WO2009066566A1 - 単結晶SiC基板の製造方法およびそれによって得られた単結晶SiC基板 - Google Patents

単結晶SiC基板の製造方法およびそれによって得られた単結晶SiC基板 Download PDF

Info

Publication number
WO2009066566A1
WO2009066566A1 PCT/JP2008/070160 JP2008070160W WO2009066566A1 WO 2009066566 A1 WO2009066566 A1 WO 2009066566A1 JP 2008070160 W JP2008070160 W JP 2008070160W WO 2009066566 A1 WO2009066566 A1 WO 2009066566A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
single crystal
substrate
sic
crystal sic
Prior art date
Application number
PCT/JP2008/070160
Other languages
English (en)
French (fr)
Inventor
Katsutoshi Izumi
Takashi Yokoyama
Original Assignee
Air Water Inc.
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc., Osaka Prefecture University filed Critical Air Water Inc.
Priority to US12/742,413 priority Critical patent/US8603901B2/en
Priority to EP08852872.4A priority patent/EP2216428B8/en
Priority to CN200880116838.XA priority patent/CN101868566B/zh
Publication of WO2009066566A1 publication Critical patent/WO2009066566A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/10Single-crystal growth directly from the solid state by solid state reactions or multi-phase diffusion
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02614Transformation of metal, e.g. oxidation, nitridation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials

Definitions

  • the present invention relates to a method of manufacturing a single crystal SiC substrate and a single crystal SiC substrate, and more specifically, a large-sized bright crystalline single crystal with little distortion.
  • the present invention relates to a method of manufacturing a single crystal SiC substrate capable of manufacturing a SiC substrate and a single crystal SiC substrate.
  • Single crystal S i C (silicon carbide) is attracting attention as the next generation semiconductor device material due to its excellent thermal and chemical stability, high mechanical strength, and high radiation resistance. . In particular, it is considered promising in the technical fields of substrate materials such as blue light emitting diodes and environment resistant semiconductor devices.
  • As a method of obtaining a S i C film used for such applications liquid phase growth method at a temperature of 140 ° C. or higher, or 130 ° C. on a substrate of S i C single crystal, or Vapor deposition at temperatures above C is commonly used.
  • Patent Document 1 it has a surface Si layer, and a buried insulating layer (SiO 2 layer) and a Si base material layer present below the surface Si layer.
  • a buried insulating layer SiO 2 layer
  • Si base material layer present below the surface Si layer.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 200003-2 2 4 2 4 8
  • Patent Document 2 Japanese Patent Application Laid-Open Publication No. 200001
  • the melting point of S i is 140 ° C.
  • a high temperature process of 140 ° C. or more can not be applied at all, and it is at least lower than that. It is necessary to carry out the carbonization treatment at the temperature.
  • the thermal expansion coefficients of S i and S i C are different, and the softening point of S i O 2 is relatively high at around 120 ° C.
  • a difference in shrinkage occurs between the base material layer and the SiC layer, and warpage can not be generated on the substrate after cooling. In this way, warpage occurs in the substrate itself, which limits the possibility of increasing the size of the substrate.
  • the present invention has been made in view of the above-described circumstances, and a relatively inexpensive polycrystalline SiC substrate is used as a base substrate, and a large-size, crystalline single crystal SiC substrate with little distortion is made inexpensive. It is an object of the present invention to provide a method of manufacturing a single crystal SiC substrate that can be manufactured and a single crystal SiC substrate. Means to solve the problem
  • a surface Si layer having a predetermined thickness and a buried oxide layer are formed on a Si matrix layer, Introducing P ions from the surface Si layer side, thereby transforming the embedded oxide layer into the embedded glass layer to lower the softening point;
  • the SOI substrate on which the embedded glass layer is formed is heated in a hydrocarbon-based gas atmosphere to transform the surface Si layer into SiC and then cooled to form a single crystal Si C layer on the surface.
  • the first summary is to provide a forming step of SiC.
  • the Si base material and the surface Si layer before joining the Si base material and the Si thin plate to be the surface Si layer, the Si base material and the surface Si layer to be the bonding surface thereof.
  • the embedded substrate is heated in a hydrocarbon gas atmosphere to convert the surface si layer into SiC and then cooled to form a single crystal SiC layer on the surface;
  • the single crystal S i C substrate of the present invention S i between the base material layer and the single crystal S i C layer on the surface, at least softening point than S i O 2
  • the gist of the present invention is that a low embedded glass layer is formed.
  • the first method for producing a single crystal SiC substrate of the present invention is an SOI group. Since the embedded oxide layer of the plate is denatured into an embedded glass layer having a low softening point, heating and cooling are performed in a hydrocarbon-based gas atmosphere, the SiC layer and S formed by the carbonization treatment are performed. The embedded glass layer between the S i C layer and the S i base layer is deformed and slippage occurs between the S i base layer and the S i C layer even if there is a difference in the shrinkage ratio of the i base material layer Thus, the warpage of the entire substrate can be significantly suppressed.
  • the introduction of P ions in the P ion introduction step 1 1 0 1 5-5 1 0 1 8.
  • warpage of the substrate can be effectively suppressed while maintaining good crystallinity of the formed SiC layer.
  • the crystallinity of the surface Si layer is determined. It is possible to maintain good quality and secure a good quality SiC layer in the carbonization process.
  • the P ion introducing step is performed by ion implantation and the acceleration energy of P ion at that time is 5 to 30 ke V, Ion implantation can be performed while maintaining the crystallinity of the surface Si layer, and as a result, warpage of the substrate can be effectively suppressed.
  • the manufacturing method of the second single crystal S i C substrate of the present invention S i the base material layer and the surface S i layer at least S i 0 buried glass layer is lower softening point than 2 during formation
  • S i the base material layer and the surface S i layer at least S i 0 buried glass layer is lower softening point than 2 during formation
  • the carbonization treatment is performed by heating and cooling in a hydrocarbon gas atmosphere.
  • the single crystal SiC substrate of the present invention is a single crystal Si of the Si base layer and the surface. Since an embedded glass layer having a softening point at least lower than that of SiO 2 is formed between the C layer and the C layer, even if the carbonization treatment is performed by heating and cooling in a hydrocarbon gas atmosphere, the Si The embedded glass layer between the C layer and the S i base layer is deformed to cause a slip between the S i base layer and the S i C layer, and the warpage of the entire substrate is largely suppressed.
  • FIG. 1 is a view showing a method of manufacturing a single crystal SiC substrate according to a first embodiment of the present invention.
  • FIG. 2 is a view showing a method of manufacturing a single crystal SiC substrate of the first embodiment of the present invention.
  • FIG. 3 is a view showing a method of manufacturing the single crystal SiC substrate.
  • FIG. 4 is a view showing a method of manufacturing a single crystal SiC substrate of a second embodiment of the present invention.
  • FIG. 1 and 2 are diagrams showing a method of manufacturing a single crystal SiC substrate according to a first embodiment of the present invention.
  • the manufacturing method of this single crystal SiC substrate performs the following steps (1) and (2).
  • (1) The surface Si layer 3 side of the SOI (Silicon On Insulator) substrate 1 in which the surface Si layer 3 and the embedded oxide layer 4 are formed in a predetermined thickness on the Si base layer 2 P ion introduction step of modifying the above-mentioned embedded oxide layer 4 into a PSG layer 6 which is a buried glass layer by introducing P ions from the above to lower the softening point.
  • SOI Silicon On Insulator
  • FIG. 1 (A) shows an SOI substrate 1 in which a surface Si layer 3 of a predetermined thickness and a buried oxide layer 4 are formed on the surface of the Si base layer 2.
  • the SOI substrate 1, in the vicinity of the surface of the S i preform layer 2 is S i O 2 layer of a predetermined thickness as the embedded oxide layer 4 is formed, the surface S i layer 3 having a predetermined thickness is formed on the surface It is a thing.
  • the thickness of the buried oxide layer 4 is set to be about 10 0 to 2 0 11 11 1.
  • the surface S i layer 3 of the S O I substrate 1 is used by thinning a layer having a thickness of about 20 nm to 50 nm to 4 nm to 10 nm. This thinning can be performed, for example, by heating the SOI substrate 1 in an oxidizing atmosphere to leave a Si layer of a desired thickness near the interface with the buried oxide layer 4 from the surface of the surface Si layer 3. After oxidizing the predetermined depth, the oxide layer formed on the surface is removed by etching with hydrofluoric acid or the like to reduce the thickness.
  • the thickness of the thinned surface S i layer 3 is 4 nm as described above It is preferably set to about 10 nm, and more preferably about 4 nm to 7 nm. If the thickness of the surface S i layer 3 is too thin, the single-crystal S i C layer 5 is not sufficiently formed by the subsequent transformation process which is carbonization treatment, and a good single-crystal S i C layer 7 It is because it can not form.
  • the thickness of the surface S i layer 3 is too thick, then it becomes difficult to completely carbonize the single crystal S i C layer 5 when denatured by carbonization. An uncarbonized Si layer will remain at the bottom end of the C layer 5. The remaining Si layer is easily diffused to the upper Si C layer by the subsequent heat treatment, resulting in deterioration of the crystallinity. If necessary, the epitaxial growth of the single crystal Si C layer 5 is further performed. However, if the crystallinity of the single crystal Si c layer 5 as the seed layer is poor, the crystallinity is obtained even if the epitaxial growth is performed thereafter. Only a single crystal S i C layer 5 of poor quality. As such, it is extremely important to completely carbonize so that the remaining Si C layer does not occur.
  • FIG. 1 (B) and 1 (C) show that the above-described SOI substrate 1 is formed with the above-mentioned buried oxide layer 4 by introducing P ions from the above-mentioned surface Si layer 3 side.
  • 2 shows a P ion introduction step of denatured into phosphor silicate glass (PSG; Phospho Silicate Glass), which is a glass into which phosphorus is introduced, to form a PSG layer 6 to lower the softening point.
  • PSG phosphor silicate glass
  • the P ion introduction step can be performed, for example, by an ion implantation method, a plasma doping method, or the like.
  • the introduced amount of P ions, ie, the dose amount in the above-described P ion introducing step is preferably 1 ⁇ 10 15 to 5 ⁇ 10 18 ions / cm 2 . If the dose amount is less than 1 ⁇ 10 15 Z cm 2 , the degree of softening of the PSG layer 6 is not sufficient, and the effect of preventing warpage of the substrate can not be sufficiently obtained. On the contrary, when the dose amount exceeds 5 ⁇ 10 18 pieces / c in 2 , the crystallinity of the surface Si layer 3 is bad. As a result, it is impossible to obtain a good-quality single-crystal Si C layer 5 with good crystallinity.
  • the crystallinity of the single crystal Si C layer 5 to be formed can be made excellent. Warpage of the substrate can be effectively suppressed while maintaining it.
  • the phosphorus doping amount of the P S G layer 6 it is preferable to set the phosphorus doping amount of the P S G layer 6 to about 5 to 7 atomic% by the above ion implantation. If the doping amount is less than 5 atomic%, the degree of softening of the PSG layer 6 is not sufficient, and the effect of preventing the warping of the substrate can not be sufficiently obtained. On the other hand, if the doping amount exceeds 7 atomic%, the hygroscopicity of the PSG layer 6 becomes high, and the electrical characteristics of the electronic device produced using the single crystal Si C layer 5 are significantly degraded, and the high quality and reliability It will not be possible to obtain high electronic devices.
  • transduction process sets it as 200-0.50 degreeC.
  • the substrate temperature is less than 200 ° C., the crystallinity of the surface Si layer 3 is reduced, and a good-quality single-crystal Si C layer 5 with good crystallinity can not be obtained.
  • the substrate temperature exceeds 550 ° C.
  • the Si constituting the surface Si layer 3 starts to sublime and the thickness decreases, and a single-crystal Si C layer 5 with a sufficient film thickness can be obtained. It disappears.
  • the substrate temperature in the P ion introduction step to 200 ° C. to 50 ° C.
  • the crystallinity of the single crystal Si C layer 5 can be maintained well and an appropriate film thickness can be secured. .
  • the P ion introduction step is performed by ion implantation, it is preferable to set the acceleration energy of P ion to 5 to 30 ke V. Even if the above acceleration energy is less than 5 ke V or more than 30 ke V, the buried oxide layer 4 can be transformed into a PSG layer 6 having a sufficiently low softening point depending on the thickness of the surface Si layer 3. It is because it can not. And the acceleration energy By setting the energy to 5 to 30 ke V, it is possible to effectively suppress the warpage of the substrate while maintaining the crystalline thickness of the SiC layer appropriately. Fig.
  • the above SiC formation step can be performed, for example, in a heating furnace capable of atmosphere control, by controlling the temperature while switching the atmosphere gas (hydrogen gas and hydrocarbon gas) introduced into the heating furnace. .
  • the above-mentioned SOI substrate 1 is installed in the heating furnace by the above-described apparatus, and while the mixed gas of hydrogen gas and hydrocarbon-based gas is supplied to the above-mentioned heating furnace, the ambient temperature in the heating furnace is raised. Then, the surface S i layer 3 of the SOI substrate 1 is transformed into a single crystal S i C layer 5.
  • the SOI substrate 1 is placed in a heating furnace to subject feed a mixed gas of hydrocarbon gas at a rate of 1 volume 0/0 to hydrogen gas into the heating furnace.
  • the atmosphere temperature in the heating furnace is heated to 900 to 140 ° C. By this heating, the surface Si layer 3 of the SOI substrate 1 can be transformed into the single crystal Si C layer 5.
  • the hydrogen gas is a carrier gas, and propane gas, for example, is used as the hydrocarbon gas.
  • propane gas for example, is used as the hydrocarbon gas.
  • the amount of hydrogen gas supplied from the cylinder is 100 cc / min
  • the amount of hydrocarbon gas supplied from the cylinder is 10 c c / min.
  • the surface S i layer 3 is completely carbonized by heating for a predetermined time, and a single crystal S i
  • FIG. 2 (E) shows a state in which a single crystal SiC layer 5 is further grown by epitaxial growth using the single crystal SiC layer 5 formed as described above as a seed layer.
  • the single crystal SiC layer 5 is grown under the following conditions.
  • a substrate having a single crystal SiC layer 5 formed on the surface is disposed in a processing chamber 1, and a source gas of a methylsilane-based gas such as monomethylsilane is contained in the processing chamber 1 at a gas of about 1.O sccm.
  • the single crystal Si C layer 5 is grown by epitaxial growth using the single crystal Si C layer 5 as a seed layer by processing at a temperature of 900 ° C. to 140 ° C. while supplying at a flow rate. It can be done.
  • the PSG layer 6 having a low softening point between the single crystal Si C layer 5 and the Si base layer 2 also in the temperature raising and cooling in epitaxial growth of the single crystal Si C layer 5.
  • the PSG layer 6 between the single crystal Si C layer 5 and the Si base layer 2 is deformed and slippage occurs between the Si base layer 2 and the single crystal Si C layer 5.
  • the warpage of the entire substrate can be significantly suppressed.
  • the above processing temperature can be processed in the above temperature range, but in addition to obtaining a better film quality, it is about 10 0 0 to 1 3 50 ° C in terms of equipment cost, energy cost, maintenance cost, etc. It is preferable to set to.
  • the above-mentioned epitaxial growth is carried out in the above temperature range while simultaneously supplying a silane-based gas such as monosilane gas and a hydrocarbon-based gas such as propane gas into the processing chamber 1 to process the single crystal Si C layer 5. It is also possible to make it grow.
  • a silane-based gas such as monosilane gas and a hydrocarbon-based gas such as propane gas
  • FIG. 2F shows a state where another semiconductor film such as the GaN layer 8 is formed by epitaxial growth on the single crystal SiC layer 5 as required.
  • the GaN layer 8 is grown under the following conditions.
  • the substrate on which the single crystal Si C layer 5 is formed is placed in a processing chamber, and while supplying about 2 sccm of triethylgallium and about 1250 sccm of ammonia into the processing chamber, A Ga N layer 8 can be formed on the single crystal Si C layer 5 by treating at a temperature of 950 to 12000C.
  • the monocrystalline SiC layer 5 and the Si base layer 2 Since the PSG layer 6 having a low softening point is interposed between them, the PSG layer 6 between the single crystal Si c layer 5 and the Si base layer 2 is deformed to form a single joint with the Si base layer 2 Slippage occurs between the crystalline S i C layers 5 and warpage of the entire substrate can be significantly suppressed.
  • FIG. 3 shows the results of measuring the amounts of warpage of the substrates of the example and the comparative example.
  • the SOI substrate 1 has a surface Si layer 3 thickness of 7 nm, a Si base layer 2 thickness of 75 m, a buried oxide layer 4 thickness of 160 nm and a diameter of 200 mm. Prepared.
  • the buried oxide layer 4 was transformed into the PSG layer 6 by P ion implantation in the above-mentioned SOI substrate 1 and then carbonization treatment was performed.
  • the acceleration energy of the ions was set to 30 ke V
  • the dose amount was set to 6 ⁇ 10 15 ions / cm 2
  • the substrate temperature was set to 250 ° C.
  • the above-described SOI substrate 1 was carbonized without ion implantation.
  • the carbonization treatment was performed by heating the substrate to 125 ° C. for 15 minutes while flowing a mixed gas at a ratio of 30 cc of propane gas and 200 cc of hydrogen gas.
  • the subsequent epitaxial growth is carried out at a temperature of 1200 ° C.
  • the amount of warpage was measured as follows. That is, the sample to be measured 200 mm in diameter is placed on the sample measurement table having a horizontal standard surface, and the probe of the probe type warpage measuring instrument is brought into contact with the surface of the measurement data. While scanning in the horizontal plane. At this time, the waviness appearing in the vertical plane was recorded according to the waviness on the surface of the sample to be measured, and it was measured by determining it as the amount of warpage of the whole substrate.
  • the object layer 4 may be transformed into a BPSG layer.
  • FIG. 4 is a view showing a method of manufacturing a single crystal SiC substrate according to a second embodiment of the present invention.
  • the manufacturing method of this single crystal SiC substrate is the following steps (1) (2) (3) Do.
  • glass layer forming step of forming a glass layer is lower softening point than S io 2 at least.
  • the embedded substrate is heated in a hydrocarbon-based gas atmosphere to transform the surface Si layer into SiC and then cooled to form a single crystal SiC layer on the surface. Forming process.
  • a glass layer having a softening point lower than at least S i 0 2 by a deposition method is applied to one surface of the S i thin plate to be the surface S i layer 3.
  • various deposition methods such as chemical vapor deposition methods such as reduced pressure CVD and plasma CVD, physical vapor deposition methods such as vacuum evaporation method and sputtering method, etc. should be applied.
  • chemical vapor deposition methods such as reduced pressure CVD and plasma CVD
  • physical vapor deposition methods such as vacuum evaporation method and sputtering method, etc.
  • the Si base material layer 2 is bonded so as to sandwich the P S G layer 6.
  • the P S G layer 6 is a glass doped with phosphorus, and the doping amount of phosphorus is preferably set to about 5 to 7 atomic%. If the doping amount is less than 5 atomic%, the P SG layer
  • the doping amount of phosphorus to the glass constituting the PSG layer 6 is 5 By setting the content to 7 atomic%, warpage of the substrate can be effectively suppressed while maintaining good electrical characteristics of the single crystal Si C layer 5 to be formed.
  • the bonding can be performed by laminating and heating on the upper surface of the Si base material layer 2 with the surface Si layer 3 facing upward and the PSG layer 6 facing downward.
  • the heating temperature at this time is approximately 850 to 950 ° C., and the heating time is approximately 30 to 60 minutes.
  • FIG. 4 (C) shows a buried type substrate in which the buried type P S G layer 6 is laminated between the Si base material layer 2 and the surface Si layer 3 formed as described above.
  • the thickness of the PSG layer 6 in this embedded substrate is set to a thickness of about 100 to 200 ⁇ m, and the surface Si layer 3 is previously thinned to a thickness of 4 nm to 10 nm. Is the same as that of the first embodiment described above.
  • the embedded substrate is heated in a hydrocarbon-based gas atmosphere to transform the surface Si layer 3 into SiC and then cooled to form a single crystal Si C layer 5 on the surface.
  • the conditions for this carbonization are the same as in the first embodiment described above.
  • FIG. 4 (D) shows a buried type substrate in which the buried type P S G layer 6 is laminated between the Si base material layer 2 and the surface Si layer 3 formed as described above. Thereafter, a single crystal SiC layer 5 is grown by epitaxial growth, or another semiconductor layer such as the GaN layer 8 is stacked. The conditions for epitaxial growth are the same as in the first embodiment described above.
  • PSG layer 6 which is a buried glass layer having a softening point lower than that of Si 2 at least, is formed between Si base material layer 2 and single-crystal Si 2 C layer 5 on the surface.
  • the single crystal SiC substrate of the present invention can be obtained.
  • the PSG layer 6 is formed on one side of the Si thin plate to be the surface Si layer 3 and then joined to the Si base layer 2.
  • the PSG layer 6 is formed on one side of the Si base layer 2 Join the Si thin plate which will become the surface S i layer 3 after forming the layer 6
  • the PSG layer 6 may be formed on one side of both the Si base layer 2 and the Si thin plate to be the surface Si layer 3 and then both may be joined.
  • the buried PSG layer 6 is lower softening point than S i preform layer 2 and at least between the surface S i layer 3 S i O 2 was formed
  • the difference in shrinkage ratio between the single crystal Si C layer 5 and the Si base layer 2 formed by the carbonization treatment is different because the carbonization treatment is performed by heating and cooling in a hydrocarbon gas atmosphere. Even if the PSG layer 6 between the single crystal Si C layer 5 and the Si base layer 2 is deformed, a slip occurs between the Si base layer 2 and the single crystal Si C layer 5, Warpage of the entire substrate can be significantly suppressed.
  • the P S G layer 6 is formed by the deposition method.
  • the B P S G layer borosilicate glass layer
  • the present invention can be applied to the manufacture of a semiconductor substrate used for large scale integrated circuits and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

比較的安価な多結晶SiC基板を母材基板として歪みが少なく大型で結晶性の良い単結晶SiC基板を安価に製造する。Si母材層2に所定厚さの表面Si層3と埋め込み酸化物層4が形成されたSOI基板1に対し、上記表面Si層3側からPイオンを注入することにより、上記埋め込み酸化物層4をPSG層6に変成させて軟化点を低下させるPイオン注入工程と、上記PSG層6が形成されたSOI基板1を炭化水素系ガス雰囲気中で加熱して上記表面Si層3をSiCに変成させたのち冷却させて表面に単結晶SiC層5を形成するSiC形成工程とを行なう。

Description

単結晶 S i C基板の製造方法およびそれによつて得られた単結晶 S i C 基板 技術分野
本発明は、 単結晶 S i C基板の製造方法および単結晶 S i C基板に係 るものであり、 詳しくは、 大型明で結晶性の良くかつ歪みの少ない単結晶
S i C基板を製造できる単結晶 S i C基板の製造方法おょぴ単結晶 S i C基板に関するものである。
書 背景技術
単結晶 S i C (炭化シリ コン) は、 熱的、 化学的安定性に優れ、 機械 的強度も強く、 放射線照射にも強いという特性から、 次世代の半導体デ バイス材料として注目を集めている。 特に、 青色発光ダイオード等の基 板材料ゃ耐環境半導体素子等の技術分野において有望視されている。 こ のような用途に用いる S i C膜を得る方法としては、 S i C単結晶の基 板上に、 1 4 0 0 °C以上の温度での液相成長法、 もしくは 1 3 0 0 °C以 上の温度での気相成長法が通常用いられている。
ところが、 上記出発材料として S i C単結晶基板を用いる方法では、 S i C単結晶基板自体が、 極めて高価でかつ小面積のものしか得られて いないのが実情である。 このため、 半導体デバイスとしても極めて高価 なものとなってしまっており、 大面積の単結晶 S i C基板を安価に提供 する技術が強く望まれている。
そこで、 下記の特許文献 1のように、 表面 S i層とこの表面 S i層の 下側に存在する埋め込み絶縁層 (S i O 2層) および S i母材層を有す る絶縁層埋め込み型 S i基板を利用し、 絶縁層埋め込み型 S i基板の表 面 S i層を 1 0 n m程度に薄膜化し、 これを高温で炭化処理して単結晶 S i C層に変成させる技術が提供されている。
特許文献 1 特開 2 0 0 3— 2 2 4 2 4 8号公報
特許文献 2 特開 2 0 0 1— 0 9 4 0 8 2号公報 発明の開示
発明が解決しよう とする課題
しかしながら、 上述した製造方法では、 S i の融点が 1 4 1 0 °Cであ ることから、 1 4 0 0 °C以上の高温プロセスは全く適用することができ ず、少なく ともそれよりも低い温度で炭化処理を行う必要がある。一方、 S i と S i Cの熱膨張係数が異なる うえ、 S i O 2の軟化点が 1 2 0 o °c付近と比較的高いことから、 炭化処理で加熱した後に冷却する段階 で S i母材層と S i C層の間で収縮率に差が生じ、 冷却後の基板にそり が発生することが けられないという問題があった。 このよ うに、 基板 自体にそりが発生するため、 基板を大型化するにも限界があつたのが実 情である。
このように、 現状の技術では、 膜質の良い単結晶 S i C基板は高価で かつ小型のものしか得られておらず、 大型で膜質のよい単結晶 S i C基 板は得られていないのが実情であり、 大型で結晶性の良い単結晶 S i C 基板を安価に提供できる技術の開発が強く望まれていた。
本発明は、 上記のような事情に鑑みなされたもので、 比較的安価な多 結晶 S i C基板を母材基板として歪みが少なく大型で結晶性の良い単結 晶 S i C基板を安価に製造できる単結晶 S i C基板の製造方法および単 結晶 S i C基板の提供を目的とする。 課題を解決するための手段
上記目的を達成するため、 本発明の単結晶 S i C基板の製造方法は、 S i母材層に所定厚さの表面 S i層と埋め込み酸化物層が形成された s O I基板に対し、上記表面 S i層側から Pイオンを導入することにより、 上記埋め込み酸化物層を埋め込みガラス層に変成させて軟化点を低下さ せる Pイオン導入工程と、
上記埋め込みガラス層が形成された S O I基板を炭化水素系ガス雰囲 気中で加熱して上記表面 S i層を S i Cに変成させたのち冷却させて表 面に単結晶 S i C層を形成する S i C形成工程とを備えたことを第 1の 要旨とする。
また、 本発明の単結晶 S i C基板の製造方法は、 S i母材と表面 S i 層となる S i薄板を接合する前に、 その接合面となる S i母材と表面 S i層の少なく とも一方の表面に、 堆積法によつて少なく とも S i O 2よ りも軟化点が低いガラス層を形成するガラス層形成工程と、
上記 S i母材と S i薄板をガラス層を挟むように接合し、 S i母材層、 表面 S i層おょぴ埋め込みガラス層が積層された埋め込み型基板を形成 する接合工程と、
上記埋め込み型基板を炭化水素系ガス雰囲気中で加熱して上記表面 s i層を S i Cに変成させたのち冷却させて表面に単結晶 S i C層を形成 する S i C形成工程とを備えたことを第 2の要旨とする。
また、 上記目的を達成するため、 本発明の単結晶 S i C基板は、 S i 母材層と表面の単結晶 S i C層との間に、 少なく とも S i O 2よりも軟 化点が低い埋め込みガラス層が形成されたことを要旨とする。 発明の効果
すなわち、 本発明の第 1の単結晶 S i C基板の製造方法は、 S O I基 板の埋め込み酸化物層を軟化点が低い埋め込みガラス層に変成させた後、 炭化水素系ガス雰囲気中で加熱し冷却する炭化処理を行うため、 炭化処 理で形成された S i C層と S i母材層の収縮率に差があっても、 S i C 層と S i母材層の間の埋め込みガラス層が変形して S i母材層と S i C 層の間に滑りが発生し、基板全体の反りを大幅に抑制することができる。 本発明の第 1の単結晶 S i C基板の製造方法において、 上記 Pイオン 導入工程における Pイオンの導入量は、 1 1 0 1 5〜 5 1 0 1 8個 。 m 2である場合には、 形成される S i C層の結晶性を良好に維持しなが ら基板の反りを効果的に抑制することができる。
本発明の第 1の単結晶 S i C基板の製造方法において、 上記 Pイオン 導入工程における基板温度は、 2 0 0〜 5 5 0 °Cである場合には、 表面 S i層の結晶性を良好に維持するとともに、 その炭化工程において良質 な S i C層を確保できる。
本発明の第 1の単結晶 S i C基板の製造方法において、 上記 Pイオン 導入工程をイオン注入によって行い、 その際の Pイオンの加速エネルギ 一が 5〜 3 0 k e Vである場合には、 表面 S i層の結晶性を維持しなが らイオン注入を実施することができ、 その結果、 基板の反りを効果的に 抑制することができる。
また、 本発明の第 2の単結晶 S i C基板の製造方法は、 S i母材層と 表面 S i層の間に少なく とも S i 0 2よりも軟化点が低い埋め込みガラ ス層が形成された埋め込み型基板を形成した後、 炭化水素系ガス雰囲気 中で加熱し冷却する炭化処理を行うため、 炭化処理で形成された S i C 層と S i母材層の収縮率に差があっても、 S i C層と S i母材層の間の 埋め込みガラス層が変形して S i母材層と S i c層の間に滑りが発生し、 基板全体の反りを大幅に抑制することができる。
また、 本発明の単結晶 S i C基板は、 S i母材層と表面の単結晶 S i C層との間に、 少なく とも S i O 2より も軟化点が低い埋め込みガラス 層が形成されているため、 炭化水素系ガス雰囲気中で加熱し冷却する炭 化処理を行っても、 S i C層と S i母材層の間の埋め込みガラス層が変 形して S i母材層と S i C層の間に滑りが発生し、 基板全体の反りが大 幅に抑制される。 図面の簡単な説明
図 1 本発明の第 1実施の形態の単結晶 S i C基板の製造方法を示す図 である。
図 2 本発明の第 1実施の形態の単結晶 S i C基板の製造方法を示す図 である。
図 3 上記単結晶 S i C基板の製造方法を示す図である。
図 4 本発明の第 2実施の形態の単結晶 S i C基板の製造方法を示す図 である。
符号の説明
S O I基板
2 S i母材層
3 表面 S i層
4 埋め込み酸化物層, 酸化物層
5 単結晶 S i C層
6 P S G層
8 G a N層
発明を実施するための最良の形態
つぎに、 本発明を実施するための最良の形態を説明する 〔第 1実施形態〕
図 1およぴ図 2は、 本発明の第 1実施形態の単結晶 S i C基板の製造 方法を示す図である。
この単結晶 S i C基板の製造方法は、下記( 1 ) ( 2)の工程を行なう。 ( 1 ) S i母材層 2に所定厚さの表面 S i層 3と埋め込み酸化物層 4が 形成された S O I (S i l i c o n O n I n s u l a t o r ) 基板 1に対し、 上記表面 S i層 3側から Pイオンを導入することにより、 上 記埋め込み酸化物層 4を埋め込みガラス層である P S G層 6に変成させ て軟化点を低下させる Pイオン導入工程。
(2) 上記埋め込みガラス層である P S G層 6が形成された S O I基板 1を炭化水素系ガス雰囲気中で加熱して上記表面 3 1層 3を 3 1 に変 成させたのち冷却させて表面に単結晶 S i C層 5を形成する S i C形成 工程。
図 1 (A) は、 S i母材層 2の表面に、 所定厚さの表面 S i層 3と埋 め込み酸化物層 4とが形成された S O I基板 1を示す。 上記 S O I基板 1は、 S i母材層 2の表面近傍に、 埋め込み酸化物層 4として所定厚み の S i O 2層が形成され、 表面に所定厚さの表面 S i層 3が形成された ものである。 上記埋め込み酸化物層 4の厚みは、 約 1 0 0〜 2 0 0 11111 程度の厚みになるよう設定されている。
上記 S O I基板 1の表面 S i層 3は、 厚み 2 0 n m〜 5 0 n m程度の ものを 4〜 1 0 n mに薄膜化して用いる。 この薄膜化は、 例えば、 S O I基板 1を酸化雰囲気で加熱処理することにより、 埋め込み酸化物層 4 との界面近傍に所望厚みの S i層を残存させるよう、 表面 S i層 3の表 面から所定深さを酸化させたのち、 表面に生成した酸化物層をフッ化水 素酸等でェツチングすることにより除去して薄膜化することが行われる。
このとき、 薄膜化した表面 S i層 3の厚みは、 上述したように 4 n m 〜 1 0 n m程度に設定するのが好ましく、 より好ましいのは 4 nm〜 7 nm程度である。 上記薄膜化した表面 S i層 3の厚みが薄すぎると、 そ の後の炭化処理である変成工程によって単結晶 S i C層 5が十分に生成 されず、 良好な単結晶 S i C層 7を形成できないからである。
また、 上記薄膜化した表面 S i層 3の厚みが厚すぎると、 その後に炭 化処理によって単結晶 S i C層 5へ変成させる際に、 完全に炭化するこ とが困難になり、 S i C層 5の底端部に未炭化の S i層が残存すること となる。 この残存 S i層はその後の熱処理により容易に上部 S i C層へ 拡散し、 その結晶性を悪化させる結果となる。 必要に応じて単結晶 S i C層 5をさらにェピタキシャル成長させることが行なわれるが、 シード 層としての単結晶 S i C層 5の結晶性が悪いと、 その後ェピタキシャル 成長させても結晶性の悪い単結晶 S i C層 5 しか得られない。 このよう に、 残存 S i C層が生じないように完全炭化させることは極めて重要で ある。
図 1 (B) およぴ図 1 (C) は、 上記 S O I基板 1に対し、 上記表面 S i層 3側から Pイオンを導入することにより、 上記埋め込み酸化物層 4を形成する S i O 2を燐を導入したガラスである燐珪酸ガラス (P S G ; P h o s p h o S i l i c a t e G l a s s ) に変成させ P S G層 6を形成して軟化点を低下させる Pイオン導入工程を示す。
上記 Pイオン導入工程は、 例えば、 イオン注入法やプラズマドーピン グ法等によって行なうことができる。
上記 Pイオン導入工程における Pイオンの導入量すなわちドーズ量は 1 X 1 01 5〜 5 X 1 018個/ c m2とするのが好ましい。 ドーズ量が 1 X 1 0 15個 Z c m 2未満では、 P S G層 6の軟化の程度が十分でなく、 基板の反りを防止する効果が十分に得られないからである。 反対にドー ズ量が 5 X 1 0 18個/ c in 2を超えると、 表面 S i層 3の結晶性が悪く なり、 良質で結晶性のよい単結晶 S i C層 5が得られなくなる。 このよ うに、 Pイオン導入工程における ドーズ量を 1 X 1 01 5〜 5 X 1 0 1 8 個ノ c m2とすることにより、 形成される単結晶 S i C層 5の結晶性を 良好に維持しながら基板の反りを効果的に抑制することができる。
上記イオン注入により、 P S G層 6の燐のドープ量を 5〜 7原子%程 度に設定するのが好ましい。 ドープ量が 5原子%未満では、 P S G層 6 の軟化の程度が十分でなく、 基板の反りを防止する効果が十分に得られ ないからである。 反対にドープ量が 7原子%を超えると、 P S G層 6の 吸湿性が高くなり、 単結晶 S i C層 5を使って作成した電子素子の電気 的特性を著しく劣化させ、 良質で信頼性の高い電子素子を得られなくな る。 このように、 P S G層 6を構成するガラスへの燐のドープ量を 5〜 7原子%とすることにより、 形成される単結晶 S i C層 5の電気的特性 を良好に維持しながら基板の反りを効果的に抑制することができる。 また、 上記 Pイオン導入工程における基板温度は、 2 0 0〜 5 5 0 °C とするのが好ましい。 基板温度が 2 0 0 °C未満では、 表面 S i層 3の結 晶性が低下し、良質で結晶性のよい単結晶 S i C層 5が得られなくなる。 反対に基板温度が 5 5 0 °Cを超えると、 表面 S i層 3を構成する S iが 昇華し始めて厚みが減少してしまい、 十分な膜厚の単結晶 S i C層 5が 得られなくなる。 このように、 Pイオン導入工程における基板温度を 2 0 0〜 5 5 0 °Cとすることにより、 単結晶 S i C層 5の結晶性を良好に 維持するとともに、 適切な膜厚も確保できる。
上記 Pイオン導入工程をイオン注入によって行う場合、 その際の Pィ オンの加速エネルギーは 5〜 3 0 k e Vに設定するのが好ましい。 上記 加速エネルギーが 5 k e V未満でも 3 0 k e Vを超えても、 表面 S i層 3の膜厚との兼ね合いで、 埋め込み酸化物層 4を十分軟化点の低い P S G層 6に変成することができないからである。 そして、 上記加速エネル ギーを 5〜 3 0 k e Vに設定することにより、 S i C層の結晶性おょぴ 適切な膜厚を維持しながら基板の反りを効果的に抑制することができる。 図 2 ( D ) は、 上記埋め込みガラス層である P S G層 6が形成された S O I基板 1を炭化水素系ガス雰囲気中で加熱して上記表面 S i層 3を S i Cに変成させたのち冷却させて表面に単結晶 S i C層 5を形成する S i C形成工程を行なった状態である。
上記 S i C形成工程は、例えば、雰囲気制御が可能な加熱炉において、 加熱炉内に導入される雰囲気ガス (水素ガスおよび炭化水素ガス) を切 り換えながら温度調節することにより行うことができる。
上記のような装置により、 上記 S O I基板 1を加熱炉内に設置し、 上 記加熱炉内に水素ガスと炭化水素系ガスとの混合ガスを供給しながら、 加熱炉内の雰囲気温度を上昇させて、 前記 S O I基板 1の表面 S i層 3 を単結晶 S i C層 5に変成させることが行われる。
このとき、 上記 S O I基板 1を加熱炉内に設置して、 加熱炉内に水素 ガスに対して炭化水素系ガスを 1体積0 /0の割合で混合した混合ガスを供 給する。 また、 この混合ガスの供給と同じく して、 加熱炉内の雰囲気温 度を 9 0 0〜 1 4 0 5 °Cに加熱する。 この加熱によって、 S O I基板 1 の表面 S i層 3を単結晶 S i C層 5に変成させることができる。
ここで、 前記水素ガスはキャリアガスであり、 炭化水素ガスと しては 例えばプロパンガスを使用する。 例えば、 水素ガスのボンベからの供給 量が 1 0 0 0 c c /分であったならば、 炭化水素ガスのボンベからの供 給量を 1 0 c c /分とする。
そして、 所定時間加熱して表面 S i層 3が完全炭化されて単結晶 S i
C層 5に変成したのち常温まで冷却する。 このとき、 単結晶 S i C層 5 と S i母材層 2 との間に、 S i O 2よりも軟化点が低い; P S G層 6が介 在することから、 炭化処理で形成された単結晶 S i C層 5と S i母材層 2の収縮率に差があっても、 単結晶 S i C層 5と S i母材層 2の間の P S G層 6が変形して S i母材層 2と単結晶 S i C層 5の間に滑りが発生 し、 基板全体の反りを大幅に抑制することができる。
図 2 ( E ) は、 上述したように形成した単結晶 S i C層 5をシード層 として、 ェピタキシャル成長により さらに単結晶 S i C層 5を成長させ た状態を示す。
上記ェピタキシャル成長は、 例えば、 下記の条件により単結晶 S i C 層 5を成長させる。 例えば、 表面に単結晶 S i C層 5が形成された基板 を処理チャンバ一内に配置し、 上記処理チャンバ一内にモノメチルシラ ン等メチルシラン系ガスの原料ガスを約 1 . O s c c m程度のガス流量 で供給しながら、 温度 9 0 0〜 1 4 0 5 °Cで処理することにより、 上記 単結晶 S i C層 · 5をシード層としてェピタキシャル成長により、 単結晶 S i C層 5を成長させることができる。
このように、 単結晶 S i C層 5をェピタキシャル成長させる際の昇温 および冷却においても、 単結晶 S i C層 5 と S i母材層 2との間に軟化 点が低い P S G層 6が介在することから、 単結晶 S i C層 5と S i母材 層 2の間の P S G層 6が変形して S i母材層 2と単結晶 S i C層 5の間 に滑りが発生し、 基板全体の反りを大幅に抑制することができる。
上記処理温度は、 上記温度範囲で処理可能であるが、 より良好な膜質 を得るとともに、 設備コス トゃエネルギーコス ト、 メンテナンスコス ト 等の面から 1 0 0 0〜1 3 5 0 °C程度に設定するのが好適である。
また、 上記ェピタキシャル成長は、 処理チャンバ一内にモノシランガ ス等のシラン系ガスとプロパンガス等の炭化水素系ガスを同時に供給し ながら上記温度範囲で処理することにより単結晶 S i C層 5をェピタキ シャル成長させることもできる。
このようにして、 S i母材層 2と表面の単結晶 S i C層 5 との間に、 少なく とも S i O 2よりも軟化点が低い埋め込みガラス層である P S G 層 6が形成された本発明の単結晶 S i C基板を得ることができる。
図 2 (F) は、 必要に応じて、 上記単結晶 S i C層 5の上に、 ェピタ キシャル成長により G a N層 8等の他の半導体膜を形成させた状態を示 す。
上記ェピタキシャル成長は、 例えば、 下記の条件により G a N層 8を 成長させる。 例えば、 単結晶 S i C層 5を形成した基板を処理チャンパ 一内に配置し、 上記処理チャンバ一内にトリェチルガリ ゥムを約 2 s c c m、 アンモニアを約 1 2 5 0 s c c mの流量で供給しながら、 温度 9 5 0〜 1 2 0 0 °Cで処理することにより、 上記単結晶 S i C層 5の上に G a N層 8を形成させることができる。
このよ うに、 単結晶 S i C層 5の上に G a N層 8をェピタキシャル成 長させる際の昇温おょぴ冷却においても、 単結晶 S i C層 5 と S i母材 層 2 との間に軟化点が低い P S G層 6が介在することから、 単結晶 S i C層 5 と S i母材層 2の間の P S G層 6が変形して S i母材層 2と単結 晶 S i C層 5の間に滑りが発生し、 基板全体の反りを大幅に抑制するこ とができる。
図 3は、 実施例と比較例の基板の反り量を測定した結果である。
S O I基板 1 として、 表面 S i層 3の厚みが 7 n m、 S i母材層 2の 厚みが 7 2 5 m、 埋め込み酸化物層 4の厚みが 1 6 0 n m、 直径 2 0 0 mmのものを準備した。
実施例は、 上記 S O I基板 1に Pイオン注入によって埋め込み酸化物 層 4を P S G層 6に変成したのち炭化処理を行なった。 イオンの加速ェ ネルギ一は 3 0 k e V、 ドーズ量は 6 X 1 01 5個/ c m2、 基板温度は 2 5 0 °Cに設定した。 比較例は、 上記 S O I基板 1をイオン注入せずに 炭化処理を行った。 炭化処理は、 プロパンガス 3 0 c c、 水素ガス 2 0 0 0 c cの割合で 混合ガスを流しながら、基板を 1 2 5 0°Cに 1 5分間加熱して行なった。 その後の、 ェピタキシャル成長は、 モノメチルシランガスを約 3 s c c mのガス流量で供給しながら、 温度 1 2 0 0 °Cで処理を行ない、 処理 時間を変えて、最終的な単結晶 S i C層 5の厚みが 5 nm、 l 6 0 n m, 3 2 0 nm、 6 0 0 n mの資料を準備した。
反り量は、 つぎのようにして測定した。 すなわち、 水平な標準面を有 する試料測定台の上に 2 0 0 mm口径の被測定試料を載置し、 この被測 定資料の表面に探針式反り量測定器の探針を接触させながら水平面内で 走査させる。 このとき、 被測定試料表面のうねりに応じて垂直面内に現 れるうねりを記録し、 基板全体の反り量として判定することにより測定 した。
図 3からわかるように、 単結晶 S i C層 5の膜厚が 3 0 0 n mを超え ると、 実施例が良好な結果がえられている。 なお、 膜厚の薄い部分につ いて比較例の方が良いように見えるが、 この差は測定誤差範囲であり、 膜厚が 3 0 0 n mを超えたあたりから反りの抑制効果が顕著に現れてい る。
なお、 上記実施形態では、 イオン注入の際に Pイオンだけを導入して 埋め込み酸化物層 4を P S G層 6に変成した例を示したが、 Pイオンと 併せて Bイオンを導入して埋め込み酸化物層 4を B P S G層に変成させ るようにしてもよい。
〔第 2実施形態〕
図 4は、 本発明の第 2実施形態の単結晶 S i C基板の製造方法を示す 図である。
この単結晶 S i C基板の製造方法は、 下記 ( 1 ) ( 2) ( 3) の工程を 行なう。
( 1 ) S i母材と表面 S i層となる S i薄板を接合する前に、 その接合 面となる S i母材と表面 S i層の少なく とも一方の表面に、 堆積法によ つて少なく とも S i o2よりも軟化点が低いガラス層を形成するガラス 層形成工程。
(2) 上記 S i母材と S i薄板をガラス層を挟むように接合し、 S i母 材層、 表面 S i層おょぴ埋め込みガラス層が積層された埋め込み型基板 を形成する接合工程。
( 3) 上記埋め込み型基板を炭化水素系ガス雰囲気中で加熱して上記表 面 S i層を S i Cに変成させたのち冷却させて表面に単結晶 S i C層を 形成する S i C形成工程。
図 4 (A) に示すように、 この例では、 まず、 表面 S i層 3となる S i薄板の一面に、 堆積法によって少なく とも S i 02よりも軟化点が低 いガラス層である P S G層 6を形成する。
上記堆.積法は、 例えば、 減圧 C VDやプラズマ C VDのような化学的 気相堆積法、 真空蒸着法ゃスパッタリング法等の物理的気相堆積法等、 各種の堆積法を適用することができる。
図 4 (B) に示すように、 P S G層 6が形成された表面 S i層 3と、
S i母材層 2とを、 上記 P S G層 6を挟むように接合する。 上記 P S G 層 6は、 燐がドープされたガラスであり、 燐のドープ量は 5〜 7原子% 程度に設定するのが好ましい。 ドープ量が 5原子%未満では、 P S G層
6の軟化の程度が十分でなく、 基板の反りを防止する効果が十分に得ら れないからである。 反対にドープ量が 7原子%を超えると、 P S G層 6 の吸湿性が高くなり、 単結晶 S i C層 5を使って作成した電子素子の電 気的特性を著しく劣化させ、 良質で信頼性の高い電子素子を得られなく なる。 このように、 P S G層 6を構成するガラスへの燐のドープ量を 5 ~ 7原子%とすることにより、 形成される単結晶 S i C層 5の電気的特 性を良好に維持しながら基板の反りを効果的に抑制することができる。 上記接合は、 S i母材層 2の上面に、 表面 S i層 3が上を向き P S G 層 6が下を向く ようにして積層し、 加熱することによって行なうことが できる。 このときの加熱温度は概ね 8 5 0〜 9 5 0 °C、 加熱時間は 3 0 〜 6 0分程度である。
図 4 ( C ) は、 上記のようにして形成された S i母材層 2と表面 S i 層 3の間に埋め込み型の P S G層 6が積層された埋め込み型基板を示す。 この埋め込み型基板における P S G層 6の厚みは、 約 1 0 0〜 2 0 0 η m程度の厚みになるよう設定され、 表面 S i層 3はあらかじめ厚み 4 n m〜 1 0 n mに薄膜化されるのは上述した第 1実施形態と同様である。 つぎに、 上記埋め込み型基板を炭化水素系ガス雰囲気中で加熱して上 記表面 S i層 3を S i Cに変成させたのち冷却させて表面に単結晶 S i C層 5を形成する。 この炭化処理の条件は上述した第 1実施形態と同様 である。
図 4 ( D ) は、 上記のようにして形成された S i母材層 2と表面 S i 層 3の間に埋め込み型の P S G層 6が積層された埋め込み型基板を示す。 その後、ェピタキシャル成長により単結晶 S i C層 5を成長させたり、 G a N層 8のような他の半導体層を積層したりすることが行なわれる。 ェピタキシャル成長の条件は上述した第 1実施形態と同様である。
このようにして、 S i母材層 2と表面の単結晶 S i C層 5 との間に、 少なく とも S i O 2よりも軟化点が低い埋め込みガラス層である P S G 層 6が形成された本発明の単結晶 S i C基板を得ることができる。
なお、 この例では表面 S i層 3となる S i薄板の一面に、 P S G層 6 を形成したのち S i母材層 2と接合するようにしたが、 S i母材層 2の 一面に P S G層 6を形成したのち表面 S i層 3となる S i薄板を接合し てもよいし、 S i母材層 2と表面 S i層 3 となる S i薄板の双方の一面 に P S G層 6を形成したのち両者を接合するようにしてもよい。
本実施形態の単結晶 S i C基板の製造方法は、 S i母材層 2と表面 S i層 3の間に少なく とも S i O 2よりも軟化点が低い P S G層 6が形成 された埋め込み型基板を形成した後、 炭化水素系ガス雰囲気中で加熱し 冷却する炭化処理を行うため、 炭化処理で形成された単結晶 S i C層 5 と S i母材層 2の収縮率に差があっても、 単結晶 S i C層 5と S i母材 層 2の間の P S G層 6が変形して S i母材層 2と単結晶 S i C層 5の間 に滑りが発生し、 基板全体の反りを大幅に抑制することができる。
なお、 上記実施形態では、 堆積法により P S G層 6を形成した例を示 したが、 同じく堆積法により B P S G層 (硼憐珪酸ガラス層) を形成さ せるようにしてもよレ、。 産業上の利用可能性
本発明は、 大規模集積回路等に用いる半導体基板の製造等に適用する ことができる。

Claims

請求の範囲
1 . S i母材層に所定厚さの表面 S i層と埋め込み酸化物層が形成され た S O I基板に対し、 上記表面 S i層側から Pイオンを導入することに より、 上記埋め込み酸化物層を埋め込みガラス層に変成させて軟化点を 低下させる Pイオン導入工程と、
上記埋め込みガラス層が形成された S O I基板を炭化水素系ガス雰囲 気中で加熱して上記表面 S i層を S i Cに変成させたのち冷却させて表 面に単結晶 S i C層を形成する S i C形成工程とを備えたことを特徴と する単結晶 S i C基板の製造方法。
2 . 上記 Pイオン導入工程における Pイオンの導入量は、 1 X 1 0 1 5〜 5 X 1 0 1 8個/ c m 2である請求項 1記載の単結晶 S i C基板の製造方 法。
3 . 上記 Pイオン導入工程における基板温度は、 2 0 0〜 5 5 0 °Cであ る請求項 1または 2記載の単結晶 S i C基板の製造方法。
4 . 上記 Pイオン導入工程をイオン注入によって行い、 その際の Pィォ ンの加速エネルギーが 5〜 3 0 k e Vである請求項 1〜 3のいずれか一 項に記載の単結晶 S i C基板の製造方法。
5 . S i母材と表面 S i層となる S i薄板を接合する前に、 その接合面 となる S i母材と表面 S i層の少なく とも一方の表面に、 堆積法によつ て少なく とも S i O 2より も軟化点が低いガラス層を形成するガラス層 形成工程と、 上記 S i母材と S i薄板をガラス層を挟むように接合し、 S i母材層、 表面 S i層および埋め込みガラス層が積層された埋め込み型基板を形成 する接合工程と、
上記埋め込み型基板を炭化水素系ガス雰囲気中で加熱して上記表面 S i層を S i Cに変成させたのち冷却させて表面に単結晶 S i C層を形成 する S i C形成工程とを備えたことを特徴とする単結晶 S i C基板の製 造方法。
6 . S i母材層と表面の単結晶 S i C層との間に、 少なく とも S i O 2 よりも軟化点が低い埋め込みガラス層が形成されたことを特徴とする単 結晶 S i C基板。
PCT/JP2008/070160 2007-11-19 2008-10-29 単結晶SiC基板の製造方法およびそれによって得られた単結晶SiC基板 WO2009066566A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/742,413 US8603901B2 (en) 2007-11-19 2008-10-29 Method for producing single crystal SiC substrate and single crystal SiC substrate produced by the same
EP08852872.4A EP2216428B8 (en) 2007-11-19 2008-10-29 PROCESS FOR PRODUCING SINGLE CRYSTAL SiC SUBSTRATE
CN200880116838.XA CN101868566B (zh) 2007-11-19 2008-10-29 单晶SiC基板的制造方法和由其得到的单晶SiC基板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-298752 2007-11-19
JP2007298752A JP5394632B2 (ja) 2007-11-19 2007-11-19 単結晶SiC基板の製造方法

Publications (1)

Publication Number Publication Date
WO2009066566A1 true WO2009066566A1 (ja) 2009-05-28

Family

ID=40667391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/070160 WO2009066566A1 (ja) 2007-11-19 2008-10-29 単結晶SiC基板の製造方法およびそれによって得られた単結晶SiC基板

Country Status (6)

Country Link
US (2) US8603901B2 (ja)
EP (1) EP2216428B8 (ja)
JP (1) JP5394632B2 (ja)
KR (1) KR101473209B1 (ja)
CN (1) CN101868566B (ja)
WO (1) WO2009066566A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103392223A (zh) * 2011-02-24 2013-11-13 信越半导体股份有限公司 硅基板的制造方法及硅基板
JP2017057102A (ja) * 2015-09-15 2017-03-23 信越化学工業株式会社 SiC複合基板の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5394632B2 (ja) * 2007-11-19 2014-01-22 エア・ウォーター株式会社 単結晶SiC基板の製造方法
US9620626B2 (en) * 2014-05-08 2017-04-11 Soitec Method for fabricating a semiconductor device including fin relaxation, and related structures
RU2613013C1 (ru) * 2015-12-07 2017-03-14 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" (СПбГЭТУ "ЛЭТИ") Способ получения полупроводникового карбидокремниевого элемента
DE102017101333B4 (de) 2017-01-24 2023-07-27 X-Fab Semiconductor Foundries Gmbh Halbleiter und verfahren zur herstellung eines halbleiters
US10510532B1 (en) * 2018-05-29 2019-12-17 Industry-University Cooperation Foundation Hanyang University Method for manufacturing gallium nitride substrate using the multi ion implantation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475379A (ja) * 1990-07-17 1992-03-10 Seiko Epson Corp 半導体基板
JP2001094082A (ja) 1999-08-23 2001-04-06 Internatl Business Mach Corp <Ibm> Simox半導体構造および形成方法
JP2003224248A (ja) 2002-01-31 2003-08-08 Osaka Prefecture 絶縁層埋め込み型半導体炭化シリコン基板の製造方法及びその製造装置
JP2004296558A (ja) * 2003-03-26 2004-10-21 Osaka Prefecture 絶縁層埋め込み型単結晶炭化シリコン基板の製造方法及びその製造装置
JP2005268460A (ja) * 2004-03-18 2005-09-29 Air Water Inc 単結晶SiC基板の製造方法および単結晶SiC基板
JP2007324573A (ja) * 2006-05-30 2007-12-13 Sharp Corp 熱軟化性絶縁体と共に化合物半導体が形成されたシリコンウェハ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759908A (en) * 1995-05-16 1998-06-02 University Of Cincinnati Method for forming SiC-SOI structures
JP5394632B2 (ja) * 2007-11-19 2014-01-22 エア・ウォーター株式会社 単結晶SiC基板の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475379A (ja) * 1990-07-17 1992-03-10 Seiko Epson Corp 半導体基板
JP2001094082A (ja) 1999-08-23 2001-04-06 Internatl Business Mach Corp <Ibm> Simox半導体構造および形成方法
JP2003224248A (ja) 2002-01-31 2003-08-08 Osaka Prefecture 絶縁層埋め込み型半導体炭化シリコン基板の製造方法及びその製造装置
JP2004296558A (ja) * 2003-03-26 2004-10-21 Osaka Prefecture 絶縁層埋め込み型単結晶炭化シリコン基板の製造方法及びその製造装置
JP2005268460A (ja) * 2004-03-18 2005-09-29 Air Water Inc 単結晶SiC基板の製造方法および単結晶SiC基板
JP2007324573A (ja) * 2006-05-30 2007-12-13 Sharp Corp 熱軟化性絶縁体と共に化合物半導体が形成されたシリコンウェハ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2216428A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103392223A (zh) * 2011-02-24 2013-11-13 信越半导体股份有限公司 硅基板的制造方法及硅基板
US9390905B2 (en) 2011-02-24 2016-07-12 Shin-Etsu Handotai Co., Ltd. Method for manufacturing silicon substrate and silicon substrate
JP2017057102A (ja) * 2015-09-15 2017-03-23 信越化学工業株式会社 SiC複合基板の製造方法
WO2017047509A1 (ja) * 2015-09-15 2017-03-23 信越化学工業株式会社 SiC複合基板の製造方法
RU2728484C2 (ru) * 2015-09-15 2020-07-29 Син-Эцу Кемикал Ко., Лтд. СПОСОБ ИЗГОТОВЛЕНИЯ СОСТАВНОЙ ПОДЛОЖКИ ИЗ SiC
US10829868B2 (en) 2015-09-15 2020-11-10 Shin-Etsu Chemical Co., Ltd. Manufacturing method of SiC composite substrate

Also Published As

Publication number Publication date
CN101868566A (zh) 2010-10-20
JP5394632B2 (ja) 2014-01-22
EP2216428B1 (en) 2017-06-07
KR101473209B1 (ko) 2014-12-16
KR20100100803A (ko) 2010-09-15
EP2216428B8 (en) 2017-08-16
EP2216428A1 (en) 2010-08-11
CN101868566B (zh) 2012-07-18
US20140051235A1 (en) 2014-02-20
US20100252837A1 (en) 2010-10-07
US8906786B2 (en) 2014-12-09
JP2009120455A (ja) 2009-06-04
EP2216428A4 (en) 2012-08-15
US8603901B2 (en) 2013-12-10

Similar Documents

Publication Publication Date Title
US8906786B2 (en) Method for producing single crystal SiC substrate and single crystal SiC substrate produced by the same
CN105895576B (zh) 一种离子注入剥离制备半导体材料厚膜的方法
CN105655238A (zh) 基于石墨烯与磁控溅射氮化铝的硅基氮化镓生长方法
US7084049B2 (en) Manufacturing method for buried insulating layer-type semiconductor silicon carbide substrate
KR20090093887A (ko) 단결정 박막을 갖는 기판의 제조 방법
KR101340002B1 (ko) Soi웨이퍼의 제조방법
JP4511378B2 (ja) SOI基板を用いた単結晶SiC層を形成する方法
US8563442B2 (en) Method for manufacturing nitrogen compound semiconductor substrate and nitrogen compound semiconductor substrate, and method for manufacturing single crystal SiC substrate and single crystal SiC substrate
CN117672815A (zh) 一种SiC外延片及其制备方法
JP2003218031A (ja) 半導体ウェーハの製造方法
JP4563918B2 (ja) 単結晶SiC基板の製造方法
US20240117525A1 (en) Nitride semiconductor substrate and method for producing the same
TW200907124A (en) Method for forming group-III nitride semiconductor epilayer on silicon substrate
WO2021079745A1 (ja) 半導体基板の製造方法及び半導体基板
JP2007261900A (ja) 単結晶炭化シリコン基板の製造方法
JP4690734B2 (ja) 単結晶SiC基板の製造方法
JP2009302098A (ja) 窒素化合物半導体基板の製造方法および窒素化合物半導体基板
US20040187769A1 (en) Method of producing SOI wafer
JP2009302097A (ja) 単結晶SiC基板の製造方法および単結晶SiC基板
CN117568925A (zh) 一种金刚石-类金刚石结构晶圆的制备方法
TW202336831A (zh) 氮化物半導體基板及其製造方法
CN117174571A (zh) 一种复合衬底及其制备方法
TW202331817A (zh) 氮化物半導體基板及其製造方法
JPH09328333A (ja) 絶縁体上半導体構造およびその製造方法
JPH03173182A (ja) 半導体素子の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880116838.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08852872

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12742413

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107010827

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2008852872

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008852872

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE