WO2009084307A1 - 薄膜半導体装置および電界効果トランジスタ - Google Patents

薄膜半導体装置および電界効果トランジスタ Download PDF

Info

Publication number
WO2009084307A1
WO2009084307A1 PCT/JP2008/068843 JP2008068843W WO2009084307A1 WO 2009084307 A1 WO2009084307 A1 WO 2009084307A1 JP 2008068843 W JP2008068843 W JP 2008068843W WO 2009084307 A1 WO2009084307 A1 WO 2009084307A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
semiconductor
semiconductor device
film semiconductor
organic
Prior art date
Application number
PCT/JP2008/068843
Other languages
English (en)
French (fr)
Inventor
Takahiro Ohe
Miki Kimijima
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to US12/735,129 priority Critical patent/US8304763B2/en
Priority to EP08866568A priority patent/EP2226846A4/en
Priority to CN200880122073.0A priority patent/CN101904011B/zh
Publication of WO2009084307A1 publication Critical patent/WO2009084307A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • H10K10/486Insulated gate field-effect transistors [IGFETs] characterised by the channel regions the channel region comprising two or more active layers, e.g. forming pn heterojunctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/471Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only organic materials

Definitions

  • the present invention relates to a thin film semiconductor device and a field effect transistor, and more particularly to a thin film semiconductor device and a field effect transistor in which characteristic deterioration due to heating is suppressed.
  • organic TFT organic thin film transistor
  • a coating process and a printing process For example, by applying a solution in which an organic semiconductor material is dissolved in a solvent on a substrate and drying it, an organic semiconductor thin film made of a single organic semiconductor material can be obtained. Therefore, the size of the substrate can be increased and the manufacturing cost can be reduced as compared with the conventional semiconductor device using an inorganic semiconductor material such as silicon (Si).
  • the coating and printing processes have low process temperatures, they can be formed on a plastic substrate, and are expected as flexible semiconductor devices. As such an example, there is a report that a backplane having an organic TFT provided on a plastic substrate is manufactured, and a flat panel display such as a liquid crystal display or an OLED display is manufactured using this. .
  • the thin film semiconductor device using the organic semiconductor thin film has a problem that the mobility is deteriorated by heating.
  • the mobility is deteriorated by heating.
  • it is heating in a nitrogen atmosphere, the organic semiconductor material is not oxidized, and the organic semiconductor material itself is not thermally decomposed even when heated to 180 ° C. It is known that the deterioration of mobility due to is not due to the deterioration of the organic semiconductor material itself.
  • An object of the present invention is to provide a thin film semiconductor device and a field effect transistor capable of suppressing the decrease in mobility due to heating and the characteristic deterioration due to the decrease in heat resistance.
  • a semiconductor thin film laminated on a gate electrode via a gate insulating film, and a source electrode and a drain electrode provided in contact with the semiconductor thin film at positions on both sides of the gate electrode The semiconductor thin film has a laminated structure and is characterized by including at least two semiconductor layers.
  • FIG. 1 is a cross-sectional view showing a first example of a thin film semiconductor device to which the present invention is applied. It is a cross-sectional block diagram which shows the 2nd example of the thin film semiconductor device to which this invention is applied. It is a cross-sectional block diagram which shows the 3rd example of the thin film semiconductor device to which this invention is applied. It is a cross-sectional block diagram which shows the 4th example of the thin film semiconductor device to which this invention is applied. It is a cross-sectional block diagram which shows the 5th example of the thin film semiconductor device to which this invention is applied. It is a cross-sectional block diagram which shows the 6th example of the thin film semiconductor device to which this invention is applied.
  • FIG. 1 is a SIMS profile of a semiconductor thin film produced as Example 1.
  • FIG. It is a SIMS profile of the semiconductor thin film produced as comparative example 1.
  • FIG. 10 is a SIMS profile of a semiconductor thin film produced as Example 2.
  • FIG. It is a XRD spectrum of each semiconductor thin film produced as comparative example 2, example 1, and comparative example 1, respectively.
  • It is a graph which shows the change of the mobility by the heating temperature of each thin-film transistor (field effect transistor) produced as an Example of an apparatus, and a comparative example.
  • It is a graph which shows the gate voltage Vg-drain current Id characteristic of each thin-film transistor (field effect transistor) produced as an Example of an apparatus, and a comparative example.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of a semiconductor thin film applied to the present invention.
  • the semiconductor thin film 1 shown in this figure is characterized by being a so-called semiconductor composite thin film in which at least two semiconductor layers a and a ′ are included in the laminated structure. These semiconductor layers a and a ′ may be disposed in a state of sandwiching an intermediate layer b mainly composed of a different material between the two semiconductor layers aa ′ as illustrated. In this case, the two semiconductor layers a and a ′ may be made of different materials or may be made of the same material.
  • the intermediate layer b may be made of a material different from that of the two semiconductor layers a and a ′, and the semiconductor thin film 1 including the intermediate layer b may have desired semiconductivity as a whole. Therefore, the intermediate layer b may be made of, for example, an insulating material whose conductivity is lower than that of the two semiconductor layers a and a ′, and the same conductivity as that of the two semiconductor layers a and a ′. It may be made of a semiconductor material. Moreover, as another example of the intermediate
  • the semiconductor thin film 1 may have a configuration in which two semiconductor layers a and a 'are directly laminated.
  • the two semiconductor layers a and a ′ are made of different materials.
  • the semiconductor thin film 1 is further provided outside the other of the semiconductor layers a and a ′. Another layer may be provided.
  • the intermediate layer b which consists of semiconductor materials
  • organic semiconductor materials and inorganic semiconductor materials such as silicon
  • organic semiconductor materials and inorganic semiconductor materials such as silicon
  • the organic semiconductor material low molecular weight semiconductor materials such as acene compounds, oligothiophene derivatives, phthalocyanine derivatives and perylene derivatives are suitably used.
  • the conjugated low molecular weight material is polycrystal or crystal.
  • the organic semiconductor material may also be a polymeric organic semiconductor material such as poly (3-hexyl-thiophene).
  • the material constituting the semiconductor layers a and a ' is preferably a conjugated low molecular weight material.
  • the intermediate layer b is preferably configured using a polymer material, and the polymer material may be amorphous.
  • an organic insulating material or an inorganic insulating material such as silicon oxide is used as the insulating material forming the intermediate layer b.
  • the organic insulating material may be a low molecular weight material or a high molecular weight material, and may or may not be crosslinked when the crosslinking reaction is possible.
  • it is a polymeric insulating material.
  • Such materials include polystyrene, polycarbonate, polydimethylsiloxane, nylon, polyimide, cyclic olefin-copolymer, epoxy polymer, cellulose, polyoxymethylene, polyolefin polymer, polyvinyl polymer, polyester polymer, polyether polymer, Polyamide polymers, fluorine polymers, biodegradable plastics, phenol resins, amino resins, unsaturated polyester resins, diallyl phthalate resins, epoxy resins, polyimide resins, polyimide resins, polyurethane resins, silicone resins, and copolymers obtained by combining various polymer units, etc. Used.
  • each layer which forms the above laminated structure may be formed by single composition, and the layer may be formed by the mixed material which the several material mixed.
  • the present invention is not limited to the state in which the respective layers are completely separated, and the materials constituting the respective layers may be mixed near the interface.
  • a semiconductor layer a using a polycrystalline or crystalline conjugated low molecular weight material / an insulating intermediate layer b using an amorphous polymer material / polycrystalline or crystal is illustrated.
  • the semiconductor thin film 1 of the laminated structure configured as described above can suppress the mobility deterioration due to heating to a smaller extent as compared with the semiconductor thin film of the single layer structure, as described in the following embodiments.
  • the semiconductor thin film 1 As a first example of the method of forming the semiconductor thin film 1 having the above-mentioned configuration, it can be formed by sequentially forming one layer from the lower layer side.
  • the film formation of each layer can be performed by coating or printing including spin coating, slit coating, inkjet, screen printing, letterpress printing, intaglio printing, lithographic printing, etc., evaporation, CVD, PVD, sputtering according to the material. Etc. can be applied.
  • all the layers constituting the semiconductor thin film 1 are made of an organic material, it is possible to obtain the semiconductor thin film 1 by a process to which a coating and printing method is applied.
  • Method of forming a semiconductor thin film-2 there is a method of spontaneously phase-separating an organic material in a thin film formed by coating or printing. The method will be described below.
  • a plurality of organic materials including the above-described organic semiconductor material are dissolved in a solvent to prepare a mixed solution.
  • an organic material for example, the above-mentioned organic insulating material constituting the above-mentioned intermediate layer is also dissolved in the same solvent and mixed.
  • a thin film is formed by coating or printing the prepared solution on a substrate by a coating method such as a spin coating method, a printing method, or an inkjet method.
  • a coating method such as a spin coating method, a printing method, or an inkjet method.
  • the printing method is also regarded as a kind of coating method, and hereinafter, a thin film formed by the coating method including the printing method is proved as a coated film.
  • the coating film is dried to remove the solvent in the coating film and spontaneously separate the plurality of organic materials contained in the coating film.
  • a semiconductor thin film having a laminated structure including semiconductor layers in which organic materials are separated from each other and organic semiconductor materials are laminated can be obtained.
  • a semiconductor thin film in which the insulating layer made of the organic insulating material is laminated can be obtained.
  • an organic semiconductor material is deposited on the interface side of the coating film to form a semiconductor layer, and a semiconductor thin film in which an insulating layer is sandwiched as an intermediate layer between the two semiconductor layers is obtained.
  • two semiconductor layers are made of the same material.
  • the spontaneous phase separation of the organic material in the coating film in the drying process of the coating film as described above can be achieved by adjusting each molecular weight of plural kinds of organic materials constituting the coating film (i.e., solution). To be realized. In addition, as another example, it is realized by a combination of plural kinds of organic materials constituting the coating film (i.e., solution).
  • the formation method as described above it is possible to obtain a semiconductor thin film having a laminated structure by one application film formation.
  • the lower layer to be the base is eroded during the film formation of the upper layer.
  • the coating and printing properties are improved. It was also found that the in-plane uniformity of the obtained semiconductor thin film is improved. For example, in the case of using a low molecular weight material as the organic semiconductor material, it is difficult to obtain the viscosity required for coating film formation, and it is difficult for the solution in which the organic material is dissolved. There were many. The aggregation causes the film to be discontinuous, and as a result, it is difficult to obtain an in-plane uniform semiconductor thin film.
  • a polymer material for example, a polymer insulating material
  • a solution having a sufficient viscosity can be prepared, and aggregation is difficult in a drying step after application by spin coating, inkjet, etc., and an in-plane uniform semiconductor thin film can be obtained.
  • FIG. 2 is a cross-sectional view showing a first example of a thin film semiconductor device to which the present invention is applied.
  • a thin film semiconductor device 10-1 shown in this figure is a bottom contact bottom gate (BCBG) thin film transistor, and is a field effect transistor.
  • the gate electrode 13 is formed in a pattern on the substrate 11. Further, a gate insulating film 15 is provided in a state of covering the gate electrode 13, and a source electrode 17 s and a drain electrode 17 d are pattern-formed on the gate insulating film 15.
  • the source electrode 17 s and the drain electrode 17 d are provided at positions on both sides of the gate electrode 13 so as to face each other with the gate electrode 13 interposed therebetween.
  • the semiconductor thin film 1 of the above-described laminated structure is provided.
  • one of the at least two semiconductor layers constituting the semiconductor thin film 1 described above is provided in contact with the source electrode 17s, the gate insulating film 15, and the drain electrode 17d.
  • the semiconductor thin film 1 having a three-layer structure in which the intermediate layer b is sandwiched between the semiconductor layers aa ′ covers the gate insulating film 15 on which the source electrode 17s and the drain electrode 17d are formed. It is assumed that the semiconductor layer a is provided in contact with the source electrode 17s, the gate insulating film 15, and the drain electrode 17d.
  • Such a semiconductor thin film 1 is formed by the forming method of the first example or the second example described above.
  • the gate insulating film 15 is also made of an organic material, so that it can be formed in a low temperature process to which the printing method is applied.
  • the gate electrode 13, the source electrode 17s, and the drain electrode 17d can be formed of a dispersion of nanoparticles of Au, Ag, etc., metal complex solution, in addition to the formation of metal electrodes by conventional sputtering method, CVD method, plating method, evaporation method.
  • a printing method such as an inkjet method, a microcontact method, or a screen printing method using a conductive molecule solution, formation in a low temperature process is possible.
  • the semiconductor thin film 1 described with reference to FIG. 1 is used as an active layer, thereby comparing with a configuration using a semiconductor thin film having a single layer structure as the active layer. It was confirmed by experiments that the mobility deterioration due to heating can be suppressed to a low level. As a result, the decrease in mobility due to heating and the characteristic deterioration due to the decrease are suppressed, and the heat resistance can be improved.
  • FIG. 3 is a cross-sectional view showing a second example of the thin film semiconductor device to which the present invention is applied.
  • the thin film semiconductor device 10-2 shown in this figure is also a bottom contact bottom gate (BCBG) type thin film transistor (field effect transistor), and the same components as those of the thin film transistor (10-1) shown in FIG. Is attached.
  • BCBG bottom contact bottom gate
  • the thin film semiconductor device 10-2 of the second example shown in this figure differs from the thin film transistor (10-1) of the first example shown in FIG. 2 in the step difference in the pattern of the source electrode 17s and the drain electrode 17d. Are separated, and the other structure is the same as that of the first example.
  • the above-described semiconductor thin film 1 is provided in a state of being in contact with the gate insulating film 15, the source electrode 17s, and the drain electrode 17d across the source electrode 17s and the drain electrode 17d.
  • the semiconductor layer a of the semiconductor thin film 1 having the structure is provided in a state of being in contact with the source electrode 17s, the gate insulating film 15, and the drain electrode 17d.
  • the contact between the semiconductor layer a and the source electrode 17s and the drain electrode 17d is only the end face of the semiconductor layer a.
  • the semiconductor thin film 1 described with reference to FIG. 1 is used as an active layer, whereby the mobility is reduced by heating and this is the same as in the first example. It is possible to suppress the characteristic deterioration due to the heat resistance and to improve the heat resistance.
  • FIG. 4 is a cross-sectional view showing a third example of the thin film semiconductor device to which the present invention is applied.
  • a thin film semiconductor device 10-3 shown in this figure is a top contact bottom gate (TCBG) thin film transistor (field effect transistor), and the same reference numerals are given to the same components as the thin film transistor (10-1) shown in FIG. Is attached.
  • TCBG top contact bottom gate
  • the thin film semiconductor device 10-3 of the third example shown in this figure differs from the thin film transistor (10-1) of the first example shown in FIG. 2 in that the semiconductor thin film 1 is stacked with the source electrode 17s and the drain electrode 17d.
  • the other configurations are the same as in the first example.
  • the source electrode 17s and the drain electrode 17d are pattern-formed via the semiconductor thin film 1.
  • the semiconductor thin film 1 described above is provided in a state of being in contact with the gate insulating film 15, the source electrode 17s, and the drain electrode 17d between the source electrode 17s and the drain electrode 17d.
  • the gate insulating film 15 is in contact with one of the plurality of semiconductor layers constituting the semiconductor thin film 1 described above (here, the semiconductor layer a), Then, the semiconductor layer a ′) is provided in contact with the source electrode 17s and the drain electrode 17d.
  • the semiconductor thin film 1 described with reference to FIG. 1 is used as an active layer, thereby lowering the mobility due to heating and this as in the first example. It is possible to suppress the characteristic deterioration due to the heat resistance and to improve the heat resistance.
  • FIG. 5 is a cross-sectional view showing a fourth example of the thin film semiconductor device to which the present invention is applied.
  • a thin film semiconductor device 10-4 shown in this figure is a top contact top gate (TCTG) thin film transistor (field effect transistor), and the same components as those of the thin film transistor (10-1) shown in FIG. Is attached.
  • TCTG top contact top gate
  • the thin film semiconductor device 10-4 of the fourth example shown in this figure differs from the thin film transistor (10-1) of the first example shown in FIG. 2 in that the stacking order of the components is reversed,
  • the configuration of is the same as that of the first example.
  • the source electrode 17s and the drain electrode 17d are pattern-formed on the substrate 11 via the semiconductor thin film 1, and the gate insulating film 15 is provided in a state of covering the pattern.
  • a gate electrode 13 is pattern-formed on the gate insulating film 15 at a position sandwiched between the source electrode 17s and the drain electrode 17d.
  • the semiconductor thin film 1 described above is provided in contact with the gate insulating film 15, the source electrode 17s, and the drain electrode 17d between the source electrode 17s and the drain electrode 17d as in the first example.
  • One semiconductor layer a ′ of the semiconductor thin film 1 of the three-layer structure is provided in a state of being in contact with the source electrode 17s, the gate insulating film 15, and the drain electrode 17d.
  • the semiconductor thin film 1 described with reference to FIG. 1 is used as an active layer, and the mobility is reduced by heating as in the first example. It is possible to suppress the characteristic deterioration due to the heat resistance and to improve the heat resistance.
  • FIG. 6 is a cross-sectional view showing a fifth example of the thin film semiconductor device to which the present invention is applied.
  • a thin film semiconductor device 10-5 shown in this figure is a bottom contact top gate (BCTG) type thin film transistor (field effect transistor), and the same components as the thin film transistor (10-1) shown in FIGS. The same symbols are attached.
  • BCTG bottom contact top gate
  • the thin film semiconductor device 10-5 of the fifth example shown in this figure is the stacking order of the semiconductor thin film 1, the source electrode 17s, and the drain electrode 17d in the thin film transistor (10-4) of the fourth example shown in FIG.
  • the other configurations are similar to those of the fourth example.
  • the source electrode 17s and the drain electrode 17d are pattern-formed on the substrate 11, and the semiconductor thin film 1 is provided in a state of covering the pattern.
  • a gate insulating film 15 is provided on the semiconductor thin film 1, and a gate electrode 13 is pattern-formed on the gate insulating film 15 at a position sandwiched between the source electrode 17s and the drain electrode 17d.
  • the gate insulating film 15 is in contact with one of the plurality of semiconductor layers constituting the semiconductor thin film 1 described above (here, the semiconductor layer a ′), and the other ( Here, the semiconductor layer a) is provided in contact with the source electrode 17s and the drain electrode 17d.
  • the semiconductor thin film 1 described with reference to FIG. 1 is used as an active layer, and the mobility is reduced by heating as in the first example. It is possible to suppress the characteristic deterioration due to the heat resistance and to improve the heat resistance.
  • FIG. 7 is a cross-sectional view showing a sixth example of the thin film semiconductor device to which the present invention is applied.
  • a thin film semiconductor device 10-6 shown in this figure is a first modification of the bottom contact top gate (BCTG) type thin film transistor (field effect transistor) of the fifth example, and the surface of the source electrode 17s and the drain electrode 17d is a substrate It differs from the fifth example only in that it is in the same plane as the surface of 11.
  • BCTG bottom contact top gate
  • field effect transistor field effect transistor
  • FIG. 8 is a cross-sectional view showing a seventh example of the thin film semiconductor device to which the present invention is applied.
  • a thin film semiconductor device 10-7 shown in this figure is a second modification of the bottom contact top gate (BCTG) type thin film transistor (field effect transistor) of the fifth example, and the semiconductor layer a constituting the semiconductor thin film 1 is a source.
  • the fifth embodiment differs from the fifth only in the case where the film is formed flat by embedding the pattern step of the electrode 17s and the drain electrode 17d.
  • the thin film semiconductor device of the embodiment described above is further covered with an interlayer insulating film and a passivation film as needed, and is used after being wired.
  • TIPS pentacene 6, 13-bis (triisopropylsilylethynyl) pentacene: organic semiconductor material
  • poly alpha methyl styrene poly alpha
  • the concentration profile in the depth direction was measured by TOF-SIMS for the obtained thin film.
  • the results are shown in FIG.
  • the peaks of Si contained in TIPS pentacene were detected at intervals in the vicinity of the surface and in the vicinity of the interface of the insulating layer (substrate). From this, in the process of drying the coating solution described above, the organic semiconductor material TIPS pentacene and the organic insulating material poly ⁇ -methylstyrene phase separate, and as shown in FIG. 1, it is composed of TIPS pentacene containing Si.
  • CN and O in FIG. 9 are components of the organic insulating film which constitutes the surface of the substrate.
  • the concentration profile in the depth direction was measured by TOF-SIMS for the obtained thin film.
  • the results are shown in FIG.
  • Si contained in TIPS pentacene is slightly localized at the electrode surface, it is almost on the surface side of the insulating layer (substrate) where CN and O are detected at high concentrations. Equally detected. From this, in the method of Comparative Example 1, phase separation of the organic semiconductor material TIPS pentacene and the organic insulating material poly alpha methyl styrene does not occur in the drying process of the coating film described above, and the thin film It was confirmed that only thin films having a single layer structure in which these were mixed approximately equally were obtained.
  • the organic material in the coating film is adjusted by adjusting the molecular weight of the organic material (particularly, the organic insulating material here) constituting the solution. It was confirmed that a spontaneously laminated film was obtained.
  • Example 2 of a semiconductor thin film The semiconductor thin film shown in FIG. 1 was formed as follows. First, a solution was prepared by mixing TIPS pentacene (organic semiconductor material) and cyclic olefin copolymer (organic insulating material) in mesitylene. Next, the prepared solution was applied by spin coating on a substrate having an organic insulating film mainly composed of crosslinked PVP (polyvinylphenol) to form a coated film. The formed coating film was dried at 60 ° C. under a nitrogen atmosphere for 1 hour to obtain a thin film.
  • TIPS pentacene organic semiconductor material
  • cyclic olefin copolymer organic insulating material
  • mesitylene mesitylene
  • the prepared solution was applied by spin coating on a substrate having an organic insulating film mainly composed of crosslinked PVP (polyvinylphenol) to form a coated film.
  • the formed coating film was dried at 60 ° C. under a nitrogen atmosphere for 1 hour to obtain a thin
  • the concentration profile in the depth direction was measured by TOF-SIMS for the obtained thin film.
  • the results are shown in FIG.
  • the peaks of Si contained in TIPS pentacene were detected at intervals in the vicinity of the surface and in the vicinity of the interface of the insulating layer (substrate). From this, in the drying process of the coating film described above, TIPS pentacene which is an organic semiconductor material and poly alpha methyl styrene which is an organic insulating material are phase-separated, and as shown in FIG. It was confirmed that a semiconductor thin film 1 having a laminated structure in which an intermediate layer b made of a cyclic olefin copolymer was sandwiched between the formed semiconductor layers aa ′ was obtained.
  • phase separation in the coating film of the organic semiconductor material and the organic insulating material was carried out using an aromatic hydrocarbon compound such as poly alpha methyl styrene as the organic insulating material. It has been confirmed that even if it is an olefin polymer material having no aromatic ring, it is not limited.
  • ⁇ Evaluation of semiconductor thin film> The X-ray diffraction spectra of the semiconductor thin film of ⁇ Comparative Example 2> manufactured as described above and the semiconductor thin films of ⁇ Example 1> and ⁇ Comparative Example 1> described above were measured. The results are shown in FIG. As shown in these figures, ⁇ Example 1> in which TIPS pentacene, which is an organic semiconductor material, is phase-separated from poly- ⁇ -methylstyrene which is an organic insulating material, has a single-layer structure composed of only TIPS pentacene. The same spectrum as in ⁇ Comparative Example 2> is shown.
  • the arrangement state of the TIPS pentacene in the semiconductor layers a and a ′ is a single layer structure composed of the TIPS pentacene manufactured in ⁇ Comparative Example 2>. It was confirmed that it was kept the same as the arrangement state inside.
  • a 3-inch Si wafer is used as a common gate electrode 13, and a gate insulating film 15 made of an organic insulating film is formed on top of this, and 87 or more patterns of source electrode 17s and drain electrode 17d are formed on this gate insulating film 15. It formed.
  • the semiconductor thin film 1 having a laminated structure was formed on the gate insulating film 15 on which the source electrode 17s and the drain electrode 17d are formed, in the same manner as in ⁇ Example 1>.
  • the formed and formed coating liquid was dried at 60 ° C. under a nitrogen atmosphere for 1 hour to form a semiconductor thin film 1 having a laminated structure.
  • the thin film transistor of FIG. 2 to which the present invention is applied was obtained.
  • ⁇ Comparison example of device> A thin film transistor was fabricated in the same manner as in ⁇ Device Example> except that the procedure in ⁇ Comparative Example 2> was applied to the formation of the semiconductor thin film. That is, in forming a semiconductor thin film, a single thin film semiconductor thin film consisting only of TIPS pentacene is formed using a solution in which only TIPS pentacene (organic semiconductor material) is mixed and dissolved in mesitylene without using an organic insulating material. did. Except for this, a thin film transistor was produced in the same manner as in ⁇ Device Example>.
  • the initial mobility of 0.09 cm 2 / Vs is lowered by heating, and at 180 ° C., the mobility is 6 ⁇ 10 -4 cm 2 / Vs. Has been degraded.
  • the thin film transistor obtained in the example of the device to which the present invention is applied has high initial mobility and is heated to 180 ° C., as compared with the thin film transistor obtained in the device comparison example. It can be seen that the drop in mobility is suppressed to a low level even in the state of
  • the present invention to form the semiconductor thin film 1 into a laminated structure, it is possible to suppress the decrease in mobility due to heating and the characteristic deterioration due to this, and the semiconductor thin film and thin film semiconductor in which the heat resistance is improved. It was confirmed that the device could be obtained.
  • the thin film transistor can be considered to have a structure in which organic substances of different materials are stacked, and each layer has a different thermal expansion coefficient, and stress is generated between the layers by the application of heat.
  • thermal expansion and contraction there is a possibility.
  • a metal Ma and a metal Mb having different thermal expansion coefficients are bonded together, a flat one at room temperature will warp when it becomes hot. This is a phenomenon that occurs because the expansion rate is different between the upper and lower sides.
  • this warping can be avoided by using a sandwich structure such as Ma-Mb-Ma.
  • a sandwich structure such as Ma-Mb-Ma. This can be considered that although stress due to thermal expansion occurs between the metals Ma and Mb, the stress due to thermal expansion is alleviated at the upper and lower sides by taking a sandwich structure when viewed as a single plate.
  • the semiconductor thin film 1 is not limited to one composed of an organic material as shown in the embodiment, and the same effect can be obtained even if the semiconductor thin film 1 is composed of an inorganic material.
  • TMS pentacene organic semiconductor material
  • a semiconductor thin film is formed using a single organic semiconductor material by forming a semiconductor thin film having a laminated structure by spontaneous phase separation. Compared with the case, the effect of suppressing the variation of ON current to about 1/5 was also confirmed.
  • the present invention it is possible to suppress the decrease in mobility due to heating in the thin film semiconductor device and the field effect transistor and the characteristic deterioration due to this, and it is possible to improve the heat resistance.

Abstract

 ゲート電極(13)にゲート絶縁膜(15)を介して積層された半導体薄膜(1)を備え、半導体薄膜(1)は、積層構造からなり、少なくとも2層の半導体層(a,a’)を含む。このような半導体薄膜(1)は、例えば、2層の半導体層(a,a’)間に当該半導体層(a,a’)とは異なる材料からなる中間層(b)が挟持されている。2層の半導体層(a,a’)は同一材料で構成され、中間層(b)は絶縁性材料からなる。このような積層構造を構成する材料は、有機材料からなる。これにより、加熱による移動度の低下とこれによる特性劣化を抑制可能で、耐熱性の向上が図られた薄膜半導体装置および電界効果トランジスタを提供する。

Description

薄膜半導体装置および電界効果トランジスタ
 本発明は薄膜半導体装置および電界効果トランジスタに関し、特には加熱による特性劣化が抑えられた薄膜半導体装置および電界効果トランジスタに関する。
 有機薄膜トランジスタ(有機TFT)のような有機半導体薄膜を用いた薄膜半導体装置の製造においては、塗布・印刷プロセスを適用した有機半導体薄膜の成膜が可能である。例えば、有機半導体材料を溶媒に溶かした溶液を基板上に塗布し、これを乾燥させることにより、単一構成の有機半導体材料からなる有機半導体薄膜を得ることができる。このため、従来のシリコン(Si)等の無機半導体材料を用いた半導体装置と比較して、基板の大型化や製造コストの低減を図ることができる。また、塗布・印刷プロセスなどはプロセス温度が低いため、プラスチック基板上への形成が可能であり、可撓性を有する半導体装置としても期待されている。このような一例として、プラスチック基板上に有機TFTを設けたバックプレーンを作製し、これを用いて液晶表示装置やOLED表示装置のようなフラットパネル型の表示装置を作製した報告が成されている。
 有機半導体薄膜を構成する材料としては、例えば、ポリチオフェン、ぺンタセン、ルブレンなどの幅広い材料が研究されており、アモルファスシリコンからなる半導体薄膜を用いた薄膜半導体装置と同程度以上の移動度を有するものもあると報告されている(例えば、非特許文献(「Applied Physics Letters」、{ HYPERLINK "http://scitation.aip.org/dbt/dbt.jsp?KEY=APPLAB&Volume=69" ,Volume69},Issue26,1996年、p.4108-4110)参照)。
 しかしながら、有機半導体薄膜を用いた薄膜半導体装置は、加熱によって移動度が劣化する問題があった。実際の実験においては、加熱前に移動度0.14cm2/Vsあったものが、窒素雰囲気下において180℃にまで加熱した状態では、移動度6×10-4cm2/Vsとなり、加熱によって移動度が1/100以下にまで劣化することが確認されている。尚、窒素雰囲気下での加熱であるため有機半導体材料が酸化しているわけではないこと、さらに用いた有機半導体材料そのものは180℃にまで加熱しても熱分解しないことから、このような加熱による移動度の劣化は有機半導体材料自体の変質に起因するものではないことが分かっている。
 そこで本発明は、加熱による移動度の低下とこれによる特性劣化を抑制可能で、耐熱性の向上が図られた薄膜半導体装置および電界効果トランジスタを提供することを目的とする。
 このような目的を達成するための本発明の薄膜半導体装置は、ゲート電極にゲート絶縁膜を介して積層された半導体薄膜を備えたもので、この半導体薄膜が、積層構造からなり、少なくとも2層の半導体層を含むことを特徴としている。
 また本発明の電界効果トランジスタは、ゲート電極にゲート絶縁膜を介して積層された半導体薄膜と、ゲート電極の両脇となる位置に前記半導体薄膜に接して設けられたソース電極及びドレイン電極とを備え、前記半導体薄膜は、積層構造からなり、少なくとも2層の半導体層を含むことを特徴としている。
 このような積層構造の半導体薄膜を備えた薄膜半導体装置および薄膜トランジスタでは、単層構造の半導体薄膜を用いた構成と比較して加熱による移動度劣化が小さく抑えられることが実験によって確認された。このような移動度劣化の抑制は、1つの要因として、加熱及び冷却で生じる半導体薄膜の膨張伸縮ストレスが積層構造としたことによって抑えられていることが考えられる。
本発明に適用される半導体薄膜の断面図である。 本発明を適用した薄膜半導体装置の第1例を示す断面構成図である。 本発明を適用した薄膜半導体装置の第2例を示す断面構成図である。 本発明を適用した薄膜半導体装置の第3例を示す断面構成図である。 本発明を適用した薄膜半導体装置の第4例を示す断面構成図である。 本発明を適用した薄膜半導体装置の第5例を示す断面構成図である。 本発明を適用した薄膜半導体装置の第6例を示す断面構成図である。 本発明を適用した薄膜半導体装置の第7例を示す断面構成図である。 実施例1として作製した半導体薄膜のSIMSプロファイルである。 比較例1として作製した半導体薄膜のSIMSプロファイルである。 実施例2として作製した半導体薄膜のSIMSプロファイルである。 比較例2および、実施例1、比較例1として作製した各半導体薄膜のXRDスペクトルである。 装置の実施例および比較例として作製した各薄膜トランジスタ(電界効果トランジスタ)の加熱温度による移動度の変化を示すグラフである。 装置の実施例および比較例として作製した各薄膜トランジスタ(電界効果トランジスタ)のゲート電圧Vg-ドレイン電流Id特性を示すグラフである。
 以下本発明の実施の形態を図面に基づいて詳細に説明する。尚、以下においては、本発明の薄膜半導体装置および電界効果トランジスタに用いる半導体薄膜の構成、半導体薄膜の形成方法、半導体薄膜を用いた電界効果トランジスタ構成の薄膜半導体装置の順に実施の形態を説明する。
<半導体薄膜>
 図1は、本発明に適用する半導体薄膜の一構成例を示す断面図である。この図に示す半導体薄膜1は、積層構造中に少なくとも2層の半導体層a,a’を含んでいるいわゆる半導体複合薄膜であることを特徴としている。これらの半導体層a,a’は、図示したように2層の半導体層a-a’間にさらに異なる材料を主成分とする中間層bを挟持する状態で配置されていても良い。この場合、2層の半導体層a,a’は異なる材料で構成されていても良く、同一材料で構成されていても良い。
 中間層bは、2層の半導体層a,a’とは異なる材料からなり、この中間層bを含む半導体薄膜1が全体として所望の半導体性を備えれば良い。このため、中間層bは、例えば2層の半導体層a,a’よりも導電性が低い絶縁性材料で構成されて良く、また2層の半導体層a,a’と同程度の導電性の半導体材料で構成されていても良い。また中間層bの他の例としては、2層の半導体層a,a’よりも導電性が高い導電性材料で構成されていても良い。またこの中間層b自体が、積層構造で構成されていても良い。また混合材料で中間層bを形成している場合、構成材料として半導体層a,a’の材料が含まれていてもよい。
 以上の他にも、半導体薄膜1は、2層の半導体層a,a’が直接積層されている構成であっても良い。この場合、2層の半導体層a,a’は異なる材料で構成されていることとする。さらに、この半導体薄膜1は、2層の半導体層a,a'のうちの一方が半導体薄膜1の片側の表面を構成していれば、半導体層a,a’のうちの他方の外側にさらに別の層が設けられていても良い。
 以上のような半導体薄膜1における半導体層a,a’さらには半導体材料からなる中間層bを構成する半導体材料としては、有機半導体材料や、シリコンなどの無機半導体材料が用いられる。有機半導体材料としては、アセン化合物、オリゴチオフェン誘導体,フタロシアニン誘導体,ペリレン誘導体等の低分子半導体材料が好適に用いられる。共役低分子材料は多結晶または結晶であることとする。また有機半導体材料は、poly(3-hexyl-thiophene)のような高分子有機半導体材料でもよい。特に半導体層a,a’を構成する材料は共役系低分子材料で有ることが好ましい。一方、中間層bは、高分子材料を用いて構成されることが好ましく、高分子材料は非晶質であっても良い。
 また中間層bを構成する絶縁性材料としては、有機絶縁性材料や酸化シリコンなどの無機絶縁性材料が用いられる。有機絶縁性材料は、低分子材料でも高分子材料でもよく、架橋反応が可能な場合か架橋していてもよく架橋していなくてもよい。好ましくは高分子絶縁材料であることとする。このような材料としては、ポリスチレン,ポリカーボネート、ポリジメチルシロキサン、ナイロン、ポリイミド,環状オレフィン-コポリマー,エポキシポリマー、セルロース、ポリオキシメチレン、ポリオレフィン系ポリマー、ポリビニル系ポリマー、ポリエステル系ポリマー、ポリエーテル系ポリマー、ポリアミド系ポリマー、フッ素系ポリマー、生分解性プラスチック、フェノール樹脂、アミノ樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、エポキシ樹脂、ポリイミド樹脂、ポリウレタン樹脂、シリコーン樹脂、及び各種ポリマーユニットを組み合わせたコポリマー等が用いられる。
 尚、以上の積層構造を形成する各層は単一組成で形成されていてもよく、複数の材料が混合した混合材料で層を形成していてもよい。さらに、各層間が完全に分離している状態に限定されることはなく、各層を構成する材料が界面付近で混在していても良い。
 そして特に好ましい半導体薄膜1の例としては、多結晶または結晶性の共役系低分子材料を用いた半導体層a/非晶質の高分子材料を用いた絶縁性の中間層b/多結晶または結晶性の共役系低分子材料を用いた半導体層a’が例示される。
 以上のように構成された積層構造の半導体薄膜1は、以降の実施例で説明するように、単層構造の半導体薄膜と比較して加熱による移動度劣化が小さく抑えられることが実験によって確認された。
<半導体薄膜の形成方法-1>
 以上のような構成の半導体薄膜1の形成方法の第1例としては、下層側から1層ずつを順次成膜して形成することができる。各層の成膜には、材料に合わせてスピンコートやスリットコート,インクジェット、スクリーン印刷,凸版印刷,凹版印刷,平版印刷などを含む塗布・印刷法や、蒸着法、CVD法、PVD法、スパッタ法などを適用することができる。特に半導体薄膜1を構成する全ての層が有機材料からなる場合には、塗布・印刷法を適用したプロセスによって半導体薄膜1を得ることが可能である。
<半導体薄膜の形成方法-2>
 また半導体薄膜1の形成方法の第2例としては、塗布または印刷によって形成した薄膜中において有機材料を自発的に相分離させる方法が挙げられる。以下にその方法を説明する。
 先ず、上述した有機半導体材料を含む複数種類の有機材料を、溶媒に溶解させて混合した溶液を作製する。この際、例えば上記中間層を構成する有機材料(例えば上述した有機絶縁性材料)も同様の溶媒に溶解させて混合する。
 次に、作製した溶液をスピンコート法、印刷法、さらにはインクジェット法のような塗布法によって基板上に塗布または印刷して薄膜を形成する。尚、ここでは印刷法も塗布法の一種で有ると捕らえ、以下においては印刷法を含む塗布法によって形成した薄膜を塗布膜と証する。
 次に、塗布膜を乾燥させることにより塗布膜中の溶媒を除去すると共に、塗布膜中に含有される複数種類の有機材料を自発的に相分離させる。
 以上により、各有機材料が相分離し、有機半導体材料が積層された半導体層を含む積層構造の半導体薄膜が得られる。また、塗布膜中に有機絶縁性材料が含有されていれば、この有機絶縁性材料からなる絶縁層が積層された半導体薄膜が得られる。この際、例えば、塗布膜の界面側に有機半導体材料が析出して半導体層を構成し、これらの2層の半導体層の間に絶縁層が中間層として挟持された半導体薄膜が得られる。この場合、例えば2層の半導体層は、同一の材料で構成されるようになる。
 尚、以上のような塗布膜の乾燥過程においての塗布膜中における有機材料の自発的な相分離は、塗布膜(すなわち溶液)を構成する複数種類の有機材料においての各分子量を調整することによって実現される。また他の例としては、塗布膜(すなわち溶液)を構成する複数種類の有機材料の組み合わせによって実現される。
 以上のような形成方法では、1回の塗布成膜によって積層構造の半導体薄膜を得ることが可能である。しかも、層上層の成膜の際に下地となる下層が侵食される問題が発生することもない。
 また特に、有機半導体材料を含む複数種類の有機材料を溶媒に溶解させて混合した溶液を用いて塗布(印刷)成膜することにより、以降の実施例で説明するように、塗布・印刷性が向上し、得られる半導体薄膜の面内均一性が向上することも分かった。例えば有機半導体材料として低分子材料を用いる場合、この有機材料を溶解させた溶液は塗布成膜のために必要とする粘度を得ることが困難であり、また塗布・乾燥後は凝集しやすいことが多かった。凝集することによって膜は不連続化をおこし、結果として面内均一な半導体薄膜を得ることが困難であった。
 そこで、上述したように有機半導体材料を含む複数種類の有機材料を溶媒に溶解させる際、有機半導体材料と組み合わせて用いる他の有機材料として、高分子材料(例えば高分子絶縁材料)を用いることにより、十分な粘度の溶液を調整することができ、またスピンコートやインクジェットなどで塗布した後の乾燥工程にて凝集し難く、面内均一な半導体薄膜が得られることが確認された。
<薄膜半導体装置-1>
 図2は、本発明を適用した薄膜半導体装置の第1例を示す断面構成図である。この図に示す薄膜半導体装置10-1は、ボトムコンタクトボトムゲート(BCBG)型の薄膜トランジスタであり、電界効果トランジスタである。この薄膜半導体装置10-1は、基板11上にゲート電極13がパターン形成されている。またこのゲート電極13を覆う状態でゲート絶縁膜15が設けられており、このゲート絶縁膜15上にソース電極17sおよびドレイン電極17dがパターン形成されている。これらのソース電極17sおよびドレイン電極17dは、ゲート電極13の両脇となる位置にゲート電極13を挟む状態で対向するように設けられている。ゲート電極とソース及びドレイン電極の間には,オーバーラップする領域があっても良い.そして、ソース電極17s-ドレイン電極17d間にわたって、ゲート絶縁膜15、ソース電極17s、およびドレイン電極17dに接する状態で、上述した積層構造の半導体薄膜1が設けられている。
 そして特に本第1例においては、上述した半導体薄膜1を構成する少なくとも2層の半導体層のうちの一つが、ソース電極17s、ゲート絶縁膜15、およびドレイン電極17dに接する状態で設けられていることとする。ここでは、例えば半導体層a-a’間に中間層bを狭持してなる3層構造の半導体薄膜1が、ソース電極17sおよびドレイン電極17dが形成されたゲート絶縁膜15上を覆う状態で設けられており、このうちの半導体層aが、ソース電極17s、ゲート絶縁膜15、およびドレイン電極17dに接する状態で設けられていることとする。このような半導体薄膜1は、上述した第1例または第2例の形成方法で形成されていることとする。
 ここで、半導体薄膜1を構成する全ての層が有機材料からなる場合には、印刷法を適用した低温プロセスによって半導体薄膜1を得ることが可能である。このため、基板11としてプラスチック基板を用いることが可能になる。この場合、ゲート絶縁膜15も有機材料で構成することにより、印刷法を適用した低温プロセスでの形成が可能である。さらに、ゲート電極13、ソース電極17s、およびドレイン電極17dは、従来のスパッタ法、CVD法、メッキ法、蒸着法による金属電極の形成に加え、Au、Ag等のナノ粒子分散液,金属錯体溶液、さらには導電性分子溶液を用いたインクジェット法,マイクロコンタクト法,スクリーン印刷法等の印刷法を適用することで、低温プロセスでの形成が可能である。
 そしてこのような構成の薄膜半導体装置10-1においては、図1を用いて説明した半導体薄膜1が活性層として用いられることにより、単層構造の半導体薄膜を活性層として用いた構成と比較して、加熱による移動度劣化が小さく抑えられることが実験によって確認された。この結果、加熱による移動度の低下とこれによる特性劣化が抑制され、耐熱性の向上を図ることが可能になる。
<薄膜半導体装置-2>
 図3は、本発明を適用した薄膜半導体装置の第2例を示す断面構成図である。この図に示す薄膜半導体装置10-2も、ボトムコンタクトボトムゲート(BCBG)型の薄膜トランジスタ(電界効果トランジスタ)であり、図2に示す薄膜トランジスタ(10-1)と同一の構成要素には同一の符号を付している。
 この図に示す第2例の薄膜半導体装置10-2が、図2に示した第1例の薄膜トランジスタ(10-1)と異なるところは、ソース電極17sおよびドレイン電極17dのパターン段差において半導体薄膜1が分断されている構成にあり、他の構成は第1例と同様であることとする。
 このような構成であっても、ソース電極17s-ドレイン電極17d間にわたって、ゲート絶縁膜15、ソース電極17s、およびドレイン電極17dに接する状態で、上述した半導体薄膜1が設けられて、また3層構造の半導体薄膜1のうちの半導体層aがソース電極17s、ゲート絶縁膜15、およびドレイン電極17dに接する状態で設けられた状態となる。ただし、半導体層aとソース電極17sおよびドレイン電極17dとの接触は、半導体層aの端面のみとなる。
 そしてこのような構成の薄膜半導体装置10-2であっても、図1を用いて説明した半導体薄膜1が活性層として用いられることにより、第1例と同様に加熱による移動度の低下とこれによる特性劣化が抑制され、耐熱性の向上を図ることが可能になる。
<薄膜半導体装置-3>
 図4は、本発明を適用した薄膜半導体装置の第3例を示す断面構成図である。この図に示す薄膜半導体装置10-3は、トップコンタクトボトムゲート(TCBG)型の薄膜トランジスタ(電界効果トランジスタ)であり、図2に示す薄膜トランジスタ(10-1)と同一の構成要素には同一の符号を付している。
 この図に示す第3例の薄膜半導体装置10-3が、図2に示した第1例の薄膜トランジスタ(10-1)と異なるところは、半導体薄膜1とソース電極17sおよびドレイン電極17dとの積層順であり、他の構成は第1例と同様であることとする。
 すなわち、基板11上のゲート電極13を覆うゲート絶縁膜15上には、半導体薄膜1を介してソース電極17sおよびドレイン電極17dがパターン形成されている。これにより、ソース電極17s-ドレイン電極17d間にわたって、ゲート絶縁膜15、ソース電極17s、およびドレイン電極17dに接する状態で、上述した半導体薄膜1が設けられている。
 このような第3例の薄膜半導体装置10-3においては、上述した半導体薄膜1を構成する複数の半導体層のうちの一方(ここでは半導体層a)にゲート絶縁膜15が接し、他方(ここでは半導体層a’)にソース電極17sおよびドレイン電極17dに接する状態で設けられていることとする。
 そしてこのような構成の薄膜半導体装置10-3であっても、図1を用いて説明した半導体薄膜1が活性層として用いられることにより、第1例と同様に加熱による移動度の低下とこれによる特性劣化が抑制され、耐熱性の向上を図ることが可能になる。
<薄膜半導体装置-4>
 図5は、本発明を適用した薄膜半導体装置の第4例を示す断面構成図である。この図に示す薄膜半導体装置10-4は、トップコンタクトトップゲート(TCTG)型の薄膜トランジスタ(電界効果トランジスタ)であり、図2に示す薄膜トランジスタ(10-1)と同一の構成要素には同一の符号を付している。
 この図に示す第4例の薄膜半導体装置10-4が、図2に示した第1例の薄膜トランジスタ(10-1)と異なるところは、構成要素の積層順が逆であるところにあり、他の構成は第1例と同様であることとする。
 すなわち、基板11上には半導体薄膜1を介してソース電極17sおよびドレイン電極17dがパターン形成され、これを覆う状態でゲート絶縁膜15が設けられている。このゲート絶縁膜15上におけるソース電極17s-ドレイン電極17d間に挟まれた位置にゲート電極13がパターン形成されている。
 このような構成では、第1例と同様に、ソース電極17s-ドレイン電極17d間にわたって、ゲート絶縁膜15、ソース電極17s、およびドレイン電極17dに接する状態で上述した半導体薄膜1が設けられ、また3層構造の半導体薄膜1のうちの一方の半導体層a’が、ソース電極17s、ゲート絶縁膜15、およびドレイン電極17dに接する状態で設けられた状態となる。
 そしてこのような構成の薄膜半導体装置10-4であっても、図1を用いて説明した半導体薄膜1が活性層として用いられることにより、第1例と同様に加熱による移動度の低下とこれによる特性劣化が抑制され、耐熱性の向上を図ることが可能になる。
<薄膜半導体装置-5>
 図6は、本発明を適用した薄膜半導体装置の第5例を示す断面構成図である。この図に示す薄膜半導体装置10-5は、ボトムコンタクトトップゲート(BCTG)型の薄膜トランジスタ(電界効果トランジスタ)であり、図2および図5に示す薄膜トランジスタ(10-1)と同一の構成要素には同一の符号を付している。
 この図に示す第5例の薄膜半導体装置10-5は、図5に示した第4例の薄膜トランジスタ(10-4)において、半導体薄膜1とソース電極17sおよびドレイン電極17dとの積層順であり、他の構成は第4例と同様であることとする。
 すなわち、基板11上にはソース電極17sおよびドレイン電極17dがパターン形成され、これを覆う状態で半導体薄膜1が設けられている。この半導体薄膜1上にゲート絶縁膜15が設けられ、さらにこのゲート絶縁膜15上におけるソース電極17s-ドレイン電極17d間に挟まれた位置にゲート電極13がパターン形成されている。
 このような第5例の薄膜半導体装置10-5においては、上述した半導体薄膜1を構成する複数の半導体層のうちの一方(ここでは半導体層a’)にゲート絶縁膜15が接し、他方(ここでは半導体層a)にソース電極17sおよびドレイン電極17dに接する状態で設けられていることとする。
 そしてこのような構成の薄膜半導体装置10-5であっても、図1を用いて説明した半導体薄膜1が活性層として用いられることにより、第1例と同様に加熱による移動度の低下とこれによる特性劣化が抑制され、耐熱性の向上を図ることが可能になる。
<薄膜半導体装置-6>
 図7は、本発明を適用した薄膜半導体装置の第6例を示す断面構成図である。この図に示す薄膜半導体装置10-6は、第5例のボトムコンタクトトップゲート(BCTG)型の薄膜トランジスタ(電界効果トランジスタ)の第1変形例であり、ソース電極17sおよびドレイン電極17dの表面が基板11の表面と同一面を構成しているとろにおいてのみ、第5例と異なる。
<薄膜半導体装置-7>
 図8は、本発明を適用した薄膜半導体装置の第7例を示す断面構成図である。この図に示す薄膜半導体装置10-7は、第5例のボトムコンタクトトップゲート(BCTG)型の薄膜トランジスタ(電界効果トランジスタ)の第2変形例であり、半導体薄膜1を構成する半導体層aがソース電極17sおよびドレイン電極17dのパターン段差を埋め込んで表面平坦に成膜されているとろにおいてのみ、第5と異なる。
 尚、以上説明した実施形態の薄膜半導体装置は、さらに必要に応じた層間絶縁膜やパシベーション膜で覆われ、配線されて用いられる。
<半導体薄膜の実施例1>
 以下のようにして図1に示す半導体薄膜を形成した。先ず、TIPSペンタセン(6,13-bis(triisopropylsilylethynyl)pentacene:有機半導体材料)と、ポリαメチルスチレン(poly(α-methylstyrene):Mw=108,000、Mn=106,000:有機絶縁性材料)とを、メシチレンに混合して溶かした溶液を作製した。次に、架橋したPVP(ポリビニルフェノール)を主成分とした有機絶縁膜で表面が構成された基板上に、作製した溶液をスピンコートによって塗布して塗布膜を形成した。形成した塗布膜を、窒素雰囲気下60℃で1時間乾燥させて薄膜を得た。
 得られた薄膜について、TOF-SIMSにて深さ方向の濃度プロファイルを測定した。この結果を図9に示す。この図に示すように、TIPSペンタセンに含まれるSiのピークが、表面近傍と絶縁層(基板)界面近傍との2ヶ所に間隔を開けて検出された。このことから、上述した塗布液の乾燥過程において、有機半導体材料であるTIPSペンタセンと有機絶縁材料であるポリαメチルスチレンが相分離し、図1に示したように、Siを含むTIPSペンタセンで構成された半導体層a-a’間に、ポリαメチルスチレンを主成分とする中間層bが挟持された積層構成の半導体薄膜1が得られていることが確認された。尚、図9中のCN,Oは、基板の表面を構成する有機絶縁膜の成分である。
<半導体薄膜の比較例1>
 上述した<実施例1>の手順において、有機絶縁性材料の分子量をポリαメチルスチレン(Mw=2,200、Mn=1,960)に調整した。これ以外は、<実施例1>と同様の手順で薄膜を得た。
 得られた薄膜について、TOF-SIMSにて深さ方向の濃度プロファイルを測定した。この結果を図10に示す。この図に示すように、TIPSペンタセンに含まれるSiは、極表面においれわずかに偏在しているものの、CNとOとが高濃度で検出されている絶縁層(基板)よりも表面側においてほぼ均等に検出された。このことから、本比較例1の方法においてにおいては、上述した塗布膜の乾燥過程において、有機半導体材料であるTIPSペンタセンと有機絶縁材料であるポリαメチルスチレンとの相分離が生じず、薄内においてこれらがほぼ均等に混在した単層構造の薄膜しか得ることができていないことが確認された。
 そして、以上の<実施例1>と<比較例1>との結果から、溶液を構成する有機材料(特にここでは有機絶縁性材料)の分子量を調整することにより、塗布膜内において有機材料を自発的に相分離させた積層膜が得られることが確認された。
<半導体薄膜の実施例2>
 以下のようにして図1に示す半導体薄膜を形成した。先ず、TIPSペンタセン(有機半導体材料)と、環状オレフィン・コポリマー(有機絶縁性材料)とを、メシチレンに混合して溶かした溶液を作製した。次に、架橋したPVP(ポリビニルフェノール)を主成分とした有機絶縁膜を有する基板上に、作製した溶液をスピンコートによって塗布して塗布膜を形成した。形成した塗布膜を、窒素雰囲気下60℃で1時間乾燥させて薄膜を得た。
 得られた薄膜について、TOF-SIMSにて深さ方向の濃度プロファイルを測定した。この結果を図11に示す。この図に示すように、TIPSペンタセンに含まれるSiのピークが、表面近傍と絶縁層(基板)界面近傍との2ヶ所に間隔を開けて検出された。このことから、上述した塗布膜の乾燥過程において、有機半導体材料であるTIPSペンタセンと有機絶縁材料であるポリαメチルスチレンとが相分離し、図1に示したように、Siを含むTIPSペンタセンで構成された半導体層a-a’間に、環状オレフィン・コポリマーからなる中間層bが挟持された積層構成の半導体薄膜1が得られていることが確認された。
 また先の<実施例1>との比較から、有機半導体材料と有機絶縁性材料との塗布膜中における相分離は、有機絶縁性材料としてポリαメチルスチレンのような芳香族炭化水素化合物を用いた場合に限定されず、芳香環を持ち合わせていないオレフィン系の高分子材料であっても生じることが確認された。
<半導体薄膜の比較例2>
 上述した<実施例1>の手順において、有機絶縁性材料を用いずにTIPSペンタセン(有機半導体材料)のみをメシチレンに溶解した溶液を用いた。これ以外は、<実施例1>と同様の手順を行い、TIPSペンタセンのみからなる単層構造の半導体薄膜を形成した。
<半導体薄膜の評価>
 以上のようにして作製した<比較例2>の半導体薄膜、および先に説明した<実施例1>および<比較例1>の各半導体薄膜につて、X線回折スペクトルを測定した。この結果を図12に示す。これらの図に示すように、有機半導体材料であるTIPSペンタセンが有機絶縁性材料であるポリαメチルスチレンと相分離している<実施例1>は、TIPSペンタセンのみで構成された単層構造の<比較例2>と同じスペクトルを示している。このことから、<実施例1>で作製された半導体薄膜1においては、半導体層a,a’においてのTIPSペンタセンの配列状態が、<比較例2>で作製されたTIPSペンタセンからなる単層構造内においての配列状態と同じに保たれていることが確認された。
 これに対して、<比較例1>のようにして作製された、TIPSペンタセンとポリαメチルスチレンとがほぼ均等に混在した単層構造の薄膜においては、X線回折スペクトルにピークが発生せず、膜内においてTIPSペンタセンが配向できずに分子配列が乱れてしまっていることが分かる。
<装置の実施例>
 以下のようにして、図2を用いて説明したボトムコンタクトボトムゲート(BCBG)型の薄膜トランジスタ(電界効果トランジスタ)を作製した。
 先ず、3inchのSiウエハを共通のゲート電極13とし、この上部に有機絶縁膜からなるゲート絶縁膜15を形成し、このゲート絶縁膜15上にソース電極17sおよびドレイン電極17dのパターンを87個以上形成した。次いで、ソース電極17sおよびドレイン電極17dが形成されたゲート絶縁膜15の上方に、<実施例1>と同様の手順で積層構造の半導体薄膜1を形成した。すなわち、TIPSペンタセン(有機半導体材料)と、ポリαメチルスチレン(Mw=108,000、Mn=106,000:有機絶縁性材料)とを、メシチレンに混合して溶かした溶液をスピンコートによって塗布して塗布液を形成し、形成した塗布液を、窒素雰囲気下60℃で1時間乾燥させることによって積層構造の半導体薄膜1を形成した。これにより、本発明を適用した図2の薄膜トランジスタを得た。
<装置の比較例>
 半導体薄膜の形成に<比較例2>の手順を適用したこと以外は、<装置の実施例>と同様の手順で薄膜トランジスタを作製した。すなわち、半導体薄膜の形成においては、有機絶縁性材料を用いずにTIPSペンタセン(有機半導体材料)のみをメシチレンに混合して溶かした溶液を用い、TIPSペンタセンのみからなる単層構造の半導体薄膜を形成した。これ以外は、<装置の実施例>と同様の手順で薄膜トランジスタを作製した。
<装置の評価-1>
 以上、<装置の実施例>および<装置の比較例>のようにして作製した薄膜トランジスタについて、窒素雰囲気下において加熱温度による移動度(Mobility)の変化を測定した。この結果を図13に示す。この図に示すように、<装置の実施例>で得られた薄膜トランジスタでは、初期の移動度0.2cm2/Vsが、加熱によって低下するものの、180℃にまで加熱しても移動度0.08cm2/Vs程度に維持されている。これに対して、<装置の実施例>で得られた薄膜トランジスタでは、初期の移動度0.09cm2/Vsが、加熱によって低下し、180℃では移動度6×10-4cm2/Vsにまで劣化している。
 これにより、<装置の比較例>で得られた薄膜トランジスタと比較して、本発明を適用した<装置の実施例>で得られた薄膜トランジスタは、初期の移動度も高く、かつ180℃にまで加熱した状態であっても移動度の低下が小さく抑えられていることが分かる。
 これにより、本発明を適用して半導体薄膜1を積層構造とすることにより、加熱による移動度の低下とこれによる特性劣化を抑制可能であり、耐熱性の向上が図られた半導体薄膜および薄膜半導体装置が得られることが確認された。
 尚、このような移動度劣化の抑制は、1つの要因として、半導体薄膜の加熱による膨張が積層構造としたことによって抑えられていることが考えられる。すなわち、熱を加えることによって起こる物理的変化の一つとして、熱による膨張伸縮があげられる。薄膜トランジスタは、異なる材質の有機物を重ね合わせた構造をしていると見ることができ、それぞれの層が異なる熱膨張係数を有し、熱が加わることで各層と層の間でストレスが生じている可能性がある。例えば、熱膨張係数の異なる金属Maと金属Mbを張り合わせた場合、室温で平坦なものが高温になると反り返ることが知られている。これは上下で膨張率が異なるために起こる現象である。しかしこの反り返りはMa-Mb-Maといったサンドイッチ構造にすることで回避することができる場合がある。これは、金属Ma-Mb間で熱膨張によるストレスが生じているものの、一枚の板としてみたときサンドイッチ構造をとることで熱膨張によるストレスが上下で緩和されているからだと考えることができる。
 このことからすると、半導体薄膜1は、実施例で示したような有機材料で構成されるものに限定されることはなく、無機材料で構成された半導体薄膜1であっても同様の効果が得られることが予測される。
 また、半導体薄膜を塗布にて作製する場合、溶媒の乾燥工程が薄膜トランジスタとしての特性の性能を大きく左右することが知られている。例えば、より高沸点の塗布溶媒を用いることにより、高い移動度の薄膜トランジスタを得ることができると報告されている(「Chem.Mater.」,16(23),2004年,p.4772-4776参照)。これは、高沸点の塗布溶媒を用いたことにより、乾燥工程における塗布溶媒の乾燥速度を遅くなるためと考えられる。
 そして、以上の<装置の実施例>および<装置の比較例>のように、半導体薄膜の形成に同一の塗布溶媒(メシチレン)を用いた場合には、<装置の実施例>における塗布膜の乾燥過程において塗布溶媒の乾燥速度が遅くなることが目視にて確認できている。これは、有機半導体材料であるTIPSペンタセン(有機半導体材料)に対して、これよりも十分に分子量が大きな高分子材料であるポリαメチルスチレン(Mw=108,000、Mn=106,000)を混合することで塗布溶媒の揮発が阻害され、この結果として乾燥が遅くなったためと考えられる。そしてこのような乾燥速度の低下も一因となって、より移動度高められた薄膜トランジスタが得られたと考えられる。
<装置の評価-2>
 以上、<装置の実施例>および<装置の比較例>のようにして作製した複数の薄膜トランジスタのうち、各87個ずつの薄膜トランジスタについて、オン電流のバラツキを測定した。この結果、<装置の実施例>のようにして作製した薄膜トランジスタのオン電流のバラツキは11.3%であった。一方、<装置の比較例>のようにして作製した薄膜トランジスタのオン電流のバラツキは54.7%であった。
 これにより、スピンコート法を適用した半導体薄膜の形成においては、自発的な相分離によって積層構造の半導体薄膜を形成するようにすることで、単一の有機半導体材料を用いて半導体薄膜を形成する場合と比較して、ON電流のバラつきを約1/5にまで抑える効果も確認された。
<装置の評価-3>
 また、<装置の実施例>および<装置の比較例>のようにして作製した複数の薄膜トランジスタのうち、各87個ずつの薄膜トランジスタについて、ゲート電圧Vg-ドレイン電流Id特性を測定した。この結果を図14に示す。この結果からも、<装置の実施例>のようにして作製した薄膜トランジスタの特性バラツキは、<装置の比較例>のようにして作製した薄膜トランジスタの特性バラツキよりも小さいことが確認された。
 以上の<装置の評価-2>と<装置の評価-3>の結果から、有機半導体材料であるTIPSペンタセン(有機半導体材料)に対して、これよりも十分に分子量が大きな高分子材料であるポリαメチルスチレン(Mw=108,000、Mn=106,000)を混合することにより、塗布用の溶液に対してある程度の粘度を得ることが可能となって塗布性が向上し、さらに塗布膜の乾燥過程による凝集が防止されることで、面内均一な半導体薄膜が得られていることが確認された。
 以上説明したように本発明によれば、薄膜半導体装置および電界効果トランジスタにおいての加熱による移動度の低下とこれによる特性劣化を抑制可能であり、耐熱性の向上を図ることが可能になる。

Claims (12)

  1.  ゲート電極にゲート絶縁膜を介して積層された半導体薄膜を備え、
     前記半導体薄膜は、積層構造からなり、少なくとも2層の半導体層を含む薄膜半導体装置。
  2.  請求項1記載の薄膜半導体装置において、
     前記2層の半導体層間に、当該半導体層とは異なる材料を主成分として有する中間層が挟持されている薄膜半導体装置。
  3.  請求項2記載の薄膜半導体装置において、
     前記2層の半導体層は、同一材料で構成されている薄膜半導体装置。
  4.  請求項2記載の薄膜半導体装置において、
     前記中間層は、絶縁性材料からなる薄膜半導体装置。
  5.  請求項2記載の薄膜半導体装置において、
     前記積層構造は、有機材料からなる薄膜半導体装置。
  6.  請求項2記載の薄膜半導体装置において,
     前記2層の半導体層は共役系低分子材料であり、前記中間層は高分子材料である薄膜半導体装置。
  7.  請求項6記載の薄膜半導体装置において、
     前記共役低分子材料は多結晶または結晶であり、高分子材料は非晶質である薄膜半導体装置。
  8.  請求項6記載の薄膜半導体装置において、
     前記高分子材料は高分子絶縁材料である薄膜半導体装置。
  9.  請求項1記載の薄膜半導体装置において、
     前記積層構造は、前記ゲート絶縁膜側から順に、第1の共役系低分子材料層/高分子材料層/第2の共役系低分子材料層からなる薄膜半導体装置。
  10.  請求項9記載の薄膜半導体装置において、
     前記第1の共役系低分子材料層および前記第2の共役系低分子材料層は多結晶または結晶であり、高分子材料層は非晶質である薄膜半導体装置。
  11.  請求項9記載の薄膜半導体装置において、
     前記高分子材料層は高分子絶縁材料である薄膜半導体装置。
  12.  ゲート電極にゲート絶縁膜を介して積層された半導体薄膜と、
     前記ゲート電極の両脇となる位置に前記半導体薄膜に接して設けられたソース電極及びドレイン電極とを備え、
     前記半導体薄膜は、積層構造からなり、少なくとも2層の半導体層を含む電界効果トランジスタ。
PCT/JP2008/068843 2007-12-27 2008-10-17 薄膜半導体装置および電界効果トランジスタ WO2009084307A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/735,129 US8304763B2 (en) 2007-12-27 2008-10-17 Thin-film semiconductor device and field-effect transistor
EP08866568A EP2226846A4 (en) 2007-12-27 2008-10-17 THIN-FILM SEMICONDUCTOR DEVICE AND FIELD EFFECT TRANSISTOR
CN200880122073.0A CN101904011B (zh) 2007-12-27 2008-10-17 薄膜半导体装置和场效应晶体管

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-335881 2007-12-27
JP2007335881 2007-12-27

Publications (1)

Publication Number Publication Date
WO2009084307A1 true WO2009084307A1 (ja) 2009-07-09

Family

ID=40824030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/068843 WO2009084307A1 (ja) 2007-12-27 2008-10-17 薄膜半導体装置および電界効果トランジスタ

Country Status (7)

Country Link
US (1) US8304763B2 (ja)
EP (1) EP2226846A4 (ja)
JP (1) JP5453771B2 (ja)
KR (1) KR20100103623A (ja)
CN (1) CN101904011B (ja)
TW (1) TWI382540B (ja)
WO (1) WO2009084307A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120313150A1 (en) * 2011-06-13 2012-12-13 Sony Corporation Thin film transistor and method of manufacturing the same, and electronic apparatus
TWI667795B (zh) * 2014-09-25 2019-08-01 日商富士軟片股份有限公司 有機場效電晶體、有機半導體結晶的製造方法及有機半導體元件

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5598410B2 (ja) * 2011-04-11 2014-10-01 大日本印刷株式会社 有機半導体素子の製造方法および有機半導体素子
CN102332533A (zh) * 2011-09-20 2012-01-25 电子科技大学 一种空穴传输型有机薄膜晶体管及其制备方法
GB201408946D0 (en) * 2014-05-20 2014-07-02 Univ Manchester Low voltage dielectric
CN108780844B (zh) * 2016-03-16 2022-04-29 富士胶片株式会社 有机半导体组合物、有机薄膜晶体管的制造方法及有机薄膜晶体管

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03217027A (ja) * 1990-01-12 1991-09-24 Samsung Electron Devices Co Ltd 複数の半導体層を持つ薄膜トランジスタ
JP2006093113A (ja) * 2004-08-23 2006-04-06 Semiconductor Energy Lab Co Ltd 電子デバイスおよびその作製方法
JP2007273594A (ja) * 2006-03-30 2007-10-18 Nippon Kayaku Co Ltd 電界効果トランジスタ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644625B2 (ja) * 1988-12-31 1994-06-08 三星電子株式会社 アクティブマトリックス液晶表示素子用薄膜トランジスタ
JP2813428B2 (ja) * 1989-08-17 1998-10-22 三菱電機株式会社 電界効果トランジスタ及び該電界効果トランジスタを用いた液晶表示装置
JP2004165427A (ja) * 2002-11-13 2004-06-10 Konica Minolta Holdings Inc 有機薄膜トランジスタ素子
TW577176B (en) * 2003-03-31 2004-02-21 Ind Tech Res Inst Structure of thin-film transistor, and the manufacturing method thereof
JP2005243822A (ja) * 2004-02-25 2005-09-08 Seiko Epson Corp 薄膜トランジスタの製造方法、薄膜トランジスタ、薄膜トランジスタ回路、電子デバイスおよび電子機器
US7560301B2 (en) * 2004-08-20 2009-07-14 Panasonic Corporation Coating liquid for forming organic layered film, method of manufacturing field effect transistor, and field effect transistor
CN100521844C (zh) * 2004-08-23 2009-07-29 株式会社半导体能源研究所 电子器件及其制造方法
JP4989907B2 (ja) * 2005-03-24 2012-08-01 株式会社半導体エネルギー研究所 半導体装置及び電子機器
US7851788B2 (en) * 2006-02-28 2010-12-14 Pioneer Corporation Organic transistor and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03217027A (ja) * 1990-01-12 1991-09-24 Samsung Electron Devices Co Ltd 複数の半導体層を持つ薄膜トランジスタ
JP2006093113A (ja) * 2004-08-23 2006-04-06 Semiconductor Energy Lab Co Ltd 電子デバイスおよびその作製方法
JP2007273594A (ja) * 2006-03-30 2007-10-18 Nippon Kayaku Co Ltd 電界効果トランジスタ

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Applied Physics Letters", HYPERLINK, vol. 69, no. 26, 1996, pages 4108 - 4110, Retrieved from the Internet <URL:http://scitation.aip.org/dbt/dbt.jsp?KEY=APPLAB&Volume=69>
CHEM. MATER., vol. 16, no. 23, 2004, pages 4772 - 4776
See also references of EP2226846A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120313150A1 (en) * 2011-06-13 2012-12-13 Sony Corporation Thin film transistor and method of manufacturing the same, and electronic apparatus
US9368738B2 (en) * 2011-06-13 2016-06-14 Sony Corporation Thin film transistor and method of manufacturing the same, and electronic apparatus
TWI667795B (zh) * 2014-09-25 2019-08-01 日商富士軟片股份有限公司 有機場效電晶體、有機半導體結晶的製造方法及有機半導體元件

Also Published As

Publication number Publication date
EP2226846A1 (en) 2010-09-08
CN101904011A (zh) 2010-12-01
US8304763B2 (en) 2012-11-06
EP2226846A4 (en) 2013-02-20
KR20100103623A (ko) 2010-09-27
CN101904011B (zh) 2012-12-26
JP2009177135A (ja) 2009-08-06
TW200947709A (en) 2009-11-16
JP5453771B2 (ja) 2014-03-26
TWI382540B (zh) 2013-01-11
US20100276754A1 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP5636626B2 (ja) 半導体薄膜の形成方法および薄膜半導体装置の製造方法
KR101379616B1 (ko) 계면특성이 향상된 유기박막트랜지스터 및 그의 제조방법
US8373161B2 (en) Organic thin film transistor
JP5124520B2 (ja) 薄膜トランジスタ
WO2009084307A1 (ja) 薄膜半導体装置および電界効果トランジスタ
KR20070122203A (ko) 박막 트랜지스터용 중합체성 게이트 유전체
WO2007099690A1 (ja) 有機トランジスタ及びその製造方法
US8742410B2 (en) Fused polycyclic heteroaromatic compound, organic thin film including the compound and electronic device including the organic thin film
US20060131586A1 (en) Organic thin film transistor array panel and manufacturing method thereof
WO2008138914A1 (en) Reducing defects in electronic switching devices
JP2005079549A (ja) 有機薄膜トランジスタ
Onojima et al. Influence of phase-separated morphology on small molecule/polymer blend organic field-effect transistors fabricated using electrostatic spray deposition
JP6191235B2 (ja) 有機トランジスタ及びその製造方法
WO2007129643A1 (ja) 有機半導体材料を用いた電界効果トランジスタおよびその製造方法
WO2005006449A1 (ja) 有機薄膜トランジスタとその製造方法、及びそれを用いたアクティブマトリクス型のディスプレイと無線識別タグ
JP5630364B2 (ja) 有機半導体素子の製造方法および有機半導体素子
KR101910680B1 (ko) 유기 트랜지스터의 제조 방법, 유기 트랜지스터, 반도체 장치의 제조 방법, 반도체 장치 및 전자 기기
JP5310567B2 (ja) 薄膜トランジスタ及びその製造方法
Xu Characterization and modeling of static properties and low-frequency noise in organic field-effect transistors (OFETs)
Kim et al. Rubber-stamp-printed Poly (3-hexylthiophene) organic field-effect transistor on a plastic substrate with high mobility

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880122073.0

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08866568

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12735129

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008866568

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107016060

Country of ref document: KR

Kind code of ref document: A