JP2013221405A - 発電装置 - Google Patents

発電装置 Download PDF

Info

Publication number
JP2013221405A
JP2013221405A JP2012091186A JP2012091186A JP2013221405A JP 2013221405 A JP2013221405 A JP 2013221405A JP 2012091186 A JP2012091186 A JP 2012091186A JP 2012091186 A JP2012091186 A JP 2012091186A JP 2013221405 A JP2013221405 A JP 2013221405A
Authority
JP
Japan
Prior art keywords
shaft
propeller
generator
speed increaser
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012091186A
Other languages
English (en)
Other versions
JP5626256B2 (ja
Inventor
Tadahiro Miyamoto
恭祐 宮本
Shinichi Nishi
真一 西
Masayuki Utsunomiya
将之 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2012091186A priority Critical patent/JP5626256B2/ja
Priority to US13/603,420 priority patent/US8604636B2/en
Priority to BRBR102012023533-1A priority patent/BR102012023533A2/pt
Priority to EP12187963.9A priority patent/EP2650532B1/en
Priority to CN201210395502.XA priority patent/CN103375360B/zh
Priority to KR1020120115927A priority patent/KR101520159B1/ko
Publication of JP2013221405A publication Critical patent/JP2013221405A/ja
Application granted granted Critical
Publication of JP5626256B2 publication Critical patent/JP5626256B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/024Adjusting aerodynamic properties of the blades of individual blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/80Arrangement of components within nacelles or towers
    • F03D80/82Arrangement of components within nacelles or towers of electrical components
    • F03D80/85Cabling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/80Arrangement of components within nacelles or towers
    • F03D80/88Arrangement of components within nacelles or towers of mechanical components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/04Combinations of toothed gearings only
    • F16H37/041Combinations of toothed gearings only for conveying rotary motion with constant gear ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/60Shafts
    • F05B2240/61Shafts hollow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/403Transmission of power through the shape of the drive components
    • F05B2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/326Rotor angle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

【課題】プロペラの回転位置を検出する位置検出器の小型化を図ること。
【解決手段】実施形態に係る発電装置は、回転軸と、スリップリングと、検出軸と、位置検出器とを備える。回転軸は、プロペラと一体に回転し、内部にプロペラからの配線が挿通される。スリップリングは、回転軸に一端側が連結される。検出軸は、スリップリングの他端側に設けられ、回転軸とともに回転する。そして、位置検出器は、検出軸の回転位置を検出することによってプロペラの回転位置を検出する。
【選択図】図2

Description

開示の実施形態は、発電装置に関する。
従来、風や海流等の流体によってプロペラを回転させて発電を行うプロペラ式の発電装置が知られている。たとえば、風力発電装置は、プロペラが風を受けて回転する機械エネルギーを発電機によって電気エネルギーへ変換する。
プロペラ式の発電装置には、プロペラの回転位置を検出するエンコーダなどの位置検出器が設けられる場合がある。従来の発電装置は、かかる位置検出器をプロペラ軸に取り付け、かかる位置検出器によってプロペラ軸の回転位置を検出することによってプロペラの回転位置を検出していた(たとえば、特許文献1参照)。
特開2011−208635号公報
しかしながら、プロペラ軸は一般的に軸径が大きいため、プロペラ軸に位置検出器を取り付けようとすると、位置検出器が大型化するおそれがあった。
実施形態の一態様は、上記に鑑みてなされたものであって、プロペラの回転位置を検出するための位置検出器の小型化を図ることのできる発電装置を提供することを目的とする。
実施形態の一態様に係る発電装置は、回転軸と、スリップリングと、検出軸と、位置検出器とを備える。回転軸は、プロペラと一体に回転し、内部にプロペラからの配線が挿通される。スリップリングは、回転軸に一端側が連結される。検出軸は、スリップリングの他端側に設けられ、回転軸とともに回転する。そして、位置検出器は、検出軸の回転位置を検出することによってプロペラの回転位置を検出する。
実施形態の一態様によれば、プロペラの回転位置を検出する位置検出器の小型化を図ることができる。
図1は、第1の実施形態に係る風力発電装置の構成を示す図である。 図2は、ナセル内に配置される機器の構成を示す模式側面図である。 図3は、プロペラとスリップリングとの接続関係を示す模式図である。 図4は、増速機および発電機の模式側断面図である。 図5は、スリップリングの模式側断面図である。 図6は、回転軸の他の構成を示す模式側断面図である。 図7は、ナセル内に配置される機器の他の構成を示す模式側面図である。 図8は、ナセル内に配置される機器の他の構成を示す模式側面図である。
以下、添付図面を参照して、本願の開示する発電装置の実施形態を詳細に説明する。なお、以下に示す各実施形態では、本願の開示する発電装置を風力発電装置に対して適用した場合の例について説明するが、本願の開示する発電装置は、風力発電装置以外のプロペラ式の発電装置にも適用することができる。たとえば、本願の開示する発電装置は、海流によってプロペラを回転させて発電を行う潮力発電装置にも適用可能である。
(第1の実施形態)
図1は、第1の実施形態に係る風力発電装置の構成を示す図である。図1に示すように、風力発電装置1は、風力発電部10と、電力変換装置20とを備え、電力系統30へ電力を供給する。なお、説明を分かり易くするために、図1では一部の構成の図示を省略している。また、以下においては、位置関係を明確にするために、互いに直交するX軸、Y軸を規定し、X軸正方向を鉛直上向き方向とする。
風力発電部10は、塔体110、ナセル120およびプロペラ130を有する風車140を備える。プロペラ130は、ハブ130aと、ハブ130aの異なる位置にそれぞれ取り付けられる複数のブレード130bとを備える。
複数のブレード130bは、ピッチ角が変更可能に設けられる。ピッチ角とは、プロペラ130の回転面とブレード130bの翼弦とのなす角度のことである。かかるピッチ角を小さくするほど、ブレード130bが風を受ける面積が広くなる、言い換えれば、ブレード130bが風から受ける抗力が大きくなるため、より多くのエネルギーを風から取り出すことが可能となる。
ナセル120は、塔体110に回転自在に支持される。かかるナセル120内には、プロペラ軸150を介してプロペラ130に接続された発電機13が収納される。発電機13は、電動機としても用いることができる回転電機であり、たとえば、永久磁石タイプの回転電機である。プロペラ軸150は、プロペラ130のハブ130aに接続される。
発電機13によって発電された電力は、電力変換装置20へ出力され、電力変換装置20によって電力変換されて電力系統30へ供給される。かかる電力変換装置20の構成および動作については、後述する。
また、ナセル120内には、風力によって回転するプロペラ130の回転位置を検出するための位置検出器16が収納されている。第1の実施形態において位置検出器16は、絶対値エンコーダである。絶対値エンコーダは、絶対位置を検出するため、たとえば電源停止中にプロペラ130が強風等によって回転した場合であっても、原点復帰動作を行うことなくプロペラ130の現在の回転位置を検出することができる。
位置検出器16によって検出されたプロペラ130の回転位置は、統括制御部40を介してピッチ制御部50へ出力される。ピッチ制御部50は、プロペラ130の回転位置を統括制御部40経由で取得すると、かかるプロペラ130の回転位置に応じてブレード130bのピッチ角をブレード130bごとに変更するピッチ制御処理を行う。統括制御部40およびピッチ制御部50の具体的な動作については、後述する。
ここで、プロペラ軸は、強度上あるいは発電効率上の観点から軸径が大きく形成されることが多い。このため、プロペラの回転位置を検出するための位置検出器をプロペラ軸に取り付け、プロペラ軸の回転位置を検出することによってプロペラの回転位置を検出することとすると、位置検出器が大型化するおそれがあった。
また、軸径が大きくなるほど伝達可能なトルクが大きくなるため、軸径の大きいプロペラ軸に対して位置検出器を取り付けることとすると、位置検出器に対して大きな機械的ストレスがかかるおそれもあった。
一方、プロペラ130内には、ブレード130bを駆動させてブレード130bのピッチ角を変更するピッチ駆動部等の機器が設けられており、ナセル120内には、上記機器に対して給電等を行うためのスリップリング15が設けられている。
具体的には、風力発電装置1は、プロペラ130に連結されるとともにプロペラ130からの配線が内部に挿通された回転軸を備え、かかる回転軸に対してスリップリング15が取り付けられる。スリップリング15は、プロペラ130からの配線が接続される回転部と、かかる回転部に対して電気的に接続される固定部とを備え、プロペラ130からの配線は、かかるスリップリング15の回転部および固定部を介して外部の配線へ接続される。これにより、プロペラ130とともに回転するプロペラ130内の機器と、回転しない外部の機器との間で電力や信号の授受を行うことが可能となる。
このように、風力発電装置1は、プロペラ軸150とは別に、プロペラ130と一体に回転する回転軸を備える。そこで、第1の実施形態に係る風力発電装置1では、かかる回転軸の回転位置を位置検出器16によって検出することでプロペラ130の回転位置を検出することとした。
かかる回転軸は、プロペラ軸150と比べて軸径が小さいため、プロペラ軸150の回転位置を検出する場合と比較して、位置検出器16の小型化を図ることができ、位置検出器16にかかる機械的ストレスを小さくすることもできる。
以下では、かかる位置検出器16の配置および接続関係等について具体的に説明する。図2は、ナセル120内に配置される機器の構成を示す模式側面図である。
図2に示すように、ナセル120内には、上述した発電機13、スリップリング15および位置検出器16に加え、軸受部11、増速機12、ブレーキ14、出力軸160、回転軸170、検出軸180が設けられる。
軸受部11、増速機12、発電機13、ブレーキ14、スリップリング15および位置検出器16は、プロペラ130に近い位置から順に、軸受部11、増速機12、発電機13、ブレーキ14、スリップリング15および位置検出器16の順に配置される。なお、以下では、プロペラ130が設けられる側を風力発電装置1の前方とし、位置検出器16が設けられる側を風力発電装置1の後方とする。
第1の実施形態に係る風力発電装置1では、増速機12の入力軸および出力軸、発電機13の入力軸、回転軸170および検出軸180が、プロペラ軸150の中心軸R(すなわち、プロペラ130の回転軸線)と同一軸線上に配置される。このため、これらの機器を収容するナセル120を小型化することができる。
軸受部11は、たとえばローラーベアリング等を用いてプロペラ軸150を回転可能に支持する部材である。増速機12は、プロペラ軸150に対して入力軸が接続され、プロペラ軸150の回転を増速して出力する。かかる増速機12の入力軸および出力軸は、プロペラ軸150の中心軸Rと同一軸線上に配置される。
なお、第1の実施形態では、図2に示す出力軸160が、増速機12の出力軸に相当する。すなわち、第1の実施形態では、増速機12の出力軸160が、発電機13の入力軸も兼ねており、発電機13を貫通して発電機13の後方に延在する場合の例を示す。ただし、この例に限定されるものではなく、増速機12の出力軸と発電機13の入力軸とは別体に形成されてもよい。
発電機13は、増速機12の出力により発電を行う発電機である。具体的には、発電機13は、増速機12の出力軸160から入力される回転エネルギーを電気エネルギーへ変換する。増速機12と同様、発電機13の入力軸(すなわち、出力軸160)は、プロペラ軸150と同一軸線上に配置される。なお、増速機12および発電機13の具体的な構成については、図4を用いて後述する。
ブレーキ14は、出力軸160の発電機13後方に延在する部分に設けられ、出力軸160と接触することで生じる摩擦によって出力軸160の回転を停止させることで、プロペラ130の回転を停止させる。かかるブレーキ14は、たとえば統括制御部40(図1参照)からの指令に従って動作する。
スリップリング15は、プロペラ130内に配置されるピッチ駆動部等の機器と、外部の機器との間で電力や信号の授受を行うための集電装置であり、回転軸170を介してプロペラ130に連結される。ここで、プロペラ130とスリップリング15との接続関係について図3を用いて説明する。図3は、プロペラ130とスリップリング15との接続関係を示す模式図である。
なお、説明を分かり易くするために、図3では、複数のブレード130bのうち1つのブレード130bのみを示す。また、図3では、かかる1つのブレード130bに対応して設けられる機器および配線のみを示し、その他のブレード130bに対応して設けられる機器および配線については省略する。
図3に示すように、プロペラ130のハブ130a内には、ピッチ制御部50からの指令に従ってブレード130bのピッチ角を変更するピッチ駆動部31が設けられる。また、ブレード130bの内部には、位置検出器32が設けられる。
ピッチ駆動部31は、ギア31aと、モータ31bと、AC(Alternate Current)ドライバ31cとを備える。かかるピッチ駆動部31は、ACドライバ31cを用いてモータ31bを駆動させ、かかるモータ31bの回転に伴ってギア31aを回転させることによって、ギア31aに接続されたブレード130bを回転させる。これにより、ブレード130bのピッチ角が変更される。また、位置検出器32は、たとえば絶対値エンコーダであり、ブレード130bの現在のピッチ角を検出してピッチ制御部50へ出力する。
ACドライバ31cには給電ケーブル81および信号線82が、位置検出器32には信号線83がそれぞれ設けられており、これら給電ケーブル81および信号線82,83は、スリップリング15の回転部151に接続される。
一方、スリップリング15の固定部152には、ピッチ制御部50や給電部60が接続される。かかる固定部152は、回転部151がプロペラ130とともに回転している間も、回転部151との電気的な接続が維持されるように構成されている。
これにより、プロペラ130内に配置されるピッチ駆動部31および位置検出器32は、スリップリング15の回転部151および固定部152を介してピッチ制御部50および給電部60と電気的に接続される。なお、スリップリング15の具体的な構成については図5を用いて説明する。
ピッチ制御部50は、信号線83およびスリップリング15を介して位置検出器32からブレード130bのピッチ角を取得するとともに、スリップリング15および信号線82を介してACドライバ31cへ制御信号を送信する。また、給電部60は、スリップリング15および給電ケーブル81を介してACドライバ31cへの給電を行う。
このように、スリップリング15を設けることで、回転側であるピッチ駆動部31および位置検出器32と、固定側であるピッチ制御部50および給電部60とを電気的に接続することができる。
ここで、図3に示すように、給電ケーブル81および信号線82,83は、回転軸170の内部に挿通されて、スリップリング15の回転部151に接続される。回転軸170は、プロペラ軸150(図2参照)と同一軸線上に配置され、一端側がプロペラ130に固定されるとともに、他端側がスリップリング15の回転部151に連結される。
すなわち、スリップリング15の回転部151は、回転軸170を介してプロペラ130と連結される。これにより、回転部151は、プロペラ130と一体かつ同軸に回転する。
第1の実施形態に係る風力発電装置1では、かかるスリップリング15の回転部151の後端側に検出軸180を設け、かかる検出軸180の回転位置を位置検出器16によって検出することで、プロペラ130の回転位置を検出することとした。
検出軸180は、回転軸170とは異なりプロペラ130からの配線を挿通させる必要がないため、中実状に形成することができる。このため、検出軸180は、回転軸170と同様の強度を保ちつつ、回転軸170よりも軸径を小さくすることができる。第1の実施形態に係る風力発電装置1では、かかる検出軸180に対して位置検出器16を設けることとしたため、位置検出器16をさらに小型化することができ、位置検出器16にかかる機械的ストレスをより小さくすることができる。
また、図3に示すように、位置検出器16は、増速機や減速機等の変速機構を介在させることなく、プロペラ130と同一の回転速度で回転する軸のみを介してプロペラ130に連結される。このため、位置検出器16は、プロペラ130の回転位置を精度良く検出することができる。
次に、増速機12、発電機13およびスリップリング15等の具体的な構成を示しつつ、位置検出器16とプロペラ130との接続関係についてより具体的に説明する。以下では、まず、回転軸170とプロペラ130との接続関係について図4を用いて説明した後に、回転軸170と位置検出器16との接続関係について図5を用いて説明する。図4は、増速機12および発電機13の模式側断面図である。
図4に示すように、プロペラ軸150は、両端が開口された中空状の部材である。かかるプロペラ軸150は先端側においてプロペラ130のハブ130aと連結し、プロペラ130とともに回転する。なお、プロペラ軸150は、プロペラ130の回転を増速機12の入力軸へ伝達するための軸であり、ここでは、ハブ130aに連結された一端部から増速機12の入力軸に連結された他端部までのプロペラ軸と定義する。
増速機12は、筒状に形成されたフレーム121の内部に、リング122と、連結軸123と、遊星歯車124と、軸受け125とを備える。フレーム121は、たとえば、図示しない支柱によってナセル120に固定される。
リング122は、増速機12の入力軸である。かかるリング122は、連結軸123を介してプロペラ軸150に固定され、かつ、その中心軸をプロペラ軸150の中心軸R(図2参照)と同一としている。また、リング122は、フレーム121内の溝に対して回転自在に嵌め込まれており、かかるリング122の内周面と出力軸160の外周面との間に遊星歯車124が回転自在に配置される。
出力軸160は、増速機12の出力軸であり、プロペラ軸150よりも軸径が小さく、かつ、その中心軸をプロペラ軸150の中心軸と同一としている。かかる出力軸160は、フレーム121に固定された軸受け125によって回転自在に支持される。
このように構成された増速機12では、プロペラ130のハブ130aの回転に伴ってリング122が回転する。リング122の回転に伴い、遊星歯車124が自転しつつ、出力軸160を中心として公転する。かかる遊星歯車124の公転に伴って出力軸160が回転する。
これにより、プロペラ軸150の回転(すなわち、プロペラ130の回転)が増速機12によって増速されて出力軸160から出力される。この結果、出力軸160は、プロペラ130の回転速度よりも速い回転速度で回転することとなる。
なお、ここでは、増速機12が、遊星歯車機構を1段のみ備える場合の例を示したが、増速機12は、かかる遊星歯車機構を多段に備える増速機であってもよい。遊星歯車機構を多段にもうけることで、より大きな増速比で出力軸160を回転させることができる。
また、ここでは、増速機12を遊星歯車型の増速機としたが、増速機12は遊星歯車型に限定されない。たとえば、遊星ローラ型の増速機を増速機12としてもよい。遊星歯車機構または遊星ローラ機構は、遊星歯車や遊星ローラに負荷を分散することができるため、摩耗やギア欠け等が比較的少ない。したがって、増速機12を遊星歯車機構または遊星ローラ機構のみで構成することにより、風力発電装置1の信頼性を高めることができる。
また、遊星型の増速機は、入力軸および出力軸を同軸上に配置することができる。したがって、増速機12を遊星歯車機構または遊星ローラ機構のみで構成することにより、プロペラ軸150、増速機12、発電機13、スリップリング15および位置検出器16を同一軸線上に配置することができる。さらに、後述するように、プロペラ軸150と同一軸線上に配置される回転軸170を、出力軸160の中空部に挿通させてプロペラ130に連結させることが可能となる。
また、ここでは、プロペラ軸150が、リング122に連結される場合の例について示したが、プロペラ軸150は、連結軸を介して遊星歯車124に連結されてもよい。かかる場合には、遊星歯車124が増速機12の入力軸となる。
発電機13は、出力軸160の回転によって発電を行う。かかる発電機13は、フレーム131と、固定子132と、回転子133と、軸受け134を備える。
フレーム131は、筒状に形成され、たとえば、図示しない支柱によってナセル120に固定される。また、フレーム131には軸受け134が固定されており、かかる軸受け134によって出力軸160が回転可能に支持される。
なお、第1の実施形態では、ブレーキ14を取り付けるために、出力軸160を発電機13の後方に延在させることとしたが、出力軸160は、必ずしも発電機13の後方に延在する必要はない。かかる場合、風力発電装置1は、たとえばプロペラ軸150に対してブレーキを設け、かかるブレーキを用いてプロペラ軸150の回転を停止させることによって、プロペラ130を停止させてもよい。
発電機13のフレーム131の内周には、固定子132が固着される。固定子132は、固定子コア132aと、固定子巻線132bとを備える。この固定子132の内周側には空隙を介して回転子133が対向配置される。回転子133は、出力軸160の外周面に設けられる円筒状の回転子コア133aと、回転子コア133aの外周側に配置された複数の永久磁石133bとを備え、出力軸160と同軸に回転する。
このように構成された発電機13では、出力軸160の回転に伴って回転子133が回転することによって、固定子132の固定子巻線132bに電流が発生する。
発電機13のフレーム131は、増速機12のフレーム121に固定される。すなわち、発電機13のフレーム131および増速機12のフレーム121は一体的に形成される。言い換えれば、発電機13は、増速機12の出力軸であり発電機13の入力軸でもある出力軸160が、増速機12および発電機13間において外部に露出しない(すなわち、フレーム121およびフレーム131によって覆われる)構成となっている。
このように、発電機13と増速機12とを一体に形成することにより、すなわち、発電機13を増速機付き発電機とすることにより、これら発電機13および増速機12を収容するナセル120を小型化することができる。
出力軸160は、両端が開口された中空状の部材であり、上述したように、プロペラ軸150と同一軸線上に配置される。第1の実施形態に係る風力発電装置1では、かかる出力軸160の中空部に対して回転軸170が挿通される。
回転軸170は、プロペラ軸150および出力軸160と同一軸線上に配置され、出力軸160の中空部(すなわち、増速機12および発電機13の中空部)およびプロペラ軸150の中空部に挿通されてプロペラ130のハブ130aに固定される。
回転軸170は、両端が開口された中空状に形成されており、プロペラ130からの配線(給電ケーブル81、信号線82,83など)が内部に挿通される。
かかる回転軸170は、他端側においてスリップリング15の回転部151に連結される。そして、第1の実施形態に係る位置検出器16は、スリップリング15の回転部151および検出軸180を介して回転軸170に連結される。
次に、スリップリング15および検出軸180の構成を示しつつ、回転軸170と位置検出器16との接続関係について図5を用いてより具体的に説明する。図5は、スリップリング15の模式側断面図である。
図5に示すように、スリップリング15は、回転部151と、固定部152と、フレーム153と、軸受け154とを備える。フレーム153は、たとえば、図示しない支柱によってナセル120に固定される。
回転部151は、先端側のみが開口された中空状の円筒部材であり、先端側において回転軸170に連結され、かつ、その中心軸を回転軸170の中心軸と同一としている。また、回転部151は、フレーム153に固定された軸受け154によって回転自在に支持される。これにより、回転部151は、プロペラ130および回転軸170と一体に回転する。
回転部151には、集電環151a,151b,151cが設けられており、各集電環151a,151b,151cには、出力軸160の中空部を通された給電ケーブル81や信号線82,83がそれぞれ接続される。
固定部152は、フレーム153に固定される端子152a,152b,152cと、各端子152a,152b,152cにそれぞれ設けられるブラシ152d,152e,152fとを備える。
ブラシ152d,152e,152fは、それぞれ回転部151の集電環151a,151b,151cに接触した状態で保持される。これにより、回転部151が回転している間も、各集電環151a,151b,151cと各ブラシ152d,152e,152fとの電気的な接続状態が維持される。また、端子152aは、給電部60に接続され、端子152b,152cは、ピッチ制御部50に接続される。
このように構成されたスリップリング15では、回転部151が回転軸170およびプロペラ130と一体に回転し、固定部152のブラシ152d,152e,152fが、回転する回転部151の集電環151a,151b,151cに摺接する。これにより、プロペラ130内に配置されるピッチ駆動部31や位置検出器32(図3参照)が、ピッチ制御部50や給電部60と電気的に接続される。
なお、図5では、スリップリング15に対して集電環と端子とブラシとがそれぞれ3個ずつ設けられる場合の例について示したが、スリップリング15に設けられる集電環、端子およびブラシの個数は、図5に示したものに限定されない。
このように、スリップリング15の回転部151は、回転軸170に対して一端側が連結され、回転軸170およびプロペラ130と一体に回転する。
回転部151の他端側には、回転軸170よりも軸径が小さい検出軸180が連結される。かかる検出軸180は、プロペラ軸150、回転軸170および回転部151と同一軸線上に配置される。
かかる検出軸180は、第1軸部180aと、第2軸部180bと、軸継手180cとを備える。第1軸部180aは回転部151に固定され、第2軸部180bは位置検出器16に固定される。そして、これら第1軸部180aおよび第2軸部180bは、軸継手180cによって中心軸が同一となるように連結される。
このように、検出軸180は、回転軸170および回転部151と同一軸線上に配置されて回転部151と一体に回転する。そして、位置検出器16は、検出軸180の回転位置を検出することによってプロペラ130の回転位置を検出することができる。
なお、位置検出器16によって検出されたプロペラ130の回転位置は、統括制御部40へ出力されたのち、統括制御部40によってピッチ制御部50および電力変換装置20へそれぞれ出力される。
ここで、図1に戻り、電力変換装置20、統括制御部40およびピッチ制御部50について説明しておく。電力変換装置20は、電力変換部21と、変換制御部22と、操作部23とを備える。かかる電力変換装置20は、塔体110内に配置される。
電力変換部21は、風力発電部10の発電機13と電力系統30との間で双方向に電力変換を行う。電力変換部21としては、たとえばマトリクスコンバータを用いることができる。
変換制御部22は、電力変換部21へ制御信号を出力して、発電機13から電力系統30への電力変換を電力変換部21に対して行わせる発電制御処理を行う。これにより、発電機13によって発電された電力が電力変換部21によって直流−直流変換されて電力系統30へ供給される。
また、変換制御部22は、電力変換部21へ制御信号を出力して、電力系統30から発電機13への電力変換を電力変換部21に対して行わせることで、発電機13を電動機として使用してプロペラ130の回転位置を制御するプロペラ位置制御処理も行う。かかるプロペラ位置制御処理は、たとえばブレード130bの交換作業時において、操作部23への操作に基づいて実行される。
すなわち、変換制御部22は、位置検出器16によって検出されたプロペラ130の回転位置と操作部23への操作によって指定された目標位置とに基づき、プロペラ130の回転位置を目標位置に一致させるように制御信号を生成する。そして、変換制御部22は、生成した制御信号を電力変換部21へ出力する。これにより、プロペラ130の回転位置を目標位置、たとえば、ブレード130bの取り付けや取り外しが容易な位置としてブレード130b毎に予め設定された位置に一致させることができる。
このように、変換制御部22は、電力変換部21へ制御信号を出力して、発電機13と電力系統30との間で双方向の電力変換を行わせることで、発電制御処理やプロペラ位置制御処理を行う。
また、風力発電装置1は、統括制御部40と、ピッチ制御部50とをさらに備え、位置検出器16から出力されるプロペラ130の回転位置に基づき、ブレード130bのピッチ角をブレード130bの位置に応じたピッチ角へ変更するピッチ制御処理を行う。統括制御部40は、たとえば塔体110内に配置され、ピッチ制御部50は、たとえばナセル120内に配置される。
統括制御部40は、位置検出器16からプロペラ130の回転位置を取得し、取得した回転位置をピッチ制御部50へ出力する。このように、位置検出器16によって検出されるプロペラ130の回転位置は、統括制御部40経由でピッチ制御部50へ入力される。
ピッチ制御部50は、位置検出器16によって検出されたプロペラ130の回転位置を統括制御部40経由で取得すると、プロペラ130の回転位置に応じたピッチ角変更指令をブレード130bごとに生成し、生成したピッチ角変更指令に従って、ブレード130bのピッチ角をブレード130bごとに変更する。
上述してきたように、第1の実施形態に係る風力発電装置1は、回転軸170と、スリップリング15と、検出軸180と、位置検出器16とを備える。回転軸170は、プロペラ130と一体に回転し、内部にプロペラ130からの配線が挿通される。スリップリング15は、回転軸170に一端側が連結される。検出軸180は、スリップリング15の他端側に設けられ、回転軸170とともに回転する。そして、位置検出器16は、検出軸180の回転位置を検出することによってプロペラ130の回転位置を検出する。
すなわち、第1の実施形態に係る風力発電装置1では、プロペラ軸150よりも軸径の小さい検出軸180の回転位置を位置検出器16によって検出することとしたため、プロペラ軸150の回転位置を位置検出器16によって検出する場合と比較して位置検出器16を小型化することができる。
また、第1の実施形態に係る風力発電装置1では、プロペラ軸150と、増速機12の入力軸(リング122)および出力軸160と、発電機13の入力軸(すなわち、出力軸160)と、回転軸170と、検出軸180とが、同一軸線上に配置されることとした。このため、これらの機器を収容するナセル120を小型化することができる。
また、第1の実施形態に係る風力発電装置1では、増速機12の入力軸(リング122)および出力軸160ならびに発電機13の入力軸(すなわち、出力軸160)が中空状に形成され、位置検出器16が、増速機12および発電機13の中空部に挿通されることとした。したがって、ナセル120内に設けられる機器をよりコンパクトに配置することができる。また、回転軸170を真っ直ぐに形成することができるため、回転軸170の中心軸とプロペラ軸150の中心軸Rとの軸合わせを容易に行うことができる。
また、第1の実施形態に係る位置検出器16は、たとえば図2に示すように、ナセル120内に設けられる各機器の最後方に配置される。このため、位置検出器16の取り付け、取り外しあるいはメンテナンス等を容易に行うことができる。
また、回転軸170は、プロペラ130に対して設けられるため、プロペラ130の回転をより直接的に伝達することができる。
(第2の実施形態)
ところで、上述してきた第1の実施形態では、回転軸170がプロペラ130に対して設けられる場合の例について説明したが、回転軸170は、必ずしもプロペラ130に対して直接連結されることを要しない。
そこで、第2の実施形態では、回転軸170とプロペラ130とが間接的に連結される場合の例について図6を用いて説明する。図6は、回転軸170の他の構成を示す模式側断面図である。なお、以下の説明では、既に説明した部分と同様の部分については、既に説明した部分と同一の符号を付し、重複する説明を省略する。
図6に示すように、第2の実施形態に係る風力発電装置1aでは、回転軸170aが、プロペラ軸150aに設けられる。プロペラ軸150aと回転軸170aとが一体に形成されてもよいし、それぞれ別体に形成したうえで事後的に連結してもよい。
回転軸170aは、第1の実施形態に係る回転軸170と同様、プロペラ軸150aと同一軸線上に配置され、スリップリング15の先端側に連結される。また、回転軸170aは、中空状に形成されており、ハブ130aからの配線(給電ケーブル81、信号線82,83など)がプロペラ軸150aの中空部および回転軸170aを通ってスリップリング15の回転部151に接続される。
このように、回転軸170aは、プロペラ軸150aを介してプロペラ130に連結されてもよい。かかる場合でも、回転軸170aは、プロペラ130のハブ130aと一体に回転するため、第1の実施形態と同様、回転軸170aの回転位置を位置検出器16が検出することによってプロペラ130の回転位置を検出することができる。
なお、第2の実施形態に係る風力発電装置1aのように、回転軸170aをプロペラ軸150aに設けることとすれば、プロペラ軸150aと回転軸170aとの軸合わせを容易に行うことができる。
なお、図6に示した例に限らず、回転軸は、プロペラおよびプロペラ軸の両方に固定されてもよいし、プロペラまたはプロペラ軸に設けられるその他の部材を介してプロペラまたはプロペラ軸に設けられてもよい。
(第3の実施形態)
ところで、風力発電部の構成、すなわち、ナセル内に配置される機器の構成は、上述してきた各実施形態に示す構成に限定されない。そこで、以下では、風力発電部の他の構成について説明する。図7および図8は、ナセル120内に配置される機器の他の構成を示す模式側面図である。
たとえば、図7に示すように、風力発電装置1cは、プロペラ130_2の回転を増速機を介することなく発電機13cへ直接伝える所謂ダイレクトドライブ方式の風力発電装置であってもよい。かかる場合の風力発電装置1cは、上述してきた各実施形態に係る風力発電装置1,1aと異なり、増速機を備えない。
図7に示すように、発電機13c、ブレーキ14c、スリップリング15および位置検出器16cは、プロペラ130_2に近い位置から順に、発電機13c、ブレーキ14c、スリップリング15および位置検出器16cの順に配置される。
発電機13cは、上述してきた各実施形態に係る発電機13よりも定格回転速度が小さいタイプの発電機である。出力軸160cは、発電機13cの出力軸であり、たとえば、プロペラ軸150cと一体に形成される。また、出力軸160cは、中空状に形成される。かかる出力軸160cと、回転軸170cと、検出軸180とは、発電機13cの入力軸であるプロペラ軸150cと同一軸線上に配置される。
回転軸170cは、出力軸160cの中空部およびプロペラ軸150cの中空部に挿通された状態でプロペラ130_2と一体に回転する。回転軸170cは、第1の実施形態に係る回転軸170と同様に、ハブ130a_2に対して設けられてもよいし、第2の実施形態に係る回転軸170aと同様に、プロペラ軸150cに対して設けられてもよい。
第3の実施形態に係る位置検出器16cは、回転軸170c、スリップリング15および検出軸180を介してプロペラ130_2に連結され、上述してきた各実施形態と同様、検出軸180の回転位置を検出することによってプロペラ130_2の回転位置を検出する。
このように、本願の開示する発電装置は、ダイレクトドライブ方式の風力発電装置に対しても適用可能である。
また、図8に示すように、風力発電装置1dは、発電機13dの入力軸がプロペラ軸150dと同一軸線上に配置されないタイプの風力発電装置であってもよい。かかる風力発電装置1dでは、増速機12dが、たとえば遊星歯車増速機と平行軸歯車増速機とを多段に組み合わせたものであり、上述してきた増速機12と比較して、より高い増速比を有する。
出力軸160dは、増速機12dの出力軸である。かかる出力軸160dは、上述してきた各実施形態に係る風力発電装置1,1a,1cと異なり、プロペラ軸150dの中心軸とは異なる軸線上に配置される。発電機13dは、かかる出力軸160dに連結され、出力軸160dの回転により発電を行う。なお、出力軸160dには、ブレーキ14dが設けられる。
プロペラ軸150dは、一端側がプロペラ130_3のハブ130a_3に連結されるとともに、他端側が増速機12dの入力軸に連結される。プロペラ軸150dおよび増速機12dの入力軸は中空状に形成されており、これらの中空部に対して回転軸170dが挿通される。
回転軸170dは、プロペラ軸150dおよび増速機12dの入力軸の中空部に挿通された状態でプロペラ130_3と一体に回転する。回転軸170dは、第1の実施形態に係る回転軸170と同様に、ハブ130a_3に対して設けられてもよいし、第2の実施形態に係る回転軸170aと同様に、プロペラ軸150dに対して設けられてもよい。かかる回転軸170dおよび検出軸180は、プロペラ軸150dと同一軸線上に配置される。
そして、第3の実施形態に係る位置検出器16dは、回転軸170d、スリップリング15および検出軸180を介してプロペラ130_3に連結され、上述してきた各実施形態と同様、検出軸180の回転位置を検出することによってプロペラ130_3の回転位置を検出する。
このように、本願の開示する発電装置は、発電機の入力軸がプロペラ軸と同一軸線上に配置されないタイプの風力発電装置に対しても適用可能である。
さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の特許請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。
1 風力発電装置
10 風力発電部
12 増速機
13 発電機
15 スリップリング
16 位置検出器
120 ナセル
130 プロペラ
130a ハブ
130b ブレード
150 プロペラ軸
170 回転軸
180 検出軸

Claims (7)

  1. プロペラと一体に回転し、内部に前記プロペラからの配線が挿通される回転軸と、
    前記回転軸に一端側が連結されるスリップリングと、
    前記スリップリングの他端側に設けられ、前記回転軸とともに回転する検出軸と、
    前記検出軸の回転位置を検出することによって前記プロペラの回転位置を検出する位置検出器と
    を備えることを特徴とする発電装置。
  2. 前記プロペラに連結されるプロペラ軸と、
    前記プロペラ軸の回転を増速して出力する増速機と、
    前記増速機の出力により発電を行う発電機と
    をさらに備え、
    前記プロペラ軸と、前記増速機の入力軸および出力軸と、前記発電機の入力軸と、前記回転軸と、前記検出軸とが、同一軸線上に配置されること
    を特徴とする請求項1に記載の発電装置。
  3. 前記増速機の入力軸および出力軸ならびに前記発電機の入力軸は、中空状に形成され、
    前記回転軸は、
    前記増速機および前記発電機の中空部に挿通された状態で前記プロペラと一体に回転すること
    を特徴とする請求項2に記載の発電装置。
  4. 前記回転軸は、
    前記プロペラに対して設けられること
    を特徴とする請求項1〜3のいずれか一つに記載の発電装置。
  5. 前記回転軸は、
    前記プロペラ軸に対して設けられること
    を特徴とする請求項1〜3のいずれか一つに記載の発電装置。
  6. 前記発電機と前記増速機とが一体に形成されること
    を特徴とする請求項1〜5のいずれか一つに記載の発電装置。
  7. 前記増速機は、遊星型の増速機であること
    を特徴とする請求項1〜6のいずれか一つに記載の発電装置。
JP2012091186A 2012-04-12 2012-04-12 発電装置 Expired - Fee Related JP5626256B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012091186A JP5626256B2 (ja) 2012-04-12 2012-04-12 発電装置
US13/603,420 US8604636B2 (en) 2012-04-12 2012-09-05 Power generator
BRBR102012023533-1A BR102012023533A2 (pt) 2012-04-12 2012-09-18 Gerador de energia
EP12187963.9A EP2650532B1 (en) 2012-04-12 2012-10-10 Power Generator
CN201210395502.XA CN103375360B (zh) 2012-04-12 2012-10-17 发电装置
KR1020120115927A KR101520159B1 (ko) 2012-04-12 2012-10-18 발전 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012091186A JP5626256B2 (ja) 2012-04-12 2012-04-12 発電装置

Publications (2)

Publication Number Publication Date
JP2013221405A true JP2013221405A (ja) 2013-10-28
JP5626256B2 JP5626256B2 (ja) 2014-11-19

Family

ID=47080284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012091186A Expired - Fee Related JP5626256B2 (ja) 2012-04-12 2012-04-12 発電装置

Country Status (6)

Country Link
US (1) US8604636B2 (ja)
EP (1) EP2650532B1 (ja)
JP (1) JP5626256B2 (ja)
KR (1) KR101520159B1 (ja)
CN (1) CN103375360B (ja)
BR (1) BR102012023533A2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2532889B1 (en) * 2011-06-06 2014-08-13 Alstom Renovables España, S.L. Wind turbine and method of operating a wind turbine
JP5626257B2 (ja) * 2012-04-12 2014-11-19 株式会社安川電機 発電装置
US20150048703A1 (en) * 2013-08-14 2015-02-19 Gustavo Adolfo Maldonado System for Generating and Recovering Energy
CN103523190A (zh) * 2013-11-05 2014-01-22 宁夏新航能源环境科技有限公司 一种节能型船舶推进装置
JP6358993B2 (ja) * 2015-09-11 2018-07-18 三菱重工業株式会社 風力発電装置および風力発電装置の併入方法
CN105156281B (zh) * 2015-09-22 2018-06-12 国网山东东营市东营区供电公司 一种风力发电系统
US10502196B2 (en) * 2016-05-10 2019-12-10 General Electric Company Slip ring system for a wind turbine wind turbine and a method for producing electrical energy
CN105897514B (zh) * 2016-06-08 2023-07-11 大唐(通辽)霍林河新能源有限公司 一种风力发电机组通讯滑环动态加载平台
CN107143812A (zh) * 2017-07-17 2017-09-08 叶建 一种潮汐能灯塔
EP3795861A1 (de) * 2019-09-20 2021-03-24 ZF Friedrichshafen AG Lagerung eines durchführungsrohrs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993864A (ja) * 1995-09-29 1997-04-04 Toyota Motor Corp 電動機及びその制御方法
WO2009084123A1 (ja) * 2007-12-28 2009-07-09 Kawasaki Jukogyo Kabushiki Kaisha アップウインド型風車及びその運転方法
US20110068583A1 (en) * 2009-09-24 2011-03-24 General Electric Company Rotor-shaft integrated generator drive apparatus
JP2011132929A (ja) * 2009-12-25 2011-07-07 Wind-Smile:Kk 垂直軸風車

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4333018A (en) * 1977-11-21 1982-06-01 Ventus Energy Corp. Wind energy conversion system with reaction torque for power control
US5083039B1 (en) * 1991-02-01 1999-11-16 Zond Energy Systems Inc Variable speed wind turbine
US5126641A (en) * 1991-03-08 1992-06-30 Westinghouse Electric Corp. Bidirectional variable reluctance actuator and system for active attenuation of vibration and structure borne noise utilizing same
US7227276B2 (en) * 2005-08-08 2007-06-05 Caiozza Joseph C Wind driven electric generator apparatus
ES2414093T3 (es) * 2006-03-16 2013-07-18 Vestas Wind Systems A/S Un procedimiento y un sistema de control para la reducción de las cargas de fatiga en los componentes de una turbina eólica sometida a una carga asimétrica del plano de rotor
TWI316585B (en) * 2006-12-18 2009-11-01 Ind Tech Res Inst Power-generating device with self-contained electric apparatus
DE102007060985A1 (de) * 2007-12-14 2009-06-18 Innovative Windpower Ag Vorrichtung zur Übertragung von Bereitstellungsmitteln
ATE501356T1 (de) * 2008-01-17 2011-03-15 Gamesa Innovation And Technology S L Getriebeeinheit für eine windturbine
KR101048750B1 (ko) * 2008-05-02 2011-07-15 허현강 풍력발전기
DE102008063871A1 (de) * 2008-12-19 2010-07-01 Robert Bosch Gmbh Stationäre Energiegewinnungsanlage mit einer Steuereinrichtung und Verfahren zur Steuerung derselben
US7815536B2 (en) * 2009-01-16 2010-10-19 General Electric Company Compact geared drive train
JP5562274B2 (ja) 2010-03-12 2014-07-30 Ntn株式会社 摩耗検知装置およびそれを備える風力発電装置ならびに摩耗検知方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993864A (ja) * 1995-09-29 1997-04-04 Toyota Motor Corp 電動機及びその制御方法
WO2009084123A1 (ja) * 2007-12-28 2009-07-09 Kawasaki Jukogyo Kabushiki Kaisha アップウインド型風車及びその運転方法
US20110068583A1 (en) * 2009-09-24 2011-03-24 General Electric Company Rotor-shaft integrated generator drive apparatus
JP2011132929A (ja) * 2009-12-25 2011-07-07 Wind-Smile:Kk 垂直軸風車

Also Published As

Publication number Publication date
KR101520159B1 (ko) 2015-05-13
CN103375360B (zh) 2016-01-13
EP2650532A2 (en) 2013-10-16
US8604636B2 (en) 2013-12-10
JP5626256B2 (ja) 2014-11-19
EP2650532B1 (en) 2017-03-29
BR102012023533A2 (pt) 2013-11-26
US20130270833A1 (en) 2013-10-17
CN103375360A (zh) 2013-10-30
KR20130116153A (ko) 2013-10-23
EP2650532A3 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
JP5626256B2 (ja) 発電装置
JP5626257B2 (ja) 発電装置
KR101052456B1 (ko) 풍력 발전 장치
US9243614B2 (en) Wind powered apparatus having counter rotating blades
US20080252079A1 (en) Generator Device with Both Driving Units
EP2412973B1 (en) A slip ring unit for direct drive wind turbines
JP4461078B2 (ja) 風力発電装置
CN201018445Y (zh) 套叠双转子电机及该风电机组变速变频励磁系统
JP2009281228A (ja) 風力発電装置
JP2014218975A (ja) 風力発電装置
JP5755688B2 (ja) 自然エネルギー利用型の発電装置
KR20110063994A (ko) 간단한 구조를 가지는 조류력 발전장치
JP2007215295A (ja) 風力発電装置
KR101638008B1 (ko) 풍력 발전장치의 유지 및 보수를 위한 로터 회전장치.
CA3028133A1 (en) Fluid machine and power generation device
JP2005320865A (ja) 脱着式ギヤー回転増速伝導装置
EP2594788B1 (en) Wind turbine
JP2020193572A (ja) 水車
WO2014155578A1 (ja) 風力発電装置
AU2014323747A1 (en) Rotor blade for a wind turbine, rotor hub, drive train, nacelle, wind turbine and wind turbine farm

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

R150 Certificate of patent or registration of utility model

Ref document number: 5626256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees