WO2009093657A1 - 調光フィルム - Google Patents

調光フィルム Download PDF

Info

Publication number
WO2009093657A1
WO2009093657A1 PCT/JP2009/050977 JP2009050977W WO2009093657A1 WO 2009093657 A1 WO2009093657 A1 WO 2009093657A1 JP 2009050977 W JP2009050977 W JP 2009050977W WO 2009093657 A1 WO2009093657 A1 WO 2009093657A1
Authority
WO
WIPO (PCT)
Prior art keywords
light control
primer layer
light
transparent conductive
control film
Prior art date
Application number
PCT/JP2009/050977
Other languages
English (en)
French (fr)
Inventor
Satoyuki Nomura
Yoshii Morishita
Tooru Tanaka
Original Assignee
Hitachi Chemical Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Company, Ltd. filed Critical Hitachi Chemical Company, Ltd.
Priority to EP09704769.0A priority Critical patent/EP2239601B1/en
Priority to JP2009550554A priority patent/JP5321470B2/ja
Priority to US12/864,062 priority patent/US8154791B2/en
Publication of WO2009093657A1 publication Critical patent/WO2009093657A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/17Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-absorption elements not provided for in groups G02F1/015 - G02F1/169
    • G02F1/172Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-absorption elements not provided for in groups G02F1/015 - G02F1/169 based on a suspension of orientable dipolar particles, e.g. suspended particles displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements

Definitions

  • the present invention relates to a light control film having a light control function.
  • a dimming glass containing a light conditioning suspension was first invented by Edwin. Land (US Pat. No. 1,955,923, US Pat. No. 1,963,496).
  • the liquid state light control suspension is injected between two transparent conductive substrates having a narrow interval.
  • the liquid light conditioning suspension injected between two transparent conductive substrates is a light conditioning dispersed in the suspension when no electric field is applied. Due to the Brownian motion of the particles, most of the incident light is reflected, scattered or absorbed by the light conditioning particles and only a small portion is transmitted.
  • the degree of transmission, reflection, scattering, or absorption is determined by the shape, properties, concentration, and amount of light energy applied to the light control particles dispersed in the light control suspension.
  • an electric field is applied to the light control window using the light control glass having the above structure, an electric field is formed in the light control suspension through the transparent conductive substrate, and the light control particles representing the light control function cause polarization, The light adjustment particles are arranged in parallel to each other, and light is transmitted between the light adjustment particles and the light adjustment particles. Finally, the light control glass becomes transparent.
  • the density of the light adjusting particles and the suspending agent is determined by a liquid state light adjusting suspension composed of acicular light adjusting crystal particles, a suspension for dispersing crystal particles, a dispersion adjusting agent, a stabilizer, and the like.
  • a liquid state light adjusting suspension composed of acicular light adjusting crystal particles, a suspension for dispersing crystal particles, a dispersion adjusting agent, a stabilizer, and the like.
  • a liquid light control suspension is mixed with a curable polymer resin solution, and a phase separation method by polymerization, a phase separation method by solvent volatilization, or a phase separation method by temperature is used.
  • a method of manufacturing a film has been proposed.
  • the polymer resin that hardens to become a film matrix is not designed with a molecular design that takes into account the adhesion to the transparent conductive substrate, PET with a conductive thin film such as ITO formed on the surface
  • adhesion between a substrate such as a film and a film matrix is poor, and it is very easy to peel off.
  • An object of the present invention is to provide a light control film that improves the adhesion between a film matrix and a substrate and exhibits a stable light control function.
  • the present inventors have found that the above problem can be solved by providing a specific primer layer on at least one light control layer side surface of the transparent conductive resin substrate. That is, the present invention has two transparent conductive resin substrates and a light control layer sandwiched between the two transparent conductive resin substrates, and the light control layer is dispersed in the resin matrix and the resin matrix.
  • a light control film comprising a primer layer on at least one light control layer side of the transparent conductive resin substrate, and the primer layer has one or more primer layers in the molecule.
  • the present invention relates to a light control film formed using a phosphate ester having a polymerizable group.
  • the phosphate ester having one or more polymerizable groups in the molecule is preferably a phosphoric acid monoester or a phosphoric acid diester, and the polymerizable group is preferably a (meth) acryloyloxy group.
  • the primer layer can be formed using a phosphate ester-containing solution having one or more polymerizable groups in the molecule, and phosphoric acid having one or more polymerizable groups in the molecule in the solution.
  • the concentration of the ester is preferably 0.05 to 20% by mass.
  • the primer layer is preferably formed using a polymerizable monomer or oligomer in combination.
  • the polymerizable monomer or oligomer is preferably made of acrylate, and more preferably the polymerizable monomer or oligomer is cured by heat or light.
  • the present invention also includes two transparent conductive resin base materials and a light control layer sandwiched between the two transparent conductive resin base materials, and the light control layer is disposed in the resin matrix and the resin matrix.
  • a light control film comprising a dispersed light control suspension, wherein the transparent conductive resin base material has a primer layer on at least one light control layer side, and the primer layer has an amino group.
  • the present invention relates to a light control film formed using a ring agent.
  • the primer layer can be formed using a solution containing an amino group-containing silane coupling agent, and the concentration of the amino group-containing silane coupling agent in the solution is 1 to 15% by mass. preferable.
  • the thickness of the primer layer is preferably 1 ⁇ m or less.
  • the light control film of the present invention has high adhesion between the light control layer and the transparent conductive resin substrate, and can exhibit a stable light control function.
  • the light control film of the present invention is a light control film in which a light control layer comprising a resin matrix and a light control suspension dispersed in the resin matrix is sandwiched between two transparent conductive resin substrates, A specific primer layer is provided on a surface in contact with at least one light control layer of the transparent conductive resin substrate.
  • the light control layer can generally be formed using a light control material.
  • the light-modulating material contains a polymer medium that cures when irradiated with energy rays as a resin matrix, and a light-conditioning suspension that is dispersed in the dispersion medium so that the light-adjusting particles can flow. It is preferable that the dispersion medium in the light control suspension is capable of phase separation with the polymer medium and its cured product.
  • the light-modulating material between the two transparent conductive resin base materials subjected to primer treatment on the surface in contact with the light control layer of both transparent conductive resin base materials, or only one transparent conductive resin base material, A light control layer in which a light control suspension is dispersed in a resin matrix formed from a polymer medium is sandwiched between two transparent conductive resin base materials that have been subjected to primer treatment on the surface in contact with the light control layer.
  • the light control film of this invention is obtained. That is, in the light control layer of the light control film of the present invention, the liquid light control suspension is dispersed in the form of fine droplets in a solid resin matrix in which the polymer medium is cured.
  • the light adjusting particles contained in the light adjusting suspension are preferably rod-shaped or needle-shaped.
  • the light adjusting particles having an electric dipole moment suspended and dispersed in the droplets of the light adjusting suspension dispersed in the resin matrix are applied to the electric field.
  • the droplets are converted to a transparent state with respect to the incident light, and the incident light is transmitted with almost no scattering due to a viewing angle or a decrease in transparency.
  • the problem of the conventional light control film that is, the adhesion between the light control layer and the transparent conductive resin substrate is weak.
  • the problem that the light control layer is peeled off from the transparent conductive resin base material in the manufacturing process or the processing process after manufacturing the film is solved.
  • Phosphate ester having one or more polymerizable groups in the molecule As one of the materials for forming the primer layer, a phosphate ester having one or more polymerizable groups in the molecule Is mentioned. More preferably, phosphoric acid monoester or phosphoric acid diester having one or more polymerizable groups in the molecule is used.
  • the phosphate ester having one or more polymerizable groups in the molecule usually has a polymerizable group in the ester portion, and preferably has one polymerizable group in one ester portion.
  • the number of polymerizable groups in the molecule is preferably 1 or 2.
  • the phosphate ester preferably has a (poly) alkylene oxide structure such as (poly) ethylene oxide or (poly) propylene oxide in the molecule.
  • the polymerizable group is preferably a group that is polymerized by heat, irradiation with energy rays or the like, and examples thereof include a group having an ethylenically unsaturated double bond such as a (meth) acryloyloxy group. More specifically, the material for forming the primer layer is preferably a phosphoric monoester or phosphoric diester having a (meth) acryloyloxy group in the molecule.
  • Examples of phosphoric acid monoesters or phosphoric acid diesters having a (meth) acryloyloxy group include compounds represented by (Formula 1) or (Formula 2).
  • each R 1 independently represents a linear or branched alkylene group having 1 to 4 carbon atoms, m is an integer of 1 or more, and n is 1 or 2.
  • X is independently
  • m is preferably 1 to 10, more preferably 1 to 6.
  • the linear or branched alkylene group having 1 to 4 carbon atoms of R 1 in the formula 1 specifically include the following.
  • Examples of the linear alkylene group having 1 to 4 carbon atoms include a methylene group, an ethylene group, an n-propylene group, and a butylene group.
  • Examples of the branched alkylene group having 1 to 4 carbon atoms include i-propylene group.
  • R 1 and R 2 each independently represents a linear or branched alkylene group having 1 to 4 carbon atoms, l and m are each independently an integer of 1 or more, and n is 1 or 2)
  • X is independently
  • l is preferably 1 to 10, more preferably 1 to 5.
  • m is preferably 1 to 5, more preferably 1 to 2.
  • Specific examples of the linear or branched alkylene group having 1 to 4 carbon atoms in R 1 and R 2 in the above formula 2 include the following.
  • Examples of the linear alkylene group having 1 to 4 carbon atoms include a methylene group, an ethylene group, an n-propylene group, and a butylene group.
  • Examples of the branched alkylene group having 1 to 4 carbon atoms include i-propylene group.
  • Examples of available phosphoric acid monoesters include Phosmer PP, Phosmer PE, Phosmer M manufactured by Unichemical Co., Ltd., and P-1M manufactured by Kyoeisha Chemical Co., Ltd. These can be represented by the following structural formula.
  • the structure of P-1M manufactured by Kyoeisha Chemical Co., Ltd. is the same as that of Phosmer M.
  • Available phosphoric acid diesters include PM-21 manufactured by Nippon Kayaku Co., Ltd., P-2M manufactured by Kyoeisha Chemical Co., Ltd., and the like. These can be represented by the following structural formula.
  • a polymerizable monomer or polymerizable oligomer together with a phosphate ester having one or more polymerizable groups in the molecule.
  • the polymerizable monomer or polymerizable oligomer include acrylates such as trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, ditrimethylolpropane tetramethacrylate, pentaerythritol tetraacrylate, and dipentaerythritol hexaacrylate.
  • the polymerizable monomer or polymerizable oligomer is preferably cured by heat or light. Thereby, the strong tack derived from phosphate ester can be reduced.
  • the phosphate ester having one or more polymerizable groups in the molecule does not need to be cured when the polymerizable monomer or polymerizable oligomer is cured.
  • Examples of the available polymerizable monomer or polymerized oligomer include a UV curable hard coat agent (trade name: Sunrad RC-610R) manufactured by Sanyo Chemical Industries, Ltd. Sunrad RC-610R is a mixture of compounds represented by the following formula.
  • trimethylolpropane trimethacrylate (trade name: Light Ester TMP, manufactured by Kyoeisha Chemical Co., Ltd.), trimethylolpropane triacrylate (trade name: Light Ester TMP-A, Kyoeisha Chemical Co., Ltd.) )
  • Ditrimethylolpropane tetramethacrylate (trade name: Aronix M-408, manufactured by Toagosei Co., Ltd.), pentaerythritol tetraacrylate (trade name: Aronix M-450, manufactured by Toagosei Co., Ltd.), dipentaerythritol hexa Acrylate (trade name: Aronix M-405, manufactured by Toagosei Co., Ltd.).
  • silane coupling agent having an amino group another material for forming the primer layer includes a silane coupling agent having an amino group.
  • silane coupling agent having an amino group examples include compounds represented by (Formula 3) or (Formula 4).
  • R 1 and R 2 each independently represents a linear or branched alkylene group having 1 to 4 carbon atoms
  • R 3 each independently represents a linear or branched alkyl group having 1 to 4 carbon atoms
  • R 4 each independently represents a methyl group or an ethyl group, and n is an integer of 0 to 2.
  • linear or branched alkylene group having 1 to 4 carbon atoms of R 1 and R 2 in the above formula 3 include the following.
  • Examples of the linear alkylene group having 1 to 4 carbon atoms include a methylene group, an ethylene group, an n-propylene group, and a butylene group.
  • Examples of the branched alkylene group having 1 to 4 carbon atoms include i-propylene group.
  • Examples of the linear alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, and a butyl group.
  • Examples of the branched alkyl group having 1 to 4 carbon atoms include i-propyl group.
  • R 1 represents a linear or branched alkylene group having 1 to 4 carbon atoms
  • R 2 independently represents a linear or branched alkyl group having 1 to 4 carbon atoms
  • R 3 represents each independently Represents a methyl group or an ethyl group
  • n is an integer of 0 to 2.
  • linear or branched alkylene group having 1 to 4 carbon atoms of R 1 in the above formula 4 include the following.
  • Examples of the linear alkylene group having 1 to 4 carbon atoms include a methylene group, an ethylene group, an n-propylene group, and a butylene group.
  • Examples of the branched alkylene group having 1 to 4 carbon atoms include i-propylene group.
  • Specific examples of the linear or branched alkyl group having 1 to 4 carbon atoms of R 2 in the above formula 4 include the following.
  • Examples of the linear alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, and a butyl group.
  • Examples of the branched alkyl group having 1 to 4 carbon atoms include i-propyl group.
  • amino group-containing silane coupling agent represented by (Formula 3) or (Formula 4) examples include KBM-602, 603, 903 and KBE-903 manufactured by Shin-Etsu Silicone Co., Ltd.
  • Other amino group-containing silane coupling agents include KBM-573. The structure is as shown below.
  • the thickness of the primer layer can be measured by ultraviolet / visible light reflectance spectroscopy, X-ray reflectance measurement, ellipsometry, or the like.
  • the thickness of the primer layer is preferably 1 ⁇ m or less, more preferably 1 nm to 1 ⁇ m.
  • the thickness is preferably 1 nm to 800 nm, more preferably 1 nm to 500 nm, and more preferably 1 nm to 100 nm.
  • the film thickness is less than 1 nm, there is a tendency that sufficient adhesive strength cannot be expressed.
  • the film thickness exceeds 1 ⁇ m film thickness unevenness occurs in the primer layer, and tackiness tends to increase, so that the handleability during the production of the light control film tends to deteriorate.
  • a phosphate ester-containing solution having one or more polymerizable groups in the molecule can be used for forming the primer layer.
  • the concentration of the phosphate ester in the solution when forming the primer layer is preferably 0.05 to 20% by mass, more preferably 0.1 to 15% by mass, and 0.3 to More preferably, it is 10 mass%.
  • concentration is less than 0.05% by mass, there is a tendency that sufficient adhesive strength cannot be expressed.
  • the concentration exceeds 20% by mass film thickness unevenness occurs in the primer layer, and tackiness tends to increase, so that the handling property during the production of the light control film tends to deteriorate.
  • the polymerizable monomer in the solution for forming the primer layer or The concentration of the polymerizable oligomer is preferably 80 to 95% by mass with respect to the entire material of the primer layer, from the viewpoint of reducing the tackiness derived from the phosphate ester. More preferably, it is 90 to 95% by mass.
  • the formation of a primer layer can use the silane coupling agent containing solution which has an amino group.
  • concentration of the silane coupling agent having an amino group in the solution when forming the primer layer is preferably 1 to 15% by mass, more preferably 2 to 10% by mass, and 3 to 5% by mass. % Is more preferable.
  • concentration is less than 1% by mass, there is a tendency that sufficient adhesive strength cannot be expressed.
  • concentration exceeds 15% by mass, film thickness unevenness occurs in the primer layer, and tackiness tends to increase, so that the handling property during the production of the light control film tends to deteriorate.
  • concentration exceeds 15% by mass the adhesive strength tends to decrease.
  • the light control layer in this invention consists of a light control material containing the resin matrix and the light control suspension disperse
  • the resin matrix is made of a polymer medium, and the light adjustment suspension is dispersed in a dispersion medium in a state where the light adjustment particles can flow.
  • the polymer medium and the dispersion medium those in which the polymer medium and its cured product and the dispersion medium can be phase-separated at least when they are formed into a film are used. It is preferable to use a combination of an incompatible or partially compatible polymer medium and a dispersion medium.
  • the polymer medium used in the present invention includes (A) a resin having a substituent having an ethylenically unsaturated bond and (B) a photopolymerization initiator, and irradiates energy rays such as ultraviolet rays, visible rays, and electron beams. Can be cured.
  • a resin having an ethylenically unsaturated bond a silicone resin, an acrylic resin, a polyester resin and the like are preferable from the viewpoints of ease of synthesis, light control performance, durability, and the like.
  • These resins have as substituents alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, amyl group, isoamyl group, hexyl group, cyclohexyl group, phenyl group, etc. It is preferable to have an aryl group such as a naphthyl group from the viewpoints of light control performance and durability.
  • silicone resin examples include those described in JP-B-53-36515, JP-B-57-52371, JP-B-58-53656, JP-B-61-17863, and the like. be able to.
  • silicone-based resin examples include a bi-terminal silanol polydimethylsiloxane, a bi-terminal silanol polydiphenylsiloxane-dimethylsiloxane copolymer, a bi-terminal silanol siloxane polymer such as a bi-terminal silanol polydimethyldiphenyl siloxane, and a trialkylalkoxysilane such as trimethylethoxysilane.
  • a silane compound containing an ethylenically unsaturated bond such as (3-acryloxypropyl) methyldimethoxysilane is subjected to a dehydrogenative condensation reaction and a dealcoholization reaction in the presence of an organotin catalyst such as 2-ethylhexanetin.
  • an organotin catalyst such as 2-ethylhexanetin.
  • the silicone resin a solventless type is preferably used. That is, when a solvent is used for the synthesis of the silicone resin, it is preferable to remove the solvent after the synthesis reaction.
  • the amount of the ethylenically unsaturated bond-containing silane compound such as (3-acryloxypropyl) methoxysilane is 19 to 50 mass of the total amount of the raw material siloxane and the silane compound. %, And more preferably 25 to 40% by mass.
  • the amount of the ethylenically unsaturated bond-containing silane compound is less than 19% by mass, the final ethylenically unsaturated bond concentration of the resin tends to be too lower than the desired concentration, and when it exceeds 50% by mass.
  • the resulting resin has an ethylenically unsaturated bond concentration that tends to be too high.
  • the acrylic resin includes, for example, (meth) acrylic acid alkyl ester, (meth) acrylic acid aryl ester, (meth) acrylic acid benzyl, main chain forming monomers such as styrene, (meth) acrylic acid, (meth) acrylic First, a prepolymer is synthesized by copolymerizing ethylenically unsaturated bond-introducing functional group-containing monomers such as hydroxyethyl acid, isocyanatoethyl (meth) acrylate, and glycidyl (meth) acrylate.
  • functional group-containing monomers such as hydroxyethyl acid, isocyanatoethyl (meth) acrylate, and glycidyl (meth) acrylate.
  • the weight average molecular weight in terms of polystyrene obtained by gel permeation chromatography of these (A) resins having ethylenically unsaturated bonds is preferably 20,000 to 100,000, and preferably 30,000 to 80,000. More preferably.
  • the ethylenically unsaturated bond concentration of the resin having an ethylenically unsaturated bond is preferably 0.3 mol / kg to 0.5 mol / kg. If the concentration is less than 0.3 mol / kg, the end of the light control film cannot be easily treated, and the opposing transparent electrodes tend to be short-circuited, resulting in poor electrical reliability. On the other hand, when this concentration exceeds 0.5 mol / kg, the cured polymer medium is easily dissolved in the dispersion medium constituting the droplets of the light control suspension, and the dissolved polymer medium adjusts the light in the droplets. There exists a tendency for the light control performance to deteriorate by inhibiting the movement of particles.
  • the ethylenically unsaturated bond concentration of the resin having an ethylenically unsaturated bond can be obtained from the integral intensity ratio of hydrogen in NMR. Further, when the conversion rate of the charged raw material to the resin is known, it can also be obtained by calculation.
  • the amount of the (B) photopolymerization initiator used is preferably 0.1 to 20 parts by mass, more preferably 0.2 to 10 parts by mass with respect to 100 parts by mass of the (A) resin. .
  • an organic solvent-soluble resin or a thermoplastic resin for example, a polystyrene-reduced weight average molecular weight measured by gel permeation chromatography 1,000 to 100,000 polyacrylic acid, polymethacrylic acid and the like can also be used together as a constituent material of the polymer medium.
  • additives such as anti-coloring agents such as dibutyltin dilaurate may be added to the polymer medium as necessary.
  • the polymer medium may contain a solvent, and as the solvent, tetrahydrofuran, toluene, heptane, cyclohexane, ethyl acetate, ethanol, methanol, isoamyl acetate, hexyl acetate, or the like can be used.
  • a dispersion medium in the light control suspension plays the role of a dispersion medium in the light control suspension, and selectively adheres and coats the light control particles, and the light control is performed during phase separation from the polymer medium. It is preferable to use a liquid copolymer that acts to move the particles into phase-separated droplet phases, has no electrical conductivity, and has no affinity for the polymer medium.
  • a (meth) acrylic acid ester oligomer having a fluoro group and / or a hydroxyl group is preferred, and a (meth) acrylic acid ester oligomer having a fluoro group and a hydroxyl group is more preferred.
  • one monomer unit of either a fluoro group or a hydroxyl group is directed to the light control particle, and the remaining monomer unit is stabilized as a droplet in the polymer medium in the light control suspension. Because it serves to maintain, the light conditioning particles are very homogeneously dispersed in the light conditioning suspension, and during phase separation, the light conditioning particles are guided into the droplets that are phase separated.
  • Examples of the (meth) acrylic acid ester oligomer having a fluoro group and / or a hydroxyl group include those copolymerized using a fluoro group-containing monomer and / or a hydroxyl group-containing monomer, and specifically, methacrylic acid.
  • These (meth) acrylic acid ester oligomers preferably have a weight average molecular weight in terms of standard polystyrene measured by gel permeation chromatography of 1,000 to 20,000, preferably 2,000 to 10,000. Is more preferable.
  • the amount of the fluoro group-containing monomer used as a raw material for these (meth) acrylate oligomers is preferably 6 to 12 mol%, more effectively 7 to 8 mol% of the total amount of monomers as raw materials. is there.
  • the amount of the hydroxyl group-containing monomer used as a raw material for these (meth) acrylic acid ester oligomers is preferably 0.5 to 22.0 mol%, and more effectively 1 to 8 mol%. .
  • the usage-amount of a hydroxyl-containing monomer exceeds 22.0 mol%, there exists a tendency for a refractive index to become large and for light transmittance to fall.
  • the light adjusting suspension used in the present invention is one in which light adjusting particles are dispersed in a dispersion medium so as to be flowable.
  • the light control particles for example, there is no affinity with the polymer medium or the resin component in the polymer medium, that is, the resin (A) having a substituent having an ethylenically unsaturated bond, and the light control particles
  • a polymer dispersant capable of enhancing dispersibility pyrazine-2,3-dicarboxylic acid dihydrate, pyrazine-2,5-dicarboxylic acid dihydrate, which are precursors of light control particles
  • needle-like small crystals of polyiodide produced by reacting one substance selected from the group consisting of pyridine-2,5-dicarboxylic acid monohydrate with iodine and iodide are preferably used.
  • Examples of the polymer dispersant that can be used include nitrocellulose.
  • Examples of iodide include calcium iodide.
  • Examples of the polyiodide thus obtained include the following general formula CaI 2 (C 6 H 4 N 2 O 4 ) ⁇ XH 2 O (X: 1 to 2).
  • These polyiodides are preferably acicular crystals.
  • the light control particles of uniform size are formed, and the dispersibility of the light control particles in a specific suspension medium is improved. Therefore, as described above, it is preferable to use a polymer material such as nitrocellulose as the polymer dispersant.
  • a polymer material such as nitrocellulose
  • crystals coated with nitrocellulose are obtained, and when such crystals are used as light control particles, the light control particles do not float in the droplets separated during phase separation, May remain in the resin matrix.
  • a silicone resin having a substituent having an ethylenically unsaturated bond as the resin (A) having a substituent having an ethylenically unsaturated bond in the polymer medium.
  • the light adjusting particles are easily dispersed and floated in fine droplets formed by phase separation during film production, and as a result, more excellent variable ability can be obtained.
  • inorganic fibers such as carbon fibers
  • phthalocyanine compounds such as ⁇ -type metal-free phthalocyanine, metal phthalocyanine, and the like
  • examples of the central metal include copper, nickel, iron, cobalt, chromium, titanium, beryllium, molybdenum, tungsten, aluminum, and chromium.
  • the size of the light adjusting particles is preferably 1 ⁇ m or less, more preferably 0.1 to 1 ⁇ m, and even more preferably 0.1 to 0.5 ⁇ m.
  • the size of the light adjusting particles is a value of a volume average particle diameter measured by a photon correlation spectroscopy measured with a submicron particle analyzer (for example, N4MD (manufactured by Beckman Coulter)).
  • the light control suspension used in the present invention preferably comprises 1 to 70% by weight of light control particles and 30 to 99% by weight of a dispersion medium, 4 to 50% by weight of light control particles and 50 to 96% by weight of a dispersion medium. % Is more preferable.
  • the refractive index of the polymer medium and the refractive index of the dispersion medium are preferably approximated. Specifically, the difference in refractive index between the polymer medium and the dispersion medium in the present invention is preferably 0.005 or less, more preferably 0.003 or less.
  • the light-modulating material usually contains 1 to 100 parts by weight, preferably 6 to 70 parts by weight, more preferably 6 to 60 parts by weight of the light control suspension with respect to 100 parts by weight of the polymer medium.
  • a transparent conductive resin base material used when manufacturing a light control film using the light control material according to the present invention a transparent conductive material generally having a light transmittance of 80% or more is used.
  • a transparent conductive resin substrate having a surface resistance value of 3 to 3000 ⁇ coated with a film (film such as ITO, SnO 2 , In 2 O 3 , organic conductive film, etc.) can be used.
  • the light transmittance of a transparent resin base material can be measured based on the measuring method of the total light transmittance of JISK7105.
  • a polymer film etc. can be used, for example.
  • polymer film examples include polyester films such as polyethylene terephthalate, polyolefin films such as polypropylene, polyvinyl chloride, acrylic resin films, polyether sulfone films, polyarylate films, and polycarbonate films.
  • polyester films such as polyethylene terephthalate, polyolefin films such as polypropylene, polyvinyl chloride, acrylic resin films, polyether sulfone films, polyarylate films, and polycarbonate films.
  • a polyethylene terephthalate film is preferable because it is excellent in transparency and excellent in moldability, adhesiveness, workability, and the like.
  • the thickness of the transparent conductive film coated on the transparent resin substrate is preferably 10 to 5,000 nm, and the thickness of the transparent resin substrate is not particularly limited. For example, in the case of a polymer film, 10 to 200 ⁇ m is preferable.
  • Transparent resin conductive material in which a transparent insulating layer having a thickness of several nanometers to 1 ⁇ m is formed on a transparent conductive film in order to prevent a paragraph phenomenon caused by mixing of foreign substances, etc., with a narrow base interval A substrate may be used.
  • a thin film of conductive metal such as aluminum, gold, or silver that is a reflector is used as an electrode. May be used directly.
  • the light control film of the present invention can be formed using a light control material, and the light control material includes a resin matrix formed from a polymer medium, and a light control suspension dispersed in the resin matrix. And forming a light control layer.
  • the light control layer is sandwiched between two transparent conductive resin base materials having a primer layer for improving adhesion to the light control layer, or a transparent conductive resin base material and a primer layer having a primer layer It is sandwiched between two transparent conductive resin base materials that are transparent conductive resin base materials that do not have any.
  • a liquid light adjusting suspension is homogeneously mixed with a polymer medium, and the light adjusting suspension is composed of a mixed liquid dispersed in the polymer medium in the form of droplets.
  • a dimming material it is as follows. A liquid in which the light adjusting particles are dispersed in a solvent and a dispersion medium of the light adjusting suspension are mixed, and the solvent is distilled off with a rotary evaporator or the like to prepare a light adjusting suspension.
  • the light control suspension and the polymer medium are mixed to obtain a mixed liquid (light control material) in which the light control suspension is dispersed in a droplet state in the polymer medium.
  • This light-modulating material is applied to a transparent conductive resin substrate having a primer layer at a constant thickness, and after removing the solvent by drying as necessary, the polymer medium is irradiated with ultraviolet rays using a high-pressure mercury lamp or the like. Is cured.
  • a light control layer in which the light control suspension is dispersed in the form of droplets in the resin matrix made of the cured polymer medium is completed.
  • the light transmittance of the light control layer can be adjusted by variously changing the mixing ratio of the polymer medium and the light control suspension.
  • a light control film is obtained by sticking the transparent conductive resin base material which has another primer layer on the light control layer formed in this way.
  • this light-modulating material is applied to a transparent conductive resin substrate having a primer layer at a constant thickness, and if necessary, the solvent is dried and removed, and then the transparent conductive resin having the other primer layer.
  • the polymer medium may be cured by irradiating with ultraviolet rays after laminating with a substrate. Only one transparent conductive resin substrate may be sufficient as the transparent conductive resin substrate which has a primer layer.
  • a light control layer may be formed on both of the two transparent conductive resin substrates, and the light control layers may be laminated so that the light control layers are in close contact with each other.
  • the thickness of the light control layer is preferably 5 to 1,000 ⁇ m, more preferably 20 to 100 ⁇ m.
  • the droplet size (average droplet diameter) of the light control suspension dispersed in the resin matrix is usually 0.5 to 100 ⁇ m, preferably 0.5 to 20 ⁇ m, more preferably 1 to 5 ⁇ m. .
  • the size of the droplets depends on the concentration of each component constituting the light control suspension, the viscosity of the light control suspension and the polymer medium, and the compatibility of the dispersion medium in the light control suspension with the polymer medium. It is decided by etc.
  • the average droplet diameter is calculated, for example, by taking an image such as a photograph from one surface direction of the light control film using SEM, measuring a plurality of arbitrarily selected droplet diameters, and calculating the average value thereof. Can do. It is also possible to capture a visual field image of the light control film with an optical microscope into a computer as digital data and calculate it using image processing integration software.
  • the primer treatment (formation of the primer layer) of the transparent conductive resin substrate in the present invention includes, for example, a material for forming the primer layer, a bar coater method, a Mayer bar coater method, an applicator method, a doctor blade method, a roll coater method, Transparent conductive resin using die coater method, comma coater method, gravure coating method, micro gravure coating method, roll brush method, spray coating method, air knife coating method, impregnation method, curtain coating method, etc. alone or in combination It can be performed by applying to a substrate.
  • coating you may dilute with a suitable solvent as needed, and you may use the solution of the material which forms a primer layer. When a solvent is used, drying is required after coating on the transparent conductive resin substrate.
  • the coating film used as a primer layer may be formed only on one side of a film as needed, and may be formed on both surfaces.
  • the solvent used for forming the primer layer may be any solvent that dissolves the material for forming the primer layer and can be removed by drying or the like after forming the primer layer.
  • Methyl ethyl ketone, acetone, tetrahydrofuran, toluene, heptane, cyclohexane, ethyl acetate, ethanol , Methanol, isoamyl acetate, hexyl acetate, and the like can be used. Moreover, these mixed solvents may be sufficient.
  • the light control material For the application of the light control material to be the light control layer, known coating means such as a bar coater, an applicator, a doctor blade, a roll coater, a die coater, and a comma coater can be used.
  • a bar coater an applicator, a doctor blade, a roll coater, a die coater, and a comma coater
  • the transparent conductive resin substrate It can also be applied directly.
  • coating you may dilute with a suitable solvent as needed. When a solvent is used, drying is required after coating on the transparent conductive resin substrate.
  • Tetrahydrofuran, toluene, heptane, cyclohexane, ethyl acetate, ethanol, methanol, isoamyl acetate, hexyl acetate, etc. can be used as a solvent used for application of the light modulating material. Moreover, these mixed solvents may be sufficient.
  • the light-modulating material is mixed with a homogenizer, an ultrasonic homogenizer, or the like in a polymer medium.
  • a method of finely dispersing the light control suspension a phase separation method by polymerization of a resin component in a polymer medium, a phase separation method by solvent volatilization, a phase separation method by temperature, or the like can be used.
  • the light control film which can adjust light transmittance arbitrarily by formation of an electric field. Even when no electric field is formed, the light control film maintains a clear coloring state without light scattering, and is converted into a transparent state when the electric field is formed. This ability exhibits a reversible repeat characteristic of over 200,000 times.
  • the refractive index of the liquid light adjusting suspension with the refractive index of the resin matrix.
  • the power source used to operate the light control film is alternating current, and can be in the frequency range of 10 to 100 volts (effective value) and 30 Hz to 500 kHz.
  • the light control film of the present invention can have a response time to an electric field of 1 to 50 seconds or less when erasing, and 1 to 100 seconds or less when coloring.
  • the ultraviolet durability shows a stable variable characteristic even after 250 hours have passed, and even when left at -50 ° C. to 90 ° C. for a long time, It is possible to maintain variable characteristics.
  • the liquid crystal When using the water-based emulsion method in the production of light control films using liquid crystal, which is a conventional technology, the liquid crystal often reacts with moisture and loses its light adjustment characteristics, making it difficult to produce films with the same characteristics. There is a problem.
  • a liquid crystal not a liquid crystal, but a liquid light adjusting suspension in which light adjusting particles are dispersed in the light adjusting suspension is used. Therefore, unlike a light control film using liquid crystal, an electric field is applied. Even if not, light is not scattered, and it represents a colored state with excellent definition and no viewing angle limitation. Then, the light variability can be arbitrarily adjusted by adjusting the content of the light adjusting particles, the droplet form and the film thickness, or adjusting the electric field strength.
  • the light control film of the present invention does not use liquid crystals, the color change due to ultraviolet exposure and the variable capacity decrease, and the voltage drop generated between the peripheral part and the central part of the transparent conductive resin base material peculiar to large products. The accompanying response time difference is also eliminated.
  • the light control particles in the light control suspension exhibit a brown motion, and thus show a clear coloring state due to light absorption of the light control particles and a dichroic effect.
  • the light adjusting particles in the droplet or the droplet connected body are arranged in parallel to the electric field and converted into a transparent state.
  • the liquid light adjusting suspension is used as it is, that is, the liquid suspension between the two transparent conductive resin substrates.
  • the response time difference due to the voltage drop generated between the peripheral part and the central part of the transparent conductive resin base material peculiar to large products, and the color tone change and variable ability due to ultraviolet exposure are eliminated.
  • the liquid crystal is easily deteriorated to ultraviolet rays, and the operating temperature range is narrow due to the thermal characteristics of nematic liquid crystal.
  • optical characteristics when no electric field is applied, it shows a milky white translucent state due to light scattering, and even when an electric field is applied, it is not completely sharpened and the milky state is There are remaining problems. Therefore, in such a light control window, a display function based on light blocking and transmission, which is used as an operation principle in existing liquid crystal display elements, is impossible. However, such a problem can be solved by using the light control film according to the present invention.
  • the light control film of the present invention has strong adhesion between the light control layer and the transparent conductive resin base material, and the light control layer is peeled off from the transparent conductive resin base material in the manufacturing process or the processing process after film manufacture. It is an excellent light control film that does not cause any problem.
  • the light control film of the present invention includes, for example, indoor and outdoor partitions, window glass / skylights for buildings, various flat display elements used in the electronics industry and video equipment, various instrument panels, and existing liquid crystal display elements. Suitable for applications such as light shutters, various indoor / outdoor advertisements and signboards, window glass for aircraft / railway vehicles / ships, window glass / back mirror / sunroof for automobiles, glasses, sunglasses, sun visors, etc. Can be used.
  • As an application method it is possible to directly use the light control film of the present invention. However, depending on the application, for example, the light control film of the present invention may be sandwiched between two base materials or used. It may be used by pasting it on one side. As said base material, glass, the polymer film similar to the said transparent resin base material, etc. can be used, for example.
  • FIG. 1 is a structural schematic diagram of a light control film of one embodiment of the present invention.
  • the light control layer 1 is sandwiched between the transparent conductive resin substrates 4 made of the two transparent resin substrates 5b coated with the transparent conductive film 5a.
  • a primer layer 6 is provided between the light control layer 1 and the transparent conductive resin substrate 4.
  • the light control layer 1 includes a film-like resin matrix 2 obtained by UV-curing a resin having a substituent having an ethylenically unsaturated bond as a polymer medium, and droplets 3 in the resin matrix 2. It consists of a liquid light control suspension dispersed in
  • FIG. 2 is a view for explaining the operation of the light control film shown in FIG. 1, and shows a case where the switch 8 is turned off and no electric field is applied.
  • incident light 11 is absorbed by the light adjusting particles 10 due to Brownian motion of the light adjusting particles 10 dispersed in the dispersion medium 9 constituting the droplets 3 of the liquid light adjusting suspension. It is scattered or reflected and cannot be transmitted.
  • the switch 8 when the switch 8 is connected and an electric field is applied, the light adjusting particles 10 are arranged in parallel with the electric field formed by the applied electric field. 10 passes. In this way, a light transmission function without scattering and a decrease in transparency is provided.
  • the light control particles were separated using a centrifuge.
  • the reaction solution was centrifuged at a speed of 750 G for 10 minutes to remove precipitates, and further centrifuged at 7390 G for 2 hours to remove suspended matters, and precipitate particles were collected.
  • the precipitate particles were needle-like crystals having an average particle diameter of 0.36 ⁇ m as measured with a submicron particle analyzer (N4MD, manufactured by Beckman Coulter). The precipitate particles were used as light control particles.
  • the ethylenically unsaturated bond concentration (mol / kg) was calculated from the hydrogen integral ratio of NMR (integral value of hydrogen of ethylenically unsaturated bond near 6 ppm, integral value of phenyl group hydrogen near 7.5 ppm, and Use the integral value around 0.1 ppm of hydrogen of the methyl group).
  • Measurement solvent was CDCl 3.
  • the ratio of 5.4% was calculated from the respective molecular weights, and the number of ethylenically unsaturated bonding groups per molecule was 9.35. Therefore, the number of moles per kg was calculated to be 0.31 mol / kg.
  • Example 1 10 g of energy ray curable silicone resin obtained in the above (Production example of energy ray curable silicone resin), bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (Ciba Specialty) as a photopolymerization initiator Chemicals Co., Ltd.) 0.2 g and dibutyltin dilaurate 0.3 g as an anti-coloring agent are added with 2.5 g of the light control suspension obtained in the above (Production Example of Light Control Suspension). A light-modulating material was produced by mechanical mixing for minutes.
  • ITO indium tin oxide
  • TCF transparent conductive film
  • PM-21 Nippon Kayaku Co., Ltd.
  • the dimming material obtained above was applied over the entire surface of the transparent conductive resin substrate on which the primer layer was formed.
  • the same transparent conductive resin substrate on which a primer layer was similarly formed was laminated and adhered so that the application surface of the primer layer solution was directed to the application layer of the light control material.
  • 3000 mJ / cm 2 of ultraviolet light is irradiated from the polyester film side of the laminated transparent conductive resin base material using a metal halide lamp, and the light control suspension is applied to the ultraviolet light cured resin matrix as spherical droplets.
  • a 340 ⁇ m-thick dimming film having a film-shaped 90 ⁇ m-thick dimming layer dispersed and sandwiched between transparent conductive resin substrates was produced.
  • the thickness of the formed primer layer was measured using a spectroscopic ellipsometer M-2000D (manufactured by JA Woollam Japan Co., Ltd.) and found to be 2 nm.
  • the light control layer was removed from the edge part of this light control film, and the transparent conductive film of the edge part was exposed in order to take electricity for voltage application (refer FIG. 4).
  • the droplet size (average droplet diameter) of the light control suspension in the light control film was 3 ⁇ m on average.
  • the light transmittance of the light control film was 1.1% when no AC voltage was applied (when no voltage was applied).
  • the light transmittance of the light control film when an AC voltage of 50 Hz (effective value) of 400 Hz was applied was 33%, and the ratio of the light transmittance when an electric field was applied and when no electric field was applied was as large as 30. It was.
  • Example 2 The solution for forming the primer layer was changed to methyl ethyl ketone solutions 0.5, 1.0, 5.0, and 10% by mass using PM-21 (Nippon Kayaku Co., Ltd.) as the phosphoric acid diester. Except for, a light control film was produced in the same manner as in Example 1, and various measurements were performed.
  • the thicknesses of the formed primer layers were 3 nm (0.5 mass%), 22 nm (1.0 mass%), 89 nm (5.0 mass%), and 162 nm (10 mass%), respectively.
  • Example 3 The example was changed except that the solution for forming the primer layer was changed to 0.3% by mass of a methyl ethyl ketone solution using P-2M (Kyoeisha Chemical Co., Ltd.) having the following structure as a phosphoric acid diester.
  • P-2M Korean Chemical Co., Ltd.
  • a light control film was prepared and various measurements were performed.
  • the thickness of the formed primer layer was measured using a spectroscopic ellipsometer M-2000D (manufactured by JA Woollam Japan Co., Ltd.) and found to be 3 nm.
  • Example 4 The solution at the time of forming the primer layer was changed to methyl ethyl ketone solutions 0.5, 1.0, 5.0, and 10% by mass using P-2M (Kyoeisha Chemical Co., Ltd.) as the phosphoric acid diester. Except for this, a light control film was prepared in the same manner as in Example 1, and various measurements were performed. The thicknesses of the formed primer layers were 3 nm (0.5 mass%), 27 nm (1.0 mass%), 92 nm (5.0 mass%), and 171 nm (10 mass%), respectively.
  • Example 5 (Example 5) Implementation was performed except that the solution for forming the primer layer was changed to 1.0 mass% of a methyl ethyl ketone solution using Phosmer PP (Unichemical Co., Ltd.) having the following structure as a phosphoric acid monoester.
  • Phosmer PP Unichemical Co., Ltd.
  • the formed primer layer had a thickness of 25 nm.
  • Example 6 The solution for forming the primer layer was the same as in Example 1, except that the phosphoric acid monoester was changed to 5.0% by mass of a methyl ethyl ketone solution using Phosmer PP (Unichemical Co., Ltd.). Then, a light control film was prepared and various measurements were performed. The thickness of the formed primer layer was 84 nm.
  • Example 7 Except that the solution for forming the primer layer was changed to 1.0% by mass of a methyl ethyl ketone solution using Phosmer PE (Unichemical Co., Ltd.) having the following structure as a phosphoric acid monoester. In the same manner as in Example 1, a light control film was prepared and various measurements were performed. The thickness of the formed primer layer was 24 nm.
  • Example 8 The solution for forming the primer layer was the same as in Example 1 except that the phosphoric acid monoester was changed to 5.0% by mass of a methyl ethyl ketone solution using Phosmer PE (Unichemical Co., Ltd.). Then, a light control film was prepared and various measurements were performed. The thickness of the formed primer layer was 87 nm.
  • Example 9 The solution for forming the primer layer was the same as in Example 1 except that the phosphoric acid monoester was changed to 1.0% by mass of a methyl ethyl ketone solution using Phosmer M (Unichemical Co., Ltd.). Then, a light control film was prepared and various measurements were performed. The thickness of the formed primer layer was 23 nm.
  • Example 10 The solution for forming the primer layer was the same as that of Example 1 except that the phosphoric acid monoester was changed to 5.0% by mass of a methyl ethyl ketone solution using Phosmer M (Unichemical Co., Ltd.). Then, a light control film was prepared and various measurements were performed. The thickness of the formed primer layer was 101 nm.
  • Example 11 The solution for forming the primer layer was changed to 1.0 mass% of a methyl ethyl ketone solution using RDX63182 (Daicel UCB) as phosphoric acid-modified epoxy acrylate (epoxy acrylate in which phosphoric acid was ester-bonded). Except for this, a light control film was produced in the same manner as in Example 1, and various measurements were performed. The thickness of the formed primer layer was 31 nm.
  • Example 12 The solution at the time of forming the primer layer was changed to 5.0% by mass of a methyl ethyl ketone solution using RDX63182 (Daicel UCB Co., Ltd.) as phosphoric acid-modified epoxy acrylate (epoxy acrylate in which phosphoric acid was ester-bonded). Except for this, a light control film was produced in the same manner as in Example 1, and various measurements were performed. The thickness of the formed primer layer was 107 nm.
  • Example 13 Except that the solution for forming the primer layer was changed to 3.0% by mass of an ethanol solution using KBM-603 (Shin-Etsu Silicone Co., Ltd.) having the following structure as an amino group-containing silane coupling agent. In the same manner as in Example 1, a light control film was prepared and various measurements were performed. The thickness of the formed primer layer was 68 nm.
  • Example 14 The example was changed except that the solution for forming the primer layer was changed to 5.0% by mass of an ethanol solution using KBM-603 (Shin-Etsu Silicone Co., Ltd.) as an amino group-containing silane coupling agent.
  • KBM-603 Shin-Etsu Silicone Co., Ltd.
  • the thickness of the formed primer layer was 102 nm.
  • Example 15 Except that the solution for forming the primer layer was changed to 10% by mass of an ethanol solution using KBM-603 (Shin-Etsu Silicone Co., Ltd.) as an amino group-containing silane coupling agent, Example 1 Similarly, the light control film was produced and various measurements were performed. The thickness of the formed primer layer was 188 nm.
  • Comparative Example 1 A transparent conductive resin substrate made of a polyester film (trade name: Tetrait TCF, manufactured by Oike Kogyo Co., Ltd., thickness 125 ⁇ m) coated with an ITO transparent conductive film was used as it was without a primer layer. Except for, a light control film was produced in the same manner as in Example 1, and various measurements were performed.
  • a transparent conductive resin substrate made of a polyester film (trade name: Tetrait TCF, manufactured by Oike Kogyo Co., Ltd., thickness 125 ⁇ m) coated with an ITO transparent conductive film was used as it was without a primer layer. Except for, a light control film was produced in the same manner as in Example 1, and various measurements were performed.
  • the solution for forming the primer layer was 1.0% by mass of ethanol solution and 5.0% by mass of ethanol solution using a methacryloyl group-containing silane coupling agent KBM-503 (Shin-Etsu Silicone Co., Ltd.) represented by the following formula. %, And a dimming film was prepared and subjected to various measurements in the same manner as in Example 1 except that the ethanol solution was changed to 10% by mass.
  • the thickness of the formed primer layer was 30 nm (1.0 mass%), 98 nm (5.0 mass%), and 185 nm (10 mass%).
  • the solution for forming the primer layer was 1.0% by mass of ethanol solution and 5.0% by mass of ethanol solution using a mercapto group-containing silane coupling agent KBM-803 (Shin-Etsu Silicone Co., Ltd.) represented by the following formula. %, And a dimming film was prepared and subjected to various measurements in the same manner as in Example 1 except that the ethanol solution was changed to 10% by mass.
  • the thicknesses of the formed primer layers were 34 nm (1.0 mass%), 99 nm (5.0 mass%), and 190 nm (10 mass%), respectively.
  • the thicknesses of the formed primer layers were 203 nm (ESREC BL-1), 211 nm (ESREC BL-1H), 228 nm (ESREC BL-S), and 208 nm (ESREC KS-10), respectively.
  • toluene is added as an aromatic hydrocarbon-based organic solvent azeotropic with water, and 114.0 mmol of 4,4′-hexafluoropropylidenebisphthalic dianhydride is added as tetracarboxylic dianhydride, up to 50 ° C. After heating up and stirring at that temperature for 1 hour, it heated up to 160 degreeC and made it recirculate
  • the toluene was removed and an NMP solution of a polyimide resin represented by the following formula was obtained.
  • the NMP solution of the polyimide resin was put into methanol, and the precipitate was collected, then pulverized and dried to obtain a polyimide resin.
  • the weight average molecular weight of the obtained polyimide resin was 112,000.
  • a dimming film was prepared and various measurements were performed in the same manner as in Example 1 except that the solution for forming the primer layer was changed to 5.0% by mass of the methyl resin solution of the polyimide resin. .
  • Each of the formed primer layers had a thickness of 121 nm.
  • Example 10 The same as in Example 1 except that the solution for forming the primer layer was changed to 5.0% by mass of a methyl ethyl ketone solution using EB3702 (Daicel UCB Co., Ltd.) as a fatty acid-modified epoxy acrylate. Then, a light control film was prepared and various measurements were performed. Each of the formed primer layers had a thickness of 106 nm.
  • a primer layer was prepared by the following procedure.
  • Sunrad RC-610R contains 1-hydroxy-cyclohexyl-phenyl-ketone as a photopolymerization initiator.
  • Example 17 The microgravure method (mesh # 150) was performed with the blending ratio of Sunrad RC-610R as the active energy ray polymerizable monomer being 1 mass% and the blending ratio of P-1M as the phosphoric monoester being 0.1 mass%.
  • a primer layer was prepared in the same manner as in Example 16 except that it was used, and then a light control film was prepared and various measurements were performed in the same manner as in Example 1. The thickness of the formed primer layer was 10 nm.
  • Example 18 Except that the blending ratio of Sunrad RC-610R as an active energy ray polymerizable monomer was 0.5 mass% and the blending ratio of P-1M as a phosphoric monoester was 0.05 mass%.
  • a primer layer was prepared in the same manner as in Example 16, and then a light control film was prepared in the same manner as in Example 1 to perform various measurements. The thickness of the formed primer layer was 3 nm.
  • Example 19 Except that the solution for forming the primer layer was changed to a 0.3% by mass solution using P-1M (Kyoeisha Chemical Co., Ltd.) as the phosphoric acid-modified ester, the same procedure as in Example 1 was performed. A light control film was prepared and various measurements were performed. The thickness of the formed primer layer was 2 nm.
  • Example 20 Except that the solution for forming the primer layer was changed to a 0.1% by mass solution using P-1M (Kyoeisha Chemical Co., Ltd.) as the phosphoric acid-modified ester, the same procedure as in Example 1 was performed. A light control film was prepared and various measurements were performed. The thickness of the formed primer layer was 1 nm.
  • Example 21 Except that the solution for forming the primer layer was changed to a 0.05 mass% solution using P-1M (Kyoeisha Chemical Co., Ltd.) as the phosphoric acid-modified ester, the same procedure as in Example 1 was performed. A light control film was prepared and various measurements were performed. The thickness of the formed primer layer was 0.7 nm.
  • Example 11 Comparative Example 11 Except that the solution for forming the primer layer was changed to a 3% by mass solution using Sunrad RC-610R (manufactured by Sanyo Chemical Industries, Ltd.) as the polymerizable monomer, the same procedure as in Example 1 was performed. A light control film was prepared and various measurements were performed. The thickness of the formed primer layer was 60 nm.
  • Example 12 Comparative Example 12 Except that the solution for forming the primer layer was changed to a 1% by mass solution using Sunrad RC-610R (manufactured by Sanyo Kasei Kogyo Co., Ltd.) as the polymerizable monomer, the same procedure as in Example 1 was performed. A light control film was prepared and various measurements were performed. The thickness of the formed primer layer was 12 nm.
  • Example 13 Example 1 except that the solution for forming the primer layer was changed to a 0.5% by mass solution using Sunrad RC-610R (manufactured by Sanyo Chemical Industries, Ltd.) as the polymerizable monomer. Then, a light control film was prepared and various measurements were performed. The thickness of the formed primer layer was 4 nm.
  • the light control film of the present invention has high adhesion between the light control layer and the transparent conductive resin substrate, and can exhibit a stable light control function.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

 2つの透明導電性樹脂基材と、前記2つの透明導電性樹脂基材に挟持された調光層を有し、前記調光層が、樹脂マトリックスと前記樹脂マトリックス中に分散した光調整懸濁液とを含む調光フィルムであって、前記透明導電性樹脂基材の少なくとも一方の前記調光層側にプライマー層を有し、該プライマー層が、分子内に1つ以上の重合性基を有するリン酸エステル、又はアミノ基を有するシランカップリング剤を用いて形成された調光フィルムとする。それにより、フィルムマトリックスと基板との密着性を向上させ、安定した調光機能を発揮する調光フィルムを提供できる。

Description

調光フィルム
 本発明は、調光機能を有する調光フィルムに関する。
 光調整懸濁液を含む調光硝子は、エドウィン・ランド(Edwin.Land)(米国特許第1,955,923号明細書、米国特許第1,963,496号明細書)により最初に発明されたもので、その形態は、狭い間隔を有する2枚の透明導電性基板の間に、液体状態の光調整懸濁液を注入した構造になっている。エドウィン・ランドの発明によると、2枚の透明導電性基板の間に注入されている液状の光調整懸濁液は、電界を印加していない状態では懸濁液中に分散されている光調整粒子のブラウン運動により、入射光の大部分が光調整粒子により反射、散乱又は吸収され、ごく一部分だけが透過することになる。
 即ち、光調整懸濁液に分散されている光調整粒子の形状、性質、濃度及び照射される光エネルギーの量により、透過、反射、散乱又は吸収の程度が決められる。前記の構造の調光硝子を用いた調光窓に電界を印加すると、透明導電性基板を通じて光調整懸濁液に電場が形成され、光調整機能を表す光調整粒子が分極を起こし、電場に対して平行に配列され、光調整粒子と光調整粒子の間を光が透過し、最終的に調光硝子は透明になる。
 しかし、このような初期の調光装置は、実用上、光調整懸濁液内での光調整粒子の凝集、自重による沈降、熱による色相変化、光学密度の変化、紫外線照射による劣化、基板の間隔維持及びその間隔内への光調整懸濁液の注入が困難である等のために、実用化が難しかった。
 ロバート・エル・サックス(Robert.L.Saxe)の米国特許第3,756,700号、4,247,175号、4,273,422号、4,407,565号及び4,422,963号明細書、又はエフ・シー・ローウェル(F.C.Lowell)の米国特許第3,912,365号明細書、アール・アイ・トンプソン(R.I.Thompson)の米国特許第4,078,856号明細書には、調光窓の初期問題点、即ち、光調整粒子の凝集及び沈降、光学密度の変化等を補完した調光硝子を用いた調光窓を開示している。
 これらの特許等では、針状の光調整結晶粒子、結晶粒子分散用懸濁剤、分散調整剤及び安定剤等からなる液体状態の光調整懸濁液によって、光調整粒子と懸濁剤の密度を殆ど同様に合わせて光調整粒子の沈降を防止しながら、分散調整剤を添加して光調整粒子の分散性を高めることにより光調整粒子の凝集を防止し、初期の問題点を解決している。
 しかし、これらの調光硝子もやはり従来の調光硝子のように、2枚の透明導電性基板の間隔内に液状の光調整懸濁液を封入した構造になっているため、大型製品製造の場合、2枚の透明導電性基板の間隔内への均一な懸濁液の封入が困難で、製品上下間の水圧差による下部の膨張現象が起こりやすい。また、外部環境、例えば、風圧によって基板の間隔が変化することにより、光学密度が変化して色相が不均質になりやすい。さらに、透明導電性基板の間に液体をためるための周辺の密封材が破壊され、光調整材料が漏れる等の問題がある。また、紫外線による劣化、透明導電性基板の周辺部と中央部間の電圧降下により、応答時間にむらが発生する。
 これを改善する方法として、液状の光調整懸濁液を硬化性の高分子樹脂の溶液と混合し、重合による相分離法、溶媒揮発による相分離法、又は温度による相分離法等を利用してフィルムを製造する方法が提案されている。しかし、硬化してフィルムマトリックスとなる高分子樹脂は、透明導電性基板との密着性を考慮に入れた分子設計にはなっていないため、表面にITO等の導電性薄膜が成膜されたPETフィルム等の基板とフィルムマトリックスとの密着性は悪く、非常にはがれ易い問題がある。
 本発明は、フィルムマトリックスと基板との密着性を向上させ、安定した調光機能を発揮する調光フィルムを提供することを目的とするものである。
 本発明者等は、鋭意検討した結果、透明導電性樹脂基材の少なくとも一方の調光層側表面に、特定のプライマー層を設けることにより上記課題を解決できることを見出した。
 すなわち本発明は、2つの透明導電性樹脂基材と、前記2つの透明導電性樹脂基材に挟持された調光層を有し、前記調光層が、樹脂マトリックスと前記樹脂マトリックス中に分散した光調整懸濁液とを含む調光フィルムであって、前記透明導電性樹脂基材の少なくとも一方の前記調光層側にプライマー層を有し、プライマー層が、分子内に1つ以上の重合性基を有するリン酸エステルを用いて形成された調光フィルムに関する。
 前記分子内に1つ以上の重合性基を有するリン酸エステルは、リン酸モノエステルまたはリン酸ジエステルであることが好ましく、また、重合性基は(メタ)アクリロイルオキシ基であることが好ましい。プライマー層は、分子内に1つ以上の重合性基を有するリン酸エステル含有溶液を用いて形成することが可能であり、前記溶液中の分子内に1つ以上の重合性基を有するリン酸エステルの濃度が0.05~20質量%であることが好ましい。
 前記プライマー層が、さらに、重合性モノマーあるいはオリゴマーを併用して形成されることが好ましい。また、前記重合性モノマーあるいはオリゴマーが、アクリレートからなることが好ましく、さらに前記重合性モノマーあるいはオリゴマーが、熱あるいは光により硬化されることがより好ましい。
 また、本発明は、2つの透明導電性樹脂基材と、前記2つの透明導電性樹脂基材に挟持された調光層を有し、前記調光層が、樹脂マトリックスと前記樹脂マトリックス中に分散した光調整懸濁液とを含む調光フィルムであって、前記透明導電性樹脂基材の少なくとも一方の前記調光層側にプライマー層を有し、プライマー層が、アミノ基を有するシランカップリング剤を用いて形成された調光フィルムに関する。
 前記プライマー層は、アミノ基を有するシランカップリング剤含有溶液を用いて形成することが可能であり、前記溶液中のアミノ基を有するシランカップリング剤の濃度が1~15質量%であることが好ましい。
 上記の発明において、プライマー層の膜厚は好ましくは1μm以下である。
 本発明の調光フィルムは、調光層と透明導電性樹脂基材との密着性が高く、安定した調光機能を発揮することができる。
 本発明の開示は、2008年1月23日に出願された特願2008-012932号に記載の主題と関連しており、それらの開示内容は引用によりここに援用される。
本発明の調光フィルムの一態様の断面構造概略図である。 図1の調光フィルムの電界が印加されていない場合の作動を説明するための概略図である。 図1の調光フィルムの電界が印加されている場合の作動を説明するための概略図である。 調光フィルムの端部の状態を説明するための概略図である。
 本発明の調光フィルムは、樹脂マトリックスと、樹脂マトリックス中に分散した光調整懸濁液とを含む調光層が、2つの透明導電性樹脂基材間に挟持された調光フィルムであり、透明導電性樹脂基材の少なくとも一方の調光層と接する面に、特定のプライマー層が設けられていることを特徴とする。
 調光層は、一般に、調光材料を用いて形成することが可能である。調光材料は、樹脂マトリックスとしての、エネルギー線を照射することにより硬化する高分子媒体と、光調整粒子が流動可能な状態で分散媒中に分散した光調整懸濁液とを含有する。光調整懸濁液中の分散媒は、高分子媒体及びその硬化物と相分離しうるものであることが好ましい。該調光材料を用いて、両方の透明導電性樹脂基材の調光層と接する面にプライマー処理を施した2つの透明導電性樹脂基材間、あるいは一方の透明導電性樹脂基材のみ、調光層と接する面にプライマー処理を施した2つの透明導電性樹脂基材間等に、高分子媒体から形成された樹脂マトリックス中に光調整懸濁液が分散した調光層を挟持させることにより、本発明の調光フィルムが得られる。
 すなわち、本発明の調光フィルムの調光層では、液状の光調整懸濁液が、高分子媒体が硬化した固体状の樹脂マトリックス内に微細な液滴の形態で分散されている。光調整懸濁液に含まれる光調整粒子は、棒状又は針状であることが好ましい。
 このような調光フィルムに電界を印加すると、樹脂マトリックス中に分散されている光調整懸濁液の液滴中に、浮遊分散されている電気的双極子モーメントをもつ光調整粒子が、電界に対し平行に配列されることにより、液滴が入射光に対して透明な状態に転換され、視野角度による散乱、又は透明性低下が殆どない状態で入射光を透過させる。本発明においては、特定のプライマー層上に調光層を設けてフィルム化することによって、従来の調光フィルムの問題点、即ち、調光層と透明導電性樹脂基材との密着性が弱く、製造過程あるいはフィルム製造後の加工過程等で調光層が透明導電性樹脂基材から剥がれるといった問題が解決される。
 以下、各層構成及び調光フィルムについて説明する。
<プライマー層>
 まず、プライマー層について説明する。
(1)分子内に1つ以上の重合性基を有するリン酸エステル
 本発明において、プライマー層を形成するための材料の一つとして、分子内に1つ以上の重合性基を有するリン酸エステルが挙げられる。より好ましくは分子内に1つ以上の重合性基を有するリン酸モノエステルあるいはリン酸ジエステルが挙げられる。分子内に1つ以上の重合性基を有するリン酸エステルは、通常、エステル部分に重合性基を有し、好ましくは1つのエステル部分に1つの重合性基を有する。分子内の重合性基の個数は1個又は2個であることが好ましい。また、リン酸エステルは、好ましくは、分子内に(ポリ)エチレンオキサイド、(ポリ)プロピレンオキサイド等の(ポリ)アルキレンオキサイド構造を有する。
 重合性基としては、熱、エネルギー線の照射等により重合する基が好ましく、例えば、(メタ)アクリロイルオキシ基等のエチレン性不飽和二重結合を有する基がある。
 より具体的には、プライマー層を形成するための材料は、分子内に(メタ)アクリロイルオキシ基を有するリン酸モノエステルあるいはリン酸ジエステルであることが好ましい。
 (メタ)アクリロイルオキシ基を有するリン酸モノエステルあるいはリン酸ジエステルの例としては、(式1)または(式2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(式中、Rはそれぞれ独立に炭素数1~4個の直鎖もしくは分岐アルキレン基を示し、mは1以上の整数であり、nは1または2である。Xは、それぞれ独立に
Figure JPOXMLDOC01-appb-C000002
から選択される。)
 mは好ましくは1~10、より好ましくは1~6である。
 なお、上記式1におけるRの炭素数1~4個の直鎖もしくは分岐アルキレン基としては、具体的に下記のものが挙げられる。炭素数1~4の直鎖アルキレン基としては、メチレン基、エチレン基、n-プロピレン基、ブチレン基等が挙げられる。炭素数1~4の分岐アルキレン基としては、i-プロピレン基等が挙げられる。
Figure JPOXMLDOC01-appb-C000003
(式中、R及びRはそれぞれ独立に炭素数1~4個の直鎖もしくは分岐アルキレン基を示し、l及びmはそれぞれ独立に1以上の整数であり、nは1または2である。Xは、それぞれ独立に
Figure JPOXMLDOC01-appb-C000004
から選択される。)
 lは好ましくは1~10、より好ましくは1~5である。mは好ましくは1~5、より好ましくは1~2である。
 上記式2におけるR及びRにおける炭素数1~4個の直鎖もしくは分岐アルキレン基としては、具体的に下記のものが挙げられる。炭素数1~4の直鎖アルキレン基としては、メチレン基、エチレン基、n-プロピレン基、ブチレン基等が挙げられる。炭素数1~4の分岐アルキレン基としては、i-プロピレン基等が挙げられる。
 入手可能なリン酸モノエステルとしては、ユニケミカル(株)製のホスマーPP、ホスマーPE、ホスマーM、共栄社化学(株)製のP-1M等が挙げられる。これらは下記構造式で示すことができる。なお、共栄社化学(株)製のP-1Mの構造は、ホスマーMと同じである。
Figure JPOXMLDOC01-appb-C000005
 入手可能なリン酸ジエステルとしては、日本化薬(株)製のPM-21、共栄社化学(株)製のP-2M等が挙げられる。これらは下記構造式で示すことができる。
Figure JPOXMLDOC01-appb-C000006
 分子内に1つ以上の重合性基を有するリン酸エステルと一緒に、重合性モノマーあるいは重合性オリゴマーを用いることも好ましい。
 重合性モノマーあるいは重合性オリゴマーとしては、例えば、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラメタクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート等のアクリレートが挙げられる。
 なお、上記の重合性モノマーあるいは重合性オリゴマーは、熱あるいは光により硬化することが好ましい。それにより、リン酸エステル由来の強いタックを低減させることができる。
 なお、分子内に1つ以上の重合性基を有するリン酸エステルは、重合性モノマーあるいは重合性オリゴマーが硬化する際に、硬化する必要はない。
 入手可能な重合性モノマーあるいは重合オリゴマーとしては、三洋化成工業(株)製のUV硬化型ハードコート剤(商品名:サンラッドRC-610R)等が挙げられる。なお、サンラッドRC-610Rは、下記式で示される化合物の混合物である。
Figure JPOXMLDOC01-appb-C000007
 上記以外で入手可能なものとしては、トリメチロールプロパントリメタクリレート(商品名:ライトエステルTMP、共栄社化学(株)製)、トリメチロールプロパントリアクリレート(商品名:ライトエステルTMP-A、共栄社化学(株))、ジトリメチロールプロパンテトラメタクリレート(商品名:アロニックスM-408、東亞合成(株)製)、ペンタエリスリトールテトラアクリレート(商品名:アロニックスM-450、東亞合成(株)製)、ジペンタエリスリトールヘキサアクリレート(商品名:アロニックスM-405、東亞合成(株)製)等が挙げられる。
(2)アミノ基を有するシランカップリング剤
 また、本発明において、プライマー層を形成するための別の材料として、アミノ基を有するシランカップリング剤が挙げられる。
 アミノ基を有するシランカップリング剤の例としては、(式3)または(式4)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008
(式中、R及びRはそれぞれ独立に炭素数1~4個の直鎖もしくは分岐アルキレン基を示し、Rはそれぞれ独立に炭素数1~4個の直鎖もしくは分岐アルキル基を示し、Rはそれぞれ独立にメチル基またはエチル基を示す。nは0~2の整数である。)
 上記式3におけるR及びRの炭素数1~4個の直鎖もしくは分岐アルキレン基としては、具体的に下記のものが挙げられる。炭素数1~4の直鎖アルキレン基としては、メチレン基、エチレン基、n-プロピレン基、ブチレン基等が挙げられる。炭素数1~4の分岐アルキレン基としては、i-プロピレン基等が挙げられる。
 上記式3におけるRの炭素数1~4個の直鎖もしくは分岐アルキル基としては、具体的に下記のものが挙げられる。炭素数1~4の直鎖アルキル基としては、メチル基、エチル基、n-プロピル基、ブチル基等が挙げられる。炭素数1~4の分岐アルキル基としては、i-プロピル基等が挙げられる。
Figure JPOXMLDOC01-appb-C000009
(式中、Rは炭素数1~4個の直鎖もしくは分岐アルキレン基を示し、Rはそれぞれ独立に炭素数1~4個の直鎖もしくは分岐アルキル基を示し、Rはそれぞれ独立にメチル基またはエチル基を示す。nは0~2の整数である。)
 上記式4におけるRの炭素数1~4個の直鎖もしくは分岐アルキレン基としては、具体的に下記のものが挙げられる。炭素数1~4の直鎖アルキレン基としては、メチレン基、エチレン基、n-プロピレン基、ブチレン基等が挙げられる。炭素数1~4の分岐アルキレン基としては、i-プロピレン基等が挙げられる。
 上記式4におけるRの炭素数1~4個の直鎖もしくは分岐アルキル基としては、具体的に下記のものが挙げられる。炭素数1~4の直鎖アルキル基としては、メチル基、エチル基、n-プロピル基、ブチル基等が挙げられる。炭素数1~4の分岐アルキル基としては、i-プロピル基等が挙げられる。
 (式3)または(式4)で表される、入手可能なアミノ基含有シランカップリング剤としては、信越シリコーン(株)製のKBM-602、603、903、KBE-903等が挙げられる。また、それ以外のアミノ基含有シランカップリング剤としては、KBM-573等が挙げられる。構造は下記に示すとおりである。
Figure JPOXMLDOC01-appb-C000010
 本発明において、プライマー層の膜厚は紫外・可視光線の反射率分光法、X線反射率測定、エリプソメトリー等によって測定可能である。プライマー層の膜厚は、1μm以下であることが好ましく、さらに1nm~1μmの膜厚であることがより好ましい。好ましくは1nm~800nm、さらに好ましくは1nm~500nm、また、より好ましくは1nm~100nmである。
 膜厚が1nm未満であると充分な接着強度を発現できない傾向がある。一方、膜厚が1μmを超えるとプライマー層に膜厚ムラが生じたり、タックが強くなるため調光フィルム製造時のハンドリング性が悪化したりする傾向がある。
 本発明において、プライマー層の形成には、分子内に1つ以上の重合性基を有するリン酸エステル含有溶液を用いることができる。プライマー層を形成する際の溶液中の前記リン酸エステルの濃度は0.05~20質量%であることが好ましく、さらに0.1~15質量%であることが好ましく、また、0.3~10質量%であることがより好ましい。
 濃度が0.05質量%未満であると充分な接着強度を発現できない傾向がある。一方、濃度が20質量%を超えるとプライマー層に膜厚ムラが生じたり、タックが強くなるため調光フィルム製造時のハンドリング性が悪化したりする傾向がある。
 プライマー層の形成に、分子内に1つ以上の重合性基を有するリン酸エステルと共に、重合性モノマーあるいは重合性オリゴマーを用いる場合には、プライマー層を形成する際の溶液中の重合性モノマーあるいは重合性オリゴマーの濃度は、リン酸エステル由来のタック性を軽減する効果の点から、プライマー層の材料全体に対して80~95質量%であることが好ましい。より好ましくは、90~95質量%である。
 また、本発明において、プライマー層の形成には、アミノ基を有するシランカップリング剤含有溶液を用いることができる。プライマー層を形成する際の溶液中のアミノ基を有するシランカップリング剤の濃度は1~15質量%であることが好ましく、さらに2~10質量%であることが好ましく、また、3~5質量%であることがより好ましい。
 濃度が1質量%未満であると充分な接着強度を発現できない傾向がある。一方、濃度が15質量%を超えるとプライマー層に膜厚ムラが生じたり、タックが強くなるため調光フィルム製造時のハンドリング性が悪化したりする傾向がある。さらに、濃度が15質量%を超えると接着強度が減少する傾向がある。
<調光層>
 次に、調光層について説明する。
 本発明における調光層は、樹脂マトリックスと該樹脂マトリックス中に分散した光調整懸濁液とを含む調光材料からなる。なお、樹脂マトリックスは、高分子媒体からなり、光調整懸濁液は、光調整粒子が流動可能な状態で分散媒中に分散したものである。
 高分子媒体及び分散媒(光調整懸濁液中の分散媒)としては、高分子媒体及びその硬化物と分散媒とが、少なくともフィルム化したときに互いに相分離しうるものを用いる。互いに非相溶又は部分相溶性の高分子媒体と分散媒とを組み合わせて用いることが好ましい。
 本発明において用いられる高分子媒体は、(A)エチレン性不飽和結合を有する置換基を持つ樹脂及び(B)光重合開始剤を含み、紫外線、可視光線、電子線等のエネルギー線を照射することにより硬化するものが挙げられる。(A)エチレン性不飽和結合を有する樹脂としては、シリコーン系樹脂、アクリル系樹脂、ポリエステル樹脂等が合成容易性、調光性能、耐久性等の点から好ましい。これらの樹脂は、置換基として、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、アミル基、イソアミル基、ヘキシル基、シクロヘキシル基等のアルキル基、フェニル基、ナフチル基等のアリール基を有することが、調光性能、耐久性等の点から好ましい。
 前記シリコーン系樹脂の具体例としては、例えば、特公昭53-36515号公報、特公昭57-52371号公報、特公昭58-53656号公報、特公昭61-17863号公報等に記載の樹脂を挙げることができる。
 前記シリコーン系樹脂は、例えば、両末端シラノールポリジメチルシロキサン、両末端シラノールポリジフェニルシロキサン-ジメチルシロキサンコポリマー、両末端シラノールポリジメチルジフェニルシロキサン等の両末端シラノールシロキサンポリマー、トリメチルエトキシシラン等のトリアルキルアルコキシシラン、(3-アクリロキシプロピル)メチルジメトキシシラン等のエチレン性不飽和結合含有シラン化合物等を、2-エチルヘキサン錫等の有機錫系触媒の存在下で、脱水素縮合反応及び脱アルコール反応させて合成される。シリコーン系樹脂の形態としては、無溶剤型が好ましく用いられる。すなわち、シリコーン系樹脂の合成に溶剤を用いた場合には、合成反応後に溶剤を除去することが好ましい。
 なお、シリコーン系樹脂の製造時の各種原料の仕込み配合において、(3-アクリロキシプロピル)メトキシシラン等のエチレン性不飽和結合含有シラン化合物の量は、原料シロキサン及びシラン化合物総量の19~50質量%とすることが好ましく、25~40質量%とすることがより好ましい。エチレン性不飽和結合含有シラン化合物の量は、19質量%未満であると最終的に得られる樹脂のエチレン性不飽和結合濃度が所望の濃度より低くなりすぎる傾向があり、50質量%を超えると得られる樹脂のエチレン性不飽和結合濃度が所望の濃度より高くなりすぎる傾向がある。
 前記アクリル系樹脂は、例えば、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸アリールエステル、(メタ)アクリル酸ベンジル、スチレン等の主鎖形成モノマーと、(メタ)アクリル酸、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸イソシアナトエチル、(メタ)アクリル酸グリシジル等のエチレン性不飽和結合導入用官能基含有モノマー等を共重合して、プレポリマーを一旦合成し、次いで、このプレポリマーの官能基と反応させるべく(メタ)アクリル酸グリシジル、(メタ)アクリル酸イソシアナトエチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸等のモノマーを前記プレポリマーに付加反応させることにより得ることができる。
 また、前記ポリエステル樹脂は、特に制限はなく、公知の方法で容易に製造できるものが挙げられる。
 これら(A)エチレン性不飽和結合を有する樹脂のゲルパーミエーションクロマトグラフィーによって得られるポリスチレン換算の重量平均分子量は、20,000~100,000であることが好ましく、30,000~80,000であることがより好ましい。
 (A)エチレン性不飽和結合を有する樹脂のエチレン性不飽和結合濃度は、好ましくは0.3モル/kg~0.5モル/kgとされる。この濃度が0.3モル/kg未満では、調光フィルム端部の処理が容易に行えず、相対する透明電極間がショートしやすく電気的信頼性が劣る傾向がある。一方この濃度が0.5モル/kgを超えると硬化した高分子媒体が、光調整懸濁液の液滴を構成する分散媒に溶け込みやすくなり、溶け込んだ高分子媒体が液滴中の光調整粒子の動きを阻害し調光性能が低下する傾向がある。
 エチレン性不飽和結合を有する樹脂のエチレン性不飽和結合濃度は、NMRの水素の積分強度比から求められる。また、仕込み原料の樹脂への転化率がわかる場合は計算によっても求められる。
 光重合開始剤としては、J.Photochem.Sci.Technol.,2,283(1977)に記載される化合物、具体的には2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-(4-(2-ヒドロキシエトキシ)フェニル)-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、(1-ヒドロキシシクロヘキシル)フェニルケトン等を使用することができる。
 (B)光重合開始剤の使用量は、上記の(A)樹脂100質量部に対して0.1~20質量部であることが好ましく、0.2~10質量部であることがより好ましい。
 また、上記の(A)エチレン性不飽和結合を有する置換基をもつ樹脂の他に、有機溶剤可溶型樹脂又は熱可塑性樹脂、例えば、ゲルパーミエーションクロマトグラフィーにより測定したポリスチレン換算の重量平均分子量が1,000~100,000のポリアクリル酸、ポリメタクリル酸等も高分子媒体の構成材料として併用することができる。
 また、高分子媒体中には、ジブチル錫ジラウレート等の着色防止剤等の添加物を必要に応じて添加してもよい。さらに、高分子媒体には、溶剤が含まれていてもよく、溶剤としては、テトラヒドロフラン、トルエン、ヘプタン、シクロヘキサン、エチルアセテート、エタノール、メタノール、酢酸イソアミル、酢酸ヘキシル等を用いることができる。
 光調整懸濁液中の分散媒としては、光調整懸濁液中で分散媒の役割を果たし、また光調整粒子に選択的に付着被覆し、高分子媒体との相分離の際に光調整粒子が相分離された液滴相に移動するように作用し、電気導電性がなく、高分子媒体とは親和性がない液状共重合体を使用することが好ましい。
 例えば、フルオロ基及び/又は水酸基を有する(メタ)アクリル酸エステルオリゴマーが好ましく、フルオロ基及び水酸基を有する(メタ)アクリル酸エステルオリゴマーがより好ましい。このような液状共重合体を使用すると、フルオロ基、水酸基のどちらか1つのモノマー単位は光調整粒子に向き、残りのモノマー単位は高分子媒体中で光調整懸濁液が液滴として安定に維持するために働くことから、光調整懸濁液内に光調整粒子が非常に均質に分散され、相分離の際に光調整粒子が相分離される液滴内に誘導される。
 このようなフルオロ基及び/又は水酸基を有する(メタ)アクリル酸エステルオリゴマーとしては、フルオロ基含有モノマー及び/又は水酸基含有モノマーを用いて共重合させたものが挙げられ、具体的には、メタクリル酸2,2,2-トリフルオロエチル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、アクリル酸3,5,5-トリメチルヘキシル/アクリル酸2-ヒドロキシプロピル/フマール酸共重合体、アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、アクリル酸2,2,3,3-テトラフルオロプロピル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、アクリル酸1H,1H,5H-オクタフルオロペンチル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、アクリル酸1H,1H,2H,2H-ヘプタデカフルオロデシル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、メタクリル酸2,2,2-トリフルオロエチル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、メタクリル酸2,2,3,3-テトラフルオロプロピル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、メタクリル酸1H,1H,5H-オクタフルオロペンチル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、メタクリル酸1H,1H,2H,2H-ヘプタデカフルオロデシル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体等が挙げられる。(メタ)アクリル酸エステルオリゴマーは、フルオロ基及び水酸基の両方を有することがより好ましい。
 これらの(メタ)アクリル酸エステルオリゴマーは、ゲルパーミエーションクロマトグラフィーで測定した標準ポリスチレン換算の重量平均分子量が1,000~20,000であることが好ましく、2,000~10,000であることがより好ましい。
 これらの(メタ)アクリル酸エステルオリゴマーの原料となるフルオロ基含有モノマーの使用量は、原料であるモノマー総量の6~12モル%であることが好ましく、より効果的には7~8モル%である。フルオロ基含有モノマーの使用量が12モル%を超える場合には、屈折率が大きくなり、光透過率が低下する傾向がある。また、これらの(メタ)アクリル酸エステルオリゴマーの原料となる、水酸基含有モノマーの使用量は0.5~22.0モル%であることが好ましく、より効果的には1~8モル%である。水酸基含有モノマーの使用量が22.0モル%を超える場合には、屈折率が大きくなり、光透過性が低下する傾向がある。
 本発明に使用される光調整懸濁液は、分散媒中に光調整粒子が流動可能に分散したものである。光調整粒子としては、例えば、高分子媒体、又は高分子媒体中の樹脂成分、即ち上記の(A)エチレン性不飽和結合を有する置換基をもつ樹脂等と親和力がなく、また光調整粒子の分散性を高めることができる高分子分散剤の存在下で、光調整粒子の前駆体であるピラジン-2,3-ジカルボン酸・2水和物、ピラジン-2,5-ジカルボン酸・2水和物、ピリジン-2,5-ジカルボン酸・1水和物からなる群の中から選ばれた1つの物質とヨウ素及びヨウ化物を反応させて作ったポリヨウ化物の針状小結晶が、好ましく用いられる。使用しうる高分子分散剤としては、例えば、ニトロセルロース等が挙げられる。ヨウ化物としては、ヨウ化カルシウム等が挙げられる。このようにして得られるポリヨウ化物としては、例えば、下記一般式
 CaI(C)・XHO (X:1~2)
 CaI(C・cHO (a:3~7、b:1~2、c:1~3)
で表されるものが挙げられる。これらのポリヨウ化物は針状結晶であることが好ましい。
 また、調光フィルム用光調整懸濁液に用いる光調整粒子として米国特許第2,041,138号明細書(E.H.Land)、米国特許第2,306,108号明細書(Landら)、米国特許第2,375,963号明細書(Thomas)、米国特許第4,270,841号明細書(R.L.Saxe)及び英国特許第433,455号明細書に開示されている光調整粒子も、使用することができる。これらの特許によって公知とされたポリヨウ化物の結晶は、ピラジンカルボン酸、又はピリジンカルボン酸の1つを選択して、ヨウ素、塩素又は臭素と反応させることにより、ポリヨウ化物、ポリ塩化物又はポリ臭化物等のポリハロゲン化物とすることによって作製されている。これらのポリハロゲン化物は、ハロゲン原子が無機質又は有機質と反応した錯化合物で、これらの詳しい製法は、例えば、サックスの米国特許第4,422,963号明細書に開示されている。
 サックスが開示しているように、光調整粒子を合成する過程において、均一な大きさの光調整粒子を形成させるため、及び、特定の懸濁媒体内での光調整粒子の分散性を向上させるため、上述したように高分子分散剤としてニトロセルロースのような高分子物質を使用することが好ましい。しかしながら、ニトロセルロースを用いると、ニトロセルロースで被覆された結晶が得られ、このような結晶を光調整粒子として用いる場合、光調整粒子は相分離の時に分離される液滴内に浮遊せず、樹脂マトリックス内に残存することがある。これを防ぐためには、高分子媒体の(A)エチレン性不飽和結合を有する置換基を持つ樹脂として、エチレン性不飽和結合を有する置換基をもつシリコーン樹脂を用いることが好ましく、シリコーン系樹脂を用いた場合には、フィルム製造の際に光調整粒子が相分離により形成された微細な液滴内へ容易に分散、浮遊し、その結果、より優れた可変能力を得ることができる。
 上記の光調整粒子の他、例えば、炭素繊維等の無機繊維、τ型無金属フタロシアニン、金属フタロシアニン等のフタロシアニン化合物等を使用することもできる。フタロシアニン化合物において、中心金属としては、銅、ニッケル、鉄、コバルト、クロム、チタン、ベリリウム、モリブデン、タングステン、アルミニウム、クロム等が挙げられる。
 本発明において、光調整粒子の大きさは1μm以下であることが好ましく、0.1~1μmであることがより好ましく、0.1~0.5μmであることがさらに好ましい。光調整粒子の大きさが1μmを超える場合には、光散乱が生じたり、電界が印加された場合に光調整懸濁液中での配向運動が低下する等、透明性が低下する問題が発生することがある。なお、光調整粒子の大きさは、サブミクロン粒子アナライザ(例えば、N4MD(ベックマン・コールタ社製)で測定した光子相関分光分析法による体積平均粒径の値とする。
 本発明に使用される光調整懸濁液は、光調整粒子1~70質量%及び分散媒30~99質量%からなることが好ましく、光調整粒子4~50質量%及び分散媒50~96質量%からなることがより好ましい。本発明における高分子媒体の屈折率と分散媒の屈折率は近似していることが好ましい。具体的には、本発明における高分子媒体と分散媒との屈折率の差は、好ましくは0.005以下、より好ましくは0.003以下である。調光材料は、高分子媒体100質量部に対して、光調整懸濁液を通常1~100質量部、好ましくは6~70質量部、より好ましくは6~60質量部含有する。
<透明導電性樹脂基材>
 本発明による調光材料を利用して調光フィルムを製造するときに使用される透明導電性樹脂基材としては、一般的に、透明樹脂基材に、光透過率が80%以上の透明導電膜(ITO、SnO、In、有機導電膜等の膜)がコーティングされている表面抵抗値が3~3000Ωの透明導電性樹脂基材を使用することができる。なお、透明樹脂基材の光透過率はJIS K7105の全光線透過率の測定法に準拠して測定することができる。また、透明樹脂基材としては、例えば、高分子フィルム等を使用することができる。
 上記高分子フィルムとしては、例えば、ポリエチレンテレフタレート等のポリエステル系フィルム、ポリプロピレン等のポリオレフィン系フィルム、ポリ塩化ビニル、アクリル樹脂系のフィルム、ポリエーテルサルフォンフィルム、ポリアリレートフィルム、ポリカーボネートフィルム等の樹脂フィルムが挙げられるが、ポリエチレンテレフタレートフィルムが、透明性に優れ、成形性、接着性、加工性等に優れるので好ましい。
 透明樹脂基材にコーティングされる透明導電膜の厚みは、10~5,000nmであることが好ましく、透明樹脂基材の厚みは特に制限はない。例えば、高分子フィルムの場合には10~200μmが好ましい。基材の間隔が狭く、異物質の混入等により発生する段落現象を防止するために、透明導電膜の上に数nm~1μm程度の厚さの透明絶縁層が形成されている透明樹脂導電性基材を使用してもよい。また、本発明の調光フィルムを反射型の調光窓に利用する場合(例えば、自動車用リアビューミラー等)は、反射体であるアルミニウム、金、又は銀のような導電性金属の薄膜を電極として直接用いてもよい。
<調光フィルム>
 本発明の調光フィルムは、調光材料を用いて形成することが可能であり、調光材料は、高分子媒体から形成された樹脂マトリックスと、樹脂マトリックス中に分散した光調整懸濁液とからなり、調光層を形成する。調光層は、調光層との密着性を向上させるためのプライマー層を有する2枚の透明導電性樹脂基材に挟持されているか、あるいはプライマー層を有する透明導電性樹脂基材とプライマー層を有さない透明導電性樹脂基材の2枚の透明導電性樹脂基材に挟持されている。
 調光フィルムを得るためには、まず、液状の光調整懸濁液を、高分子媒体と均質に混合し、光調整懸濁液が高分子媒体中に液滴状態で分散した混合液からなる調光材料を得る。
 具体的には、以下の通りである。光調整粒子を溶媒に分散した液と光調整懸濁液の分散媒を混合し、ロータリーエバポレーター等で溶媒を留去し、光調整懸濁液を作製する。
 次いで、光調整懸濁液及び高分子媒体を混合し、光調整懸濁液が高分子媒体中に液滴状態で分散した混合液(調光材料)とする。
 この調光材料を、プライマー層を有する透明導電性樹脂基材上に一定な厚さで塗布し、必要に応じて溶剤を乾燥除去した後、高圧水銀灯等を用いて紫外線を照射し高分子媒体を硬化させる。その結果、硬化高分子媒体からなる樹脂マトリックス中に、光調整懸濁液が液滴状に分散されている調光層ができ上がる。高分子媒体と光調整懸濁液との混合比率を様々に変えることにより、調光層の光透過率を調節することができる。このようにして形成された調光層の上にもう一方のプライマー層を有する透明導電性樹脂基材を密着させることにより、調光フィルムが得られる。あるいは、この調光材料を、プライマー層を有する透明導電性樹脂基材上に一定な厚さで塗布し、必要に応じて溶剤を乾燥除去した後、もう一方のプライマー層を有する透明導電性樹脂基材でラミネートした後に紫外線を照射し、高分子媒体を硬化させてもよい。プライマー層を有する透明導電性樹脂基材は、一方の透明導電性樹脂基材のみでもよい。2枚の透明導電性樹脂基材の両方の上に調光層を形成し、それを調光層同士が密着するようにして積層してもよい。調光層の厚みは、5~1,000μmが好ましく、20~100μmがより好ましい。
 樹脂マトリックス中に分散されている光調整懸濁液の液滴の大きさ(平均液滴径)は、通常0.5~100μm、好ましくは0.5~20μm、より好ましくは1~5μmである。液滴の大きさは、光調整懸濁液を構成している各成分の濃度、光調整懸濁液及び高分子媒体の粘度、光調整懸濁液中の分散媒の高分子媒体に対する相溶性等により決められる。平均液滴径は、例えば、SEMを用いて、調光フィルムの一方の面方向から写真等の画像を撮影し、任意に選択した複数の液滴直径を測定し、その平均値として算出することができる。また、調光フィルムの光学顕微鏡での視野画像をデジタルデータとしてコンピュータに取り込み、画像処理インテグレーションソフトウェアを使用し算出することも可能である。
 本発明における透明導電性樹脂基材のプライマー処理(プライマー層の形成)は、例えば、プライマー層を形成する材料を、バーコーター法、マイヤーバーコーター法、アプリケーター法、ドクターブレード法、ロールコーター法、ダイコーター法、コンマコーター法、グラビアコート法、マイクログラビアコート法、ロールブラッシュ法、スプレーコート法、エアーナイフコート法、含浸法、カーテンコート法等等を単独または組み合わせて用いて、透明導電性樹脂基材に塗布することにより行うことができる。なお、塗布する際は必要に応じて適当な溶剤で希釈し、プライマー層を形成する材料の溶液を用いてもよい。溶剤を用いた場合には、透明導電性樹脂基材上に塗布した後乾燥を要する。尚、プライマー層となる塗膜は必要に応じてフィルムの片面のみに形成してもよいし、両面に形成してもよい。
 プライマー層形成に用いる溶剤としては、プライマー層を形成する材料を溶解し、プライマー層形成後に乾燥等により除去できるものであればよく、メチルエチルケトン、アセトン、テトラヒドロフラン、トルエン、ヘプタン、シクロヘキサン、エチルアセテート、エタノール、メタノール、酢酸イソアミル、酢酸ヘキシル等を用いることができる。また、これらの混合溶媒でもよい。
 調光層となる調光材料の塗布には、例えば、バーコーター、アプリケーター、ドクターブレード、ロールコーター、ダイコーター、コンマコーター等の公知の塗工手段を用いることができる。調光材料を、透明導電性樹脂基材上に設けたプライマー層面に塗布し、あるいは、一方にプライマー層を有さない透明導電性樹脂基材を用いる場合には、透明導電性樹脂基材に直接塗布することもできる。なお、塗布する際は、必要に応じて、適当な溶剤で希釈してもよい。溶剤を用いた場合には、透明導電性樹脂基材上に塗布した後に乾燥を要する。
 調光材料の塗布に用いる溶剤としては、テトラヒドロフラン、トルエン、ヘプタン、シクロヘキサン、エチルアセテート、エタノール、メタノール、酢酸イソアミル、酢酸ヘキシル等を用いることができる。また、これらの混合溶媒でもよい。
 液状の光調整懸濁液が、固体樹脂マトリックス中に微細な液滴形態で分散されているフィルムを形成するためには、調光材料をホモジナイザー、超音波ホモジナイザー等で混合して高分子媒体中に光調整懸濁液を微細に分散させる方法、高分子媒体中の樹脂成分の重合による相分離法、溶媒揮発による相分離法、又は温度による相分離法等を利用することができる。
 上記の方法によれば、電場の形成により任意に光透過率が調節できる調光フィルムが提供される。この調光フィルムは、電場が形成されていない場合にも、光の散乱のない鮮明な着色状態を維持し、電場が形成されると透明な状態に転換される。この能力は、20万回以上の可逆的反復特性を示す。透明な状態においての光透過率増進と、着色された状態における鮮明度の増進のためには、液状の光調整懸濁液の屈折率と、樹脂マトリックスの屈折率を一致させることが好ましい。
 調光フィルムを作動させるための使用電源は交流で、10~100ボルト(実効値)、30Hz~500kHzの周波数範囲とすることができる。本発明の調光フィルムは、電界に対する応答時間を、消色時には1~50秒以内、着色時には1~100秒以内とすることができる。また、紫外線耐久性は、750W紫外線等を利用した紫外線照射試験の結果、250時間が経過した後にも安定な可変特性を示し、-50℃~90℃で長時間放置した場合にも、初期の可変特性を維持することが可能である。
 従来技術である液晶を使用した調光フィルムの製造における水を用いたエマルジョンによる方法を使用すると、液晶が水分と反応して光調整特性を失うことが多く、同一の特性のフィルムを製造しにくいという問題がある。
 本発明においては、液晶ではなく、光調整粒子が光調整懸濁液内に分散されている液状の光調整懸濁液を使用するため、液晶を利用した調光フィルムとは異なり、電界が印加されていない場合にも光が散乱せず、鮮明度が優れて視野角の制限のない着色状態を表す。そして、光調整粒子の含量、液滴形態や膜厚を調節したり、又は電界強度を調節したりすることにより、光可変度を任意に調節できる。
 また、本発明の調光フィルムは、液晶を用いないことから、紫外線露光による色調変化及び可変能力の低下、大型製品特有の透明導電性樹脂基材の周辺部と中央部間に生ずる電圧降下に伴う応答時間差も解消される。
 本発明による調光フィルムに電界が印加されていないときには、光調整懸濁液内の光調整粒子のブラウン運動のため、光調整粒子の光吸収、2色性効果による鮮明な着色状態を示す。しかし、電界が印加されると、液滴又は液滴連結体の中の光調整粒子が電場に平行に配列され、透明な状態に転換される。また、フィルム状態であるがため、液状の光調整懸濁液をそのまま使用する従来技術による調光硝子の問題点、即ち、2枚の透明導電性樹脂基材の間への液状の懸濁液の注入の困難性、製品の上下間の水圧差による下部の膨張現象、風圧等の外部環境による基材間隔の変化による局部的な色相変化、透明導電性基材の間の密封材の破壊による調光材料の漏洩が解決される。
 また、紫外線露光による色調変化及び可変能力の低下、大型製品特有の透明導電性樹脂基材の周辺部と中央部間に生ずる電圧降下に伴う応答時間差も解消される。また、液晶を利用した従来技術による調光窓の場合には、液晶が紫外線に容易に劣化し、またネマチック液晶の熱的特性によりその使用温度の範囲も狭い。更に、光学特性面においても、電界が印加されていない場合には光散乱による乳白色の半透明な状態を示し、電界が印加される場合にも、完全には鮮明化せず、乳濁状態が残存する問題点がある。従って、このような調光窓では、既存の液晶表示素子で動作原理として利用されている光の遮断及び透過による表示機能が不可能である。しかし、本発明による調光フィルムを使用すれば、このような問題点が解決できる。
 本発明の調光フィルムは、調光層と透明導電性樹脂基材との密着性が強く、製造過程あるいはフィルム製造後の加工過程等で調光層が透明導電性樹脂基材から剥がれるといった問題が生じることのない優れた調光フィルムである。
 本発明の調光フィルムは、例えば、室内外の仕切り(パーティッション)、建築物用の窓硝子/天窓、電子産業及び映像機器に使用される各種平面表示素子、各種計器板と既存の液晶表示素子の代替品、光シャッター、各種室内外広告及び案内標示板、航空機/鉄道車両/船舶用の窓硝子、自動車用の窓硝子/バックミラー/サンルーフ、眼鏡、サングラス、サンバイザー等の用途に好適に使用することができる。
 適用法としては、本発明の調光フィルムを直接使用することも可能であるが、用途によっては、例えば、本発明の調光フィルムを2枚の基材に挟持させて使用したり、基材の片面に貼り付けて使用したりしてもよい。前記基材としては、例えば、ガラスや、上記透明樹脂基材と同様の高分子フィルム等を使用することができる。
 本発明による調光フィルムの構造及び動作を図面により更に詳しく説明すると、下記の通りである。
 図1は、本発明の一態様の調光フィルムの構造概略図である。調光層1が、透明導電膜5aがコーティングされている2枚の透明樹脂基材5bからなる透明導電性樹脂基材4の間に挟まれている。調光層1と透明導電性樹脂基材4の間にはプライマー層6が設けられている。スイッチ8の切り換えにより、電源7と2枚の透明導電膜5の接続、非接続を行う。調光層1は、高分子媒体としての前記(A)エチレン性不飽和結合を有する置換基をもつ樹脂を紫外線硬化させたフィルム状の樹脂マトリックス2と、樹脂マトリックス2内に液滴3の形態で分散されている液状の光調整懸濁液からなる。
 図2は、図1に示した調光フィルムの作動を説明するための図面で、スイッチ8が切られ、電界が印加されていない場合を示す。この場合には、液状の光調整懸濁液の液滴3を構成している分散媒9の中に分散している光調整粒子10のブラウン運動により、入射光11は光調整粒子10に吸収、散乱又は反射され、透過できない。
 しかし、図3に示すように、スイッチ8を接続して電界を印加すると、光調整粒子10が印加された電界によって形成される電場と平行に配列するため、入射光11は配列した光調整粒子10間を通過するようになる。このようにして、散乱及び透明性の低下のない光透過機能が付与される。
 以下、本発明の実施例及びその比較例によって本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(光調整粒子の製造例)
 光調整粒子を製造するために、撹拌機及び冷却管を装着した500mlの四つ口フラスコに、ニトロセルロース1/4LIG(商品名、ベルジュラックNC社製)15質量%の酢酸イソアミル(試薬特級、和光純薬工業(株)製)希釈溶液87.54g、酢酸イソアミル44.96g、脱水CaI(化学用、和光純薬工業(株)製)4.5g、無水エタノール(有機合成用、和光純薬工業(株)製)2.0g、精製水(精製水、和光純薬工業(株)製)0.6gの溶液に、ヨウ素(JIS試薬特級、和光純薬工業(株)製)4.5gを溶解し、光調整粒子の基盤形成物質であるピラジン-2,5-ジカルボン酸2水和物(PolyCarbon Industries製)3gを添加した。45℃で3時間撹拌して反応を終了させた後、超音波分散機で2時間分散させた。このとき、混合液の色相は、茶色から暗紺色に変化した。
 次に、反応溶液から一定な大きさの光調整粒子を取り出すために、遠心分離機を用いて光調整粒子を分離した。反応溶液を750Gの速度で10分間遠心分離して沈殿物を取り除き、更に7390Gで2時間遠心分離して、浮遊物を取り除き、沈殿物粒子を回収した。この沈殿物粒子は、サブミクロン粒子アナライザ(N4MD、ベックマン・コールタ社製)で測定した平均粒径が0.36μmを有する針状結晶であった。この沈殿物粒子を光調整粒子とした。
(光調整懸濁液の製造例)
 前記の(光調整粒子の製造例)で得た光調整粒子45.5gを、光調整懸濁液の分散媒としてのアクリル酸ブチル(和光特級、和光純薬工業(株)製)/メタクリル酸2,2,2-トリフルオロエチル(工業用、共栄社化学(株)製)/アクリル酸2-ヒドロキシエチル(和光1級、和光純薬工業(株)製)共重合体(モノマーモル比:18/1.5/0.5、重量平均分子量:2,000、屈折率1.4719)50gに加え、撹拌機により30分間混合した。次いで酢酸イソアミルをロータリーエバポレーターを用いて133Paの真空で80℃、3時間減圧除去し、光調整粒子の沈降及び凝集現象のない安定な液状の光調整懸濁液を製造した。
(エネルギー線硬化型シリコーン系樹脂の製造例)
 ディーンスタークトラップ、冷却管、撹拌機、加熱装置を備えた四つ口フラスコに、両末端シラノールポリジメチルシロキサン(試薬、チッソ(株)製)17.8g、両末端シラノールポリジメチルジフェニルシロキサン(試薬、チッソ(株)製)62.2g、(3-アクリロキシプロピル)メチルジメトキシシラン(試薬、チッソ(株)製)20g、2-エチルヘキサン錫(和光純薬工業(株)製)0.1gを仕込み、ヘプタン中で100℃で3時間リフラックスし、反応を行った。
 次いで、トリメチルエトキシシラン(試薬、チッソ(株)製)25gを添加し、2時間リフラックスし、脱アルコール反応させ、ヘプタンをロータリーエバポレーターを用いて100Paの真空で80℃、4時間減圧除去し、重量平均分子量35000、屈折率1.4745のエネルギー線硬化型シリコーン系樹脂を得た。NMRの水素積分比からこの樹脂のエチレン性不飽和結合濃度は、0.31モル/kgであった。なお、エチレン性不飽和結合濃度は下記の方法により測定した。
[エチレン性不飽和結合濃度の測定方法]
 エチレン性不飽和結合濃度(モル/kg)は、NMRの水素積分比から算出した(エチレン性不飽和結合の水素の6ppm近傍の積分値、フェニル基の水素の7.5ppm近傍の積分値、及びメチル基の水素の0.1ppm近傍の積分値を使用)。測定溶媒はCDClとした。
 上記で製造した樹脂においては、NMRの水素積分比から算出した質量比率がメチル基:フェニル基:エチレン性不飽和結合基=11:6.4:1、全体の中のエチレン性不飽和結合基の割合は5.4%、各々の分子量から1分子あたりのエチレン性不飽和結合基の数は9.35、よって、1kgあたりのモル数は0.31モル/kgと算出した。
(実施例1)
 上記(エネルギー線硬化型シリコーン樹脂の製造例)で得たエネルギー線硬化型シリコーン系樹脂10g、光重合開始剤としてのビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド(チバ・スペシャルティ・ケミカルス(株)製)0.2g、着色防止剤としてのジブチル錫ジラウレート0.3gに、前記(光調整懸濁液の製造例)で得た光調整懸濁液2.5gを添加し、1分間機械的に混合し、調光材料を製造した。
 一方、ITO(インジウム錫の酸化物)の透明導電膜(厚み300Å)がコーティングされている、表面電気抵抗値が200~700Ωのポリエステルフィルム(テトライトTCF、尾池工業(株)製、厚み125μm)からなる透明導電性樹脂基材に、リン酸ジエステルとして下記の構造を有するPM-21(日本化薬(株))をメチルエチルケトンに0.3質量%となるように溶解した溶液を、マイヤーバーコーター法を用いて全面塗布し、70℃で1分間乾燥してプライマー層を形成した。
Figure JPOXMLDOC01-appb-C000011
 上記、プライマー層を形成した透明導電性樹脂基材の上に、上記で得られた調光材料を全面塗布した。次いでその上に、同様にプライマー層を形成した同じ透明導電性樹脂基材を、プライマー層用溶液の塗布面が調光材料の塗布層に向くようにして積層して密着させた。そして、メタルハライドランプを用いて3000mJ/cmの紫外線を、前記積層した透明導電性樹脂基材のポリエステルフィルム側から照射し、光調整懸濁液が球形の液滴として紫外線硬化した樹脂マトリックス内に分散形成されたフィルム状の厚み90μmの調光層が透明導電性樹脂基材に挟まれた厚み340μm調光フィルムを製造した。
 なお、形成されたプライマー層の厚さを、分光エリプソメーターM-2000D(ジェー・エー・ウーラム・ジャパン(株)製)を使用して測定したところ、2nmであった。
 次いで、この調光フィルムの端部から調光層を除去し、端部の透明導電膜を電圧印加用の通電をとるために露出させた(図4参照)。
 調光フィルム中の光調整懸濁液の液滴の大きさ(平均液滴径)は、平均3μmであった。調光フィルムの光透過率は、交流電圧を印加しない場合(未印加時)は1.1%であった。また、400Hzの交流電圧50V(実効値)の印加時の調光フィルムの光透過率は33%であり、電界印加時と電界未印加時の光透過率の比が30と大きく、良好であった。
 目視により調光フィルム端部(調光層が除去され透明導電膜が露出した部分)を観察したところ、調光フィルムの厚み方向中心部へ向かっての透明導電性樹脂基材の曲がりこみは、きわめて小さかった(図4)。なお、調光フィルム中の光調整懸濁液の液滴の大きさ、調光フィルムの光透過率、調光層と透明導電性樹脂基材との接着強度、剥離モード、転写性、タック性の評価は下記のように測定した。
[光調整懸濁液の液滴の大きさの測定方法]
 調光フィルムの一方の面方向からSEM写真を撮影し、任意に選択した複数の液滴直径を測定し、その平均値として算出した。
[調光フィルムの光透過率の測定方法]
 分光式色差計SZ-Σ90(日本電色工業(株)製)を使用し、A光源、視野角2度で測定したY値(%)を光透過率とした。なお、電界印加時と未印加時の光透過率を測定した。
[調光層の接着強度の測定方法]
 接着強度の測定はレオメーター、STROGRAPH E-S(東洋精機(株))を使用し、90°ピール、ロード加重50N、引き上げスピード50mm/minで測定した。
[剥離モードの評価方法]
 上記接着強度の測定後に得られた、透明導電性樹脂基材を引き剥がした調光フィルムにおいて、調光フィルムからの透明導電性樹脂基材の剥離の仕方を下記のように評価基準を設け評価した。2枚の透明導電性樹脂基材の両方に調光層が残っていて、引きはがし時に調光層内部で破壊が起きている場合を凝集破壊とし、また、片方の透明導電性樹脂基材のみに調光層が残っていて、引きはがし時に調光層自体は破壊されない(基材のみが剥がれる)場合を界面剥離とした。
[転写性の評価方法]
 プライマー層とITO/PETのPET面を重ね合わせて約1kgの重りを乗せた状態で1週間保管し、プライマー層がITO/PETのPET面に転写しているか目視で確認した。転写の割合がプライマー塗工面積全体の5%以下の場合を○、5~30%を△、30%以上を×とした。
[タック性の評価方法]
 プライマー層作製済みITO/PET(実施例1で作製された、調光層を形成する前の、プライマー層が形成された透明導電性樹脂基材)におけるタック性の評価は下記のようにして行った。
 まず、プライマー層作製済みITO/PET(実施例1で作製された、調光層を形成する前の、プライマー層が形成された透明導電性樹脂基材)に調光材料を塗工する。
 調光フィルムをロール・トゥ・ロールで作製する際、既に調光材料が塗工されている上記基材に、プライマー層作製済みITO/PET(実施例1で作製された、調光層を形成する前の、プライマー層が形成された透明導電性樹脂基材)をラミネートする。このとき、両者が正確に重なるように、塗工方向と垂直方向にプライマー層作製済みITO/PETの位置を微調整する必要がある。プライマー層作製済みITO/PETのプライマー層がテンションを掛けるための金属ロールに接した状態で容易に位置合わせ可能な場合を○、容易ではないが可能な場合を△、位置合わせ困難な場合を×とした。
(実施例2)
 プライマー層を形成する際の溶液を、リン酸ジエステルとしてPM-21(日本化薬(株))を用いたメチルエチルケトン溶液0.5、1.0、5.0、及び10質量%に変えたことを除いては、実施例1と同様にして、調光フィルムを作製し各種の測定を行った。形成されたプライマー層の厚さは、それぞれ、3nm(0.5質量%)、22nm(1.0質量%)、89nm(5.0質量%)、162nm(10質量%)であった。
(実施例3)
 プライマー層を形成する際の溶液を、リン酸ジエステルとして下記の構造を有するP-2M(共栄社化学(株))を用いたメチルエチルケトン溶液0.3質量%に変えたことを除いては、実施例1と同様にして、調光フィルムを作製し各種の測定を行った。形成されたプライマー層の厚さを、分光エリプソメーターM-2000D(ジェー・エー・ウーラム・ジャパン(株)製)を使用して測定したところ、3nmであった。
Figure JPOXMLDOC01-appb-C000012
(実施例4)
 プライマー層を形成する際の溶液を、リン酸ジエステルとしてP-2M(共栄社化学(株))を用いたメチルエチルケトン溶液0.5、1.0、5.0、及び10質量%に変えたことを除いては、実施例1と同様にして、調光フィルムを作製し各種の測定を行った。形成されたプライマー層の厚さは、それぞれ、3nm(0.5質量%)、27nm(1.0質量%)、92nm(5.0質量%)、171nm(10質量%)であった。
(実施例5)
 プライマー層を形成する際の溶液を、リン酸モノエステルとして、下記の構造を有するホスマーPP(ユニケミカル(株))を用いたメチルエチルケトン溶液1.0質量%に変えたことを除いては、実施例1と同様にして、調光フィルムを作製し各種の測定を行った。形成されたプライマー層の厚さは、25nmであった。
Figure JPOXMLDOC01-appb-C000013
(実施例6)
 プライマー層を形成する際の溶液を、リン酸モノエステルとして、ホスマーPP(ユニケミカル(株))を用いたメチルエチルケトン溶液5.0質量%に変えたことを除いては、実施例1と同様にして、調光フィルムを作製し各種の測定を行った。形成されたプライマー層の厚さは、84nmであった。
(実施例7)
 プライマー層を形成する際の溶液を、リン酸モノエステルとして、下記の構造を有するホスマーPE(ユニケミカル(株))を用いたメチルエチルケトン溶液1.0質量%に変えたことを除いては、実施例1と同様にして、調光フィルムを作製し各種の測定を行った。形成されたプライマー層の厚さは、24nmであった。
Figure JPOXMLDOC01-appb-C000014
(実施例8)
 プライマー層を形成する際の溶液を、リン酸モノエステルとして、ホスマーPE(ユニケミカル(株))を用いたメチルエチルケトン溶液5.0質量%に変えたことを除いては、実施例1と同様にして、調光フィルムを作製し各種の測定を行った。形成されたプライマー層の厚さは、87nmであった。
(実施例9)
 プライマー層を形成する際の溶液を、リン酸モノエステルとして、ホスマーM(ユニケミカル(株))を用いたメチルエチルケトン溶液1.0質量%に変えたことを除いては、実施例1と同様にして、調光フィルムを作製し各種の測定を行った。形成されたプライマー層の厚さは、23nmであった。
Figure JPOXMLDOC01-appb-C000015
(実施例10)
 プライマー層を形成する際の溶液を、リン酸モノエステルとして、ホスマーM(ユニケミカル(株))を用いたメチルエチルケトン溶液5.0質量%に変えたことを除いては、実施例1と同様にして、調光フィルムを作製し各種の測定を行った。形成されたプライマー層の厚さは、101nmであった。
(実施例11)
 プライマー層を形成する際の溶液を、リン酸変性エポキシアクリレート(リン酸がエステル結合したエポキシアクリレート)として、RDX63182(ダイセル・ユーシービー(株))を用いたメチルエチルケトン溶液1.0質量%に変えたことを除いては、実施例1と同様にして、調光フィルムを作製し各種の測定を行った。形成されたプライマー層の厚さは、31nmであった。
(実施例12)
 プライマー層を形成する際の溶液を、リン酸変性エポキシアクリレート(リン酸がエステル結合したエポキシアクリレート)として、RDX63182(ダイセル・ユーシービー(株))を用いたメチルエチルケトン溶液5.0質量%に変えたことを除いては、実施例1と同様にして、調光フィルムを作製し各種の測定を行った。形成されたプライマー層の厚さは、107nmであった。
(実施例13)
 プライマー層を形成する際の溶液を、アミノ基含有シランカップリング剤として、下記の構造を有するKBM-603(信越シリコーン(株))を用いたエタノール溶液3.0質量%に変えたことを除いては、実施例1と同様にして、調光フィルムを作製し各種の測定を行った。形成されたプライマー層の厚さは、68nmであった。
Figure JPOXMLDOC01-appb-C000016
(実施例14)
 プライマー層を形成する際の溶液を、アミノ基含有シランカップリング剤として、KBM-603(信越シリコーン(株))を用いたエタノール溶液5.0質量%に変えたことを除いては、実施例1と同様にして、調光フィルムを作製し各種の測定を行った。形成されたプライマー層の厚さは、102nmであった。
(実施例15)
 プライマー層を形成する際の溶液を、アミノ基含有シランカップリング剤として、KBM-603(信越シリコーン(株))を用いたエタノール溶液10質量%に変えたことを除いては、実施例1と同様にして、調光フィルムを作製し各種の測定を行った。形成されたプライマー層の厚さは、188nmであった。
(比較例1)
 ITOの透明導電膜がコーティングされているポリエステルフィルム(商品名:テトライトTCF、尾池工業(株)製、厚み125μm)からなる透明導電性樹脂基材に、プライマー層を設けず、そのまま使用したことを除いては、実施例1と同様にして、調光フィルムを作製し各種の測定を行った。
(比較例2)
 プライマー層を形成する際の溶液を、下記式で表されるエポキシ基含有シランカップリング剤KBM-403(信越シリコーン(株))を用いたエタノール溶液1質量%に変えたことを除いては、実施例1と同様にして、調光フィルムを作製し各種の測定を行った。形成されたプライマー層の厚さは、33nmであった。
(比較例3)
 プライマー層を形成する際の溶液を、下記式で表されるメタクリロイル基含有シランカップリング剤KBM-503(信越シリコーン(株))を用いたエタノール溶液1.0質量%、エタノール溶液5.0質量%、エタノール溶液10質量%に変えたことを除いては、実施例1と同様にして、調光フィルムを作製し各種の測定を行った。形成されたプライマー層の厚さは、30nm(1.0質量%)、98nm(5.0質量%)、185nm(10質量%)であった。
(比較例4)
 プライマー層を形成する際の溶液を、下記式で表されるメルカプト基含有シランカップリング剤KBM-803(信越シリコーン(株))を用いたエタノール溶液1.0質量%、エタノール溶液5.0質量%、エタノール溶液10質量%に変えたことを除いては、実施例1と同様にして、調光フィルムを作製し各種の測定を行った。形成されたプライマー層の厚さは、それぞれ34nm(1.0質量%)、99nm(5.0質量%)、190nm(10質量%)であった。
Figure JPOXMLDOC01-appb-C000017
(比較例5~8)
 プライマー層を形成する際の溶液を、下記式で表されるポリビニルアセタール樹脂(エスレックBシリーズ(BL-1、BL-1H、BL-S):ポリビニルブチラール樹脂、エスレックKシリーズ(KS-10):特殊ポリビニルアセタール樹脂)を用い、積水化学工業(株))のエタノール/トルエン混合溶液(エタノール:トルエン=4:6)の10質量%に変えたことを除いては、実施例1と同様にして、調光フィルムを作製し各種の測定を行った。形成されたプライマー層の厚さは、それぞれ203nm(エスレックBL-1)、211nm(エスレックBL-1H)、228nm(エスレックBL-S)、208nm(エスレックKS-10)であった。
Figure JPOXMLDOC01-appb-C000018
(比較例9)
 ディーンスターク還流冷却器、温度計、撹拌器を備えた1000mLのセパラブルフラスコを用意した。フラスコ内にジアミン化合物としてポリオキシプロピレンジアミン15.0mmol及び2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン105.0mmol、非プロトン性極性溶媒としてN-メチル-2-ピロリドン(NMP)287gを加え、室温で30分間撹拌した。
 次いで、水と共沸可能な芳香族炭化水素系有機溶剤としてトルエン180g、テトラカルボン酸二無水物として4,4’-ヘキサフルオロプロピリデンビスフタル酸二無水物114.0mmolを加え、50℃まで昇温して、その温度で1時間撹拌した後、さらに160℃まで昇温して3時間還流させた。水分定量受器に理論量の水がたまり、水の流出が見られなくなっていることを確認した後、水分定量受器中の水とトルエンを除去し、180℃まで昇温して反応溶液中のトルエンを除去し、下記式で表されるポリイミド樹脂のNMP溶液を得た。
 上記ポリイミド樹脂のNMP溶液をメタノール中に投入し、析出物を回収後、粉砕、乾燥してポリイミド樹脂を得た。得られたポリイミド樹脂の重量平均分子量は112000であった。
Figure JPOXMLDOC01-appb-C000019
 プライマー層を形成する際の溶液を、上記ポリイミド樹脂のメチルエチルケトン溶液5.0質量%に変えたことを除いては、実施例1と同様にして、調光フィルムを作製し各種の測定を行った。形成されたプライマー層の厚さは、それぞれ121nmであった。
(比較例10)
 プライマー層を形成する際の溶液を、脂肪酸変性エポキシアクリレートとしてのEB3702(ダイセル・ユーシービー(株))を用いたメチルエチルケトン溶液5.0質量%に変えたことを除いては、実施例1と同様にして、調光フィルムを作製し各種の測定を行った。形成されたプライマー層の厚さは、それぞれ106nmであった。
 これらの結果を表1~3に示す。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
 表1~3に示すとおり、印加時及び未印加時の光透過率には、比較例1と実施例で殆ど差がなかった。一方、接着強度は、プライマー層無しの比較例1、本発明におけるプライマー層以外のプライマー層を設けた比較例2~10共に、接着強度が著しく小さく、剥離も基材と調光層の界面で生じていた。これに対し、実施例はどの場合も、特定のリン酸エステル又は特定のシランカップリング剤を用いることによって、接着強度が大幅に向上し、剥離も凝集破壊モードで生じており、調光特性を保持したまま密着性を大幅に向上できた。
(実施例16)
 プライマー層を次の手順で作製した。重合性モノマーとして、UV硬化型ハードコート材:サンラッドRC-610R(三洋化成工業(株)製)と、リン酸モノエステルとしてP-1M(共栄社化学(株)製)との混合物を、メチルエチルケトン/シクロヘキサノン=1:1の混合溶媒に溶解させたものをマイヤーバーコーター法を用いて線径0.10mmで全面塗布した。なお、サンラッドRC-610Rには、光重合開始剤として1-ヒドロキシ-シクロヘキシル-フェニル-ケトンが含有されている。
 次いで50℃/30s、60℃/30s、70℃/1min乾燥後、メタルハライドランプ(照度:約250mW/cm、照射量:約1000mJ/cm)を用いて硬化させて、プライマー層を作製した。この時、サンラッドRC-610Rは3質量%、P-1Mは0.3質量%とした。その後、実施例1と同様にして、調光フィルムを作製し各種の測定を行った。形成されたプライマー層の厚さは、65nmであった。
(実施例17)
 活性エネルギー線重合性モノマーとしてのサンラッドRC-610Rの配合比率を1質量%とし、リン酸モノエステルとしてのP-1Mの配合比率を0.1質量%として、マイクログラビア法(メッシュ#150)を用いたことを除いては実施例16と同様にしてプライマー層を作成し、その後実施例1と同様にして、調光フィルムを作製し各種の測定を行った。形成されたプライマー層の厚さは、10nmであった。
(実施例18)
 活性エネルギー線重合性モノマーとしてのサンラッドRC-610Rの配合比率を0.5質量%とし、リン酸モノエステルとしてのP-1Mの配合比率を0.05質量%としたことを除いては実施例16と同様にしてプライマー層を作成し、その後実施例1と同様にして、調光フィルムを作製し各種の測定を行った。形成されたプライマー層の厚さは、3nmであった。
(実施例19)
 プライマー層を形成する際の溶液を、リン酸変性エステルとしてP-1M(共栄社化学(株))を用いた0.3質量%溶液に変えたことを除いては、実施例1と同様にして、調光フィルムを作製し各種の測定を行った。形成されたプライマー層の厚さは、2nmであった。
(実施例20)
 プライマー層を形成する際の溶液を、リン酸変性エステルとしてP-1M(共栄社化学(株))を用いた0.1質量%溶液に変えたことを除いては、実施例1と同様にして、調光フィルムを作製し各種の測定を行った。形成されたプライマー層の厚さは、1nmであった。
(実施例21)
 プライマー層を形成する際の溶液を、リン酸変性エステルとしてP-1M(共栄社化学(株))を用いた0.05質量%溶液に変えたことを除いては、実施例1と同様にして、調光フィルムを作製し各種の測定を行った。形成されたプライマー層の厚さは、0.7nmであった。
(比較例11)
 プライマー層を形成する際の溶液を、重合性モノマーとしてサンラッドRC-610R(三洋化成工業(株)製)を用いた3質量%溶液に変えたことを除いては、実施例1と同様にして、調光フィルムを作製し各種の測定を行った。形成されたプライマー層の厚さは、60nmであった。
(比較例12)
 プライマー層を形成する際の溶液を、重合性モノマーとしてサンラッドRC-610R(三洋化成工業(株)製)を用いた1質量%溶液に変えたことを除いては、実施例1と同様にして、調光フィルムを作製し各種の測定を行った。形成されたプライマー層の厚さは、12nmであった。
(比較例13)
 プライマー層を形成する際の溶液を、重合性モノマーとしてサンラッドRC-610R(三洋化成工業(株)製)を用いた0.5質量%溶液に変えたことを除いては、実施例1と同様にして、調光フィルムを作製し各種の測定を行った。形成されたプライマー層の厚さは、4nmであった。
Figure JPOXMLDOC01-appb-T000023
 本発明の調光フィルムは、調光層と透明導電性樹脂基材との密着性が高く、安定した調光機能を発揮することができる。

Claims (10)

  1.  2つの透明導電性樹脂基材と、前記2つの透明導電性樹脂基材に挟持された調光層を有し、前記調光層が、樹脂マトリックスと前記樹脂マトリックス中に分散した光調整懸濁液とを含む調光フィルムであって、前記透明導電性樹脂基材の少なくとも一方の前記調光層側にプライマー層を有し、該プライマー層が、分子内に1つ以上の重合性基を有するリン酸エステルを用いて形成された調光フィルム。
  2.  前記プライマー層が、分子内に1つ以上の重合性基を有するリン酸モノエステルまたはリン酸ジエステルを用いて形成された請求項1記載の調光フィルム。
  3.  前記重合性基が、(メタ)アクリロイルオキシ基である請求項1又は2記載の調光フィルム。
  4.  前記プライマー層が、分子内に1つ以上の重合性基を有するリン酸エステル含有溶液を用いて形成され、前記溶液中の分子内に1つ以上の重合性基を有するリン酸エステルの濃度が0.05~20質量%である請求項1~3いずれかに記載の調光フィルム。
  5.  前記プライマー層が、さらに、重合性モノマーあるいはオリゴマーを併用して形成された請求項1~4いずれかに記載の調光フィルム。
  6.  前記活性エネルギー線重合性モノマーあるいはオリゴマーが、アクリレートからなる請求項5記載の調光フィルム。
  7.  前記重合性モノマーあるいはオリゴマーが、熱あるいは光により硬化される請求項5又は6記載の調光フィルム。
  8.  2つの透明導電性樹脂基材と、前記2つの透明導電性樹脂基材に挟持された調光層を有し、前記調光層が、樹脂マトリックスと前記樹脂マトリックス中に分散した光調整懸濁液とを含む調光フィルムであって、前記透明導電性樹脂基材の少なくとも一方の前記調光層側にプライマー層を有し、該プライマー層が、アミノ基を有するシランカップリング剤を用いて形成された調光フィルム。
  9.  前記プライマー層が、アミノ基を有するシランカップリング剤含有溶液を用いて形成され、前記溶液中のアミノ基を有するシランカップリング剤の濃度が1~15質量%である請求項8記載の調光フィルム。
  10.  前記プライマー層の膜厚が1μm以下である請求項1~9のいずれか記載の調光フィルム。
PCT/JP2009/050977 2008-01-23 2009-01-22 調光フィルム WO2009093657A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09704769.0A EP2239601B1 (en) 2008-01-23 2009-01-22 Light control film comprising a primer layer formed by using a phosphoric ester
JP2009550554A JP5321470B2 (ja) 2008-01-23 2009-01-22 調光フィルム
US12/864,062 US8154791B2 (en) 2008-01-23 2009-01-22 Light control film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-012932 2008-01-23
JP2008012932 2008-01-23

Publications (1)

Publication Number Publication Date
WO2009093657A1 true WO2009093657A1 (ja) 2009-07-30

Family

ID=40901162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050977 WO2009093657A1 (ja) 2008-01-23 2009-01-22 調光フィルム

Country Status (4)

Country Link
US (1) US8154791B2 (ja)
EP (1) EP2239601B1 (ja)
JP (2) JP5321470B2 (ja)
WO (1) WO2009093657A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2322986A1 (en) * 2008-08-19 2011-05-18 Hitachi Chemical Company, Ltd. Light-modulating film
JP2013242443A (ja) * 2012-05-21 2013-12-05 Hitachi Chemical Co Ltd 導電材付き調光フィルム、及び導電材付き調光フィルムの製造方法
WO2014185435A1 (ja) * 2013-05-15 2014-11-20 ラサ工業株式会社 絶縁材料用組成物
JP5704076B2 (ja) * 2010-01-26 2015-04-22 日立化成株式会社 (メタ)アクリロイル基含有ポリシロキサン樹脂の製造方法及び該方法により得られた(メタ)アクリロイル基含有ポリシロキサン樹脂を用いた調光フィルム
US9983456B2 (en) 2008-08-19 2018-05-29 Hitachi Chemical Company, Ltd. Light control film
US10175551B2 (en) 2009-02-13 2019-01-08 Hitachi Chemical Company, Ltd. Light control film
US10288976B2 (en) 2009-02-13 2019-05-14 Hitachi Chemical Company, Ltd. Light control film

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2530517B1 (en) * 2010-01-26 2019-02-27 Hitachi Chemical Company, Ltd. Light-diffusing film
JP5423603B2 (ja) 2010-07-26 2014-02-19 日立化成株式会社 懸濁粒子装置及びその駆動方法
JP2012137575A (ja) 2010-12-27 2012-07-19 Hitachi Chem Co Ltd 懸濁粒子装置,懸濁粒子装置を用いた調光装置及びそれらの駆動方法
JP5556762B2 (ja) * 2011-08-01 2014-07-23 日立化成株式会社 懸濁粒子装置,懸濁粒子装置を用いた調光装置及びそれらの駆動方法
CA2914930C (en) 2013-06-12 2018-01-09 The Procter & Gamble Company A nonlinear line of weakness formed by a perforating apparatus
US10814513B2 (en) 2013-06-12 2020-10-27 The Procter & Gamble Company Perforating apparatus for manufacturing a nonlinear line of weakness
MX2015017166A (es) 2013-06-12 2016-04-06 Procter & Gamble El metodo para perforar una linea de rasgadura no lineal.
WO2016148899A1 (en) 2015-03-17 2016-09-22 The Procter & Gamble Company Apparatus for perforating a web material
WO2016148894A1 (en) 2015-03-17 2016-09-22 The Procter & Gamble Company Method for perforating a nonlinear line of weakness
WO2016148900A1 (en) 2015-03-17 2016-09-22 The Procter & Gamble Company Apparatus for perforating a nonlinear line of weakness
US11806890B2 (en) 2017-09-11 2023-11-07 The Procter & Gamble Company Perforating apparatus and method for manufacturing a shaped line of weakness
US11806889B2 (en) 2017-09-11 2023-11-07 The Procter & Gamble Company Perforating apparatus and method for manufacturing a shaped line of weakness
CA3072259C (en) 2017-09-11 2022-11-29 The Procter & Gamble Company Sanitary tissue product with a shaped line of weakness

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH049822A (ja) * 1990-04-27 1992-01-14 Japan Steel Works Ltd:The 光学素子
JPH04335326A (ja) * 1991-05-10 1992-11-24 Nippon Sheet Glass Co Ltd 調光装置
JP2001004986A (ja) * 1999-06-22 2001-01-12 Optrex Corp 液晶光学素子およびその製造方法
JP2004264693A (ja) * 2003-03-03 2004-09-24 Sony Corp エレクトロデポジション型表示装置、並びに、エレクトロデポジション型表示パネルおよびその製造方法
JP2006512613A (ja) * 2002-12-27 2006-04-13 リサーチ フロンティアーズ インコーポレイテッド 不等大形状炭素及び/又はグラファイト粒子、その液体懸濁液及びフィルム、並びにこれらを含む光弁

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2041138A (en) * 1930-03-10 1936-05-19 Sheet Polarizer Company Inc Process of forming improved light polarizing bodies
US1955923A (en) * 1932-08-11 1934-04-24 Land Edwin Herbert Light valve and method of operation
GB433455A (en) 1933-01-16 1935-08-15 Edwin Herbert Land Improvements in and relating to polarizing bodies
US1963496A (en) * 1933-01-16 1934-06-19 Edwin H Land Light valve
US2306108A (en) * 1939-05-04 1942-12-22 Polaroid Corp Method of manufacturing light polarizing material
US2375963A (en) * 1943-05-07 1945-05-15 Polaroid Corp Process of manufacturing lightpolarizing material
US3912365A (en) * 1971-07-26 1975-10-14 Research Frontiers Inc Method and apparatus for maintaining the separation of plates
US3756700A (en) * 1972-02-09 1973-09-04 Research Frontiers Inc Method and apparatus for increasing optical density ratios of light valves
US4078856A (en) * 1976-03-17 1978-03-14 Research Frontiers Incorporated Light valve
US4422963A (en) * 1977-05-11 1983-12-27 Research Frontiers Incorporated Light valve polarizing materials and suspensions thereof
US4273422A (en) * 1978-08-10 1981-06-16 Research Frontiers Incorporated Light valve containing liquid suspension including polymer stabilizing system
US4270841A (en) * 1978-10-31 1981-06-02 Research Frontiers Incorporated Light valve containing suspension of perhalide of alkaloid acid salt
US4247175A (en) * 1978-10-31 1981-01-27 Research Frontiers Incorporated Light valve containing improved light valve suspension
US4407565A (en) * 1981-01-16 1983-10-04 Research Frontiers Incorporated Light valve suspension containing fluorocarbon liquid
JP2727088B2 (ja) * 1988-09-19 1998-03-11 株式会社豊田中央研究所 エレクトロクロミック電極およびその製造方法
AU4703999A (en) * 1998-06-22 2000-01-10 E-Ink Corporation Means of addressing microencapsulated display media
US6529312B1 (en) 1999-06-07 2003-03-04 Research Frontiers Incorporated Anisometrically shaped carbon and/or graphite particles, liquid suspensions and films thereof and light valves comprising same
JP2002040490A (ja) * 2000-07-25 2002-02-06 Fuji Xerox Co Ltd 光学素子、光学素子用組成物、刺激応答性高分子ゲルの制御方法
JP2002189123A (ja) * 2000-12-19 2002-07-05 Hitachi Chem Co Ltd 調光材料、調光フィルム及び調光フィルムの製造方法
US6982178B2 (en) * 2002-06-10 2006-01-03 E Ink Corporation Components and methods for use in electro-optic displays
US7551346B2 (en) * 2003-11-05 2009-06-23 E Ink Corporation Electro-optic displays, and materials for use therein
TWI445785B (zh) * 2005-01-26 2014-07-21 Nitto Denko Corp 黏著型光學薄膜
US8712474B2 (en) * 2007-04-20 2014-04-29 Telefonaktiebolaget L M Ericsson (Publ) Secure soft SIM credential transfer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH049822A (ja) * 1990-04-27 1992-01-14 Japan Steel Works Ltd:The 光学素子
JPH04335326A (ja) * 1991-05-10 1992-11-24 Nippon Sheet Glass Co Ltd 調光装置
JP2001004986A (ja) * 1999-06-22 2001-01-12 Optrex Corp 液晶光学素子およびその製造方法
JP2006512613A (ja) * 2002-12-27 2006-04-13 リサーチ フロンティアーズ インコーポレイテッド 不等大形状炭素及び/又はグラファイト粒子、その液体懸濁液及びフィルム、並びにこれらを含む光弁
JP2004264693A (ja) * 2003-03-03 2004-09-24 Sony Corp エレクトロデポジション型表示装置、並びに、エレクトロデポジション型表示パネルおよびその製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2322986A1 (en) * 2008-08-19 2011-05-18 Hitachi Chemical Company, Ltd. Light-modulating film
EP2322986A4 (en) * 2008-08-19 2012-01-25 Hitachi Chemical Co Ltd LIGHT MODULATING MOVIE
AU2009283544B2 (en) * 2008-08-19 2013-01-31 Resonac Corporation Light-modulating film
US9983456B2 (en) 2008-08-19 2018-05-29 Hitachi Chemical Company, Ltd. Light control film
US10156767B2 (en) 2008-08-19 2018-12-18 Hitachi Chemical Company, Ltd. Light control film
US10175551B2 (en) 2009-02-13 2019-01-08 Hitachi Chemical Company, Ltd. Light control film
US10288976B2 (en) 2009-02-13 2019-05-14 Hitachi Chemical Company, Ltd. Light control film
JP5704076B2 (ja) * 2010-01-26 2015-04-22 日立化成株式会社 (メタ)アクリロイル基含有ポリシロキサン樹脂の製造方法及び該方法により得られた(メタ)アクリロイル基含有ポリシロキサン樹脂を用いた調光フィルム
JP2013242443A (ja) * 2012-05-21 2013-12-05 Hitachi Chemical Co Ltd 導電材付き調光フィルム、及び導電材付き調光フィルムの製造方法
WO2014185435A1 (ja) * 2013-05-15 2014-11-20 ラサ工業株式会社 絶縁材料用組成物
JP6055914B2 (ja) * 2013-05-15 2016-12-27 ラサ工業株式会社 絶縁材料用組成物

Also Published As

Publication number Publication date
EP2239601A4 (en) 2015-07-22
EP2239601A1 (en) 2010-10-13
EP2239601B1 (en) 2017-11-08
JP2013242586A (ja) 2013-12-05
JP5768843B2 (ja) 2015-08-26
JP5321470B2 (ja) 2013-10-23
US8154791B2 (en) 2012-04-10
US20100309544A1 (en) 2010-12-09
JPWO2009093657A1 (ja) 2011-05-26

Similar Documents

Publication Publication Date Title
JP5768843B2 (ja) 調光フィルム
JP6164271B2 (ja) 調光フィルム
JP5104954B2 (ja) 調光フィルム
JP5233676B2 (ja) 調光フィルム及び調光ガラス
JP2013210670A (ja) 調光フィルム及び調光ガラス
JP5600874B2 (ja) 調光フィルム
JP5152334B2 (ja) 調光フィルム
JP5110157B2 (ja) 調光フィルムの製造方法及び調光フィルム
JP2015038620A (ja) 調光フィルム
JP2012037558A (ja) 調光性構造体
JP2008158040A (ja) 調光材料、それを用いた調光フィルム及びその製造方法
JP2019139110A (ja) 調光素子
JP5849496B2 (ja) 調光フィルム
JP5477226B2 (ja) 調光フィルム
JP5477224B2 (ja) 調光フィルム
JP5477225B2 (ja) 調光フィルム
JP2012032715A (ja) 調光性構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09704769

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009550554

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12864062

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2009704769

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009704769

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE