04-13 2006-10-26 Renesas Technology Corp. 電子装置
JP2008311964A (ja) * 2007-06-14 2008-12-25 Hitachi Ltd コモンモード電位調整回路および伝送線路構造

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013216322A1 (de) 2012-08-29 2014-03-06 Denso Corporation Elektronische Vorrichtung
JP6052355B1 (ja) * 2015-08-24 2016-12-27 株式会社デンソーEmcエンジニアリングサービス 試験装置
WO2017217118A1 (ja) * 2016-06-17 2017-12-21 日立オートモティブシステムズ株式会社 電子制御装置、車両および電子制御装置製造方法
US10952311B2 (en) 2016-06-17 2021-03-16 Hitachi Automotive Systems, Ltd. Electronic control device, vehicle, and method for manufacturing electronic control device
JP2019039870A (ja) * 2017-08-28 2019-03-14 ファナック株式会社 検出装置

Also Published As

Publication number Publication date
US20100283124A1 (en) 2010-11-11
CN101919050A (zh) 2010-12-15
CN101919050B (zh) 2012-02-29
JPWO2009096203A1 (ja) 2011-05-26

Similar Documents

Publication Publication Date Title
US7679930B2 (en) Multilayered printed circuit board
US8004369B2 (en) Arrangement structure of electromagnetic band-gap for suppressing noise and improving signal integrity
WO2009096203A1 (ja) 半導体装置
JP2970660B1 (ja) プリント基板
JP2002335107A (ja) 伝送線路型コンポーネント
WO2006112010A1 (ja) 電子装置
JP3654136B2 (ja) 擬似大地化の方法及び装置
US9345126B2 (en) Semiconductor package and printed circuit board
US20110147063A1 (en) Multilayer board for suppressing unwanted electromagnetic waves and noise
US10433420B2 (en) Circuit board device and printed wiring board
JP2008198761A (ja) 半導体装置
JP2013030528A (ja) 形成キャパシタ内蔵型多層プリント配線板
JP2007242745A (ja) プリント回路基板、cadプログラム、電磁界シミュレータ、回路シミュレータ、自動車、半導体装置、ならびにユーザガイド
JP5473549B2 (ja) 半導体装置
JP2010073792A (ja) 半導体装置および1チップマイコン
WO2019111645A1 (ja) 電子制御装置
JP5264700B2 (ja) 電子機器
US11889616B2 (en) Circuit board
JP7515588B2 (ja) 電力変換装置
JP2003347692A (ja) プリント配線板、及び該プリント配線板で用いられる電磁波シールド方法
JP2001203434A (ja) プリント配線板及び電気機器
CN114554678A (zh) 复合布线基板、封装体及电子设备
Matsushima et al. Common-mode noise reduction using floating conductor in LSI package
AP Design For EMI
JP2006120786A (ja) プリント配線板及び電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980101354.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09706101

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009551443

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12747923

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09706101

Country of ref document: EP

Kind code of ref document: A1