WO2009084123A1 - アップウインド型風車及びその運転方法 - Google Patents

アップウインド型風車及びその運転方法 Download PDF

Info

Publication number
WO2009084123A1
WO2009084123A1 PCT/JP2008/001288 JP2008001288W WO2009084123A1 WO 2009084123 A1 WO2009084123 A1 WO 2009084123A1 JP 2008001288 W JP2008001288 W JP 2008001288W WO 2009084123 A1 WO2009084123 A1 WO 2009084123A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
blades
blade
rotation
upwind
Prior art date
Application number
PCT/JP2008/001288
Other languages
English (en)
French (fr)
Inventor
Masafumi Morimoto
Original Assignee
Kawasaki Jukogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo Kabushiki Kaisha filed Critical Kawasaki Jukogyo Kabushiki Kaisha
Priority to US12/810,174 priority Critical patent/US8753080B2/en
Priority to CN2008801174164A priority patent/CN101868621B/zh
Publication of WO2009084123A1 publication Critical patent/WO2009084123A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0658Arrangements for fixing wind-engaging parts to a hub
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0236Adjusting aerodynamic properties of the blades by changing the active surface of the wind engaging parts, e.g. reefing or furling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0264Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for stopping; controlling in emergency situations
    • F03D7/0268Parking or storm protection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/202Rotors with adjustable area of intercepted fluid
    • F05B2240/2022Rotors with adjustable area of intercepted fluid by means of teetering or coning blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • F05B2270/3201"cut-off" or "shut-down" wind speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/321Wind directions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/326Rotor angle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to an upwind wind turbine and a method for operating the same, and more particularly, to an apparatus for improving wind pressure resistance of a wind turbine by reducing wind loads acting on a plurality of blades in a strong wind.
  • a horizontal axis wind turbine includes a vertical support column, a nacelle attached to the upper end of the support column so as to be able to turn horizontally, and a rotor attached to the nacelle so as to be rotatable.
  • the rotor includes a hub disposed at the center thereof, and a plurality of blades attached to the hub and rotating in a substantially vertical working surface.
  • Horizontal axis wind turbines are roughly classified into an upwind type windmill in which each blade faces the windward side during power generation and a downwind type windmill in which each blade faces the leeward side during power generation.
  • the wind load acting on the wind turbine during strong winds such as typhoons is a major factor that determines the strength of the wind turbine structure.
  • the ratio of the wind load acting on the blades is particularly large with respect to the wind load acting on the wind turbine. Therefore, by reducing the wind load acting on the blade, the wind pressure resistance performance of the wind turbine can be improved without incurring costs in order to ensure the strength of the structure.
  • Various techniques have been proposed to reduce the wind load acting on the wing.
  • Patent Document 1 discloses an upwind wind turbine. According to this windmill, all blades are held in an upwind posture that faces the windward side during power generation. When the anemometer detects a wind speed that is equal to or higher than the cut-out wind speed, all blades are switched to feathers and the rotor stops. Thereafter, the nacelle rotates in the range of 75 to 110 [deg], and all the wings are switched to the inverted feathers. Thereafter, the nacelle rotates and all the wings are held in the downwind posture facing the leeward side.
  • Patent Document 2 discloses a downwind type wind turbine.
  • This windmill includes a blade inclination mechanism that adjusts the inclination angle of the blade, and reduces the blade passage area by tilting the blade toward the leeward side when the wind is strong. Thereby, the wind load acting on the blades is reduced without stopping the power generation operation of the windmill.
  • Patent Document 3 discloses a downwind type wind turbine.
  • This windmill includes a blade inclination mechanism that adjusts the inclination angle of the blade, and changes the inclination angle of the blade according to the average wind speed detected by the anemometer. Thereby, the wind load acting on the blade is reduced without stopping the power generation operation of the windmill, and the blade passage area is adjusted so that the output of the windmill is increased.
  • Patent Document 1 since the posture of each wing is switched from an upwind posture to a downwind posture in a strong wind, it is necessary to supply power to a device that rotates the nacelle. For this reason, it is necessary to provide an auxiliary power source such as a battery so that the nacelle can be rotated even if a power failure occurs during a strong wind.
  • the nacelle when switching this position, the nacelle once rotates. For this reason, it is necessary to ensure the strength of the structure of the wing and the structure of the connecting portion between the wing and the hub so as to withstand the cross wind received during the rotation. Further, it is difficult to rotate the nacelle against the wind load so that each wing is directed to the leeward side in a strong wind.
  • Patent Documents 2 and 3 merely disclose down-wind type wind turbines that can reduce the wind load acting on the blades when generating power during strong winds. When this disclosed technique is applied to an upwind wind turbine, there is a risk that the blades may collide with the support and be damaged.
  • the nacelle faces the wind and the wing always maintains an upwind posture with an elevation angle of 0.
  • the wing is generally formed in a shape having a high lift-drag ratio, and when the elevation angle is 0 when taking a complete upwind posture, almost no wind load acts on the wing.
  • the elevation angle is not 0, a large lift and drag are generated on the wing, and the load is greatly increased.
  • the wind load can certainly be reduced by tilting the blade and reducing the apparent area (projected area) of the blade as viewed from the windward side.
  • An object of the present invention is to make it possible to switch to a retracted posture tilted to the leeward side without damaging a plurality of blades, for example, in a strong wind. Further, another object of the present invention is to make it possible to switch the posture of the wing while maintaining the upwind posture, to enable the wing to be tilted automatically, to be able to automatically hold the upwind posture, Making it possible to limit the tilting speed of the wing, etc.
  • An upwind wind turbine includes a nacelle attached to a support column so as to be able to turn horizontally, a rotor attached to the nacelle so as to be rotatable, a central portion of the rotor, and a part of the rotor.
  • a hub a plurality of blades attached to the hub and constituting a part of the rotor and rotating in a substantially vertical working surface; and the nacelle for yaw rotation so that the blades face the windward side
  • the blades can be tilted between a normal posture in which the blades are located in the operating surface and a retracted posture in which the blades are tilted to the leeward side with respect to the normal posture.
  • a tilting connection mechanism for connecting the base end side portion of each blade to the hub, a tilting drive means for switching the posture of each blade in cooperation with the tilting connection mechanism, and stopping the rotation of the rotor Rotation stop means for causing each wing
  • the rotation stopping means is operated to stop the rotor at a predetermined rotational position where the blades can be tilted without interfering with the struts, and the tilt driving means is stopped after the rotation of the rotor is stopped.
  • control means for operating each of the wings to tilt to the retracted position.
  • the plurality of blades tilt to the retracted posture.
  • blade can be switched, without damaging a windmill.
  • blade can be reduced and the wind-pressure-resistant performance of a windmill improves. Therefore, it is advantageous in terms of ensuring the rigidity and strength of the struts and blades, and the manufacturing cost of the wind turbine can be reduced.
  • Wind speed detection means for detecting wind speed may be provided, and the control means may start control for switching the blades to the retracted posture when it is determined that the wind speed detected by the wind speed detection means is equal to or higher than a predetermined wind speed. . According to this configuration, it is possible to reduce the wind load that acts during strong winds. Further, it is possible to safely stop the operation of the windmill during a strong wind.
  • Rotation phase detection means for detecting the rotation phase of the rotor is provided, and the control means detects the predetermined rotation position based on the rotation phase detected by the rotation phase detection means when stopping the rotation of the rotor. Then, the rotation stopping means may be operated. According to this configuration, the rotor can be stopped while detecting the rotational phase. For this reason, it becomes possible to more reliably prevent the blades from interfering with the support columns when the blades are tilted after the rotor is stopped.
  • the rotation stopping means may include a pitch angle adjusting means for each blade and a rotor braking means for braking the rotor. According to this configuration, the rotor can be stopped after the rotation of the rotor is decelerated by adjusting the pitch angle of the blades, and the load on the rotor braking means can be reduced.
  • the control means when stopping the rotation of the rotor, operates the pitch angle adjusting means to adjust the pitch angle of the blades to reduce the rotational speed of the blades, and then the rotor braking means. May be operated to brake the rotor and stop the rotation of the rotor. According to such a configuration, the rotation of the rotor can be quickly stopped and the rotor can be safely stopped.
  • the control unit may operate the tilt driving unit to tilt the blade based on a wind load acting on the blade and its own weight when tilting the blade to the retracted posture. According to such a configuration, the blades can be switched to the retracted posture without supplying power from an auxiliary power source such as a power supply system or a battery.
  • the center of the resultant force of the wind load acting on the plurality of blades may be located on the leeward side with respect to the axis of the support column.
  • the nacelle and the rotor are automatically yaw-rotated like a weathercock so that the front end side of the rotor faces the windward side based on the wind load acting on the plurality of blades in the state where the blades are in the retracted posture. Move. Therefore, in the state of the retracted posture, the blades can be held in the upwind posture without supplying power from an auxiliary power source such as a power supply system or a battery.
  • Yaw rotation braking means that brakes yaw rotation of the nacelle may be provided, and the control means may release the braking by the yaw rotation braking means in a state where the blades are in the retracted posture.
  • the nacelle and the rotor are smoothly yaw-rotated based on the wind load acting on the blade in a state where the blade is in the retracted posture.
  • the tilt drive means includes one double-acting hydraulic cylinder that tilts the plurality of blades by expansion and contraction, a first oil path and a second oil path connected to a pair of oil chambers of the hydraulic cylinder, You may provide the connection oil path which connects a 1st oil path and a 2nd oil path, and the electromagnetic on-off valve provided on this connection oil path. According to such a configuration, when the electromagnetic on-off valve is opened to open the connecting oil passage, the oil chambers of the hydraulic cylinder communicate with each other so that the hydraulic cylinder expands and contracts, and the blades can be tilted.
  • the electromagnetic open / close valve may be a normally open valve. According to such a configuration, the electromagnetic on-off valve is opened when there is no power supply, so that the blade automatically switches to the retracted posture at the time of a power failure or the like.
  • the tilt drive means may include a variable throttle valve provided on the first oil passage or the second oil passage. According to this configuration, the amount of pressure oil flowing between the oil chambers when the electromagnetic on-off valve is opened is limited by the throttle valve. For this reason, the operating speed of the hydraulic cylinder is limited, and the tilting speed of the blade is limited to a low speed.
  • the tilt drive means includes a hydraulic pressure supply device that supplies pressure oil, and an electromagnetic direction switching valve connected to the hydraulic pressure supply device, and the first oil passage and the second oil passage are connected to the electromagnetic direction switching valve. It may be connected. According to such a configuration, the supply control of the pressure oil to the hydraulic cylinder can be realized with a simple configuration.
  • the tilt drive means is configured to switch the wings to the retracted posture synchronously by a plurality of double-acting hydraulic cylinders that tilt the corresponding wings by expansion and contraction, and wind load and own weight acting on the wings.
  • a synchronization actuating means for actuating the plurality of hydraulic cylinders may be provided. According to such a configuration, even when a power failure occurs, the plurality of hydraulic cylinders can be operated by the synchronous operation means, and each blade can be switched to the retracted posture in synchronization.
  • the tilt drive means may include a hydraulic pump for supplying pressure oil and an electromagnetic direction switching valve provided between the hydraulic pump and the synchronizing means. According to such a configuration, the supply control of the pressure oil to each hydraulic cylinder can be realized with a simple configuration.
  • a generator that generates electric power based on the rotational driving force of the rotor may be provided. According to such a configuration, it is possible to generate power by rotating the rotor.
  • An operation method of an upwind wind turbine includes a nacelle attached to a support so as to be able to turn horizontally, a rotor rotatably provided on the nacelle, a central portion of the rotor, A hub constituting a part, a plurality of blades attached to the hub and constituting a part of the rotor and rotating in a substantially vertical working surface; and the nacelle is yawed so that each of the blades faces the windward side.
  • a yaw rotation drive device for rotating the blade so that each blade can be tilted between a normal posture located in the operating surface and a retracted posture tilted to the leeward side with respect to the normal posture.
  • the upwind wind turbine may be configured such that, after the step of tilting the blades, the resultant force center of the wind load acting on the plurality of blades is located on the leeward side with respect to the axis of the column. .
  • the nacelle and the rotor are automatically yaw-rotated like a weathercock so that the front end side of the rotor faces the windward side based on the wind load acting on the plurality of blades when the blade is in the retracted posture. . Therefore, in the state of the retracted posture, the blades can be held in the upwind posture without supplying power from an auxiliary power source such as a power supply system or a battery.
  • the upwind wind turbine further includes a yaw rotation braking unit that brakes the yaw rotation of the nacelle, and further includes a step of releasing the braking by the yaw rotation braking unit after the step of tilting each blade. It may be. With this method, the nacelle and the rotor are smoothly yaw-rotated based on the wind load acting on the blade in the state where the blade is in the retracted posture.
  • the upwind wind turbine and the operating method thereof it is possible to tilt the wing toward the leeward side while preventing interference between the wing and the support. Furthermore, the upwind posture can be automatically maintained in a state where the wing is tilted.
  • FIG. 1 is a front view of an upwind wind turbine according to the first embodiment of the present invention.
  • FIG. 2 is a side view of the upwind wind turbine shown in FIG.
  • FIG. 3 is a cross-sectional view showing the yaw rotation drive device of the upwind wind turbine shown in FIG.
  • FIG. 4 is a partial side view of the upwind type windmill showing an enlarged main part of FIG. 2.
  • FIG. 5 is a partial front view of the up-wind type windmill showing the main part of FIG. 1 in an enlarged manner.
  • FIG. 6 is a partial side view of an upwind type windmill in which a main part of FIG. 2 is enlarged and a part thereof is seen through.
  • FIG. 7 is a hydraulic circuit diagram illustrating the tilting drive means shown in FIG. FIG.
  • FIG. 8 is a block diagram showing the configuration of the control system of the upwind wind turbine shown in FIG.
  • FIG. 9 is a view for explaining the moment generated by the weight of the blade when the blade of the upwind wind turbine shown in FIG. 1 is in the retracted posture.
  • FIG. 10 is a partial side view of the upwind wind turbine showing an enlarged main part of the upwind wind turbine according to the second embodiment of the present invention.
  • FIG. 11 is a partial front view of the upwind type windmill showing an enlarged main part of the upwind type windmill shown in FIG. 10.
  • FIG. 12 is a side view showing a tilt coupling mechanism of an upwind wind turbine according to the third embodiment of the present invention.
  • FIG. 13 is a side view which shows the tilting connection mechanism of the upwind type windmill which concerns on 4th Embodiment of this invention.
  • FIG. 14 is a hydraulic circuit diagram showing tilt drive means of the upwind wind turbine shown in FIG.
  • FIG. 15 is a side view which shows the tilting connection mechanism of the upwind type windmill which concerns on 5th Embodiment of this invention.
  • 16 is a front view of the tilting coupling mechanism shown in FIG.
  • FIG. 17 is a hydraulic circuit diagram showing tilt drive means of the upwind wind turbine shown in FIG.
  • the upwind wind turbine 1 includes a vertical support column 2.
  • a box-shaped nacelle 3 is attached to the upper end of the support 2 so as to be able to turn horizontally, and a rotor 4 is attached to the nacelle 3 so as to be rotatable.
  • the rotor 4 has a hub 5 disposed at the center thereof, and three blades 6 attached to the hub 5 and capable of rotating within a substantially vertical working surface.
  • a yaw rotation drive device 19 is provided between the support column 2 and the nacelle 3.
  • the yaw rotation drive device 19 includes a yaw rotation drive motor 21, a pinion 22, a radial bearing 23, an annular member 23b, and a yaw rotation braking device 24.
  • the yaw rotation drive motor 21 is fixed to the bottom wall portion inside the nacelle 3, and its output shaft 21 a protrudes below the nacelle 3.
  • a pinion 22 is attached to the output shaft 21a.
  • the radial bearing 23 is formed in an annular shape.
  • An inner race 23 a is provided on the inner peripheral portion of the radial bearing 23, and the inner race 23 a is fixed to the nacelle 3 with a bolt 27.
  • the annular member 23 b is integrated with an outer race provided on the outer peripheral side of the radial bearing 23, and is fixed to the upper end portion of the column 2 with a bolt 28.
  • a gear that meshes with the pinion 22 is formed on the outer peripheral portion of the annular member 23b.
  • the yaw rotation drive motor 21 When the yaw rotation drive motor 21 is driven, the driving force of the yaw rotation drive motor 21 is transmitted to the pinion 22, and the pinion 22 revolves around the outer periphery of the annular member 23b. As a result, the nacelle 3 is yaw-rotated with respect to the column 2. As will be described later, the yaw rotation drive motor 21 is driven in accordance with the wind direction, with the front end side of the rotor 4 (see FIG. 2) facing the windward direction (the direction indicated by the arrow in FIG. 2) and the blade 6 (FIG. 2). The nacelle 3 is configured to rotate the yaw so that the reference is directed to the windward side.
  • the yaw rotation braking device 24 includes an annular brake plate 25 and a plurality of arc-shaped brake members 26.
  • the brake member 26 has a U-shaped cross section and is fixed to the outer bottom portion of the nacelle 3.
  • a pair of upper and lower brake pads 26 a are provided on the inner surfaces of the upper wall portion and the lower wall portion of the brake member 25.
  • the brake plate 25 is fixed to the upper end portion of the annular member 23b and the column 2 by the bolt 28, and a part of the inner peripheral portion thereof is located between the pair of brake pads 26a.
  • the yaw rotation braking device 24 when an actuator (not shown) built in the brake member 26 is driven, the lower wall portion of the brake member 26 rises, and the brake plate 25 is sandwiched between the upper and lower brake pads 26a. . Thereby, a braking force is generated with respect to the yaw rotation of the nacelle 3.
  • the hub 5 of the rotor 4 is attached to the front end portion of the nacelle 3, and three pivot brackets 14 and a base end member 9 are provided on the outer peripheral portion of the hub 5 as will be described later.
  • the base end side portion of each blade 6 is supported so as to be tiltable.
  • a pitch angle adjusting device 7 is provided between the base end side of each blade 6 and the base end member 9, and the pitch angle adjusting device 7 includes a pitch adjusting motor 8. When the pitch adjusting motor 8 is driven, each blade 6 rotates about its axis, and the pitch angle of each blade 6 is adjusted.
  • the main shaft 30 of the rotor 4 is rotatably supported in the nacelle 3 via two bearings 34.
  • a flange 30 a is formed at the front end of the main shaft 30, and the hub 5 is connected to the flange 30 a, and the main shaft 30 rotates integrally with the hub 5.
  • the rear end of the main shaft 30 is an input shaft of the gear box 39.
  • An input shaft 38 of a generator 37 is connected to an output shaft 39 a of the gear box 39 via a coupling 36. Therefore, when the blade 6 rotates, the rotational driving force is input to the generator 37 via the hub 5, the main shaft 30, the gear box 39 and the coupling 36.
  • the generator 37 generates power based on the input rotational driving force of the rotor 4.
  • a rotor braking device 32 is provided on the output shaft 39 a of the gear box 39.
  • the output shaft 39a is braked so that the rotation of the rotor 4 can be stopped.
  • the rear end of the rotary joint 35 has an annular shape having irregularities such as gear teeth.
  • a detected portion (not shown) is formed.
  • An electromagnetic pickup 33 that detects the rotational phase angle of the rotor 4 is provided inside the nacelle 3 at a position facing the annular detected portion from the rear.
  • An anemometer 60 that detects the wind speed and an anemometer 61 that detects the wind direction are provided on the upper surface of the rear end of the nacelle 3.
  • each blade 6 connects the base end side portion of each blade 6 to the hub 5 so that each blade 6 can tilt between the normal posture and the retracted posture, and the tilting connection mechanism 15 cooperate with each other.
  • the tilt drive device 40 for switching the attitude of the blade 6 will be described.
  • the tilting connection mechanism 15 has the pivot bracket 14 and the base end member 9, the pivot pin 10, the roller 11, the pin 12, and the engagement member 13.
  • Three sets of pivot brackets 14 are provided radially on the outer periphery of the hub 5, and each base end member 9 is rotatably supported by the corresponding pivot bracket 14 via a pivot pin 10.
  • a base end portion of the base end member 9 is located inside the hub 5, and a roller 11 is rotatably supported by the base end portion via a pin 12.
  • An engagement member 13 having an annular groove is provided inside the hub 5, and the roller 11 is engaged with the annular groove so as to be able to roll.
  • the tilt drive device 40 includes a hydraulic cylinder 41 attached to the front portion of the main shaft 30, and the engagement member 13 is provided at the tip of the piston rod 42 of the hydraulic cylinder 41.
  • the wing 6 connected to the roller 11 via the base end member 9 and the pitch angle adjusting device 7 is in a normal posture (FIG. 6) located in a substantially vertical working surface with the pivot pin 10 as the center. It tilts within a range of a predetermined angle ⁇ from the normal posture to a retracted posture tilted to the leeward side with respect to this normal posture (see a two-dot chain line in FIG. 6).
  • the hydraulic cylinder 41 contracts, the blade tilts within an angular range from the retracted posture to the normal posture.
  • the working surface on which the blade 6 rotates is substantially orthogonal to the axis of the nacelle 3. More specifically, the axial center 3a of the nacelle 3 is inclined by a predetermined angle ⁇ (for example, 4 [deg]) with respect to the horizontal direction so that the windward side is upward, and the operating surface on which the blade 6 rotates is relative to the vertical surface. It is inclined substantially by this angle ⁇ .
  • for example, 4 [deg]
  • the tilt drive device 40 includes the hydraulic cylinder 41, oil passages 45, 46, 56, 57, a connecting oil passage 48, an electromagnetic on-off valve 49, a variable throttle valve 47, and an electromagnetic direction.
  • a switching valve 51 and a hydraulic pressure supply device 52 are provided.
  • the hydraulic pressure supply device 52 includes a hydraulic pump 53 and a pump drive motor 54 that drives the hydraulic pump 53.
  • the hydraulic cylinder 41 is a double-acting cylinder and has a pair of piston-side oil chambers 43 and a rod-side oil chamber 44. The hydraulic oil discharged from the hydraulic pump 53 is supplied to the oil chambers 43 and 44 so that the hydraulic cylinder 41 expands and contracts.
  • the oil passage 56 for guiding the pressure oil discharged from the hydraulic pump 53 is connected to the P port of the electromagnetic direction switching valve 51.
  • a piston side oil chamber 43 is connected to the A port of the electromagnetic direction switching valve 51 via an oil passage 46, and a rod side oil chamber 44 is connected to the B port via an oil passage 45.
  • the T port of the electromagnetic direction switching valve 51 communicates with the oil reservoir 52 via the oil passage 57.
  • the electromagnetic direction switching valve 51 is a three-position switching valve and has two solenoids 51a and 51b.
  • the electromagnetic direction switching valve 51 is held at a blocking position where the A and B ports are blocked.
  • the solenoid 51a is energized, the electromagnetic direction switching valve 51 is held at the right position where the P port communicates with the A port and the T port communicates with the B port.
  • the pressure oil from the hydraulic pump 53 is supplied to the piston-side oil chamber 43, the rod 42 advances, and the hydraulic cylinder 41 extends.
  • the solenoid 51b is energized, the electromagnetic direction switching valve 51 is held at the left position where the P port communicates with the B port and the T port communicates with the A port.
  • the pressure oil from the hydraulic pump 53 is supplied to the rod-side oil chamber 44, the rod 42 retracts, and the hydraulic cylinder 41 contracts.
  • the supply control of the hydraulic pressure to the hydraulic cylinder 41 can be realized with a simple configuration by the electromagnetic direction switching valve 51.
  • the connecting oil passage 48 connects the oil passages 45 and 46, and an electromagnetic on-off valve 49 is provided on the connecting oil passage 48.
  • the electromagnetic on-off valve 49 is a normally open valve that is held in an open position that normally opens the connecting oil passage 48.
  • the solenoid 49a of the electromagnetic on-off valve 49 is energized, the electromagnetic on-off valve 49 is held at a closed position where it operates against the biasing force of the spring 49b and shuts off the connecting oil passage 48.
  • a variable throttle valve 47 is provided on the hydraulic cylinder 41 side with respect to the connection oil passage 48, and an accumulator 55 is connected to the oil passage 46.
  • the accumulator 55 has a small capacity for compensating for the volume difference between the oil chambers 43 and 44.
  • the windmill includes a control unit 62 that controls the entire windmill.
  • the control unit 62 includes a microcomputer including a CPU, a ROM, and a RAM, an input / output interface I / O connected to the microcomputer via a data bus or the like.
  • An anemometer 60, an anemometer 61, an electromagnetic pickup 33, and the like are electrically connected to the input interface.
  • the output interface includes a yaw rotation drive motor 21, a yaw rotation brake device 24, a pitch adjustment motor 8, a rotor brake device 32, a pump drive motor 54, an electromagnetic direction switching valve 51, an electromagnetic opening / closing valve 49, a generator 37, and A plurality of drive circuits for driving the related devices and the like are provided.
  • the control unit 62 determines whether or not the wind speed detected by the anemometer 60 is equal to or higher than a preset wind speed (for example, cutout wind speed).
  • a preset wind speed for example, cutout wind speed.
  • the hydraulic cylinder 41 is contracted to place the blades 6 in a normal posture and normal operation is performed.
  • the cylinder 41 is contracted and the solenoids 51a and 51b of the electromagnetic direction switching valve 51 are de-energized to hold the electromagnetic direction switching valve 51 in the shut-off position. Energization is performed to hold the electromagnetic on-off valve 49 in the closed position.
  • the yaw rotation drive motor 21 is operated based on the wind direction detected by the anemometer 61, and the nacelle 3 is yaw-rotated so that the blades 6 face the windward side. As a result, the blades 6 are rotated based on wind power or the like, and the generator 37 generates power with the rotational driving force of the rotor 4.
  • the control unit 62 releases the operation of the yaw rotation brake device 24 to allow the nacelle 3 to rotate, and when the yaw rotation drive motor 21 is not operated, The rotation braking device 24 is operated to brake the yaw rotation of the nacelle 3, and the horizontal rotation position of the nacelle 3 is maintained.
  • the control unit 62 determines that the wind speed is equal to or higher than the predetermined wind speed, the control unit 62 switches the blade 6 from the normal posture to the retracted posture.
  • the control unit 62 first stops the rotor 4 at a predetermined rotational position where the three blades 6 can be tilted to the retracted position on the leeward side without causing the three blades 6 to interfere with the support column 2 based on the rotational phase signal detected by the electromagnetic pickup 33.
  • the predetermined rotational position is a rotational position where the blade 6 does not overlap the support column 2 when viewed in the rotational axis direction of the rotor 4, for example, the position shown in FIG.
  • the control unit 62 When stopping the rotation of the rotor 4, the control unit 62 first detects the predetermined rotational position based on the rotational phase signal received from the electromagnetic pickup 33. Next, the three pitch adjusting motors 8 are operated to adjust the pitch angle of each blade 6 to the increasing side, and the air resistance in the rotational direction acting on the blade 6 is increased to decrease the rotational speed of the blade 6. Next, the rotor braking device 32 is operated to brake the rotor 4, and the three blades 6 are stopped at a predetermined rotational position based on the rotational phase signal detected by the electromagnetic pickup 33. It is also possible to stop the rotation of the rotor 4 by adjusting the pitch angle of the three blades 6 to the decreasing side.
  • the windmill 1 includes not only the rotor braking device 32 but also three pitch angle adjusting devices 7 as the rotation stopping device 18 for stopping the rotation of the rotor 4. For this reason, the rotation of the rotor 4 can be stopped quickly and reliably.
  • the rotation speed of the rotor 4 is reduced by the three pitch angle adjusting devices 7 and then the rotor 4 is braked by the rotor control device 32, the rotor 4 can be operated without applying an excessive load to the rotor control device 32. Can be stopped.
  • the rotor 4 is stopped when the wind speed exceeds the predetermined wind speed, the rotor 4 can be prevented from rotating at an excessive speed during a strong wind, and the generator 37 can be prevented from being damaged.
  • the control unit 62 operates the tilt driving device 40 to tilt the three blades 6 to the retracted posture. At this time, the control unit 62 releases the energization to the solenoid 49a of the electromagnetic on-off valve 49, holds the electromagnetic on-off valve 49 in the open position, and releases the energization to the solenoids 51a and 51b of the electromagnetic direction switching valve 51. Is maintained and the electromagnetic direction switching valve 51 is held in the shut-off position.
  • the rod side oil chamber 44 communicates with the piston side oil chamber 43 via the oil passage 45, the connection oil passage 48 and the oil passage 46, and both the oil chambers 43 and 44 are hydraulic. Both the pump 53 and the oil reservoir 52 are shut off. For this reason, the pressure oil in the rod side oil chamber 44 flows into the piston side oil chamber 43 based on the wind load and its own weight acting on the blade 6, the hydraulic cylinder 41 extends, and the piston rod 42 advances forward. To do. As described above, the operation of the valves 49 and 51 of the tilt driving device 40 causes each blade 6 to tilt to the retracted posture based on the wind load and the own weight acting on the blade 6.
  • control unit 62 continues the operation of the rotor braking device 32 so as to maintain the state in which the rotor 4 is stopped at the predetermined rotational position. During this tilting, the blade 6 interferes with the support column 2 and is damaged. There is no risk of doing so.
  • variable throttle valve 47 is provided on the oil passage 46, the amount of oil flowing between the rod side oil chamber 44 and the piston side oil chamber 43 is limited, and the operating speed of the hydraulic cylinder 41 is limited. The For this reason, the tilting speed of the blade 6 is limited to a low speed, and the blade 6 can be prevented from being damaged.
  • the resultant force center G (see FIG. 2) of the wind load acting on the blade 6 is located on the leeward side with respect to the axis of the column 2. For this reason, based on the wind load acting on the three blades 6 in a strong wind, the nacelle 3 automatically and accurately yaws so that the front end of the rotor 4 faces the windward side, and the nacelle 3 and the rotor 4 automatically holds the upwind posture.
  • the control unit 62 releases the operation of the yaw rotation braking device 24 and allows the nacelle 3 to rotate the yaw, so that the nacelle can be smoothly rotated automatically.
  • Ma R ⁇ mg ⁇ sin ⁇
  • Ma is a moment for closing the wing 6a
  • Mb and Mc are moments for opening the wings 6b and 6c.
  • the tilt coupling mechanism and the tilt drive device are configured to include the structure and the hydraulic circuit for interlocking the blades 6 as described above, whereby the blade 6a The moment for closing the blade and the moment for opening the blades 6b, 6c are balanced.
  • the inclination angle ⁇ is not 0 as described above, and the axis of the nacelle 3 is inclined with respect to the horizontal direction so that the mounting side of the rotor 4 faces upward.
  • the moment Ma for closing the blade 6a increases as the inclination angle ⁇ increases
  • the moments Mb and Mc for opening the blades 6b and 6c decrease as the inclination angle ⁇ increases.
  • the tilting coupling mechanism and the tilting drive device are configured as described above, the above-described balance is lost, and the moment for closing the blades 6a exceeds the moment for opening the blades 6b and 6c.
  • the wing 6 is urged in the closing direction by its own weight.
  • the blades 6 are tilted to the retracted posture due to their own weights, and each blade 6 in the retracted posture self-holds the posture.
  • the blades 6 are tilted to the retracted posture when the wind speed exceeds a predetermined wind speed.
  • the wind load acting on the three blades 6 in a strong wind can be significantly reduced, the wind pressure resistance of the windmill 1 can be improved, and the windmill 1 can be prevented from being damaged.
  • the design conditions of the windmill are eased, and it is not necessary to ensure the rigidity and strength of the support 2 more severely than before, and the manufacturing cost of the windmill 1 can be reduced. it can.
  • the electromagnetic on-off valve 49 is a normally open valve, and the electromagnetic direction switching valve 51 is held at the shut-off position without energizing the solenoids 51a and 51b. For this reason, at the time of a power failure, the electromagnetic on-off valve 49 is held in the open position and the electromagnetic direction switching valve 51 is held in the cutoff position. Therefore, at the time of a power failure, without using an auxiliary power source such as a battery, it is possible to switch the three blades 6 to the retracted posture by operating the hydraulic cylinder 41 using the wind load and the own weight acting on the blades 6.
  • the upwind posture is automatically held based on the wind load. Therefore, the attitude of the nacelle 3 and the rotor 4 can be changed according to the wind direction without using an auxiliary power source such as a battery during a power failure.
  • the tilting coupling mechanism 70 includes three pivot brackets 69, three base end members 71 of the wings 6, and three pivot pins 72.
  • Each pivot bracket 69 is provided radially on the outer peripheral portion of the hub 5, and each base end member 71 is connected to the base end side portion of the corresponding blade 6.
  • An insertion hole is formed in each of the pivot support bracket 69 and the base end member 71, and the pivot support pin 72 is inserted into the insertion hole and fixed to the base end member 71. In this way, the base end member 71 is supported by the pivot bracket 69 so as to be rotatable integrally with the pivot pin 72.
  • the tilt drive device includes three tilt drive motors 73 provided on each pivot bracket 69.
  • a pivot pin 72 is fixed to the output shaft of each tilt drive motor 73. Therefore, when each tilt drive motor 73 is driven by the control unit 62, the base end member 71 rotates together with the pivot pin 72, and the three blades 6 are in the normal posture shown by the solid line in FIG. Tilt between the retracted posture shown by the chain line.
  • the blades 6 may be tilted to the retracted posture at low speed by wind load while braking by the tilt drive motor 73. It is also possible to switch from the retracted posture to the normal posture by the tilt drive motor 73.
  • This upwind type windmill 1A can obtain substantially the same operation and effect as the windmill 1 of the first embodiment, but the configuration of the tilting connection mechanism and the tilting drive device is simplified, and the manufacturing cost of the windmill is reduced to the first embodiment. Can be reduced compared to
  • FIG. 12 only the tilting connection mechanism 80 for the blade 6 at the uppermost position is shown, and the other tilting connection mechanisms have the same configuration.
  • the tilting connection mechanism 80 includes a Y-shaped member 81, a base end member 85 of the wing 6, a link member 83, a pair of arm portions 87, and pivot pins 82, 84, 86.
  • the pair of arm portions 87 are provided integrally with the main shaft 30A and protrude from the front end of the main shaft 30A.
  • a base end member 85 of the wing 6 is rotatably supported by the pair of arm portions 87 via a pivot pin 86.
  • One end portion of the link member 83 is rotatably connected to the base end portion of the base end member 85 via a pivot pin 84, and the other end portion of the link member 83 is the end portion of the Y-shaped member 81.
  • One of these is pivotally connected via a pivot pin 82.
  • the Y-shaped member 81 is fixed to the tip of the piston rod 42A of the hydraulic cylinder 41A attached to the main shaft 30A.
  • FIGS. 1 an upwind wind turbine 1 according to a fourth embodiment of the present invention will be described with reference to FIGS.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals, description thereof is omitted, and only different configurations will be described.
  • the configuration of the tilting coupling mechanism 90 and the tilting drive device is different from that of the first embodiment, and the tilting drive is performed by the three double-acting hydraulic cylinders 93 provided on each blade 6.
  • the three wings 6 are each configured to be switched to the retracted posture.
  • FIG. 13 shows only the tilting connection mechanism 90 for the blade 6 at the uppermost position, and the other tilting connection mechanisms have the same configuration.
  • the tilting connection mechanism 90 includes a pair of connection fittings 91, a pivot pin 92, a hydraulic cylinder 93, a base end member 96 of the wing 6, pivot pins 95 and 97, and a pair of arm portions 98.
  • the pair of arm portions 98 and the pair of connecting fittings 91 are configured integrally with the main shaft 30B.
  • the pair of arms 98 supports the base end member 96 of the wing 6 through a pivot pin 97 so as to be rotatable.
  • the pair of connection fittings 91 is provided on the inner diameter side of the main shaft with respect to the pair of arm portions 98, and the head portion of the hydraulic cylinder 93 is rotatable via the pivot pin 92 in the pair of connection fittings 91. It is connected to.
  • the distal end portion of the piston rod 94 of the hydraulic cylinder 93 is rotatably connected to the proximal end portion of the proximal end member 96 via a pivot pin 95.
  • the tilting drive device includes three hydraulic cylinders 93, one hydraulic pump 105, and a synchronous operation circuit unit 100.
  • 93a, 93b, 93c are hydraulic cylinders corresponding to the aforementioned blades 6a, 6b, 6c, ap, bp, cp are forward oil chambers of the hydraulic cylinders 93a, 93b, 93c, ar, br, cr are These are the return oil chambers of the hydraulic cylinders 93a, 93b, 93c.
  • the synchronous operation circuit unit 100 includes three hydraulic cylinders 93a, 93b so that the three blades 6a, 6b, 6c are synchronously switched to the retracted posture by wind load and own weight acting on the three blades 6a, 6b, 6c. , 93c.
  • the hydraulic pump 105 with the motor 106 has its discharge port connected to the P port of the electromagnetic direction switching valve 101 and its suction port connected to the T port.
  • the A port of the electromagnetic direction switching valve 101 is connected to the oil chamber ap via the oil passage 107A, and the B port is connected to the oil chamber br via the oil passage 107B.
  • the oil passage 107A and the oil passage 107B are connected to each other via a bypass oil passage 107C, and an electromagnetic on-off valve 102a is provided on the bypass oil passage. That is, the electromagnetic on-off valve 102a and the electromagnetic direction switching valve 101 are connected in parallel to the oil passages 107A and 107B.
  • a variable throttle valve 103a is provided on the oil passage 107B on the oil chamber br side with respect to a node with the bypass oil passage 107C.
  • the oil chamber ar is connected to the oil chamber cp via the oil passage 109
  • the oil chamber cr is connected to the oil chamber bp via the oil passage 108.
  • An electromagnetic on-off valve 102c and a variable throttle valve 103c are provided on the oil passage 109
  • an electromagnetic on-off valve 102b and a variable throttle valve 103b are provided on the oil passage 108.
  • the electromagnetic direction switching valve 101 is the same as the electromagnetic direction switching valve 51 shown in FIG.
  • the electromagnetic on / off valves 102a, 102b, and 102c are the same as the electromagnetic on / off valve 49 shown in FIG.
  • the accumulator 104b is connected to the oil passage 107B near the oil chamber br
  • the accumulator 104c is connected to the oil passage 108 near the oil chamber cr
  • the accumulator 104a is connected to the oil passage 109 near the oil chamber ar. It is connected.
  • These accumulators 104a, 104b, 104c are for compensating for the volume difference between the forward oil chambers ap, bp, cp and the backward oil chambers ar, br, cr, and have a relatively small capacity.
  • the electromagnetic direction switching valve 101 When strong blades are generated, when switching the blades 6a to 6c to the retracted position, the electromagnetic direction switching valve 101 is set to the shut-off position, and all the electromagnetic on-off valves 102a, 102b, 102c are opened. Then, the blades 6 a, 6 b, 6 c begin to tilt due to the wind load acting on the blades 6 a, 6 b, 6 c and the moments Ma, Mb, Mc shown in FIG. 9, and the pressure oil in the oil chamber ar passes through the oil passage 109.
  • the pressure oil in the oil chamber cr flows through the oil passage 108 to the oil chamber bp, and the pressure oil in the oil chamber br passes through the oil passage 107B, the bypass oil passage 107C, and the oil passage 107A. It flows into the oil chamber ap. For this reason, the three blades 6a, 6b, and 6c are automatically tilted synchronously and switched to the retracted posture. That is, the moment Ma corresponds to canceling out the moments Mb and Mc.
  • variable throttle valves 103a, 103b, 103c limit the flow rate of the oil flowing through the oil passages 107A, 107B, 107C, 108, 109, so that the operating speeds of the three hydraulic cylinders 93a, 93b, 93c are limited,
  • the three wings 6a, 6b, 6c are tilted at a low speed. This operation occurs in the same way even in a power failure state.
  • an upwind wind turbine 1 according to a fifth embodiment of the present invention will be described with reference to FIGS. 15 to 17.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals, description thereof is omitted, and only different configurations will be described.
  • the tilt coupling mechanism 190 of the upwind wind turbine is different from the fourth embodiment in the shape of the arm portion 198 and the type of the hydraulic cylinder 193.
  • the arm portion 198 has a shape in which three sets of pivot brackets project from a cylindrical structural member.
  • the weight of the arm 198 can be reduced, and the manufacturing cost can be reduced.
  • the three hydraulic cylinders 193a, 193b, 193c are double rod cylinders having two rods 194, 199 (see FIG. 15), respectively. This eliminates the volume difference between the return oil chambers ap, bp, cp and the return oil chambers ar, br, cr shown in FIG. 17, and the rods of the three hydraulic cylinders 193a, 193b, 193c have a single advance / retreat position.
  • the tilt angles of the three blades 6a, 6b, and 6c can be easily matched.
  • the number of wings 6 provided in the upwind wind turbine 1 is not limited to three, but may be two or more. Further, when it is determined that the wind speed is higher than a preset wind speed, instead of switching all the equipped blades 6 to the retracted posture, only some of the equipped blades 6 may be switched to the retracted posture. Good. Further, the blade 6 including the base end member can be changed from a normal posture located in the operation surface to a retracted posture in which the blade 6 is tilted at an angle corresponding to the wind speed within a range of a parallel posture in which the blade 6 is substantially parallel to the nacelle. It is.
  • a wind speed other than the cut-out wind speed may be set in advance, and each blade 6 may be switched to the retracted posture based on the set wind speed.
  • the variable throttle valve 47 may be interposed in the first oil passage 45.
  • the yaw rotation braking device 24 may be operated by the control unit 62 to brake the yaw rotation of the nacelles 3 and 3A.
  • the nacelle 3 and 3A are arranged so that the control unit 62 drives the yaw rotation drive motor 21 so that the front end of the hub 5 faces the wind direction. Turn the yaw.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

 本発明に係るアップウインド型風車(1)は、傾動連結機構(15)、傾動駆動手段(40)、回転停止手段(18)を備える。傾動連結機構(15)は、翼(6)を通常姿勢と該通常姿勢に対して風下側へ傾動させた退避姿勢との間で傾動可能なように各翼(6)の基端側部分をハブ(5)に連結し、傾動駆動手段(40)は、該傾動連結機構(15)と協働して各翼(6)の姿勢を切り換えるよう動作する。回転停止手段(18)はロータ(4)の回転を停止させる。各翼(6)を退避姿勢に切り換える際、回転停止手段(18)を作動させて翼(6)を支柱(2)と干渉させずに傾動させうる所定回転位置にロータ(4)を停止させ、該ロータ(4)の回転停止後に傾動駆動手段(15)を作動させて各翼(6)を退避姿勢へ傾動させる。

Description

アップウインド型風車及びその運転方法
 本発明は、アップウインド型風車及びその運転方法に関し、特に強風時に複数の翼に作用する風荷重を低減して風車の耐風圧性能を向上させるものに関する。
 一般に水平軸風車は、鉛直姿勢の支柱と、この支柱の上端部に水平旋回自在に付設されたナセルと、ナセルに回転自在に付設されたロータとを備える。ロータは、その中心部に配設されたハブと、このハブに付設されてほぼ鉛直の作動面内で回転する複数の翼とを備えている。水平軸風車は、発電時に各翼が風上側を向くアップウインド型風車と、発電時に各翼が風下側を向くダウンウインド型風車とに大別される。
 台風などの強風時に風車に作用する風荷重は、風車の構造の強度を決定する主要な要因である。この風車に作用する風荷重に対し、翼に作用する風荷重の占める割合が特に大きい。そのため、翼に作用する風荷重を低減することにより、構造の強度を確保するためにコストをかけずに、風車の耐風圧性能が向上し得る。翼に作用する風荷重を低減するため、種々の技術が提案されている。
 特許文献1はアップウインド型風車を開示している。この風車によると、発電時には全ての翼が風上側を向くアップウインド姿勢に保持される。風速計によりカットアウト風速以上の風速が検出されたとき、全ての翼がフェザーに切り換わりロータが停止する。その後ナセルが75~110[deg]の範囲で回動して全ての翼が反転フェザーに切り換わる。その後、ナセルが回動し、全ての翼が風下側を向くダウンウインド姿勢に保持される。
 特許文献2はダウンウインド型風車を開示している。この風車は、翼の傾斜角を調整する翼傾斜機構を備え、強風時に翼を風下側に傾動させることによって翼通過面積を縮小させる。これにより、風車の発電運転を停止させることなく翼に作用する風荷重が低減する。
 特許文献3はダウンウインド型風車を開示している。この風車は、翼の傾斜角を調整する翼傾斜機構を備え、風速計により検出される平均風速に応じて翼の傾斜角を変化させる。これにより、風車の発電運転を停止させることなく翼に作用する風荷重が低減し、風車の出力が大きくなるように翼通過面積が調整される。
特開2007-064062号公報 特開2004-108162号公報 特開2004-108163号公報
 しかし、特許文献1によれば、強風時に各翼の姿勢がアップウインド姿勢からダウンウインド姿勢へ切り換わるため、ナセルを回動させる装置に電力を供給する必要がある。このため、強風時に停電してもナセルを回動可能にする為に、バッテリなどの補助電源を備える必要がある。
 また、この姿勢を切り換える時に、一旦ナセルが回動する。このため、この回動時に受ける横風に耐えられるように翼の構造や翼とハブとの連結部の構造の強度を確保する必要がある。また、強風時に各翼が風下側へ向くよう、風荷重に対抗してナセルを回動させることは難しい。
 特許文献2及び3は、強風時に発電運転するにあたり、翼に作用する風荷重を低減可能なダウンウインド型風車を開示しているに過ぎない。この開示技術をアップウインド型風車に適用する場合には、翼が支柱に衝突して破損する虞がある。
 また、空力上、風荷重を低減するためには、ナセルが風に正対し、翼が常に仰角が0でアップウインド姿勢を保持していることが好ましい。これは、翼は一般に揚抗比の高い形状に形成されており、完全なアップウインド姿勢をとっているときに仰角が0であると翼にはほとんど風荷重が作用しなくなるからである。一方、仰角が0でなくなると、翼には大きな揚力及び抗力が発生して荷重が大幅に増大する。このため、’162号及び’163号に開示されるように翼を傾動させて風上側から見た翼の見付き面積(投影面積)を低減することによっても確かに風荷重を低減可能であるが、これにより達成される荷重の低減効果は、上記のような姿勢を保持することによって達成される効果には及ばない。したがって、強風下であって風向が変動し易く停電の可能性がある状態においては、翼が自動的にアップウインド姿勢に保持されることは、風荷重を低減させる上で極めて有効となる。
 しかしながら、従来、次の技術は何ら提案されていない:アップウインド型風車において強風時に発電を停止して翼をアップウインド姿勢に保持しつつ傾斜させる技術;停電時等に翼の姿勢を自動的に切換える技術;及び、翼の姿勢を切換える際の翼の傾動速度を制限する技術。
 本発明の目的は、例えば強風時等に複数の翼を破損させることなく風下側へ傾動させた退避姿勢に切換え可能にすることである。また、本発明のさらなる目的は、アップウインド姿勢を保持したまま翼の姿勢を切換え可能にすること、翼を自動的に傾動可能にすること、アップウインド姿勢を自動的に保持可能にすること、翼の傾動速度を制限可能にすること、等である。
 本発明に係るアップウインド型風車は、支柱に水平旋回可能に付設されたナセルと、該ナセルに回転可能に付設されたロータと、該ロータの中心部に配設されて該ロータの一部を構成するハブと、該ハブに付設されて前記ロータの一部を構成しほぼ鉛直の作動面内で回転する複数の翼と、前記翼が風上側へ向くように前記ナセルをヨー回動させるためのヨー回動駆動装置とを備えたアップウインド型風車において、前記各翼が前記作動面内に位置する通常姿勢と該通常姿勢に対して風下側へ傾動させた退避姿勢との間で傾動可能なように、前記各翼の基端側部分を前記ハブに連結する傾動連結機構と、該傾動連結機構と協働して前記各翼の姿勢を切り換える傾動駆動手段と、前記ロータの回転を停止させるための回転停止手段と、前記各翼を前記退避姿勢に切り換える際に、前記回転停止手段を作動させて前記翼を前記支柱と干渉させずに傾動させうる所定回転位置に前記ロータを停止させ、該ロータの回転停止後に前記傾動駆動手段を作動させて前記各翼を前記退避姿勢へ傾動させる制御手段と、を備えたことを特徴とする。
 かかる構成によれば、複数の翼を支柱と干渉させずに傾動可能な回転位置にロータを停止させた後、複数の翼が退避姿勢へ傾動する。このため、風車を破損させることなく翼の姿勢を切り換えることができる。このように退避姿勢になると各翼に作用する風荷重を低減することができ、風車の耐風圧性能が向上する。したがって、支柱と翼の剛性確保や強度確保の面で有利であり、風車の製作費用を低減可能である。
 風速を検出する風速検出手段を備え、前記制御手段は、前記風速検出手段により検出された風速が所定風速以上になったと判定すると、前記各翼を前記退避姿勢に切り換える制御を開始してもよい。かかる構成によれば、強風時に作用する風荷重を低減することができる。また、強風時に風車の運転を安全に停止させることができる。
 前記ロータの回転位相を検出する回転位相検出手段を備え、前記制御手段は、前記ロータの回転を停止させる際に、前記回転位相検出手段により検出される回転位相に基づいて前記所定回転位置を検知して前記回転停止手段を作動させてもよい。かかる構成によれば、回転位相を検出しながらロータを停止させることができる。このため、ロータ停止後の翼の傾動時に、翼が支柱と干渉するのをより確実に防止可能になる。
 前記回転停止手段は、前記各翼のピッチ角調整手段と、前記ロータを制動するロータ制動手段とを含んでいてもよい。かかる構成によれば、翼のピッチ角の調整によってロータの回転を減速してからロータを停止させることができ、ロータ制動手段の負荷を軽減することができる。
 前記制御手段は、前記ロータの回転を停止させる際に、前記各ピッチ角調整手段を作動させて前記各翼のピッチ角を調整して前記各翼の回転速度を低下させ、その後前記ロータ制動手段を作動させて前記ロータを制動して前記ロータの回転を停止させてもよい。かかる構成によれば、ロータの回転を速やかに停止させ、ロータを安全に停止させることができる。
 前記制御手段は、前記翼を前記退避姿勢へ傾動させる際に、前記傾動駆動手段を作動させ、前記翼に作用する風荷重と自重とに基づいて前記翼を傾動させてもよい。かかる構成によれば、給電系統やバッテリなどの補助電源からの電力の供給なしで翼を退避姿勢に切り換えることができる。
 前記各翼が前記退避姿勢となった状態において、前記複数の翼に作用する風荷重の合力中心が前記支柱の軸心よりも風下側に位置してもよい。かかる構成によれば、翼が退避姿勢となった状態において複数の翼に作用する風荷重に基づいて、ロータの前端側が風上側に正対するようにナセル及びロータが風見鶏の如く自動的にヨー回動する。したがって、退避姿勢となった状態において、給電系統やバッテリなどの補助電源から電力の供給なしに翼をアップウインド姿勢に保持することができる。
 前記ナセルのヨー回動を制動するヨー回動制動手段を備え、前記制御手段は、前記各翼が前記退避姿勢となった状態において、前記ヨー回動制動手段による制動を解除してもよい。かかる構成によれば、翼が退避姿勢となった状態において、翼に作用する風荷重に基づいてナセル及びロータが円滑にヨー回動する。
 前記傾動駆動手段は、伸縮により前記複数の翼を傾動させる1本の複動型の油圧シリンダと、該油圧シリンダの一対の油室に接続される第1油路及び第2油路と、該第1油路及び第2油路を接続する接続油路と、該接続油路上に設けられた電磁開閉弁とを備えていてもよい。かかる構成によれば、電磁開閉弁が開弁して接続油路を開放することにより、油圧シリンダの油室間が連通して油圧シリンダが伸縮するようになり、翼を傾動させることができる。
 前記電磁開閉弁が常開弁であってもよい。かかる構成によれば、電磁開閉弁は電力供給がない場合に開弁するため、停電時等に翼が自動的に退避姿勢に切り換わる。
 前記傾動駆動手段は、前記第1油路又は前記第2油路上に設けられた可変絞り弁を備えていてもよい。かかる構成によれば、電磁開閉弁の開弁時に油室間を流れる圧油の量が絞り弁によって制限される。このため油圧シリンダの作動速度が制限され、翼の傾動速度が低速に制限される。
 前記傾動駆動手段は、圧油を供給する油圧供給装置と、該油圧供給装置に接続された電磁方向切換弁とを備え、該電磁方向切換弁に前記第1油路及び前記第2油路が接続されていてもよい。かかる構成によれば、油圧シリンダに対する圧油の供給制御を簡単な構成で実現することができる。
 前記傾動駆動手段は、伸縮により対応する前記翼を傾動させる複数の複動型の油圧シリンダと、前記各翼に作用する風荷重と自重とにより前記各翼が同期して前記退避姿勢に切り換わるように前記複数の油圧シリンダを作動させるための同期作動手段とを備えていてもよい。かかる構成によれば、停電時にも同期作動手段によって複数の油圧シリンダを作動させて各翼を同期して退避姿勢に切り換えることができる。
 前記傾動駆動手段は、圧油を供給する油圧ポンプと、該油圧ポンプと前記同期手段との間に設けられた電磁方向切換弁とを備えていてもよい。かかる構成によれば、各油圧シリンダに対する圧油の供給制御を簡単な構成で実現することができる。
 前記ロータの回転駆動力に基づいて発電する発電機を備えていてもよい。かかる構成によれば、ロータの回転駆動により発電することができる。
 本発明に係るアップウインド型風車の運転方法は、支柱に水平旋回可能に付設されたナセルと、該ナセルに回転可能に設けられたロータと、該ロータの中心部に配設されて該ロータの一部を構成するハブと、該ハブに付設されて前記ロータの一部を構成しほぼ鉛直の作動面内で回転する複数の翼と、前記各翼が風上側へ向くように前記ナセルをヨー回動させるためのヨー回動駆動装置とを備え、前記各翼が前記作動面内に位置する通常姿勢と該通常姿勢に対して風下側へ傾動させた退避姿勢との間で傾動可能なように前記各翼の基端側部分が前記ハブに連結されたアップウインド型風車の運転方法であって、前記各翼を前記支柱と干渉させずに風下側に傾動させうる所定回転位置に前記ロータを停止させるステップと、前記ロータの回転停止後に前記各翼を前記退避姿勢へ傾動させるステップとを備えたことを特徴とする。かかる方法により上記同様の作用を生じる。
 前記アップウインド型風車は、前記各翼を傾動させるステップの後において、前記複数の翼に作用する風荷重の合力中心が前記支柱の軸心よりも風下側に位置するよう構成されていてもよい。かかる方法により、翼が退避姿勢となった状態において複数の翼に作用する風荷重に基づいて、ロータの前端側が風上側に正対するようにナセル及びロータが風見鶏の如く自動的にヨー回動する。したがって、退避姿勢となった状態において、給電系統やバッテリなどの補助電源から電力の供給なしに翼をアップウインド姿勢に保持することができる。
 前記アップウインド型風車は、前記ナセルのヨー回動を制動するヨー回動制動手段を備えており、各翼を傾動させるステップの後に、前記ヨー回動制動手段による制動を解除するステップをさらに備えていてもよい。かかる方法により、翼が退避姿勢となった状態において、翼に作用する風荷重に基づいてナセル及びロータが円滑にヨー回動する。
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
 本発明に係るアップウインド型風車及びその運転方法によれば、翼と支柱との干渉を防止しつつ翼を風下側へ傾動可能になる。さらには、翼が傾動した状態において、アップウインド姿勢を自動的に保持可能になる。
図1は、本発明の第1実施形態に係るアップウインド型風車の正面図である。 図2は、図1に示すアップウインド型風車の側面図である。 図3は、図1に示すアップウインド型風車のヨー回動駆動装置を示す断面図である。 図4は、図2の要部を拡大して示すアップウインド型風車の部分側面図である。 図5は、図1の要部を拡大して示すアップウインド型風車の部分正面図である。 図6は、図2の要部を拡大し且つその一部を透視して示すアップウインド型風車の部分側面図である。 図7は、図6に示す傾動駆動手段を説明する油圧回路図である。 図8は、図1に示すアップウインド型風車の制御系の構成を示すブロック図である。 図9は、図1に示すアップウインド型風車の翼を退避姿勢にしたときに翼の自重により発生するモーメントを説明する図面である。 図10は、本発明の第2実施形態に係るアップウインド型風車の要部を拡大して示すアップウインド型風車の部分側面図である。 図11は、図10に示すアップウインド型風車の要部を拡大して示すアップウインド型風車の部分正面図である。 図12は、本発明の第3実施形態に係るアップウインド型風車の傾動連結機構を示す側面図である。 図13は、本発明の第4実施形態に係るアップウインド型風車の傾動連結機構を示す側面図である。 図14は、図13に示すアップウインド型風車の傾動駆動手段を示す油圧回路図である。 図15は、本発明の第5実施形態に係るアップウインド型風車の傾動連結機構を示す側面図である。 図16は、図15に示す傾動連結機構の正面図である。 図17は、図15に示すアップウインド型風車の傾動駆動手段を示す油圧回路図である。
符号の説明
1,1A アップウインド型風車
2 支柱
3,3A ナセル
4 ロータ
5 ハブ
6 翼
7 ピッチ調整機構
15,70,80,90,190 傾動連結機構
18 回転停止装置
19 ヨー回動駆動機構
24 ヨー回動制動装置
32 ロータ制動装置
33 回転位相検出用電磁ピックアップ
37 発電機
40 傾動駆動装置
41,41A,93 油圧シリンダ
45 油路
46 油路
47 可変絞り弁
49 電磁開閉弁
51,101 電磁方向切換弁
53,105 油圧ポンプ
60 風速計
62 制御ユニット
 以下、図面に基づいて本発明を実施する為の最良の形態について説明する。
 図1及び図2に示すように、本発明の第1実施形態に係るアップウインド型風車1は、鉛直姿勢の支柱2を備えている。支柱2の上端部には箱状のナセル3が水平旋回自在に付設され、ナセル3にはロータ4が回転自在に付設されている。ロータ4はその中心部に配設されるハブ5と、ハブ5に付設されてほぼ鉛直の作動面内で回転可能な3つの翼6とを有している。
 図3に示すように、支柱2とナセル3の間にはヨー回動駆動装置19が設けられている。ヨー回動駆動装置19は、ヨー回転駆動モータ21と、ピニオン22と、ラジアルベアリング23と、環状部材23bと、ヨー回動制動装置24とを有する。
 ヨー回転駆動モータ21はナセル3の内部の底壁部に固定され、その出力軸21aがナセル3の下方に突出している。出力軸21aにはピニオン22が取り付けられている。ラジアルベアリング23は環状に形成されている。ラジアルベアリング23の内周部にはインナレース23aが設けられ、このインナレース23aはボルト27でナセル3に固定されている。環状部材23bは、ラジアルベアリング23の外周側に設けられたアウタレースと一体となっており、ボルト28で支柱2の上端部に固定されている。環状部材23bの外周部には、ピニオン22と噛合する歯車が形成されている。
 ヨー回転駆動モータ21が駆動すると、ヨー回転駆動モータ21の駆動力がピニオン22に伝達され、ピニオン22が環状部材23bの外周側を公転する。これにより支柱2に対してナセル3がヨー回動する。ヨー回動駆動モータ21は後述するように風向に応じて駆動され、ロータ4(図2参照)の前端側を風上方向(図2に矢印で示す方向)正対させて翼6(図2参照)が風上側に向くようにナセル3がヨー回動するよう構成されている。
 ヨー回動制動装置24は、環状のブレーキ板25と、複数の円弧状のブレーキ部材26とを有する。ブレーキ部材26は断面U字状に形成されてナセル3の外底部に固定されており、ブレーキ部材25の上壁部及び下壁部の内面には、上下一対のブレーキパッド26aが設けられている。ブレーキ板25は、上記ボルト28で環状部材23b及び支柱2の上端部に固定され、その内周部の一部が一対のブレーキパッド26aの間に位置している。このヨー回動制動装置24によると、ブレーキ部材26に内蔵されたアクチュエータ(図示せず)が駆動すると、ブレーキ部材26の下壁部が上昇し、上下のブレーキパッド26aによってブレーキ板25が挟み込まれる。これによりナセル3のヨー回動に対して制動力が発生する。
 図4及び図5に示すように、ロータ4のハブ5はナセル3の前端部に取り付けられており、ハブ5の外周部には、後述するように3つの枢支ブラケット14及び基端部材9を介し、各翼6の基端側部分が傾動可能に支持されている。各翼6の基端側と基端部材9との間にはピッチ角調整装置7が設けられ、このピッチ角調整装置7はピッチ調整用モータ8を備えている。このピッチ調整用モータ8が駆動すると、各翼6がその軸心を中心にして回動し、各翼6のピッチ角が調整される。
 図6に示すように、ナセル3の内部には、2つのベアリング34を介してロータ4の主軸30が回転可能に支持されている。主軸30の前端部には鍔部30aが形成され、この鍔部30aにはハブ5が連結されており、主軸30はハブ5と一体に回転する。主軸30の後端はギヤボックス39の入力軸となっている。ギヤボックス39の出力軸39aには、カップリング36を介して発電機37の入力軸38が連結されている。このため、翼6が回転すると、その回転駆動力がハブ5、主軸30、ギヤボックス39及びカップリング36を介して発電機37に入力される。発電機37は入力されたロータ4の回転駆動力に基づいて発電する。
 ギヤボックス39の出力軸39a上にはロータ制動装置32が設けられている。このロータ制動装置32が作動すると、出力軸39aが制動されてロータ4の回転を停止させることができるようになっている。
 ギヤボックス39の後端には、後述する油圧シリンダ41への油路を接続するためのロータリジョイント35が設けられており、このロータリジョイント35の後端にはギヤ歯のような凹凸を有する環状被検出部(図示せず)が形成されている。ナセル3の内部には、この環状被検出部に後方から臨む位置に、ロータ4の回転位相角を検出する電磁ピックアップ33が設けられている。また、ナセル3の後端部の上面には、風速を検出する風速計60と、風向を検出する風向計61とが設けられている。
 次に、各翼6が通常姿勢と退避姿勢との間で傾動可能なように各翼6の基端側部分をハブ5に連結する傾動連結機構15と、この傾動連結機構15と協働して翼6の姿勢を切り換えるための傾動駆動装置40とについて説明する。
 図6に示すように、傾動連結機構15は、上記枢支ブラケット14及び基端部材9と、枢支ピン10と、ローラ11と、ピン12と、係合部材13とを有している。ハブ5の外周部には3組の枢支ブラケット14が放射状に設けられており、各基端部材9は枢支ピン10を介して対応する枢支ブラケット14に回動可能に支持されている。基端部材9の基端部はハブ5の内部に位置しており、この基端部にはピン12を介してローラ11が回転可能に支持されている。ハブ5の内部には環状溝が形成された係合部材13が設けられており、この環状溝にローラ11が転動可能に係合している。傾動駆動装置40は、主軸30の前部に取り付けられた油圧シリンダ41を備え、この油圧シリンダ41のピストンロッド42の先端部に係合部材13が設けられている。
 ピストンロッド42が前方へ進出して油圧シリンダ41が伸長すると、係合部材13が前方へ移動し、ローラ11が環状溝内を上方へ転動しつつ前方へ移動する。このため、ローラ11に基端部材9及びピッチ角調整装置7を介して連結されている翼6は、枢支ピン10を中心にして、ほぼ鉛直の作動面内に位置する通常姿勢(図6中実線参照)から、この通常姿勢に対して風下側へ傾動させた退避姿勢(図6中2点鎖線参照)となるまでの所定角度αの範囲内で傾動する。油圧シリンダ41が収縮すると、翼が退避姿勢から通常姿勢となるまでの角度範囲内で傾動する。
 図4に戻ると、翼6がこの通常姿勢となっている状態において、翼6が回転する作動面はナセル3の軸心と概略直交している。より詳しくは、ナセル3の軸心3aは風上側が上向くように水平方向に対して所定角度β(例えば4[deg])だけ傾いており、翼6が回転する作動面は鉛直面に対して略この角度βだけ傾斜している。
 図7に示すように、傾動駆動装置40は、上記油圧シリンダ41と、油路45,46,56,57と、接続油路48と、電磁開閉弁49と、可変絞り弁47と、電磁方向切換弁51と、油圧供給装置52とを有する。油圧供給装置52は、油圧ポンプ53と、油圧ポンプ53を駆動するポンプ駆動モータ54とを有する。油圧シリンダ41は、複動型のシリンダであり、一対のピストン側油室43及びロッド側油室44を有している。油圧ポンプ53が吐出する圧油がこれら油室43,44に供給されることによって油圧シリンダ41が伸縮する。
 油圧ポンプ53が吐出する圧油を導く油路56は、電磁方向切替弁51のPポートに接続されている。電磁方向切替弁51のAポートには油路46を介してピストン側油室43が接続され、Bポートには油路45を介してロッド側油室44が接続されている。電磁方向切替弁51のTポートは油路57を介してオイルリザーバ52に連通している。
 電磁方向切換弁51は3位置切換弁であり、2つのソレノイド51a,51bを有している。両ソレノイド51a,51bが通電されていないときには、電磁方向切換弁51はA及びBポートをブロックする遮断位置に保持される。ソレノイド51aが通電されると、電磁方向切換弁51はPポートがAポートに連通してTポートがBポートに連通する右位置に保持される。このとき、油圧ポンプ53からの圧油がピストン側油室43に供給され、ロッド42が進出して油圧シリンダ41が伸長する。ソレノイド51bが通電されると、電磁方向切換弁51はPポートがBポートに連通してTポートがAポートに連通する左位置に保持される。このとき、油圧ポンプ53からの圧油がロッド側油室44に供給され、ロッド42が退入して油圧シリンダ41が収縮する。このように電磁方向切替弁51により、油圧シリンダ41に対する油圧の供給制御を簡単な構成で実現できる。
 接続油路48は油路45,46を接続しており、この接続油路48上には電磁開閉弁49が設けられている。電磁開閉弁49は、定常で接続油路48を開放する開放位置に保持される常開弁である。電磁開閉弁49のソレノイド49aが通電されると、電磁開閉弁49はスプリング49bの付勢力に抗して動作して接続油路48を遮断する閉鎖位置に保持される。油路46上には、接続油路48に対して油圧シリンダ41側において、可変絞り弁47が設けられており、油路46にはアキュムレータ55が接続されている。このアキュムレータ55は、油室43,44間の容積差を補償するための小容量のものである。
 図8に示すように、風車はその全体の制御を司る制御ユニット62を備えている。制御ユニット62は、CPU、ROM及びRAMを含むマイクロコンピュータや、このマイクロコンピュータにデータバス等を介して接続された入出力インターフェースI/Oなどを有している。入力インターフェースには、風速計60、風向計61、電磁ピックアップ33等が電気的に接続されている。出力インターフェースには、ヨー回動駆動モータ21、ヨー回動制動装置24、ピッチ調整用モータ8、ロータ制動装置32、ポンプ駆動モータ54、電磁方向切換弁51、電磁開閉弁49、発電機37及びその関連機器等を夫々駆動するための複数の駆動回路が設けられている。
 次に、図6-図8に基づいて風車1の動作について説明する。制御ユニット62は、風向計60で検出された風速が予め設定された風速(例えばカットアウト風速)以上であるか否かを判定する。風速がこの所定風速未満であると判定したときには、油圧シリンダ41を収縮させて翼6を通常姿勢にして通常運転を行う。この通常運転時には、シリンダ41を収縮させた上で電磁方向切換弁51のソレノイド51a,51bへの通電を解除して電磁方向切換弁51を遮断位置に保持し、電磁開閉弁49のソレノイド49aに通電して電磁開閉弁49を閉鎖位置に保持する。また、風向計61により検出される風向に基づいてヨー回動駆動モータ21を作動させ、翼6が風上側に向くようにナセル3をヨー回動させる。これにより、風力等に基づいて翼6が回転し、ロータ4の回転駆動力で発電機37が発電する。ヨー回動駆動モータ21を作動させる際には、制御ユニット62はヨー回動制動装置24の作動を解除してナセル3のヨー回動を許容し、ヨー回転駆動モータ21を作動させないときには、ヨー回動制動装置24を作動させてナセル3のヨー回動を制動し、ナセル3の水平旋回位置を保持するようになっている。
 制御ユニット62は、風速が所定風速以上であると判定すると、翼6を通常姿勢から退避姿勢に切り換える。制御ユニット62は、まず、電磁ピックアップ33で検出された回転位相信号に基づいて、3つの翼6を支柱2と干渉させずに風下側の退避姿勢へ傾動可能な所定回転位置にロータ4を停止させる。この所定回転位置は、ロータ4の回転軸方向に見て翼6が支柱2と重ならない回転位置であり、例えば図1に示す位置などである。
 このロータ4の回転を停止させる際に、制御ユニット62は、まず、電磁ピックアップ33から受ける回転位相信号に基づいて上記所定回転位置を検知する。次に、3つのピッチ調整用モータ8を作動させて各翼6のピッチ角を増加側へ調整し、翼6に作用する回転方向の空気抵抗を増大させて翼6の回転速度を低下させる。次に、ロータ制動装置32を作動させてロータ4を制動し、電磁ピックアップ33により検出される回転位相信号に基づいて3つの翼6を所定回転位置に停止させる。尚、3つの翼6のピッチ角を減少側へ調整してロータ4の回転を停止させることも可能である。
 このように電磁ピックアップ33からの信号に基づいて上記所定回転位置を検知するので、強風時であってもロータ4を確実にこの所定回転位置に停止させることができる。また、この風車1は、ロータ4の回転を停止させるための回転停止装置18として、ロータ制動装置32のみならず3つのピッチ角調整装置7を備えている。このため、ロータ4の回転を速やか且つ確実に停止させることができる。しかも、3つのピッチ角調整装置7によりロータ4の回転速度を低下させ、その後ロータ制御装置32によりロータ4を制動するという手順をとるため、ロータ制御装置32に過大な負荷を掛けずにロータ4を停止させることができる。このように、風速が所定風速以上になるとロータ4を停止させるため、強風時にロータ4が過速度で回転するのを防止することができ、発電機37の破損を防止できる。
 このロータ4の停止後、制御ユニット62は、傾動駆動装置40を作動させて3つの翼6を退避姿勢へ傾動させる。このとき、制御ユニット62は、電磁開閉弁49のソレノイド49aへの通電を解除して電磁開閉弁49を開放位置に保持し、電磁方向切換弁51のソレノイド51a,51bへの通電を解除した状態を維持して電磁方向切換弁51を遮断位置に保持する。
 このような弁49,51の状態において、ロッド側油室44は、油路45、接続油路48及び油路46を介してピストン側油室43に連通し、両油室43,44は油圧ポンプ53ともオイルリザーバ52とも遮断される。このため、翼6に作用する風荷重及び自重に基づいて、ロッド側油室44内の圧油がピストン側油室43内へと流れ、油圧シリンダ41が伸長してピストンロッド42が前方へ進出する。このように傾動駆動装置40の弁49,51の作動により、各翼6が、翼6に作用する風荷重及び自重に基づいて退避姿勢へ傾動する。このとき、制御ユニット62は、ロータ制動装置32の作動を継続させ、ロータ4が上記所定回転位置で停止した状態を維持するようにしており、この傾動時に翼6が支柱2と干渉して破損するおそれもない。
 また、油路46上には可変絞り弁47が設けられているため、ロッド側油室44とピストン側油室43との間を流れる油量が制限され、油圧シリンダ41の作動速度が制限される。このため、翼6の傾動速度が低速に制限され、翼6の破損を防止可能となる。
 翼6が退避姿勢になった状態においては、翼6に作用する風荷重の合力中心G(図2参照)が支柱2の軸心よりも風下側に位置する。このため、強風時に3つの翼6に作用する風荷重に基づいて、ロータ4の前端部が風上側に正対するようナセル3が自動的に正確にヨー回動するようになり、ナセル3及びロータ4が自動的にアップウインド姿勢を保持する。この状態において制御ユニット62は、ヨー回動制動装置24の作動を解除し、ナセル3のヨー回動を許容しており、ナセルの自動的なヨー回動が円滑に行われる。
 図9に示すように、翼6を退避姿勢にしたとき、翼6の自重により各翼6a,6b,6cにモーメントMa,Mb,Mcが発生する。ここで、上向きの翼(図1も参照)を6a、下向きの2枚の翼(図1も参照)を6b,6c、翼6の質量をm、重力加速度をg、枢支ピン10から各翼6の重心までの距離をR、通常姿勢に対する傾動姿勢の傾斜角をα、ナセル3の軸心の水平方向に対する傾斜角をβ、自重により各翼6に作用するモーメントをMa,Mb,Mcとする。
 傾斜角βが0の場合、Ma=R・mg・sinα,Mb=Mc=-R・mg・sinα・sin30°=-(1/2)Ma となる。Maは翼6aを閉じようとするモーメント、Mb,Mcは翼6b,6cを開こうとするモーメントである。これらの関係に従えば、傾斜角βが0の場合、傾動連結機構及び傾動駆動装置が上記のように各翼6を連動させるための構造や油圧回路を備えて構成されることにより、翼6aを閉じようとするモーメントと、翼6b,6cを開こうとするモーメントとが釣合った状態となる。
 現実には、傾斜角βは前述したように0でなく、ナセル3の軸心はロータ4の取付側が上向くように水平方向に対して傾斜している。この場合、翼6aを閉じようとするモーメントMaは傾斜角βの増加に応じて増加し、翼6b,6cを開こうとするモーメントMb,Mcは傾斜角βの増加に応じて減少する。このため、傾動連結機構及び傾動駆動装置が上記のように構成されることにより、上記の釣合いがくずれ、翼6aを閉じようとするモーメントが翼6b,6cを開こうとするモーメントに勝ることとなる。すなわち、翼6が、自重によって全体として閉じる方向に付勢される。このように本実施形態においては、各翼6の自重による退避姿勢への傾動が実現され、また、退避姿勢となった各翼6がその姿勢を自己保持するようになる。
 以上説明した本実施形態のアップウインド型風車1によれば、風速が所定風速以上になると、翼6を退避姿勢まで傾動させるようにしている。その結果、強風時に3つの翼6に作用する風荷重を格段に低減することができ、風車1の耐風圧性が向上し、風車1の破損を防止することができる。このように翼6に作用する風荷重が低減すると、風車の設計条件が緩和され、支柱2の剛性や強度を従来よりもシビアに確保する必要がなくなり、風車1の製作コストを低減することができる。
 なお、上記構成は停電が起こった場合の動作の点でも有利である。すなわち、電磁開閉弁49は常開弁となっており、電磁方向切換弁51はソレノイド51a,51bに通電しない状態で遮断位置に保持される。このため、停電時には、電磁開閉弁49が開放位置に保持されて電磁方向切換弁51が遮断位置に保持される。したがって、停電時に、バッテリなどの補助電源を用いることなく、翼6に作用する風荷重及び自重を利用して油圧シリンダ41を作動させて3つの翼6を退避姿勢に切り換えることができる。また、翼6が退避姿勢となっている状態においては風荷重に基づいて自動的にアップウインド姿勢を保持するようになっている。したがって、停電時に、バッテリなどの補助電源を用いることなく、ナセル3及びロータ4の姿勢を風向に応じて変化させることができる。
 次に、本発明の第2実施形態に係るアップウインド型風車1Aについて説明する。但し、第1実施形態と同様の構成要素には同一の参照符号を付して説明を省略し、異なる構成要素についてのみ説明する。
 図10,図11に示すように、傾動連結機構70は、3つの枢支ブラケット69と、3つの翼6の基端部材71と、3つの枢支ピン72とを有する。各枢支ブラケット69はハブ5の外周部に放射状に設けられ、各基端部材71は対応する翼6の基端側部分に連結されている。枢支ブラケット69及び基端部材71にはそれぞれ挿通孔が形成され、枢支ピン72は該挿通孔に挿通されて基端部材71に固着されている。このように、基端部材71は、枢支ピン72と一体回転可能に枢支ブラケット69に支持されている。
傾動駆動装置は、各枢支ブラケット69に設けられた3つの傾動駆動モータ73を備えている。各傾動駆動モータ73の出力軸には枢支ピン72が夫々固着されている。したがって、制御ユニット62により各傾動駆動モータ73が駆動されると、枢支ピン72と共に基端部材71が回転し、3つの翼6が図10に実線で示す通常姿勢と、図10に二点鎖線で示す退避姿勢との間で傾動する。
 但し、所定の風速以上の強風時には、傾動駆動モータ73により制動しながら、風荷重により翼6を低速で退避姿勢へ傾動させてもよい。また、傾動駆動モータ73により退避姿勢から通常姿勢へ切り換えることも可能である。このアップウインド型風車1Aにおいても、第1実施形態の風車1とほぼ同様の作用効果が得られるが、傾動連結機構及び傾動駆動装置の構成が簡単になり、風車の製作コストを第1実施形態に比べて低減することができる。
 次に、本発明の第3実施形態に係るアップウインド型風車について図12に基づいて説明する。但し、前述の実施形態と同様の構成要素には同一の符号を付して説明を省略し、異なる構成についてのみ説明する。尚、図12には、最上位位置にある翼6の為の傾動連結機構80のみ図示してあり、その他の傾動連結機構も同様の構成である。
 図12に示すように、傾動連結機構80は、Y形部材81と、翼6の基端部材85と、リンク部材83と、1対の腕部87、枢支ピン82,84,86とを有する。1対の腕部87は、主軸30Aと一体に設けられ、主軸30Aの前端から突出している。この1対の腕部87には、翼6の基端部材85が枢支ピン86を介して回動可能に支持されている。基端部材85の基端部には、リンク部材83の一端部が枢支ピン84を介して回動可能に連結されており、リンク部材83の他端部は、Y形部材81の端部のうちの1つに枢支ピン82を介して回動可能に連結されている。Y形部材81は、主軸30Aに付設された油圧シリンダ41Aのピストンロッド42Aの先端部に固着されている。
 油圧シリンダ41Aが収縮した状態においては、翼6が図12に実線で示す通常姿勢になる。油圧シリンダ41Aのピストンロッド42Aが前方に進出すると、図12に二点鎖線で示すように、リンク部材83を介して基端部材85が枢支ピン86を中心にして傾動し、翼6が退避姿勢に切り換えられる。
 次に、本発明の第4実施形態に係るアップウインド型風車1について、図13,図14に基づいて説明する。但し、前述した実施形態と同様の構成要素には同一の符号を付して説明を省略し、異なる構成についてのみ説明する。このアップウインド型風車においては、傾動連結機構90と傾動駆動装置の構成が第1実施形態と異なっており、各翼6に装備された3つの複動型の油圧シリンダ93で傾動駆動することにより、3つの翼6を退避姿勢に夫々切り換えるように構成されている。尚、図13には、最上位置にある翼6の為の傾動連結機構90のみ図示してあり、その他の傾動連結機構も同様の構成である。
 傾動連結機構90は、1対の連結金具91と、枢支ピン92と、油圧シリンダ93と、翼6の基端部材96と、枢支ピン95,97と、1対の腕部98とを有している。1対の腕部98と1対の連結金具91は主軸30Bと一体に構成されている。一対の腕部98には、枢支ピン97を介して翼6の基端部材96を回動自在に支持されている。一対の連結金具91は一対の腕部98に対して主軸の内径側に設けられており、この一対の連結金具91には、枢支ピン92を介して油圧シリンダ93のヘッド部が回動自在に連結されている。油圧シリンダ93のピストンロッド94の先端部は、枢支ピン95を介して基端部材96の基端部に回動自在に連結されている。
 図13の2点鎖線で示すように、油圧シリンダ93のピストンロッド94が前方に進出すると、油圧シリンダ93が枢支ピン92を中心に上方に回動すると共に、翼6と基端部材96が枢支ピン97を中心に傾動し、翼6が退避姿勢に切り換えられる。
 図14に示すように、傾動駆動装置は、3つの油圧シリンダ93と、1つの油圧ポンプ105と、同期作動回路部100とを備えている。図14において、93a,93b,93cは前述の翼6a,6b,6cに対応する油圧シリンダ、ap,bp,cpは、油圧シリンダ93a,93b,93cの往動油室、ar,br,crは、油圧シリンダ93a,93b,93cの復動油室である。同期作動回路部100は、3つの翼6a,6b,6cに作用する風荷重と自重により、3つの翼6a,6b,6cが同期して退避姿勢に切り換わるように3つの油圧シリンダ93a,93b,93cを作動させる。
 モータ106付きの油圧ポンプ105は、その吐出口が電磁方向切換弁101のPポートに接続され、その吸入口がTポートに接続されている。電磁方向切換弁101のAポートは、油路107Aを介して油室apに接続され、Bポートは油路107Bを介して油室brに接続されている。油路107Aと油路107Bとは、バイパス油路107Cを介して互いに接続されており、このバイパス油路上には電磁開閉弁102aが設けられている。すなわち、油路107A,107Bに対して電磁開閉弁102aと電磁方向切換弁101とが並列に接続されている。また、油路107B上にはバイパス油路107Cとのノードに対して油室br側において可変絞り弁103aが設けられている。油室arは油路109を介して油室cpに接続され、油室crは油路108を介して油室bpに接続されている。油路109上には、電磁開閉弁102cと可変絞り弁103cが設けられ、油路108上には電磁開閉弁102bと可変絞り弁103bが設けられている。なお、電磁方向切換弁101は図7に示す電磁方向切換弁51と同様のものであり、電磁開閉弁102a,102b,102cは図7に示す電磁開閉弁49と同様のものである。また、油路107Bには油室brの近くでアキュムレータ104bが接続され、油路108には油室crの近くでアキュムレータ104cが接続され、油路109には油室arの近くでアキュムレータ104aが接続されている。これらアキュムレータ104a,104b,104cは、往動油室ap,bp,cpと復動油室ar,br,crとの容積差を補償するためのものであり、比較的小容量となっている。
 強風発生時に、翼6a~6cを退避姿勢に切り換える際、電磁方向切換弁101を遮断位置にし、全部の電磁開閉弁102a,102b,102cを開弁状態にする。すると、翼6a,6b,6cに作用する風荷重と図9に示したモーメントMa,Mb,Mcにより翼6a,6b,6cが傾動し始め、油室ar内の圧油が油路109を介して油室cpに流れ、油室cr内の圧油が油路108を介して油室bpに流れ、油室br内の圧油が油路107B、バイパス油路107C及び油路107Aを介して油室apに流れる。このため、3つの翼6a,6b,6cは自動的に同期して傾動して退避姿勢へ切り換わる。つまり、モーメントMaがモーメントMb,Mcを相殺することに相当する。但し、可変絞り弁103a,103b,103cによって、油路107A,107B,107C,108,109を流れる油の流量が制限されるため、3つの油圧シリンダ93a,93b,93cの作動速度が制限され、3つの翼6a,6b,6cが低速で傾動するようになっている。尚、この作動は、停電状態においても同様に生じる。
 強風が止んだとき、翼6a,6b,6cを通常姿勢に切り換える際には、1つの電磁開閉弁102aのみを閉弁し、残りの2つの電磁開閉弁102b,102cを開弁状態にし、電磁方向切換弁101のソレノイド101aをOFF、ソレノイド101bをONにし、モータ106により油圧ポンプ105を駆動すると、油室apの油が油室brへ流れ、油室bpの油が油室crへ流れ、油室cpの油が油室arへ流れるため、3つの油圧シリンダ93a,93b,93cがピストンロッドを退入させるように駆動され、3つの翼6a,6b,6cが通常姿勢に切換えられる。尚、油圧ポンプ105と電磁方向切換弁101を介して、前記とは反対に作動させて、3つの翼6a,6b,6cを退避姿勢に切換えることも可能である。
 次に、本発明の第5実施形態に係るアップウインド型風車1について、図15乃至図17に基づいて説明する。但し、前述した実施形態と同様の構成要素には同一の符号を付して説明を省略し、異なる構成についてのみ説明する。このアップウインド型風車の傾動連結機構190は、腕部198の形状と油圧シリンダ193の形式が第4実施形態と異なっている。
 図15及び図16に示すように、腕部198は、円筒状の構造部材に3組の枢支ブラケットが張り出した形状となっている。円筒状の構造部材に枢支ブラケットを張り出した形状にすることにより、腕部198の軽量化が図られ、製作コストを低減することができる。また、図15及び図17に示すように、3つの油圧シリンダ193a,193b,193cはそれぞれ、2本のロッド194,199(図15参照)を有した両ロッドシリンダとなっている。これにより、図17に示す復動油室ap,bp,cpと、復動油室ar,br,crの容積差がなくなり、3つの油圧シリンダ193a,193b,193cのロッドの進退出位置が一致し、3つの翼6a,6b,6cの傾動角度を容易に一致させることができる。
 次に、上記実施形態を部分的に変更した変更例について説明する。アップウインド型風車1に装備された翼6は3つに限定されることなく、2つ以上であればよい。また、予め設定された風速以上になったことが判定されたときに、装備した全ての翼6を退避姿勢に切り換える代わりに、装備したうちの一部の翼6のみを退避姿勢に切り換えてもよい。また、基端部材を含む翼6を、作動面内に位置する通常姿勢から翼6がナセルとほぼ平行となる平行姿勢の範囲内で風速に応じた角度傾動させた退避姿勢にすることも可能である。
 カットアウト風速以外の風速を予め設定しておき、設定された風速に基づいて、各翼6を退避姿勢に切り換えてもよい。可変絞り弁47を第2油路46に介装する代わりに、第1油路45に介装してもよい。
 3つの翼6を退避姿勢に切り換えた状態で、制御ユニット62によりヨー回動制動装置24を作動させてナセル3,3Aのヨー回動を制動してもよい。この場合、風向計61で検出された風向に基づいて、制御ユニット62によりヨー回動駆動モータ21を駆動させてハブ5の前端が風向きに正対させる向きとなるように、ナセル3,3Aをヨー回動させる。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。

Claims (18)

  1.  支柱に水平旋回可能に付設されたナセルと、該ナセルに回転可能に付設されたロータと、該ロータの中心部に配設されて該ロータの一部を構成するハブと、該ハブに付設されて前記ロータの一部を構成しほぼ鉛直の作動面内で回転する複数の翼と、前記翼が風上側へ向くように前記ナセルをヨー回動させるためのヨー回動駆動装置とを備えたアップウインド型風車において、
     前記各翼が前記作動面内に位置する通常姿勢と該通常姿勢に対して風下側へ傾動させた退避姿勢との間で傾動可能なように、前記各翼の基端側部分を前記ハブに連結する傾動連結機構と、
     該傾動連結機構と協働して前記各翼の姿勢を切り換える傾動駆動手段と、
     前記ロータの回転を停止させるための回転停止手段と、
     前記各翼を前記退避姿勢に切り換える際に、前記回転停止手段を作動させて前記翼を前記支柱と干渉させずに傾動させうる所定回転位置に前記ロータを停止させ、該ロータの回転停止後に前記傾動駆動手段を作動させて前記各翼を前記退避姿勢へ傾動させる制御手段と、を備えたことを特徴とするアップウインド型風車。
  2.  風速を検出する風速検出手段を備え、
     前記制御手段は、前記風速検出手段により検出された風速が所定風速以上になったと判定すると、前記各翼を前記退避姿勢に切り換える制御を開始することを特徴とする請求項1に記載のアップウインド型風車。
  3.  前記ロータの回転位相を検出する回転位相検出手段を備え、
     前記制御手段は、前記ロータの回転を停止させる際に、前記回転位相検出手段により検出される回転位相に基づいて前記所定回転位置を検知して前記回転停止手段を作動させることを特徴とする請求項1又は2に記載のアップウインド型風車。
  4.  前記回転停止手段は、前記各翼のピッチ角調整手段と、前記ロータを制動するロータ制動手段とを含むことを特徴とする請求項1乃至3のいずれか1項に記載のアップウインド型風車。
  5.  前記制御手段は、前記ロータの回転を停止させる際に、前記各ピッチ角調整手段を作動させて前記各翼のピッチ角を調整して前記各翼の回転速度を低下させ、その後前記ロータ制動手段を作動させて前記ロータを制動して前記ロータの回転を停止させることを特徴とする請求項4に記載のアップウインド型風車。
  6.  前記制御手段は、前記翼を前記退避姿勢へ傾動させる際に、前記傾動駆動手段を作動させ、前記翼に作用する風荷重と自重とに基づいて前記翼を傾動させることを特徴とする請求項1乃至5のいずれか1項に記載のアップウインド型風車。
  7.  前記各翼が前記退避姿勢となった状態において、前記複数の翼に作用する風荷重の合力中心が前記支柱の軸心よりも風下側に位置することを特徴とする請求項1乃至6のいずれか1項に記載のアップウインド型風車。
  8.  前記ナセルのヨー回動を制動するヨー回動制動手段を備え、
     前記制御手段は、前記各翼が前記退避姿勢となった状態において、前記ヨー回動制動手段による制動を解除することを特徴とすることを請求項1乃至7のいずれか1項に記載のアップウインド型風車。
  9.  前記傾動駆動手段は、伸縮により前記複数の翼を傾動させる1本の複動型の油圧シリンダと、該油圧シリンダの一対の油室に接続される第1油路及び第2油路と、該第1油路及び第2油路を接続する接続油路と、該接続油路上に設けられた電磁開閉弁とを備えることを特徴とする請求項1乃至8のいずれか1項に記載のアップウインド型風車。
  10.  前記電磁開閉弁が常開弁であることを特徴とする請求項9に記載のアップウインド型風車。
  11.  前記傾動駆動手段は、前記第1油路又は前記第2油路上に設けられた可変絞り弁を備えることを特徴とする請求項10に記載のアップウインド型風車。
  12.  前記傾動駆動手段は、圧油を供給する油圧供給装置と、該油圧供給装置に接続された電磁方向切換弁とを備え、該電磁方向切換弁に前記第1油路及び前記第2油路が接続されていることを特徴とする請求項9乃至11のいずれか1項に記載のアップウインド型風車。
  13.  前記傾動駆動手段は、伸縮により対応する前記翼を傾動させる複数の複動型の油圧シリンダと、前記各翼に作用する風荷重と自重とにより前記各翼が同期して前記退避姿勢に切り換わるように前記複数の油圧シリンダを同期作動させるための同期作動手段とを備えることを特徴とする請求項1乃至8のいずれか1項に記載のアップウインド型風車。
  14.  前記傾動駆動手段は、圧油を供給する油圧ポンプと、該油圧ポンプと前記同期作動手段との間に設けられた電磁方向切換弁とを備えることを特徴とする請求項13に記載のアップウインド型風車。
  15.  前記ロータの回転駆動力に基づいて発電する発電機を備えることを特徴とする請求項1乃至14のいずれか1項に記載のアップウインド型風車。
  16.  支柱に水平旋回可能に付設されたナセルと、該ナセルに回転可能に付設されたロータと、該ロータの中心部に配設されて該ロータの一部を構成するハブと、該ハブに付設されて前記ロータの一部を構成しほぼ鉛直の作動面内で回転する複数の翼と、前記各翼が風上側へ向くように該ナセルをヨー回動させるためのヨー回動駆動装置とを備え、前記各翼が前記作動面内に位置する通常姿勢と該通常姿勢に対して風下側へ傾動させた退避姿勢との間で傾動可能なように前記各翼の基端側部分が前記ハブに連結されたアップウインド型風車の運転方法であって、
     前記各翼を前記支柱と干渉させずに風下側に傾動させうる所定回転位置に前記ロータを停止させるステップと、
     前記ロータの回転停止後に前記各翼を前記退避姿勢へ傾動させるステップと
    を備えたことを特徴とするアップウインド型風車の運転方法。
  17.  前記アップウインド型風車は、前記各翼を傾動させるステップの後において、前記複数の翼に作用する風荷重の合力中心が前記支柱の軸心よりも風下側に位置するよう構成されていることを特徴とする請求項16に記載のアップウインド型風車の運転方法。
  18.  前記アップウインド型風車は、前記ナセルのヨー回動を制動するヨー回動制動手段を備えており、
     各翼を傾動させるステップの後に、前記ヨー回動制動手段による制動を解除するステップをさらに備えることを特徴とする請求項16又は17に記載のアップウインド型風車の運転方法。
     
PCT/JP2008/001288 2007-12-28 2008-05-23 アップウインド型風車及びその運転方法 WO2009084123A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/810,174 US8753080B2 (en) 2007-12-28 2008-05-23 Upwind wind turbine and operation method thereof
CN2008801174164A CN101868621B (zh) 2007-12-28 2008-05-23 迎风型风车及其运行方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-339280 2007-12-28
JP2007339280A JP4100520B1 (ja) 2007-12-28 2007-12-28 アップウインド型風車及びその退避運転方法

Publications (1)

Publication Number Publication Date
WO2009084123A1 true WO2009084123A1 (ja) 2009-07-09

Family

ID=39560848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/001288 WO2009084123A1 (ja) 2007-12-28 2008-05-23 アップウインド型風車及びその運転方法

Country Status (4)

Country Link
US (1) US8753080B2 (ja)
JP (1) JP4100520B1 (ja)
CN (1) CN101868621B (ja)
WO (1) WO2009084123A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221405A (ja) * 2012-04-12 2013-10-28 Yaskawa Electric Corp 発電装置
CN112228287A (zh) * 2020-08-31 2021-01-15 长江三峡集团福建能源投资有限公司 一种具有可折叠式叶片的抗台风海洋风力发电平台

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7994931B2 (en) * 2008-08-01 2011-08-09 Garmin Switzerland Gmbh Graphical wind gauge
US8915697B2 (en) * 2008-08-22 2014-12-23 Natural Power Concepts Inc. Mobile wind turbine
FI20080510L (fi) * 2008-09-10 2010-03-11 Mervento Oy Tuulivoimala
JP4995209B2 (ja) * 2009-01-05 2012-08-08 三菱重工業株式会社 風力発電装置及び風力発電装置の風向推定方法
JP5438979B2 (ja) * 2009-01-22 2014-03-12 三菱重工業株式会社 シリンダ駆動装置
US20100226774A1 (en) * 2009-02-25 2010-09-09 Kenneth James Deering Wind turbine control system and apparatus
AU2009342700A1 (en) * 2009-04-02 2010-10-07 Clipper Windpower, Inc. Serviceable yaw brake disc segments without nacelle removal
CN102094754B (zh) * 2009-12-14 2013-10-16 谭宗享 风力发电机电子刹车系统
KR200459015Y1 (ko) * 2010-03-15 2012-03-21 전북대학교산학협력단 풍력발전기용 블레이드 각도 제어장치
US7939961B1 (en) * 2010-04-28 2011-05-10 General Electric Company Wind turbine with integrated design and controlling method
KR20130020909A (ko) * 2011-04-05 2013-03-04 미츠비시 쥬고교 가부시키가이샤 재생 에너지형 발전 장치 및 유압 펌프의 장착 방법
DE102011101443A1 (de) * 2011-05-12 2012-11-15 Windnovation Engineering Solutions Gmbh Windkraftanlage mit verstellbaren Rotorblättern
FR2983923B1 (fr) * 2011-12-07 2014-04-18 Pascal Jean Cuzenard Dispositif et procede de protection d'une eolienne en cas d'evenement de vents violents et une eolienne pourvue d'un tel dispositif
CN102536648A (zh) * 2011-12-22 2012-07-04 焦作瑞塞尔盘式制动器有限公司 风电偏航系统的液压控制方法及实施该方法的偏航装置
CN103225587B (zh) * 2012-01-31 2015-07-29 北京能高自动化技术股份有限公司 一种下风向风力发电机组
JP5626257B2 (ja) * 2012-04-12 2014-11-19 株式会社安川電機 発電装置
WO2013176723A1 (en) * 2012-05-22 2013-11-28 United Technologies Corporation Wind turbine load mitigation
US10030628B2 (en) * 2012-05-24 2018-07-24 Thunderbird Power Corp Horizontal axis wind machine with multiple rotors
US10132290B2 (en) * 2012-06-29 2018-11-20 General Electric Company Apparatus and method for aerodynamic performance enhancement of a wind turbine
EP2754886B1 (en) * 2013-01-14 2016-01-06 ALSTOM Renewable Technologies Method of operating a wind turbine rotational system and wind turbine rotational system
CN103114964B (zh) * 2013-02-05 2015-11-25 西安交通大学 一种可调叶片角位移的下风向风力机叶片系统
GB2535959B (en) * 2013-12-03 2020-04-01 Natural Power Concepts Inc Folding blade wind turbine
US9372201B2 (en) * 2014-03-31 2016-06-21 Alstom Renewable Technologies Yaw and pitch angles
CN107041148B (zh) * 2014-05-01 2018-03-27 川崎重工业株式会社 上风式风车
JP6230967B2 (ja) * 2014-07-03 2017-11-15 株式会社日立製作所 風力発電装置及びそのブレードピッチ角調整方法
CN105626385A (zh) * 2014-11-05 2016-06-01 上海电气风电设备有限公司 一种收拢式风电机组叶片
WO2016085858A1 (en) * 2014-11-26 2016-06-02 Phillips Roger Gordon High-efficiency wind generator
KR101978016B1 (ko) * 2015-05-26 2019-05-13 전자부품연구원 전기장 유체를 이용한 자동 접이식 풍력발전 블레이드 장치
RU2610324C2 (ru) * 2015-06-19 2017-02-09 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" Летательный аппарат
KR20170046928A (ko) * 2015-10-22 2017-05-04 지유 주식회사 소형 풍력발전기의 블레이드 폴딩 조절장치
US10066597B2 (en) * 2016-12-14 2018-09-04 Thunderbird Power Corp Multiple-blade wind machine with shrouded rotors
JP6573923B2 (ja) * 2017-02-10 2019-09-11 エムエイチアイ ヴェスタス オフショア ウィンド エー/エス 風力発電施設および風力発電施設の運転方法
CN107387319A (zh) * 2017-09-06 2017-11-24 合肥凌山新能源科技有限公司 一种基于风能发电的风力智能调控系统
US10662923B2 (en) * 2017-09-29 2020-05-26 General Electric Company Contingency autonomous yaw control for a wind turbine
CN107905941B (zh) * 2017-11-13 2018-10-09 扬州大学 一种水平轴风力机及其使用方法
JP2018080704A (ja) * 2018-01-17 2018-05-24 川崎重工業株式会社 アップウインド型風車
JP2019163734A (ja) * 2018-03-20 2019-09-26 株式会社駒井ハルテック アップウィンド型風車の運転装置及びその台風時の運転方法
EP3807521B1 (en) 2018-06-14 2022-08-03 Vestas Wind Systems A/S A wind turbine with a pivoted rotor blades, wire and release mechanism for stopping
EP4055269A1 (en) * 2019-11-07 2022-09-14 Vestas Wind Systems A/S Pivot angle control of blades of a wind turbine with hinged blades
CA3099992A1 (en) * 2020-11-19 2022-05-19 Aurea Technologies INC. Portable wind turbine
WO2023202756A1 (en) * 2022-04-20 2023-10-26 Vestas Wind Systems A/S A wind turbine with hinged wind turbine blades and an energy accumulation system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692371A (en) * 1979-12-25 1981-07-27 Toshiba Corp Wind power generation device
US20040052640A1 (en) * 2002-09-12 2004-03-18 Ghazi Khan All weather windmills
JP2005264865A (ja) * 2004-03-19 2005-09-29 Mitsubishi Heavy Ind Ltd 風車装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1009020B (zh) * 1988-02-29 1990-08-01 达亚能源有限公司 风力涡轮桨距控制毂
US5564274A (en) * 1995-12-13 1996-10-15 Caterpillar Inc. Cold oil protection circuit for a hydraulic system
US7071578B1 (en) * 2002-01-10 2006-07-04 Mitsubishi Heavy Industries, Ltd. Wind turbine provided with a controller for adjusting active annular plane area and the operating method thereof
JP3810723B2 (ja) * 2002-09-13 2006-08-16 三菱重工業株式会社 連環式翼通過面積調整装置を備えた風車
JP2004108163A (ja) * 2002-09-13 2004-04-08 Mitsubishi Heavy Ind Ltd 翼通過面積調整装置を備えた風車及びその運転方法
EP2284391B1 (en) * 2004-07-23 2018-02-07 Vestas Wind Systems A/S Method and control system of controlling a wind turbine blade during the stopping process of the rotor
JP4690829B2 (ja) * 2005-08-30 2011-06-01 富士重工業株式会社 水平軸風車
EP2450568B1 (en) * 2005-05-31 2018-04-18 Hitachi, Ltd. Horizontal axis wind turbine
ES2279725B1 (es) * 2006-02-09 2008-07-16 Hydra-Power, S.L. Dispositivo para el control de las palas de un aerogenerador.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692371A (en) * 1979-12-25 1981-07-27 Toshiba Corp Wind power generation device
US20040052640A1 (en) * 2002-09-12 2004-03-18 Ghazi Khan All weather windmills
JP2005264865A (ja) * 2004-03-19 2005-09-29 Mitsubishi Heavy Ind Ltd 風車装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221405A (ja) * 2012-04-12 2013-10-28 Yaskawa Electric Corp 発電装置
CN112228287A (zh) * 2020-08-31 2021-01-15 长江三峡集团福建能源投资有限公司 一种具有可折叠式叶片的抗台风海洋风力发电平台
CN112228287B (zh) * 2020-08-31 2022-01-04 长江三峡集团福建能源投资有限公司 一种具有可折叠式叶片的抗台风海洋风力发电平台

Also Published As

Publication number Publication date
US20100301607A1 (en) 2010-12-02
JP4100520B1 (ja) 2008-06-11
US8753080B2 (en) 2014-06-17
CN101868621B (zh) 2013-01-16
CN101868621A (zh) 2010-10-20
JP2009162057A (ja) 2009-07-23

Similar Documents

Publication Publication Date Title
WO2009084123A1 (ja) アップウインド型風車及びその運転方法
CN102536658B (zh) 水平轴风车
JP3978186B2 (ja) アップウィンド型風車及びその運転方法
US20100226774A1 (en) Wind turbine control system and apparatus
US6870281B2 (en) Wind power plant stabilization
JP6577939B2 (ja) アップウインド型風車
WO2011092810A1 (ja) 風力発電装置及び風力発電装置のヨー旋回制御方法
AU2008320935A1 (en) Blade pitch-angle control apparatus and wind turbine generator
CN101189430A (zh) 水平轴风车
JP2014181711A (ja) 負荷補償デバイスのためのフェールセーフデバイス
JP2004011543A (ja) 水平軸型風車
JP2001221145A (ja) パッシブ・アクティブ・ピッチ・フラップ機構
US9695802B2 (en) Wind turbine load mitigation
WO2010109529A1 (ja) アップウインド型風車
EP3564130B1 (en) Hybrid ram air turbine with in-line hydraulic pump and generator
EP3997334B1 (en) Control device and method of controlling a wind turbine
US11898534B2 (en) Hinged blade wind turbine with tilted axis and/or coned rotor
JP2011017293A (ja) ジャイロミル式風力発電装置のブレード負荷減少装置
WO2011039777A2 (en) System for controlling cone and pitch angle of a rotor blade assembly of a wind turbine
EP3449120B1 (en) Rotor unit of a wind turbine having foldable wind blades and wind turbine comprising rotor unit
JP2018080704A (ja) アップウインド型風車
WO2011027365A2 (en) Ophthalmic compositions containing dorzolamide, timolol and brimonidine
WO2011109032A1 (en) Wind turbine control system and apparatus
WO2023202756A1 (en) A wind turbine with hinged wind turbine blades and an energy accumulation system
TW201128063A (en) Wind power generator and rotation direction swinging control method of the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880117416.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08763897

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12810174

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08763897

Country of ref document: EP

Kind code of ref document: A1