WO2009090929A1 - 脱水装置 - Google Patents

脱水装置 Download PDF

Info

Publication number
WO2009090929A1
WO2009090929A1 PCT/JP2009/050273 JP2009050273W WO2009090929A1 WO 2009090929 A1 WO2009090929 A1 WO 2009090929A1 JP 2009050273 W JP2009050273 W JP 2009050273W WO 2009090929 A1 WO2009090929 A1 WO 2009090929A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
separation membrane
water separation
condenser
gas phase
Prior art date
Application number
PCT/JP2009/050273
Other languages
English (en)
French (fr)
Inventor
Atsuhiro Yukumoto
Hiroyuki Osora
Yoshio Seiki
Haruaki Hirayama
Yukio Tanaka
Hideo Kashiwagi
Takefumi Inoue
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to BRPI0905074-4A priority Critical patent/BRPI0905074A2/pt
Priority to US12/678,673 priority patent/US8496806B2/en
Priority to CA2699729A priority patent/CA2699729C/en
Priority to EP09702932A priority patent/EP2230003A4/en
Publication of WO2009090929A1 publication Critical patent/WO2009090929A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/362Pervaporation
    • B01D61/3621Pervaporation comprising multiple pervaporation steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/24Specific pressurizing or depressurizing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/022Reject series

Definitions

  • the present invention relates to a dehydration apparatus using a water separation membrane.
  • the dehydrator according to the present invention is suitable for water separation from an aqueous organic solution. More specifically, the present invention relates to a dehydrating apparatus for dehydrating a mixture (liquid to be treated) of ethanol or propanol having an azeotropic composition with water and water.
  • Ethanol is attracting attention as a fuel source to replace petroleum fuel, and its market size is predicted to be 55 million kiloliters in 2010.
  • a crude product obtained from a bio raw material such as corn must be purified by distillation and dehydrated to at least 99.5 wt% or more.
  • an ethanol aqueous solution is concentrated in a distillation column to be concentrated to near the azeotropic point of an ethanol / water system and then dehydrated.
  • a dehydration method using a water separation membrane as a dehydration method for an azeotropic or near ethanol aqueous solution. That is, a water separation membrane unit is configured using a water separation membrane, a liquid to be treated such as an ethanol aqueous solution is flowed into the water separation membrane unit, and a dehydration method for sucking moisture through the water separation membrane is being developed. Yes.
  • a dehydration method employing a water separation membrane the one according to Patent Document 1 is known.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a dehydrating apparatus that can maintain the suction efficiency of the suction means at a desired level and does not require an excessively large apparatus configuration and can be manufactured at low cost.
  • a dehydrating apparatus is a dehydrating apparatus that separates water from a liquid to be treated, and includes at least two water separation membranes in series with respect to the flow direction of the liquid to be treated.
  • a water separation membrane unit on the upstream side of the water separation membrane unit is connected to a suction means for sucking a gas phase containing moisture through one condenser, and The water vapor is separated by separating the moisture, and the gas phase sucked by the suction means from the one condenser is sent to at least one downstream condenser installed downstream of the one condenser, The water in the gas phase is condensed by the downstream condenser to separate the water, and the water separation membrane unit on the downstream side of the water separation membrane unit is connected to the steam ejector, and in the gas phase through the steam ejector Water in a condenser to condense water So that the separation of the moisture to condense the.
  • the dehydrating apparatus is, in its preferred form, a concentration meter that measures the concentration of the liquid to be treated in real time at the outlet of the upstream water separation membrane unit, and detection of the concentration from the concentration meter. And a membrane outlet concentration controller for controlling the suction capability of the suction means based on the value.
  • the dehydrating apparatus is, in its preferred form, a concentration meter that measures the concentration of the liquid to be treated in real time at the outlet of the downstream water separation membrane unit, and detection of the concentration from the concentration meter. And a membrane outlet concentration controller for controlling the steam amount of the steam ejector based on the value.
  • the dehydrating apparatus is a preferred embodiment, and the liquid to be treated is an aqueous ethanol solution.
  • the dehydrating apparatus is, in its preferred form, a gas phase that has passed through the upstream water separation membrane unit and a gas phase that is sucked from the downstream water separation membrane unit by the driving steam of the steam ejector.
  • the driving steam is merged by the one condenser, and the moisture in the merged gas phase is condensed to separate the moisture.
  • the organic liquid generally can be applied as the liquid to be treated if various conditions permit.
  • the organic component of the organic aqueous solution is preferably an alcohol such as ethanol, propanol, isopropanol or glycol, a carboxylic acid such as acetic acid, an ether such as dimethyl ether or diethyl ether, an aldehyde such as acetaldehyde, a ketone such as acetone or methyl ethyl ketone, or ethyl acetate. It is one organic component selected from the group consisting of esters such as esters.
  • a dehydrator using a mixture of ethanol or propanol having an azeotropic composition with water and water as a liquid to be treated is suitable.
  • a concentration meter that measures the concentration at the outlet of the water separation membrane unit in real time is provided, and the steam amount of the steam ejector is controlled based on the detected value of the concentration from the concentration meter, or the suction capability of the suction means is increased.
  • the membrane outlet concentration controller to be controlled is provided, the operation status of the apparatus can be kept appropriate.
  • FIG. 1 is a system diagram of a dehydrating apparatus according to a first embodiment of the present invention. It is operation
  • FIG. 1 is a system diagram of a dehydrating apparatus according to the first embodiment of the present invention.
  • the dehydrating apparatus according to the present embodiment assumes an aqueous ethanol solution as the liquid to be dehydrated.
  • concentration of the ethanol aqueous solution an aqueous solution having an ethanol concentration of 90 wt% to 94 wt% is assumed. That is, an aqueous ethanol solution containing ethanol as an organic component is used as the liquid to be treated.
  • the final product fluid that is, the ethanol concentration of product ethanol (anhydrous ethanol) is 99 wt% to 99.8 wt%.
  • the water separation membrane units 1a and 1b of the dehydrating apparatus 100 are units for separating an ethanol aqueous solution into absolute ethanol and water.
  • the liquid to be treated flows to the primary side through the water separation membrane, and moisture that has permeated to the secondary side is obtained.
  • a water separation membrane is formed so as to cover an inner tube provided on a porous base material configured in a cylindrical shape.
  • One or a plurality of such cylindrical members are stored in a container, and moisture is separated by suction from the outside of the cylindrical member.
  • a silica-based or zeolite-based inorganic water separation membrane having a pore diameter of 10 angstroms or less is suitable. Also, a carbon film may be used.
  • an inorganic water separation membrane described in Japanese Patent No. 2808479 can be applied.
  • the inorganic water separation membrane of Patent No. 2808479 is an acid-resistant composite separation obtained by supporting silica gel obtained through hydrolysis of an alkoxysilane containing an ethoxy group or a methoxy group in the pores of an inorganic porous body. It is a membrane.
  • the acid-resistant composite separation membrane can be produced by a production method including the following steps 1 to 11.
  • the porous substrate on which the inorganic water separation membrane is supported is generally a ceramic substrate such as alumina, silica, zirconia, and titania, and has a cylindrical shape and a plurality of circular cross sections in the longitudinal direction. Those having the inner tube are preferred.
  • an inorganic water separation membrane is formed so as to cover the inner wall of such an inner tube.
  • the liquid to be treated flows into the inner tube, moisture permeates through the water separation membrane, and moisture is separated.
  • the separated water is sucked as water vapor by a suction means such as a steam ejector or a vacuum pump. Generally, it is sucked as a gas phase containing such water vapor.
  • an organic membrane such as a polyvinyl alcohol membrane, a polyimide membrane, or a polyamide membrane can be used as the water separation membrane.
  • Step 1 In the preparation conditions of a plurality of types of silica sols produced by changing the mixing ratio of alkoxysilane, which is a raw material of silica sol, water and an acid catalyst, the raw material preparation ratios of silica sol to be supported are for silica sol 1 and silica sol A distinction is made between two types.
  • Step 2 The weight ratio of water to alkoxysilane as a raw material for silica sol 1 is 0.5 to 2.0, and the weight ratio of acid catalyst to alkoxysilane is 0.01 to 0.1 as a reaction catalyst.
  • Step 7 After further supporting the silica sol 1-A liquid on the surface of the porous substrate supporting the silica sol 1-A liquid, the operation of the above step 6 is repeated 2 to 3 times.
  • Step 8 Next, on the surface of the porous substrate carrying the silica sol 1-A solution, the same treatment as in the above step 6 to step 7 is performed using the silica sol 1-B solution.
  • a cylindrical porous substrate (cylindrical member) in which the inorganic water separation membrane is supported (coated) on the inner tube can be obtained.
  • a water separation membrane incorporated in the water separation membrane units 1a and 1b.
  • the water separation membrane units 1a and 1b include such a water separation membrane (tubular member) in a container that can be decompressed.
  • water separation membrane units 1a and 1b are provided in series with respect to the flow direction of the liquid 13 to be treated containing ethanol. Three or more water separation membrane units 1a and 1b may be provided in series.
  • the liquid 13 to be treated is introduced into the water separation membrane unit 1a, and water is separated by the water separation membrane unit 1a. Then, it introduce
  • An intermediate heater 16 is located between the water separation membrane units 1a and 1b, and raises the temperature of the liquid 13 to be treated whose temperature has dropped in the water separation membrane unit 1a.
  • the upstream water separation membrane unit 1a sucks the gas phase containing the water (water vapor) of the liquid 13 to be treated, which is an aqueous ethanol solution, through the suction passage 2b, and performs first condensation.
  • Water is condensed in the vessel 4.
  • This suction force is given exclusively by the steam ejector 7 via the condenser 4.
  • the suction force of the steam ejector 7 is a pressure level at which moisture contained in the gas phase can be condensed by a condenser using cooling water. For example, the level is 100 Torr.
  • the vapor phase that has passed through the steam ejector 3 and the driving steam of the steam ejector 3 enter the first condenser 4, and contain the water vapor flowing from the upstream water separation membrane unit 1 a in the first condenser 4. It merges with the gas phase and is mixed.
  • the vapor phase that has passed through the upstream water separation membrane unit 1a, the vapor phase that has passed through the downstream water separation membrane unit 1b, and the driving vapor of the steam ejector 3 are merged.
  • a part of the water vapor contained in the gas phase is condensed by the cooling water and flows to the drain 11. Further, the gas phase is guided to the steam ejector 7.
  • the driving force of the steam ejector 7 is given by the flow of steam from the driving steam pipe 6 provided with the steam valve 6a.
  • the steam ejector 7 may use a plant process fluid (either gas or liquid). This is because such a fluid can be substituted if the degree of vacuum is 100 Torr.
  • the steam ejector 7 can be replaced with other suction means such as a vacuum pump depending on the operating conditions.
  • the upstream water separation membrane unit 1a having a high primary water pressure can use the steam ejector 7 operating in a relatively low vacuum state.
  • the downstream water separation membrane unit 1b having a low primary water pressure needs to use a steam ejector that operates at a high degree of vacuum.
  • the upstream water separation membrane unit treats a fluid to be treated with an inlet concentration in the range of 90 wt% to 94 wt% (possible range of 80 wt% to 96 wt%), and the downstream water separation membrane.
  • the unit is assigned to process a fluid to be processed having a concentration of 97 wt% or more.
  • the driving steam necessary for the steam ejector can be set low by appropriately sharing the water separation membrane unit upstream and downstream in this way.
  • water vapor in the gas phase containing a large amount of water vapor can be condensed and separated together with some ethanol as mostly liquid water by the first condenser 4.
  • the load on the steam ejector 7 suction means
  • the present inventors obtained a driving force of 17 kg / h with the driving steam pipe 5 and a driving force of 48 kg / h with the driving steam pipe 6, and the steam ejector 7 with 10 Torr of 10 Torr. A case where a suction force was obtained and a driving steam of 120 kg / h was obtained in total was compared.
  • the first condenser 4 includes the processing body that has passed through the upstream water separation membrane unit 1a, the processing body that has passed through the downstream water separation membrane unit 1b, and the driving steam of the steam ejector 3. Mix.
  • the ethanol concentration is lowered, and the gas phase side ethanol concentration is also lowered from the vapor-liquid equilibrium. Therefore, the amount of alcohol to the steam ejector 7 can also be reduced.
  • the processing body that has been subjected to the suction process by the steam ejector 7 enters the second condenser 8, the water is condensed by the cooling water in the second condenser 8, and then sucked by the vacuum pump 9, and the vent 10. Is discharged to the outside. That is, the gas phase components of the first condenser 4 and the second condenser 8 are sucked by the suction force of the vacuum pump 9.
  • an ethanol concentration meter 15 that measures ethanol concentration in real time is provided at the outlet of the water separation membrane unit 1a, and an ethanol concentration meter 15a that measures ethanol concentration in real time at the outlet of the water separation membrane unit 1b. Is provided.
  • the detection signals from the ethanol concentration meters 15 and 15a are input to the membrane outlet concentration controller 6c.
  • the ethanol concentration meters 15 and 15a and the membrane outlet concentration controller 6c can be configured as a device capable of measuring the ethanol concentration in real time. Further, when the liquid to be processed is in a liquid phase, the mass flow rate and the fluid density of the liquid to be processed can be measured with high accuracy by using a Coriolis flow meter.
  • the vapor amount of the 100 Torr steam ejector 7 is optimally adjusted via the valve 6a via the membrane outlet concentration controller 6c based on the measured value of the upstream water separation membrane unit 1a by the ethanol concentration meter 15. Can be controlled. Further, the amount of steam of the 10 Torr steam ejector 3 can be optimally controlled via the valve 5a via the membrane outlet concentration controller 6c based on the measured value of the downstream water separation membrane unit 1b by the ethanol concentration meter 15a. It becomes possible.
  • the amount of driving steam can be increased appropriately, and the quality of the resulting product can be kept constant.
  • the amount of driving steam can be reduced.
  • a Coriolis type flow meter is installed at the liquid outlet of each water separation membrane unit 1a, 1b, and the drive steam amount of the corresponding steam ejectors 3, 7 is controlled more appropriately to match the target concentration. It is possible to control the optimum amount of steam. This is because the Coriolis type fluid meter can measure the density in real time, thereby measuring the concentration of the treatment body obtained in real time, and there is no delay time in control.
  • three water separation membrane units can be provided and the vacuum level can be set in three stages.
  • an ejector for sucking water from the downstream second water separation membrane unit can be provided.
  • the gas phase containing water sucked by the first water separation membrane unit on the upstream side can be introduced into the condenser of the second ejector for water separation membrane unit.
  • an ejector for sucking water from the third water separation membrane unit on the most downstream side can be provided.
  • the gas phase containing the water sucked by the second water separation membrane unit can be introduced into the condenser of the third water separation membrane unit ejector.
  • three water separation membrane units can be provided, and the vacuum level can be set in two stages.
  • the vacuum level of the upstream two-stage water separation membrane units (first and second) can be made substantially the same, and the downstream vacuum level can be set high.
  • an ejector for sucking water from the third water separation membrane unit on the most downstream side can be provided.
  • the gas phase containing water sucked by the first and second water separation membrane units can be introduced into the condenser of the third water separation membrane unit ejector.
  • an intermediate heater for supplementing the heat of evaporation is installed between the first water separation membrane unit and the second water separation membrane unit.
  • water separation membrane units can be provided, and the vacuum level can be set to four or more stages.
  • the vacuum system and the condenser system can be configured according to the above-described concept.
  • the dehydrating apparatus can be configured according to the number of stages of the water separation membrane unit and the number of stages of the vacuum level. In other words, basically, by introducing the gas phase containing water sucked from the water separation membrane unit at one vacuum level to the ejector outlet condenser from the downstream water separation membrane unit, this is possible regardless of the number of stages.
  • the dehydrating apparatus according to the invention can be configured.
  • an intermediate heater for example, the intermediate heater 16 in FIG. 1 for supplementing the latent heat of vaporization of moisture containing water between the water separation membrane units can be installed as appropriate depending on the vacuum level and the like. Moreover, installation can be made unnecessary.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 吸引手段により吸引効率を所望のレベルに維持しつつ、装置構成を過大とせず、低コストで済む脱水装置を提供する。  被処理液体13から水を分離する脱水装置100であって、上記被処理液体13の流れ方向に対して、直列に少なくとも2個以上の水分離膜ユニット1a、1bを備え、上記水分離膜ユニット1a、1bのうち上流側の水分離膜ユニット1aが、一の凝縮器4を介して水分を含む気相を吸引する吸引手段7に接続され、上記一の凝縮器4で気相中の水分を凝縮して該水分を分離すると共に、上記一の凝縮器4から上記吸引手段7により吸引された気相を、上記一の凝縮器4の下流に設置した少なくとも一の下流の凝縮器8に送り、該下流の凝縮器8で気相中の水分を凝縮して該水分を分離し、上記水分離膜ユニット1aの下流側の水分離膜ユニット1bが、スチームエジェクタ3に接続され、該スチームエジェクタ3を経た気相中の水分を凝縮する凝縮器4で水分を凝縮して該水分を分離するようにした。

Description

脱水装置
 本発明は、水分離膜を用いた脱水装置に関する。本発明に係る脱水装置は、有機水溶液からの水分離に適する。本発明は、さらに詳しくは、水との共沸組成を持つエタノール又はプロパノールと、水との混合物(被処理液体)を脱水する脱水装置に関する。
 石油燃料を代替する燃料源として、エタノールが注目されており、その市場規模は、2010年に5500万キロリットルと予測されている。しかし、エタノールを燃料として採用するためには、トウモロコシ等のバイオ原料から得た粗製物を蒸留精製し、少なくとも99.5wt%以上に脱水しなければならない。
 従来、脱水にあたっては、エタノール水溶液を、蒸留塔で蒸留することにより、エタノール/水系の共沸点近くまで濃縮し、次いで脱水するといったことが行われている。
 ここで、本発明者らは、このように共沸点又はその近傍のエタノール水溶液のための脱水方法として、水分離膜を応用した脱水方法について開発を鋭意進めている。すなわち、水分離膜を用いて水分離膜ユニットを構成し、水分離膜ユニット内にエタノール水溶液等の被処理液体を流し、水分離膜を介して水分を吸引する脱水方法について、開発を進めている。なお、水分離膜を採用した脱水方法としては、特許文献1に係るものが知られている。
 しかし、水分離膜ユニット内を被処理液体が流れると、水の蒸発に伴い、潜熱が奪われ、流れ方向に被処理液体の温度が低下してしまう傾向がある。温度が低下すると、水分圧が低下し、吸引のための十分なドライビングフォースを維持できず、吸引手段の機能を発揮させることができなくなるという難点があった。
 このようなことから、かかる難点を解消し、温度低下を防止し、ドライビングフォースを維持し、かつ設備を過大としないといった要請があった。
特開昭58-21629号公報
 本発明は、上記事情に鑑みてなされたもので、吸引手段による吸引効率を所望のレベルに維持しつつ、装置構成を過大とせず、低コストで済む脱水装置を提供することを目的とする。
 本発明に係る脱水装置は、上記目的を達成するため、被処理液体から水を分離する脱水装置であって、上記被処理液体の流れ方向に対して、直列に少なくとも2個以上の水分離膜ユニットを備え、上記水分離膜ユニットのうち上流側の水分離膜ユニットが、一の凝縮器を介して水分を含む気相を吸引する吸引手段に接続され、上記一の凝縮器で気相中の水分を凝縮して該水分を分離すると共に、上記一の凝縮器から上記吸引手段により吸引された気相を、上記一の凝縮器の下流に設置した少なくとも一の下流の凝縮器に送り、該下流の凝縮器で気相中の水分を凝縮して該水分を分離し、上記水分離膜ユニットの下流側の水分離膜ユニットが、スチームエジェクタに接続され、該スチームエジェクタを経た気相中の水分を凝縮する凝縮器で水分を凝縮して該水分を分離するようにしている。
 また、本発明に係る脱水装置は、その好適な形態で、上記上流側の水分離膜ユニットの出口で、被処理液体の濃度をリアルタイムで計測する濃度計と、上記濃度計からの濃度の検出値に基づき、上記吸引手段の吸引能力を制御する膜出口濃度コントローラとを備えている。
 また、本発明に係る脱水装置は、その好適な形態で、上記下流側の水分離膜ユニットの出口で、被処理液体の濃度をリアルタイムで計測する濃度計と、上記濃度計からの濃度の検出値に基づき、上記スチームエジェクタの蒸気量を制御する膜出口濃度コントローラとを備えている。
 また、本発明に係る脱水装置は、その好適な形態で、上記被処理液体が、エタノール水溶液である。
 また、本発明に係る脱水装置は、その好適な形態で、上記上流側の水分離膜ユニットを経た気相と、上記下流側の水分離膜ユニットからスチームエジェクタの駆動蒸気によって吸引された気相並びに該駆動蒸気とを上記一の凝縮器で合流し、この合流した気相中の水分を凝縮して該水分を分離するようにしている。
 本発明の脱水装置では、上記被処理液体として、諸条件が許す場合、有機水溶液一般に適用することができる。有機水溶液の有機成分は、好適には、エタノール、プロパノール、イソプロパノール、グリコール等のアルコール、酢酸等のカルボン酸、ジメチルエーテル、ジエチルエーテル等のエーテル、アセトアルデヒド等のアルデヒド、アセトン、メチルエチルケトン等のケトン、酢酸エチルエステル等のエステルからなる群から選択される一の有機成分である。
 もっとも、本発明の適用対象としては、水との共沸組成を持つエタノール又はプロパノールと、水との混合物を被処理液体とする脱水装置が好適である。
 本発明によれば、吸引手段により吸引効率を所望のレベルに維持しつつ、装置構成を過大とせず、低コストで済む脱水装置が提供される。
 すなわち、本発明に係る脱水装置では、1次側の水分圧が高い上流側の水分離膜ユニットで、2次側の水分圧を高く設定し、2次側にある真空システム(吸引手段)の容量を小さくすることができる。一方、上記一の凝縮器を介して水分を含む気相を吸引する吸引手段に接続していることから、多くの水蒸気を含む気相中の水蒸気を上記一の凝縮器で大部分液体の水として、多少のエタノールと共に凝縮分離できる。これによって、2次側の水分圧を高く設定しても、吸引手段の負荷を低減させることができる。
 また、上流側の水分離膜ユニットを経た気相と、上記下流側の水分離膜ユニットからスチームエジェクタの駆動蒸気によって吸引された気相並びに該駆動蒸気とを上記一の凝縮器で合流する場合には、スチームエジェクタの駆動水蒸気が、下流側の水分離膜ユニットを経た処理体と上記一の凝縮器で混合するため、アルコール濃度が低下し、気液平衡より気相側エタノール濃度も下がることから、上記吸引手段へのアルコール量も低減できる。
 また、水分離膜ユニットの出口の濃度をリアルタイムで計測する濃度計を設け、該濃度計からの濃度の検出値に基づき、上記スチームエジェクタの蒸気量を制御し、又は上記吸引手段の吸引能力を制御する膜出口濃度コントローラを設けた形態では、装置の稼動状況を適正に保つことができる。
本発明の第1実施形態に係る脱水装置の系統図である。 本発明の作用説明図である。
符号の説明
1a、1b 水分離膜ユニット
3 スチームエジェクタ
4 第1の凝縮器
5 駆動蒸気管
5a 蒸気弁
6a 蒸気弁
6 駆動蒸気管
6c 膜出口濃度コントローラ
7 スチームエジェクタ
8 第2の凝縮器
9 真空ポンプ
13 被処理液体
15、15a エタノール濃度計
16 中間加熱器
100 脱水装置
 以下、図面を参照して本発明に係る脱水装置について、その実施の形態について詳細に説明する。
[第1実施形態]
 図1に、本発明の第1実施形態に係る脱水装置の系統図である。
 本実施の形態に係る脱水装置は、脱水される被処理液体として、エタノール水溶液を想定している。このエタノール水溶液の濃度としては、エタノール濃度90wt%~94wt%の水溶液を想定している。すなわち、有機成分としてエタノールを含むエタノール水溶液を被処理液体としている。最終的に得られる製品流体、すなわち製品エタノール(無水エタノール)のエタノール濃度は、99wt%~99.8wt%である。
 本実施の形態に係る脱水装置100の水分離膜ユニット1a、1bは、エタノール水溶液を無水エタノールと水とに分離するためのユニットである。
 水分離膜ユニット1a、1bは、水分離膜を介して、一次側に被処理液体が流れ、二次側に透過した水分が得られる。後述するように筒型形状に構成した多孔質基材に設けた内管を被覆するように水分離膜が形成される。このような筒型部材を一~複数本容器内に格納し、筒型部材の外側から吸引することによって水分が分離される。
 水分離膜ユニット1a、1bを構成するための水分離膜としては、細孔径10オングストローム以下のシリカ系又はゼオライト系の無機水分離膜が好適である。また、炭素膜であってもよい。
 また、特許第2808479号記載の無機水分離膜も適用可能である。該特許第2808479号の無機水分離膜は、無機多孔体の細孔内に、エトキシ基又はメトキシ基を含むアルコキシシランの加水分解を経て得られたシリカゲルを担持することによって得られる耐酸性複合分離膜である。該耐酸性複合分離膜は、以下の工程1~11を含む製造方法によって製造することができる。
 なお、無機水分離膜が担持される多孔質基材としては、アルミナ、シリカ、ジルコニア、チタニアのようなセラミック基材が一般的であり、筒型形状であって、長手方向に複数の断面円形の内管を持つものが好適である。以下の工程1~11では、このような内管の内部壁を被覆するようにして無機水分離膜が形成される。この内管に被処理液体が流れ、水分離膜を水分が透過し、水分が分離される。分離された水分は、水蒸気として、スチームエジェクタ、真空ポンプ等の吸引手段で吸引される。一般的には、このような水蒸気を含む気相として吸引される。
 なお、水分離膜としては、無機水分離膜以外に、ポリビニルアルコール膜、ポリイミド膜、ポリアミド膜といった有機膜を用いることもできる。
 工程1: シリカゾルの原料であるアルコキシシランと水と酸触媒の混合割合を変化させて製造する複数の種類のシリカゾルの調製条件において、担持するシリカゾルの原料調合割合をシリカゾル1用とシリカゾル2用の2種類に区別する。
 工程2: シリカゾル1用原料のアルコキシシランに対する水の重量比を0.5~2.0とし、かつ、反応触媒として、アルコキシシランに対する酸触媒の重量比を0.01~0.1とする。
 工程3: シリカゾル2用原料のアルコキシシランに対する水の重量比を2.0~50とし、かつ、反応触媒として、アルコキシシランに対する酸触媒の重量比を0.01~0.5とする。
 工程4: 上記シリカゾル1用原料を沸騰状態に保持し、沸騰開始後約25分、約20分及び約15分の液をそれぞれ、1-A、1-B及び1-C液とする。
 工程5: 上記シリカゾル2用原料を常温で30分~90分間撹拌・混合してシリカゾル2を製造する。
 工程6: 多孔質基材の表面上に上記シリカゾル1-A液を担持した後、該多孔質基材を約200℃に設定した電気炉内で5~15分間焼成し、次に該多孔質基材を約300℃に設定した電気炉内で5~15分間焼成し、次に該多孔質基材を約400℃に設定した電気炉内で5~15分間焼成し、次に該多孔質基材を約500℃に設定した電気炉内で5~15分間焼成する。
 工程7: 該シリカゾル1-A液を担持した多孔質基材の表面に更にシリカゾル1-A液を担持した後、上記工程6の操作を2~3回繰り返す。
 工程8: 次に該シリカゾル1-A液を担持した多孔質基材の表面上に更にシリカゾル1-B液を使用して上記工程6~工程7と同様の処理を行う。
 工程9: 次に該シリカゾル1-B液を担持した多孔質基材の表面上にシリカゾル1-C液を使用して上記工程6~工程7と同様の処理を行う。
 工程10: 次に上記シリカゾル1-A、1-B及び1-C液を担持してなる多孔質基材の表面上に上記シリカゾル2液を担持し、該多孔体を約200℃に設定した電気炉内で5~15分間焼成し、次に該多孔質基材を約300℃に設定した電気炉内で5~15分間焼成し、次に該多孔質基材を約400℃に設定した電気炉内で5~15分間焼成し、次に該多孔質基材を約500℃に設定した電気炉内で5~15分間焼成する。
 工程11: 該シリカゾル2液を担持した多孔質基材の表面に更にシリカゾル2液を担持した後、上記工程10の操作を2~3回繰り返す。
 以上の工程1~11を経て、無機水分離膜を内管に担持(被覆)した筒型の多孔質基材(筒型部材)を得ることができる。本発明では、例えばこのようなものを水分離膜ユニット1a、1b内に内蔵される水分離膜として用いる。水分離膜ユニット1a、1bは、このような水分離膜(筒型部材)を減圧可能な容器内に内蔵することとしている。
 図1において、エタノール含有の被処理液体13の流れ方向に対して水分離膜ユニット1a、1bが、直列に設けられている。なお、この水分離膜ユニット1a、1bは、3個以上直列に設けてもよい。
 被処理液体13は、水分離膜ユニット1aに導入され、水分離膜ユニット1aで水が分離される。その後、下流の水分離膜ユニット1bに導入され、この水分離膜ユニット1bでも水が分離される。水分離膜ユニット1a、1bの間には、中間加熱器16が位置し、水分離膜ユニット1aで温度が低下した被処理液体13の温度を上昇させる。
 上記水分離膜ユニットのうち上流側の水分離膜ユニット1aは、エタノール水溶液からなる上記被処理液体13の水分(水蒸気)を含む気相を、吸引路2bを介して吸引して第1の凝縮器4にて水分を凝縮させる。この吸引力は、もっぱら凝縮器4を介し、スチームエジェクタ7によって与えられる。スチームエジェクタ7の吸引力は、冷却水を用いた凝縮器により気相に含まれる水分を凝縮させることが可能な圧力レベルである。例えば、100Torrのレベルである。
 一方、下流側の水分離膜ユニット1bは、蒸気弁5aを備えた駆動蒸気管5からの蒸気の流動により、スチームエジェクタ3によって吸引力を受ける。スチームエジェクタ3は、吸引力は例えば10Torrのレベルである。この圧力レベルでは、冷却水を用いた凝縮器では気相に含まれる水分を凝縮させることができない。このため、水分離膜ユニット1bの水分離膜を透過した被処理液体13からの水分は、もっぱら気相中の水蒸気として吸引され、スチームエジェクタ3側に吸引される。
 そして、スチームエジェクタ3を経た気相及びスチームエジェクタ3の駆動蒸気は、第1の凝縮器4に入り、第1の凝縮器4にて、上流側の水分離膜ユニット1aから流入する水蒸気を含む気相と合流し、混合される。
 すなわち、第1の凝縮器4では、上流側の水分離膜ユニット1aを経た気相と下流側の水分離膜ユニット1bを経た気相並びにスチームエジェクタ3の駆動蒸気とを合流する。気相中に含まれる水蒸気の一部は、冷却水によって凝縮し、ドレイン11に流れる。
 さらに、気相がスチームエジェクタ7に導かれる。スチームエジェクタ7の駆動力は、蒸気弁6aを備えた駆動蒸気管6からの蒸気の流動により与えられる。この場合、スチームエジェクタ7は、プラントのプロセス流体(気体、液体の何れでも可)を用いてもよい。100Torrレベルの真空度であれば、このような流体で代替できるためである。なお、スチームエジェクタ7は、稼動条件によって、真空ポンプ等の他の吸引手段で置き換えることもできる。
 ところで、図2に示すように、気相中の水分について、(a)のように1次側の水分圧が高いときは2次側の水分圧との差がもとより大きく、(b)のように1次側の水分圧が低いときは2次側の水分圧との差が小さい。
 したがって、1次側の水分圧が高い上流側の水分離膜ユニット1aは、比較的真空度の低い状態で稼動するスチームエジェクタ7を用いることができる。一方、1次側の水分圧が低い下流側の水分離膜ユニット1bは、高い真空度で稼動するスチームエジェクタを用いる必要がある。なお、本発明で、上流側の水分離膜ユニットは、入口濃度が90wt%~94wt%(可能な範囲として80wt%~96wt%)の範囲の被処理流体を処理し、下流側の水分離膜ユニットは、97wt%以上の濃度の被処理流体を処理するように分担する。
 本発明に係る脱水装置では、このように、水分離膜ユニットを上流・下流で適切に分担することにより、スチームエジェクタに必要な駆動蒸気を低く設定できる。
 一方、本実施の形態では、多くの水蒸気を含む気相中の水蒸気を第1の凝縮器4で大部分液体の水として、多少のエタノールと共に凝縮分離できる。これによって、2次側の水分圧を高く設定しても、スチームエジェクタ7(吸引手段)の負荷を低減させることができる。
 本発明者らは、試行装置において、駆動蒸気管5で、17kg/h、駆動蒸気管6で48kg/hの駆動力を得た本実施の形態のようなケースと、スチームエジェクタ7でも10Torrの吸引力を得るようにし、トータルで120kg/hの駆動蒸気を得るようにしたケースを比較した。その結果、本実施の形態のようなケースで、99.7wt%の製品エタノールを得ることができた。一方、比較例であるスチームエジェクタ7でも10Torrの吸引力を得たケースでも99.7wt%の製品エタノールを得られ、製品エタノールの濃度に実質的な差はなかったが、本実施の形態と比較してより多くの駆動蒸気量が必要となった。
 これは、実機で、20万t/年のエタノール処理を考慮した場合、比較例のようなケースでは12t/hの駆動蒸気が必要だったところ、本実施の形態のようなケースでは駆動蒸気管5で1.7t/h、駆動蒸気管6で4.8t/hのように少なくて済むことを意味している。なお、12t/hの駆動蒸気を得るためにはスチームエジェクタ自体も過大となる。
 また、上記のように、上流側の水分離膜ユニット1aを経た処理体と、下流側の水分離膜ユニット1bを経た処理体と、スチームエジェクタ3の駆動蒸気とが第1の凝縮器4で混合する。これによって、エタノール濃度が低下し、気液平衡より気相側エタノール濃度も下がることから、スチームエジェクタ7へのアルコール量も低減できる。
 スチームエジェクタ7で水分を吸引処理された処理体は、第2の凝縮器8に入り、該第2の凝縮器8で冷却水により水分を凝縮されてから、真空ポンプ9によって吸引され、ベント10から外部に排出される。
 すなわち、真空ポンプ9の吸引力によって、第1の凝縮器4及び第2の凝縮器8の気相分が吸引される。
 一方、本実施の形態では、水分離膜ユニット1aの出口に、リアルタイムでエタノール濃度を計測するエタノール濃度計15を設け、水分離膜ユニット1bの出口にリアルタイムでエタノール濃度を計測するエタノール濃度計15aを設けている。そして、エタノール濃度計15、15aの検出信号を膜出口濃度コントローラ6cに入力している。
 エタノール濃度計15、15aと膜出口濃度コントローラ6cとは、エタノール濃度をリアルタイムで計測可能な装置に構成することができる。また、被処理液体が液相の場合にはコリオリ式流量計を用いることにより、被処理液体の質量流量と流体密度を高精度で計測可能である。
 本実施の形態では、エタノール濃度計15による上流側水分離膜ユニット1aの濃度の計測値により膜出口濃度コントローラ6cを介して、100Torrのスチームエジェクタ7の蒸気量を、バルブ6aを介して最適に制御することができる。また、エタノール濃度計15aによる下流側水分離膜ユニット1bの濃度の計測値により膜出口濃度コントローラ6cを介して、10Torrのスチームエジェクタ3の蒸気量を、バルブ5aを介して最適に制御することが可能となる。
 例えば、エタノール濃度が低下した場合に、駆動蒸気量を適正に増大させ、得られる製品の品質を一定に保つことができる。その逆に、要求される仕様以上の場合には、駆動蒸気量を低減することができる。
 ここでさらに、コリオリ式流量計を各水分離膜ユニット1a、1bの被処理液体出口に設置し、対応するスチームエジェクタ3、7の駆動蒸気量をより適正に制御することで、目標濃度に合わせた最適な蒸気量制御が可能となる。コリオリ式流体計は、リアルタイムで密度を測定でき、これによってリアルタイムに得られる処理体の濃度を測定でき、制御にあたっての遅れ時間がないためである。
 以上、本発明の実施の形態につき述べたが、本発明は既述の実施の形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変更及び変形が可能である。
 例えば、水分離膜ユニットを3個設け、真空のレベルを3段階とすることができる。この場合、下流側の第2の水分離膜ユニットから水を吸引するためのエジェクターを設けることができる。そして、上流側の第1の水分離膜ユニットで吸引された水分を含む気相は、第2の水分離膜ユニット用エジェクターの凝縮器に導入することができる。また、最下流側の第3の水分離膜ユニットから水を吸引するためのエジェクターを設けることができる。第2の水分離膜ユニットで吸引された水分を含む気相は、第3の水分離膜ユニット用エジェクターの凝縮器に導入することができる。
 また、水分離膜ユニットを3個設け、真空のレベルを2段階とすることもできる。この場合、例えば、上流の2段の水分離膜ユニット(第1、第2)の真空レベルを同程度とし、下流側の真空レベルを高く設定するようにすることができる。この場合、最下流側の第3の水分離膜ユニットから水を吸引するためのエジェクターを設けることができる。この第1及び第2の水分離膜ユニットで吸引された水分を含む気相は、第3の水分離膜ユニット用エジェクターの凝縮器に導入することができる。なお、第1の水分離膜ユニットと、第2の水分離膜ユニットとの間には、蒸発熱を補うための中間加熱器を設置する。
 さらに、水分離膜ユニットを4個以上設け、真空のレベルを4以上段階とすることができる。この場合も、当業者であれば了解できるように、上記したコンセプトに従って真空系、凝縮器系を構成することができる。
 さらなる変形の形態として、例えば、水分離膜ユニットを4個以上設け、真空のレベルを4以上段階設けた場合、上流から下流に向けて第1~第4の水分離膜ユニットを設けたとする。この場合、第1の水分離膜ユニットと第3の水分離膜ユニットに対し、一系統の真空系(エジェクター等)とそれに対応する一系統の凝縮器系を設け、第2の水分離膜ユニットと第4の水分離膜ユニットに対し、一系統の真空系(エジェクター等)とそれに対応する一系統の凝縮器系を設けるといった構成も可能である。
 このように、水分離膜ユニットの段数、真空レベルの段数に応じ、本発明に係る脱水装置を構成することができる。すなわち、基本的に、一の真空レベルの水分離膜ユニットから吸引された水分を含む気相を、下流側の水分離膜ユニットからのエジェクター出口凝縮器に導入することで、段数に係りなく本発明に係る脱水装置を構成することができる。
 また、水分離膜ユニット間に水分を含む蒸気の蒸発潜熱を補うための中間加熱器(例えば、図1の中間加熱器16)は、真空レベル等との兼ね合いによって、適宜設置することができ、又設置を不要とすることができる。

Claims (5)

  1.  被処理液体から水を分離する脱水装置であって、
     上記被処理液体の流れ方向に対して、直列に少なくとも2個以上の水分離膜ユニットを備え、
     上記水分離膜ユニットのうち上流側の水分離膜ユニットが、一の凝縮器を介して水分を含む気相を吸引する吸引手段に接続され、上記一の凝縮器で気相中の水分を凝縮して該水分を分離すると共に、上記一の凝縮器から上記吸引手段により吸引された気相を、上記一の凝縮器の下流に設置した少なくとも一の下流の凝縮器に送り、該下流の凝縮器で気相中の水分を凝縮して該水分を分離し、
     上記水分離膜ユニットの下流側の水分離膜ユニットが、スチームエジェクタに接続され、該スチームエジェクタを経た気相中の水分を凝縮する凝縮器で水分を凝縮して該水分を分離するようにした脱水装置。
  2.  上記上流側の水分離膜ユニットの出口で、被処理液体の濃度をリアルタイムで計測する濃度計と、上記濃度計からの濃度の検出値に基づき、上記吸引手段の吸引能力を制御する膜出口濃度コントローラとを備えた請求項1に記載の脱水装置。
  3.  上記下流側の水分離膜ユニットの出口で、被処理液体の濃度をリアルタイムで計測する濃度計と、上記濃度計からの濃度の検出値に基づき、上記スチームエジェクタの蒸気量を制御する膜出口濃度コントローラとを備えた請求項1又は2に記載の脱水装置。
  4.  上記被処理液体が、エタノール水溶液である請求項1~3のいずれかに記載の脱水装置。
  5.  上記上流側の水分離膜ユニットを経た気相と、上記下流側の水分離膜ユニットからスチームエジェクタの駆動蒸気によって吸引された気相並びに該駆動蒸気とを上記一の凝縮器で合流し、この合流した気相中の水分を凝縮して該水分を分離するようにした脱水装置。
PCT/JP2009/050273 2008-01-18 2009-01-13 脱水装置 WO2009090929A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BRPI0905074-4A BRPI0905074A2 (pt) 2008-01-18 2009-01-13 Desidratador
US12/678,673 US8496806B2 (en) 2008-01-18 2009-01-13 Dehydrator
CA2699729A CA2699729C (en) 2008-01-18 2009-01-13 Dehydrator comprising multiple membrane separation units having different degrees of vacuum
EP09702932A EP2230003A4 (en) 2008-01-18 2009-01-13 DRIER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008009092A JP5484677B2 (ja) 2008-01-18 2008-01-18 脱水装置
JP2008-009092 2008-01-18

Publications (1)

Publication Number Publication Date
WO2009090929A1 true WO2009090929A1 (ja) 2009-07-23

Family

ID=40885318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050273 WO2009090929A1 (ja) 2008-01-18 2009-01-13 脱水装置

Country Status (6)

Country Link
US (1) US8496806B2 (ja)
EP (1) EP2230003A4 (ja)
JP (1) JP5484677B2 (ja)
BR (1) BRPI0905074A2 (ja)
CA (1) CA2699729C (ja)
WO (1) WO2009090929A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5734684B2 (ja) * 2011-01-28 2015-06-17 宇部興産株式会社 含水溶剤の脱水濃縮方法
SG11201403242VA (en) * 2011-12-15 2014-07-30 Masdar Inst Of Science And Technology Vacuum membrane distillation (vmd) using aspirator to generate vacuum pressure
US20130319241A1 (en) * 2012-06-01 2013-12-05 Charles Solomon System for degassing a liquid
JP2014118377A (ja) * 2012-12-14 2014-06-30 Mitsubishi Chemicals Corp 有機化合物の製造方法
US10265655B2 (en) * 2016-06-09 2019-04-23 Uop Llc Two-step membrane system with ejector
JP2020075865A (ja) * 2017-03-17 2020-05-21 三菱ケミカル株式会社 アルコールの製造のための水−アルコール分離システム及び水−アルコール分離方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821629A (ja) 1981-07-29 1983-02-08 Showa Denko Kk 無水エタノ−ルの製造方法
JPS5895523A (ja) * 1981-11-30 1983-06-07 Kuraray Co Ltd 混合液体分離方法
JPH01155928A (ja) * 1987-12-10 1989-06-19 Hitachi Zosen Corp 有機物・水系混合溶液の濃縮・脱水装置
JPH0531333A (ja) * 1990-12-27 1993-02-09 Mitsubishi Kasei Eng Co 混合液体分離方法
JPH09103654A (ja) * 1995-10-13 1997-04-22 Nok Corp 有機塩素化合物のそれを含む水溶液からの分離方法
JP2808479B2 (ja) 1990-07-02 1998-10-08 正司 浅枝 耐酸性複合分離膜の製造方法
JP2005161187A (ja) * 2003-12-02 2005-06-23 Ube Ind Ltd ガス分離回収装置及び分離回収方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3370102A (en) * 1967-05-05 1968-02-20 Abcor Inc Isothermal-liquid-liquid permeation separation systems
DE3526755A1 (de) 1985-07-26 1987-01-29 Metallgesellschaft Ag Verfahren zur trennung fluider gemische
US5013447A (en) * 1989-07-19 1991-05-07 Sepracor Process of treating alcoholic beverages by vapor-arbitrated pervaporation
JPS63162002A (ja) * 1986-12-25 1988-07-05 Mitsui Eng & Shipbuild Co Ltd 有機液体の脱水装置
JPH0422423A (ja) * 1990-05-16 1992-01-27 Exxon Res & Eng Co 各連続するリテンテート段階において次第に高い真空、高い温度またはその両方で運転される多段パーベーパレーション法
US5256296A (en) * 1990-12-28 1993-10-26 Membrane Technology & Research Membrane process and apparatus for removing a component from a fluid stream
US5071451A (en) * 1990-12-28 1991-12-10 Membrane Technology & Research, Inc. Membrane process and apparatus for removing vapors from gas streams
MY111204A (en) * 1993-02-26 1999-09-30 Mitsubishi Chem Ind Apparatus and method for separating a liquid mixture
JPH07232026A (ja) * 1994-02-21 1995-09-05 Japan Synthetic Rubber Co Ltd 混合ガスからの低分子量有機化合物の回収方法
CA2212835C (en) 1996-08-14 2005-03-15 Bend Research, Inc. Vapor permeation system
US6273937B1 (en) * 2000-03-29 2001-08-14 Trans Ionics Corporation Membrane pervaporation and vapor permeation system
US7732173B2 (en) * 2005-08-03 2010-06-08 Membrane Technology And Research, Inc. Ethanol recovery process
EP1762295A1 (en) * 2005-09-12 2007-03-14 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Pervaporation process and apparatus for carrying out same
EP1925355A1 (en) * 2006-10-31 2008-05-28 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Membrane distillation method for the purification of a liquid
US8128826B2 (en) * 2007-02-28 2012-03-06 Parker Filtration Bv Ethanol processing with vapour separation membranes
US8002953B2 (en) * 2007-07-13 2011-08-23 Amt International Inc. Low-energy extractive distillation process for dehydration of aqueous ethanol
US20090246848A1 (en) * 2008-04-01 2009-10-01 Gaetan Noel Process and apparatus for dewatering cellulosic fermentation products

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821629A (ja) 1981-07-29 1983-02-08 Showa Denko Kk 無水エタノ−ルの製造方法
JPS5895523A (ja) * 1981-11-30 1983-06-07 Kuraray Co Ltd 混合液体分離方法
JPH01155928A (ja) * 1987-12-10 1989-06-19 Hitachi Zosen Corp 有機物・水系混合溶液の濃縮・脱水装置
JP2808479B2 (ja) 1990-07-02 1998-10-08 正司 浅枝 耐酸性複合分離膜の製造方法
JPH0531333A (ja) * 1990-12-27 1993-02-09 Mitsubishi Kasei Eng Co 混合液体分離方法
JPH09103654A (ja) * 1995-10-13 1997-04-22 Nok Corp 有機塩素化合物のそれを含む水溶液からの分離方法
JP2005161187A (ja) * 2003-12-02 2005-06-23 Ube Ind Ltd ガス分離回収装置及び分離回収方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2230003A4

Also Published As

Publication number Publication date
JP2009165994A (ja) 2009-07-30
US8496806B2 (en) 2013-07-30
BRPI0905074A2 (pt) 2015-07-07
EP2230003A1 (en) 2010-09-22
CA2699729C (en) 2013-12-10
EP2230003A4 (en) 2012-04-11
JP5484677B2 (ja) 2014-05-07
US20100206789A1 (en) 2010-08-19
CA2699729A1 (en) 2009-07-23

Similar Documents

Publication Publication Date Title
JP5484677B2 (ja) 脱水装置
JP5308022B2 (ja) 脱水装置及び方法
JP6196807B2 (ja) 水溶性有機物の濃縮方法及び水溶性有機物の濃縮装置
EP1762295A1 (en) Pervaporation process and apparatus for carrying out same
JP4427572B2 (ja) 脱水装置
US8142662B2 (en) Dehydrating system and method for control of spare membrane unit
JP2009160482A (ja) 脱水システム及び脱水方法
JP5758096B2 (ja) 脱水装置
US9149769B2 (en) Dehydration system and dehydration method
US8858798B2 (en) Dehydration method
CA2662314C (en) Membrane container
US9339767B2 (en) Membrane container used in dehydrator
JP2013240795A (ja) 脱水システム及び脱水方法
JP2008086972A (ja) 脱水システム及び脱水方法
JP5342134B2 (ja) 脱水方法
JP2010000507A (ja) 脱水装置、脱水システム及び脱水方法
WO2016024580A1 (ja) 分離方法及び分離装置
EP2263783B1 (en) Membrane system for the dehydration of solvents
JP2018154602A (ja) アルコールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09702932

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2699729

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12678673

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2009702932

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009702932

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0905074

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100331