WO2009050381A2 - Procede de chauffage d'une plaque par un flux lumineux - Google Patents

Procede de chauffage d'une plaque par un flux lumineux Download PDF

Info

Publication number
WO2009050381A2
WO2009050381A2 PCT/FR2008/051719 FR2008051719W WO2009050381A2 WO 2009050381 A2 WO2009050381 A2 WO 2009050381A2 FR 2008051719 W FR2008051719 W FR 2008051719W WO 2009050381 A2 WO2009050381 A2 WO 2009050381A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
temperature range
heated
underlayer
luminous flux
Prior art date
Application number
PCT/FR2008/051719
Other languages
English (en)
Other versions
WO2009050381A3 (fr
Inventor
Michel Bruel
Original Assignee
Aplinov
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aplinov filed Critical Aplinov
Priority to JP2010527502A priority Critical patent/JP5518717B2/ja
Priority to EP08838888.9A priority patent/EP2193540B1/fr
Priority to CN2008801092910A priority patent/CN101855709B/zh
Priority to KR1020107009301A priority patent/KR101162444B1/ko
Priority to US12/680,880 priority patent/US8324530B2/en
Publication of WO2009050381A2 publication Critical patent/WO2009050381A2/fr
Publication of WO2009050381A3 publication Critical patent/WO2009050381A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation

Definitions

  • the present invention relates to the general technical field of material processing, in particular in the field of thin films, wafers, blades or slats of material, in particular semiconductors, in particular silicon.
  • the present invention relates to the field of applying heat treatments to rooms by means of light flows.
  • the use of light flux is particularly useful when it is desired to be able to heat a surface layer for very short times, of the order of the fraction of microseconds to a few tens of microseconds. Nevertheless, as the heated thickness generally evolves as the square root of time from the outer surface of the room, it is extremely difficult and expensive to heat deep parts of the room and this is increasingly difficult and expensive as time goes on. as we are interested in deeper depths. Moreover, since the thermal profile obtained in the part generally has a maximum at the outer surface and decreases in the material from this external surface, it is necessary to limit the surface temperature to the maximum temperature that the material must not exceed in the process, for example the melting temperature or vaporization or decomposition of the material. This limit imposes moderate flows of light power and long durations and therefore high costs.
  • the document WO 03/075329 proposes to heat an absorbent sub-layer by a luminous flux through an anterior layer, the heat produced in the underlayer heating by diffusion the anterior layer, at a temperature lower than that reached in the underlayer.
  • the subject of the present invention is a method for heating, at least locally, a plate comprising at least one layer to be heated and an underlayer, at least locally, contiguous to this layer to be heated, under the effect of at least one pulse of a luminous flux.
  • the method according to the invention comprises the following steps: choosing a luminous flux - whose wavelength is such that the coefficient of absorption of this flux by the layer to be heated is low as long as the temperature of this layer to be heated is in a low temperature range and this absorption coefficient increases greatly when the temperature of the layer to be heated is in a high temperature range located approximately above this low temperature range,
  • the luminous flux heats the sub-layer from its initial temperature to a temperature at least in said high temperature range.
  • the sublayer heat-diffusion heated the adjacent portion of the layer to be heated to a temperature in said high temperature range.
  • this adjacent part thus becoming absorbent and generating, in the layer to be heated, an absorbing thermal front whose temperature is located in said high temperature range, this absorbing thermal front progresses towards said front face under the effect conjugated or double thermal diffusion forward of the thermal front and a supply of thermal energy by said luminous flux that reaches the thermal front through the still not absorbing remainder of the layer to be heated.
  • said low temperature range and said high temperature range can be separated by a transition threshold of the behavior of the absorption coefficient as a function of the temperature.
  • said transition threshold of the behavior of the absorption coefficient as a function of the temperature can extend over a temperature range.
  • the layer to be heated may be low doped silicon. According to the invention, the layer to be heated may be a semiconductor material.
  • said low temperature range may correspond substantially to the range in which the doping is not intrinsic and said high temperature range may correspond substantially to the range in which the doping is intrinsic.
  • the layer to be heated may be gallium nitride.
  • the sublayer may be amorphous silicon.
  • the underlayer may be highly doped silicon.
  • the layer to be heated may be gallium nitride and the underlayer is silicon.
  • the luminous flux can be generated by a laser.
  • FIG. 2 represents a mechanism according to the invention applied to the plate of FIG. 1, with the abscissa depth and the ordinate the temperature;
  • - Figure 3 shows a section of another plate;
  • FIGS. 4 and 5 show a mechanism according to the invention applied to the plate of FIG. 3;
  • FIG. 1 shows a plate 1 which comprises a layer 2 which has a front surface 3 and an underlayer 4 contiguous to the rear surface 5 of the layer 2.
  • the plate 1 may comprise a rear layer 8 contiguous to the rear face of the underlayer 4 to form a support.
  • the layer 2 and the luminous flux 7 are chosen with respect to each other so as to have the following characteristics.
  • the wavelength of the luminous flux 7 is such that the coefficient of absorption of this flux by the layer 2 is low as long as the temperature T of this layer 2 is in a low temperature range PBT and this absorption coefficient strongly increases when the temperature T of layer 2 goes into a high temperature range PHT located approximately above this low PBT temperature range.
  • the intensity and the duration of the pulse delivered by the luminous flux 7 are such that, in the absence of the underlayer 4, the temperature of the layer 2 remains in said low temperature range PBT.
  • the underlayer 4 and the luminous flux 7 are chosen with respect to one another so as to have the following characteristics.
  • the absorption coefficient by the sublayer 4 of the luminous flux 7 at said wavelength is high in said low temperature range PBT.
  • the plate 1 Since the plate 1 is at an initial temperature situated in the low temperature range PBT, the luminous flux 7 is applied to the plate 1 by its front face 3. It then occurs the following heating as shown in Figure 2.
  • the upper limit LST of the low temperature range PBT is lower than the lower limit LIT of the high temperature range PHT.
  • the low temperature range PBT and the high temperature range PHT are separated by a transition threshold STC of the behavior of the absorption coefficient as a function of the temperature which extends over a transition temperature range.
  • the mechanism is the following.
  • the luminous flux 7 passes through the layer 2 without its temperature reaching the high temperature range PHT and, reaching the sub-layer 4 in depth, heats this sub-layer 4 from its initial temperature to a temperature at least located in the high temperature range PHT.
  • the temperature curve 9 is obtained.
  • the sub-layer 4 constitutes a transient thermal source and heat by heat diffusion the adjacent portion of the layer 2 to a temperature AT located in the high temperature range PHT.
  • this adjacent portion thus becomes absorbent and generates, deep in the layer 2 to be heated, an absorbing thermal front 10 whose temperature FT is located in the high temperature range PHT, preferably located above the AT temperature.
  • This absorbing thermal front 10 generated in depth, progresses towards the front face 3 under the combined effect of a thermal diffusion towards the front of the front 10 and of a supply of thermal energy by the luminous flux 7 which reaches this level.
  • thermal front 10 through the not yet absorbing remainder of the layer 2.
  • the thermal front 10 ceases almost immediately in the layer 2 if it has not reached the front face 3.
  • the evolution of the thermal front 10 then becomes governed solely by the effects of thermal diffusion.
  • the heating of the layer 2 occurs over a thickness substantially in linear relation with the duration of the heat flow.
  • the luminous flux 7 can be a CO2 laser pulse of duration 6 microseconds with a flux of 3, 75 * 1.E6 W / Cm2
  • the transparent material constituting the layer 2 may be silicon doped at a level of about 1.E 15 / cm3 and initially placed at room temperature.
  • the silicon absorption is of the order of a few cm-I, which is small and remains substantially constant as the temperature of the silicon does not reach about 270 0 C. From this temperature, the intrinsic carrier concentration becomes greater than 1 * E 15 Cm-2 (See Physics of Semiconductor Devices, Second Edition, No. 0 ISBN 0-07-062735-5, by S Mr. SZE, John Wiley and Sons, page 20 - Fig. 12 and page 26 - fig.
  • PBT low temperature range is the temperature range situated substantially below the lower temperature limit LIT equal to about 270 0 C, while the high temperature range PHT is substantially located above range of 270 0 VS .
  • the low temperature range PBT is located in the non-intrinsic saturation and / or gel range of the carriers and the high temperature range PHT is in the intrinsic range.
  • the absorbent material constituting the sublayer 4 can be silicon doped at a level of about 1 .E 19 / cm3 and initially placed at room temperature, which gives it an absorption coefficient of several hundred cm. - I. 8
  • the thickness of the layer 2 may be about 90 ⁇ m and the thickness of the underlayer 4 may be about 10 ⁇ m.
  • the production of the underlayer 4 can be achieved by means of epitaxy or ion deposition or implantation.
  • a silicon substrate doped with E 15Cm-3 and with a thickness equal to 100 ⁇ m is produced by thinning a standard silicon wafer.
  • an implantation of boron ions is carried out at a dose of about 1 * E 16 / Cm2 and annealing is carried out at a temperature of about 1000 ° C. to about 1100 ° C. for two hours. to achieve a doping depth of about 10 microns to obtain the underlayer 4, the remaining thickness of 90 ⁇ m constituting the layer 2.
  • the face not used for implantation then constitutes the face 3 through which the flow of light 7 will be applied.
  • an epitaxy of doped antimony silicon at 1 * E 19 / Cm3 and 10 microns thick is made on a standard silicon substrate to form the underlayer 4.
  • epitaxial silicon doped at 1 * E 15 / Cm3 and 90 microns thick was made to form layer 2.
  • the absorbent material of the underlayer 4 could also have been, in the case where a CO2 laser is used, an amorphous layer of silicon, a totally or partially amorphized layer by ion implantation, or a layer of SiO2 silicon oxide.
  • Tmax Phi * tau * alphamax / Cp
  • Cp the heat capacity
  • Phi the flow
  • Tau the duration of the flow
  • Cp the heat density
  • a plate 1 which comprises a layer 2 of monocrystalline silicon, undoped and with disoriented grains and an underlayer 4 of silicon oxide.
  • this layer 2 is substantially transparent to the luminous flux generated by a CO2 laser and the underlayer 4 is absorbent of such a luminous flux.
  • This application produces, under the effect of the prior heating of the underlayer 4 and according to the mechanism as described above, a liquefaction by heating the layer 2 on an area 1 1 corresponding approximately to the area of application of the luminous flux, this liquefied zone 1 1 starting on the rear face 5 of the layer 2 or in the immediate vicinity of this rear face 5 and whose thermal front 11a progresses forward until for example reaching the front face 3.
  • This front 12a progresses rearwardly to the rear face 5 to form a zone 12 in which the silicon is re-solidified by recrystallizing polycrystalline silicon. Because of the temperature gradients, the recrystallization generates grains possibly larger and oriented substantially perpendicular to the thickness of the layer 2.
  • each zone 4a is square and has a thickness of about 2 microns and sides equal to about 50 microns, the spacing between the zones 4a being about 25 microns.
  • a ytterbium doped fiber power laser depositing 20 joules / cm 2 of surface in a few hundred nanoseconds. Then, as previously described, at least a local heating of the zones 2a of the layer 2 located between the zones 4a of the sub-layer 4 and the front face 3, without heating the other parts of the layer 2, is then caused. use this differential heating to perform a treatment of heated zones 2a.
  • the heating obtained above with reference to FIG. 8 can be carried out in an enclosure 12 containing oxygen and / or water vapor.
  • the presence of oxygen and the elevation of the localized temperature in the zones 2a of the layer 2 leads to the creation of zones 13 of silicon oxide on the front face 3 of the layer 2, self - aligned above the deep areas 4a.

Abstract

Procédé de chauffage d'une plaque (1) comprenant au moins une couche à chauffer (2) et une sous-couche (4), sous l'effet d'au moins une impulsion d'un flux lumineux, comprenant les étapes suivantes: choisir un flux lumineux (7), une couche à chauffer (2) tels que le coefficient d'absorption de ce flux par la couche à chauffer (2) est faible tant que la température de cette couche à chauffer est dans une plage basse de température (PBT) et que ce coefficient d'absorptionaugmente fortement quand la température de la couche à chauffer passe dans une plage haute de température (PHT); et choisir une sous-couche (4) telle que le coefficient d'absorption dudit flux lumineux à ladite longueur d'onde choisie est élevé dans ladite plage basse de température (PBT) et la température passe dans la plage haute de température (PHT) lorsque cette sous-couche est soumise audit flux lumineux; et appliquer ledit flux lumineux (7) à ladite plaque (1).

Description

GRB07-3527EXT LD-RI
Société à responsabilité limitée dite : APLINOV
Procédé de chauffage d'une plaque par un flux lumineux
Invention de : Michel BRUEL
Procédé de chauffage d'une plaque par un flux lumineux
La présente invention se rapporte au domaine technique général du traitement de matériau, en particulier dans le domaine des couches minces, des plaquettes, des lames ou des lamelles de matériau, notamment de semi-conducteurs, en particulier de silicium.
Plus particulièrement, la présente invention se rapporte au domaine de l' application de traitements thermiques à des pièces au moyen de flux de lumière.
Dans l' état actuel de la technique, il existe des connaissances et procédés faisant appel à des flux de lumière pour réaliser des traitements thermiques, dans lesquels l' absorption des flux de lumière se produit à la surface extérieure et/ou au voisinage de la surface extérieure des pièces et le chauffage des parties plus profondes a lieu par diffusion thermique depuis la surface extérieure et/ou de son voisinage recevant le flux de lumière vers les zones plus profondes de la pièce à traiter. La caractéristique de ces procédés de l' état de la technique est que les flux de lumière utilisés sont choisis de telle sorte que le matériau à traiter soit naturellement absorbant vis-à-vis du flux de lumière ou rendu absorbant par l' interaction directe du flux de lumière avec le matériau de la pièce, par exemple en utilisant des niveaux de puissance extrêmement élevés.
L'usage de flux de lumière s 'avère particulièrement utile quand on veut pouvoir chauffer une couche superficielle pendant des temps très courts, de l' ordre de la fraction de microsecondes à quelques dizaines de microsecondes. Néanmoins, l' épaisseur chauffée évoluant en général comme la racine carrée du temps depuis la surface extérieure de la pièce, il est extrêmement difficile et coûteux de chauffer des parties profondes de la pièce et ce de plus en plus difficile et coûteux au fur et à mesure qu' on s ' intéresse à des profondeurs plus grandes. De plus, le profil thermique obtenu dans la pièce présentant de façon générale un maximum à la surface extérieure et décroissant dans le matériau à partir de cette surface extérieure, il est nécessaire de limiter la température de surface à la température maximum que le matériau ne doit pas dépasser dans le cadre du procédé, par exemple la température de fusion ou de vaporisation ou de décomposition du matériau. Cette limite impose des flux modérés de puissance lumineuse et des grandes durées et donc des coûts élevés.
Par ailleurs, le document WO 03/075329 propose de chauffer une sous-couche absorbante par un flux lumineux au travers d'une couche antérieure, la chaleur produite dans la sous-couche chauffant par diffusion la couche antérieure, à une température inférieure à celle atteinte dans la sous-couche.
La présente invention a pour objet un procédé de chauffage, au moins local, d'une plaque comprenant au moins une couche à chauffer et une sous-couche, au mo ins locale, accolée à cette couche à chauffer, sous l'effet d' au moins une impulsion d'un flux lumineux.
Le procédé selon l' invention comprend les étapes suivantes : choisir un flux lumineux - dont la longueur d' onde est telle que le coefficient d' absorption de ce flux par la couche à chauffer est faible tant que la température de cette couche à chauffer est dans une plage basse de température et que ce coefficient d' absorption augmente fortement quand la température de la couche à chauffer passe dans une plage haute de température située approximativement au-dessus de cette plage basse de température,
- et dont l' intensité et la durée de l' impulsion sont telles qu' en l' absence de ladite sous-couche, la température de la couche à chauffer reste dans ladite plage basse de température ; choisir une sous-couche - dont le coefficient d'absorption dudit flux lumineux à ladite longueur d' onde choisie est élevé dans ladite plage basse de température
- et dont la température passe dans la plage haute de température lorsque cette sous-couche est soumise audit flux lumineux ; et appliquer ledit flux lumineux à ladite plaque, au moins localement, par la face de ladite couche à chauffer opposée à ladite sous-couche. Selon l'invention, il se produit le mécanisme suivant.
Dans une première phase, le flux lumineux chauffe la sous- couche depuis sa température initiale jusqu'à une température au moins située dans ladite plage haute de température.
Dans une seconde phase, la sous-couche chauffe par diffusion thermique la partie adjacente de la couche à chauffer jusqu'à une température située dans ladite plage haute de température.
Dans une troisième phase, cette partie adjacente étant ainsi devenue absorbante et générant, dans la couche à chauffer, un front thermique absorbant dont la température est située dans ladite plage haute de température, ce front thermique absorbant progresse vers ladite face avant sous l' effet conjugué ou double d'une diffusion thermique vers l' avant du front thermique et d'un apport d'énergie thermique par ledit flux lumineux qui atteint ce front thermique au travers du reste non encore absorbant de la couche à chauffer. Selon l' invention, ladite plage basse de température et ladite plage haute de température peuvent être séparées par un seuil de transition de comportement du coefficient d' absorption en fonction de la température.
Selon l' invention, ledit seuil de transition de comportement du coefficient d' absorption en fonction de la température peut s' étendre sur une plage de température.
Selon l'invention, la couche à chauffer peut être du silicium peu dopé. Selon l' invention, la couche à chauffer peut être un matériau semi-conducteur.
Selon l' invention, ladite plage basse de température peut correspondre sensiblement à la plage dans laquelle le dopage n' est pas intrinsèque et ladite plage haute de température peut correspondre sensiblement à la plage dans laquelle le dopage est intrinsèque.
Selon l'invention, la couche à chauffer peut être du nitrure de gallium.
Selon l'invention, la sous-couche peut être du silicium amorphe.
Selon l' invention, la sous-couche peut être du silicium fortement dopé.
Selon l'invention, la couche à chauffer peut être du nitrure de gallium et la sous-couche est du silicium. Selon l' invention, le flux lumineux peut être généré par un laser.
La présente invention sera mieux comprise à l' étude de procédés de traitements thermiques décrits à titre d' exemples non limitatifs et illustrés par le dessin sur lequel : - la figure 1 représente une coupe d'une plaque et un appareillage associé ;
- la figure 2 représente un mécanisme selon l'invention appliqué à la plaque de la figure 1 , avec en abscisse la profondeur et en ordonnée la température ; - la figure 3 représente une coupe d'une autre plaque ;
- les figures 4 et 5 représente un mécanisme selon l'invention appliqué à la plaque de la figure 3 ;
- les figures 6 et 7 représente un mode de fabrication d'une autre plaque représentée en coupe ; - la figure 8 représente un mécanisme selon l'invention appliqué à la plaque de la figure 7 ;
- et la figure 9 représente un exemple d'utilisation du mécanisme selon l' invention, en référence à la figure 8. On a représenté sur la figure 1 une plaque 1 qui comprend une couche 2 qui présente une surface avant 3 et une sous-couche 4 accolée à la surface arrière 5 de la couche 2.
En face de la surface avant 5 de la couche 2 est installé un générateur 6 d'impulsions P d'un flux lumineux 7 vers cette surface avant 5.
Dans une variante, la plaque 1 peut comprendre une couche arrière 8 accolée à la face arrière de la sous-couche 4 pour former un support. La couche 2 et le flux lumineux 7 sont choisis l'un par rapport à l'autre de façon à présenter les caractéristiques suivantes.
La longueur d'onde du flux lumineux 7 est telle que le coefficient d' absorption de ce flux par la couche 2 est faible tant que la température T de cette couche 2 est dans une plage basse de température PBT et que ce coefficient d'absorption augmente fortement quand la température T de la couche 2 passe dans une plage haute de température PHT située approximativement au-dessus de cette plage basse de température PBT.
L ' intensité et la durée de l' impulsion délivrée par le flux lumineux 7 sont telles qu'en l' absence de la sous-couche 4, la température de la couche 2 reste dans ladite plage basse de température PBT.
La sous-couche 4 et le flux lumineux 7 sont choisis l'un par rapport à l' autre de façon à présenter les caractéristiques suivantes. Le coefficient d' absorption par la sous-couche 4 du flux lumineux 7 à ladite longueur d'onde est élevé dans ladite plage basse de température PBT.
La température de la sous-couche 4, au moins dans son épaisseur adjacente à la couche 2, passe dans la plage haute de température PHT lorsque cette sous-couche 4 est soumise audit flux lumineux 7.
La plaque 1 étant à une température initiale située dans la plage basse de température PBT, on applique le flux lumineux 7 sur la plaque 1 par sa face avant 3. Il se produit alors les échauffements suivants tels que représentés sur la figure 2.
Dans l' exemple représenté, il est considéré que la limite supérieure LST de la plage basse de température PBT est inférieure à la limite inférieure LIT de la plage haute de température PHT. La plage basse de température PBT et la plage haute de température PHT sont séparées par un seuil STC de transition de comportement du coefficient d' absorption en fonction de la température qui s' étend sur une plage de température de transition. Le mécanisme est le suivant.
Dans une première phase, le flux lumineux 7 traverse la couche 2 sans que sa température atteigne la plage haute de température PHT et, atteignant la sous-couche 4 en profondeur, chauffe cette sous- couche 4 depuis sa température initiale jusqu' à une température au moins située dans la plage haute de température PHT. On obtient la courbe de température 9.
Dans une seconde phase, la sous-couche 4 constitue une source thermique transitoire et chauffe par diffusion thermique la partie adjacente de la couche 2 jusqu' à une température AT située dans la plage haute de température PHT.
Dans une troisième phase, cette partie adjacente devient ainsi absorbante et génère, en profondeur dans la couche 2 à chauffer, un front thermique absorbant 10 dont la température FT est située dans la plage haute de température PHT, de préférence située au-dessus de la température AT. Ce front thermique absorbant 10, généré en profondeur, progresse vers la face avant 3 sous l' effet conjugué d'une diffusion thermique vers l' avant du front 10 et d'un apport d' énergie thermique par le flux lumineux 7 qui atteint ce front thermique 10 au travers du reste non encore absorbant de la couche 2. Lorsque le flux 7 s' arrête, la progression du front thermique
10, selon ce mode de propagation, cesse quasi immédiatement dans la couche 2 s' il n' a pas atteint la face avant 3. L' évolution du front thermique 10 devient alors gouvernée uniquement par les effets de diffusion thermique. Dans des conditions particulières de flux de lumière 7 constant, le chauffage de la couche 2 se produit sur une épaisseur sensiblement en relation linéaire avec la durée du flux thermique.
L ' enchaînement ci-dessus des trois phases ci-dessus signifie qu'elles se produisent temporellement à la suite l'un de l' autre.
Cependant, la description de cette succession n' exclut pas un recouvrement temporel partiel de ces phases. Exemples de mise en oeuyre.
Le flux lumineux 7 peut être une impulsion de laser CO2 de durée 6 microsecondes avec un flux de 3 ,75 * 1.E6 W/Cm2
Le matériau transparent constituant la couche 2 peut être du silicium dopé à un niveau de l' ordre de 1.E 15/Cm3 et placé initialement à la température ambiante.
Dans ces conditions, l' absorption du silicium est de l' ordre de quelques Cm- I , ce qui est faible et reste sensiblement constant tant que la température du silicium n' atteint pas environ 2700C . A partir environ de cette température, la concentration intrinsèque de porteurs devient supérieure à 1 *E 15 Cm-2 (Voir le document intitulé « Physics of Semiconductor Devices », second Edition, N0ISBN 0-07-062735-5 , par S . M. SZE, John Wiley and Sons, page 20 - fig. 12 et page 26 - fig.
16).
La plage basse de température PBT est donc la plage de température sensiblement située au-dessous de la limite inférieure de température LIT égale à environ 2700C, tandis que la plage haute de température PHT est la plage sensiblement située au-dessus de 2700C .
Conformément au document ci-dessus, la plage basse de température PBT est située dans le domaine non intrinsèque de saturation et/ou de gel des porteurs et la plage haute de température PHT est située dans le domaine intrinsèque. Le matériau absorbant constituant la sous-couche 4 peut être du silicium dopé à un niveau de l' ordre de 1 .E 19/Cm3 et placé initialement à la température ambiante, ce qui lui confère un coefficient d' absorption de plusieurs centaines de Cm- I . 8
L 'épaisseur de la couche 2 peut être d' environ 90 μm et l' épaisseur de la sous-couche 4 peut être d' environ 10 μm.
La réalisation de la sous-couche 4 peut être obtenue au moyen d'une épitaxie ou d'un dépôt ou d'une implantation ionique . Selon un premier exemple d' obtention de la plaque 1 , on réalise un substrat de silicium dopé à l *E 15Cm-3 et d'épaisseur égale à 100 μm par amincissement d'une plaquette de silicium standard. On réalise, à travers l'une des faces, une implantation d' ions bore à une dose de quelque 1 *E 16 /Cm2 et On réalise un recuit à une température de 10000C à 1 1000C environ pendant deux heures de façon à atteindre une profondeur de dopage de 10 microns environ pour obtenir la sous- couche 4, l' épaisseur restant de 90μm constituant la couche 2. La face non utilisée pour l' implantation constitue alors la face 3 au travers de laquelle le flux de lumière 7 sera appliqué. Selon un second exemple d' obtention de la plaque 1 , on réalise, sur un substrat de silicium standard, une épitaxie de silicium dopé en antimoine à 1 *E 19/Cm3 et de 10 microns d' épaisseur pour constituer la sous-couche 4. Ensuite, au-dessus de l' épitaxie de 10 microns, on réalise une épitaxie de silicium dopé à 1 *E 15/Cm3 et de 90 microns d' épaisseur pour constituer la couche 2.
A titre d'exemples complémentaires, le matériau absorbant de la sous-couche 4 aurait pu être aussi, dans le cas où on utilise un laser CO2, une couche amorphe de silicium, une couche totalement ou partiellement amorphisée par implantation ionique , ou une couche d' oxyde de silicium SiO2.
Si l'on imagine une pièce constituée exclusivement de la couche 2, sans la sous-couche 4, et que l'on applique le flux de lumière défini plus haut, on peut constater que la température du matériau augmente de moins de 300C. Ce résultat résulte d'une simulation par résolution de l'équation de la chaleur par une méthode dite des différences finies, méthode qui fait partie de l'état de l' art.
Ce résultat aurait pu être obtenu aussi en appliquant le formalisme simple suivant : - identification de la valeur maximum Alphamax du coefficient d' absorption sur la plage basse de température PBT
- l' ordre de grandeur de la température maximum atteinte Tmax est alors donnée par Tmax=Phi*tau*alphamax/Cp Où Cp est la capacité calorifique, Phi est le flux, Tau est la durée du flux, Cp la chaleur volumique,
Et avec Phi est égal à 3 ,75 * 1.E6W/Cm2, tau --- égal à 6* 1. E- 6 S - alphamax --- égal à 2Cm- I - Cp --- égal à 1 ,4 J/Cm3.
On trouve alors que l' ordre de grandeur de la température maximum Tmax atteinte de la couche 2 unique est égal à 32 0C.
On constate bien que dans ces conditions la température de la couche 2 reste très faible et à l' intérieur de la plage basse de température PBT.
Par contre, en présence de la sous-couche 4, il est possible de chauffer une grande épaisseur de matériau transparent jusqu' à des températures de l' ordre de 1650K sur des épaisseurs de l' ordre de 60μm. Ce résultat résulte d'une simulation par résolution de l' équation de la chaleur par une méthode dite des différences finies, méthode qui fait partie de l'état de l'art. Exemples d' application.
Exemple 1.
Comme le montre la figure 3 , partant d'un substrat de silicium polycristallin, non dopé et à grains désorientés, on oxyde l'une de ses faces par les techniques classiques utilisées en microélectronique et on obtient une plaque 1 qui comprend une couche 2 de silicium monocristallin, non dopé et à grains désorientés et une sous-couche 4 d' oxyde de silicium.
Ainsi, à la température ambiante, cette couche 2 est sensiblement transparente au flux lumineux généré par un laser CO2 et la sous-couche 4 est absorbante d'un tel flux lumineux.
Ensuite, comme le montre la figure 4, on applique une irradiation d'un tel flux lumineux, sous forme impulsionnelle, par la face avant 3 de la couche 2, par exemple localement sur une ou plusieurs zones. 10
Cette application produit, sous l' effet du chauffage préalable de la sous-couche 4 et selon le mécanisme comme décrit précédemment, une liquéfaction par chauffage de la couche 2 sur une zone 1 1 correspondant approximativement à la zone d' application du flux lumineux, cette zone liquéfiée 1 1 démarrant sur la face arrière 5 de la couche 2 ou à proximité immédiate de cette face arrière 5 et dont le front thermique l i a progresse vers l' avant jusqu' à par exemple atteindre la face avant 3.
Comme le montre la figure 5 , après la fin de l' application du flux lumineux, il se produit un front de refroidissement 12a de la zone
1 1 depuis la face avant 3. Ce front 12a progresse vers l' arrière jusqu' à la face arrière 5 pour former une zone 12 dans laquelle le silicium se re-solidifie en se recristallisant en silicium polycristallin. Du fait des gradients de température, la recristallisation génère des grains éventuellement plus gros et orientés sensiblement perpendiculairement à l' épaisseur de la couche 2.
Par balayage, on pourrait traiter toute la couche 2.
Une telle zone peut présenter de meilleures propriétés électriques et peut être avantageuse pour la création de cellules photovoltaïques
Exemple 2.
Comme le montre la figure 6, partant d'un substrat de silicium monocristallin non dopé, constituant un support arrière 8, on crée des zones locales 4a par dopage superficiel d'une face 8a de ce substrat d' environ l E20/Cm-3 de type n par les techniques classiques utilisées en microélectronique, de façon à obtenir une sous-couche absorbante 4 constituée de ces zones locales 4a. Par exemple, chaque zone 4a est carrée et présente une épaisseur d' environ 2 microns et des côtés égaux à environ 50 microns, l' espacement entre les zones 4a étant d' environ 25 microns.
Ensuite, comme le montre la figure 7, on réalise une épitaxie de silicium non dopé sur la face 8a de façon à former une couche 2.
Ensuite, comme le montre la figure 8, on applique sur la face avant 3 un faisceau ou flux lumineux 7 de puissance infrarouge (par 11
exemple un laser de puissance à fibre dopée ytterbium), déposant 20 joules/cm2 de surface en quelques centaines de nanosecondes. On provoque alors, comme décrit précédemment, un chauffage au moins local des zones 2a de la couche 2 situées entre les zones 4a de la sous-couche 4 et la face avant 3 , sans chauffer les autres parties de la couche 2. On peut alors utiliser ce chauffage différentiel pour réaliser un traitement des zones 2a chauffées.
Par exemple, comme le montre la figure 9, on peut réaliser le chauffage obtenu ci-dessus en référence à la figure 8 dans une enceinte 12 contenant de l' oxygène et/ou de la vapeur d'eau. La présence d' oxygène et l' élévation de la température localisée dans les zones 2a de la couche 2 conduit à la création de zones 13 d' oxyde de silicium sur la face avant 3 de la couche 2, auto-alignées au-dessus des zones profondes 4a.

Claims

12REVENDICATIONS
1. Procédé de chauffage, au mo ins local, d'une plaque ( 1 ) comprenant au moins une couche à chauffer (2) et une sous-couche (4), au moins locale, accolée à cette couche à chauffer, sous l' effet d' au moins une impulsion d'un flux lumineux, comprenant les étapes suivantes :
Choisir un flux lumineux (7)
- dont la longueur d' onde est telle que le coefficient d' absorption de ce flux par la couche à chauffer (2) est faible tant que la température de cette couche à chauffer est dans une plage basse de température (PBT) et que ce coefficient d' absorption augmente fortement quand la température de la couche à chauffer passe dans une plage haute de température (PHT) située approximativement au- dessus de cette plage basse de température, - et dont l' intensité et la durée de l' impulsion sont telles qu' en l' absence de ladite sous-couche, la température de la couche à chauffer reste dans ladite plage basse de température ; Choisir une sous-couche (4) - dont le coefficient d'absorption dudit flux lumineux à ladite longueur d' onde choisie est élevé dans ladite plage basse de température (PBT)
- et dont la température passe dans la plage haute de température (PHT) lorsque cette sous-couche est soumise audit flux lumineux ;
Et appliquer ledit flux lumineux (7) à ladite plaque ( 1 ), au moins localement, par la face (3) de ladite couche à chauffer (2) opposée à ladite sous-couche (4) ;
De telle sorte que, dans une première phase, le flux lumineux (7) chauffe la sous-couche (4) depuis sa température initiale jusqu' à une température au moins située dans ladite plage haute de température (PHT), que, dans une seconde phase, la sous-couche (4) chauffe par diffusion thermique la partie adjacente de la couche à 13
chauffer (2) jusqu' à une température située dans ladite plage haute de température (PHT), et que, dans une troisième phase, cette partie adj acente étant ainsi devenue absorbante et générant, dans la couche à chauffer (2), un front thermique absorbant ( 10) dont la température est située dans ladite plage haute de température (PHT), ce front thermique absorbant ( 10) progresse vers ladite face avant (3) sous l'effet conjugué d'une diffusion thermique vers l' avant du front thermique (10) et d'un apport d' énergie thermique par ledit flux lumineux (7) qui atteint ce front thermique au travers du reste non encore absorbant de la couche à chauffer (2).
2. Procédé selon la revendication 1 , caractérisé par le fait que ladite plage basse de température (PBT) et ladite plage haute de température (PHT) sont séparées par un seuil de transition de comportement du coefficient d' absorption en fonction de la température.
3. Procédé selon la revendication 2, caractérisé par le fait que ledit seuil (STC) de transition de comportement du coefficient d' absorption en fonction de la température s' étend sur une plage de température.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait que la couche à chauffer (2) est du silicium peu dopé.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait que la couche à chauffer (2) est un matériau semi-conducteur.
6. Procédé selon la revendication 5 caractérisé en ce que ladite plage basse de température (PBT) correspond sensiblement à la plage dans laquelle le dopage n' est pas intrinsèque et que ladite plage haute de température (PHT) correspond sensiblement à la plage dans laquelle le dopage est intrinsèque.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait que la couche à chauffer (2) est du nitrure de gallium. 14
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait que la sous-couche (4) est du silicium amorphe.
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait que la sous-couche (4) est du silicium fortement dopé.
10. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait que la couche à chauffer (2) est du nitrure de gallium et la sous-couche est du silicium.
1 1. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait que le flux lumineux (7) est généré par un laser.
PCT/FR2008/051719 2007-10-01 2008-09-26 Procede de chauffage d'une plaque par un flux lumineux WO2009050381A2 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010527502A JP5518717B2 (ja) 2007-10-01 2008-09-26 光束によるウェハの加熱方法
EP08838888.9A EP2193540B1 (fr) 2007-10-01 2008-09-26 Procede de chauffage d'une plaque par un flux lumineux
CN2008801092910A CN101855709B (zh) 2007-10-01 2008-09-26 通过光通量加热晶片的方法
KR1020107009301A KR101162444B1 (ko) 2007-10-01 2008-09-26 광속을 이용한 웨이퍼 가열 방법
US12/680,880 US8324530B2 (en) 2007-10-01 2008-09-26 Method for heating a wafer by means of a light flux

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0757986A FR2921752B1 (fr) 2007-10-01 2007-10-01 Procede de chauffage d'une plaque par un flux lumineux.
FR0757986 2007-10-01

Publications (2)

Publication Number Publication Date
WO2009050381A2 true WO2009050381A2 (fr) 2009-04-23
WO2009050381A3 WO2009050381A3 (fr) 2009-06-11

Family

ID=39111662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/051719 WO2009050381A2 (fr) 2007-10-01 2008-09-26 Procede de chauffage d'une plaque par un flux lumineux

Country Status (7)

Country Link
US (1) US8324530B2 (fr)
EP (1) EP2193540B1 (fr)
JP (1) JP5518717B2 (fr)
KR (1) KR101162444B1 (fr)
CN (1) CN101855709B (fr)
FR (1) FR2921752B1 (fr)
WO (1) WO2009050381A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2938116B1 (fr) 2008-11-04 2011-03-11 Aplinov Procede et dispositif de chauffage d'une couche d'une plaque par amorcage et flux lumineux.
FR2964788B1 (fr) * 2010-09-10 2015-05-15 Soitec Silicon On Insulator Procédé de traitement d'un substrat au moyen d'un flux lumineux de longueur d'onde déterminée, et substrat correspondant
FR2978600B1 (fr) 2011-07-25 2014-02-07 Soitec Silicon On Insulator Procede et dispositif de fabrication de couche de materiau semi-conducteur
CN114335778B (zh) * 2021-12-30 2023-05-26 重庆长安新能源汽车科技有限公司 一种确定动力电池脉冲加热温度采集点的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0090565A2 (fr) * 1982-03-30 1983-10-05 Fujitsu Limited Procédé pour couper sélectivement une couche électroconductrice par irradiation avec un faisceau d'énergie
JPS6156409A (ja) * 1984-08-28 1986-03-22 Fujitsu Ltd 半導体装置の製造方法
US6110813A (en) * 1997-04-04 2000-08-29 Matsushita Electric Industrial Co., Ltd. Method for forming an ohmic electrode
EP1083590A1 (fr) * 1999-03-05 2001-03-14 Seiko Epson Corporation Procede de production d'un dispositif a semiconducteur et a film fin
WO2001080300A1 (fr) * 2000-04-12 2001-10-25 Ultratech Stepper, Inc. Transistor a semiconducteurs grande vitesse et procede d'absorption selective utilise pour sa fabrication
WO2003075329A2 (fr) * 2002-02-28 2003-09-12 Freescale Semiconductor, Inc. Procede de formation d'un dispositif a semi-conducteurs pourvu d'une couche d'absorption d'energie et structure
FR2859820A1 (fr) * 2003-09-17 2005-03-18 Commissariat Energie Atomique Structure multi-zones apte a subir un recuit par irradiation lumineuse et procede de mise en oeuvre de ladite structure
US20060043367A1 (en) * 2004-09-01 2006-03-02 Mao-Yi Chang Semiconductor device and method of fabricating a low temperature poly-silicon layer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4269631A (en) * 1980-01-14 1981-05-26 International Business Machines Corporation Selective epitaxy method using laser annealing for making filamentary transistors
US4379727A (en) * 1981-07-08 1983-04-12 International Business Machines Corporation Method of laser annealing of subsurface ion implanted regions
JPS5860530A (ja) * 1981-10-06 1983-04-11 Toshiba Corp 半導体膜の製造方法
JPS6170713A (ja) * 1984-09-14 1986-04-11 Agency Of Ind Science & Technol シリコン膜再結晶化方法
US20030040130A1 (en) * 2001-08-09 2003-02-27 Mayur Abhilash J. Method for selection of parameters for implant anneal of patterned semiconductor substrates and specification of a laser system
US7148159B2 (en) * 2003-09-29 2006-12-12 Ultratech, Inc. Laser thermal annealing of lightly doped silicon substrates
US7642205B2 (en) * 2005-04-08 2010-01-05 Mattson Technology, Inc. Rapid thermal processing using energy transfer layers

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0090565A2 (fr) * 1982-03-30 1983-10-05 Fujitsu Limited Procédé pour couper sélectivement une couche électroconductrice par irradiation avec un faisceau d'énergie
JPS6156409A (ja) * 1984-08-28 1986-03-22 Fujitsu Ltd 半導体装置の製造方法
US6110813A (en) * 1997-04-04 2000-08-29 Matsushita Electric Industrial Co., Ltd. Method for forming an ohmic electrode
EP1083590A1 (fr) * 1999-03-05 2001-03-14 Seiko Epson Corporation Procede de production d'un dispositif a semiconducteur et a film fin
WO2001080300A1 (fr) * 2000-04-12 2001-10-25 Ultratech Stepper, Inc. Transistor a semiconducteurs grande vitesse et procede d'absorption selective utilise pour sa fabrication
WO2003075329A2 (fr) * 2002-02-28 2003-09-12 Freescale Semiconductor, Inc. Procede de formation d'un dispositif a semi-conducteurs pourvu d'une couche d'absorption d'energie et structure
FR2859820A1 (fr) * 2003-09-17 2005-03-18 Commissariat Energie Atomique Structure multi-zones apte a subir un recuit par irradiation lumineuse et procede de mise en oeuvre de ladite structure
US20060043367A1 (en) * 2004-09-01 2006-03-02 Mao-Yi Chang Semiconductor device and method of fabricating a low temperature poly-silicon layer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GALECKAS A ET AL: "Temperature dependence of the absorption coefficient in 4H- and 6H-silicon carbide at 355 nm laser pumping wavelength" PHYSICA STATUS SOLIDI A, vol. 191, no. 2, juin 2002 (2002-06), pages 613-620, XP002471504 *
MACFARLANE, G. G: ET AL: "Fine Structure in the Absorption-Edge Spectrum of Si" PHYSICAL REVIEW, vol. 111, no. 5, 1 septembre 1958 (1958-09-01), pages 1245-1254, XP002471545 *

Also Published As

Publication number Publication date
CN101855709A (zh) 2010-10-06
KR20100085943A (ko) 2010-07-29
KR101162444B1 (ko) 2012-07-04
US20100288741A1 (en) 2010-11-18
FR2921752A1 (fr) 2009-04-03
WO2009050381A3 (fr) 2009-06-11
JP5518717B2 (ja) 2014-06-11
CN101855709B (zh) 2012-04-25
EP2193540A2 (fr) 2010-06-09
FR2921752B1 (fr) 2009-11-13
JP2010541273A (ja) 2010-12-24
EP2193540B1 (fr) 2017-07-26
US8324530B2 (en) 2012-12-04

Similar Documents

Publication Publication Date Title
FR2978604A1 (fr) Procede de guerison de defauts dans une couche semi-conductrice
EP2193540B1 (fr) Procede de chauffage d'une plaque par un flux lumineux
FR2997420A1 (fr) Procede de croissance d'au moins un nanofil a partir d'une couche d'un metal de transition nitrure obtenue en deux etapes
EP2721650B1 (fr) Procédé de réalisation d'une cellule photovoltaïque a émetteur sélectif
WO2014207184A1 (fr) Procédé de transfert d'une couche mince avec apport d'énergie thermique à une zone fragilisée via une couche inductive
EP2353177B1 (fr) Procede et dispositif de chauffage d'une couche d'une plaque par amorcage et flux lumineux.
EP3678168B1 (fr) Procédé de guérison avant transfert d'une couche semi-conductrice
FR2914488A1 (fr) Substrat chauffage dope
EP2801118B1 (fr) Procédé de fabrication d'une cellule photovoltaïque
EP3671864B1 (fr) Procede de fabrication d'une jonction a effet tunnel inter-bandes
EP1665351A2 (fr) Structure multi-zones apte a subir un recuit par irradiation lumineuse et procede de mise en oeuvre de ladite structure
EP1878694A2 (fr) Procédé de nanostructuration de la surface d'un substrat
FR2784794A1 (fr) Structure comportant une couche semiconducteur et/ou des elements electroniques sur un support isolant et son procede de fabrication
FR2964788A1 (fr) Procédé de traitement d'un substrat au moyen d'un flux lumineux de longueur d'onde déterminée, et substrat correspondant
WO2019186036A1 (fr) Procédé de séparation d'une structure composite démontable au moyen d'un flux lumineux
FR3003085A1 (fr) Substrat semi-conducteur monolithique a base de silicium, divise en sous-cellules
EP4060716A1 (fr) Procede de modification d'un etat de contrainte d'au moins une couche semi-conductrice
EP3660928B1 (fr) Procédé de fabrication de cellules photovoltaiques
FR2801726A1 (fr) Procede de fabrication d'une lamelle ou plaquette photovoltaique et cellule comportant une telle plaquette
FR3008994A1 (fr) Procede de cristallisation en phase solide
FR2467486A1 (fr) Procede de formation de jonctions n-p, jonctions de ce type et leurs applications
FR2964252A1 (fr) Procede de realisation d'une structure a emetteur selectif

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880109291.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08838888

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2008838888

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008838888

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010527502

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107009301

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12680880

Country of ref document: US