WO2019111645A1 - 電子制御装置 - Google Patents
電子制御装置 Download PDFInfo
- Publication number
- WO2019111645A1 WO2019111645A1 PCT/JP2018/041909 JP2018041909W WO2019111645A1 WO 2019111645 A1 WO2019111645 A1 WO 2019111645A1 JP 2018041909 W JP2018041909 W JP 2018041909W WO 2019111645 A1 WO2019111645 A1 WO 2019111645A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ground
- common mode
- connector
- disposed
- electronic control
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/01—Frequency selective two-port networks
- H03H7/09—Filters comprising mutual inductance
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
Definitions
- the present invention relates to an electronic control unit that performs differential communication.
- Radiation noise is referred to as normal mode noise, and is a noise that is emitted by configuring an antenna (loop antenna) due to a loop of high frequency current generated by communication, and a current flowed by communication called common mode noise through the ground.
- common mode noise a noise that is emitted by configuring an antenna (loop antenna) due to a loop of high frequency current generated by communication, and a current flowed by communication called common mode noise through the ground.
- a voltage difference is generated on the left and right of the ground (the entrance and the exit of the reflux path) by the impedance of the ground, so that the ground which is supposed to be stable fluctuates and the noise radiates the substrate itself as an antenna. It is divided.
- Immunity resistance expresses the magnitude of the influence of external interference, and basically takes the reverse characteristic of radiation. That is, as described above, when the ground has an impedance, it is easy to pick up extraneous noise, and the resistance is lowered.
- common mode noise may radiate the substrate itself as an antenna because the ground is the antenna.
- common mode noise may radiate any cable connected to the substrate as an antenna, the size of the conductor serving as the antenna is much larger than that of the signal line.
- This method is equivalent to, for example, when connecting to a stable earth like impedance with an infinite impedance close to 0 ⁇ , or on a ground with an impedance separated from the stable ground called virtual ground. It is an effective measure for low frequency communications that can be ignored.
- devices constituting the virtual ground surface include a vehicle and an aircraft, etc., such as a vehicle and an aircraft not connected to the earth.
- the absolute value of the impedance can be expressed by the following equation (1) from the resistance component R of the ground, the parasitic inductance L, and the parasitic capacitance C, and the impedance becomes higher as the frequency f is higher for the same substrate I understand. That is, high speed communication with high frequency f is not an effective countermeasure like low speed communication.
- a common mode choke coil is a four-terminal coil with a structure in which two conductors are wound around one core (in the case of high frequency, a ferrite core), the winding directions of the two conductors are opposite to each other . Therefore, when a current of the same phase (differential) flows, the generated magnetic flux is reversed to be canceled and does not work as an inductor.
- the common mode choke coil is a coil capable of removing only common mode noise by operating as an inductor since the direction of generated magnetic flux is the same direction when current of common mode noise flows. is there.
- the common mode choke coil For mounting of the common mode choke coil, it is generally arranged in the vicinity of the connector so as to separate the outside and the inside of the substrate.
- Patent Document 1 as a measure against common mode noise, two ground planes connected to each other by a 0 ⁇ resistor are formed on the back surface of a printed circuit board on which a shield connector, an IC or the like is mounted.
- the technology described in Patent Document 1 is a configuration in which common mode noise that has entered via a communication wiring is flowed to the frame ground in a path different from the path leading to the IC via a differential wiring.
- Patent Document 1 When the above configuration described in Patent Document 1 is mounted on a reference plane having an impedance, such as the virtual ground plane described above, it has an impedance due to a parasitic inductance of a resistor constituting a single point ground and a parasitic capacitance. Current flows uncontrollably in the path whose impedance is low due to the relationship with the impedance of the virtual ground plane by having an impedance by capacitive coupling between the transmission / reception device side ground and the virtual ground plane via the virtual ground plane .
- An object of the present invention is to realize an electronic control unit capable of effectively suppressing common mode noise in high-speed differential communication on a virtual ground plane.
- the present invention is configured as follows.
- a substrate mounted on a movable body and having a differential transmission line for communication, a transmitting / receiving device disposed on the substrate, and a connector disposed on the substrate and performing signal input / output;
- a division area formed on the substrate and dividing the area of the connector and the ground of the connector, and the area of the transmission and reception apparatus and the ground of the transmission and reception apparatus;
- a common mode choke coil disposed in the divided area, the transmitting / receiving device, and a region in which the ground of the transmitting / receiving device is disposed, and connected to the connector and the transmitting / receiving device via the differential transmission line;
- a connection portion of the common mode choke coil to the differential transmission path connected to the connector is disposed in the dividing region and at a boundary portion between the connector and a region in which the ground of the connector is disposed;
- the connection portion between the common mode choke coil and the differential transmission line connected to the transmission / reception device is in the region where the transmission / reception device and the ground of the transmission / reception device are
- FIG. 6 is a top view of the substrate showing the arrangement of the dividing mechanism of the ground and the common mode choke coil according to the first embodiment. It is a bottom view of a substrate shown in FIG. It is a schematic sectional drawing of the board
- a virtual ground surface to be a premise will be described using an automobile, which is a vehicle, as an example.
- the vehicle body In a vehicle such as a car, the vehicle body is floated from the earth, which is a stable ground, through a tire of an insulator (made of rubber). Therefore, the on-vehicle electronic device including the power supply operates based on the chassis (metal) of the vehicle body. At this time, since the chassis has a finite metal mass, and there is an electrical resistance (impedance) due to the presence of a joint such as welding, it has an impedance according to the mounting position on the chassis. Become.
- a virtual ground plane an environment in which the mass is limited, the amount of electrons is limited, and an impedance is generated depending on the connection position of the mounted device is called a virtual ground plane and is distinguished from a stable ground such as the earth.
- the arrangement of the common mode choke coil based on the prior art and the mounting method can not control the reflux path, so it is difficult to completely remove the influence.
- the common mode choke coil may be disposed on a solid ground formed on the substrate in the unit.
- a signal before common mode noise is removed is passed on the transmission / reception device side ground.
- common mode noise between the differential line and the virtual ground surface forms capacitive coupling and inductive coupling due to parasitic inductance and parasitic capacitance that parasitic between the differential transmission line and the solid ground, and causes noise on the transmission / reception device side ground.
- This effect is greater as the communication frequency is higher, as described above.
- the coupling to the transmitter / receiver side ground can be separated for capacitive coupling using a Faraday isolator or the like, but the effect is limited for inductive coupling and the effect can be obtained only by inserting the isolator. Hard to remove completely.
- a connector for communicating with an external device for communicating with an external device (a relative device for communication), a differential transmission path for transmitting a signal drawn from the connector to the inside, and a transceiver for transmitting / receiving a signal And a common mode choke coil for removing common mode noise, and the connector, the differential transmission line, the transceiver, and the common mode choke coil are disposed on a printed circuit board mounted in the apparatus.
- a divided region (slit or dielectric layer) for separating the both is provided between the connector-side ground and the transmission / reception device-side ground, and they are not connected in direct current.
- This structure minimizes capacitive coupling and inductive coupling between the terminals of the common mode choke coil and the connector side ground, maximizes the effect of slits due to slits, and terminates common mode noise with reference to the transmission / reception device ground. It is possible to eliminate common mode noise effectively.
- the characteristic impedance is determined by the parasitic inductance and parasitic capacitance generated between the wiring pattern and the solid ground disposed in the substrate. Therefore, if the differential transmission line is arranged in the area where the solid ground of the slit portion does not exist, the characteristic impedance becomes high, which may cause impedance mismatch to cause signal reflection and the like, thereby deteriorating the signal quality.
- the present invention only the electrode portion of the common mode choke coil is disposed on the slit and the differential transmission line is disposed on the solid ground, and differential transmission between one end side of the common mode choke coil and the connector This problem is avoided by designing the lines so that the coupling between the differential pairs of lines is stronger than the two-end side of the common mode choke coil.
- FIG. 1 is a top view of a substrate according to a first embodiment of the present invention showing the arrangement of a ground dividing mechanism and a common mode choke coil
- FIG. 2 is a bottom view of the substrate shown in FIG. 1
- FIG. 4 is a schematic partial cross-sectional view showing details of a PAD arrangement method of the common mode choke coil.
- the connector 101 for inputting / outputting signals on one printed circuit board 100 and the substrate for transmitting / receiving (communicating) signals from sensors mounted on a vehicle which is a movable body are disposed.
- a transmission / reception device 110 such as a transceiver, etc. is mounted, is constituted by a differential pair 103 (+), 104 ( ⁇ ), and a differential transmission line 102 for communicating the above signals is disposed on a printed circuit board 101 and the transmission / reception device 110 are connected.
- the ground area is divided into the connector side ground 122 and the transmission / reception apparatus side ground 123, and they are electrically separated from each other by the division area 121.
- the divided region 121 is configured by providing a dielectric layer or a slit on one substrate.
- the substrate 100 is configured to be completely separated in the vertical direction on the drawing, but the purpose of the dividing region 121 is to separate the connector side ground 122 and the transmission / reception device side ground 123 Therefore, for example, the dividing region 121 may be provided in a curved or crank shape so as to partially cut off the periphery of the connector 101.
- a common mode choke coil 105 is mounted on the dividing area 121 of FIG. 2 so as to divide the differential transmission path 102.
- a PAD (electrode pad) 125 (a PAD 106 (common mode choke coil 1 end side electrode of each of the differential transmission paths 103 and 104) which is a connection portion on one end side (connector 101 side ground 122 side) of the common mode choke coil 105 +)
- PAD 107 (including common mode choke coil 1 end side electrode (-)) on the dividing region 121 and in contact with the interface (boundary portion) 111 between the connector side ground 122 and the dividing region 121 Is located in
- PAD (electrode pad) 124 (the PAD 108 of each of the differential transmission paths 103 and 104 (common mode choke coil 2 end side electrode (common mode choke coil 2 end side electrode)) which is a connection portion of the 2 end side (transmitter 110 side ground 123 side) of common mode choke coil 105 +))
- PAD 109 (including common mode choke coil 2 end side electrode ( ⁇ )) are arranged on the transmission / reception device side ground 123 so as to be in contact with the divided region 121. That is, the PAD 124 is in contact with the boundary surface (boundary portion) 112 between the transmission / reception device side ground 123 and the divided region 121 and is disposed on the transmission / reception device side ground 123.
- the common mode choke coil 105 is mounted on the PAD 124 and the PAD 125, and is mounted so as to be offset on the transmission / reception device ground 123 side with respect to the divided area 121. Thus, the common mode choke coil 105 is not disposed on the connector side ground 122.
- the capacitors 201, 202 for returning the common mode current It is provided in the divided region 121 between the side ground 122 and the transmission / reception device side ground 123.
- FIGS. 6 and 7 are diagrams for describing the arrangement of the reflux capacitors 201 and 202, FIG. 6 is a bottom view, and FIG. 7 is a cross-sectional view. As shown in FIGS. 6 and 7, these return capacitors 201 and 202 separate equal distances 301 (distance a) and 302 (distance a) from the differential pairs 103 and 104 constituting the differential transmission line 102, respectively. It arranges approximately symmetrically.
- the arrangement position of the reflux condensers 201 and 202 may be defined by a loss.
- the purpose is to suppress common mode noise
- the component returned to the connector side ground 122 via the reflux capacitors 202 and 203 must be larger than the component returned via the transmission / reception device side ground 123 . Therefore, the arrangement positions of the capacitors 202 and 203 are adjusted so that the loss is within -3 dB so as to return 1/2 or more of the common mode current.
- the distance from the differential transmission line 102, the distance between the differential transmission line 102 and the ground plane (connector side ground 122, transmission / reception device side ground 123) or the mounting position of the reflux capacitors 201 and 202 It is conceivable to adjust the parasitic capacitance by adjusting the area of the pattern.
- one capacitor 501 constitutes the differential transmission line 102, as shown in FIG. It may be disposed at the midpoint between the differential pairs 103 and 104.
- FIG. 9 is a view schematically showing common mode coupling when the printed circuit board 100 to which the first embodiment is applied is mounted on a housing 605 and disposed on a virtual ground surface 600 configured by a vehicle frame.
- the virtual ground plane 600 is a ground plane separated from the earth which is a stable potential plane, and in the first embodiment, a vehicle frame is assumed.
- the connector-side ground 122 configured on the lower surface of the printed circuit board 100 is shorted (metal contact) to the housing 605 by the fixing screw 606. That is, the fixing screw 606 is made of a conductive member, and the screw hole formed in the housing 605 into which the fixing screw 606 is inserted is subjected to the conductive processing, whereby the connector-side ground 122 is It is shorted (electrically connected) to 605.
- the transmission / reception device side ground 123 is coupled to the housing 605 by the fixing screw 607, but the contact surface (contact surface) of the housing 605 and the screw 607 is subjected to insulation processing, and the housing 605 and transmission / reception device side
- the ground 123 is insulated (no conductor contact).
- the ground of the power supply of the transmission / reception apparatus (the transmission / reception apparatus side ground 123) is coupled to the virtual ground plane 600 via the ground of the power supply apparatus 608.
- the transmission / reception device side ground 123 is in a parallel plate relationship sandwiching the metal forming the housing 605 and the insulator (air), the electric field coupling or the faraday through the capacitive component 604 generated between them is realized. It has impedance by coupling.
- the relationship between the housing 605 and the virtual ground surface 600 is a parallel flat plate sandwiching the metal and the insulator (air) that constitute each, the impedance by electric field coupling or Faraday coupling via the capacitive component 603 is obtained. Have.
- An extremely large common mode current loop (recirculation path) 610 (broken line) is formed.
- the dividing region 121 is provided to separate the connector-side ground 122 and the transmitting / receiving device-side ground 123, and in the middle (on the dividing region 121) of the differential transmission line 102 disposed across the grounds 122 and 123.
- the common mode choke coil 105 By inserting the common mode choke coil 105, a high impedance to the common mode current is obtained, and the common mode current is controlled (restricted) as a return path 701 shown by a broken line in FIG.
- connector-side ground 122 shorted (metal contact) to housing 605 by fixing screw 606 is closer to virtual ground plane 600 than transmission / reception-side ground 123 via power supply 608 and capacitive component 604. Coupled with lower impedance.
- the return path of the common mode current becomes like the return path 701, and the common mode current can be prevented from flowing into the transmission / reception device side ground 123.
- the connector-side ground 122 and the transmission / reception device-side ground 123 are separated by the division region 121, and only the two end-side electrode of the common mode choke coil 105 is on the transmission / reception device-side ground 123. It is configured to be placed on.
- the coupling between the connector side ground 122 and the transmission / reception side ground 123 can be minimized, the common mode noise characteristic can be improved, and a low impedance return path can be secured, and the common mode noise can be effectively achieved. It is possible to realize an electronic control device that can be suppressed.
- the condensers 201 and 202 for return are arranged approximately symmetrically with respect to the differential pair line 102 at equal distances a (301, 302), and the impedance is the communication frequency. Lower than the impedance between the transmission / reception device ground 123 and the virtual ground surface 600 (the impedance of the parasitic component between the ground of the vehicle, which is an example of a moving object, and the transmission / reception device ground 123).
- the two capacitors 201 and 202 When the two capacitors 201 and 202 are arranged to be substantially symmetrical, they occur at the communication frequency starting from the midpoint between the transmission path 103 and the transmission path 104 forming the differential transmission path.
- the propagation loss (attenuation amount) of the signal is -3 dB or less
- connector side ground 122 with 1/2 (-3 dB) or more of the common mode current caused by imbalance It becomes possible to make it return, and it becomes possible to control generation
- a low impedance portion by electromagnetic coupling such as parallel microstrip line (interconductor gap), coupling line, etc. or Faraday coupling is used. It is also possible to form a return path effective for the communication frequency (a low impedance portion for returning an AC component).
- reference numerals 201, 202, and 501 indicate low impedance portions in FIG. 6 and the like.
- the divided area 121 shown in the first embodiment is not configured by the dielectric layer or the slit in the printed circuit board 100, but the printed circuit board 100 is divided into two and the connector side ground 122 and the transmitting / receiving device Side grounds 123 are formed as areas between separate and spaced one another. In other words, they are physically separated from each other. In this case, regions between the two printed circuit boards 100 which are physically divided and become two become divided regions.
- the other configuration can be the same as that of the first embodiment.
- the first embodiment and the second embodiment described above can be configured not only as an electronic control device but also as a substrate interior part.
- the capacitors (capacitance units 201, 202, 501) are disposed between the connector side ground 122 and the transmission / reception device side ground 123, but these capacitors (201, 202, 501) Even if omitted, the present invention holds.
- the present invention has been described by exemplifying a vehicle, the electronic control in a mobile body operating in a state separated from the earth, such as an aircraft, a spacecraft, a medical device, an explosion-proof device, etc.
- the whole apparatus is the subject of the present invention.
- 100 printed circuit board
- 101 connector
- 102 differential transmission line
- 103 differential pair (+)
- 104 differential pair (-)
- 105 common mode Choke coil
- 106 ... common mode choke coil 1 end side electrode (+)
- 107 ... common mode choke coil 1 end side electrode (-)
- 108 ... common mode choke coil 2 end side electrode (+)
- 109 common mode choke coil 2 end side electrode (-)
- 110 transmission / reception device (transceiver)
- 111, 112 boundary surface of divided region
- 121 divided region, 122,.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Filters And Equalizers (AREA)
- Structure Of Printed Boards (AREA)
Abstract
仮想グランド面上における高速差動通信において、コモンモードノイズを効果的に抑制することが可能な電子制御装置を実現する。 コネクタ側グランド122と送受信装置側グランド123とを分断領域121で分離し、分断領域121上に配置したコモンモードチョークコイル105によって差動伝送路102上のコモンモードノイズを除去して送受信装置側グランド123へのコモンモードノイズ混入を防止する。差動伝送線路102の位相差などによるアンバランスによって除去しきれなかったコモンモード成分を還流用コンデンサ201、202または501を送受信装置側グランド123と仮想グランド面600間のインピーダンスより低い値に設定することで、コモンモードノイズの還流路が設定される。
Description
本発明は、差動通信を行う電子制御装置に関する。
近年、自動車の高機能化に伴いユニット間での通信量が増大する傾向にある。これにより車両内通信の高速化・大容量化が進展しているが、通信の高速化は取り扱う周波数の高周波化と高速で電圧を変化させるために電圧レベルの低下が進展し、EMC(Electro Magnetic Compatibility)対策が重要な技術課題となっている。このような高速通信における対策としては次の2つに大別され、一つは輻射ノイズの抑制、他の一つはイミュニティ耐性の向上である。
輻射ノイズは、ノーマルモードノイズと呼ぶ、通信によって生じる高周波電流のループが原因となりアンテナ(ループアンテナ)を構成して放射するノイズと、コモンモードノイズと呼ぶ、通信によって流れた電流がグランドを介して還流するときに、グランドが持つインピーダンスによってグランドの左右(還流路の入り口と出口)に電圧差が生じることで、本来安定であるはずのグランドが変動して基板そのものをアンテナとして放射するノイズとに分けられる。
イミュニティ耐性は、外部からの干渉の影響の大きさを表しており、基本的に輻射の逆の特性を取る。すなわち、前掲のようにグランドがインピーダンスを持つことで外来ノイズを拾いやすくなり、耐性が低下する。
これらの影響は、ノーマルモードノイズが単一の還流路に依存して構成されるループアンテナから生じるのに対し、コモンモードノイズは、グランドがアンテナとなるため基板自体をアンテナとして放射することがある。また、コモンモードノイズは基板につながるあらゆるケーブルをアンテナとして放射することがあることから、アンテナとなる導体のサイズが信号線に比べると格段に大きくなっている。
そのため、コモンモードノイズの影響は、ノーマルモードノイズに対してより広い面積がアンテナとなるため電圧としてはわずかであっても、ノイズを強く放射為影響が大きい。以上より、コモンモードノイズ対策が重要となる。
コモンモードノイズ対策としては、CAN(Control Area Network)などの低速通信や地上設置型の高速通信において、終端回路の2つの抵抗とコンデンサとを組み合わせ、2つの抵抗を直列に差動線路の+と-の間に挿入し、その中点を、コンデンサを介してグランドに接続することでコモンモードノイズ成分をグランドに流す(コモンモードノイズ成分を逃がす)構成が提案されている(スプリットターミネーション方式)。
この方式は、例えば、地球のような安定でインピーダンスが限りなく0Ωに近いグランドに接続する場合、あるいは仮想グランドと呼ばれる、安定グランドから切り離されたあるインピーダンスを持つグランド上であってもインピーダンスが等価的に無視できるような周波数の低い通信に対しては有効な手段である。仮想グランド面を構成する機器としては、車両や航空機等、地球に接続されない車体や機体がある。
このような機器においては、インピーダンスの絶対値は、グランドの抵抗成分R、寄生インダクタンスL、寄生容量Cから次式(1)で表せ、同じ基板であれば周波数fが高いほどインピーダンスが高くなることが分かる。つまり、周波数fの高い高速通信では低速の通信のように有効な対策とはならない。
ただし、上記式(1)において、ω=2πfである。
前掲のスプリットターミネーションによる対策のほか、コモンモードチョークコイルを利用した対策が提案されている。コモンモードチョークコイルは一つのコア(高周波用の場合はフェライトのコア)に2本の導線を巻いた構造を持つ4端子のコイルで、2本の導線の巻き方向は互いに反対方向になっている。そのため、同相(ディファレンシャル)の電流が流れた場合、発生する磁束が逆向きとなりキャンセルされ、インダクタとしては働かない。これにより、コモンモードチョークコイルは、コモンモードノイズの電流が流れた場合は、発生する磁束の向きが同じ方向となるためインダクタとして動作することで、コモンモードノイズのみ除去することが可能なコイルである。
コモンモードチョークコイルの実装については、基板の外部と内部を仕切るようにコネクタ近傍に配置することが一般的である。
特許文献1には、コモンモードノイズ対策として、シールドコネクタ、IC等が搭載されたプリント基板の裏面に、0Ω抵抗により互いに接続された2つのグランドプレーンが形成されている。特許文献1に記載された技術は、通信配線を介して浸入したコモンモードノイズを、差動配線を介してICに至る経路とは別経路でフレームグランドに流す構成である。
特許文献1に記載された技術では、外部配線と等電位のグランド(特許文献1ではコネクタ側のグランドプレーンと呼称)と基板内のグランド(特許文献1ではIC側グランドプレーンと呼称)は一応分離されているが、電流のリターンパスを形成するためにコネクタ側グランドプレーンと送受信装置側(IC側)グランドとを0Ω抵抗で一点接続している。
特許文献1に記載された上記構成を、前掲の仮想グランド面のような、あるインピーダンスを持つ基準面上に搭載した場合、一点接地を構成する抵抗の寄生インダクタンス、及び寄生容量によってインピーダンスを持ってしまうこと、及び仮想グランド面を介して送受信装置側グランドと仮想グランド面が容量結合することでインピーダンスを持つことにより、仮想グランド面のインピーダンスとの関係でインピーダンスが低い経路に無制御に電流が流れる。
よって、特許文献1に記載の技術では、上述した条件では無制御にコモンモード電流が生じ、有効なコモンモードノイズ対策とはなっていない。
本発明の目的は、仮想グランド面上における高速差動通信において、コモンモードノイズを効果的に抑制することが可能な電子制御装置を実現することである。
上記目的を達成するため、本発明は次のように構成される。
電子制御装置において、移動体に搭載され、通信を行うための差動伝送線路を有する基板と、上記基板に配置された送受信装置と、上記基板に配置され、信号の入出力を行うコネクタと、上記基板に形成され、上記コネクタおよび該コネクタのグランドが配置された領域と、上記送受信装置及び該送受信装置のグランドが配置された領域とを分断する分断領域と、
上記分断領域及び上記送受信装置及び該送受信装置のグランドが配置された領域に配置され、上記コネクタ及び上記送受信装置に上記差動伝送線路を介して接続されるコモンモードチョークコイルと、を備え、上記コモンモードチョークコイルの、上記コネクタに接続された上記差動伝送路との接続部は、上記分断領域内であって上記コネクタ及び該コネクタのグランドが配置された領域との境界部に配置され、上記コモンモードチョークコイルの、上記送受信装置に接続された上記差動伝送路との接続部は、上記送受信装置及び該送受信装置のグランドが配置された領域内であって上記分断領域との境界部に配置される。
上記分断領域及び上記送受信装置及び該送受信装置のグランドが配置された領域に配置され、上記コネクタ及び上記送受信装置に上記差動伝送線路を介して接続されるコモンモードチョークコイルと、を備え、上記コモンモードチョークコイルの、上記コネクタに接続された上記差動伝送路との接続部は、上記分断領域内であって上記コネクタ及び該コネクタのグランドが配置された領域との境界部に配置され、上記コモンモードチョークコイルの、上記送受信装置に接続された上記差動伝送路との接続部は、上記送受信装置及び該送受信装置のグランドが配置された領域内であって上記分断領域との境界部に配置される。
実施形態の説明に先立って、本発明に至った経緯及び基本構成について説明する。
まず、仮想グラン面上でも有効に作用するコモンモードノイズ対策について、前提となる仮想グランド面を、車両である自動車を例として説明する。
自動車等の車両では、車体は絶縁体(ゴム製)のタイヤを介して安定グランドである地球からフローティングされている。そのため、電源を含む車載電子機器は車体のシャシー(金属)を基準として動作することになる。このとき、シャシーは有限の金属質量を有し、かつ溶接等の接合部が存在することから電気的には抵抗分(インピーダンス)を有するため、シャシーへの搭載位置に応じてインピーダンスを持つことになる。
このように、質量が限定され電子量が有限であり、かつ搭載機器の接続位置によってインピーダンスが生じるような環境を、仮想グランド面と呼び地球等の安定グランドと区別している。
このような仮想グランド面上に機器を搭載し、それら機器間で通信が行われた場合、通信によって生じる電流は仮想グランド面を介して還流することになるが、そのとき、上記式(1)で示した通り、周波数に応じてインピーダンスが大きくなることから、本発明で取り扱うような高速通信においてはユニットの接地端で異なる電圧が発生し、還流経路の両端で異なる電圧が生じるため、アンバランスが生じてコモンモードノイズ源となる。
そのため、先行技術に基づいたコモンモードチョークコイルの配置、搭載方法では還流経路を制御することができないため、影響を完全に除去することが困難である。
また、コモンモードチョークコイルの配置方法について、基板内での電位差を回避するため、ユニット内の基板上に形成されたベタグランド上に配置する場合がある。この場合、コモンモードチョークコイル手前で、送受信装置側グランド上にコモンモードノイズが除去される前の信号を通すことになる。その場合、差動線路と仮想グランド面間のコモンモードノイズが差動伝送線路とベタグランドの間に寄生する寄生インダクタンスや寄生容量によって容量結合、誘導結合を形成し、送受信装置側グランドにノイズを誘導してしまう問題がある。この影響は、前掲の通り通信の周波数が高いほど大きくなる。
この送受信装置側グランドへのカップリングについて、容量結合についてはファラデーアイソレータなどを利用して分離することが可能であるが、誘導結合に対しては効果が限定的でありアイソレータの挿入のみでは影響を完全に除去することが難しい。
本発明による電子制御装置においては、外部機器(通信の相対機器)と通信するためのコネクタと、コネクタから内部に引き込んだ信号を伝送するための差動伝送路と、信号を送受信するためのトランシーバ、及びコモンモードノイズを除去するためのコモンモードチョークコイルとを有し、コネクタ、差動伝送路、トランシーバ、及びコモンモードチョークコイルは本装置内に搭載されたプリント基板上に配置されている。
また、コネクタ側グランドと送受信装置側グランドの間には双方を分離する分断領域(スリットまたは誘電体層)が設けられており、直流的には接続されていない。この分断領域には、差動伝送路の特性インピーダンスと整合した特性インピーダンスを持つコモンモードチョークコイルをマッチングさせて搭載する実装構造であって、コモンモードチョークコイルの2エンド側の電極を送受信装置側グランド直上かつスリットとの境界面に配置し、1エンド側をスリット上部かつスリットとコネクタ側グランドとの境界面に配置するとともに、コモンモードチョークコイルの終端回路はスリット上に配置してSG(送受信装置側グランド)側に引き込む構造とする。
この構造により、コモンモードチョークコイルの端子部とコネクタ側グランド間の容量結合、誘導結合を最小に抑え、スリットによる分断効果を最大化できるとともに、送受信装置側グランドを基準にしてコモンモードノイズを終端することが可能となり、効果的にコモンモードノイズを除去することが可能となる。
スリット上にコモンモードチョークコイルを配置する目的について説明する。コネクタから差動伝送路によって基板上に引き込まれた配線パターンは、配線パターンと基板内に配置したベタグランド間に生じる寄生インダクタンスと寄生容量によって特性インピーダンスが定まる。したがって、スリット部のベタグランドが存在しない領域に差動伝送路を配置すると、特性インピーダンスが高くなり、インピーダンスミスマッチの原因となり信号の反射等が生じて信号品質を悪化させる恐れがある。このことから、本発明ではコモンモードチョークコイルの電極部のみをスリット上に配置して差動伝送線路はベタグランド上に配置するとともに、コモンモードチョークコイルの1エンド側とコネクタ間の差動伝送線路の差動ペア間の結合を、コモンモードチョークコイルの2エンド側よりも強くなるよう線路を設計することで、この問題を回避している。
以下、本発明の実施形態について添付図面を参照して説明する。
なお、本実施形態においては、車両の仮想グランド面上に搭載される電子制御装置または通信装置に設けられることとして説明するが、本発明はこれに限定されない。
(実施例1)
図1は、この発明の実施例1に係るグランドの分断機構、及びコモンモードチョークコイルの配置を示した基板上面図であり、図2は図1に示した基板の下面図、図3は図1に示した基板の概略断面図、図4はコモンモードチョークコイルのPAD配置方法の詳細を示す概略部分断面図である。
図1は、この発明の実施例1に係るグランドの分断機構、及びコモンモードチョークコイルの配置を示した基板上面図であり、図2は図1に示した基板の下面図、図3は図1に示した基板の概略断面図、図4はコモンモードチョークコイルのPAD配置方法の詳細を示す概略部分断面図である。
図1に示すように、1枚のプリント基板100上に信号の入出力を行うためのコネクタ101と、移動体である車両に搭載されたセンサからの信号の送受信(通信)を行う基板に配置されたトランシーバ等の送受信装置110とが搭載され、差動ペア103(+)、104(-)によって構成され、上記信号を通信するための差動伝送線路102がプリント基板上に配置され、コネクタ101と送受信装置110とが接続されている。
この実施例1のプリント基板100では、図2に示すように、グランド領域がコネクタ側グランド122と送受信装置側グランド123とに分割されており、分断領域121によって互いに電気的に切り離されている。分断領域121は1枚の基板上に誘電体層、またはスリットを設けることで構成される。なお、図2に示した例では、基板100における図上の縦方向に完全に切り離すように構成しているが、分断領域121の目的は、コネクタ側グランド122と送受信装置側グランド123との分離であるから、たとえば、コネクタ101の周辺部を部分的に切り離すように分断領域121を曲線、またはクランク状に設けてもよい。
さらに、図3及び図4に示すように、図2の分断領域121上には、差動伝送路102を分断するようにコモンモードチョークコイル105が搭載されている。このコモンモードチョークコイル105の1エンド側(コネクタ101側グランド122側)の接続部であるPAD(電極パッド)125(差動伝送路103、104それぞれのPAD106(コモンモードチョークコイル1エンド側電極(+))およびPAD107(コモンモードチョークコイル1エンド側電極(-))を含む)は分断領域121上であって、コネクタ側グランド122と分断領域121との境界面(境界部)111に接するように配置されている。
コモンモードチョークコイル105の2エンド側(送受信装置110側グランド123側)の接続部であるPAD(電極パッド)124(差動伝送路103、104それぞれのPAD108(コモンモードチョークコイル2エンド側電極(+))およびPAD109(コモンモードチョークコイル2エンド側電極(-))を含む)は送受信装置側グランド123上であって、分断領域121に接するように配置されている。つまり、PAD124は、送受信装置側グランド123と分断領域121との境界面(境界部)112に接し、かつ、送受信装置側グランド123上に配置されている。
そして、コモンモードチョークコイル105はPAD124とPAD125上に搭載され、分断領域121に対して送受信装置側グランド123側にオフセットする形で搭載される。これにより、コモンモードチョークコイル105はコネクタ側グランド122上には配置されない構成となっている。
また、図5に示すように、差動伝送路102の差動ペア103、104の位相がずれる等でアンバランスが生じた場合には、コモンモード電流を還流させるためのコンデンサ201、202をコネクタ側グランド122と送受信装置側グランド123との間の分断領域121に設ける。
図6及び図7は、還流型コンデンサ201及び202の配置説明のための図であり、図6は下面図、図7は断面図である。図6及び図7に示すように、これら還流用コンデンサ201、202は、差動伝送路102を構成する差動ペア103、104からそれぞれ等しい距離301(距離a)、302(距離a)を離して略対称に配置する。
還流用コンデンサ201、202の配置位置は、距離による指定のほかに、ロスで規定する方法も考えられる。この場合、コモンモードノイズの抑圧が目的であることから、送受信装置側グランド123を介して還流する成分よりも還流用コンデンサ202及び203を介してコネクタ側グランド122に還流する成分が大きくなければならない。このため、コモンモード電流の1/2以上を還流させられるよう損失を-3dB以内になるように、コンデンサ202及び203の配置位置を調整する。
具体的には、差動伝送線路102からの距離、差動伝送線路102とグランドプレーン(コネクタ側グランド122、送受信装置側グランド123)との間隔、あるいは還流用コンデンサ201、202の搭載位置までのパターンの面積を調整して、寄生容量を調整することが考えられる。
なお、還流用コンデンサ201、202は、プリント基板100の配置制約により、2個を略対称に配置できない場合は、図8に示す通り、1個のコンデンサ501を、差動伝送路102を構成する差動ペア103、104の中間点に配置してもよい。
次に、実施例1の作用及び効果について説明する。
図9は、実施例1を適用したプリント基板100を筐体605に搭載し、車両フレームによって構成される仮想グランド面600上に配置した場合のコモンモード結合を模式的に表した図である。なお、仮想グランド面600は安定電位面である地球とは分離されたグランド面で、本実施例1では車両フレームを想定している。
図9に示した例においてはプリント基板100の下面に構成されたコネクタ側グランド122は、固定ネジ606によって筐体605にショート(金属接触)される。つまり、固定ネジ606は導電性部材からなり、固定ネジ606が挿入される筐体605に形成されたネジ穴は、導電性処理が施されており、これによって、コネクタ側グランド122は、筐体605にショート(電気的に接続)される。
また、送受信装置側グランド123は固定ネジ607によって筐体605に結合されるが、筐体605とネジ607との当たり面(接触面)は、絶縁処理されており、筐体605と送受信装置側グランド123とは絶縁(導体接触なし)となる。
一方、送受信装置の電源のグランド(送受信装置側グランド123)は電源装置608のグランドを介して仮想グランド面600に結合する。
さらに、送受信装置側グランド123は、筐体605を構成する金属と絶縁体(空気)とを挟んで並行平板の関係になることから、これらの間に生じる容量成分604を介して電界結合やファラデー結合によるインピーダンスを持つ。
さらに、筐体605と仮想グランド面600との間もそれぞれを構成する金属と絶縁体(空気)を挟んで並行平板の関係になることから容量成分603を介して電界結合やファラデー結合によるインピーダンスを持つ。
その結果、通信配線601と仮想グランド面600との電界結合やファラデー結合602、または通信配線601が接続された相対機器を介した結合などを含め、仮想グランド面600とプリント基板100とを含む系に極めて大きなコモンモードの電流ループ(還流経路)610(破線)が形成される。
この場合、分断領域121を設けてコネクタ側グランド122と送受信装置側グランド123とを分離し、これらグランド122と123とをまたいで配置された差動伝送線路102の中間(分断領域121上)にコモンモードチョークコイル105を挿入することで、コモンモード電流に対してハイインピーダンスとし、コモンモード電流を図10に破線で示す還流経路701のように制御(制限)している。
具体的には、固定ネジ606によって筐体605にショート(金属接触)されるコネクタ側グランド122は、電源装置608と容量成分604とを介した送受信装置側グランド123よりも仮想グランド面600に対してより低いインピーダンスで結合されている。
これによって、コモンモード電流の還流経路は、還流経路701のようになり、コモンモード電流が送受信装置側グランド123へ流入することを阻止することができる。
以上のように、実施例1によれば、コネクタ側グランド122と送受信装置側グランド123とを分断領域121により分離するとともに、コモンモードチョークコイル105の2エンド側電極のみを送受信装置側グランド123上に配置するように構成されている。
よって、コネクタ側グランド122と送受信装置側グランド123とのカップリングを最小に抑えて、コモンモードノイズ特性を改善しつつ、低インピーダンスの還流路を確保することができ、コモンモードノイズを効果的に抑制することが可能な電子制御装置を実現することができる。
さらに、本発明の実施例1においては、図5に示した還流用コンデンサ201、202を設けることで、差動伝送路102の位相差等のアンバランスに起因して生じたコモンモード電流を低インピーダンスで還流させることが可能となる。その配置は図6に示すように、還流用コンデンサ201、202は差動ペア線路102に対して、等間隔の距離a(301、302)だけ離して略対称に配置し、そのインピーダンスは通信周波数に対して、送受信装置側グランド123と仮想グランド面600との間のインピーダンス(移動体の一例である車両のグランドと、送受信装置側グランド123との間の寄生成分のイピーダンス)よりも低く(小さく)設定することで、差動伝送路102の近傍でアンバランスを抑制しつつ還流させることが可能となり、コモンモードノイズの発生を抑制することができる。これは、コモンモードチョークコイル105に対してコモンモード電流の還流経路が対称となるように還流用コンデンサ210、202が分断領域121に配置されていることから可能となっている。
なお、還流用コンデンサ201、202は、プリント基板100の配置制約等で2個を略対称に配置できない場合は、図8に示すように還流用コンデンサ501を1個のみ設け、差動伝送路102を構成する差動ペア103と104との中間点に配置しても、差動ペア103、104に対する対称性を確保できるので還流経路差に起因したアンバランスを抑制でき、コモンモードノイズの発生を抑制することが可能となる。
また、2個のコンデンサ201、202を略対称となるように配置する場合、差動伝送路を形成する伝送路103と伝送路104との互いの中間点を起点として、通信周波数に対して生ずる信号の伝搬損失(減衰量)が-3dB以下となるようにコンデンサ201、202の位置に配置することで、アンバランス起因のコモンモード電流の1/2(-3dB)以上をコネクタ側グランド122に還流させることが可能となり、コモンモードノイズの発生を抑制することが可能となる。つまり、還流させる電流量を、シグナルグランド側(送受信装置グランド123側)で迷走する電流量より多く確保することが可能となり、コモンモードノイズが悪化することを回避可能となる。
よって、本発明の実施例1において、還流用コンデンサ201、202、または501を配置した場合、差動伝送路102の位相差等のアンバランスや外部要因に起因して生じたコモンモードノイズをコモンモードチョークコイルで除去しきれない場合であっても、図11に示す経路に従い差動伝送線路102の近傍で送受信装置側グランド123からコネクタ側グランド122に還流することが可能となる。
なお、本発明の実施例1において、還流用コンデンサ201、202、または501の代わりに、並行マイクロストリップ線路(導体間ギャップ)、結合線路などやファラデーカップリング等の電磁結合による低インピーダンス部を利用して、通信周波数に対して有効な還流路(交流成分を還流する低インピーダンス部)を形成する構成とすることも可能である。この場合、図6等において、符号201、202、501が低インピーダンス部を示すこととなる。
(実施例2)
次に、本発明の実施例2について説明する。
次に、本発明の実施例2について説明する。
実施例2としては、実施例1で示した分断領域121を、プリント基板100の中に誘電体層やスリットによって構成するのではなく、プリント基板100を2分割とし、コネクタ側グランド122と送受信装置側グランド123とを互いに分離され、離間された間の領域として形成する。つまり、互いに物理的に分割された配置構成である。この場合、物理的に分割され、2つとなったプリント基板100の互いの間の領域が分断領域となる。他の構成は実施例1と同様とすることができる。
実施例2においても、実施例1と同様の効果を得ることができる。
上述した実施例1及び実施例2は、電子制御装置として構成することができる他、基板内装部品として構成することも可能である。
以上、本発明の実施形態について図面を用いて詳述してきたが、具体的な構成は本実施例に限られるものではない。例えば、送受信装置側グランド123と筐体600の容量結合の代わりに、スナバ回路等を用いてコンデンサによって結合のインピーダンスを確保するなど、本発明の趣旨を逸脱しない範囲の設計変更も含まれる。
なお、上述した例においては、コンデンサ(容量部201、202、501)をコネクタ側グランド122と送受信装置側グランド123との間に配置する構成としたが、これらコンデンサ(201、202、501)を省略しても、本発明は成立する。
また、車両を例示して本発明を説明したが、同様の仮想グランド面を有する装置、たとえば航空機、宇宙機、医療機器、防爆機器など、地球から切り離された状態で動作する移動体における電子制御装置全般が本発明の対象となる。
100・・・プリント基板、101・・・コネクタ、102・・・差動伝送線路、103・・・差動ペア(+)、104・・・差動ペア(-)、105・・・コモンモードチョークコイル、106・・・コモンモードチョークコイル1エンド側電極(+)、107・・・コモンモードチョークコイル1エンド側電極(-)、108・・・コモンモードチョークコイル2エンド側電極(+)、109・・・コモンモードチョークコイル2エンド側電極(-)、110・・・送受信装置(トランシーバ)、111、112・・・分断領域の境界面、121・・・分断領域、122・・・コネクタ側グランド、123・・・送受信装置側グランド、124・・・2エンド側電極、125・・・1エンド側電極、201、202、501・・・還流用コンデンサ、301、302・・・還流用コンデンサの搭載位置の距離、600・・・仮想グランド面、601・・・差動配線、602・・・差動配線と仮想グランド面間の容量成分、603・・・筐体と仮想グランド面間の容量成分、604・・・プリント基板と筐体間の容量成分、605・・・筐体、606、607・・・基板固定、608・・・電源装置、610、701、801・・・還流経路
Claims (8)
- 移動体に搭載され、通信を行うための差動伝送線路を有する基板と、
上記基板に配置された送受信装置と、
上記基板に配置され、信号の入出力を行うコネクタと、
上記基板に形成され、上記コネクタおよび該コネクタのグランドが配置された領域と、上記送受信装置及び該送受信装置のグランドが配置された領域とを分断する分断領域と、
上記分断領域及び上記送受信装置及び該送受信装置のグランドが配置された領域に配置され、上記コネクタ及び上記送受信装置に上記差動伝送線路を介して接続されるコモンモードチョークコイルと、
を備え、上記コモンモードチョークコイルの、上記コネクタに接続された上記差動伝送路との接続部は、上記分断領域内であって上記コネクタ及び該コネクタのグランドが配置された領域との境界部に配置され、
上記コモンモードチョークコイルの、上記送受信装置に接続された上記差動伝送路との接続部は、上記送受信装置及び該送受信装置のグランドが配置された領域内であって上記分断領域との境界部に配置されることを特徴とする電子制御装置。 - 請求項1に記載の電子制御装置において、
上記送受信装置のグランドと上記コネクタのグランドとの間に配置される容量部を備え、上記容量部のインピーダンスは、上記差動伝送路で伝送される信号の周波数帯において、上記送受信装置側のグランドと上記移動体のグランドとの聞の寄生成分のインピーダンスより小さいことを特徴とする電子制御装置。 - 請求項2に記載の電子制御装置において、
上記容量部は複数であり、上記コモンモードチョークコイルに対して、略対称となるように上記複数の容量部が上記分断領域上に配置されていることを特徴とする電子制御装置。 - 請求項3に記載の電子制御装置において、
上記略対称となるように配置される複数の容量部は、差動伝送線路を形成する2つの伝送路の互いの中間点を起点として、通信周波数に対して信号の減衰量が-3dB以下となる位置に配置されることを特徴とする電子制御装置。 - 請求項2に記載の電子制御装置において、
上記容量部は、差動伝送線路を形成する2つの伝送路の互いの中間点に配置されることを特徴とする電子制御装置。 - 請求項1に記載の電子制御装置において
上記送受信装置のグランドと上記コネクタのグランドとの間に配置される電磁結合によって、交流成分を還流する低インピーダンス部を備えることを特徴とする電子制御装置。 - 請求項1、2、3、4、5、6のうちのいずれか一項に記載の電子制御装置において、
上記分断領域は、上記コネクタおよび該コネクタのグランドが配置された領域と、上記送受信装置及び該送受信装置のグランドが配置された領域とが、互いに分離され、離間された間の領域であることを特徴とする電子制御装置。 - 請求項7に記載の電子制御装置において、
上記移動体は、車両であることを特徴とする電子制御装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017235157A JP2021028999A (ja) | 2017-12-07 | 2017-12-07 | 電子制御装置 |
JP2017-235157 | 2017-12-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019111645A1 true WO2019111645A1 (ja) | 2019-06-13 |
Family
ID=66750217
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/041909 WO2019111645A1 (ja) | 2017-12-07 | 2018-11-13 | 電子制御装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021028999A (ja) |
WO (1) | WO2019111645A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115152186A (zh) * | 2020-03-09 | 2022-10-04 | 株式会社自动网络技术研究所 | 通信装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006098076A1 (ja) * | 2005-03-15 | 2006-09-21 | Murata Manufacturing Co., Ltd. | 回路基板 |
JP2011077581A (ja) * | 2009-09-29 | 2011-04-14 | Murata Mfg Co Ltd | コモンモードチョークコイル実装構造及びコモンモードチョークコイル実装方法 |
JP2012010175A (ja) * | 2010-06-25 | 2012-01-12 | Murata Mfg Co Ltd | コモンモードチョークコイル実装方法及びコモンモードチョークコイル実装構造 |
-
2017
- 2017-12-07 JP JP2017235157A patent/JP2021028999A/ja active Pending
-
2018
- 2018-11-13 WO PCT/JP2018/041909 patent/WO2019111645A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006098076A1 (ja) * | 2005-03-15 | 2006-09-21 | Murata Manufacturing Co., Ltd. | 回路基板 |
JP2011077581A (ja) * | 2009-09-29 | 2011-04-14 | Murata Mfg Co Ltd | コモンモードチョークコイル実装構造及びコモンモードチョークコイル実装方法 |
JP2012010175A (ja) * | 2010-06-25 | 2012-01-12 | Murata Mfg Co Ltd | コモンモードチョークコイル実装方法及びコモンモードチョークコイル実装構造 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115152186A (zh) * | 2020-03-09 | 2022-10-04 | 株式会社自动网络技术研究所 | 通信装置 |
CN115152186B (zh) * | 2020-03-09 | 2024-04-09 | 株式会社自动网络技术研究所 | 通信装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2021028999A (ja) | 2021-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7155107B2 (ja) | 回路モジュール、ネットワークモジュール、及び車載電子機器 | |
US9000864B2 (en) | Directional coupler | |
JP3225181U (ja) | プラグコネクタ及び構成要素 | |
US20070252659A1 (en) | Filter Circuit, Differential Transmission System Having Same, and Power Supply | |
US11046195B2 (en) | Apparatus for transmitting energy and information by means of a charging cable for an electric vehicle | |
JP2008244701A (ja) | 電力線通信システム | |
WO2019111645A1 (ja) | 電子制御装置 | |
JP5594599B2 (ja) | 電磁結合器及びそれを搭載した情報通信機器 | |
US20220354006A1 (en) | Signal transmission circuit and electronic control device | |
CN115623658A (zh) | 电路板、电子设备和制造电路板的方法 | |
CN115299184B (zh) | 电路基板及电子设备 | |
CN113453415A (zh) | 信号传输电路以及印刷电路板 | |
WO2019176353A1 (ja) | 電子制御装置 | |
JP5472305B2 (ja) | 給電線構造及びそれを用いた回路基板、emiノイズ低減方法 | |
US20240235900A1 (en) | Differential transmission substrate and power-over-differential data communication device | |
JP7574138B2 (ja) | 差動伝送基板および電力重畳差動データ通信装置 | |
CN108475885B (zh) | 高速通信插座 | |
US20200089643A1 (en) | Bimodal Impedance Matching Terminators | |
US11395401B1 (en) | Printed circuit board structure and method for improved electromagnetic compatibility performance | |
JP3240910U (ja) | シールドされた高速インターフェースケーブルのためのpcbのrfノイズ接地 | |
US9356397B2 (en) | Connector and electronic system using the same | |
WO2023090028A1 (ja) | 信号伝送システム | |
WO2021131310A1 (ja) | 電子回路 | |
JP2021097298A (ja) | ノイズ対策回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18884993 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18884993 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |