EP1665351A2 - Structure multi-zones apte a subir un recuit par irradiation lumineuse et procede de mise en oeuvre de ladite structure - Google Patents

Structure multi-zones apte a subir un recuit par irradiation lumineuse et procede de mise en oeuvre de ladite structure

Info

Publication number
EP1665351A2
EP1665351A2 EP04816130A EP04816130A EP1665351A2 EP 1665351 A2 EP1665351 A2 EP 1665351A2 EP 04816130 A EP04816130 A EP 04816130A EP 04816130 A EP04816130 A EP 04816130A EP 1665351 A2 EP1665351 A2 EP 1665351A2
Authority
EP
European Patent Office
Prior art keywords
zone
layer
characteristic
zones
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04816130A
Other languages
German (de)
English (en)
Inventor
Bernard Andre
Jean Hue
Bérangère HYOT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1665351A2 publication Critical patent/EP1665351A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/18Working by laser beam, e.g. welding, cutting or boring using absorbing layers on the workpiece, e.g. for marking or protecting purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/009Working by laser beam, e.g. welding, cutting or boring using a non-absorbing, e.g. transparent, reflective or refractive, layer on the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the invention relates to techniques of annealing by radiation or light irradiation, in particular by laser, in particular of thin layers, but also of solid materials.
  • Laser annealing is a known technique for annealing thin layers. This technique uses the fact that a thin layer can be optically absorbent at certain wavelengths. By using a laser whose wavelength corresponds to the spectral range where the layer absorbs light, there is absorption of photons and heating of the layer to be annealed. Temperatures can be very high (a few hundred degrees to a few thousand degrees) depending on the absorption coefficient of the material and the characteristics of the laser (in particular power, wavelength, repetition frequency, width and shape of pulses) .
  • the absorbent layer (s) of a multilayer structure can be selectively annealed by light irradiation, in particular by laser, to modify the physical or chemical characteristics of certain layers directly irradiated by the laser.
  • annealing difficulties arise in certain cases, in particular when a layer to be annealed is little or not absorbent, or even when there is no laser having emission lines in the length ranges d wave for which the layer to be annealed is absorbent. In fact, the emission wavelengths of the lasers are discrete and those which an industrialist may have do not necessarily cover the spectral range of interest. Another problem arises when an area or a layer, which would be absorbent or for which there could be an available wavelength, would however exhibit poor or insufficient resistance to light flux.
  • the invention relates to an annealing process or a process for modifying a characteristic, for example a characteristic, by thermal effect. physical or chemical, from a first zone in a first material, process in which a laser beam is directed towards a second zone in a second material, the diffusion of the thermal energy from the second towards the first zone allowing the modification by effect thermal or annealing thereof.
  • a characteristic for example a characteristic, by thermal effect.
  • physical or chemical from a first zone in a first material, process in which a laser beam is directed towards a second zone in a second material, the diffusion of the thermal energy from the second towards the first zone allowing the modification by effect thermal or annealing thereof.
  • Each of the materials may include one or more types of atoms or molecules, and may for example be an alloy or a composite material.
  • the invention uses, near or in the vicinity of or in contact with the zone to be annealed, which is for example in the form of a thin layer, another zone, for example also in the form of a
  • the absorbent zone will heat up and, by heat transfer, cause the temperature in the zone to be annealed to rise.
  • the temperature rise may be greater than 100 ° C or several hundred degrees C, for example greater than 500 ° C or 1000 ° C.
  • the second zone has, for example, an absorption on light irradiation greater than that of the first zone.
  • the second material will preferably be chosen for its thermal diffusion properties: it will be preferable to have a material that can best transfer, and in particular to the first zone, the heat generated by the laser.
  • the two zones may or may not be in contact with each other. For example, they can be made up of two neighboring portions of the same layer or even by two neighboring zones of a solid material.
  • the first material is SrTi ⁇ 3 and the second of metal, for example platinum.
  • the invention also relates to a system of materials or a heterogeneous assembly or a heterogeneous system of materials comprising: - a first zone made of a first material, having a physical and / or chemical characteristic capable of being thermally modified, - a second zone in a second material, for absorbing at least part of a laser radiation at a wavelength, and for transferring at least a part of thermal energy resulting from this absorption towards the first zone.
  • FIG. 1 represents a first embodiment of the invention.
  • a layer 2 allows absorption of a laser beam 10 and a transfer of heat to neighboring areas or layers, and in particular to a layer 4 to be annealed or the characteristic of which it is desired to modify.
  • the assembly also rests on a substrate 6.
  • a laser beam 10 is directed towards the layer 2 or focused in this layer 2, the reference 12 designating the laser impact, that is to say the zone where most of the laser energy is absorbed.
  • the reference 12 designating the laser impact, that is to say the zone where most of the laser energy is absorbed.
  • thermal diffusion a zone 14 around the impact 12 is heated. The heating, or thermal energy, will therefore partially diffuse from zone 2, towards zone 4 which can receive or is able to receive this thermal energy.
  • a physical, chemical or structural characteristic of this zone 4 is thereby modified, at least locally in zone 4, a modification which persists or which is durable or permanent even after the laser beam has been stopped.
  • the physical or chemical characteristics of the material of zone 4 which one seeks to modify with this technique are, for example, one or more optical and / or electrical and / or magnetic and / or thermal, and / or crystalline or amorphous characteristics. , and / or its chemical composition (as in the case of diffusion by annealing of dopants).
  • the duration of irradiation by the laser will depend on the desired transformation, the absorption of layer 2, its heat diffusion properties (coefficient of thermal conductivity) towards layer 4 and the heat absorption capacities. and the heating of this layer 4.
  • the transfer of heat to the zone to be annealed will depend on the temperature reached in the zone which absorbs the radiation, and on the thermal constants of the latter as well as of the zone to annealing.
  • the absorption of a layer is linked to the absorption coefficient of the material of this layer and to its thickness.
  • the irradiation can be carried out through a support of said zones, this support having to be transparent to at least part of the light irradiation.
  • the thin layer 2 which absorbs the radiation can be produced by any type of deposition process, CVD, PVD or sol-gel for example.
  • Another embodiment relates to the annealing of a material of the SrTi0 3 type.
  • These materials are used as materials with high dielectric permittivity. They exhibit high dielectric constants when they are crystallized. Furthermore, the constraints imposed by the components in which these materials are integrated impose a process temperature below 450 ° C. However, these materials are amorphous when they are produced at temperatures typically below 600 ° C.
  • the laser annealing which makes it possible to heat the layer of SrTi0 3 to the crystallization temperature, without heating the structures of the complete device, is in this respect interesting. In order to anneal these materials, it is possible to use a laser, for example based on triplicate YAG.
  • This type of laser emits at wavelengths close to 350 nm.
  • a layer of SrTi0 3 to be annealed has, at 350 nm, a very low absorption coefficient and the coupling of the energy of the laser pulse with this layer is weak.
  • Simulations show that a 200 nm thick layer absorbs 3% of the energy, which does not allow the temperature in the material with high permittivity to be raised sufficiently. Simulations were carried out for a structure such as that of FIG. 2 and comprising a silicon substrate 20, a layer 22 of SiO 2, a layer 24 of Platinum and the layer 26 of material with a high dielectric constant K, for example in SrTi0 3 .
  • the platinum 24 which will play the role of absorbent layer and which will transfer to the material 26 part of the energy which it has absorbed. Simulations of temperature rises in this structure were made, in the case of the impact of a laser pulse of 30 ns at the wavelength of 350 nm. The fluence chosen for the simulations is 300 mJ / cm 2 . As we said, the material 26 is not very absorbent at 350nm (3% absorption in a 200nm layer); it is platinum 24 (Pt) which mainly absorbs light energy (88% absorption) and heats by conduction the material which is in contact with it. FIG.
  • This figure shows that, under these irradiation conditions (pulse duration of 30 ns), it is possible to reach, over the entire thickness of the material 26, temperatures favorable to the crystallization of the material, for example between 700 and 800 ° vs.
  • Figure 4 shows, for a laser pulse of 30ns duration and a fluence of 300mJ / cm 2 , thermal profiles plotted at different depth levels in layer 26: at the interface layer 26 - layer 24 (curve I), at middle of layer 26 (curve II) and at the interface layer 26 - air (layer
  • SrTi03 has been given, but the invention also applies to the modification of materials of the “High K” type, or materials of high dielectric constant K, for example greater than 3 or 3.9 and less than 100 such as yttrium oxide (Y 2 O 3 ), aluminum (A1 2 0 3 ), zirconium oxide (Zr0 2 ), or Hafnium oxide (Hf ⁇ 2).
  • materials of the “High K” type or materials of high dielectric constant K, for example greater than 3 or 3.9 and less than 100
  • materials of the “High K” type for example greater than 3 or 3.9 and less than 100
  • Other materials with a high constant K are for example PbZrTi0 3 , BaTi0 3r PbTi0 3r BaSrTi0 3 .
  • the invention also applies to the annealing of solid materials comprising a zone to be annealed and a zone adjacent to or in contact with the zone to be annealed, this neighboring zone absorbing and diffusing, towards the zone to be annealed, light energy at the wavelength of a radiation source, in particular of the laser type. It also applies to the case of a layer comprising, as illustrated in FIG. 5, a first zone 30 which absorbs radiation 40 focused at point 42 and which will diffuse thermal energy towards a second zone 32, close to the first or in contact with it. This energy makes it possible to modify a characteristic of this second zone such as a physical or chemical characteristic already indicated above. These two zones are for example made of the same material, the zone 32 further having a particular doping.
  • the annealing according to the invention can be used to crystallize amorphous materials (increase in dielectric permittivities in materials of the “High K” type for example). It can also allow elements to be broadcast in materials (dopants in materials used in microelectronics for example), or to locally modify the morphology of certain materials (for optical recordings of CD or DVD type). - If we take the example of Figure 1, the invention also applies to the case where the zone 4 could have an absorption at the wavelength of the beam 10 but would have insufficient resistance to the light flux. Here again, a variant would be to distribute the light flux over the two zones 2 and 4. Finally, the example was given of a beam 10 coming from a laser, but it may also be radiation from another type of source, including a consistent source.
  • MIM capacities consisting of a substrate / metal / "high k" / metal material stack (the metal layers serving as electrical conductors in the capacity). These metal layers can be used directly to cause heating of the “high K” material, according to one of the embodiments described above of the process of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Recrystallisation Techniques (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

L'invention concerne un procédé de modification par effet thermique d'une caractéristique d'une première zone (4) d'un premier matériau, procédé dans lequel on dirige un faisceau laser vers une deuxième zone (2) en un deuxième matériau, la diffusion de l'énergie thermique de la deuxième zone vers la première zone permettant la modification thermique de celle-ci.

Description

STRUCTURE MULTI-ZONES APTE A SUBIR UN RECUIT PAR IRRADIATION LUMINEUSE ET PROCEDE DE MISE EN ŒUVRE DE LADITE STRUCTURE DESCRIPTION
DOMAINE TECHNIQUE L'invention concerne les techniques de recuits par rayonnement ou irradiation lumineuse, en particulier par laser, notamment de couches minces, mais aussi de matériaux massifs. Le recuit par laser est une technique connue de recuit de couches minces. Cette technique utilise le fait qu'une couche mince puisse être optiquement absorbante à certaines longueurs d'ondes. En utilisant un laser dont la longueur d'onde correspond à la gamme spectrale où la couche absorbe la lumière, il y a absorption des photons et échauffement de la couche à recuire. Les températures peuvent être très élevées (quelques centaines de degrés à quelques milliers de degrés) selon le coefficient d'absorption du matériau et les caractéristiques du laser (notamment puissance, longueur d'onde, fréquence de répétition, largeur et forme d'impulsions). Cette technique est intéressante car elle permet, grâce à la résolution spatiale des lasers, de réaliser des recuits localisés. Ceci permet par exemple de recuire spécifiquement une zone du matériau ou une couche mince spécifique dans un empilement de couches minces, ce qui n'est pas possible avec un recuit classique qui intéresse le matériau ou la structure dans son ensemble. On peut recuire sélectivement la, ou les, couche (s) absorbante (s) d'une structure multicouches par une irradiation lumineuse, en particulier par laser, pour modifier les caractéristiques physiques ou chimiques de certaines couches directement irradiées par le laser. La diffusion de chaleur en dehors des couches recuites est généralement un inconvénient contre lequel on peut lutter par des barrières de diffusion thermique ou un choix de matériaux qui sont aptes à ne subir aucune modification gênante de leurs propres caractéristiques physiques ou chimiques sous l'influence de cette irradiation. En revanche des difficultés de recuit se posent dans certains cas, notamment lorsqu'une couche à recuire est peu, ou pas, absorbante, ou encore lorsque l'on ne dispose pas de laser possédant des raies d'émission dans les gammes de longueur d'onde pour lesquelles la couche à recuire est absorbante. En effet, les longueurs d'ondes d'émission des lasers sont discrètes et celles dont un industriel peut disposer ne couvrent pas forcément la gamme spectrale d' intérêt . Un autre problème se pose lorsqu'une zone ou une couche, qui serait absorbante ou pour laquelle il pourrait y avoir une longueur d'onde disponible, présenterait cependant une mauvaise tenue ou une tenue insuffisante au flux lumineux.
EXPOSÉ DE L'INVENTION
L'invention concerne un procédé de recuit ou un procédé de modification par effet thermique d'une caractéristique, par exemple d'une caractéristique physique ou chimique, d'une première zone en un premier matériau, procédé dans lequel on dirige un faisceau laser vers une deuxième zone en un deuxième matériau, la diffusion de l'énergie thermique de la deuxième vers la première zone permettant la modification par effet thermique ou le recuit de cette dernière . Chacun des matériaux peut comporter un ou plusieurs types d'atomes ou de molécules, et être par exemple un alliage ou un matériau composite. L'invention utilise, à proximité ou au voisinage ou au contact de la zone à recuire, qui se présente par exemple sous forme de couche mince, une autre zone, par exemple elle aussi sous forme de couche mince, qui absorbe le rayonnement. La zone absorbante va s'échauffer et, par transfert de chaleur, faire élever la température dans la zone à recuire . L'élévation de température peut être supérieure à 100°C ou à plusieurs centaines de degrés C, par exemple supérieure à 500°C ou à 1000°C. La deuxième zone possède par exemple une absorption à l'irradiation lumineuse supérieure à celle de la première zone . Le deuxième matériau sera de préférence choisi pour ses propriétés de diffusion thermique : il sera préférable de disposer d'un matériau pouvant transférer au mieux, et notamment vers la première zone, la chaleur engendrée par le laser. Les deux zones peuvent être en contact entre elles, ou non. Par exemple elles peuvent être constituées par deux portions voisines d'une même couche ou bien encore par deux zones voisines d'un matériau massif. Selon un exemple, le premier matériau est du SrTiθ3 et le second du métal, par exemple du platine. L'invention concerne également un système de matériaux ou encore un ensemble hétérogène ou un système hétérogène de matériaux comportant : - une première zone en un premier matériau, présentant une caractéristique physique et/ou chimique apte à être modifiée de manière thermique, - une deuxième zone en un deuxième matériau, pour absorber au moins une partie d'un rayonnement laser à une longueur d'onde, et pour transférer au moins une partie d' énergie thermique résultant de cette absorption vers la première zone .
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION DE L'INVENTION La figure 1 représente un premier mode de réalisation de l'invention. Une couche 2 permet une absorption d' un faisceau laser 10 et un transfert de chaleur vers les zones ou les couches voisines , et notamment vers une couche 4 à recuire ou dont on souhaite modifier une caractéristique. L'ensemble repose également sur un substrat 6. Un faisceau laser 10 est dirigé vers la couche 2 ou focalisé dans cette couche 2, la référence 12 désignant l'impact laser, c'est-à-dire la zone où l'essentiel de l'énergie du laser est absorbée. Par diffusion thermique, une zone 14 autour de l'impact 12 est échauffée. L'échauffement, ou l'énergie thermique, va donc diffuser partiellement de la zone 2, vers la zone 4 qui peut recevoir ou est apte à recevoir cette énergie thermique. Une caractéristique physique ou chimique ou structurelle de cette zone 4 s'en trouve modifiée, au moins localement dans la zone 4, modification qui persiste ou qui est durable ou permanente même après arrêt du faisceau laser. Les caractéristiques physiques ou chimiques du matériau de la zone 4 que l'on cherche à modifier avec cette technique sont, par exemple, une ou des caractéristiques optiques et/ou électrique et/ou magnétique et/ou thermique, et/ou cristallines ou amorphes, et/ou sa composition chimique (comme dans le cas de diffusion par recuit de dopants) . La durée d'irradiation par le laser sera fonction de la transformation souhaitée, de l'absorption de la couche 2, de ses propriétés de diffusion de la chaleur (coefficient de conductibilité thermique) vers la couche 4 et des capacités d'absorption de chaleur et d' échauffement de cette couche 4. En d'autres termes, le transfert de chaleur vers la zone à recuire dépendra de la température atteinte dans la zone qui absorbe le rayonnement, et des constantes thermiques de cette dernière ainsi que de la zone à recuire. On notera que l'absorption d'une couche est liée au coefficient d'absorption du matériau de cette couche et à son épaisseur. L'irradiation peut être réalisée à travers un support desdites zones, ce support devant être transparent à au moins une partie de l'irradiation lumineuse. Il peut aussi y avoir irradiation des deux zones 2 et 4, les deux zones contribuant à absorber de l'énergie. La couche mince 2 qui absorbe le rayonnement peut être réalisée par tout type de procédé de dépôt, CVD, PVD ou sol-gel par exemple. Un autre exemple de réalisation va être donné, qui concerne le recuit d'un matériau de type SrTi03. Ces matériaux sont utilisés en tant que matériaux à forte permittivité diélectrique. Ils présentent des constantes diélectriques élevées lorsqu'ils sont cristallisés. Par ailleurs les contraintes imposées par les composants dans lesquels sont intégrés ces matériaux imposent une température de procédé inférieure à 450 °C. Or ces matériaux sont amorphes lorsqu' ils sont réalisés à des températures typiquement inférieures à 600 °C. Le recuit par laser, qui permet de chauffer à la température de cristallisation la couche de SrTi03, sans chauffer les structures du dispositif complet, est à ce titre intéressant. On peut utiliser, afin de recuire ces matériaux, un laser, par exemple à base de YAG triplé. Ce type de laser émet à des longueurs d' ondes voisines de 350 nm. Malheureusement une couche de SrTi03 à recuire présente, à 350 nm, un coefficient d'absorption très faible et le couplage de l'énergie de l'impulsion laser avec cette couche est faible. Des simulations montrent qu'une couche de 200 nm d'épaisseur absorbe 3% de l'énergie, ce qui ne permet pas d'élever suffisamment la température dans le matériau à forte permittivité . Des simulations ont été effectuées pour une structure telle que celle de la figure 2 et comportant un substrat 20 de Silicium, une couche 22 de Si02, une couche 24 de Platine et la couche 26 de matériau à constante diélectrique K élevée, par exemple en SrTi03. Ici c'est le platine 24 qui va jouer le rôle de couche absorbante et qui va transférer au matériau 26 une partie de l'énergie qu'il a absorbée. Des simulations d'élévations de température dans cette structure ont été faites, dans le cas de l'impact d'une impulsion laser de 30 ns à la longueur d'onde de 350 nm. La fluence choisie pour les simulations est de 300 mJ/cm2. Comme on l'a dit, le matériau 26 est peu absorbant à 350nm (3% d'absorption dans une couche de 200 nm) ; c'est le platine 24 (Pt) qui absorbe majoritairement l'énergie lumineuse (88% d'absorption) et chauffe par conduction le matériau qui est à son contact. La figure 3 représente, à t=30ns après début de l'impulsion, la valeur de la température à partir du centre de l'impact laser (localisé sur l'axe « Z » vertical sensiblement en position 2.10"7). Cette figure montre que, dans ces conditions d'irradiation (durée d'impulsion de 30 ns) , il est possible d'atteindre sur toute l'épaisseur du matériau 26 des températures favorables à la cristallisation du matériau, par exemple comprises entre 700 et 800°C. La figure 4 montre, pour une impulsion laser de durée 30ns et une fluence de 300mJ/cm2, des profils thermiques tracés à différents niveaux de profondeur dans la couche 26 : à l'interface couche 26 - couche 24 (courbe I) , au milieu de la couche 26 (courbe II) et à l'interface couche 26 - air (couche
III). Ces profils confirment l'analyse faite ci-dessus. Dans la mesure où, pour assurer une cristallisation efficace du matériau, on cherche à passer le plus de temps possible à la température où le mécanisme de croissance cristalline est le plus actif, la zone située entre les deux points A,B est particulièrement intéressante. D'une part, la cristallisation se produira principalement pendant le refroidissement, après coupure du laser (le temps imparti à la cristallisation est d'environ 70 ns) , d' autre part les gradients thermiques (au refroidissement) sont faibles dans l'épaisseur de la couche. Ces deux observations laissent supposer que la microstructure cristalline est relativement uniforme dans toute l'épaisseur de la couche 26. L'invention permet donc, notamment, de recuire par laser une couche peu absorbante dans le domaine de longueur d' onde d' intérêt ou dont on dispose. L'exemple du SrTi03 a été donné, mais l'invention s'applique également à la modification de matériaux de type « High K », ou matériaux de constante diélectrique K élevée, par exemple supérieure à 3 ou à 3,9 et inférieure à 100 comme l'oxyde d'yttrium (Y2O3) , l'aluminium (A1203) , l'oxyde de zirconium (Zr02) , ou l'oxyde de Hafnium (Hfθ2) . D'autres matériaux à constante K élevée sont par exemple PbZrTi03, BaTi03r PbTi03r BaSrTi03. L'invention s'applique aussi au recuit de matériaux massifs comportant une zone à recuire et une zone voisine ou en contact avec la zone à recuire, cette zone voisine absorbant et diffusant, vers la zone à recuire, de l'énergie lumineuse à la longueur d'onde d'une source de rayonnement, notamment de type laser. Elle s'applique aussi au cas d'une couche comportant, comme illustré sur la figure 5, une première zone 30 qui absorbe un rayonnement 40 focalisé au point 42 et qui va diffuser de l'énergie thermique vers une deuxième zone 32, voisine de la première ou en contact avec celle-ci . Cette énergie permet de modifier une caractéristique de cette deuxième zone telle qu'une caractéristique physique ou chimique déjà indiquée ci- dessus . Ces deux zones sont par exemple réalisées en un même matériau, la zone 32 ayant en outre un dopage particulier. Le recuit selon l'invention peut être utilisé pour faire cristalliser des matériaux amorphes (augmentation des permittivités diélectriques dans les matériaux de type « High K » par exemple) . Il peut aussi permettre de faire diffuser des éléments dans des matériaux (des dopants dans des matériaux utilisés en microélectronique par exemple) , ou encore de modifier localement la morphologie de certains matériaux (en vue d'enregistrements optiques de type CD ou DVD). - Si on reprend l'exemple de la figure 1, l'invention s'applique aussi au cas où la zone 4 pourrait présenter une absorption à la longueur d'onde du faisceau 10 mais présenterait une tenue insuffisante au flux lumineux. Une variante serait, là encore, de répartir le flux lumineux sur les deux zones 2 et 4. Enfin, l'exemple a été donné d'un faisceau 10 provenant d'un laser, mais il peut aussi s'agir d'un rayonnement provenant d'un autre type de source, notamment d'une source cohérente. Un autre exemple d' applications concerne les capacités MIM, constituées d'un empilement substrat/métal/matériau « high k »/métal (les couches métalliques servant de conducteurs électriques dans la capacité) . On peut utiliser directement ces couches métalliques pour provoquer l'echauffement du matériau « high K », selon l'un des modes de réalisation décrits ci-dessus du procédé de l'invention.

Claims

REVENDICATIONS
1. Procédé de modification par effet thermique d'une caractéristique d'une première zone (4, 26, 32) d'un premier matériau, du type à constante diélectrique élevée, procédé dans lequel : on dirige un rayonnement lumineux vers une deuxième zone (2, 24, 30) en un deuxième matériau, ce deuxième matériau étant un métal, la diffusion de l'énergie thermique de la deuxième zone vers la première zone permettant la modification par effet thermique de celle-ci .
2. Procédé selon la revendication 1, le rayonnement lumineux étant celui d'un faisceau laser.
3. Procédé selon la revendication 1 ou 2, la première zone étant constituée par une première couche (4, 26) du premier matériau et la deuxième zone par une deuxième couche (2, 24) du deuxième matériau.
4. Procédé selon la revendication 1 ou 2, la première et la deuxième zones étant respectivement constituées par une première portion (30) et une deuxième portion (32), d'une même couche.
5. Procédé selon l'une des revendications 1 à 4, la première et la deuxième zones étant des zones voisines d'un matériau massif.
6. Procédé selon l'une des revendications 1 à 5, la caractéristique à modifier de la première zone (4, 26, 32) étant une caractéristique physique ou chimique .
7. Procédé selon l'une des revendications 1 à 6, la caractéristique à modifier de la première zone (4, 26, 32) étant une caractéristique optique et/ou diélectrique et/ou magnétique et/ou thermique et/ou cristalline et/ou amorphe, et/ou une composition chimique et/ou un dopage, et/ou une caractéristique de morphologie .
8. Procédé selon l'une des revendications 1 à 7 , le métal étant du platine .
9. Procédé selon l'une des revendications 1 à 8, la diffusion d'énergie thermique assurant une élévation de température dans la deuxième zone supérieure à 100°C ou à 500°C ou à 1000°C.
10. Procédé selon l'une des revendications 1 à 9, la deuxième zone présentant une absorption, au rayonnement lumineux, supérieure à celle de l'absorption de la première zone.
11. Procédé selon l'une des revendications 1 à 10, le premier matériau étant à constante diélectrique comprise entre 3 ou 3,9 et 100.
12. Procédé selon l'une des revendications 1 à 11, le premier matériau étant du SrTi03 ou de l'oxyde d'yttrium (Y203) , ou de l'aluminium (AI2O3) , ou de l'oxyde de zirconium (Zr02) , ou de l'oxyde de Hafnium (Hf02) ou du PbZrTi03, ou du BaTi03, ou du PbTi03, ou du BaSrTi03.
13. Procédé selon l'une des revendications 1 à 12, le premier matériau et le deuxième matériau faisant partie d'une capacité MIM.
14. Système hétérogène de matériaux comportant : - une première zone (4, 26, 32) en un premier matériau, du type à constante diélectrique K élevée, présentant une caractéristique physique et/ou chimique apte à être modifiée de manière thermique, - une deuxième zone (2, 24, 30) en un deuxième matériau, ce deuxième matériau étant du métal, pour absorber au moins une partie d'un rayonnement à une longueur d'onde, et pour transférer vers la première zone au moins une partie d'énergie thermique résultant de cette absorption.
15. Système selon la revendication 14, la première zone étant constituée par une première couche (4, 26) du premier matériau et la deuxième zone par une deuxième couche (2, 24) du deuxième matériau.
16. Système selon la revendication 14, la première et la deuxième zones étant respectivement constituées par une première portion (30) et une deuxième portion (32) d'une même couche.
17. Système selon la revendication 14, la première et la deuxième zones étant des zones voisines d'un matériau massif.
18. Système selon l'une des revendications 14 à 17, le premier matériau étant à constante diélectrique comprise entre 3 ou 3,9 et 100.
19. Système selon l'une des revendications 14 à 18, le premier matériau étant du SrTiθ3 ou de l'oxyde d'yttrium (Y203) , ou de l'aluminium (AI2O3) , ou de l'oxyde de zirconium (Zr02) , ou de l'oxyde de Hafnium (Hf02) ou du PbZrTi03, ou du BaTi03, ou du PbTi03, ou du BaSrTiU3.
20. Système selon l'une des revendications 14 à 19, la première et la deuxième zone faisant partie d'une capacité MIM.
EP04816130A 2003-09-17 2004-09-14 Structure multi-zones apte a subir un recuit par irradiation lumineuse et procede de mise en oeuvre de ladite structure Withdrawn EP1665351A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0350562A FR2859820B1 (fr) 2003-09-17 2003-09-17 Structure multi-zones apte a subir un recuit par irradiation lumineuse et procede de mise en oeuvre de ladite structure
PCT/FR2004/050430 WO2005027209A2 (fr) 2003-09-17 2004-09-14 Structure multi-zones apte a subir un recuit par irradiation lumineuse et procede de mise en oeuvre de ladite structure

Publications (1)

Publication Number Publication Date
EP1665351A2 true EP1665351A2 (fr) 2006-06-07

Family

ID=34203558

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04816130A Withdrawn EP1665351A2 (fr) 2003-09-17 2004-09-14 Structure multi-zones apte a subir un recuit par irradiation lumineuse et procede de mise en oeuvre de ladite structure

Country Status (4)

Country Link
US (1) US20070036994A1 (fr)
EP (1) EP1665351A2 (fr)
FR (1) FR2859820B1 (fr)
WO (1) WO2005027209A2 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2921752B1 (fr) 2007-10-01 2009-11-13 Aplinov Procede de chauffage d'une plaque par un flux lumineux.
US8546172B2 (en) 2008-01-18 2013-10-01 Miasole Laser polishing of a back contact of a solar cell
US8586398B2 (en) * 2008-01-18 2013-11-19 Miasole Sodium-incorporation in solar cell substrates and contacts
US8536054B2 (en) * 2008-01-18 2013-09-17 Miasole Laser polishing of a solar cell substrate
FR2938116B1 (fr) * 2008-11-04 2011-03-11 Aplinov Procede et dispositif de chauffage d'une couche d'une plaque par amorcage et flux lumineux.
US9859121B2 (en) * 2015-06-29 2018-01-02 International Business Machines Corporation Multiple nanosecond laser pulse anneal processes and resultant semiconductor structure
WO2020212736A1 (fr) * 2019-04-17 2020-10-22 Arcelormittal Procédé de fabrication d'un ensemble par soudage au laser
WO2020212737A1 (fr) * 2019-04-17 2020-10-22 Arcelormittal Procédé de fabrication d'un substrat métallique revêtu par dépôt de métal au laser

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4437139A (en) * 1982-12-17 1984-03-13 International Business Machines Corporation Laser annealed dielectric for dual dielectric capacitor
JPH073908B2 (ja) * 1987-07-16 1995-01-18 三菱電機株式会社 半導体発光装置の製造方法
JPH0241785A (ja) * 1988-08-02 1990-02-09 Toyo Seikan Kaisha Ltd レーザマーキング部材
GB9206086D0 (en) * 1992-03-20 1992-05-06 Philips Electronics Uk Ltd Manufacturing electronic devices comprising,e.g.tfts and mims
JP3108797B2 (ja) * 1992-10-26 2000-11-13 富士通株式会社 高誘電率誘電体薄膜の製造方法
US5756369A (en) * 1996-07-11 1998-05-26 Lsi Logic Corporation Rapid thermal processing using a narrowband infrared source and feedback
US6380044B1 (en) * 2000-04-12 2002-04-30 Ultratech Stepper, Inc. High-speed semiconductor transistor and selective absorption process forming same
US6635541B1 (en) * 2000-09-11 2003-10-21 Ultratech Stepper, Inc. Method for annealing using partial absorber layer exposed to radiant energy and article made with partial absorber layer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005027209A2 *

Also Published As

Publication number Publication date
WO2005027209A2 (fr) 2005-03-24
WO2005027209A3 (fr) 2005-12-08
FR2859820B1 (fr) 2006-06-09
US20070036994A1 (en) 2007-02-15
FR2859820A1 (fr) 2005-03-18

Similar Documents

Publication Publication Date Title
EP0801419B1 (fr) Procédé d'obtention d'un film mince de matériau semiconducteur comprenant notamment des composants électroniques
FR3067517B1 (fr) Substrat soi compatible avec les technologies rfsoi et fdsoi
WO2006005889A1 (fr) Cellule solaire photovoltaique et module solaire
EP2071058B1 (fr) Procédé de cristallisation
US9627840B2 (en) Metamaterial structures for Q-switching in lasers
WO2005027209A2 (fr) Structure multi-zones apte a subir un recuit par irradiation lumineuse et procede de mise en oeuvre de ladite structure
FR3057900A1 (fr) Vitrage multiple comprenant au moins une feuille de verre mince revetue d'un empilement a faible emissivite
WO2014207184A1 (fr) Procédé de transfert d'une couche mince avec apport d'énergie thermique à une zone fragilisée via une couche inductive
FR2827707A1 (fr) Procede de realisation d'un detecteur bolometrique et detecteur realise selon ce procede
EP1217620A1 (fr) Support d'enregistrement optique à plusieurs niveaux de lecture/écriture par faisceau laser
EP2193540B1 (fr) Procede de chauffage d'une plaque par un flux lumineux
EP2115745A1 (fr) Support de stockage d'informations optiques a haute resolution
FR2844920A1 (fr) Transistor a couche mince de silicium et son procede de fabrication
EP2801118B1 (fr) Procédé de fabrication d'une cellule photovoltaïque
FR3008994A1 (fr) Procede de cristallisation en phase solide
FR2784794A1 (fr) Structure comportant une couche semiconducteur et/ou des elements electroniques sur un support isolant et son procede de fabrication
WO2018167394A1 (fr) Detecteur pyroelectrique
FR3079657A1 (fr) Structure composite demontable par application d'un flux lumineux, et procede de separation d'une telle structure
EP2758560B1 (fr) Miroir a couche argent par magnetron
WO2009121912A1 (fr) Disque optique a super-resolution a stabilite de lecture elevee
FR3073321A1 (fr) Procede de cristallisation d'une couche utile
FR2792112A1 (fr) Dispositif et procede de traitement de composants electroniques en couches minces de silicium amorphe, notamment de transistors pour ecrans plats a matrices actives a cristaux liquides
WO2006103340A2 (fr) Support d’enregistrement optique irreversible par formation de bulles ayant une hauteur limitee par la source de gaz les generant
EP4060716A1 (fr) Procede de modification d'un etat de contrainte d'au moins une couche semi-conductrice
FR2801726A1 (fr) Procede de fabrication d'une lamelle ou plaquette photovoltaique et cellule comportant une telle plaquette

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060316

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HYOT, BERANGERE

Inventor name: HUE, JEAN

Inventor name: ANDRE, BERNARD

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080922

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130403