WO2009056197A1 - Brennkraftmaschine mit abgasturbolader und ladeluftkühler - Google Patents
Brennkraftmaschine mit abgasturbolader und ladeluftkühler Download PDFInfo
- Publication number
- WO2009056197A1 WO2009056197A1 PCT/EP2008/007948 EP2008007948W WO2009056197A1 WO 2009056197 A1 WO2009056197 A1 WO 2009056197A1 EP 2008007948 W EP2008007948 W EP 2008007948W WO 2009056197 A1 WO2009056197 A1 WO 2009056197A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- internal combustion
- combustion engine
- wastegate
- turbine
- exhaust
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B29/00—Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
- F02B29/04—Cooling of air intake supply
- F02B29/0406—Layout of the intake air cooling or coolant circuit
- F02B29/0437—Liquid cooled heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/18—Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M35/00—Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
- F02M35/10—Air intakes; Induction systems
- F02M35/10006—Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
- F02M35/10026—Plenum chambers
- F02M35/10032—Plenum chambers specially shaped or arranged connecting duct between carburettor or air inlet duct and the plenum chamber; specially positioned carburettors or throttle bodies with respect to the plenum chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M35/00—Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
- F02M35/10—Air intakes; Induction systems
- F02M35/1015—Air intakes; Induction systems characterised by the engine type
- F02M35/10157—Supercharged engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M35/00—Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
- F02M35/10—Air intakes; Induction systems
- F02M35/10242—Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
- F02M35/10268—Heating, cooling or thermal insulating means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the invention relates to an internal combustion engine, in particular of a motor vehicle, with a suction pipe in a fresh air system, which opens into intake passages in a cylinder head of the internal combustion engine, an exhaust system and an exhaust gas turbocharger, a turbine arranged in the exhaust system and driven by the turbine in the fresh air system wherein the turbine has a wastegate passage for bypassing the exhaust gas past a turbine wheel of the turbine, wherein in the wastegate channel, a wastegate valve for selectively opening and closing the wastegate channel is arranged, wherein an electric actuator for actuating the wastegate valve is provided, wherein in the fresh air system downstream of the compressor, a charge air cooler is arranged, according to the preamble of patent claim 1.
- turbocharged turbochargers with rigid geometry and wastegate control are predominantly used in turbocharged gasoline engines, since here the widespread use of the VTG technology (adjustable turbine geometry) for diesel applications is due above all to the high costs associated with the significantly higher exhaust gas temperatures compared to the Diesel are, stand in the way. For price-sensitive applications, the turbo-charged gasoline engine will therefore also have rigid geometry ATL and wastegate control in the future.
- the demand on the wastegate actuator is derived from the fact that in low-end torque and transient operation, the wastegate are closed with high force must and in the range of the rated power sufficient control reserve must be present, so that in the amount of nominal power can be controlled safely, or a reduction can be made to protect against overspeed at the ATL.
- the exhaust back pressure in part-load operation should be as low as possible in order to set a low-consumption minimum charge exchange work can. This tradeoff can only be resolved inadequately by the previous, with overpressure controlled pneumatic actuators on the gasoline engine.
- One solution is electrically operated wastegate actuators, which can be independently operated or regulated by the pressures applied to the engine.
- a generic internal combustion engine with an electric actuator for the wastegate and a charge air cooler is known from DE 10 2005 056 011 A1. This results in particular advantages for the electrical actuation of the wastegate, that the exhaust gas flowing through the wastegate is fed to its own exhaust gas flow.
- the invention is based on the object, an internal combustion engine og. To improve fuel economy and load response performance.
- the intercooler is integrated into the intake manifold and that the intercooler is formed with a water-cooled heat exchanger.
- the water-cooled heat exchanger of the intercooler is connected to a cooling circuit of the internal combustion engine.
- the charge air cooler is a water-air charge air cooler (WL-LLK).
- the electric actuator for actuating the wastegate valve has an electric motor, which is arranged and designed such that the electric motor converts an electrical output signal of an engine control unit directly into an adjusting movement of the wastegate valve.
- the wastegate valve is designed as a wastegate flap.
- Fig. 1 is a schematic representation of a preferred embodiment of an internal combustion engine according to the invention.
- FIG. 2 shows a characteristic diagram for a regulation of the wastegate by means of an electric actuator.
- an internal combustion engine comprises an engine block 10, an exhaust system 12, an exhaust gas turbocharger 14 (ATL) and a fresh air system 16.
- the ATL 14 has a disposed in the exhaust system 12 turbine 18 and one in the fresh air system 16th arranged compressor 20.
- a wastegate channel 22 is further arranged with a wastegate valve 24 such that a portion of the exhaust gas is selectively bypassed by opening the wastegate valve 24 to the turbine.
- the wastegate valve 24, which is preferably designed as a wastegate flap, has an electric actuator 26 for actuating the wastegate valve 24.
- a catalytic converter 28 Downstream of the turbine 18, a catalytic converter 28, in particular a pre-catalytic converter or a main catalytic converter close to the engine, is arranged in the exhaust system 12.
- a bypass passage 30 bridging the compressor 20 is arranged with a diverter valve 32 (SUV). Furthermore, a throttle valve 34 (DKL) and a suction tube 36 is arranged in the fresh air system 16.
- a charge air cooler is integrated with a water-cooled heat exchanger. This water-cooled heat exchanger is connected to a cooling water circuit 38 of the internal combustion engine. This cooling water circuit 38 has a pump 40 and a low-temperature cooler 42.
- FIG. 2 illustrates a characteristic diagram for controlling the wastegate valve 24 by means of the electric actuator 26.
- a rotational speed in [1 / min] is plotted on a horizontal axis 44 and a relative mean pressure in [%] on a vertical axis 46 .
- a first map area 48 the wastegate valve 24 is closed, in a second map area 50, the wastegate valve 24 is opened and in a third map area 52, the wastegate valve 24 is controlled.
- the actuator control also takes place as a function of an accelerator pedal gradient in such a way that at a rapid passage of the pedal, the wastegate valve 24 is basically immediately closed and remains closed until the maximum allowable boost pressure, if the driver does not go from the gas before.
- the charge air cooler is integrated into the suction pipe 36 and equipped with a water-cooled heat exchanger. This ensures that the open in the partial load wastegate valve 24 causes no significant delay in the response of the engine, since there is only a small volume of air between ATL compressor outlet and entry into the combustion chambers of the internal combustion engine. Therefore, the two technologies "electric wastegate actuator” and a "integrated in the intake manifold, water-cooled intercooler” are combined according to the invention.
- the electric wastegate actuator can achieve its advantage, namely the regulation of the wastegate valve 24 independent of operating point-dependent pressures, only by the resulting, very small compressed air volume due to the integrated in the suction tube 36 WL-LLK, without a deterioration of the dynamics at load request from lower Part load when opened there Wastegateventil 24 must be taken into account, in which the entire compressed air volume is at a much lower pressure level than conventional pneumatic actuators, but also cause a 1 -2% higher fuel consumption.
- the dynamic behavior is indeed improved at least to the level of pneumatic actuators, but this is the consumption in the entire map area in an undesirable manner on the worse level of the pneumatic wastegate actuators.
- wastegate valve 24 With open at partial load wastegate valve 24, which represents the desired state, since the primary motivation for the use of an electric wastegate actuator 26, the reduction consumption, can be through the use of an electric wastegate actuator 26 improve both the dynamics and the consumption, because by the combination of integrated in the intake manifold 36 LLK and electric wastegate actuator 26, the consumption can be improved without a disadvantage. to suffer the dynamic behavior. This also provides the opportunity to provide the wastegate valve 24 according to purely motor, thermodynamic criteria. This results in the characteristic diagram according to FIG. 2. With the operating strategy of an electric wastegate actuator 24 shown here, the advantages of the electrical control are maximized. The prerequisite for the implementation of this map as shown in FIG. 2 is integrated in the intake manifold 36 WL-LLK.
- electrical wastegate actuator 26 means an actuator that directly converts an electrical output signal of a motor control device by means of an electric motor into the desired setting movement of the wastegate valve or the wastegate flap. This means independence of operating point-dependent supply pressures of the engine.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Supercharger (AREA)
Abstract
Die Erfindung betrifft eine Brennkraftmaschine, insbesondere eines Kraftfahrzeugs, mit einem Saugrohr (36) in einer Frischluftanlage (16), welches in Einlasskanäle in einem Zylinderkopf der Brennkraftmaschine mündet, einer Abgasanlage (12) und einem Abgasturbolader (14), der eine in der Abgasanlage (12) angeordnete Turbine (18) und einen von der Turbine (18) angetriebenen, in der Frischluftanlage (16) angeordneten Verdichter (20) aufweist, wobei die Turbine (18) einen Wastegate-Kanal (22) zum überbrückenden Vorbeiströmen des Abgases an einem Turbinenrad der Turbine (18) vorbei aufweist, wobei in dem Wastegate-Kanal (22) ein Wastegateventil (24) zum wahlweise Öffnen und Verschließen des Wastegate-Kanals (22) angeordnet ist, wobei ein elektrischer Aktuator (26) zum Betätigen des Wastegateventils (24) vorgesehen ist, wobei in der Frischluftanlage (16) stromab des Verdichters (20) ein Ladeluftkühler angeordnet ist. Hierbei ist der Ladeluftkühler in das Saugrohr (36) integriert und der Ladeluftkühler mit einem wassergekühlten Wärmetauscher ausgebildet.
Description
Beschreibung
Brennkraftmaschine mit Abgasturbolader und Ladeluftkühler
Die Erfindung betrifft eine Brennkraftmaschine, insbesondere eines Kraftfahrzeugs, mit einem Saugrohr in einer Frischluftanlage, welches in Einlasskanäle in einem Zylinderkopf der Brennkraftmaschine mündet, einer Abgasanlage und einem Abgasturbolader, der eine in der Abgasanlage angeordnete Turbine und einen von der Turbine angetriebenen, in der Frischluftanlage angeordneten Verdichter aufweist, wobei die Turbine einen Wastegate-Kanal zum überbrückenden Vorbeiströmen des Abgases an einem Turbinenrad der Turbine vorbei aufweist, wobei in dem Wastegate-Kanal ein Wastegateventil zum wahlweise Öffnen und Verschließen des Wastegate-Kanals angeordnet ist, wobei ein elektrischer Aktuator zum Betätigen des Wastegateventils vorgesehen ist, wobei in der Frischluftanlage stromab des Verdichters ein Ladeluftkühler angeordnet ist, gemäß dem Oberbegriff des Patentanspruchs 1.
Die Ladedruckregelung bei Motoren mit Abgasturboaufladung erfolgt bei Wastegate- Turboladern nach dem Stand der Technik, wie beispielsweise aus der DE 198 24 913 A1 bekannt, mittels pneumatischen Druckaktuatoren. Bei aufgeladenen Ottomotoren kommen zum überwiegenden Teil Turbolader mit Starrgeometrie und Wastegate-Regelung zur Anwendung, da hier dem breiten Einsatz der beim Diesel zur Anwendung kommenden VTG-Technologie (verstellbare Turbinengeometrie) vor allem die hohen Kosten, die eine Folge der deutlich höheren Abgastemperaturen gegenüber dem Diesel sind, im Wege stehen. Für preissensitive Anwendungen wird der turboaufgeladene Ottomotor daher auch in Zukunft über Starrgeometrie- ATL und Wastegate-Regelung verfügen.
Die Entwicklung bei diesen Motoren ist zunehmend von einem hohen LowEnd-Torque und einem verzögerungsfreien Ansprechverhalten geprägt. Diesen Sachverhalten wird mit einer ATL-Auslegung Rechnung getragen, die speziell für den unteren Drehzahibereich optimiert ist. Solche ATL's sind von ihrem Durchsatzvermögen her bezogen auf das Hubvolumen des Motors sehr klein, womit sie schon bei kleinen Abgasmassenströmen hohe Druckverhältnisse über den Lader realisieren können. Bei hohen Motordrehzahlen und großen Abgasmassenströmen müssen entsprechend große Abgasmengen über das Wastegate an der Turbine vorbei geführt werden.
Die Anforderung an den Wastegate-Aktuator leitet sich daraus entsprechend ab, dass im LowEnd-Torque- und transienten Betrieb das Wastegate mit hoher Kraft geschlossen werden
muss und im Bereich der Nennleistung ausreichend Regelreserve vorhanden sein muss, damit auch in der Höhe die Nennleistung sicher eingeregelt werden, bzw. eine Abregelung zum Schutz vor Überdrehzahl am ATL erfolgen kann. Darüber hinaus soll der Abgasgegendruck im Teillastbetrieb so gering wie möglich sein, um eine verbrauchsgünstige minimale Ladungswechselarbeit einstellen zu können. Dieser Tradeoff kann von den bisherigen, mit Überdruck geregelten Pneumatikaktuatoren am Ottomotor nur unzureichend aufgelöst werden. Eine Lösung stellen elektrisch betriebene Wastegate-Steller dar, die von den am Motor anliegenden Drücken unabhängig betätigt bzw. geregelt werden können.
Eine gattungsgemäße Brennkraftmaschine mit einem elektrischen Aktuator für das Wastegate und einem Ladeluftkühler ist aus der DE 10 2005 056 011 A1 bekannt. Es ergeben sich dadurch besondere Vorteile für die elektrische Betätigung des Wastegates, dass das über das Wastegate strömende Abgas einer eigenen Abgasflut zugeführt wird.
Der Erfindung liegt die Aufgabe zugrunde, eine Brennkraftmaschine der o.g. Art hinsichtlich Kraftstoffverbrauch und Ansprechverhalten bei Lastanforderung zu verbessern.
Diese Aufgabe wird erfindungsgemäß durch eine Brennkraftmaschine der o.g. Art mit den in Anspruch 1 gekennzeichneten Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den weiteren Ansprüchen beschrieben.
Dazu ist es bei einer Brennkraftmaschine der o.g. Art erfindungsgemäß vorgesehen, dass der Ladeluftkühler in das Saugrohr integriert ist und dass der Ladeluftkühler mit einem wassergekühlten Wärmetauscher ausgebildet ist.
Dies hat den Vorteil, dass sich ein geringes Volumen in der Frischluftanlage stromab des Verdichters ergibt, wodurch auch bei im Teillastbetrieb geöffnetem Wastegateventil bzw. Wastegateklappe bei Lastanforderung ein schnelles Ansprechen der Brennkraftmaschine sichergestellt ist. Dadurch ist der reduzierte Kraftstoffverbrauch durch Öffnen des Wastegateventils im Teillastbereicht nicht mehr mit einem verschlechterten Ansprechverhalten bei Lastanforderung kombiniert.
Zweckmäßigerweise ist der wassergekühlte Wärmetauscher des Ladeluftkühlers mit einem Kühlkreislauf der Brennkraftmaschine verbunden.
In einer bevorzugten Ausführungsform ist der Ladeluftkühler ein Wasser-Luft-Ladeluftkühler (WL-LLK).
Zweckmäßigerweise weist der elektrische Aktuator zum Betätigen des Wastegateventils einen Elektromotor auf, welcher derart angeordnet und ausgebildet ist, dass der Elektromotor ein elektrisches Ausgangssignal eines Motorsteuergerätes direkt in eine Stellbewegung des Wastegateventils umsetzt.
In einer besonders bevorzugten Ausführungsform ist das Wastegateventil als Wastegateklappe ausgebildet.
Die Erfindung wird im Folgenden anhand der Zeichnung näher erläutert. Diese zeigt in
Fig. 1 eine schematische Darstellung einer bevorzugten Ausführungsform einer erfindungsgemäßen Brennkraftmaschine und
Fig. 2 ein Kennfeld für eine Regelung des Wastegates mittels eines elektrischen Aktuators.
Die in Fig. 1 dargestellte, bevorzugte Ausführungsform einer erfindungsgemäßen Brennkraftmaschine umfasst einen Motorblock 10, eine Abgasanlage 12, einen Abgasturbolader 14 (ATL) und eine Frischluftanlage 16. Der ATL 14 weist eine in der Abgasanlage 12 angeordnete Turbine 18 und einen in der Frischluftanlage 16 angeordneten Verdichter 20 auf. In der Abgasanlage 12 ist ferner ein Wastegate-Kanal 22 mit einem Wastegateventil 24 derart angeordnet, dass ein Teil des Abgases durch Öffnen des Wastegateventils 24 wahlweise an der Turbine vorbeigeleitet wird. Das Wastegateventil 24, welches bevorzugt als Wastegateklappe ausgebildet ist, weist einen elektrischen Aktuator 26 zum Betätigen des Wastegateventils 24 auf. Stromab der Turbine 18 ist in der Abgasanlage 12 ein Katalysator 28, insbesondere ein Vorkatalysator oder ein motornaher Hauptkatalysator, angeordnet.
In der Frischluftanlage 16 ist ein den Verdichter 20 überbrückender Bypasskanal 30 mit einem Schubumluftventil 32 (SUV) angeordnet. Weiterhin ist in der Frischluftanlage 16 eine Drosselklappe 34 (DKL) und ein Saugrohr 36 angeordnet. In das Saugrohr 36 ist ein Ladeluftkühler mit einem wassergekühlten Wärmetauscher integriert. Dieser wassergekühlte Wärmetauscher ist mit einem Kühlwasserkreislauf 38 der Brennkraftmaschine verbunden. Dieser Kühlwasserkreislauf 38 weist eine Pumpe 40 und einen Niedertemperaturkühler 42 auf.
Fig. 2 veranschaulicht ein Kennfeld für eine Regelung des Wastegateventils 24 mittels des elektrischen Aktuators 26. In Fig. 2 ist auf einer horizontalen Achse 44 eine Drehzahl in [1/ιmin] und auf einer vertikalen Achse 46 ein relativer Mitteldruck in [%] aufgetragen. In einem ersten Kennfeldbereich 48 ist das Wastegateventil 24 geschlossen, in einem zweiten Kennfeldbereich
50 ist das Wastegateventil 24 geöffnet und in einem dritten Kennfeldbereich 52 wird das Wastegateventil 24 geregelt.
Darüber hinaus erfolgt die Aktuatoransteuerung auch in Abhängigkeit von einem Fahrpedalgradienten in der Art, dass bei einem schnellen Durchtreten des Pedals das Wastegateventil 24 grundsätzlich sofort geschlossen wird und bis zum Erreichen des maximal zulässigen Ladedruckes geschlossen bleibt, wenn der Fahrer nicht vorher vom Gas geht.
Damit der Vorteil der Entdrosselung im Teillastbetrieb durch ein geöffnetes Wastegateventil 24 auch in einen entsprechenden Verbrauchsvorteil umgesetzt werden kann, ist erfindungsgemäß der Ladeluftkühler in das Saugrohr 36 integriert und mit einem wassergekühlten Wärmetauscher ausgerüstet. Dies stellt sicher, dass das in der Teillast geöffnete Wastegateventil 24 keine merkliche Verzögerung im Ansprechverhalten des Motors bedingt, da ein lediglich geringes Luftvolumen zwischen ATL-Verdichteraustritt und Eintritt in die Brennräume der Brennkraftmaschine vorliegt. Daher sind erfindungsgemäß die beiden Technologien "elektrischer Wastegate-Aktuator" und ein "im Saugrohr integrierter, wassergekühlter Ladeluftkühler" miteinander kombiniert.
Erst durch die Kombination aus den beiden bekannten Technologien, nämlich "im Saugrohr 36 integrierter WL-LLK" und "elektrischer Wastegate-Aktuator", ist es möglich, die Vorteile des elektrischen Wastegate-Aktuators in der Praxis umzusetzen.
Der elektrische Wastegate-Aktuator kann seinen Vorteil, nämlich die Regelung des Wastegateventils 24 unabhängig von betriebspunktabhängigen Drücken, erst durch das sich ergebende, sehr geringe Druckluftvolumen aufgrund des im Saugrohr 36 integrierten WL-LLK erzielen, ohne dass eine Verschlechterung der Dynamik bei Lastanforderung aus niedriger Teillast bei dort geöffnetem Wastegateventil 24 in Kauf genommen werden muss, bei dem sich das gesamte Druckluftvolumen auf einem deutlich geringerem Druckniveau befindet als bei herkömmlichen Pneumatikaktuatoren, die aber auch einen 1 -2% höheren Kraftstoffverbrauch verursachen.
Wird das Wastegateventil 24 schon in der niedrigen Teillast geschlossen, wird das dynamische Verhalten zwar mindestens auf das Niveau von pneumatischen Aktuatoren verbessert, aber dafür ist der Verbrauch im gesamten Kennfeldbereich in unerwünschter Weise auf dem schlechteren Niveau der pneumatischen Wastegate-Aktuatoren.
Bei in der Teillast offenem Wastegateventil 24, was den gewünschten Zustand darstellt, da die primäre Motivation für den Einsatz eines elektrischen Wastegate-Aktuators 26 die Reduktion
des Verbrauches ist, lassen sich durch den Einsatz eines elektrischen Wastegate-Aktuators 26 sowohl die Dynamik als auch der Verbrauch verbessern, denn durch die Kombination von im Saugrohr 36 integriertem LLK und elektrischem Wastegate-Aktuator 26 lässt sich der Verbrauch verbessern ohne einen Nachteil bzgl. des dynamischen Verhaltens erleiden zu müssen. Hierdurch ergibt sich zudem die Möglichkeit, das Wastegateventil 24 nach rein motorischen, thermodynamischen Kriterien zu stellen. Damit ergibt sich das Kennfeld gemäß Fig. 2. Mit der hier dargestellten Betriebsstrategie eines elektrischen Wastegate-Aktuators 24 werden die Vorteile der elektrischen Ansteuerung maximiert. Die Voraussetzung für die Implementierung dieses Kennfeldes gemäß Fig. 2 ist der im Saugrohr 36 integrierte WL-LLK.
Hierin bedeutet elektrischer Wastegate-Aktuator 26 einen Aktuator, der ein elektrisches Ausgangssignal eines Motorsteuergerätes mittels eines elektrischen Motors in die gewünschte Stellbewegung des Wastegateventils bzw. der Wastegateklappe direkt umsetzt. Dies bedeutet Unabhängigkeit von betriebspunktabhängigen Versorgungsdrücken des Motors.
Claims
1. Brennkraftmaschine, insbesondere eines Kraftfahrzeugs, mit einem Saugrohr (36) in einer Frischluftanlage (16), welches in Einlasskanäle in einem Zylinderkopf der Brennkraftmaschine mündet, einer Abgasanlage (12) und einem Abgasturbolader (14), der eine in der Abgasanlage (12) angeordnete Turbine (18) und einen von der Turbine (18) angetriebenen, in der Frischluftanlage (16) angeordneten Verdichter (20) aufweist, wobei die Turbine (18) einen Wastegate-Kanal (22) zum überbrückenden Vorbeiströmen des Abgases an einem Turbinenrad der Turbine (18) vorbei aufweist, wobei in dem Wastegate-Kanal (22) ein Wastegateventil (24) zum wahlweise Öffnen und Verschließen des Wastegate-Kanals (22) angeordnet ist, wobei ein elektrischer Aktuator (26) zum Betätigen des Wastegateventils (24) vorgesehen ist, wobei in der Frischluftanlage (16) stromab des Verdichters (20) ein Ladeluftkühler angeordnet ist, dadurch gekennzeichnet, dass der Ladeluftkühler in das Saugrohr (36) integriert ist und dass der Ladeluftkühler mit einem wassergekühlten Wärmetauscher ausgebildet ist.
2. Brennkraftmaschine nach Anspruch 1 , dadurch gekennzeichnet, dass der wassergekühlte Wärmetauscher des Ladeluftkühlers mit einem Kühlkreislauf (38) der Brennkraftmaschine verbunden ist.
3. Brennkraftmaschine nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Ladeluftkühler ein Wasser-Luft-Ladeluftkühler (WL-LLK) ist.
4. Brennkraftmaschine nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der elektrische Aktuator (26) zum Betätigen des Wastegateventils (24) einen Elektromotor aufweist, welcher derart angeordnet und ausgebildet ist, dass der Elektromotor ein elektrisches Ausgangssignal eines Motorsteuergerätes direkt in eine Stellbewegung des Wastegateventils (24) umsetzt.
5. Brennkraftmaschine nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Wastegateventil (24) als Wastegateklappe ausgebildet ist.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08802450A EP2205841A1 (de) | 2007-10-29 | 2008-09-20 | Brennkraftmaschine mit abgasturbolader und ladeluftkühler |
CN200880114657.3A CN101842565B (zh) | 2007-10-29 | 2008-09-20 | 带有废气涡轮增压器和增压空气冷却器的内燃机 |
JP2010531430A JP2011501043A (ja) | 2007-10-29 | 2008-09-20 | ターボチャージャ及びインタクーラを備えた内燃機関 |
US12/769,620 US8051842B2 (en) | 2007-10-29 | 2010-04-28 | Internal combustion engine with an exhaust-gas turbocharger and a charge-air cooler and method for operating an internal combustion engine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007051505A DE102007051505A1 (de) | 2007-10-29 | 2007-10-29 | Brennkraftmaschine mit Abgasturbolader und Ladeluftkühler |
DE102007051505.9 | 2007-10-29 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/769,620 Continuation US8051842B2 (en) | 2007-10-29 | 2010-04-28 | Internal combustion engine with an exhaust-gas turbocharger and a charge-air cooler and method for operating an internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009056197A1 true WO2009056197A1 (de) | 2009-05-07 |
Family
ID=40200725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2008/007948 WO2009056197A1 (de) | 2007-10-29 | 2008-09-20 | Brennkraftmaschine mit abgasturbolader und ladeluftkühler |
Country Status (6)
Country | Link |
---|---|
US (1) | US8051842B2 (de) |
EP (1) | EP2205841A1 (de) |
JP (1) | JP2011501043A (de) |
CN (1) | CN101842565B (de) |
DE (1) | DE102007051505A1 (de) |
WO (1) | WO2009056197A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120080014A1 (en) * | 2010-10-01 | 2012-04-05 | GM Global Technology Operations LLC | Charge air cooling device for a combustion engine |
DE102013215347A1 (de) | 2012-09-21 | 2014-05-15 | Ford Global Technologies, Llc | Verfahren zum Abführen von Flüssigkeit aus einem Ansaugtrakt einer Turboladeranordnung sowie Turboladeranordnung zur Durchführung eines derartigen Verfahrens |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005004122A1 (de) * | 2005-01-28 | 2006-08-03 | Volkswagen Ag | Brennkraftmaschine mit Doppelaufladungen und Verfahren zum Betreiben dieser |
US8333072B2 (en) * | 2008-10-01 | 2012-12-18 | Honda Motor Co., Ltd. | Wastegate control system and method |
DE102010025873A1 (de) | 2010-07-02 | 2011-04-21 | Daimler Ag | Ansaugmodul für eine Verbrennungskraftmaschine sowie Verbrennungskraftmaschine |
GB2487747B (en) * | 2011-02-02 | 2016-05-18 | Ford Global Tech Llc | An engine system |
JP5325254B2 (ja) * | 2011-03-31 | 2013-10-23 | 三菱重工業株式会社 | 定置用内燃機関の吸気冷却装置 |
JP5903917B2 (ja) * | 2012-02-08 | 2016-04-13 | トヨタ自動車株式会社 | 内燃機関の冷却装置 |
DE102012212867A1 (de) * | 2012-07-23 | 2014-01-23 | Behr Gmbh & Co. Kg | System zur Ladeluftkühlung und zugehöriges Verfahren zur Bereitstellung einer Ladeluftkühlung für einen Verbrennungsmotor |
US9359941B2 (en) | 2012-10-17 | 2016-06-07 | Ford Global Technologies, Llc | Method for purging condensate from a charge air cooler |
US20140182266A1 (en) * | 2012-12-28 | 2014-07-03 | GM Global Technology Operations LLC | Integrated waste heat recovery |
KR101526388B1 (ko) * | 2013-07-18 | 2015-06-08 | 현대자동차 주식회사 | 엔진 시스템 |
DE102013015138A1 (de) * | 2013-09-13 | 2015-03-19 | Man Truck & Bus Ag | Vorrichtung zur Ansteuerung einer Drosselklappe, insbesondere einer Drosselklappe einer Ansauganlage einer Brennkraftmaschine |
DE102013019150A1 (de) * | 2013-11-14 | 2015-05-21 | GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) | Verfahren zum lastabhängigen Öffnen und Schließen einer Abblasventil-Klappe eines Verbrennungsmotors mit einem Turbolader |
FR3014616B1 (fr) | 2013-12-05 | 2016-01-08 | Continental Automotive France | Procede de regulation d'une commande d'un actionneur electrique de wastegate par mesure du courant traversant l'actionneur electrique |
US9709065B2 (en) * | 2014-11-06 | 2017-07-18 | Ford Global Technologies, Llc | System and method for a turbocharger driven coolant pump |
US10300786B2 (en) * | 2014-12-19 | 2019-05-28 | Polaris Industries Inc. | Utility vehicle |
CN105041391A (zh) * | 2015-08-19 | 2015-11-11 | 江苏恒尚动力高科有限公司 | 一种自动调温装置的涡轮增压器 |
AT518102B1 (de) * | 2015-12-29 | 2017-10-15 | Ge Jenbacher Gmbh & Co Og | Zustandsbestimmung eines Filtermoduls |
CN109372626A (zh) * | 2018-12-17 | 2019-02-22 | 潍柴动力股份有限公司 | 一种集成热交换器及发动机 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH366169A (de) * | 1957-02-20 | 1962-12-15 | Nordberg Manufacturing Co | Brennkraftmaschine mit Aufladevorrichtung |
EP0084091A1 (de) * | 1982-01-16 | 1983-07-27 | Klöckner-Humboldt-Deutz Aktiengesellschaft | Brennkraftmaschine mit einem Abgasturbolader |
US5269143A (en) | 1992-12-07 | 1993-12-14 | Ford Motor Company | Diesel engine turbo-expander |
EP0972918A2 (de) | 1998-07-16 | 2000-01-19 | Woodward Governor Company | Stufenlos regelbares, elektrisch gesteuertes Ventil für Hochtemperaturanwendungen |
DE19927607A1 (de) * | 1999-06-17 | 2000-12-21 | Behr Gmbh & Co | Ladeluftkühler mit einem Kühlmitteleintritt sowie einem Kühlmittelaustritt |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1807042A (en) * | 1927-06-13 | 1931-05-26 | J R Burgamy | Cooling intake for internal combustion engines |
AT283824B (de) * | 1966-02-23 | 1970-08-25 | H C Hans Dipl Ing Dr Dr List | Brennkraftmaschine mit Abgasturbolader und Ladeluftkühler |
DE2343300C2 (de) * | 1973-08-28 | 1983-03-31 | Klöckner-Humboldt-Deutz AG, 5000 Köln | Wassergekühlte Brennkraftmaschine mit Aufladung |
US4269158A (en) * | 1978-07-06 | 1981-05-26 | Allis-Chalmers Corporation | Intercooler for internal combustion engine |
JPS6036728A (ja) * | 1983-08-08 | 1985-02-25 | Diesel Kiki Co Ltd | 過給圧の制御装置 |
JPS627925A (ja) * | 1985-07-03 | 1987-01-14 | Yanmar Diesel Engine Co Ltd | 多気筒エンジンの空気冷却器付き吸気装置 |
JPS6266228U (de) * | 1985-10-15 | 1987-04-24 | ||
JPH04103834A (ja) * | 1990-08-22 | 1992-04-06 | Mazda Motor Corp | 過給機付エンジンの制御装置 |
US5201285A (en) * | 1991-10-18 | 1993-04-13 | Touchstone, Inc. | Controlled cooling system for a turbocharged internal combustion engine |
JP3023229B2 (ja) * | 1991-11-16 | 2000-03-21 | 三信工業株式会社 | 船外機 |
DE4202077A1 (de) * | 1992-01-25 | 1993-07-29 | Audi Ag | Ansaugverteiler fuer eine brennkraftmaschine |
JPH06219188A (ja) * | 1992-10-23 | 1994-08-09 | Mazda Motor Corp | パワートレインの制御装置 |
US5551236A (en) * | 1994-05-02 | 1996-09-03 | Dresser Industries, Inc. | Turbocharger control management system |
US5622053A (en) * | 1994-09-30 | 1997-04-22 | Cooper Cameron Corporation | Turbocharged natural gas engine control system |
JPH09511813A (ja) * | 1995-02-10 | 1997-11-25 | フィリップス エレクトロニクス ネムローゼ フェンノートシャップ | 制御部材を作動させる装置 |
DE19824913B4 (de) | 1998-06-04 | 2005-12-01 | Daimlerchrysler Ag | Vorrichtung und Verfahren zur Einstellung eines Umgehungsventils im Abgasstrang einer Brennkraftmaschine |
DE19840616C1 (de) * | 1998-09-05 | 1999-12-02 | Daimler Chrysler Ag | Brennkraftmaschine in V-Bauweise mit einem mechanisch angetriebenen Lader |
SE522700C2 (sv) * | 2000-07-07 | 2004-03-02 | Volvo Car Corp | Förbränningsmotor |
JP2002195046A (ja) * | 2000-12-26 | 2002-07-10 | Hitachi Ltd | 内燃機関用排気タービン及び排気タービン式過給機 |
DE10215779B4 (de) * | 2002-04-10 | 2006-01-26 | Robert Bosch Gmbh | Brennkraftmaschine mit einer Aufladevorrichtung |
DE10235528A1 (de) * | 2002-08-03 | 2004-02-12 | Daimlerchrysler Ag | Abgassystem für eine Brennkraftmaschine |
DE102004016010A1 (de) * | 2004-04-01 | 2005-10-20 | Bosch Gmbh Robert | Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine |
US7725238B2 (en) * | 2004-11-19 | 2010-05-25 | Perkins Michael T | System and method for smart system control for flowing fluid conditioners |
JP2006274831A (ja) * | 2005-03-28 | 2006-10-12 | Denso Corp | ターボチャージャ付き内燃機関の制御装置 |
JP2007132217A (ja) * | 2005-11-08 | 2007-05-31 | Fuji Heavy Ind Ltd | 圧縮自着火エンジンの燃焼制御装置 |
DE102005053500B3 (de) * | 2005-11-09 | 2007-05-10 | Siemens Ag | Ansaugrohr für einen Kraftfahrzeugmotor |
DE102005056011A1 (de) | 2005-11-24 | 2007-06-06 | Volkswagen Ag | Brennkraftmaschine mit Abgasturbolader |
JP2007247560A (ja) * | 2006-03-16 | 2007-09-27 | Toyota Motor Corp | 内燃機関 |
DE102007018618A1 (de) * | 2006-04-19 | 2007-10-25 | Borgwarner Inc., Auburn Hills | Turbolader |
CN100451309C (zh) * | 2007-03-15 | 2009-01-14 | 武汉第二船舶设计研究所 | 涡轮增压发动机增压空气中冷器 |
-
2007
- 2007-10-29 DE DE102007051505A patent/DE102007051505A1/de not_active Ceased
-
2008
- 2008-09-20 CN CN200880114657.3A patent/CN101842565B/zh active Active
- 2008-09-20 WO PCT/EP2008/007948 patent/WO2009056197A1/de active Application Filing
- 2008-09-20 EP EP08802450A patent/EP2205841A1/de not_active Ceased
- 2008-09-20 JP JP2010531430A patent/JP2011501043A/ja active Pending
-
2010
- 2010-04-28 US US12/769,620 patent/US8051842B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH366169A (de) * | 1957-02-20 | 1962-12-15 | Nordberg Manufacturing Co | Brennkraftmaschine mit Aufladevorrichtung |
EP0084091A1 (de) * | 1982-01-16 | 1983-07-27 | Klöckner-Humboldt-Deutz Aktiengesellschaft | Brennkraftmaschine mit einem Abgasturbolader |
US5269143A (en) | 1992-12-07 | 1993-12-14 | Ford Motor Company | Diesel engine turbo-expander |
EP0972918A2 (de) | 1998-07-16 | 2000-01-19 | Woodward Governor Company | Stufenlos regelbares, elektrisch gesteuertes Ventil für Hochtemperaturanwendungen |
DE19927607A1 (de) * | 1999-06-17 | 2000-12-21 | Behr Gmbh & Co | Ladeluftkühler mit einem Kühlmitteleintritt sowie einem Kühlmittelaustritt |
Non-Patent Citations (1)
Title |
---|
See also references of EP2205841A1 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120080014A1 (en) * | 2010-10-01 | 2012-04-05 | GM Global Technology Operations LLC | Charge air cooling device for a combustion engine |
DE102013215347A1 (de) | 2012-09-21 | 2014-05-15 | Ford Global Technologies, Llc | Verfahren zum Abführen von Flüssigkeit aus einem Ansaugtrakt einer Turboladeranordnung sowie Turboladeranordnung zur Durchführung eines derartigen Verfahrens |
DE102013215347B4 (de) * | 2012-09-21 | 2015-12-10 | Ford Global Technologies, Llc | Verfahren zum Abführen von Flüssigkeit aus einem Ansaugtrakt einer Turboladeranordnung sowie Turboladeranordnung zur Durchführung eines derartigen Verfahrens |
US9334790B2 (en) | 2012-09-21 | 2016-05-10 | Ford Global Technologies, Llc | System and method for discharging liquid out of an intake tract of a turbocharger arrangement |
Also Published As
Publication number | Publication date |
---|---|
US8051842B2 (en) | 2011-11-08 |
CN101842565A (zh) | 2010-09-22 |
DE102007051505A1 (de) | 2009-04-30 |
EP2205841A1 (de) | 2010-07-14 |
CN101842565B (zh) | 2016-05-04 |
US20100263641A1 (en) | 2010-10-21 |
JP2011501043A (ja) | 2011-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2205841A1 (de) | Brennkraftmaschine mit abgasturbolader und ladeluftkühler | |
EP1375868B1 (de) | Motorbremseinrichtung für eine turboaufgeladene Brennkraftmaschine | |
EP1754870B1 (de) | Brennkraftmaschine mit Abgasturboaufladung | |
DE102008064521B4 (de) | Brennkraftmaschine mit Abgasturbolader | |
EP2795075B1 (de) | Verfahren zum betreiben eines antriebsaggregates und antriebsaggregat | |
EP1844222B1 (de) | Brennkraftmaschine mit doppelaufladungen und verfahren zu betreiben dieser | |
DE102008036308B4 (de) | Verfahren zum Betreiben eines Mehrzylinder-Ottomotors mit Abgasturboaufladung | |
WO2010102745A1 (de) | Brennkraftmaschine mit registeraufladung | |
EP1275832B1 (de) | Vorrichtung zur mehrstufigen Aufladung einer Brennkraftmaschine | |
EP1766209A1 (de) | Brennkraftmaschine mit einem abgasturbolader | |
DE102008044382A1 (de) | Motor mit sequentieller geteilter Reihenturboaufladung | |
DE19853360B4 (de) | Brennkraftmaschine mit zwei Abgasturboladern | |
EP2545265A1 (de) | Brennkraftmaschine mit zweistufiger aufladung | |
EP2935827A1 (de) | Saugrohr für einen verbrennungsmotor | |
DE102007028522A1 (de) | Verfahren zum Betreiben einer aufgeladenen Brennkraftmaschine | |
EP2166211B1 (de) | Brennkraftmaschine mit Abgasrückführung | |
DE102009060357A1 (de) | Verfahren zum Betrieb einer einen Abgasturbolader aufweisenden Brennkraftmaschine und eine Brennkraftmaschine zur Durchführung des Verfahrens | |
EP1640595A1 (de) | Aufgeladene Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine | |
EP2347107A1 (de) | Anordnung zur frischgasversorgung einer turboaufgeladenen verbrennungsmaschine und verfahren zum steuern der anordnung | |
DE102008015855B4 (de) | Verfahren zum Betreiben einer Brennkraftmaschine | |
EP1873372A1 (de) | Verfahren zur Steigerung des Ladedruckaufbaus bei aufgeladenen Verbrennungskraftmaschinen | |
DE102015214107A1 (de) | Verbrennungskraftmaschine mit einem Verdichter und einem zusätzlichen Kompressor | |
DE102014019556A1 (de) | Verfahren zum Betreiben einer Verbrennungskraftmaschine für einen Kraftwagen | |
DE19849495A1 (de) | Aufgeladene Brennkraftmaschine mit einer die Abgasturbine überbrückenden Umgehungsleitung | |
DE102017212065B4 (de) | Aufgeladene Brennkraftmaschine mit parallel angeordneten Turbinen und Verfahren zum Betreiben einer derartigen Brennkraftmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880114657.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08802450 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008802450 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010531430 Country of ref document: JP |