WO2009084411A1 - 高耐熱性の断熱吸音材 - Google Patents

高耐熱性の断熱吸音材 Download PDF

Info

Publication number
WO2009084411A1
WO2009084411A1 PCT/JP2008/072749 JP2008072749W WO2009084411A1 WO 2009084411 A1 WO2009084411 A1 WO 2009084411A1 JP 2008072749 W JP2008072749 W JP 2008072749W WO 2009084411 A1 WO2009084411 A1 WO 2009084411A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
fiber
flame
absorbing material
retardant
Prior art date
Application number
PCT/JP2008/072749
Other languages
English (en)
French (fr)
Inventor
Katsuji Aoki
Hideo Nakamura
Masaaki Takeda
Original Assignee
Fuji Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Corporation filed Critical Fuji Corporation
Priority to JP2009547980A priority Critical patent/JP5530184B2/ja
Publication of WO2009084411A1 publication Critical patent/WO2009084411A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/14Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by a layer differing constitutionally or physically in different parts, e.g. denser near its faces
    • B32B5/142Variation across the area of the layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2471/00Floor coverings
    • B32B2471/04Mats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft

Definitions

  • the present invention relates to a heat insulating sound absorbing material that meets new requirements for severe aircraft by having high heat insulating properties and sound absorbing properties, and in particular, to a heat insulating sound absorbing material that can maintain high heat insulating and sound absorbing effects for a long period of time because the settling in the thickness direction is small. .
  • the sound absorbing material disclosed in Japanese Patent Application Laid-Open No. 2006-138935 includes a skin material made of a fiber sheet containing a heat-resistant organic fiber having a heat melting temperature or a thermal decomposition temperature of 370 ° C. or higher, and a similar heat-resistant organic fiber.
  • a non-woven fabric having a thickness of 2 to 100 mm is laminated.
  • Japanese Patent Application Laid-Open No. 2005-335279 discloses that it is an easily moldable sound absorbing material used for interiors of automobiles, trains, airplanes, etc., and in the sound absorbing material, a skin material is laminated on one side of a nonwoven fabric. Contains a resin binder. Although this sound absorbing material is effective in terms of formability, it is the same as described above in that an organic fiber non-woven fabric is used, and it is impossible to meet the new requirements for non-woven fabric related to aircraft.
  • the present invention has been proposed in order to improve the problem of high-temperature thermal insulation related to conventional sound-absorbing materials, and since the settling in the thickness direction is small, high thermal insulation and sound-absorbing effects can be demonstrated for a long period of time, and new demands for severe aircraft It aims at providing the heat insulation sound-absorbing material which can meet a specification.
  • Another object of the present invention is to provide an adiabatic sound-absorbing material for aircraft that has excellent sound-absorbing performance, particularly in the low-frequency range, and is highly safe due to high heat resistance and water repellency against fire spread and penetration flame.
  • the heat insulating sound-absorbing material according to the present invention comprises 30 to 80% highly heat-resistant inorganic fibers that maintain high-temperature strength at 1000 ° C. or higher, 0 to 50% heat-resistant organic fibers, and 20 to 40% low-melting organic fibers. Is a mat material that is uniformly blended.
  • a thin web such as card wrap is formed, and the whole is matted by heat-treating a bulky cotton-like material obtained by vertically arranging the thin web in the sheet thickness direction.
  • a flame-retardant or non-combustible sheet is bonded to at least one side of the mat material.
  • the heat insulating sound-absorbing material of the present invention does not open a hole in the mat material in the combustion test in which the flame of the gas burner is contacted for 5 minutes, and can hold the hand on the back surface of the mat during the combustion test.
  • the high heat-resistant inorganic fiber is a single fiber or a mixture of silica fiber, S glass fiber, silicon carbide fiber, boron fiber, alumina silicate fiber, alkali titanate fiber, and ceramic fiber. Silica fibers are preferred. Moreover, about the heat insulation sound-absorbing material of this invention, it is also possible to process each raw material fiber and a flame-retardant or incombustible sheet with a water repellent.
  • the air permeability of the flame-retardant or non-combustible sheet is preferably less than 0.1 cm 3 / cm 2 / sec.
  • the flame retardant or non-flammable sheet may be bonded to the mat material with a resin containing a flame retardant component, and the flame retardant or non-flammable sheet may be provided with a flame retardant resin.
  • the mat material it is also possible to apply a flame retardant resin to at least a surface where no flame retardant or non-flammable sheet exists.
  • FIG. 1 In order to obtain the heat insulating sound-absorbing material 1 (FIG. 1) of the present invention, as shown in FIG. 2, a predetermined amount of high heat-resistant inorganic fibers 2 and heat-resistant organic fibers are obtained by carding.
  • a thin leaf web 7 is formed from the fibers 3 and the low-melting organic fibers 5 and further vertically arranged in a zigzag shape to process the bulky cotton-like material 8 (FIG. 3).
  • the cotton-like material 8 is matted by heat treatment, and a flame-retardant or non-combustible sheet 12 is further adhered to the obtained mat member 10 (FIG. 4).
  • the high heat-resistant inorganic fiber 2 that is the main component of the web 7 needs to be 30 to 80% by weight of the total amount. If the high heat-resistant inorganic fiber 2 is less than 30% by weight of the total amount, the other components are organic fibers 3 and 5, so that the heat resistance, heat insulation and sound absorption are not remarkably increased.
  • the advantage over the sound-absorbing material for automobiles or automobiles is small, making it unsuitable for aircraft use.
  • the heat resistance, heat insulation and sound absorption are remarkably higher than before, and it is suitable for conforming to the new required specifications of aircraft and is generally economically advantageous.
  • the mat member 10 lacks flexibility, and it becomes easy to sag by continued use.
  • the highly heat-resistant inorganic fiber 2 needs to maintain high-temperature strength at 1000 ° C. or higher.
  • S glass is 1493 ° C. and E glass is 1121 ° C., but E glass fiber is about 800 ° C., and the high-temperature strength rapidly decreases. Therefore, only S glass fiber can be used among the glass fibers. is there.
  • metal fibers such as nickel fibers, tungsten fibers, and titanium fibers and carbon fibers can be used in terms of high heat melting temperatures
  • metal fibers and carbon fibers generally have a high thermal conductivity and thus have low heat insulation properties. Become. Furthermore, stainless steel fibers become brittle when heated to 700-800 ° C for a long time even if the melting point is 1050 ° C.
  • suitable high heat-resistant inorganic fibers 2 include silica fibers, S glass fibers, silicon carbide fibers, boron fibers, alumina silicate fibers, alkali titanate fibers, and ceramic fibers alone or as a mixture. If metal fibers are part of highly heat-resistant inorganic fibers, there is a possibility that they can be added as raw materials.
  • the high heat resistant inorganic fiber 2 is preferably a silica fiber from the viewpoint of cost, heat resistance and heat insulation.
  • Silica fibers are generally also called silica glass fibers, and are fired after removing soluble components and organic components from the fibrils.
  • short fibers such as E glass, soda silica glass, borosilicate glass, and soda lime glass are manufactured as a silica fiber by a blow method, and the short fiber is acid-treated to elute soluble components and then fired.
  • the silica skeleton is formed, for example, the silica content reaches about 95% or more.
  • E glass fiber which is a boron silicate glass having an alkali content of 1% or less, is preferable and inexpensive in terms of cost and physical properties as the silica fiber.
  • the heat-resistant organic fiber 3 is 0 to 50% by weight, preferably 15 to 30% by weight of the total amount.
  • the heat-resistant organic fiber 3 may not be used in the case where a relatively large amount of organic material fiber is added as the high heat-resistant inorganic fiber 2 or a relatively large amount of low-melting organic fiber 5 is added. .
  • the heat-resistant organic fiber 3 is added for imparting flexibility and flexibility to the heat-insulating sound-absorbing material 1, and the degree of card formation due to the card passing property is improved, thereby improving the raw material yield.
  • the heat-resistant organic fiber 3 desirably has a melting point or thermal decomposition temperature of 250 ° C. or higher so that the heat insulating sound-absorbing material 1 maintains a predetermined heat resistance.
  • the heat-resistant organic fiber 3 is added in an amount of 15 to 30% by weight based on the total amount, the heat insulating sound-absorbing material 1 can be imparted with a good balance of flexibility, flexibility and heat resistance.
  • the heat-resistant organic fiber 3 includes meta-aramid fiber, PTFE (polytetrafluoroethylene) fiber, PPS (polyphenylene sulfide) fiber, polyether ether ketone fiber, 66 nylon fiber, polyester fiber, heterocyclic fiber, polyacrylonitrile flame resistance
  • PTFE polytetrafluoroethylene
  • PPS polyphenylene sulfide
  • polyether ether ketone fiber 66 nylon fiber
  • polyester fiber polyacrylonitrile flame resistance
  • An example is a modified fiber.
  • the non-melting heat resistant organic fiber 3 include polyimide fiber, poly-p-phenylene terephthalamide fiber, poly-p-benzamide fiber, and copolymerized aramid fiber. These fibers may be in the form of a composite fiber or a mixed fiber. Furthermore, if this organic fiber is a highly crimped fiber or a latent crimped fiber, a more bulky heat insulating sound absorbing material can be obtained.
  • the thin web 7 further contains 20 to 40% by weight of the organic fiber 5 having a low melting point.
  • the organic fiber is melted by the heat treatment in the next step to achieve matting of the cotton-like material 8. Need to be performed at a high temperature. If the organic fiber 5 having a low melting point is less than 20% by weight, it becomes difficult to obtain a mat material 10 that is flexible and flexible. On the other hand, if it exceeds 40% by weight, the heat resistance is lowered and the heat insulation test is performed. Smoke and gas are likely to be generated, and the heat resistance is reduced, making it difficult to meet the new requirements for aircraft.
  • the low melting point organic fiber 5 is generally a thermoplastic fiber such as polyester, polypropylene or acrylic having a melting point of about 110 to 150 ° C. or a composite fiber thereof.
  • the composite fiber of the low melting point organic fiber and the high melting point organic fiber is a two-layer type such as a core-sheath type or a parallel type, and only the low melting point organic fiber 5 is melted at the heating temperature during the heat treatment, Since the organic fiber having a high melting point at that temperature can maintain its shape, matting of the cotton-like material 8 can be reliably achieved by maintaining the original shape of the fiber itself.
  • the organic fibers 3 and 5 are previously treated with a flame retardant, it is possible to improve the flame retardancy of the heat insulating sound absorbing material 1, particularly the flame spreadability on the surface of the heat insulating sound absorbing material.
  • medical agent used by this flame-retardant process is not specifically limited,
  • group, can be used, and it is preferable to use an aqueous thing from the point of workability.
  • a flame retardant treatment for example, a commercially available aqueous phosphorus flame retardant is applied in a predetermined amount by spraying or the like and then sufficiently dried, and after passing through a card machine, the thin leaf web 7 is formed. Let At this time, if the organic fibers 3 and 5 are not sufficiently dried, the card property is deteriorated.
  • a flame-retardant resin may be applied to one or both sides of the obtained cotton-like material 8.
  • Each raw fiber can be pre-treated with a water repellent and then carded on the thin web 7. This water repellent treatment may be performed simultaneously with the flame retardant treatment. If the raw material fibers are subjected to a water repellent treatment in advance, a bulky material can be obtained as compared with the case where the cotton-like material 8 is subjected to a water repellent treatment later.
  • the water repellent used here is not particularly limited, and water-based or solvent-based fluorine-based or silicone-based water repellents can be used, and water-based ones are preferable from the viewpoint of workability.
  • the raw fiber When the raw fiber is subjected to water repellent treatment, for example, a predetermined amount of commercially available water-based fluorine-based water repellent is applied by spraying or the like, and then the raw material fiber is sufficiently dried and passed through a card machine to complete the web. At this time, it should be noted that if the raw material fibers are not sufficiently dried, the card property becomes poor.
  • water repellent treatment for example, a predetermined amount of commercially available water-based fluorine-based water repellent is applied by spraying or the like, and then the raw material fiber is sufficiently dried and passed through a card machine to complete the web. At this time, it should be noted that if the raw material fibers are not sufficiently dried, the card property becomes poor.
  • the obtained cotton-like material 8 or the mat material 10 may be water repellent before or after the heat treatment for matting, and the water repellent used is inorganic and / or Or it is an organic commercial item, for example, is an aqueous fluororesin.
  • This water repellent process may be performed by spraying, roll coating or dipping.
  • This water repellent treatment can be performed simultaneously with the above flame retardant treatment, and the water repellent treatment can be similarly performed on the flame retardant or non-flammable sheet 12 (FIG. 1).
  • the raw fiber is carded using a known card machine so as to form a thin web 7 as shown in FIG. 2, and the thin web 7 is vertically arranged while being folded back in the sheet thickness direction.
  • a bulky cotton-like material 8 as shown is formed.
  • the vertically arranged cotton-like material 8 may be produced directly from raw fibers by the same card machine or may be formed from the thin web 7 by another processing machine.
  • the basis weight of the thin web 7 is preferably as low as possible, but is usually set to 15 to 40 g / m 2 .
  • the cotton-like material 8 is fed into a known heat treatment apparatus such as a heating furnace and heat-treated at 150 to 200 ° C. for 2 to 4 minutes.
  • a heating furnace for example, the whole is matted by allowing hot air to penetrate the cotton-like material in the vertical direction while regulating the thickness of the cotton-like material 8 with a vertically arranged net conveyor.
  • the low melting point organic fiber 5 in the cotton-like material 8 is melted and fused to the other fibers 2 and 3 so that the whole becomes a mat shape.
  • the obtained mat member 10 (FIG. 4) preferably has a thickness of 15 to 70 mm and a basis weight of 200 to 500 g / m 2 .
  • the mat member 10 may be further subjected to a flame retardant treatment or a water repellent treatment as described above.
  • a flame-retardant or non-combustible sheet 12 is bonded to one surface or both surfaces of the mat member 10 with a liquid resin or the like using a heat treatment apparatus 14 as illustrated in FIG.
  • the mat member 10 is placed on the conveyor 16 and conveyed to the heat treatment apparatus 14, and the flame-retardant or non-combustible sheet 12 is fed into the tray 18 containing the liquid resin 17 and the liquid resin 17 is attached to the surface. It is carried into the heat treatment apparatus 14.
  • the flame-retardant or non-combustible sheet 12 is placed on the conveyor 20, the mat 10 is further disposed thereon, and the heat treatment apparatus 14 is passed by the conveyor 20. During this passage, the flame-retardant or non-combustible sheet 12 is adhered to the mat material 10 to obtain the heat insulating sound-absorbing material 1.
  • the flame-retardant or non-combustible sheet 12 may be bonded to the mat member 10 after the heat treatment, and further heat-treated at 150 to 200 ° C. for 3 to 7 minutes in the heat treatment apparatus 14. Further, the flame-retardant or non-combustible sheet 12 can be adhered to the cotton-like material 8 before heat treatment, and then heat-treated at 150 to 200 ° C. for 4 to 8 minutes together with the cotton-like material 8.
  • the heat-insulating sound-absorbing material 1 has increased sound-absorbing properties and heat-insulating properties due to the bonding of the flame-retardant or non-combustible sheet 12, and the fiber powder is less likely to fall when cut or bent during construction on an airplane or train. Work becomes easy.
  • the flame-retardant or non-combustible sheet 12 preferably has an air permeability of less than 0.1 cm 3 / cm 2 / second, and when the air permeability is 0.1 cm 3 / cm 2 / second or more, the heat insulating property of the heat insulating sound-absorbing material 1 In addition, sound absorption tends to be lower than a desired value.
  • the flame retardant or non-flammable sheet 12 is not particularly limited as long as it is a flame retardant or non-flammable sheet, and is a synthetic paper, wet nonwoven fabric, spunlace nonwoven fabric, felt, woven fabric or porous material classified as flame retardant or non-flammable.
  • the material is meta-aramid fiber, PTFE fiber, polyacrylonitrile-based flameproof fiber, silica fiber, S glass fiber, ceramic fiber, etc., or a material film of these, and a composite containing two or more kinds of fibers It may be a material. Further, nonflammable paper or flame retardant paper containing aluminum hydroxide or phosphoric acid may be used.
  • the adhesive liquid resin 17 contains a flame-retardant component because flame retardancy can be imparted simultaneously with the adhesion to the mat 10.
  • the flame retardant agent contained in the liquid resin 17 is not particularly limited, and an aqueous dispersion of a flame retardant such as a phosphorus nitrogen type can be used, and an aqueous type is generally used from the viewpoint of workability.
  • the main component of the liquid resin 17 may be a polyester resin or an acrylic resin.
  • liquid resin 17 a liquid flame-retardant resin such as a silicon oxide resin or a silica acrylic resin, a heat-resistant or flame-resistant resin thermal adhesive film, or a water repellent process
  • aqueous dispersion of resin to be applied / impregnated may be used for adhesion of the sheet 12.
  • a flame-retardant resin can be applied to the flame-retardant or non-flammable sheet 12 separately from the adhesive liquid resin 17. Further, regarding the mat member 10 (FIG. 4), a flame retardant resin may be applied to the surface 22 where the flame retardant or non-flammable sheet 12 does not exist.
  • the resin binder used is the same as described above, and is applied by spraying, roll coating or dipping.
  • the amount of the flame retardant resin applied is 0.5 to 50 g / m 2 , preferably 2 to 20 g / m 2 .
  • the applied flame retardant resin is dried by a heat treatment in the next step.
  • the obtained heat-absorbing sound-absorbing material 1 finally has a thickness of 10 to 50 mm. If the thickness is less than 10 mm, the thickness is too thin, so the interior work on airplanes and trains becomes complicated. If the thickness exceeds 50 mm, the insulation sound-absorbing material 1 becomes difficult to bend because it becomes too thick. The work is still difficult.
  • the heat insulating sound-absorbing material 1 can be further subjected to a surface smoothing process by partial needle punching, hair burning or calendering.
  • the heat-absorbing sound-absorbing material 1 is easy to be deformed because the fibers in the mat material 10 are arranged in the vertical direction, so that it is not bulky even if it is bulky, and the density is relatively small even if it is thick.
  • the heat insulating sound-absorbing material 1 can be adapted to new requirements for nonwoven fabrics related to more severe aircraft.
  • the fire resistance (specified in FAR 25.856 (b)) of a newly required mat material used for aircraft has a back surface heat amount of 2 W / cm 2 or less in 4 minutes, and the heat resistance temperature is not specified. In order to satisfy the predetermined condition in .856 (b), it is necessary to endure at about 1100 ° C. for 4 minutes.
  • the heat insulating sound-absorbing material according to the present invention is bulky because the thin webs are vertically arranged in a zigzag shape, and the main component of the mat material is a highly heat-resistant inorganic fiber, so that the heat insulating effect and sound absorbing effect are very excellent, Since there is little sag, heat insulation and sound absorption can be maintained over a long period after installation.
  • the heat-absorbing sound-absorbing material according to the present invention is excellent in sound-absorbing characteristics, particularly in a low-frequency range, and is excellent in terms of heat resistance against fire spread and penetration flame in addition to water repellency.
  • the heat insulating sound-absorbing material according to the present invention can be used as a sound-absorbing material for various automobiles and railway vehicles, and also conforms to new requirements for new nonwoven fabrics related to aircraft.
  • the heat-insulating sound-absorbing material according to the present invention has higher safety than before when attached to automobiles, railway vehicles, airplanes, and the like.
  • the heat-absorbing sound-absorbing material of the present invention can be expected to be delivered in large quantities for use in aircraft, and is fully applicable not only to Japanese JIS standards but also to high-speed railway vehicles in other countries that comply with British standards. it can.
  • the heat-absorbing sound-absorbing material of the present invention is provided with flexibility by adding relatively soft heat-resistant organic fibers to relatively rigid and high-heat-resistant inorganic fibers. It is easy to fill the inside.
  • low-melting organic fibers are uniformly mixed and fused at the time of heat treatment, so that the whole can be processed into a uniform mat material only by heat treatment, and the thin webs are vertically arranged in a zigzag shape. Therefore, even if it is bulky, it does not get struck at the time of storage, and the commercial value is not impaired by long-term storage.
  • the heat insulating sound absorbing material of the present invention is thick, it is flexible and easy to handle, and even when it is cut or bent at the time of construction, there is little fiber dropout, and the environment for interior work is hardly deteriorated.
  • silica fiber is used as the high heat-resistant inorganic fiber 2
  • meta-aramid fiber is used as the heat-resistant organic fiber 3
  • core-sheath type low-melting polyester fiber is used as the low-melting organic fiber 5.
  • Safmet and Toray were used. These fibers are dried so that the water content becomes 2% or less by heating after applying a water-based fluorinated water repellent by dipping so that the amount attached to the fibers after drying is 2%. did.
  • 50% by weight of these silica fibers treated with chemicals, 20% by weight of meta-aramid fiber, and 30% by weight of low melting point polyester fiber were blended.
  • a thin web 7 having a basis weight of 20 g / m 2 by carding After forming a thin web 7 having a basis weight of 20 g / m 2 by carding, it was folded in the vertical direction as shown in FIG. 3 and heat-treated at 180 ° C. for 3 minutes in an oven while maintaining the folded shape.
  • a hard cotton-like mat member 10 having a basis weight of 200 g / m 2 was obtained.
  • One side of the resulting mat member 10 is provided with an aqueous dispersion of a phosphorous nitrogen-based flame retardant containing a polyester resin as a binder so as to have a weight of 40 g / m 2 after drying by spraying, followed by heat treatment at 180 ° C. for 5 minutes. did.
  • the flame retardant sheet 12 20 g / m 2 of the same aqueous dispersion as described above is sprayed on the surface of a meta-aramid paper having a basis weight of 40 g / m 2 (the air permeability of the measurement lower limit value is 0.3 cm 3 / cm 2 / sec or less). Then, it was bonded to the non-spray surface of the hard cotton mat material 10 and heat treated at 180 ° C. for 3 minutes.
  • the obtained heat-absorbing and sound-absorbing material 1 passed the heat resistance and the water repellency of 10.4 g. Further, the sound absorption is as high as 95% at 1 kHz and as high as 60% even in the low frequency range of 500 Hz.
  • An aqueous dispersion of a phosphorous nitrogen-based flame retardant containing a polyester resin as a binder is applied to one side of the hard cotton mat material 10 obtained in Example 1 so that the weight after drying by spraying is 20 g / m 2. Then, heat treatment was performed at 180 ° C. for 5 minutes. Next, meta-aramid paper is used as the flame-retardant sheet 12, and after the meta-aramid paper is immersed in the same phosphorous nitrogen-based flame retardant aqueous dispersion as in Example 1 in the heat treatment apparatus 14 as shown in FIG. Prior to drying, the non-spray treated surface of the mat material 10 was superposed on the meta-aramid paper and dried at 180 ° C. for 5 minutes, so that the meta-aramid paper was bonded to the mat material 10.
  • the obtained heat-absorbing and sound-absorbing material 1 has passed heat resistance and 9.5 g of water repellency. Further, the sound absorption is as high as 99% at 1 kHz and as high as 65% even in the low frequency range of 500 Hz.
  • Comparative Example 1 An aqueous dispersion of a phosphorous nitrogen-based flame retardant containing a polyester resin as a binder was applied to both sides of the hard cotton mat material 10 obtained in Example 1 so that the weight after drying by spraying was 20 g / m 2. Then, heat treatment was performed at 180 ° C. for 5 minutes.
  • the heat insulating sound-absorbing material obtained passed the heat resistance, but the water repellency was 25 g and failed. Also, the sound absorption is relatively low at 70% at 1 kHz and 35% even at 500 Hz.
  • An aqueous dispersion of a phosphorous nitrogen-based flame retardant containing a polyester resin as a binder is applied to one side of the hard cotton mat material 10 obtained in Example 1 so that the weight after drying by spraying is 20 g / m 2. Then, heat treatment was performed at 180 ° C. for 5 minutes. Next, ceramic paper (manufactured by Isolite Kogyo) is used as the incombustible sheet 12 and is superposed on the non-spray treated surface of the mat member 10 through a heat-bonded nonwoven fabric made of copolymer nylon and treated at 180 ° C. for 2 minutes. The ceramic paper was bonded to the mat material 10.
  • the surface of the ceramic paper was sprayed with 20 g / m 2 of a mixed solution of a fluorine-based water repellent and a phosphorus-based flame retardant aqueous dispersion.
  • the heat insulation, water repellency and sound absorption of the heat insulating sound absorbing material 1 obtained are all acceptable levels.
  • non-combustible sheet 12 non-combustible paper mixed with aluminum hydroxide was used instead of meta-aramid paper, and other than this was processed in the same manner as in Example 2 to obtain the heat insulating sound-absorbing material 1.
  • the heat insulating sound-absorbing material 1 thus obtained has acceptable levels of heat resistance, water repellency, and sound absorption.
  • the heat resistance was evaluated by placing a mat material sample having a size of 10 cm square or more on a horizontal base, the gas burner flame being 50 to 80 mm in height, The height of the gantry or gas burner is adjusted so that the portion of this flame hits the lower surface of the sample on the gantry. A flame of a gas burner is applied to the center of the mat material sample on the gantry for 5 minutes. If there is no hole in this 5 minutes, the heat resistance is passed, and if any hole is opened, it is rejected.
  • the water repellency was evaluated in accordance with ASTM C1511-04. A 25 cm square sample was submerged in water for 15 minutes, taken out and allowed to stand for 1 minute. Otherwise, it is rejected.
  • the sound absorption test is performed according to JIS A11455-1 using a system using a 4206 type impedance measuring tube (Spectris).

Abstract

高い断熱性と吸音性を有することで厳しい航空機の新規要求仕様に適合し、特に厚み方向のヘタリが小さいので高い断熱および吸音効果を長期間維持できる断熱吸音材を提供する。 高温強度を1000℃以上で維持する高耐熱性の無機繊維30~80%と、耐熱性の有機繊維0~50%と、低融点の有機繊維20~40%とを均一に混綿することにより、カードラップなどの薄葉ウエブを形成し、該薄葉ウエブをシート厚み方向に折り返しながら縦配列して得た嵩高い綿状素材を熱処理することによって全体をマット化し、得たマット材(10)の少なくとも片面に難燃または不燃シート(12)を貼り合わせる。

Description

高耐熱性の断熱吸音材
 本発明は、高い断熱性と吸音性を有することで厳しい航空機の新規要求仕様に適合する断熱吸音材に関し、特に厚み方向のヘタリが小さいので高い断熱および吸音効果を長期間維持できる断熱吸音材に関する。
 車両内部の断熱および吸音のために壁内部に設置する断熱材は、既に数多く提案されている。例えば、特公昭63-19622号に開示するように、ガラスウールやロックウールに少量の有機性樹脂を含浸し、板状に成形した断熱材が鉄道車両用として使用されていた。この断熱材は、含浸させる樹脂が可燃性であると燃焼時に有毒ガスを発生し、しかも軽量でないので車両重量が増加しやすい。このため、ガラスウールの積層体を炭素繊維のフェルトシートで包み込んだり、短繊維のセラミック繊維ウールの積層体をガラスクロスで包み込んで適当にキルティング縫製した断熱材も提案されている。しかし、これらの断熱材は、自由裁断ができないので鉄道車両内部での施工が容易でなく、且つ軽量でないので車両重量が増加する。しかも、前者の断熱材は施工作業時に粉塵が発生して作業環境が悪化しやすく、後者の断熱材は反発弾性が低いために貼着壁面が不均一になりやすい。
 この点を改良した実公平6-47715号では、アクリル焼成の耐炎繊維ラップをニードルパンチングし、さらにアクリル焼成耐炎繊維のニードルフェルトまたは織布からなる難燃シートを貼り合わせている。この吸音材は、裁断および屈曲ができるので鉄道車両内部での施工が容易であり、比較的軽量であるので車両の重量増加が少ない。この断熱材は、施工作業時に粉塵が発生することもなく、高耐熱性が必要でない新幹線車両を含む日本の鉄道車両において現在採用されている。
 一方、自動車用の吸音材には、従来、ガラスウールの表面にアルミシートを貼着したものを用いていた。この吸音材は、エンジンルームにおいて相当に高温になる排気マフラーの付近に設置すると、高温には耐えても吸音性が不十分であった。このため、特開昭59-227442号では、高軟化点を有する短繊維を合成繊維の不織布に散布した後にニードリングを施し、得た耐熱性の表皮材を接着剤を介してガラスウールの表面に積層し、さらに加熱・加圧で成形している。この吸音材は、仕様繊維の融点がいずれも300℃以下であるため、高温耐熱性が要求されるエンジンルームに用いるには表皮材の耐熱性が不足する。また、特開2006-138935号に開示の吸音材は、熱溶融温度または熱分解温度が370℃以上の耐熱性有機繊維を含有する繊維シートからなる表皮材と、同様の耐熱性有機繊維を含有する厚さ2~100mmの不織布とを積層している。
特公昭63-19622号公報 実公平6-47715号公報 特開昭59-227442号公報 特開2006-138935号公報 特開2005-335279号公報
 断熱性の吸音材を航空機に用いる場合には、事故が発生した際の被害人数の多さおよび危険性の高さを考慮して、一般の鉄道車両用または自動車用の吸音材に比べて、耐熱・断熱性に対する要求が非常に厳しい。航空機用の吸音材は、従来、主たる不織布が通常のガラスウールやロックウールまたは耐熱性有機繊維からなり、該不織布の表面に積層する表皮材についても同様の素材であった。このため、この吸音材は、断熱温度と耐熱性の点で航空機に関する不織布の要求仕様に適合させることは困難であった。
 一方、特開2005-335279号は、自動車、電車、航空機などの内装に用いる易成形性の吸音材であると開示し、該吸音材では不織布の片面に表皮材が積層され、この表皮材に樹脂バインダーを含有している。この吸音材は、成形性の点では有効であっても、有機繊維の不織布を用いる点では前記と同様であり、航空機に関する不織布の新規要求仕様に適合させることは不可能である。
 本発明は、従来の吸音材に関する高温断熱性の問題点を改善するために提案されたものであり、厚み方向のヘタリが小さいので高い断熱および吸音効果を長期間発揮でき、厳しい航空機の新規要求仕様に適合しうる断熱吸音材を提供することを目的としている。本発明の他の目的は、特に低音域における吸音性能が優れ、延焼、貫通炎に対する高い耐熱性および撥水性によって安全性の高い航空機用の断熱吸音材を提供することである。
 本発明に係る断熱吸音材は、高温強度を1000℃以上で維持する高耐熱性の無機繊維30~80%と、耐熱性の有機繊維0~50%と、低融点の有機繊維20~40%とを均一に混綿したマット材である。本発明の断熱吸音材では、カードラップなどの薄葉ウエブを形成し、該薄葉ウエブをシート厚み方向に折り返しながら縦配列して得た嵩高い綿状素材を熱処理することによって全体をマット化し、得たマット材の少なくとも片面に難燃または不燃シートを貼り合わせている。本発明の断熱吸音材は、ガスバーナーの炎を5分間当接する燃焼試験においてマット材に穴が開かず、この燃焼試験の際にマット背面に手をかざすことができる。
 本発明の断熱吸音材において、高耐熱性の無機繊維は、シリカ繊維、Sガラス繊維、炭化ケイ素繊維、ホウ素繊維、アルミナシリケート繊維、チタン酸アルカリ繊維、セラミック繊維の単独または混合体であり、特にシリカ繊維であると好ましい。また、本発明の断熱吸音材について、それぞれの原料繊維および難燃または不燃シートを撥水剤で処理することも可能である。
 本発明の断熱吸音材において、難燃または不燃シートの通気度が0.1cm/cm/秒未満であると好ましい。難燃または不燃シートが、難燃成分を含む樹脂でマット材に貼り合わされてもよく、且つ難燃または不燃シートに難燃性樹脂を付与してもよい。また、マット材に関して、少なくとも難燃または不燃シートが存在しない面に難燃性樹脂を塗布することも可能である。
 本発明を図面によってさらに説明すると、本発明の断熱吸音材1(図1)を得るには、図2に例示するように、カーディングによって所定量の高耐熱の無機繊維2、耐熱性の有機繊維3および低融点の有機繊維5から薄葉ウェブ7を形成し、さらにジグザグ状に縦配列させて該ウェブから嵩高い綿状素材8(図3)に加工する。綿状素材8は、熱処理によってマット化され、得たマット材10(図4)にさらに難燃または不燃シート12を貼着する。
 本発明の断熱吸音材1に関して、ウェブ7の主成分である高耐熱の無機繊維2は、全量の30~80重量%であることを要する。高耐熱の無機繊維2は、全量の30重量%未満であると、他の成分が有機繊維3,5であるから、耐熱・断熱性および吸音性が顕著に高くならず、従来一般の鉄道車両用または自動車用の吸音材に対する優位性が小さく、航空機用として不適当になる。一方、全量の30重量%以上使用すると、耐熱・断熱性および吸音性が従来よりも顕著に高くなり、航空機の新規要求仕様に適合させるために好適であって一般的に経済的にも有利であるが、80重量%を超えるとマット材10が屈曲性を欠くことになり、且つ使用の継続でへたりやすくなる。
 高耐熱の無機繊維2は、高温強度を1000℃以上で維持することを要する。熱溶融温度について、Sガラスは1493℃およびEガラスは1121℃であるが、Eガラス繊維は約800℃で高温強度が急激に低下するので、ガラス繊維のうちでSガラス繊維だけが使用可能である。また、ニッケル繊維、タングステン繊維やチタン繊維などの金属繊維および炭素繊維は、高い熱溶融温度の点では使用可能であっても、金属繊維および炭素繊維は一般に熱伝導率が高いので断熱性が低くなる。さらに、ステンレススチール繊維は、融点が1050℃であっても700~800℃に長時間加熱すると脆化する
 したがって、好適な高耐熱性の無機繊維2として、シリカ繊維、Sガラス繊維、炭化ケイ素繊維、ホウ素繊維、アルミナシリケート繊維、チタン酸アルカリ繊維、セラミック繊維の単独または混合体が例示できる。金属繊維は、高耐熱性の無機繊維の一部としてならば、素材として添加できる可能性が残っている。
 高耐熱の無機繊維2は、コストや耐熱・断熱性の点で、シリカ繊維であると好ましい。シリカ繊維は、一般にシリカガラス繊維とも称し、原繊維から可溶性成分や有機分を除去した後に焼成する。例えば、シリカ繊維として、Eガラス、ソーダシリカガラス、ホウケイ酸ガラス、ソーダライム系ガラスなどの短繊維をブロー法によって製造し、この短繊維を酸処理して可溶性成分を溶出してから焼成してシリカ骨格を形成させると、例えばシリカ分は約95%以上に達する。一般に、シリカ繊維の原繊維として、アルカリ含有率1%以下のボロンシリケートガラスであるEガラス繊維を用いると、コストと物性の点で好ましく且つ安価である。
 薄葉ウェブ7において、耐熱性の有機繊維3は、全量の0~50重量%であり、好ましくは15~30重量%である。耐熱性の有機繊維3は、高耐熱の無機繊維2として比較的有機物的な繊維を多く加えたり、低融点の有機繊維5を比較的多く添加する場合などの場合には使用しなくてもよい。耐熱性の有機繊維3は、断熱吸音材1に屈曲性と柔軟性を付与するために添加するとともに、カード通過性などによるカード形成度合いが良くなり、原料の歩留まりが向上する。耐熱性の有機繊維3は、断熱吸音材1が所定の耐熱性を維持するために、250℃以上の融点または熱分解温度を有することが望ましく、全量の50重量%を超えると耐熱性が低下し、航空機に関する新規要求仕様に適合させるのが困難になる。耐熱性の有機繊維3は、全量の15~30重量%添加すると、断熱吸音材1に屈曲性と柔軟性および耐熱性をバランス良く付与することができる。
 耐熱性の有機繊維3には、メタアラミド繊維、PTFE(ポリテトラフルオロエチレン)繊維、PPS(ポリフェニレンサルファイド)繊維、ポリエーテルエーテルケトン繊維、66ナイロン繊維、ポリエステル繊維、ヘテロ環繊維、ポリアクリルニトリル系耐炎化繊維などが例示できる。無融点の耐熱性の有機繊維3としては、ポリイミド繊維、ポリ-p-フェニレンテレフタルアミド繊維、ポリ-p-ベンズアミド繊維、共重合アラミド繊維などが例示できる。これらの繊維は複合繊維や混合繊維の態様であってもよい。さらに、この有機繊維が高捲縮繊維または潜在捲縮繊維であると、いっそう嵩高い断熱吸音材を得ることができる。
 薄葉ウェブ7には、さらに低融点の有機繊維5を全量の20~40重量%含有させることを要する。低融点の有機繊維5をウェブ7に均一に混綿することにより、該有機繊維が次工程の熱処理によって溶融されて綿状素材8のマット化を達成するので、この熱処理は該有機繊維の融点よりも高い温度で行うことを要する。低融点の有機繊維5が20重量%未満であると、柔軟で屈曲性を有するマット材10を得ることが困難になり、一方、40重量%を超えると、耐熱性が低下するとともに断熱試験時に発煙やガスが発生しやすく、耐熱性が低下して航空機に関する新規要求仕様に適合させるのが困難になる。
 低融点の有機繊維5は、一般に、融点が110~150℃前後であるポリエステル、ポリプロピレン、アクリルのような熱可塑性繊維またはこれらの複合繊維などである。好ましくは、低融点の有機繊維と高融点の有機繊維との複合繊維が芯鞘型や並列型などの2層型であり、熱処理時の加熱温度で低融点の有機繊維5だけが溶融し、その温度で高融点の有機繊維は形状を維持できるから、繊維自体の原形が保たれることで綿状素材8のマット化を確実に達成できる。
 有機繊維3,5をあらかじめ難燃剤で処理する場合には、断熱吸音材1の難燃性、特に断熱吸音材の表面での延焼性などを改善できる。この難燃処理で用いる薬剤は、特に限定されず、リン窒素系などの難燃剤の水系ディスパージョンを用いることができ、加工性の点から水系のものを用いると好ましい。有機繊維3,5を難燃処理する際には、例えば、市販の水系のリン系難燃剤などをスプレーなどによって所定量付与した後に十分乾燥させ、乾燥後にカード機に通して薄葉ウェブ7を形成させる。この際に、有機繊維3,5の乾燥が不十分であるとカード性が悪くなる。混綿前の付与の代わりに、得た綿状素材8の片面または両面に難燃性樹脂を付与してもよい。
 それぞれの原料繊維について、あらかじめ撥水剤で処理してから、薄葉ウェブ7にカーディングすることが可能であり、この撥水処理を前記の難燃処理と同時に行ってもよい。原料繊維をあらかじめ撥水処理しておくと、綿状素材8を後から撥水処理する場合よりも嵩高な素材を得ることができる。ここで用いる撥水剤は特に限定されず、水系または溶剤系であるフッ素系やシリコーン系などの撥水剤を用いることができ、加工性の点から水系のものを用いると好ましい。原料繊維を撥水処理する際には、例えば、市販の水系のフッ素系撥水剤をスプレーなどによって所定量付与した後に、原料繊維を十分乾燥させ、カード機に通してウェブを完成させる。この際に、原料繊維の乾燥が不十分であると、カード性が不良になるので注意すべきである。
 原料繊維の予備的撥水処理の代わりに、マット化のための熱処理の前または後に、得た綿状素材8またはマット材10を撥水加工してもよく、用いる撥水剤は無機および/または有機の市販品であり、例えば、水性のフッ素樹脂である。この撥水加工は、スプレー、ロールコーティングまたはディッピングなどのいずれによって行ってもよい。この撥水加工は、前記の難燃処理と同時に行うこともでき、難燃または不燃シート12(図1)についても同様に撥水処理が可能である。
 原料繊維は、公知のカード機を用いて、図2に示すような薄葉ウェブ7になるようにカーディングされるとともに、薄葉ウエブ7をシート厚み方向に折り返しながら縦配列することにより、図3に示すような嵩高い綿状素材8を形成する。縦配列の綿状素材8は、同じカード機によって原料繊維から直接製造しても、別の加工機によって薄葉ウェブ7から形成されてもよい。薄葉ウェブ7の目付は、低いほど好ましいが、通常、15~40g/mに定める。
 ついで綿状素材8を公知の加熱炉のような熱処理装置に送り込み、150~200℃で2~4分間熱処理する。この加熱炉内では、例えば、上下配置のネットコンベアで綿状素材8の厚みを規制しながら、該綿状素材に対して熱風を垂直方向に貫通させることによって全体をマット化させる。この加熱によって綿状素材8中の低融点の有機繊維5が溶融し、他の繊維2,3に融着することで全体がマット状になる。得たマット材10(図4)は、厚さ15~70mm、目付200~500g/mであると好ましい。マット材10は、さらに難燃処理を施しても、前記のように撥水処理を行ってもよい。
 マット材10の片面または両面には、図5に例示するような熱処理装置14を用いて、難燃または不燃シート12を液状樹脂などで貼り合わせる。マット材10をコンベア16上に載置して熱処理装置14へ搬送するとともに、難燃または不燃シート12は、液状樹脂17を入れた受け皿18内へ送り込み、表面に液状樹脂17を付着させてから熱処理装置14へ搬入される。熱処理装置14内において、コンベア20上に難燃または不燃シート12を載置し、さらにその上にマット10を配置させ、コンベア20によって熱処理装置14を通過させる。この通過の間に、難燃または不燃シート12はマット材10に貼着され、断熱吸音材1を得る。
 難燃または不燃シート12は、図5のように、熱処理後のマット材10に重ね合わせて接着すればよく、さらに熱処理装置14において150~200℃で3~7分間熱処理する。また、難燃または不燃シート12は、熱処理前の綿状素材8に接着し、その後に綿状素材8とともに150~200℃で4~8分間熱処理することも可能である。断熱吸音材1は、難燃または不燃シート12の貼り合わせによって吸音性および断熱性が増大するとともに、飛行機や列車などへの施工時に裁断したり折り曲げる際に、繊維粉末の落下が少なくなるので内装作業が容易になる。
 難燃または不燃シート12は、通気度が0.1cm/cm/秒未満であることが望ましく、通気度が0.1cm/cm/秒以上になると、断熱吸音材1の断熱性および吸音性が所望値よりも低下しやすい。難燃または不燃シート12は、難燃性ないし不燃性を有するシートならば特に限定されず、難燃性ないし不燃性に分類される合成紙、湿式不織布、スパンレース不織布、フェルト、織布または多孔性フィルムなどからなり、その素材は、メタアラミド繊維、PTFE繊維、ポリアクリルニトリル系耐炎化繊維、シリカ繊維、Sガラス繊維、セラミック繊維などまたはこれらの素材フィルムであり、繊維を2種以上を含む複合材料でもよい。また、水酸化アルミニウムやリン酸などを含む不燃紙、難燃紙でもよい。
 難燃または不燃シート12に関して、接着用の液状樹脂17が難燃性成分を含んでいると、マット10への接着と同時に難燃性を付与できるので好ましい。液状樹脂17に含まれる難燃化薬剤は特に限定されず、リン窒素系などの難燃剤の水系ディスパージョンを用いることができ、加工性の点から一般に水系のものを用いる。液状樹脂17の主成分は、ポリエステル樹脂やアクリル樹脂などであればよい。液状樹脂17の代わりに、酸化ケイ素系樹脂やシリカアクリル系樹脂などの液状の難燃性樹脂を用いても、耐熱性や難燃性樹脂の熱接着フィルムを用いても、または撥水加工で塗布・含浸させる樹脂の水性ディスパージョンをシート12の接着に利用してもよい。
 難燃または不燃シート12には、接着用の液状樹脂17とは別個に、難燃性樹脂を付与することが可能である。また、マット材10(図4)に関して、難燃または不燃シート12が存在しない面22に難燃性樹脂を塗布してもよい。これらの難燃加工において、用いる樹脂バインダーは前記と同様であり、スプレー、ロールコーティングまたはディッピングなどによって施こす。塗布される難燃性樹脂の量は、0.5~50g/mであり、好ましくは2~20g/mである。塗布された難燃性樹脂は、次工程の熱処理によって乾燥する。
 得た断熱吸音材1は、最終的に厚さが10~50mmである。この厚さが10mm未満であると、厚みが薄すぎるので飛行機や列車などへの内装作業が煩雑になり、厚さが50mmを超えると、厚くなりすぎて断熱吸音材1を曲げにくくなるので内装作業がやはり難しくなる。断熱吸音材1について、さらに部分的なニードルパンチング、毛焼きまたはカレンダーによって表面平滑化処理を施すことも可能である。
 断熱吸音材1は、マット材10における繊維が縦方向に配列しているので嵩高であってもへたりにくく、分厚くても密度が比較的小さいので変形しさせやすい。断熱吸音材1は、より厳しい航空機に関する不織布の新規要求仕様にも適合させることが可能である。例えば、航空機に用いる新規要求仕様のマット材の耐火性(FAR25.856(b)に規定)は、4分間で背面熱量が2W/cm以下であり、耐熱温度は規定されていないが、FAR25.856(b)に既定の条件を充足させるため、約1100℃で4分間耐えることを要する。
 本発明に係る断熱吸音材は、薄葉ウェブがジグザグ状に縦配列されて嵩高であり且つマット材の主成分が高耐熱の無機繊維であるので断熱効果および吸音効果が非常に優れており、しかもへたりが少ないので断熱性と吸音性を取付後の長期間に亘って維持できる。本発明に係る断熱吸音材は、吸音特性特に低音域での吸音性能に良好であり、撥水性に加えて、延焼や貫通炎に対する耐熱性の点でも優れている。
 本発明に係る断熱吸音材は、各種の自動車や鉄道車両用の吸音材として使用できることはもとより、より厳しい航空機に関する不織布の新規要求仕様にも適合している。本発明に係る断熱吸音材は、自動車、鉄道車両、航空機などに取り付けた際に、従来よりも安全性が高くなる。本発明の断熱吸音材は、航空機用として多量に納品することが期待できるうえに、鉄道車両に関して日本のJIS規格だけでなく、英国規格に準拠する諸外国における高速鉄道の車両にも十分に適用できる。
 本発明の断熱吸音材は、比較的剛直な高耐熱の無機繊維に対して比較的柔軟な耐熱性の有機繊維を添加して屈曲性を付与し、全体が嵩高であるので設置の際に屈曲させて内部に充填させることが容易である。本発明の断熱吸音材では、低融点の有機繊維を均一に混綿して熱処理時に融着させることにより、熱処理だけで全体が均一なマット材に加工でき、しかも薄葉ウェブがジグザグ状に縦配列されているので嵩高であっても保管時にへたることが少なく、長期間の保管で商品価値を損なうこともない。本発明の断熱吸音材は、分厚いのに柔軟で扱いやすく、施工時に裁断したり屈曲させても繊維脱落が少なく、内装作業の環境を悪化させることも少ない。
本発明に係る断熱吸音材を概略的に拡大して示す部分側面図である。 本発明で用いる薄葉ウェブを概略的に示す側面図である。 本発明で用いる綿状素材を概略的に拡大して示す部分側面図である。 本発明で用いるマット材を概略的に拡大して示す部分断面図である。 マット材と難燃または不燃シートとの接着に用いる熱処理装置を例示する概略断面図である。
符号の説明
 1  断熱吸音材
 2  不燃性繊維
 3  耐熱性の有機繊維
 5  低融点の有機繊維
 7  薄葉ウエブ
 8  綿状素材
 10  マット材
 12  難燃または不燃シート
 次に、本発明を実施例に基づいて説明するが、本発明は実施例に限定されるものではない。以下では、各実施例において図1に示す断熱吸音材1を製造する。
 断熱吸音材1を製造するために、高耐熱の無機繊維2としてシリカ繊維を、耐熱性の有機繊維3としてメタアラミド繊維を、低融点の有機繊維5として芯鞘型低融点ポリエステル繊維(商品名:サフメット、東レ製)をそれぞれ用いた。これらの繊維は、それぞれ乾燥後の繊維への付着量で2%となるように、水系のフッ素系撥水剤をディッピングによって付与した後に、加熱により水分率が2%以下となるように乾燥処理した。次に、これらの薬剤処理したシリカ繊維50重量%と、メタアラミド繊維20重量%と、低融点ポリエステル繊維30重量%とを混綿した。
 カーディングによって、目付20g/mの薄葉ウエブ7を形成した後に、図3のように縦方向に折りたたみ配列し、折り畳み形状を保持したままでオーブンで180℃で3分間熱処理し、厚さ25mm、目付200g/mの硬綿状のマット材10を得た。得たマット材10の片面には、スプレーによって乾燥後重量で40g/mとなるようにポリエステル樹脂をバインダーとするリン窒素系難燃剤の水系ディスパージョンを付与し、ついで180℃で5分間熱処理した。
 さらに、難燃シート12として、目付40g/mのメタアラミドペーパー(測定下限値の通気度0.3cm/cm/秒以下)の表面に上記と同じ水系ディスパージョンを20g/mスプレーしてから、硬綿状のマット材10の非スプレー面と貼り合わせ、180℃で3分間熱処理した。
 得た断熱吸音材1は、耐熱性が合格するとともに撥水性も10.4gで合格している。また、吸音性は1kHzで95%と高く、500Hzの低音域でも60%と高い値になる。
 実施例1で得た硬綿状のマット材10の片面に、スプレーによって乾燥後重量で20g/mとなるように、ポリエステル樹脂をバインダーとするリン窒素系難燃剤の水系ディスパージョンを付与してから、180℃で5分間熱処理した。ついで、難燃シート12としてメタアラミドペーパーを用い、図5のような熱処理装置14において、メタアラミドペーパーを実施例1と同じリン窒素系難燃剤の水系ディスパージョンに浸漬した後に、該ディスパージョンが乾燥する前に、メタアラミドペーパー上にマット材10の非スプレー処理面を重ね合わせ、180℃で5分乾燥することにって、メタアラミドペーパーをマット材10と貼り合わせた。
 得た断熱吸音材1は、耐熱性が合格するとともに撥水性も9.5gで合格している。また、吸音性は1kHzで99%と高く、500Hzの低音域でも65%と高い値になる。
比較例1
 実施例1で得た硬綿状のマット材10の両面に、スプレーにより乾燥後重量で20g/mとなるように、ポリエステル樹脂をバインダーとするリン窒素系難燃剤の水系ディスパージョンを付与してから、180℃で5分間熱処理した。
 得た断熱吸音材は、耐熱性は合格しているが、撥水性は25gで不合格である。また、吸音性も1kHzで70%と比較的低く、500Hzでも35%と低い値である。
 実施例1で得た硬綿状のマット材10の片面に、スプレーによって乾燥後重量で20g/mとなるように、ポリエステル樹脂をバインダーとするリン窒素系難燃剤の水系ディスパージョンを付与してから、180℃で5分間熱処理した。ついで、不燃シート12としてセラミックペーパー(イソライト工業製)を用い、共重合ナイロン製の熱接着不織布を介してマット材10の非スプレー処理面と重ね合わせ、180℃で2分処理することにって、セラミックペーパーをマット材10と貼り合わせた。
 さらに、セラミックペーパーの表面に、フッ素系撥水剤とリン窒素系難燃剤の水系ディスパージョンの混合液を20g/mスプレー加工した。
 得た断熱吸音材1の耐熱性、撥水性、吸音性は、いずれも合格レベルである。
 不燃シート12として、水酸化アルミニウムを混抄した不燃紙をメタアラミドペーパーの代わりに用い、これ以外は実施例2と同様に処理して断熱吸音材1を得た。得た断熱吸音材1の耐熱性、撥水性、吸音性は、いずれも合格レベルである。
 前記の各実施例および比較例において、耐熱性の評価は、10cm角以上の大きさのマット材サンプルを水平な架台の上に置き、ガスバーナーの炎が高さ50~80mmであり、内炎の高さが10~15mmとなるように調整して、この炎の約10mmの部分が架台上サンプルの下面に当たるように架台またはガスバーナーの高さを調整する。架台上のマット材サンプルのほぼ中央に、ガスバーナーの炎を5分間当て、この5分間の間に、穴あきがなければ耐熱性は合格であり、少しでも穴が開いたら不合格である。
 撥水性の評価は、ASTM C1511-04に準拠し、25cm角のサンプルを水中に15分間沈め、それを取り出してから1分間静置した後に、その重量増加が20g以下のものを合格とし、それ以外は不合格である。
 また、吸音性のテストは、4206型インピーダンス測定管を用いるシステム(スペクトリス社製)を使用し、JIS A11405-1に準じて測定する。

Claims (8)

  1.  高温強度を1000℃以上で維持する高耐熱性の無機繊維30~80%と、耐熱性の有機繊維0~50%と、低融点の有機繊維20~40%とを均一に混綿したマット材であって、カードラップなどの薄葉ウエブを形成し、該薄葉ウエブをシート厚み方向に折り返しながら縦配列して得た嵩高い綿状素材を熱処理することによって全体をマット化し、得たマット材の少なくとも片面に難燃または不燃シートを貼り合わせており、ガスバーナーの炎を5分間当接する燃焼試験においてマット材に穴が開かず、この燃焼試験の際にマット背面に手をかざすことができる高耐熱性の断熱吸音材。
  2.  高耐熱性の無機繊維が、シリカ繊維、Sガラス繊維、炭化ケイ素繊維、ホウ素繊維、アルミナシリケート繊維、チタン酸アルカリ繊維、セラミック繊維の単独または混合体である請求項1記載の断熱吸音材。
  3.  高耐熱性の無機繊維が、シリカ繊維である請求項2記載の断熱吸音材。
  4.  それぞれの原料繊維および難燃または不燃シートが撥水剤で処理されている請求項1記載の断熱吸音材。
  5.  難燃または不燃シートの通気度が0.1cm/cm/秒未満である請求項1記載の断熱吸音材。
  6.  難燃または不燃シートが、難燃成分を含む樹脂を介してマット材に貼り合わされる請求項1記載の断熱吸音材。
  7.  難燃または不燃シートに、難燃性樹脂を付与している請求項1記載の断熱吸音材。
  8.  マット材に関して、少なくとも難燃または不燃シートが存在しない面に難燃性樹脂を塗布している請求項1記載の断熱吸音材。
PCT/JP2008/072749 2007-12-27 2008-12-15 高耐熱性の断熱吸音材 WO2009084411A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009547980A JP5530184B2 (ja) 2007-12-27 2008-12-15 高耐熱性の断熱吸音材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007335896 2007-12-27
JP2007-335896 2007-12-27

Publications (1)

Publication Number Publication Date
WO2009084411A1 true WO2009084411A1 (ja) 2009-07-09

Family

ID=40824132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072749 WO2009084411A1 (ja) 2007-12-27 2008-12-15 高耐熱性の断熱吸音材

Country Status (2)

Country Link
JP (1) JP5530184B2 (ja)
WO (1) WO2009084411A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104474A (ja) * 2011-11-14 2013-05-30 Hitachi Appliances Inc 断熱材およびこれを備えた冷凍機器
JP2014000710A (ja) * 2012-06-18 2014-01-09 Teijin Ltd 複合繊維構造体
WO2014100178A1 (en) * 2012-12-21 2014-06-26 3M Innovative Properties Company Method for fabricating water repellent thermal insulation nonwoven material and water repellent thermal insulation nonwoven material
JP2015100667A (ja) * 2013-11-28 2015-06-04 三菱電機株式会社 家電製品の吸音部材及び家電製品
JPWO2018092888A1 (ja) * 2016-11-18 2019-10-17 株式会社クラレ 吸音断熱材
CN111041713A (zh) * 2019-12-30 2020-04-21 孙福胜 一种双肩包背幅的生产工艺
KR20210118593A (ko) * 2020-03-23 2021-10-01 한국바이린주식회사 단열재 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650191A (en) * 1979-09-29 1981-05-07 Matsushita Electric Works Ltd Heat insulating material and its manufacture
JPH07113185B2 (ja) * 1990-03-23 1995-12-06 株式会社日本インサルテック 断熱吸音材
JP2606420Y2 (ja) * 1993-06-04 2000-11-06 源吾 品田 繊維マット素材
JP2005186857A (ja) * 2003-12-26 2005-07-14 Fujikoo:Kk 車両用断熱マット材
WO2008018193A1 (fr) * 2006-08-11 2008-02-14 Fuji Corporation Matériau absorbant et calorifuge doté d'une résistance à la chaleur élevée
JP2008208469A (ja) * 2007-02-23 2008-09-11 Fujikoo:Kk 高耐熱の断熱吸音材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650191A (en) * 1979-09-29 1981-05-07 Matsushita Electric Works Ltd Heat insulating material and its manufacture
JPH07113185B2 (ja) * 1990-03-23 1995-12-06 株式会社日本インサルテック 断熱吸音材
JP2606420Y2 (ja) * 1993-06-04 2000-11-06 源吾 品田 繊維マット素材
JP2005186857A (ja) * 2003-12-26 2005-07-14 Fujikoo:Kk 車両用断熱マット材
WO2008018193A1 (fr) * 2006-08-11 2008-02-14 Fuji Corporation Matériau absorbant et calorifuge doté d'une résistance à la chaleur élevée
JP2008208469A (ja) * 2007-02-23 2008-09-11 Fujikoo:Kk 高耐熱の断熱吸音材

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104474A (ja) * 2011-11-14 2013-05-30 Hitachi Appliances Inc 断熱材およびこれを備えた冷凍機器
JP2014000710A (ja) * 2012-06-18 2014-01-09 Teijin Ltd 複合繊維構造体
WO2014100178A1 (en) * 2012-12-21 2014-06-26 3M Innovative Properties Company Method for fabricating water repellent thermal insulation nonwoven material and water repellent thermal insulation nonwoven material
JP2015100667A (ja) * 2013-11-28 2015-06-04 三菱電機株式会社 家電製品の吸音部材及び家電製品
JPWO2018092888A1 (ja) * 2016-11-18 2019-10-17 株式会社クラレ 吸音断熱材
EP3540109A4 (en) * 2016-11-18 2019-11-06 Kuraray Co., Ltd. SOUND AND HEAT INSULATION
CN111041713A (zh) * 2019-12-30 2020-04-21 孙福胜 一种双肩包背幅的生产工艺
KR20210118593A (ko) * 2020-03-23 2021-10-01 한국바이린주식회사 단열재 제조방법
KR102437792B1 (ko) * 2020-03-23 2022-08-30 한국바이린주식회사 단열재 제조방법

Also Published As

Publication number Publication date
JPWO2009084411A1 (ja) 2011-05-19
JP5530184B2 (ja) 2014-06-25

Similar Documents

Publication Publication Date Title
JP4951507B2 (ja) 高耐熱の断熱吸音材
JP5208434B2 (ja) 高耐熱の断熱吸音材
JP5530184B2 (ja) 高耐熱性の断熱吸音材
US7632766B2 (en) Thermal and acoustic insulation fabric
US8062985B2 (en) Flexible composite multiple layer fire-resistant insulation structure
US6383623B1 (en) High performance insulations
US6764971B2 (en) Imaged nonwoven fire-retardant fiber blends and process for making same
JP5208448B2 (ja) 車両用マット材
JP2014224648A (ja) 防炎断熱材、及び車両用防炎断熱材
WO2009081760A1 (ja) 車両用断熱吸音材
GB2100620A (en) Fabric for use as a carpet underlay
WO2019018508A1 (en) NON-WOVEN COMPOSITE FOR HIGH TEMPERATURE APPLICATIONS REQUIRING LOW FLAMMABILITY, SMOKE AND TOXICITY
JP2008223165A (ja) 断熱吸音材
US20040117958A1 (en) High temperature needle-felts with woven basalt scrims
US11905633B2 (en) Functional nonwoven scrim for high temperature applications requiring low flammability, smoke, and toxicity
EP3990274B1 (en) Nonwoven fibrous web
JP2005186857A (ja) 車両用断熱マット材
US20220242089A1 (en) Flame-resistant foam and nonwoven fiberous web thereof
JP4827784B2 (ja) 断熱材及びその製造方法
CN112840074A (zh) 阻燃非织造纤维幅材
JP2014211215A (ja) 車両用防炎断熱材及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08866986

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009547980

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08866986

Country of ref document: EP

Kind code of ref document: A1