WO2009046620A1 - Cycloastragenol monoglucoside, preparation, pharmaceutical composition and application thereof - Google Patents

Cycloastragenol monoglucoside, preparation, pharmaceutical composition and application thereof Download PDF

Info

Publication number
WO2009046620A1
WO2009046620A1 PCT/CN2008/001594 CN2008001594W WO2009046620A1 WO 2009046620 A1 WO2009046620 A1 WO 2009046620A1 CN 2008001594 W CN2008001594 W CN 2008001594W WO 2009046620 A1 WO2009046620 A1 WO 2009046620A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
water
ethanol
pharmaceutical composition
injection
Prior art date
Application number
PCT/CN2008/001594
Other languages
English (en)
French (fr)
Inventor
Yingmei Han
Guangping Xia
Weiren Xu
Zhuanyou Zhao
Wulin Liu
Naxia Zhao
Peng Liu
Shijun Zhang
Yuli Wang
Weiting Wang
Lida Tang
Original Assignee
Tianjin Institute Of Pharmaceutical Research
Fu, Xiaoli
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Institute Of Pharmaceutical Research, Fu, Xiaoli filed Critical Tianjin Institute Of Pharmaceutical Research
Priority to EP08783682A priority Critical patent/EP2199402A4/en
Priority to US12/678,025 priority patent/US8835134B2/en
Priority to JP2010524334A priority patent/JP5294509B2/ja
Publication of WO2009046620A1 publication Critical patent/WO2009046620A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/48Fabaceae or Leguminosae (Pea or Legume family); Caesalpiniaceae; Mimosaceae; Papilionaceae
    • A61K36/481Astragalus (milkvetch)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J17/00Normal steroids containing carbon, hydrogen, halogen or oxygen, having an oxygen-containing hetero ring not condensed with the cyclopenta(a)hydrophenanthrene skeleton
    • C07J17/005Glycosides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • C12P19/56Preparation of O-glycosides, e.g. glucosides having an oxygen atom of the saccharide radical directly bound to a condensed ring system having three or more carbocyclic rings, e.g. daunomycin, adriamycin

Definitions

  • the invention belongs to the technical field of medicine. Specifically, the present invention relates to a process for preparing a monoglucoside of cycloxanthine, cycloxanthine 6-O- ⁇ -D-glucoside, and cycloxanthine 6-0- ⁇ -produced by the method.
  • Background technique is a pharmaceutical composition of D-glucoside.
  • Cycloastragenol is a lanoleane tetracyclic triterpenoid structure and is an indexed taxonomic group in the genus Astragalus.
  • the cyclosporine triterpenoid saponin component is the main bioactive component commonly used in ⁇ Astragalus membranaceus Bge. ), which regulates immunity, cardiac, anti-cardio-cerebral ischemia, liver protection, anti-inflammatory, anti-viral and improves kidney and islet Damage and many other pharmacological effects.
  • CMG cycloxanthine 6-0- ⁇ -D-glucoside
  • the invention aims at the technical deficiencies of the existing production methods, and proposes a CMG production method suitable for industrialization, and invents related preparations according to the characteristics of good solubility of CMG and obvious treatment of cardiovascular diseases.
  • the method combines industrial enzyme preparation biomimetic conversion technology and high-efficiency natural product purification technology to prepare CMG, without using toxic organic solvent and strong acid and alkaline reagents, and has a clean and environmentally friendly process, stable product yield, and is suitable for industrial production.
  • Another object of the present invention is to provide a CMG prepared by the method of the present invention, a pharmaceutical composition comprising a therapeutically effective amount of the CMG and one or more pharmaceutically acceptable excipients, and the CMG is prepared for the treatment of cardiovascular The application of drugs for diseases.
  • the method for preparing CMG of the present invention is achieved by the following technical scheme.
  • the present invention provides a method for preparing cycloxanthine-6-0- ⁇ -D-glucoside, comprising the steps of: a. using baicalin or a traditionally prepared xanthine extract as a raw material, Adding a suitable solvent thereto to prepare a drug solution;
  • the concentration of the baicalin in the solution is 0. 01% - 1% (W / V), the preferred concentration is 0. 01 - 0. 5%, (W / V) More preferably, the concentration is 0. 01 - 0. 1%W/V; when the raw material is the extract of Astragalus membranaceus, the concentration of the solution is the extract: solution ratio 1: 2- 1 : 1000 (W: V), the preferred ratio is extract: Solution 1: 15-1: 1000 (W: V).
  • the solvent is selected from the group consisting of water, lower alcohols or aqueous lower alcohols.
  • the lower alcohol is preferably selected from the group consisting of monohydric alcohols having a carbon number of 1-3, more preferably selected from the group consisting of ethanol and methanol, and most preferably ethanol.
  • the raw material is baicalin or a poorly water-soluble extract, the raw material needs to be solubilized with an appropriate concentration of a lower alcohol, which contributes to an improvement in hydrolysis efficiency.
  • the final concentration of the lower alcohol in the medical solution in the present invention is preferably from 1 to 30% (V/V), more preferably from 5 to 20% (V/V).
  • the hydrolase is preferably selected from the group consisting of beta-glucosidase, beta-glucosidase, hesperidase or these enzymes with cellulases, glucanases, xylanases, A mixture of one or more enzymes of glucoamylase, pectinase, amylase, more preferably beta-glucosidase, beta-glucosidase or xylanase, most preferably xylanase.
  • the xylanase refers to an exo-type xylanase having an enzyme activity of 50 to 5 million viable units/g (ml).
  • the ratio of the substrate to the enzyme is 1:1-50 (W: W); and when the substrate is a medicinal extract, the enzyme is The substrate ratio is 1: 100-10: 1 (W: W), and the preferred ratio is 1: 50-10: 1 (W: W).
  • the hydrolysis is carried out at a constant temperature of 40 to 55 ° C.
  • the separation is carried out as follows: a macroporous adsorption resin in which a hydrolyzate is styrene-based, first eluted with water for 1 to 2 column volumes, and then with 0.5 to 2%. The alkaline solution is eluted with 1 column volume, and then eluted with 20-40% ethanol solution for 1 to 3 column volumes. Finally, 1 to 3 column volumes are eluted with 70-95% ethanol to collect high concentration ethanol wash. The fraction was removed and concentrated under reduced pressure until the solution contained a small amount of ethanol or no alcohol, and a white precipitate was observed.
  • the raw material the resin is preferably 1:20-4:1 (g:ml), more preferably 1:10-3:1 (g:ml) when the raw material is the extract; and preferably when the raw material is baicalin It is 0.1: 1-20: 1 (mg: ml), more preferably 2: 1 - 10: 1 (mg: ml).
  • the purification is carried out as follows: The white precipitate obtained by filtration is separated, dissolved with a lower alcohol, filtered, and the filtrate is concentrated until the solution is slightly cloudy. Place, crystallize to be precipitated. The crystals are filtered and recrystallized from a lower alcohol or an aqueous lower alcohol to obtain cyclodextrose-6-0- ⁇ -D-glucoside having a purity of 95% or more.
  • the lower alcohol is preferably a monohydric or polyhydric alcohol having a carbon number of 1-5, more preferably selected from the group consisting of methanol and ethanol. Glycosides. Cycloxanthine of the present invention - 6-0- (3-D
  • the invention also provides a pharmaceutical composition comprising a therapeutically effective amount of cycloxanol-6-0- ⁇ -D-glucoside prepared according to the method of the invention and a pharmaceutically acceptable adjuvant.
  • the pharmaceutically acceptable adjuvant is selected from the group consisting of a diluent, a lubricant, a binder, a disintegrant, a stabilizer, and a solvent.
  • the diluent includes, but is not limited to, starch, microcrystalline cellulose, sucrose, dextrin, lactose, powdered sugar, glucose, low molecular dextran, kaolin, sodium chloride, mannitol, etc.
  • the lubricant includes but not Limited to magnesium stearate, stearic acid, boric acid, sodium chloride, sodium oleate,
  • the binders include, but are not limited to, water, ethanol, starch syrup, syrup, gelatin, sulfhydryl cellulose , hydroxypropyl decyl cellulose, sodium carboxymethyl cellulose, sodium alginate, gum ghatti, polyvinyl pyrrolidone, etc.
  • the disintegrants include, but are not limited to, starch, sodium carboxymethyl starch, effervescent mixture Sodium bicarbonate and citric acid, tartaric acid, low-substituted hydroxypropyl cellulose, etc.
  • the stabilizers include, but are not limited to, polysaccharides such as acacia, agar, alginic acid, guar gum, tragacanth, acrylate resin, fiber And ethers such as, but not limited to, forest format solutions, water, phosphate buffers, balanced salt solutions, and the like
  • the pharmaceutical composition of the present invention may be in the form of a solid oral preparation, a liquid oral preparation, an injection, a film or an aerosol.
  • the solid oral preparation is preferably a plain tablet, a dispersible tablet, an enteric coated tablet, a granule, a capsule, a dropping pill or a powder, or a controlled release preparation.
  • the sustained release preparation is preferably a controlled release tablet, granule or capsule.
  • the liquid oral preparation is preferably an oral solution or an emulsion.
  • the injection is preferably a small water needle, an infusion or a lyophilized powder needle.
  • the pharmaceutical composition of the present invention when the pharmaceutical composition of the present invention is a small water injection, the pharmaceutical composition preferably contains, in addition to water for injection, a pharmaceutically acceptable excipient selected from the group consisting of glucose, sodium chloride, sorbitol and phosphate in an appropriate ratio, selected from the group consisting of ethanol, glycerin and An organic solvent of propylene glycol or a cosolvent selected from the group consisting of PEG for injection and hydroxypropyl ⁇ -cyclodextrin.
  • the pharmaceutical composition of the present invention is an infusion, the pharmaceutical composition preferably further contains glucose, sodium chloride and/or an isotonic agent added as needed, in addition to water for injection.
  • the pharmaceutical composition of the present invention is a lyophilized powder injection
  • the pharmaceutical composition preferably further contains a lyophilized support in an appropriate ratio, preferably selected from the group consisting of mannitol, glucose, sorbitol, sodium chloride, and dextrorotatory One, two or more combinations of glycosides, sucrose, lactose, hydrolyzed gelatin, hydroxypropyl- ⁇ -cyclodextrin, sulfobutyl ether cyclodextrin, poloxamer and polyethylene glycol.
  • a lyophilized support in an appropriate ratio, preferably selected from the group consisting of mannitol, glucose, sorbitol, sodium chloride, and dextrorotatory One, two or more combinations of glycosides, sucrose, lactose, hydrolyzed gelatin, hydroxypropyl- ⁇ -cyclodextrin, sulfobutyl ether cyclodextrin, poloxamer and
  • the weight ratio of cycloxanthine-6-0- ⁇ -D-glucoside to the pharmaceutically acceptable excipient in the frozen powder injection is preferably 1: 10-200, more preferably 1 : 50-200, more preferably 1:100-150.
  • the lyophilized support agent is a mannitol or mannitol-lactose composition, and the weight ratio of mannitol to lactose in the mannitol-lactose composition is 10: 1-1: 1, preferably 5: 1 -1: 1.
  • the lyophilized support agent is a dextran, polyethylene glycol-mannitol or dextran-polyethylene glycol-mannitol composition, of which a polyethylene glycol-mannitol composition is preferred.
  • the polyethylene glycol is preferably polyethylene glycol 200-600, more preferably polyethylene glycol 400.
  • the weight ratio of polyethylene glycol:mannitol is 1:1 to 1:10, preferably 1:1 to 1:5.
  • the invention also provides the use of cycloxanthine-6-0- ⁇ -D-glucoside prepared according to the method of the invention for the manufacture of a medicament for the treatment of cardiovascular diseases.
  • the concentration of the substrate solution and the ratio of the enzyme to the substrate are the main factors affecting the yield of CMG.
  • concentration of the substrate solution is too high, the hydrolysis efficiency is reduced by affecting the activity of the enzyme.
  • the substrate solution is too thin, the solution volume and the amount of the enzyme are unnecessarily increased and the treatment time is prolonged, which in turn affects the production cycle.
  • the dilution factor of the substrate solution may be lower (extract-solution ratio 1: 5-1: 30W: V);
  • the dilution ratio of the substrate solution should be 1:40-1: 1000 W:V;
  • the substrate solution should be prepared according to the method of preparation of baicalin solution.
  • the preparation method of the compound CMG can also directly prepare CMG from Astragalus membranaceus, without first preparing high-purity baicalin, and then preparing the desired compound, which greatly saves production cost, and has a simple process route.
  • the biological enzymatic hydrolysis method does not require the use of poisonous organic solvents in the whole process, and the actual production can be highly enforced, the product yield (average 0.1% from the medicinal materials) and the quality are stable.
  • the compound CMG provided by the present invention is more water-soluble than other cycloxanthine components and is suitable for preparation for injection. Injections have certain advantages in clinical practice because they are fast-acting, stable, and suitable for critically ill patients or patients who cannot take oral medication.
  • the compound CMG When the compound CMG is made into a water injection, the compound can be directly dissolved in water for injection, and an appropriate ratio of glucose, sodium chloride, sorbitol, phosphate or the like can be prepared by a conventional aqueous injection preparation method.
  • an organic solvent such as ethanol, glycerin or propylene glycol or PEG for injection, hydroxypropyl (3-cyclodextrin, etc.).
  • the cyclosporin-6-0- ⁇ -D- in the water injection is preferably from 0.01% to 1% g/100 ml, more preferably from 0.01% to 0.2% g/100 ml.
  • the prescribed dose of the compound can be dissolved in water for injection, glucose is added as needed, sodium chloride and isotonic agents are prepared into different specifications of the infusion according to the conventional preparation method of the infusion.
  • the concentration of cycloxanol-6-0- ⁇ -D-glucoside in the infusion is preferably 0.001% - 0.1% g / 100 ml, more preferably 0.002 % - 0.05% g /100ml.
  • the support agent is selected from the group consisting of mannitol, glucose, sorbitol, sodium chloride, dextran, sucrose, lactose, hydrolyzed gelatin, hydroxypropyl-beta-cyclodextrin, sulfobutylcyclodextrin, poloxamer and One, two or more of polyethylene glycols.
  • the weight ratio of CMG-medicinal excipients in the CMG lyophilized powder injection of the present invention is 1: 10-200, preferably 1: 50-200, more preferably 1: 100-150.
  • the mannitol, mannitol-lactose composition is used as a lyophilized support, and the weight ratio of the mannitol-lactose composition may be 10: 1-1: 1 (W: W), preferably the weight ratio is 5: 1-1: 1.
  • the present invention is a dextran, polyethylene glycol-mannitol or dextran-polyethylene glycol-mannitol composition as a lyophilized support, wherein a polyethylene glycol-mannitol composition is preferred.
  • the polyethylene glycol is preferably polyethylene glycol 200-600, more preferably polyethylene glycol 400.
  • the weight ratio of polyethylene glycol: mannitol is 1: 1- 1:10, preferably 1: 1 - 1: 5, more preferably 1: 1- 1: 2 .
  • the CMG frozen powder injection provided by the present invention can be prepared by a conventional preparation process in the art.
  • CMG has limited solubility in water and its solubility in water is greatly affected under different dissolution conditions. Therefore, in order to ensure the consistency of the drug content in each batch of products and to meet the requirements of the concentration of the lyophilized solution, it is necessary to take appropriate measures in the preparation process, especially in the solution preparation process.
  • the present invention solves the problems as described above by the following steps:
  • sample solution described in a is added dropwise to the treated with 0.1 - 0.5% activated carbon. Lyophilized in a support solution;
  • the solvent in the step a is preferably ethanol, propylene glycol or polyethylene glycol, and the amount thereof is preferably from 1 to 10% of the total volume of the solution.
  • Example 1 The invention is further described in conjunction with the embodiments, which are intended to provide a more complete understanding of the invention.
  • Example 1
  • the liquid was concentrated under reduced pressure to a non-alcoholic taste to leave a white precipitate.
  • the white precipitate was filtered, reconstituted with decyl alcohol, filtered, and the filtrate was concentrated until the solution began to become cloudy, and the crystals to be precipitated were placed, filtered to obtain crystals, and recrystallized from ethanol-water to obtain CMG pure product (white amorphous powder).
  • the white precipitate is filtered, reconstituted with methanol, filtered, and the filtrate is concentrated until the solution begins to become cloudy.
  • the crystals are precipitated, crystallized by filtration, and recrystallized from decyl alcohol-water to obtain CMG pure product (white fine needle crystal). .
  • the filtrate was filtered through a 600 ml D101 macroporous adsorption resin, first eluted with 1 column volume of water, and then eluted with 2 column volumes of 0.5% sodium hydroxide solution. After that, it was eluted with 2 column volumes of 40% ethanol solution, and finally eluted with 70% ethanol for 2 column volumes, and a 70% ethanol eluate was collected, and concentrated under reduced pressure to an alcohol-free atmosphere to precipitate a white precipitate.
  • the white precipitate was filtered, reconstituted with ethanol, filtered, and the filtrate was concentrated until the solution began to become cloudy.
  • the crystals which were to be precipitated were crystallized, filtered, and then recrystallized from ethanol-water to obtain CMG pure product (white amorphous powder).
  • Astragalus membranaceus (2kg) water decoction alcohol extract (23%), diluted with water to extract: liquid to liquid ratio 1: 30 W: V, add cellulase 50g, glucanase 50g, ⁇ - glucosidase 130g dissolved, adjusted solution pH value of 4.5, enzymatic hydrolysis at 45 °C for 72 hours, filtered, the filtrate was adsorbed by 400ml D101 macroporous adsorption resin, first eluted with 1 column volume of water, and then Two column volumes of 0.5% sodium hydroxide solution were eluted, then eluted with 2 column volumes of 40% ethanol solution, and finally eluted with 70% ethanol for 2 column volumes, and 70% ethanol eluate was collected.
  • Astragalus membranaceus (2kg) water decoction extract (29% yield), concentrated to extract: liquid
  • the ratio is 1: 25 W: V, 50 g of cellulase, 15 g of pectinase, and 80 g of ⁇ -glucosidase are dissolved, and the pH of the solution is adjusted to 5.0, and the solution is filtered at 40 ° C for 24 hours, filtered, and the filtrate is filtered.
  • Astragalus membranaceus extract 30g prepared with water: 1 : 30 W: V, dissolved in ⁇ -glucosidase 30g, adjusted solution pH value of 6.0, enzymatic hydrolysis at 45 °C for 48 hours, Filtration, the filtrate was adsorbed by 700 ml of D101 macroporous adsorption resin, first eluted with 1 column volume of water, and then eluted with 2 column volumes of 0.5% sodium hydroxide solution, followed by 40% of 2 column volumes. The ethanol solution was eluted, and finally, the column volume was eluted with 70% ethanol, and the 70% ethanol eluate was collected, and concentrated under reduced pressure to give no alcohol. The latter operation is the same as in the sixth embodiment.
  • Astragalus medicinal extract 20g dissolved in water, diluted to the extract: a ratio of 1:40 W: V, plus ⁇ -glucosidase 2g, xylanase 3g dissolved, adjust the pH of the solution is 5.0.
  • 4CTC was hydrolyzed for 48 hours, filtered, and the filtrate was adsorbed by 600 ml of D101 macroporous adsorption resin, first eluted with 1 column volume of water, and then eluted with 2 column volumes of 0.5% sodium hydroxide solution, followed by 2 A column volume of 40% ethanol solution was eluted, and finally 2 column volumes were eluted with 70% ethanol, and a 70% ethanol eluate was collected, and concentrated under reduced pressure to an alcohol-free taste.
  • the latter operation is the same as in the sixth embodiment.
  • Astragalus membranaceus extract 15g dissolved in ice to the extract: the ratio of the drug solution is 1: 60 W: V, the ⁇ -glucosidase lg is dissolved, the pH of the solution is adjusted to 4.5, 48 hours at 50 °C. , filtered, the filtrate was adsorbed by 400 ml of D101 macroporous adsorption resin, first eluted with 1 column volume of water, and then eluted with 2 column volumes of 0.5% sodium hydroxide solution, followed by 2 column volumes of 40 The % ethanol solution was eluted, and finally, 2 column volumes were eluted with 70% ethanol, and a 70% ethanol eluate was collected, and concentrated under reduced pressure to an alcohol-free taste. The latter operation is the same as in the sixth embodiment.
  • Astragalus membranaceus extract 30g dissolved in water to the extract: the ratio of the drug solution is 1: 80 W: V, dissolved in ⁇ -glycosidase 3g, adjust the pH of the solution to 5.0.
  • 48 enzymatic hydrolysis at 5CTC for 48 hours, filtration, filtrate Adsorbed by 250ml D101 macroporous adsorption resin, first eluted with 1 column volume of water, then eluted with 2 column volume of 0.5% sodium hydroxide solution, then washed with 2 column volume of 40% ethanol solution The mixture was stripped of 2 column volumes with 70% ethanol, and a 70% ethanol eluate was collected and concentrated under reduced pressure to give no alcohol. The latter operation is the same as in the sixth embodiment.
  • Astragalus membranaceus (2kg) ethanol extract (24% yield), dissolved in water to dissolve the extract: the ratio of the drug to liquid is 1: 20 W: V, add ⁇ -glucosidase 96g dissolved, adjust the pH of the solution to 6.
  • Astragalus membranaceus extract 200g dissolved in water to extract: the ratio of drug to liquid is 1: 90 W: V, plus 5 g of ⁇ -glucosidase, 5 g of amylase was dissolved, and the pH of the solution was adjusted to 5.5.
  • 5 g of cellulase was digested at 40 C for 12 hours, filtered, and the filtrate was adsorbed by 300 ml of D101 macroporous adsorption resin, first with 1 column. The volume of water was eluted, and then eluted with 2 column volumes of 0.5% sodium hydroxide solution, followed by 2 column volumes of 40% ethanol solution, and finally eluted with 70% ethanol for 2 column volumes. A 70% ethanol eluate was collected and concentrated under reduced pressure to give no alcohol. The latter operation is the same as in the sixth embodiment.
  • Astragalus membranaceus extract 200g dissolved in water to the extract - the ratio of liquid to liquid is 1: 10 W: V, 4 g of ⁇ -glucosidase is dissolved, the pH of the solution is adjusted to 6.0, and the solution is digested at 50 ° C for 36 hours. Filtration, the filtrate was adsorbed by 500 ml of D101 macroporous adsorption resin, first eluted with 1 column volume of water, and then eluted with 2 column volumes of 0.5% sodium hydroxide solution, followed by 2 column volume of 40%. The ethanol solution was eluted, and finally, 2 column volumes were eluted with 70% ethanol, and a 70% ethanol eluate was collected, and concentrated under reduced pressure to an alcohol-free taste. The latter operation is the same as in the sixth embodiment.
  • Astragalus membranaceus extract 30g dissolved in water to the extract - the ratio of the drug solution is 1: 20 W: V, the ⁇ -glucosidase lg is dissolved, the pH of the solution is adjusted to 5.0, and the enzyme is hydrolyzed at 40 ° C for 24 hours. Filtration, the filtrate was adsorbed by 50 ml of D101 macroporous adsorption resin, first eluted with 1 column volume of water, and then eluted with 2 column volumes of 0.5% sodium hydroxide solution, followed by 40% of 2 column volumes. The ethanol solution was eluted, and finally, 2 column volumes were eluted with 70% ethanol, and a 70% ethanol eluate was collected, and concentrated under reduced pressure to an alcohol-free taste. The latter operation is the same as in the sixth embodiment.
  • Astragalus medicinal extract lg dissolved in water to the extract - the ratio of the liquid to the solution is 1: 80 W: V, 5 g of ⁇ -glucosidase is dissolved, the pH of the solution is adjusted to 5. 5, and the solution is hydrolyzed at 45 ° C for 72 hours. Filtration, the filtrate was adsorbed by 20 ml of D101 macroporous adsorption resin, first eluted with 1 column volume of water, and then eluted with 2 column volumes of 0.5% sodium hydroxide solution, followed by 2 column volume of 40%. The ethanol solution was eluted, and finally, 2 column volumes were eluted with 70% ethanol, and a 70% ethanol eluate was collected, and concentrated under reduced pressure to an alcohol-free taste. The latter operation is the same as in the sixth embodiment.
  • Astragalus membranaceus extract lg dissolved in water to the extract - the ratio of the drug to 1: 90 W: V, added ⁇ -glucosidase 9g dissolved, adjust the pH of the solution to 4.5., enzymatic hydrolysis at 55 °C for 48 hours, Filtration, the filtrate was adsorbed by 20 ml of D101 macroporous adsorption resin, first eluted with 1 column volume of water, and then eluted with 2 column volumes of 0.5% sodium hydroxide solution, followed by 2 column volume of 40%. The ethanol solution was eluted, and finally, 2 column volumes were eluted with 70% ethanol, and a 70% ethanol eluate was collected, and concentrated under reduced pressure to an alcohol-free taste. The latter operation is the same as in the sixth embodiment.
  • Astragalus medicinal extract lg dissolved in water to the extract - the ratio of the liquid to the solution is 1: 50 W: V, and the ⁇ -glucosidase is dissolved in 3 g, the pH of the solution is adjusted to 5.0, and the solution is hydrolyzed at 45 ° C for 24 hours. Filtration, the filtrate was adsorbed by 10 ml of D101 macroporous adsorption resin, first eluted with 1 column volume of water, and then eluted with 2 column volumes of 0.5% sodium hydroxide solution, followed by 40% of 2 column volumes. The ethanol solution was eluted, and finally, 2 column volumes were eluted with 70% ethanol, and a 70% ethanol eluate was collected, and concentrated under reduced pressure to an alcohol-free taste. The latter operation is the same as in the sixth embodiment.
  • Astragalus medicinal extract 100g dissolved in water to the extract - the ratio of the liquid to the solution is 1: 10 W: V, the ⁇ -glucosidase lg is dissolved, the pH of the solution is adjusted to 4.5, 48 hours at 40 °C, filter, The filtrate was adsorbed by 500 ml of D101 macroporous adsorption resin, first eluted with 1 column volume of water, and then eluted with 2 column volumes of 0.5% sodium hydroxide solution, followed by 2 column volumes of 40% ethanol solution. Elution was carried out, and finally, 2 column volumes were eluted with 70% ethanol, and a 70% ethanol eluate was collected, and concentrated under reduced pressure to an alcohol-free taste. The latter operation is the same as in the sixth embodiment.
  • Astragalus membranaceus extract 70g dissolved in water to extract - the ratio of drug to liquid is 1: 30 W: V, add ⁇ -glucosidase lg dissolved, adjust the pH of the solution to 5, 5, enzymatic hydrolysis at 50 ° C for 48 hours, Filtration, the filtrate was adsorbed by 300 ml of D101 macroporous adsorption resin, first eluted with 1 column volume of water, and then eluted with 2 column volumes of 0.5% sodium hydroxide solution, followed by 40% of 2 column volumes. The ethanol solution was eluted, and finally, 2 column volumes were eluted with 70% ethanol, and a 70% ethanol eluate was collected, and concentrated under reduced pressure to an alcohol-free taste. The latter operation is the same as in the sixth embodiment.
  • Baicalin lg dissolved in 125 ml of medicinal ethanol, added to 1800 rol water with stirring, and dissolved 10 g of exo-xylanase (3 million U/g of enzyme activity) in 200 ml of water, and added to the solution of astragaloside IV.
  • the total volume of the solution is 2500 ml, the pH of the solution is adjusted to 4.5, and the solution is digested at 50 ° C for 12 hours, filtered, and the filtrate is subjected to 100 ml of DlOl macroporous adsorption resin, first eluted with 1 column volume of water, and then 2 A column volume of 40% ethanol solution was eluted, and finally, 2 column volumes were eluted with 70% ethanol, and a 70% ethanol eluate was collected, and concentrated under reduced pressure to an alcohol-free taste.
  • the latter operation is the same as in the sixth embodiment.
  • Astragaloside IV 0.6g, dispersed in 1800ml water, to prepare a suspension of astragaloside IV.
  • the lyophilized xylanase enzyme activity 5 million U / g
  • the lyophilized xylanase was dissolved in 100 ml of water, added to the baicalin solution, the final volume of the solution was 2000 ml, and the pH of the solution was adjusted to 5.0. Hydrolyze for 24 hours and filter. The latter operation is the same as in Example 27.
  • Astragaloside 0.2 g dissolved in 800 ml of water, 8 g of exo-xylanase (500,000 U/g of enzyme activity) was dissolved in 200 ml of water, added to the solution of astragaloside, and the pH of the solution was adjusted to 4.5. The mixture was digested at 50 ° C for 12 hours and filtered. The latter operation was the same as in Example 27.
  • Astragalus membranaceus extract 25g, dissolved in water to dissolve the extract, a ratio of 1:20, plus exo-cut xylanase lg (enzyme activity 3 million U / g) dissolved, adjust the pH of the solution 4.5, 50 ° C enzyme Solution for 12 hours, filter.
  • the latter operation is the same as in the sixth embodiment.
  • Astragalus membranaceus extract 30 g dissolved in water to dissolve the extract, a ratio of 1:10, 2 g of exo-cut xylanase (2 million U/g of enzyme activity), adjust the pH of the solution to 5, 5 CTC enzymatic hydrolysis 12 hours, filtered.
  • the latter operation is the same as in the sixth embodiment.
  • Astragalus membranaceus extract 10g dissolved in water to dissolve the extract, a ratio of 1:40, 0.25g of exo-cut xylanase (4 million U/g enzyme activity), adjust the pH of the solution to 4.5, 45 enzymatic hydrolysis 24 hours, filtered.
  • the latter operation is the same as in the sixth embodiment.
  • Astragalus membranaceus extract lg dissolved in water to dissolve the extract, a ratio of 1:300, plus exo-cut xylanase 0.5g (4 million U/g enzyme activity), adjust the pH of the solution to 5, 50 ⁇ enzymatic hydrolysis 12 small When, filter.
  • the latter operation is the same as in the sixth embodiment.
  • Astragalus membranaceus extract 0.5g, dissolved in water to dissolve the extract, a ratio of 1:500, 3g of exo-cut xylanase (5 million U/g enzyme activity), adjust the pH of the solution to 5, 45 °C Enzymatic hydrolysis for 12 hours, filtration.
  • the latter operation is the same as in the sixth embodiment.
  • Astragalus membranaceus extract 0.3g, dissolved in water to dissolve the extract, a ratio of 1:800, 3g of exo-cut xylanase (3 million U/g enzyme activity), adjust the pH of the solution to 5, 50 °C Enzymatic hydrolysis for 24 hours, filtration.
  • the latter operation is the same as in the sixth embodiment.
  • Astragalus membranaceus extract 0.5g, dissolved in water to dissolve the extract, a ratio of 1:1000, 4g of exo-cut xylanase (enzyme activity 1 million U / g) dissolved, adjust the pH of the solution to 4.5, 50 ° C Enzymatic hydrolysis for 48 hours, filtration.
  • the latter operation is the same as in the sixth embodiment.
  • CMG lOg, plus 40g of lactose: microcrystalline cellulose 5: 1, magnesium stearate 1%, granulated with 70% ethanol, tableting 1000 tablets. Specifications: 10mg / piece.
  • CMGO.8g mannitol 80g, plus 2000ml water for injection, add appropriate amount of activated carbon to remove heat, 0.2 ⁇ microporous membrane filtration, filling, freeze-drying. Specifications: 2mg, 5mg / support (in CMG), dissolved in 10-20ml water for injection, 5% dextrose injection or sodium chloride injection before use, then injected into the intravenous infusion, intravenous drip.
  • CMGO.2g mannitol 20g, lactose 5g, add 500ml hot water for injection, then hydrated to lOOOral, add appropriate amount of activated carbon to remove heat, 0.2 ⁇ microporous membrane filtration, filling, freeze-drying, for intravenous injection.
  • the usage is the same as in Example 13.
  • the usage is the same as in Example 13.
  • the usage is the same as in Example 13.
  • the usage is the same as in Example 13.
  • the usage is the same as in Example 13.
  • CMGO. 67g dissolved in 80g of ethanol treated with 0.3% activated carbon; 50g of dextran 40 plus 500ml of water for injection, add 0.3% activated carbon treatment, add the prepared sample ethanol solution to stir In the dextran solution, make up the water to 1000 ml, filter with 0.2 ⁇ m filter, dispense, and freeze-dry.
  • the sample solution was added to an activated carbon-treated 800 ml aqueous solution containing 20 g of dextran 40 and 50 ml of mannitol, and the water was added to 1000 ml, filtered through a 0.2 ⁇ m filter, and packaged, and lyophilized.
  • CMGO CMGO. 67g, 50 g of polyethylene glycol 400 treated with 0.3% activated carbon was dissolved by heating. The sample solution was added to an activated carbon-treated 800 ml aqueous solution containing 50 ml of mannitol under stirring, and the water was added to 1000 ml, filtered through a 0.2 ⁇ m filter, and packaged, and lyophilized.
  • CMGO CMGO. 5g, 50 g of polyethylene glycol 400 treated with 0.3% activated carbon was dissolved by heating. The sample solution was added to an activated carbon-treated 800 ml aqueous solution containing mannitol 25 g under stirring, and the water was added to 1000 ml, 0.2 ⁇ m ⁇ filter, and the mixture was lyophilized.
  • CMGO CMGO. 5g, 30 g of polyethylene glycol 400 treated with 0.3% activated carbon was dissolved by heating. The sample solution was added to an activated carbon-treated 800 ml aqueous solution containing 60 g of mannitol under stirring, and the water was added to 1000 ml, 0.2 ⁇ m of a filter membrane, and the mixture was lyophilized.
  • CMGO. 6g heated by dissolving 60 g of ethanol treated with 0.3% activated carbon, and added dropwise to 10 g of polyethylene glycol 400 treated with activated carbon.
  • the sample solution was added to an activated carbon-treated 800 ml aqueous solution containing 50 ml of mannitol under stirring, and the water was added to 1000 ml, 0.2 ⁇ m of a filter, and the mixture was lyophilized.
  • CMGO. 5g heated by dissolving 60 g of ethanol treated with 0.3% activated carbon, and added dropwise to 10 g of polyethylene glycol 400 treated with activated carbon.
  • the sample solution was added to an activated carbon-treated 800 ml aqueous solution containing 15 g of mannitol under stirring, and the water was added to 1000 ml, filtered through a 0.2 ⁇ m filter, and packaged, and lyophilized.
  • CMGO. 5g heated by dissolving 60 g of ethanol treated with 0.3% activated carbon, and added dropwise to 10 g of polyethylene glycol 400 treated with activated carbon.
  • the sample solution is added to the activated carbon after being stirred.
  • CMG 0. lg add 500ml of hot water for injection, dissolve the water for injection to 1000ml, adjust the infiltration, add appropriate amount of activated carbon to remove the heat source, filter with 0.2 ⁇ m microporous membrane, fill, and make a small water needle.
  • CMG 0. 4g add 100ml of ethanol to dissolve, make up the injection water to 500ml, adjust the isotonic, force the right amount of activated carbon to remove the heat source, 0. 2 ⁇ microporous membrane filtration, filling, to make a small water needle.
  • CMG lg glucose 50g, sorbitol 10g, ethanol 300ml; first dissolve the CMG with the prescription amount of ethanol, add 200ml of water for dilution, then add the prescription amount of glucose and sorbitol to dissolve, make up the injection water to 1000ml, add the appropriate amount of activated carbon to remove the heat source, 0 2 ⁇ microporous membrane filtration, filling, to make a small water needle.
  • Example 70 CMG lg, glucose 50g, sorbitol lOg, propylene glycol 200ml, first dissolve the CMG with a prescription of propylene glycol, add 100ml of water for dilution, then add the prescription amount of glucose and sorbitol to dissolve, make up the injection water to 500ml, add appropriate amount of activated carbon to remove heat, 0.2 The ⁇ microporous membrane is filtered and filled to produce a small water needle.
  • CMG lg dissolved in 60ml of ethanol, make up the water for injection to 100ml, add appropriate amount of activated carbon to remove heat, filter through 0.2 ⁇ microporous membrane, and fill, to make a small water needle.
  • CMG 0.8g dissolved in 30ml of ethanol, add 20ml of propylene glycol and mix well, make up the injection water to 100ml, add appropriate amount of activated carbon to remove heat, 0.2 ⁇ microporous membrane filtration, and fill, to make a small water needle.
  • CMG 0.8g dissolved in 60ml of ethanol, add 30ml of propylene glycol and mix well, make up the injection water to 200ml, add appropriate amount of activated carbon to remove the heat source, filter through 0.2 ⁇ microporous membrane, and fill, to make a small water needle.
  • CMG lg glucose 1000g
  • add 3L water for injection to dissolve make up the injection water to 20L
  • adjust pH 6.5 add appropriate amount of activated carbon to remove heat
  • 0.2 ⁇ microporous membrane filtration filling, to obtain infusion.
  • CMG2g glucose 1000g
  • add 5L of hot water for injection make up the water for injection to 20L
  • adjust the pH value of 7.0 add appropriate amount of activated carbon to remove the heat source, filter through 0.2 ⁇ microporous membrane, fill, and obtain infusion.
  • CMG 2g glucose 500g
  • add 5L of hot water for injection make up the water for injection to 10L
  • adjust the pH value of 7.0 add appropriate amount of activated carbon to remove the heat source, filter through 0.2 ⁇ microporous membrane, fill, and obtain infusion.
  • Example 78 CMG 0. 4g, glucose lOOOOg, add 5L water for injection to dissolve, make up the injection water to 20L, adjust the pH7.0. 0, add appropriate amount of activated carbon to remove the heat source, 0. 2 ⁇ microporous membrane filtration, filling, to obtain infusion. Specifications: 100ml / bottle, 250ml / bottle, 500ml / bottle.
  • CMG lg glucose 100g
  • CMG 0. lg, glucose 500g, add 5L water for injection to dissolve, make up the water for injection to 10L, adjust the pH 7.5, add appropriate amount of activated carbon to remove the heat source, 0.2 ⁇ m ⁇ microfiltration membrane filtration, filling, to make infusion. Specifications: 100ml / bottle, 250ml / bottle, 500ml / bottle.
  • CMG 5g, PEG6000 50g, 95% ethanol Take the amount of CMG dissolved in an appropriate amount of ethanol, heated in a water bath and melted by adding PEG6000, and then dripped into a liquid paraffin coolant of 10 ° C or less under a temperature of 50 ° C, and condensed into pellets to obtain a dropping pill.
  • CMG 5g, poloxamer 50g, 95% ethanol Prescription amount CMG is dissolved in an appropriate amount of ethanol, added to the molten poloxamer, stirred, and dropped into a cooled dimethicone under heat to prepare a dropping pill.
  • Example 84 Cardiac effect of CMG on isolated hearts
  • CMG shows a cardiac effect on the isolated heart model, and its intensity is comparable to that of astragaloside.
  • Example 85 Effect of CMG on hemodynamics in anesthetized open-chest dogs 1. Objective To observe the effect of intravenous administration of CMG on the cardiac function of anesthetized thoracotomy, and compare it with baicalin to provide experimental basis for further development of the drug.
  • CMG injection (referred to as ASP-II): colorless transparent liquid, 0.35 mg 'ml/ 1 , batch number 041230. Provided by the Innovation Center of Tianjin Pharmaceutical Research Institute. 3 ⁇ ml / 1 of the drug solution is prepared with a control solvent. The drug solution was taken according to the animal's body weight and the dose, and diluted to 30 ml with physiological saline for intravenous administration to dogs.
  • a polyethylene catheter filled with heparin saline was inserted into the left ventricle, and the left ventricular pressure (LVP) and left ventricular end-diastolic pressure (LVEDP) were measured by a TP-400T pressure transducer connected to the AP-641G blood pressure amplifier. LVP telecommunications was performed. The number was differentially treated, and the maximum increase and decrease rate of left ventricular pressure ( ⁇ LVdp/dt max ) was recorded.
  • the femoral artery was isolated, and a polyethylene catheter filled with heparin saline was inserted into the abdominal aorta. The TP-400T pressure transducer was connected.
  • the AP-641G blood pressure amplifier measures systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP). Insert the needle electrode subcutaneously into the limbs, via the AC-601G heart
  • the electrical amplifier measures the standard II lead electrocardiogram (ECGII).
  • ECGII standard II lead electrocardiogram
  • the above analog signal is synchronously input into the RM-6300 type eight-conductance physiological recorder, which is collected by the MP-100 system and converted into a digital signal and stored in a computer, and analyzed and processed by AcqKnowledge v.3.5.7 software.
  • the femoral vein is intubated for administration and rehydration.
  • the experimental data were expressed as the mean ⁇ standard deviation soil s). The significance of the mean difference before and after the administration was compared by paired t test. The difference between the administration group and the control group was compared by the t-test between groups. The results are shown in Table 1 -6.
  • ASP-110.15, 0.3, 0.6 mg/kg, SBP, DBP, MAP, HR were not significantly changed within 120 min. After administration of baicalin, blood pressure did not change significantly before administration, and heart rate decreased. There was no significant difference in the same dose (0.3 mg/kg) between ASP-II and astragaloside.
  • LVP Intravenous administration of ASP-110.15, 0.3, 0.6 mg/kg, no significant change in left internal pressure within 120 min.
  • LVEDP ASP-110.15, 0.3, 0.6 mg/kg, left ventricular end-diastolic dose-dependent decrease, LVEDP maximum decreased by 1.1 ⁇ 0.4, 1.5 ⁇ 0.8, 2.1 ⁇ 0.5 mmHg (P ⁇ 0.01), the effect continued More than 2h.
  • LVW Intravenous administration of ASP- ⁇ 0.15 0.3 0.6 mg/kg had no significant effect on left ventricular work.
  • LVdp/dt was given to ASP - 110.15mg/kg, LVdp/dtflower, x had no significant change in 120min, and + 0.6d/kg after 5 ⁇ 10min increased + LVdp/dt max increased significantly, the maximum increased by 12.0 ⁇ 5.0 22.6 ⁇ 11.8% (P ⁇ 0.01) had no significant effect on -LVdp/dt X.
  • LVSP LVW, -LVdp/dt max showed no significant change, +LVdp/dt max increased significantly, and LVEDP decreased significantly. There was no significant difference in the same dose (0.3 mg/k g ) between ASP-II and baicalin.
  • C0 CI Intravenous administration of ASP-110.15 0.3 0.6 mg/kg, C0 CI showed no significant change within 120 min.
  • TPR There was no significant change in the total peripheral resistance of ASP-IIO.15 0.3 0.6 mg/kg within 120 min.
  • the positive drug baicalin had no significant effect on C0 CI TPR, and there was no significant difference compared with the same dose of ASP-II.
  • CMG can effectively improve the hemodynamic parameters of anesthetized dogs, and the intensity of action is equivalent to the same dose of astragaloside.
  • Target drug kg before administration 5 10 15 20 30 45 60 90 120 blank - 109 ⁇ 30 110 ⁇ 32 108 ⁇ 32 107 ⁇ 37 108 ⁇ 32 108 ⁇ 26 109 ⁇ 25 101 ⁇ 19 101 ⁇ 26 101 ⁇ 26
  • Indicator drug (mg/kg) before administration 5 10 15 20 30 45 60 90 12 blank - 1288 ⁇ 577 1360 + 690 1284 ⁇ 630 1285 ⁇ 627 1318 ⁇ 643 1319 ⁇ 597 1313 soil 544 1337 ⁇ 642 1309 ⁇ 646 1296 ⁇
  • Dosage amount 1 after administration (mi n)
  • Indicator drug ( ra g/kg) 5 10 15 20 30 45 60 90 120 before administration
  • Indicator drug (mg/kg) before administration 5 10 15 20 30 45 60 90 120 blank - 54.0 ⁇ 13.4 57.4 soil 13.8 58.3 ⁇ 14.5 54.9 ⁇ i3.4 56.4 ⁇ 20.7 57.2 ⁇ 16 ⁇ 0 59.0 ⁇ 22.0 59.3 ⁇ 20.7 61.2 ⁇ 21.9 61.6 ⁇ 21.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Mycology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cardiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Plant Substances (AREA)

Description

环黄芪醇的单葡萄糖苷、 其制备方法、 药物组合物和应用 技术领域
本发明属医药技术领域。 具体地, 本发明涉及一种环黄芪醇的单葡萄 糖苷即环黄芪醇 6- O-β- D-葡萄糖苷的制备方法, 以及由所述方法制得的环 黄芪醇 6-0- β- D-葡萄糖苷、所述环黄芪醇 6- 0- β- D-葡萄糖苷在制备用于治 疗心脑血管病的药物中的应用和含有治疗有效量的所述环黄芪醇 6-0- β - D- 葡萄糖苷的药物组合物。 背景技术
环黄芪醇(Cycloastragenol )类化合物属羊毛 烷型四环三萜类结构, 是豆科黄芪属( Astragalus ) 植物中的指标性成分类群。 环黄芪醇类三萜 皂苷成分是常用 {Astragalus membranaceus Bge. )中的主要生物 活性成分, 具有调节免疫、 强心、 抗心脑缺血损伤、 保肝、 抗炎、 抗病毒 以及改善肾脏、 胰岛损伤等诸多药理作用。 尽管黄芪皂苷类成分的药理作 用已得到肯定, 总皂苷以及单体皂苷 (黄芪曱苷) 的工业化生产工艺也比 较成熟 ( CN1172677C、 CN 1543976A, CN 1189176C ), 但这类化合物普遍 具有的溶解惰性以及低生物利用度等性质导致了制剂研究的滞后, 限制了 其作为药物的开发和推广, 至目前尚无产品上市。
Figure imgf000003_0001
式 1 CMG的结构
环黄芪醇 6-0- β- D-葡萄糖苷(CMG)的结构 (式 1 ) 由 Isao Kitagawa等 于 1983 年首次报道(Chem. Pharm. Bul l . 31 ( 2 ) 698-708 , 1983 ), 是 在黄芪曱苷结构研究过程中以橙皮苷酶水解黄芪甲苷制备其苷元时得到的 副产物, 对其药理作用未见文献报道。 我们的研究发现 CMG具有与黄芪甲 苷类似的心血管药理活性(见本专利申请实施例), 而溶解性好于黄芪曱苷 等已知的其他环黄芪醇类化合物, 更具备作为药物开发的可行性。 已公开 的发明专利申请 (国际申请: PCT/US2004/020277; 中国专利申请公开号: CN1809364A ) 中是以温和酸水解黄芪曱苷的方法制备 CMG , 反应中实际得 到的主产物是环黄芪醇 (52% ), CMG 收率很低 (21% ), 而且因其他副产物 的干扰, 需经硅胶柱层析等分离方法纯化, 才可得到纯品, 不适合用于工 业化的大批量生产。 发明内容
本发明针对现有生产方法的技术不足, 提出了适合工业化的 CMG生产 方法,并根据 CMG的溶解度较好、具有明显的治疗心血管疾病的作用特点, 发明了相关的制剂。
本发明的目的是提供一种环黄芪醇的单葡萄糖苷一环黄芪醇 6-0- β - D- 葡萄糖苷(CMG)的工业化制备方法。该方法结合工业酶制剂仿生转化技术和 高效的天然产物纯化技术制备 CMG, 无需使用毒害有机溶剂以及强酸碱性 试剂, 工艺路线筒洁、 环保, 产品收率稳定, 适合工业化生产。
本发明的另一个目的是提供由本发明方法制备的 CMG、 含有治疗有效 量的该 CMG和一种或多种药学上可接受的辅料的药用组合物, 以及该 CMG 在制备用于治疗心血管疾病的药物中的应用。
现结合本发明的目的对本发明加以详细描述:
本发明制备 CMG的方法是通过如下技术方案实现的。 具体地, 本发明 提供了一种制备环黄芪醇- 6-0- β -D-葡萄糖苷的方法, 包括下述步骤: a. 使用黄芪曱苷或按常规方法制备的黄芪提取物作为原料, 往其中加 入适当溶剂制成药液;
b. 加入水解酶在恒温下进行水解得到水解液;
c 水解液经大孔吸附树脂分离; 和
d. 纯化分离得到的产物。
优选地, 当原料为黄芪曱苷时, 黄芪曱苷在溶液中的浓度为 0. 01%— 1% ( W/V ),优选浓度为 0. 01— 0. 5%, ( W/V ) , 更优选浓度为 0. 01 - 0. 1%W/V; 当原料为黄芪提取物时, 溶液浓度为提取物: 溶液比 1 : 2- 1 : 1000 ( W: V), 优选比例是提取物: 溶液 1: 15—1: 1000 (W: V)。 所述溶剂是选自 水、 低级醇或含水低级醇。 所述低级醇优选是选自碳数为 1一 3的一元醇, 更优选选自乙醇和甲醇, 最优选乙醇。 当原料为黄芪曱苷或水难溶性提取 物时, 原料需要用适当浓度的低级醇增溶, 有助于提高水解效率。 本发明 中所述药液中低级醇的最终浓度优选是 1一 30% (V/V), 更优选 5— 20% ( V/V )。
在本发明的一个优选实施方案中, 所述水解酶优选选自 β—糖苷酶、 β 一葡萄糖苷酶、 橙皮苷酶或这些酶与纤维素酶、 葡聚糖酶、 木聚糖酶、 糖 化酶、 果胶酶、 淀粉酶中一种或数种酶的混合物, 更优选 β—糖苷酶、 β— 葡萄糖苷酶或木聚糖酶, 最优选木聚糖酶。 所述木聚糖酶是指外切型木聚 糖酶, 酶活为 50 - 500万活力单位 /g(ml)。
在本发明的另一个优选实施方案中, 当底物为黄芪曱苷时, 底物与酶 的比例为 1: 1— 50 (W: W); 和当底物为药材提取物时, 酶与底物配比为 1: 100-10: 1 (W: W), 优选配比为 1: 50— 10: 1 ( W: W)。
在本发明的又一个优选实施方案中, 所述水解在 40— 55°C下恒温进行
12— 72小时, 优选 48— 72小时, 和溶液适合的 pH值为 4一 7。
在本发明的再一个优选实施方案中, 所述分离按如下步骤进行: 水解液经苯乙烯为骨架的大孔吸附树脂, 先用水洗脱 1一 2个柱体积, 后用 0.5— 2%的碱溶液洗脱 1一 2个柱体积, 再用 20- 40%的乙醇溶液洗脱 1 一3个柱体积, 最后用 70— 95%乙醇洗脱 1一 3个柱体积, 收集高浓度乙醇 洗脱部分, 减压浓缩至使溶液含少量乙醇或无醇味, 见白色沉淀析出。 所 述原料: 树脂比当原料为提取物时优选为 1: 20—4: 1 (g: ml ), 更优选 1: 10-3: 1 ( g: ml); 当原料为黄芪曱苷时优选为 0.1: 1— 20: 1 ( mg: ml), 更优选为 2: 1— 10: 1 (mg: ml )。
在本发明的又一个优选实施方案中, 所述纯化按如下步骤进行: 过滤分离得到的所述白色沉淀物, 用低级醇转溶, 过滤, 浓缩滤液至 溶液微见浑浊。 放置, 待析出结晶。 过滤得结晶, 再用低级醇或含水低级 醇重结晶, 得纯度 95%以上的环黄芪醇- 6-0- β -D-葡萄糖苷。 所述低级醇 优选是碳数 1— 5的一元醇或多元醇, 更优选选自甲醇和乙醇。 苷。 本发明的环黄芪醇- 6-0- (3-D
Figure imgf000005_0001
醇 -水) 或无定型粉末 (其他溶剂)。 本发明还提供了一种药物组合物, 其包含治疗有效量的根据本发明方 法制备的环黄芪醇- 6-0- β -D-葡萄糖苷和药学上可接受的辅料。
优选地, 所述药学上可接受的辅料选自稀释剂、 润滑剂、 粘合剂、 崩 解剂、 稳定剂和溶剂。 所述稀释剂包括但不限于淀粉、 微晶纤维素、 蔗糖、 糊精、 乳糖、 糖粉、 葡萄糖、 低分子右旋糖苷、 高岭土、 氯化钠、 甘露醇 等; 所述润滑剂包括但不限于硬脂酸镁、 硬脂酸、 硼酸、 氯化钠、 油酸钠、
DL-亮氨酸、 月桂醇 υ酸钠、 聚乙二醇 4000-6000、 泊洛沙母等; 所述粘合 剂包括但不限于水、 乙醇、 淀粉浆、 糖浆、 明胶、 曱基纤维素、 羟丙基曱 基纤维素、 羧甲基纤维素钠、 海藻酸钠、 茄替胶、 聚乙烯吡咯烷酮等; 所 述崩解剂包括但不限于淀粉、 羧曱基淀粉钠、 泡腾混合物即碳酸氢钠和枸 橼酸、 酒石酸、 低取代羟丙基纤维素等; 所述稳定剂包括但不限于多糖如 金合欢胶、 琼脂、 藻酸、 瓜耳胶、 黄芪胶、 丙烯酸酯树脂、 纤维素醚和羧 曱基曱壳酯等; 所述溶剂包括但不限于林格式溶液、 水、 磷酸盐緩冲液、 平衡的盐溶液等。 剂量可以在 0. 01mg/kg 50mg/kg, 根据治疗的目的不同剂量不同。
本发明的药物组合物可为固体口服制剂、 液体口服制剂、 注射剂、 膜 剂或气雾剂的形式。 所述固体口服制剂优选为普通片剂、 分散片、 肠溶片、 颗粒、 胶嚢、 滴丸或散剂, 或緩控释制剂。 所述緩控释制剂优选为緩控释 片剂、 颗粒或胶嚢。 所述液体口服制剂优选为口服液或乳剂。 所述注射剂 优选为小水针、 输液或冻干粉针。
当本发明药物组合物为小水针剂时,该药物组合物除注射用水外,优选 还含有适当比例的选自葡萄糖、 氯化钠、 山梨醇和磷酸盐的药用辅料, 选 自乙醇、 甘油和丙二醇的有机溶剂, 或选自注射用 PEG和羟丙基 β -环糊 精的助溶剂。 当本发明药物组合物为输液时, 除注射用水外, 该药物组合 物优选还含有根据需要添加的葡萄糖、 氯化钠和 /或等渗剂。 当本发明药物 组合物为冻干粉针剂时,该药物组合物优选还含有适当比例的冻干支持剂, 该冻干支持剂优选选自甘露醇、 葡萄糖、 山梨醇、 氯化钠、 右旋糖苷、 蔗 糖、 乳糖、 水解明胶、 羟丙基 - β -环糊精、 磺丁醚环糊精、 泊洛沙姆和聚 乙二醇中的一种、 两种或两种以上组合。
在本发明的药物组合物中, 所述冻千粉针剂中环黄芪醇 -6-0- β - D -葡 萄糖苷与药学上可接受的辅料的重量配比优选为 1 : 10-200, 更优选 1 : 50—200, 更优选 1: 100— 150。
优选地, 所述冻干支持剂为甘露醇或甘露醇-乳糖组合物, 所述甘露 醇-乳糖组合物中甘露醇与乳糖的重量配比是 10: 1-1: 1, 优选 5: 1-1: 1。
所述冻干支持剂为右旋糖苷、 聚乙二醇 -甘露醇或右旋糖苷 -聚乙二 醇-甘露醇组合物, 其中优选聚乙二醇-甘露醇组合物。 所述聚乙二醇优 选为聚乙二醇 200— 600, 更优选聚乙二醇 400。 对于所述聚乙二醇-甘露 醇组合物, 重量配比聚乙二醇: 甘露醇为 1: 1一 1: 10, 优选 1: 1- 1: 5。
本发明还提供了根据本发明方法制备的环黄芪醇 -6 -0- β -D-葡萄糖苷 在制备用于治疗心血管疾病的药物中的应用。
本发明提供的 CMG制备技术方案中, 底物溶液浓度和酶与底物的配比 是影响 CMG收率的主要因素。 当底物溶液浓度过高时因影响酶的活性而减 低水解效率, 当底物溶液过稀即会不必要地增加溶液体积和酶的用量而且 延长处理时间, 随之影响生产周期。 一般地, 当底物为黄芪粗提物时 (黄 芪甲苷含量 0.2— 8%。),底物溶液稀释倍数可以低一些(提取物-溶液比 1: 5-1: 30W:V ) ;当底物为精制提取物时 (黄芪甲苷含量 1一 50% ), 底物溶 液稀释倍数(提取物-溶液比)应为 1: 40-1: 1000 W:V; 当底物中昔芪甲 苷含量高于 50 %时, 应按黄芪曱苷溶液配制方法配制底物溶液。
本发明提供的化合物 CMG制备方法也可以直接从黄芪药材制备 CMG, 不需先制备高纯度黄芪曱苷, 再由其制备所需化合物, 大量节省生产成本, 而且工艺路线简洁。 采用生物酶水解方法, 全工艺过程不需要使用毒害有 机溶剂, 实际生产可实施性强, 产品收率 (从药材计平均 0.1%) 和质量稳 定。
本发明提供的化合物 CMG水溶性高于其他环黄芪醇类成分, 适合制成 注射用制剂。 注射剂因具有疗效快, 稳定而且适用于危重患者或不能口服 用药的患者, 在临床具有一定的优势。
将化合物 CMG制成水针剂时可以直接将化合物用注射用水溶解, 加适 当比例的葡萄糖, 氯化钠, 山梨醇, 磷酸盐等按常规的水针剂制备方法制 备。 但需要制备大剂量高浓度的针剂时需加乙醇, 甘油, 丙二醇等有机溶 剂或注射用 PEG,羟丙基 (3 -环糊精等助溶。
本发明所述药物组合物为水针剂时, 该水针剂中环黄芪醇 -6-0- β -D- 葡萄糖苷的浓度优选为 0.01%— 1% g/100ml, 更优选为 0.01%— 0.2 % g/100ml。
将化合物 CMG制成输液时, 可将处方剂量化合物用注射用水溶解, 根 据需要添加葡萄糖, 氯化钠以及等渗剂按输液的常规制备方法制备成不同 规格的输液。
本发明所述的药物组合物为输液时, 该输液中环黄芪醇- 6-0- β -D -葡 萄糖苷的浓度优选为 0.001%— 0.1% g/100ml, 更优选为 0.002 %— 0.05% g/100ml。
将化合物 CMG制成冻干粉针剂时, 应根据制剂需要添加适当比例的冻 干支持剂。 所述支持剂是选自甘露醇、 葡萄糖、 山梨醇、 氯化钠、 右旋糖 苷、 蔗糖、 乳糖、 水解明胶、 羟丙基 - β -环糊精、 磺丁醚环糊精、 泊洛沙 姆和聚乙二醇中的一种、 两种或两种以上组合。
适当比例的支持剂可提高化合物溶解性, 使产品具有较好的外观以及 稳定性, 因此支持剂的比例和适合支持剂的选择对最终产品的质量起到很 重要的作用。本发明所述 CMG冻干粉针剂中 CMG— 药用辅料重量配比为 1: 10-200, 优选 1: 50— 200,更优选 1: 100— 150。
本发明再优选甘露醇、 甘露醇-乳糖组合物作为冻干支持剂, 所述甘露 醇一乳糖组合物重量配比可以是 10: 1-1: 1 (W: W), 优选重量配比是 5: 1-1: 1。
本发明更优选右旋糖苷、 聚乙二醇-甘露醇或右旋糖苷-聚乙二醇- 甘露醇组合物作为冻干支持剂, 其中优选聚乙二醇-甘露醇组合物。 所述 聚乙二醇优选为聚乙二醇 200— 600, 更优选聚乙二醇 400。 对于所述聚乙 二醇-甘露醇组合物, 重量配比聚乙二醇: 甘露醇为 1: 1- 1: 10, 优选 1: 1— 1: 5, 更优选 1: 1- 1: 2。
本发明提供的 CMG冻千粉针剂, 可以釆用本领域常规的制备工艺进行 制备。 但 CMG在水中溶解度有限, 而且在不同溶解条件下其水中的溶解度 受较大影响。 因此, 为保证每批次产品中药物含量的一致性以及满足冻干 溶液浓度的要求, 制备工艺中尤其是溶液配制过程中采取适当措施是必要 的。
本发明采用下述步骤解决了如上所述的问题:
a.将处方量样品溶于 0.1 - 0.5 %活性炭处理过的溶剂中;
b.将 a中所述样品溶液搅拌下滴加到经过 0.1 - 0.5 %活性炭处理过的 冻干支持剂溶液中;
C .加水至处方量, 滤膜过滤, 分装, 冻干。
在所述冻干粉针剂的制备步骤中, 所述步骤 a中的溶剂优选为乙醇、 丙二醇或聚乙二醇, 其用量优选为处方量溶液总体积的 1一 10 %。 实施发明的最佳方式
下面结合实施例对本发明做进一步的说明, 以帮助本领域的技术人员 更全面地理解本发明, 但不以此作为对本发明的限制。 实施例 1
黄芪甲苷 2g, 加药用乙醇 150ml加热溶解, 后加水稀释至 3000ml , 加 β-糖苷酶 30g溶解, 调整溶液 pH值为 5. 0, 在 45 °C恒温下 酶解 24小时, 过滤。 滤液经 500ml D101大孔吸附树脂吸附, 依次用水、 0. 5%氢氧化钠溶 液、 30%乙醇溶液分别洗脱 2个柱体积 , 最后以 70%乙醇洗脱 2个柱体积 , 收集 70%乙醇洗脱液, 减压浓缩至无醇味, 见白色沉淀析出。 过滤, 得到 沉淀, 再用 95%乙醇复溶, 过滤, 滤液浓缩至溶液开始变浑浊, 放置待析 出结晶, 过滤得结晶, 即 CMG純品 (白色细针状粉末)。
实施例 2
黄芪药材 (2kg ) 的水煎煮提取物 540g, 用水稀释至提取物: 药液比 为 1 : 15 W: V, 加 β_葡萄糖苷酶 90g溶解, 调整溶液 pH值为 6. 0 , 在 40 °C 酶解 48小时, 过滤, 滤液经 500ml AB- 8大孔吸附树脂吸附, 依次用 1个 柱体积的水、 2个柱体积的 0. 5%氢氧化钠溶液、 2个柱体积的 40%乙醇溶 液洗脱, 最后以 80%乙醇洗脱 2个柱体积, 收集 80%乙醇洗脱液, 减压浓缩 至无醇味, 待析出白色沉淀。 滤得白色沉淀, 再用 95%乙醇复溶, 过滤, 滤液浓缩至溶液开始变浑浊, 放置待析出结晶, 过滤, 得 CMG纯品 (白色 无定型粉末)。
实施例 3
黄芪药材醇提取物 300g, 加水稀释至提取物: 药液比为 1 : 20 W: V, 加葡聚糖酶 50g, β-葡萄糖苷酶 50g溶解, 调整溶液 pH值为 5. 5 , 在 50 °C 酶解 24小时, 过滤, 滤液经 400ml D101大孔吸附树脂吸附, 先用 2个柱 体积的水洗脱, 再用 2个柱体积的 1%氢氧化钠溶液洗脱, 后用 2个柱体积 的 40%乙醇溶液洗脱, 最后以 80%乙醇洗脱 2个柱体积, 收集 80%乙醇洗脱 液, 减压浓缩至无醇味, 待析出白色沉淀。 滤得白色沉淀, 再用曱醇复溶, 过滤, 滤液浓缩至溶液开始变浑浊, 放置待析出结晶, 过滤得结晶, 再用 乙醇-水重结晶, 得 CMG纯品 (白色无定型粉末)。
实施例 4
黄芪曱苷 2g, 加水 4000ml混悬, 加 β-葡萄糖苷酶 40g溶解, 调整溶 液 pH值为 6. 5 , 在 45 °C 酶解 48小时, 过滤, 滤液经 400ml D101大孔吸 附树脂吸附, 依次用水、 40%乙醇溶液分别洗脱 2个柱体积, 最后以 70%乙 醇洗脱 2个柱体积, 收集 70%乙醇洗脱液, 减压浓缩至无醇味, 待析出白 色沉淀。 滤得白色沉淀, 再用甲醇复溶, 过滤, 滤液浓缩至溶液开始变浑 浊, 放置待析出结晶, 过滤得结晶, 再以曱醇-水重结晶, 得 CMG纯品(白 色细针状结晶)。
实施例 5
黄芪(2kg )水煎煮提取液(出膏率 32% ), 浓缩至提取物: 溶液比为 1 : 10 W: V, 加 β-葡萄糖苷酶 80g溶解, 调整溶液 pH值为 6. 5, 在 45 °C 酶解 24小时, 过滤, 滤液经 600ml D101 大孔吸附树脂吸附, 先用 1个柱体积 的水洗脱, 再用 2个柱体积的 0. 5%氢氧化钠溶液洗脱, 后用 2个柱体积的 40%乙醇溶液洗脱, 最后以 70%乙醇洗脱 2个柱体积, 收集 70%乙醇洗脱液, 减压浓缩至无醇味, 待析出白色沉淀。 滤得白色沉淀, 再用乙醇复溶, 过 滤, 滤液浓缩至溶液开始变浑浊, 放置待析出结晶, 过滤得结晶, 再以乙 醇-水重结晶, 得 CMG纯品 (白色无定型粉末)。
实施例 6
黄芪药材 (2kg ) 水煎煮醇沉提取物 (出膏率 23% ), 用水稀释至提取 物: 药液比为 1 : 30 W: V, 加纤维素酶 50g 、 葡聚糖酶 50g 、 β-葡萄糖 苷酶 130g溶解, 调整溶液 pH值为 4. 5 , 在 45 °C酶解 72小时, 过滤, 滤 液经 400ml D101大孔吸附树脂吸附, 先用 1个柱体积的水洗脱, 再用 2个 柱体积的 0. 5%氢氧化钠溶液洗脱, 后用 2个柱体积的 40%乙醇溶液洗脱, 最后以 70%乙醇洗脱 2个柱体积,收集 70%乙醇洗脱液,减压浓缩至无醇味, 待析出白色沉淀。 滤得白色沉淀, 再用乙醇复溶, 过滤, 滤液浓缩至溶液 开始变浑浊, 放置待析出结晶, 过滤得结晶, 再以乙醇 -水重结晶, 得 CMG 纯品 (白色无定型粉末)。
实施例 7
黄芪药材 (2kg ) 水煎煮提取液(出膏率 29% ), 浓缩至提取物: 药液 比为 1 : 25 W: V, 加纤维素酶 50g 、 果胶酶 15g 、 β-葡萄糖苷酶 80g溶 解,调整溶液 pH值为 5. 0,在 40 °C酶解 24小时, 过滤,滤液经 500ml D101 大孔吸附树脂吸附, 先用 2个柱体积的水洗脱, 再用 2个柱体积的 0. 5%氢 氧化钠溶液洗脱, 后用 2个柱体积的 40%乙醇溶液洗脱, 最后以 70%乙醇洗 脱 2个柱体积, 收集 70%乙醇洗脱液, 减压浓縮至无醇味, 待析出白色沉 淀。 后操作同实施例 6。
实施例 8
黄芪曱苷 2g, 加 300ml 乙醇溶解, 加水稀释至 1000ml , 加 β-葡萄糖苷 酶 10g溶解, 调整溶液 pH值为 5. 5, 在 45 Ό酶解 72小时, 过滤, 滤液经 200ml D101大孔吸附树脂吸附, 先用 1个柱体积的水洗脱, 再用 2个柱体 积的 0. 5%氢氧化钠溶液洗脱, 后用 2个柱体积的 40%乙醇溶液洗脱, 最后 以 70%乙醇洗脱 2个柱体积, 收集 70%乙醇洗脱液, 减压浓缩至无醇味。 后 操作同实施例 6。
实施例 9
黄芪药材提取物 30g, 用水配制成提取物: 药液比为 1 : 30 W: V , 加 β-葡萄糖苷酶 30g溶解,调整溶液 pH值为 6. 0 ,在 45 °C酶解 48小时,过滤, 滤液经 700ml D101大孔吸附树脂吸附, 先用 1个柱体积的水洗脱, 再用 2 个柱体积的 0. 5%氢氧化钠溶液洗脱, 后用 2个柱体积的 40%乙醇溶液洗脱, 最后以 70%乙醇洗脱 2个柱体积, 收集 70%乙醇洗脱液, 减压浓缩至无醇味。 后操作同实施例 6。
实施例 10
黄芪药材提取物 20g, 加水溶解, 稀释至提取物: 药液比为 1 : 40 W: V, 加 β-葡萄糖苷酶 2g, 木聚糖酶 3g溶解, 调整溶液 pH值为 5. 0 , 在 4CTC酶 解 48小时, 过滤, 滤液经 600ml D101大孔吸附树脂吸附, 先用 1个柱体积 的水洗脱, 再用 2个柱体积的 0. 5%氢氧化钠溶液洗脱, 后用 2个柱体积的 40%乙醇溶液洗脱, 最后以 70%乙醇洗脱 2个柱体积, 收集 70%乙醇洗脱液, 减压浓缩至无醇味。 后操作同实施例 6。
实施例 11
黄芪药材(2kg ) 水煎煮提取液(出膏率 32% ), 浓缩至提取物: 药液 比为 1 : 7 W: V, 加 β-葡萄糖苷酶 40g, 糖化酶 10g, 木聚糖酶 14g溶解, 调整溶液 pH值为 7. 0 , 在 40°C酶解 72小时, 过滤, 滤液经 800ml D101大 孔吸附树脂吸附, 先用 1个柱体积的水洗脱, 再用 2个柱体积的 0. 5%氢氧 化钠溶液洗脱, 后用 2个柱体积的 40%乙醇溶液洗脱, 最后以 70%乙醇洗脱 2个柱体积, 收集 70%乙醇洗脱液, 减压浓缩至无醇味。 后操作同实施例 6。
实施例 12
黄芪药材 (2kg ) 水煎煮提取液(出膏率 32% ), 浓缩至提取物: 药液 比为 1 : 12 W: V, 加 β-葡萄糖苷酶 32g溶解, 调整溶液 pH值为 5. 5 , 在 40°C酶解 72小时, 过滤, 滤液经 500ml D101 大孔吸附树脂吸附, 先用 1 个柱体积的水洗脱, 再用 2个柱体积的 0. 5%氢氧化钠溶液洗脱, 后用 2个 柱体积的 40%乙醇溶液洗脱 , 最后以 70%乙醇洗脱 2个柱体积, 收集 70%乙 醇洗脱液, 减压浓缩至无醇味。 后操作同实施例 6。
实施例 13
黄芪药材提取物 15g , 加氷溶解至提取物: 药液比为 1 : 60 W: V, 加 β-葡萄糖苷酶 lg溶解,调整溶液 pH值为 4. 5,在 50°C酶解 48小时,过滤, 滤液经 400ml D101大孔吸附树脂吸附, 先用 1个柱体积的水洗脱, 再用 2 个柱体积的 0. 5%氢氧化钠溶液洗脱,后用 2个柱体积的 40%乙醇溶液洗脱, 最后以 70%乙醇洗脱 2个柱体积,收集 70%乙醇洗脱液,减压浓缩至无醇味。 后操作同实施例 6。
实施例 14
黄芪药材提取物 30g, 加水溶解至提取物: 药液比为 1 : 80 W: V, 加 β-糖苷酶 3g溶解, 调整溶液 pH值为 5. 0, 在 5CTC酶解 48小时, 过滤, 滤 液经 250ml D101大孔吸附树脂吸附, 先用 1个柱体积的水洗脱, 再用 2个 柱体积的 0. 5%氢氧化钠溶液洗脱, 后用 2个柱体积的 40%乙醇溶液洗脱, 最后以 70%乙醇洗脱 2个柱体积,收集 70%乙醇洗脱液,减压浓缩至无醇味。 后操作同实施例 6。
实施例 15
黄芪药材 (2kg ) 乙醇提取液 (出膏率 24% ), 加水溶解至提取物: 药 液比为 1 : 20 W: V, 加 β-葡萄糖苷酶 96g溶解, 调整溶液 pH值为 6. 0, 在 45°C酶解 24小时, 过滤, 滤液经 200ml D101 大孔吸附树脂吸附, 先用 1 个柱体积的水洗脱, 再用 2个柱体积的 0. 5%氢氧化钠溶液洗脱, 后用 2个 柱体积的 40%乙醇溶液洗脱, 最后以 70%乙醇洗脱 2个柱体积, 收集 70%乙 醇洗脱液, 减压浓缩至无醇味。 后操作同实施例 6。
实施例 16
黄芪药材提取物 200g, 加水溶解至提取物: 药液比为 1 : 90 W: V, 加 β -葡萄糖苷酶 5g, 淀粉酶 5g溶解, 调整溶液 pH值为 5. 5 , 纤维素酶 20g 在 40 C酶解 12小时, 过滤, 滤液经 300ml D101大孔吸附树脂吸附, 先用 1个柱体积的水洗脱, 再用 2个柱体积的 0. 5%氢氧化钠溶液洗脱, 后用 2 个柱体积的 40%乙醇溶液洗脱, 最后以 70%乙醇洗脱 2个柱体积, 收集 70% 乙醇洗脱液, 减压浓缩至无醇味。 后操作同实施例 6。
实施例 17
黄芪药材 (2kg ) 乙醇提取物 (出膏率 20% ), 加水溶解至提取物: 药 液比为 1 : 100 W: V, 加 β-葡萄糖苷酶 10g溶解, 调整溶液 pH值为 6. 0 , 在 45 °C酶解 48小时, 过滤, 滤液经 1000ml D101 大孔吸附树脂吸附, 先 用 1个柱体积的水洗脱, 再用 2个柱体积的 0. 5%氢氧化钠溶液洗脱, 后用 2个柱体积的 40%乙醇溶液洗脱,最后以 70%乙醇洗脱 2个柱体积,收集 70% 乙醇洗脱液, 減压浓缩至无醇味。 后操作同实施例 6。
实施例 18
黄芪药材提取物 200g, 加水溶解至提取物-药液比为 1 : 10 W: V, 加 β-葡萄糖苷酶 4g溶解,调整溶液 pH值为 6. 0 ,在 50°C酶解 36小时,过滤, 滤液经 500ml D101大孔吸附树脂吸附, 先用 1个柱体积的水洗脱, 再用 2 个柱体积的 0. 5%氢氧化钠溶液洗脱,后用 2个柱体积的 40%乙醇溶液洗脱, 最后以 70%乙醇洗脱 2个柱体积,收集 70%乙醇洗脱液,减压浓缩至无醇味。 后操作同实施例 6。
实施例 19
黄芪药材提取物 30g, 加水溶解至提取物-药液比为 1 : 20 W: V, 加 β -葡萄糖苷酶 l g溶解,调整溶液 pH值为 5. 0,在 40°C酶解 24小时,过滤, 滤液经 50ml D101 大孔吸附树脂吸附, 先用 1个柱体积的水洗脱, 再用 2 个柱体积的 0. 5%氢氧化钠溶液洗脱,后用 2个柱体积的 40%乙醇溶液洗脱, 最后以 70%乙醇洗脱 2个柱体积,收集 70%乙醇洗脱液,减压浓缩至无醇味。 后操作同实施例 6。
实施例 20
黄芪药材提取物 5g, 加水溶解至提取物-药液比为 1 : 100 W: V, 加 β-葡萄糖苷酶 50g溶解, 调整溶液 pH值为 5. 5, 在 45 °C酶解 24小时, 过 滤, 滤液经 100ml D101大孔吸附树脂吸附, 先用 1个柱体积的水洗脱, 再 用 2个柱体积的 0. 5%氢氧化钠溶液洗脱, 后用 2个柱体积的 40°/。乙醇溶液 洗脱, 最后以 70%乙醇洗脱 2个柱体积, 收集 70%乙醇洗脱液, 减压浓缩至 无醇味。 后操作同实施例 6。
实施例 21
黄芪药材提取物 l g, 加水溶解至提取物-药液比为 1 : 80 W: V, 加 β - 葡萄糖苷酶 5g溶解, 调整溶液 pH值为 5. 5, 在 45 °C酶解 72小时, 过滤, 滤液经 20ml D101 大孔吸附树脂吸附, 先用 1个柱体积的水洗脱, 再用 2 个柱体积的 0. 5%氢氧化钠溶液洗脱,后用 2个柱体积的 40%乙醇溶液洗脱, 最后以 70%乙醇洗脱 2个柱体积,收集 70%乙醇洗脱液,减压浓缩至无醇味。 后操作同实施例 6。
实施例 22
黄芪药材提取物 l g, 加水溶解至提取物-药液比为 1 : 90 W: V, 加 β- 葡萄糖苷酶 9g溶解, 调整溶液 pH值为 4. 5 , 在 55 °C酶解 48小时, 过滤, 滤液经 20ml D101 大孔吸附树脂吸附, 先用 1个柱体积的水洗脱, 再用 2 个柱体积的 0. 5%氢氧化钠溶液洗脱,后用 2个柱体积的 40%乙醇溶液洗脱, 最后以 70%乙醇洗脱 2个柱体积,收集 70%乙醇洗脱液,减压浓缩至无醇味。 后操作同实施例 6。
实施例 23
黄芪药材提取物 3g, 加水溶解至提取物-药液比为 1 : 70 W: V, 加 β - 葡萄糖苷酶 21g溶解, 调整溶液 pH值为 4. 0 , 在 50 °C酶解 36小时, 过滤, 滤液经 60ml D101 大孔吸附树脂吸附, 先用 1个柱体积的水洗脱, 再用 2 个柱体积的 0. 5%氢氧化钠溶液洗脱,后用 2个柱体积的 40%乙醇溶液洗脱, 最后以 70%乙醇洗脱 2个柱体积,收集 70%乙醇洗脱液,减压浓缩至无醇味。 后操作同实施例 6。
实施例 24
黄芪药材提取物 lg, 加水溶解至提取物-药液比为 1 : 50 W: V, 加 β - 葡萄糖苷酶 3g溶解, 调整溶液 pH值为 5. 0, 在 45 °C酶解 24小时, 过滤, 滤液经 10ml D101 大孔吸附树脂吸附, 先用 1个柱体积的水洗脱, 再用 2 个柱体积的 0. 5%氢氧化钠溶液洗脱,后用 2个柱体积的 40%乙醇溶液洗脱, 最后以 70%乙醇洗脱 2个柱体积,收集 70%乙醇洗脱液,减压浓缩至无醇味。 后操作同实施例 6。
实施例 25
黄芪药材提取物 100g, 加水溶解至提取物-药液比为 1 : 10 W: V, 加 β -葡萄糖苷酶 lg溶解,调整溶液 pH值为 4. 5,在 40 °C酶解 48小时,过滤, 滤液经 500ml D101大孔吸附树脂吸附, 先用 1个柱体积的水洗脱, 再用 2 个柱体积的 0. 5%氢氧化钠溶液洗脱,后用 2个柱体积的 40%乙醇溶液洗脱, 最后以 70%乙醇洗脱 2个柱体积,收集 70%乙醇洗脱液,减压浓缩至无醇味。 后操作同实施例 6。
实施例 26
黄芪药材提取物 70g, 加水溶解至提取物-药液比为 1 : 30 W: V, 加 β -葡萄糖苷酶 l g溶解,调整溶液 pH值为 5, 5 ,在 50°C酶解 48小时,过滤, 滤液经 300ml D101大孔吸附树脂吸附, 先用 1个柱体积的水洗脱, 再用 2 个柱体积的 0. 5%氢氧化钠溶液洗脱,后用 2个柱体积的 40%乙醇溶液洗脱, 最后以 70%乙醇洗脱 2个柱体积,收集 70%乙醇洗脱液,减压浓缩至无醇味。 后操作同实施例 6。
实施例 27
黄芪曱苷 lg, 用 125ml 药用乙醇溶解, 搅拌下加至 1800rol水中, 将 10g外切型木聚糖酶(酶活 300万 U/g )溶解于 200ml水, 加至黄芪甲苷溶 液中, 补水使溶液总体积为 2500ml, 调节溶液 pH值为 4. 5, 在 50°C酶解 12小时, 过滤, 滤液经 lOOmlDlOl大孔吸附树脂, 先用 1个柱体积的水洗 脱,后用 2个柱体积的 40%乙醇溶液洗脱,最后以 70%乙醇洗脱 2个柱体积, 收集 70%乙醇洗脱液, 减压浓缩至无醇味。 后操作同实施例 6。
实施例 28
黄芪甲苷 0. 6g, 分散至 1800ml水中, 制备黄芪甲苷混悬液。 将 3g外 切型木聚糖酶(酶活 500万 U/g ) 用 100ml水溶解, 加至黄芪曱苷溶液中, 补水使溶液最终体积为 2000ml , 调节溶液 pH值为 5. 0, 在 45Ό水解 24小 时, 过滤。 后操作同实施例 27。
实施例 29
黄芪曱苷 0. 5g, 溶解于 100ml药用乙醇, 搅拌下加至 800ml水中, 将
10g外切型木聚糖酶(酶活 200万 U/g )溶解于 100ml水, 加至黄芪甲苷溶 液中, 调节溶液 pH值为 4. 5 , 在 5CTC酶解 48小时, 过滤。 后操作同实施 例 27。
实施例 30
黄芪曱苷 0. 5g, 溶解于 50ml药用乙醇, 搅拌下加至 400ml水中, 将
4g外切型木聚糖酶(酶活 400万 U/g )溶解于 50ml水, 加至黄芪甲苷溶液 中, 调节溶液 pH值为 4. 5 , 在 50 °C酶解 12小时, 过滤。 后操作同实施例 27。
实施例 31
黄芪甲苷 0.2g, 溶解于 800ml水中, 将 8g外切型木聚糖酶(酶活 50 万 U/g)溶解于 200ml水中, 加至黄芪甲苷溶液中, 调节溶液 pH值为 4.5, 在 50°C酶解 12小时, 过滤。 后操作同实施例 27。
实施例 32
黄芪甲苷 0.8g, 溶解于 350ml水中, 将 2.4g外切型木聚糖酶(酶活 500 万 U/g) 溶解于 50ml 水中, 加至黄芪甲苷溶液中, 调节溶液 pH值为 4.5, 在 50°C酶解 12小时, 过滤。 后操作同实施例 27。
实施例 33
黄芪提取物 25g, 加水溶解至提取物一药液比为 1: 20, 加外切型木聚 糖酶 lg (酶活 300万 U/g) 溶解, 调节溶液 pH值为 4.5, 50°C酶解 12小 时, 过滤。 后操作同实施例 6。
实施例 34
黄芪提取物 30g, 加水溶解至提取物一药液比为 1: 10, 加外切型木聚 糖酶 2g (酶活 200万 U/g) 溶解, 调节溶液 pH值为 5, 5CTC酶解 12小时, 过滤。 后操作同实施例 6。
实施例 35
黄芪提取物 10g, 加水溶解至提取物一药液比为 1: 40, 加外切型木聚 糖酶 0.25g (酶活 400万 U/g) 溶解, 调节溶液 pH值为 4.5, 45 酶解 24 小时, 过滤。 后操作同实施例 6。
实施例 36
黄芪提取物 5g, 加水溶解至提取物一药液比为 1: 80, 加外切型木聚 糖酶 5g (酶活 50万 U/g )溶解, 调节溶液 pH值为 5, 50°C酶解 48小时, 过滤。 后操作同实施例 6。
实施例 37
黄芪提取物 3g, 加水溶解至提取物一药液比为 1: 100, 加外切型木聚 糖酶 0.5g (酶活 500万 U/g) 溶解, 调节溶液 pH值为 4.5, 50°C酶解 12 小时, 过滤。 后操作同实施例 6。
实施例 38
黄芪提取物 lg, 加水溶解至提取物一药液比为 1: 300, 加外切型木聚 糖酶 0.5g (酶活 400万 U/g) 溶解, 调节溶液 pH值为 5, 50Γ酶解 12小 时, 过滤。 后操作同实施例 6。
实施例 39
黄芪提取物 0.5g, 加水溶解至提取物一药液比为 1: 500, 加外切型木 聚糖酶 3g (酶活 500万 U/g)溶解, 调节溶液 pH值为 5, 45°C酶解 12小 时, 过滤。 后操作同实施例 6。
实施例 40
黄芪提取物 0.3g, 加水溶解至提取物一药液比为 1: 800, 加外切型木 聚糖酶 3g (酶活 300万 U/g)溶解, 调节溶液 pH值为 5, 50°C酶解 24小 时, 过滤。 后操作同实施例 6。
实施例 41
黄芪提取物 0.5g, 加水溶解至提取物一药液比为 1: 1000, 加外切型 木聚糖酶 4g (酶活 100万 U/g)溶解, 调节溶液 pH值为 4.5, 50°C酶解 48 小时, 过滤。 后操作同实施例 6。
实施例 42
CMG lOg, 加 40g乳糖: 微晶纤维素 =5: 1、 硬脂酸镁 1%, 用 70%乙醇 制粒、 压片即得 1000片片剂。 规格: 10mg/片。
实施例 3
CMGO.8g, 甘露醇 80g, 加 2000ml注射用水溶解, 加适量活性炭除热 源, 0.2μιη微孔滤膜滤过, 灌装, 冷冻干燥。 规格: 2mg、 5mg/支 (以 CMG 计), 用前先以 10— 20ml注射用水、 5%葡萄糖注射液或氯化钠注射液溶解, 再注入到静脉输液中, 静脉滴注。
实施例 44
CMGO.2g, 甘露醇 20g, 乳糖 5g, 加 500ml热注射用水溶解, 再补水至 lOOOral, 加适量活性炭除热源, 0.2μπι微孔滤膜滤过, 灌装, 冷冻干燥, 供静脉注射用。 用法同实施例 13。
实施例 45
CMGlg, 甘露醇 60g, 乳糖 30g, 加 2000ml热注射用水溶解, 再补水至 2500ml, 加适量活性炭除热源, 0.2μηι微孔滤膜滤过, 灌装, 冷冻干燥, 供静脉注射用。 用法同实施例 13。
实施例 46
CMGlg, 甘露醇 50g, 乳糖 10g, 加 2500ml热注射用水溶解, 再补水至 4000ml, 加适量活性炭除热源, 0.2μηι微孔滤膜滤过, 灌装, 冷冻干燥, 供静脉注射用。 用法同实施例 13。
实施例 47
CMGlg, 甘露醇 60g, 乳糖 10g, 加 2000ml热注射用水溶解, 再补水至 2500ml , 加适量活性炭除热源, 0. 2μιη微孔滤膜滤过, 灌装, 冷冻干燥, 供静脉注射用。 用法同实施例 13。
实施例 48
CMGO. 5g, 甘露醇 50g, 乳糖 5g, 加 2000ml热注射用水溶解, 加适量 活性炭除热源, 0. 2μπι微孔滤膜滤过, 灌装, 冷冻干燥, 供静脉注射用。 用法同实施例 13。
实施例 49
CMGO. 5g, 甘露醇 15g, 乳糖 5g, 加 1000ml热注射用水溶解, 加适量 活性炭除热源, 0. 2μπι微孔滤膜滤过, 灌装, 冷冻干燥, 供静脉注射用。 用法同实施例 13。
实施例 50
CMGO. 5g, 乳糖 25g, 加 1000ml热注射用水溶解, 加适量活性炭除热 源, 0. 2μΐΒ微孔滤膜滤过, 灌装, 冷冻干燥, 供静脉注射用。 用法同实施 例 13。
实施例 51
CMGO. 4g, 甘露醇 40g, 乳糖 40g, 加 1000ml热注射用水溶解, 补足注 射用水至 2000ml , 加适量活性炭除热源, 0. 2μπι微孔滤膜滤过, 灌装, 冷 冻干燥, 供静脉注射用。 用法同实施例 13。
实施例 52
CMGlg, 甘露醇 90g, 乳糖 60g, 加 2500ml热注射用水溶解, 加适量活 性炭除热源, 0. 2μιη微孔滤膜滤过, 灌装, 冷冻干燥, 供静脉注射用。 用 法同实施例 13。
实施例 53
CMGO. 67g, 用经 0. 3 %活性炭处理过的乙醇 80g加热溶解; 50g右旋糖 苷 40加注射用水 500ml溶解, 加 0. 3 %活性碳处理, 将配制好的样品乙醇 溶液搅拌下加入到右旋糖苷溶液中, 补足水至 1000ml , 0. 2μπι滤膜过滤, 分装, 冷冻干燥。
实施例 54
CMGO. 67g, 经 0. 4 %活性炭处理过的乙醇 16g加热溶解, 分散, 再滴 加到用活性炭处理过的 50g聚乙二醇 400中。 样品溶液搅拌下加入到活性 炭处理过的 800ml含 20g右旋糖苷 40和甘露醇 50g的水溶液中,补足水至 1000ml , 0. 2μπι滤膜过滤, 分装, 冷冻干燥。
实施例 55
CMGO. 67g, 经 0. 3 %活性炭处理过的 50g聚乙二醇 400加热溶解。 样 品溶液搅拌下加入到活性炭处理过的 800ml含甘露醇 50g的水溶液中, 补 足水至 1000ml , 0. 2μπι滤膜过滤, 分装, 冷冻干燥。
实施例 56
CMGO. 67g, 经 0. 3 %活性炭处理过的 50g丙二醇加热溶解。 样品溶液 搅拌下加入到活性炭处理过的 800ml含甘露醇 50g的水溶液中, 补足水至 1000ml , 0. 2μιη滤膜过滤, 分装, 冷冻干燥。
实施例 57
CMGO. 5g, 经 0. 3 %活性炭处理过的 50g聚乙二醇 400加热溶解。 样品 溶液搅拌下加入到活性炭处理过的 800ml含甘露醇 25g的水溶液中, 补足 水至 1000ml , 0. 2μιη滤膜过滤, 分装, 冷冻干燥。
实施例 58
CMGO. 5g, 经 0. 3 %活性炭处理过的 30g聚乙二醇 400加热溶解。 样品 溶液搅拌下加入到活性炭处理过的 800ml含甘露醇 60g的水溶液中, 补足 水至 1000ml , 0. 2μηι滤膜过滤, 分装, 冷冻干燥。
实施例 59
CMGO. 6g, 经 0. 3 %活性炭处理过的 60g乙醇加热溶解, 再滴加到用活 性炭处理过的 10g聚乙二醇 400中。 样品溶液搅拌下加入到活性炭处理过 的 800ml含甘露醇 50g的水溶液中, 补足水至 1000ml , 0. 2μιιι滤膜过滤, 分装, 冷冻干燥。
实施例 60
CMGO. 5g, 经 0. 3 %活性炭处理过的 60g乙醇加热溶解, 再滴加到用活 性炭处理过的 10g聚乙二醇 400中。 样品溶液搅拌下加入到活性炭处理过 的 800ml含甘露醇 15g的水溶液中, 补足水至 1000ml , 0. 2μπι滤膜过滤, 分装, 冷冻干燥。
实施例 61
CMGO. 5g, 经 0. 3 %活性炭处理过的 60g乙醇加热溶解, 再滴加到用活 性炭处理过的 10g聚乙二醇 400中。 样品溶液搅拌下加入到活性炭处理过 的 800ml含甘露醇 30g的水溶液中, 补足水至 1000ml , 0. 2μπι滤膜过滤, 分装, 冷冻干燥。
实施例 62
CMG 10g, 加糊精 10g、 乳糖 30g用 60%乙醇制粒、 干燥、 装胶嚢, 制 得 1000粒胶嚢剂。
实施例 63
CMG lg, 葡萄糖 125g, 加 2000ml热注射用水溶解, 补足注射用水至 2500ml , 调等渗, 加适量活性炭除热源, 0. 2μπι微孔滤膜滤过, 灌装, 制 得小水针。
实施例 64
CMG 0. 8g, 氯化钠 18g, 加 2000ml热注射用水溶解, 补足注射用水至 4000ml , 调等渗, 加适量活性炭除热源, 0. 2μπι微孔滤膜滤过, 灌装, 制 得小水针。
实施例 65
CMG 0. 6g, 葡萄糖 10g, 加 1500ml热注射用水溶解, 补足注射用水至
2000ml , 调等渗, 加适量活性炭除热源, 0. 2μιτι微孔滤膜滤过, 灌装, 制 得小水针。
实施例 66
CMG 0. 6g, 力 p 50ml丙二醇溶解, 补足注射用水至 1000ml , 调等渗, 加适量活性炭除热源, 0. 2μπι微孔滤膜滤过, 灌装, 制得小水针。
实施例 67
CMG 0. lg, 加 500ml热注射用水溶解, 补足注射用水至 1000ml , 调等 渗, 加适量活性炭除热源, 0. 2μπι微孔滤膜滤过, 灌装, 制得小水针。
实施例 68
CMG 0. 4g, 加 100ml 乙醇溶解, 补足注射用水至 500ml , 调等渗, 力口 适量活性炭除热源, 0. 2μπι微孔滤膜滤过, 灌装, 制得小水针。
实施例 69
CMG lg, 葡萄糖 50g, 山梨醇 10g, 乙醇 300ml ; 先用处方量乙醇溶解 CMG,加 200ml注射用水稀释, 后加处方量葡萄糖和山梨醇溶解, 补足注射 用水至 1000ml , 加适量活性炭除热源, 0. 2μιιι微孔滤膜滤过, 灌装, 制得 小水针。
实施例 70 CMG lg, 葡萄糖 50g, 山梨醇 lOg, 丙二醇 200ml, 先用处方量丙二醇 溶解 CMG,加 100ml注射用水稀释, 后加处方量葡萄糖和山梨醇溶解, 补足 注射用水至 500ml, 加适量活性炭除热源, 0.2μπι微孔滤膜滤过, 灌装, 制 得小水针。
实施例 71
CMG lg, 用 60ml 乙醇溶解, 补足注射用水至 100ml, 加适量活性炭除 热源, 0.2μπι微孔滤膜滤过, 灌装, 制得小水针。
实施例 72
CMG 0.8g, 用 30ml 乙醇溶解, 加 20ml丙二醇混合均匀, 补足注射用 水至 100ml, 加适量活性炭除热源, 0.2μηι微孔滤膜滤过, 灌装, 制得小水 针。
实施例 73
CMG 0.8g, 用 60ml 乙醇溶解, 加 30ml丙二醇混合均匀, 补足注射用 水至 200ml, 加适量活性炭除热源, 0.2μπι微孔滤膜滤过, 灌装, 制得小水 针。
实施例 74
CMG lg,葡萄糖 1000g,加 3L注射用水加热溶解,补足注射用水至 20L, 调节 pH6.5,加适量活性碳除热源, 0.2μιη微孔滤膜滤过, 灌装, 制得输液。 规格: 100ml/瓶, 250ml/瓶、 500ml/瓶。
实施例 75
CMG 0.8g, 氯化钠 180g, 加 3L热注射用水溶解, 补足注射用水至 20L, 调节 pH值 7.0, 加适量活性碳除热源, 0.2μηι微孔滤膜滤过, 灌装, 制得 输液。 规格: 100ml/瓶, 250ml/瓶。
实施例 76
CMG2g, 葡萄糖 1000g, 加 5L热注射用水溶解, 补足注射用水至 20L, 调节 pH值 7.0, 加适量活性碳除热源, 0.2μπι微孔滤膜滤过, 灌装, 制得 输液。 规格: 100ml/瓶, 250ml/瓶。
实施例 77
CMG 2g, 葡萄糖 500g, 加 5L热注射用水溶解, 补足注射用水至 10L, 调节 pH值 7.0, 加适量活性碳除热源, 0.2μιη微孔滤膜滤过, 灌装, 制得 输液。 规格: 100ml/瓶, 250ml/瓶, 500ml/瓶。
实施例 78 CMG 0. 4g, 葡萄糖 lOOOg, 加 5L注射用水加热溶解, 补足注射用水至 20L, 调节 pH7. 0 , 加适量活性碳除热源, 0. 2μιτι微孔滤膜滤过, 灌装, 制 得输液。 规格: 100ml /瓶, 250ml /瓶、 500ml /瓶。
实施例 79
CMG 0. 8g, 葡萄糖 lOOOg, 加 5L注射用水加热溶解, 补足注射用水至
10L, 调节 pH6. 0 , 加适量活性碳除热源, 0. 2μιη微孔滤膜滤过, 灌装, 制 得输液。 规格: 100ml /瓶, 250ml /瓶、 500ml /瓶。
实施例 80
CMG lg, 葡萄糖 100g, 加 500ml注射用水加热溶解, 补足注射用水至 2000ml , 调节 pH6. 5 , 加适量活性碳除热源, 0. 2μπι微孔滤膜滤过, 灌装, 制得输液。 规格: 100ml /瓶, 250ml /瓶、 500ml /瓶。
实施例 81
CMG 0. lg, 葡萄糖 500g, 加 5L注射用水加热溶解, 补足注射用水至 10L, 调节 pH7. 5 , 加适量活性碳除热源, 0. 2μπι微孔滤膜滤过, 灌装, 制 得输液。 规格: 100ml /瓶, 250ml /瓶、 500ml /瓶。
实施例 82
CMG 5g, PEG6000 50g, 95%乙醇适量。 取处方量 CMG用适量乙醇溶解, 水浴加热并加入 PEG6000熔化,在 50°C 保温下滴入 10°C 以下的液状石蜡 冷却液中, 冷凝成丸, 制得滴丸。
实施例 83
CMG 5g, 泊洛沙姆 50g, 95%乙醇适量。 取处方量 CMG用适量乙醇溶解, 加入到已熔化的泊洛沙姆中, 搅拌, 保温下滴入冷却的二甲基硅油中, 制 得滴丸。
我们的研究发现 CMG药理活性与黄芪曱苷相当, 但溶解性得到大幅改 善 (黄芪甲苷 2~4mg/100ml ; CMG: 40~50mg/100ml ), 具有较好的口服吸 收特性, 具备作为药品开发的可能性。
实施例 84: CMG对离体心脏的强心作用
方法: wistar大鼠, 261. 7 9. 8 ( 250-280 ) g, 12%水合氯醛 360mg/vkg ip麻醉。 舌下静脉给予肝素 lmg/只, 进行肝素化。 开胸, 取心脏, 迅速置 于以 95±5%C02饱和的 K-H液中 , 主动脉插管接 Langendorff 灌流装置逆行 心脏灌注,灌注压为 74cm水柱。心尖部缝合丝线接张力换能器并与履 6000 八导生理记录仪连接, 再将输出信号经 Biopec system输入至计算机, 分 析处理。
结果:
1. 对心率 (HR) 的影响 (bpm)
CMG与对照药黄芪曱苷均可减慢心率, 二者无明显差异 (见表 1)。
2. 对收缩力的影响 (g)
CMG与对照药黄芪曱苷均可增加收缩力, 二者无明显差异 (见表 2)。
表 1. 对心率 (HR) 的影响 (bpm)
Figure imgf000023_0001
*P<0.05, **P〈0.001 vs药前, +P<0.05, ++Ρ<0.01, +++P<0.001 vs controL 表 2. 对收缩力的影响 (g)
Figure imgf000023_0002
* P<0.05, **P<0.01 vs药前, +Ρ〈0·05, ++P<0.01 vs controL 3.对收缩力变化率的影响 (g/s)
CMG与黄芪甲苷均可增加收缩力变化率, 二者无明显差异。
表 3. 对收缩力变化率的影响
Figure imgf000024_0001
* P<0.05, **P<0.01 vs药前, +P<0.05, +++P<0. OOlvs controL
4.对舒张力变化率的影响 (g/s)
CMG与黄芪曱苷均可增加舒张力变化率, 二者无明显差异。
表 4. 对舒张力变化率的影响 (g/s)
Figure imgf000024_0002
* P〈0.05, **P〈0.01 vs药前, +P〈0.05, ++,P<0. OOlvs controL
结论: CMG 在离体心脏模型上显示强心作用, 其作用强度与黄芪甲苷 相当。 实施例 85: CMG对麻醉开胸犬血流动力学的影响 1.实险目的 观察 CMG静脉给药对麻醉开胸犬心功能各项指标的影响,并与黄芪曱 苷进行比较, 为该药进一步开发提供实验依据。
2.实验材料
2. 1 药物及配制
( 1 )CMG注射液 (简称 ASP- II ):无色透明液体, 0.35 mg 'ml/ 1 ,批号 041230。 天津药物研究院创新中心提供。 临用时以对照溶剂配制成 0. 3mg . ml/ 1的药 液。 按动物体重及给药剂量量取药液, 以生理盐水稀释至 30ml, 供犬静脉 给药用。
( 2 ) 黄芪曱苷注射液: 无色透明液体, 1. 5 mg ' mL ', 批号 040323。 天津 药物研究院创新中心提供。 临用时以对照溶剂配制成 0. 3mg . mL '的药液。 按动物体重量取药液, 以生理盐水稀释至 30ml , 供犬静脉给药用。
2. 2 实验动物
成年健康杂种犬: 购自天津市郊, 饲养两周以上备用。
2. 3 实验仪器
(1) RM-6300型八道生理记录仪, 日本光电株式会社产品;
(2) MFV-3200型电磁血液流量计, 日本光电株式会社产品;
(3) MP - 100数据采集系统, 美国 BI0PAC公司产品;
(4) SC- 3型电动呼吸机, 上海医疗器械四厂产品。
3 实-验方法
动物静脉推注戊巴比妥钠 30mg/kg麻醉。气管插管接 SC- 3型电动呼吸 机行人工正压呼吸。 左侧第 IV肋间开胸, 暴露心脏, 分离主动脉根部, 卡 上直径 12或 14mm (FC- 120/140T)的血液流量计探头, 测定主动脉血流量, 以此代表心输出量(CO);分离冠状动脉左旋支,卡上 2或 2.5 mm (FC- 020T、 025Τ)的血流量探头, 经 MFV- 3200型电磁血液流量计测定冠脉流量 (CBF)。 心尖部插入充满肝素生理盐水的聚乙烯导管至左心室, 经 TP- 400T型压力 换能器接 AP-641G 血压放大器测量左室内压(LVP)、 左室舒张末期压 (LVEDP) , 将 LVP 电讯号经微分处理, 记录左室内压最大上升和下降速率 (±LVdp/dtmax); 分离股动脉, 插入充满肝素生理盐水的聚乙烯导管至腹主 动脉, 经 TP- 400T型压力换能器接 AP- 641G血压放大器测定收缩压(SBP)、 舒张压(DBP)、 平均动脉压(MAP)。 四肢皮下插入针状电极, 经 AC- 601G心 电放大器测量标准 II导联心电图(ECGII)。 上述模拟信号同步输入 RM- 6300 型八导生理记录仪, 经 MP- 100系统采集、 转换为数字信号存储于电脑中, 以 AcqKnowledge v.3.5.7软件进行分析处理。 另行股静脉插管, 供给药及 补液用。
手术完毕待各项指标稳定后记录给药前各项指标,开始静脉输注给药。 实验分 5组, 每组 6只犬, 给药组分别给予 ASP-II0.15、 0.3、 0.6mg/kg, 空白对照组给予对照溶剂 lml/kg, 阳性药物对照组给予黄芪甲苷 0.3mg/kg, 体积均为 15ml/只, 速度 lml/min。 记录开始给药后 5、 10、 15、 20、 30、 45、 60、 90、 120min上述诸项指标。 实验结束后放血处死动物, 剪下心脏并称重, 以 1/3心脏重量作为左旋支引流区, 计算每百克心几的 血流量(CF), 并按公式计算冠脉阻力(CR)、 心脏指数(CI)、 左室做功(LVW) 及总外周阻力(TPR)。 公式如下:
CF二 CBFx 300/心脏重量 CR=MAP/CF CI=C0/0.11χ(体重) 2/3 LVW=C0 (MAP- 5) xl.052x0.0136 TPR=MAPx79.92/C0
实验数据以均数士标准差 土 s)表示, 以配对 t检验比较给药前后均数 差异的显著性, 以组间 t检验, 比较给药组与对照组各指标变化差异的显 著性。 结果见表 1 -6。
实验结果
4.1 对血压、 心率的影响
麻醉开胸犬静脉给予对照溶剂后 SBP、 DBP、 MAP和 HR在 120min内与 给药前相比无明显变化。
给予 ASP- 110.15、 0.3、 0.6mg/kg, SBP、 DBP、 MAP, HR在 120min内 无明显变化。 黄芪曱苷给药后血压与给药前比较无明显变化, 心率有所减 慢。 等剂量(0.3mg/kg) ASP- II与黄芪甲苷比较无明显差异。
4.2 对左心功能的影响(表 5、 6)
麻醉开胸犬给予对照溶剂后 120minLVP、 LVEDP、 LVW、 ±LVdp/dt„ax无明 显变化。
LVP: 静脉给予 ASP- 110.15、 0.3、 0.6mg/kg, 左室内压在 120min 内 无明显变化。
LVEDP: 给予 ASP- 110.15、 0.3、 0.6mg/kg, 左室舒张末期压剂量依赖 性降低, LVEDP 最大分别下降了 1.1±0.4、 1.5±0.8、 2.1±0.5 mmHg(P 均〈0.01), 作用持续 2h以上。 LVW: 静脉给予 ASP- Π0.15 0.3 0.6mg/kg, 对左室作功无明显影响。 士 LVdp/dt 给予 ASP - 110.15mg/kg, 士 LVdp/dt„,x在 120min 内无明显 变化, 0.3 0.6mg/kg给药 5~ lOmin后 +LVdp/dtmax明显增加, 最大分别增 加了 12.0±5.0 22.6±11.8% (P均〈0.01), 对 -LVdp/dt X无明显影响。
黄芪曱苷给药后 LVSP LVW, -LVdp/dtmax无明显变化, +LVdp/dtmax 明 显增加, LVEDP明显降低。 等剂量(0.3mg/kg) ASP- II与黄芪曱苷比较无明 显差异。
4.3 对心脏泵血功能及总外周阻力的影响(表 7)
麻醉开胸犬静脉给予生理盐水后 120min C0 CI及 TPR无明显变化。 C0 CI: 静脉给予 ASP- 110.15 0.3 0.6mg/kg, C0 CI在 120min内 无明显变化。
TPR: 给予 ASP-IIO.15 0.3 0.6mg/kg总外周阻力在 120min内无明 显变化。
阳性药物黄芪曱苷对 C0 CI TPR无明显影响, 与等剂量 ASP- II比较 无明显差异。
4.4 对冠脉流量及冠脉阻力的影响(表 8)
麻醉开胸犬给予生理盐水后 120 min CF CR无明显变化。
静脉给予 ASP- 110.15 0.3 0.6mg/kg对 CF CR无明显影响。
阳性药物黄芪曱苷给药后 120 min CF CR亦无明显变化。 结论
单次给予 ASP- Π0.15mg/kg后麻醉开胸犬除 LVEDP外各项血流动力学 指标无明显变化; 0.3 0.6mg/kg明显降低 LVEDP, 升高 +LVdp/dt,,,ax, 其它 血流动力学指标无明显变化。 对照药物黄芪曱苷明显降低 LVEDP, 升高 +LVdp/dtmax, 与等剂量的 ASP-II相比, 对麻醉开胸犬各项指标的影响无显 著性差异。
CMG 可有效改善麻醉犬血流动力学指标, 作用强度与等剂量黄芪甲苷 相当。 表 5 静脉给予 ASP- Π对麻醉开胸犬左室压及左室作功的影响(3f±s, n=6)
M量 给药后(miti)
(mg/
指 标药 物 kg) 给 药 前 5 10 15 20 30 45 60 90 120 空白 - 109±30 110±32 108±32 107±37 108±32 108±26 109±25 101±19 101±26 101±26
(1.3±10.2) (- 0.6±7.8) (-1.7±12.9) (-1.1+4.8) (-1.1±5.8) (0.0±11.9) (-7.2±13.6) (一 7.8 ±22.0) (-7.5 ±19.
LVP ASP- II 0.15 105±22 105±21 103±22 103±25 101±21 100±21 101±19 101±19 101±18 103±22
(0.1±3.4) (-1.5±3.7) (-2.0±4.7) (-3.8 ±5.1) (-5.0±7.3) (一 3.6±4.6) ( 4.1±4.9) (一 3.5 ±7.6) (-1.8±8.
ASP - II 0.3 103±20 107±21 106±22 106±20 104±23 102±23 98土 22 98±22 99±20 100±23
(4.1±4.9) (2.3±6.9) (2.3±5.4) (1.2土 6.9) (— 1.3±4.7) (-4.8±5.5) (-5.7±6.0) (-4.5 ±7.0) (-3.5 ±10. mmHg ASP- 11 0.6 106±16 105 ±14 105±17 105±17 107±17 107±17 106±16 105士 14 105±12 102±17
(-1.1±3.5) (一 1.3±5.0) ( 0.8±4.1) (0.4±3.9) (0.9±5.6) (0.2±5.2) (- 0.8±7.7) (- 1.3±6.7) (-4.4±5. 黄芪甲苷 0.3 103±12 104±10 105±10 L03土 12 104±11 102±11 98±10 98±11 99±15 97±14
(1.1±6.5) (2.5±11.7) (- 0.3±12.2) (1.2±16.2) (-0.7±13- 7) (- 4.5±11.7) (-5.3±15.3) (-4.2±18.7) (-5.5 ±19. 空白 - 2.5±1.0 2.4±0.8 2.4±1.1 2.6±0.8 2.2±0.8 2.3±1.2 2.5±1.1 2.5±1.0 2.8±0.8 2.4±0.9
(-0.06±0.44) (-0.07±0.87) (0.13±0.29) (- 0.3±0.44) (-0.24±0.86) (-0.03±0.29) (0.03±0.84) (0.27 ±0.38) ( 0.07±0.
LVEDP ASP- II 0.15 1.8±2.2 1.0±2.3* 1.0±2.3* 1.0±2.3* 1.2±2.4* 1.2±2.4* 1.3±2.2* 1.3±2.1* 1.4±2.4 1.6±2.3
(-0.78±0.61) (- 0.73 ±0.49) (-0.73±0.60) (—0.62±0.47) (- 0.58±0.46) (-0.5±0· 44) (-0.46±0.41) (-0.40±0.43) (-0.15±0.
ASP- II 0.3 1.7±2.2 1.3±2.5 1 + 2. ** 0.7 + 2.6** 0.6±2, 5* 0.6±2.4* 0.5+2.3** 0.8±2.8* 0.9±2.6* 1.0±2.1*
(- 0.39±0.38) (-0.75士 0.34) ( 1.06±0.54) (-1.16±0.89) (-1.11±0.87) (- 1.28±0.75) (- 0.98±0.88) (- 0.83±0.72) (-0.71±0. mmHg ASP- II 0.6 2.7±1.3 1.5±1.6* 0.9+1.6** 1.3±1.6** 1.2±1.6** 1.3±1.5** 1.3±1.7** 1.6±1.6* 1.3±1.4** 2.0±1.2*
(一 1.17±0.78) (一 1.74±0.68) 1.38±0.51) (- 1.5±0.54) (-1.4±0.6) (- 1.41±0.81) (― 1.05±0.76) (-1.35±0.72) (-0.73±0. 黄芪甲苷 0.3 2.4±1.1 1.6±1.4 1.7±1.3* 0+1.2** 1.0±1.1** 1.0±1.4* 0.9±2.1* 0.8±1.7* 1.4±0.5* 1.8±0.8*
(一 0.80±0.81) (—0.73±0.54) -1.40±0.54) (- 1.46±0.68) (-1.44±0.90) ( 1.55±1.42) (-1.57±1.39) (-0.97±0.77) (-0.66±0. 空白 - 1.13±0.51 1.29±0.62 1.19±0.58 • 15±0.58 1.22±0.56 1.14±0.50 1.19±0.56 1.14±0.64 1.16±0.64 1.22±0.6
(0.16±0.21) (0.06±0.12) 0.02±0.11) (0.09±0.12) (0.01±0.11) (0.06±0.17) (0.01±0.16) (0.02±0.25) (0.09±0.
LV ASP- II 0.15 1.12±0.42 1.15±0.43 1.18±0.34 .08±0.31 1.04±0.23 1.01±0.26 1.06±0.31 1.00±0.34 0.96±0.24 0.99±0.3
(0.03士 0.17) (0.06±0.19) -0.04±0.19) (- 0.08±0.21) (-0.11±0.27) (- 0.06±0.32) (- 0.12±0.33) (-0.16±0.34) (- 0.13±0.
ASP- II 0.3 1.02±0.47 1.12±0.49* 1.02±0.44 .02 + 0.44 1.02±0.47 0.97 ±0.46 1.00±0.48 0.90±0.43 0.90±0.53 0.94±0.5
(0.10±0.07) (0.00±0.15) 0.00±0.16) (0.00±0.05) (-0.05±0.13) (- 0.02±0.11) (-0.12±0.26) (-0.12±0.32) (- 0.08±0. kg - m ASP- II 0.6 1.08±0.41 1.11±0.38 i. ll±0.34 .14±0.41 1.13±0.35 1.15±0.45 1.1±0.29 1.17±0.40 1.17±0.44 1.12±0.42
(0.03±0.11) (0.03±0.15) 0.06 + 0.13) (0.06±0.17) (0.07±0.13) (0.03±0.23) (0.10±0.20) (0.10±0.11) (0.04 ±0.1 黄芪甲苷 0.3 1.21±0.44 1.22±0.47 1.26±0.39 .22 + 0.35 1.2±0.31 1.19±0.40 1.14±0.40 1.16±0.47 1.14±0.44 1.17±0.45
(0.01±0.05) (0.05±0.13) 0.01±0.16) (一 0.01±0.22) (- 0.02±0.15) (-0.07±0.11) ( 0.05 ±0.09) (- 0.07±0.08) (- 0.04±0. 注: 1.与给药前配对比较: *ρ<0.05, **ρ<0.01; 2.括号内为与给药前比较的差值; 3.等剂量 ASP- II与黄芪曱苷 差值无显著性差异。
表 6静脉给予 ASP- II对麻醉开胸犬左室压最大变化速率的影响 ±s, n=6)
剂 至 给药后(min)
指 标 药 物 (mg/kg) 给 药 前 5 10 15 20 30 45 60 90 12 空白 - 1288±577 1360 + 690 1284±630 1285±627 1318±643 1319±597 1313土 544 1337±642 1309±646 1296±
(73±140) (-4±101) (- 3±152) (30±114) (31±159) (25±212) (49±133) (21±204) (8±27 丄
ASP- II 5 1150±391 1205±417 U73±407 1170 ±449 1144±452 1170±425 1164±356 1126±375 1121±412 1138± 圍 Hg/ s (56±94) (23±110) (20±113) (- 6±113) (20±157) (14±86) (-24 ±57) ( 28 ±90) (- 11±
ASP- II 0.3 1261±453 1308 + 448* 1358±444* 1367±470** 1348 + 487* 1304±459 1285±453 1272±479 1242±437 1309±
(47±34) (97±68) (106±54) (87±77) (43±100) (24±83) (11±94) (- 19±39) (48±9
ASP- II 0.6 1104士 295 1186±316* 1198±278* 1199 + 288** 1276±339* 1232±274* 1181±320* 1199±294* 1152±313 1078 +
(83±55) (95±70) (95±56) (172士 151) (128±108) (77±53) (95±76) (48±63) (- 25± 黄芪曱苷 0.3 1055±157 1082±176 1141±136* 1167 ±157*** 1165±112** 1140土 92 1124±163 1098±192 1100±160 1088±
(27±75) (86±61) (U2±31) (110±67) (85±84) (69±73) (43±77) (45±73) (33±5 空白 - - 859±253 - 891±325 _857±345 - 824±314 - 823±227 -900±206 - 884±338 - 842±280 - 870±401 -917±
(- 31±134) (2±124) (36±117) (36±85) (-40±119) (- 25±175) (17±79) (- 11±229) (- 58± 丄
-dp/dt ASP- II 5 -888±310 -865 + 286 - 883±288 - 875±288 -830 + 277 -863±258 - 854±259 - 841±249 -857±243 -897± mmHg/s (22士 65) (5±36) (13±49) (58±77) (25 ±79) (34 ±80) (47±92) (31±128) (- 9±1
ASP— II 0.3 -921±311 — 958±313 -925 + 299 -947 + 308 -937 + 289 -885 + 293 -878±266 -833±236 - 909±312 - 894±
(-37±44) (-4 + 80) (-25 ±74) (- 16±91) (36±97) (43±117) (88 ±199) (12±172) (27±6
ASP- II 0.6 - 852±244 -850 + 223 - 857±238 - 851±196 - 842±220 - 833±243 -842 ±170 -829±157 -815±238 -789 +
(2±31) (-4±46) (2±98) (10±91) (20±96) (10 + 126) (24±167) (37±55) (64士 6 黄芪甲苷 0.3 - 836±194 - 878±179 - 882±163 - 847 ±141 -875±105 - 807±124 -809 ±137 - 788±126 -762 ±139 - 748 ±
( 43 ±104) (- 46±118) (- 12 ±124) (- 39±142) (28 ±160) (26±159) (48±177) (74±184) (88±2 注: 1.与给药前配对比较: *p〈0.05, **p<0.01; 2.括号内为与给药前比较的差值; 3.等剂量 ASP- II与黄芪曱苷比 差值无显著性差异。 表 7静脉给予 ASP- II对麻醉开胸犬心输出量及总外周阻力的影响( ±s,n=6)
剂 量 一 给药后(mi n)
指 标 药 物 (rag/kg) 给 药 前 5 10 15 20 30 45 60 90 120
空白 - 1.15 ±0. 34 1, 26±0.42 1.20±0.39 1.15±0.39 1, 26±0.38 1.18土 0· 38 1.20±G.40 1.15±0.48 1. 13±0.47 1.17±0.4
(0.11±0.11) (0.05±0.08) (0.00±0.08) (0.11±0.10) (0.02±0.05) (0.05±0.08〉 (0.00±0.18) (- -0.02±0.16) (0·01±0,
CO ASP- II 0.15 1.21±0· 38 1·24±0· 38 1·31±0· 32 1.21±0.26 1.19士 0.27 1.14±0.24 1.16±0.22 L 11±0- 21 1. 06 ±0.20 1.03±0.1
L/mi] n (0.04 ±0.09) (0.10±0.12) 〈0.00±0.15) (-0.02±0.15) ( 0.07±0.16) (-0.04±0.25) (-0, 10±0.23) (- - 0.15土 0.24) (-0.17±0.
ASP- II 0.3 1.10±0. 38 1. i6±0.39 1.09±0.39 1.10±0.38 1.08±0.36 L.07±0.36 L03±0.39 1.00±0.45 0. %士0.47 1,00±0.5
(0.06 ±0.09) (- 0.01±0.14) (0.00±0.17) (-0.02士 0.06) (-0.03±0.18) (-0.07±0.07) (-0.10土 0.25) (- -0.14±0- 24) ( 0.10±0.
ASP II 0.6 1.15±0. 40 1.18±0.42 1.17±0.33 1.20±0.38 1.19±0.34 1.20±0.43 1.15±0.27 1.19±0.32 1. 22±0.40 1.21±0.3
(0.03 ±0.09) (0.02±0.11) (0.05±0.09) (0.05±0, 10) (0.05±0, 07) (0.00 ±0.15) (0.04±0.13) (0.07±0.12) (0.06±0. 黄芪甲苷 0.3 ί.20±0.32 1.23±0.36 1.24±0.32 1.21+0.30 1.20±0.27 1.16±0.29 1.17±0.32 1.18±0.34 1.21+0.32 1.20±0.3
(0.03±0.05) (0.04±0.05) (0.01±0.04) (0.00±0.06) (—0· 04±0.09) (—0.03±0.10) (-0.02±O.06) (0.00±0.05) (0.00±0. 空白 ― 2.05±0.78 2.24±0.90 2.12±0.84 2.04±0.85 2.23±0.83 2.09 ±0.85 2.14±0.91 2·06±1.04 2.02±1.00 2.09±1.0
(0.19±0.19) (0.08±0.15) (0.00±0.14) (0.18±0' 17) (0.05±0.10) (0.09±0.15) (0.02±0.31〉 (-0.03 ±0.28) (0.04±0
CI ASP - II 0.15 2,08±0.63 2.15±0.65 2.26±0.55 2.09±0.45 2.05±0.45 1.98±0' 44 2.02±0.45 1.92±0.42 1-83±0·36 1.79±0·3
(0- 07 ±0.16) (0.18±0.20) (0.01±0.24) (一 0.03 ±0.26) (~0.10±0.27) 〈一 0.06±0 43) (—0.16±0.37) (一 0, 25±0.39〉(― 0.29±0.
ASP- H 0.3 1.98±0.84 2.09土 0.86 1.%±0.85 1.98±0.84 1.94±0.81 1.92±0.78 1.85±0.84 】.80±0.93 1.74±0.98 1.81±1.0
(0.11±0· 16) (-0.03 ±0.23) (-0.01±0.28) (一 0.04±0.11) (-0.06±0.30) (-0.13±0.13) 〈- 0.19±0.42) (― 0.25±0·42) (-0.17±0.
L/rain ASP~ II 0.6 1.96±0, 54 2.00 + 0.56 2.01±0.39 2.05 ±0.50 2.05±0.41 2.05±0.57 1.97±0.30 2.04±0.36 2.09±0.53 2, 07±0.4
(0.04±0.16) (0.05 ±0.20) (0.09±0.16) (0.09±0.18) (0.09±0.12) (0·0】 ±0, 26) (0.08 ±0.24) (0.13±0.20) (0.11±0' 黄芘甲苷 0.3 2.14±0.52 2.20±0.59 2.21±0· 52 2.16±0.51 2.15±0.44 2.08±0.48 2.08±0.52 2.1C±0.53 2.15±0.52 2.14±0.5
(0.06土 0.10) (0.07±0.08) (0.02±0.07) (0.00士 0.10) (-0.07 + 0. L7) (-0.06±0.19) (-0.05±0.11) (0.01±0.08) (0.00±0· 空白 ― 5133±854 4854土 878 4980 ±903 5203 ±1036 4598 ±682* 5050±1087 5062士 1209 5360 ±1469 5587 ±1585 5528 ±145
(-279±283) (-153±359) (70±557) (- 535±341) (- 83±391) (-71 ±784) (228±960) (455±1014〉 (396 ±737)
TPR ASP- II 0.15 5150土 2321 4967±2135 4568 ±1871 4612土 1333 4882 + 1971 5045±2043 4951±1731 5112±1599 5576±2153 5734±177
(- 183±313) (- 582±652) (- 538±1075) (- 268±672) (- 105±498) (- 199±925) (- 38±811) (426 ±770) (584±103
ASP- II 0.3 5299土 1597 5248±1878 5683±2354 5535土 2356 5513±1980 5318±2153 6068±2331 6625土 4423 7000±4452 7219土 504 dyn. s / (- 52±829) (384土 1293) (236 ±1386) (214±869) (19±1444) (768士 937) (1326±3485) (1701±3472) (1920±39
ASP- II 0.6 5507 ±2267 5474±2219 5261 + 1874 5249±2234 5Π6±1818 5406±2485 5337±1723 5170士 16 5285±2431 4925 ±167
(-32土 572) (- 246±497) (- 258±392) ( 331 ±534) (- 101±366) (-170土 595) (-336士 1012) (-222 ±606) (-582 ±76 黄芪曱苷 0.3 5224±1465 5046±1572 51δ2±1495 5319±1695 5203 ±1464 5430±1302 5301土 1638 5278±1714 4952土 1517 5046±144
(- 178±384) ( 62±517> (95士 662) (-21_±735) (206±718) (77±552) (54±458) ( 272±349〉 (― 178±39
注: 1.与给药前配对比较: *p〈0.05, **p<0.01; 2.括号内为与给药前比较的差值; 3.等剂量 ASP- II与黄芪曱苷比 差值无显著性差异。
表 8静脉给予 ASP- II对麻醉开胸犬冠脉循环的影响 fe±s, n=6)
剂 量 给药后(min)
指 标 药 物 (mg/kg)给 药 前 5 10 15 20 30 45 60 90 120 空白 - 54.0±13.4 57.4土 13.8 58.3±14.5 54.9±i3.4 56.4 ±20.7 57.2±16·0 59.0±22.0 59.3±20.7 61.2±21.9 61.6±21.
(3.4±4,0) (4.3±5.0) (0.9±6.7) (2.4±10.6) (3.2±6.8) (5.1±14.0) (5.4士 12.5) (7.2±14.0) (7.7±14.
CF ASP- II 0.15 57.7±24.1 57 + 21.7 55.9±2L 6 55, 9±22.2 54.3±20.4 52.5±16.9 51.6±i7.1 51.8±15.0 53·7±14·3 56.5 ±16. ml/min (- 0.7±3.6) (一 L8±5.0) (—1.8±5.8) (- 3.4±4.4) (一 5.2±7.9) (-6.1±8- 1) (-5.9±9.9) 〈-4.0±10.4) (- 1.2±1
/100g ASP- II 0.3 50.2±19.5 51.7±20.7 53.5±21.1 51.3±21.1 51.4±19.2 51.4±24.5 51.7±23.5 51.7±23.9 51.1±19.1 50.7±20.
(1.5±5.3) (3.3±3.2) (1.1士 4.2) (1.2±4.0) (i.2±6.2) (1.6±6.8) (1.6±6.8) (1.0±4.7) (0.5±2.
ASP- II 0.6 5L.2±8.0 51.7±10.5 51.2±8.4 51.4±8.3 49·8±8.0 50.7±8.5 50.4±7.8 50.2土 U.6 48.6±7·2 49.3±7.
(0.5±3.1) (0.0±2.2) (0.2±3.7) (- 1,4±1.4〉 (-0.5 ±4.0〉 (—0.8 ±4.7) (- 1·0±6·9) (- 2·6±2, 8〉 (― 1.9±5· 黄芪甲苷 0.3 57±16.1 57.2±14·0 59.0±20.5 57.0±22.3 59.1±21.2 57.8 ±16.6 54.0±15.0 53.7±18.1 57.4 ±19.0 55.6±19.
(0.2±3.5〉 (2.0±6.5) (0.0±7.2) (2.1±7.3) (0.8±3.2) (-2.9 ±7.7) (-3.3±5.1) (0·4±9.5) (一 1.4±1 空白 ― 1,37±0.30 1·31±0.35 1·26±0·30 1.33±0.31 1.36士 0.53 1.29±0.31 1.31±0·42 1.26±0.36 1.27±0.50 1.28±0.
(― 0.08±0.13 (-0.11 ±0.15
(—0.05±0.09〉( 0.1±0.10) (- 0.03土 0.14) (0.00±0.26) ) (一 0.05 ±0.16) ) (- 0.09±0.22) (- 0.09±
CR ASP- II 0.15 1.35±0, 441.35±0· 42 1.36±0.42 1.32±0.38 1.35±0.39 1.38±0.38 t.42±0.39 1.38±0.36 1.36±0.37 1.35±0. mmHg/ml/ (— 0.01±0.08) (0.00±0.11) (— 0.03±0.14) (0.00±0.13) (0.02±0.13) (0.07±0.20) (0.03±0.16) (0.00±0- 24) (— 0. (U± min/lOOg ASP- II 0.3 1.53 ±0.671.57±0.74 1.50±0.71 1.56士 0.76 1.51±0·68 1.51±0· 74 L.65±0.92 1.54±0.75 1.5L±0.66 1.60±0.
(—0.03±0.12 (-0.02±0.09
(0.04±0.17) ) (0.02±0.15) (— 0.02±0.14) ) (0.11±0.29) (0.01 ±0.19) (— 0.02±0.16) (0.07±0.
ASP- II 0.6 1.41±0.351.44±0.39 1.44±0·40 1.43±0.35 1.48±0.36 1.46±0.38 1..48±0.35 1.53±0.47 1.52±0.37 1.42±0.
(0.02±0.08) (0.03士 0.12) (0.01士 0.07) (0.06±0.10) (0.04±0.08) (0.06±0.16) (0.11 ± 0.26) (0.11 ±0.12) (0.00±0. 黄芪甲苷 0.3 1.4θ±0.491.36±0.47 1.39±0.45 1.46±0.50 1.37±0.42 1.41±0.47 1.44±0.50 1.51±0.64 1.43±0.83 1.51±0.
(-0.01 ±0- 12
(— 0.05±0.07) ) (0.06±0.15) (— 0.03±0.16) (0.00±0.13) (0.04±0.25) (0.10±0.23) (0.02±0.51) (0.11±0. 注: 1.与给药前配对比较, 无显著性差异; 2.括号内为与给药前比较的差值; 3.等剂量 ASP-Π与黄芪甲苷比较, 值无显著性差异。

Claims

权 利 要 求
1. 一种制备环黄芪醇- 6-0- β -D-葡萄糖苷的方法, 包括下述步骤: a. 使用黄芪甲苷或按常规方法制备的黄芪提取物作为原料, 往其中 加入适当溶剂配制药液;
b. 加入水解酶在恒温下进行水解得到水解液;
c 水解液经大孔吸附树脂分离;
d. 纯化分离得到的产物。
2. 根据权利要求 1所述的方法, 其特征在于, 当原料为黄芪曱苷时, 黄芪甲苷在溶液中的浓度为 0.01%— 1%W/V, 优选浓度为 0.01— 0.5%W/V, 更优选浓度为 0.01— 0.1%W/V; 当原料为黄芪提取物时, 溶液浓度为提取 物: 溶液 = 1: 2-1: 1000 W: V, 优选比例是提取物: 溶液 = 1: 15-1: 1000 W: V。
3. 根据权利要求 1或 2所述的方法, 其特征在于, 所述溶剂选自水、 低级醇或含水低级醇, 所述低级醇优选是选自碳数为 1一 3的一元醇, 优 选选自乙醇和曱醇, 更优选乙醇。
4. 根据权利要求 1 -3中任一项所述的方法, 其特征在于, 所述药 液中醇的浓度是 1― 30%V/V , 优选 5—20% V/V。
5. 根据权利要求 1 -4中任一项所述的方法, 其特征在于, 所述水 解酶选自 β—糖苷酶、 β—葡萄糖苷酶、 橙皮苷酶或这些酶与纤维素酶、 葡聚糖酶、 木聚糖酶、 糖化酶、 果胶酶、 淀粉酶中一种或数种酶的混合 物, 优选 β—糖苷酶、 β—葡萄糖苷酶或木聚糖酶, 更优选木聚糖酶。
6. 根据权利要求 1 - 5中任一项所述的方法, 其特征在于, 当底物 为黄芪甲苷时, 底物与酶的比例为 1: 1-50 W: W; 和当底物为药材提取 物时, 酶与底物配比为 1: 100-10: 1 W: W, 优选配比为 1: 50-10: 1 W: W。
7. 根据权利要求 1-6中任一项所述的方法, 其特征在于, 所述水 解在 40— 55°C下恒温进行 12— 72小时, 优选 48— 72小时, 和溶液适合 的 pH值为 4一 7。
8. 根据权利要求 1 - 7中任一项所述的方法, 其特征在于, 所述分 离按如下步骤进行:
水解液经苯乙烯为骨架的大孔吸附树脂, 先用水洗脱 1一 2个柱体积, 后用 0. 5— 2%的碱溶液洗脱 1一 2个柱体积, 再用 20-40%的乙醇溶液洗脱 1一 3个柱体积, 最后用 70— 95%乙醇洗脱 1一 3个柱体积, 收集高浓度乙 醇洗脱部分, 减压浓缩, 其中所述原料: 树脂比当原料为提取物时优选 为 1 : 20—4: 1 g: ml , 更优选 1 : 10—3: 1 g: ml; 当原料为黄芪甲 苷时优选为 0. 1: 1— 20: 1 mg: ml , 更优选为 2: 1— 10: 1 mg: ml。
9. 根据权利要求 1 - 8中任一项所述的方法, 其特征在于, 所述纯 化按如下步骤进行:
过滤分离得到的产物, 用低级醇或含水低级醇转溶, 过滤, 浓缩滤 液并放置至析出结晶, 过滤得结晶, 再用低级醇或含水低级醇重结晶, 得纯度 95%以上的环黄芪醇- 6-0- β -D-葡萄糖苷,其中所述低级醇优选是 碳数 1一 5的一元醇或多元醇, 更优选选自曱醇和乙醇。
10. 根据权利要求 1― 9中任一项所述的方法制备的环黄芪醇 -6-0- β -D-葡萄糖苷。
11. 一种药物组合物, 包含治疗有效量的根据权利要求 10所述的环 黄芪醇 -6-0- |3 _D-葡萄糖苷和药学上可接受的辅料, 其中所述药学上可 接受的辅料优选选自稀释剂、 润滑剂、 粘合剂、 崩解剂、 稳定剂和溶剂。
12. 根据权利要求 11所述的药物组合物, 其为固体口服制剂、 液体 口服制剂、 注射剂、 膜剂或气雾剂的形式, 其中所述固体口服制剂优选 为普通片剂、 分散片、 肠溶片、 颗粒、 胶嚢、 滴丸或散剂, 或緩控释制 剂; 所述緩控释制剂优选为緩控释片剂、 颗粒或胶嚢; 所述液体口服制 剂优选为口服液或乳剂; 和所述注射剂优选为小水针、 输液或冻干粉针。
13. 根据权利要求 12所述的药物组合物, 其中当所述药物组合物为 小水针剂时, 除注射用水外, 该药物组合物还含有适当比例的选自葡萄 糖、 氯化钠、 山梨醇和磷酸盐的药用辅料, 选自乙醇、 甘油和丙二醇的 有机溶剂, 或选自注射用 PEG和羟丙基 β -环糊精的助溶剂; 当所述药 物组合物为输液时, 除注射用水外, 该药物组合物还含有根据需要添加 的葡萄糖、 氯化钠和 /或等渗剂; 和当所述药物组合物为冻干粉针剂时, 该药物组合物还含有适当比例的冻干支持剂, 该冻干支持剂优选选自甘 露醇、 葡萄糖、 山梨醇、 氯化钠、 右旋糖苷、 蔗糖、 乳糖、 水解明胶、 羟丙基 - β -环糊精、 磺丁醚环糊精、 泊洛沙姆和聚乙二醇中的一种、 两 种或两种以上组合。
14. 根据权利要求 12或 13所述的药物组合物, 其中所述冻干粉针 剂中环黄芪醇 -6-0- β-D-葡萄糖苷与药学上可接受的辅料的重量配比为 1: 10—200, 优选 1: 50— 200,更优选 1: 100— 150。
15. 根据权利要求 13或 14所述的药物组合物, 其中所述冻干支持 剂为甘露醇、 乳糖或甘露醇-乳糖组合物, 所述甘露醇-乳糖组合物中 甘露醇与乳糖的重量配比是 10: 1-1: 1, 优选 5: 1-1: 1。
16. 根据权利要求 12或 13所述的药物组合物, 其中所述水针剂中 环黄芪醇- 6-0- β-D-葡萄糖苷的浓度优选为 0.01%— 1% g/100ml, 更 优选为 0.01%— 0.2% g/100mL
17. 根据权利要求 12或 13所述的药物组合物, 其中所述输液中环 黄芪醇 -6-0- β-D-葡萄糖苷的浓度优选为 0.001%— 0.1% g/100ml,更 优选为 0.002%— 0.05% g/100mL
18.根据权利要求 13或 14所述的药物组合物, 其中所述冻干支持剂 为右旋糖苷、 聚乙二醇 -甘露醇或右旋糖苷 -聚乙二醇 -甘露醇组合物, 优选为聚乙二醇 -甘露醇组合物。
19.根据权利要求 18所述的药物组合物, 其中所述聚乙二醇为聚乙 二醇 200— 600, 优选聚乙二醇 400; 对于所述聚乙二醇-甘露醇组合物, 重量配比聚乙二醇: 甘露醇为 1: 1- 1: 10, 优选为 1: 1— 1: 5。
20.根据权利要求 12或 13所述的药物组合物, 其中所述冻干粉针剂 是按下述步骤制备的:
a.将处方量样品溶于 0.1 -0.5%活性炭处理过的溶剂中;
b.将 a中所述样品溶液搅拌下滴加到经过 0.1 - 0.5 %活性炭处理过 的冻干支持剂溶液中;
c.加水至处方量, 滤膜过滤, 分装, 冻干。
21.根据权利要求 20所述的药物组合物, 其中所述步骤 a中的溶剂 为乙醇、 丙二醇或聚乙二醇, 其用量为处方量溶液总体积的 1一 10%。
22. 根据权利要求 10所述的环黄芪醇 -6-0- (3 -D-葡萄糖苷在制备用 于治疗心血管疾病的药物中的应用。
PCT/CN2008/001594 2007-09-13 2008-09-08 Cycloastragenol monoglucoside, preparation, pharmaceutical composition and application thereof WO2009046620A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08783682A EP2199402A4 (en) 2007-09-13 2008-09-08 CYCLOASTRAGENOL MONOGLYCOSIDE, PREPARATION THEREOF, PHARMACEUTICAL COMPOSITION CONTAINING SAME AND USE THEREOF
US12/678,025 US8835134B2 (en) 2007-09-13 2008-09-08 Cycloastragenol monoglucoside, preparation, pharmaceutical composition and application thereof
JP2010524334A JP5294509B2 (ja) 2007-09-13 2008-09-08 シクロアストラゲノールモノグルコシド、その製造方法及び医薬用組成物としての使用

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200710059591 2007-09-13
CN200710059591.X 2007-09-13
CN2008100043800A CN101225424B (zh) 2007-09-13 2008-01-23 环黄芪醇的单葡萄糖苷、其制备方法、药物组合物和应用
CN200810004380.0 2008-01-23

Publications (1)

Publication Number Publication Date
WO2009046620A1 true WO2009046620A1 (en) 2009-04-16

Family

ID=39857629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001594 WO2009046620A1 (en) 2007-09-13 2008-09-08 Cycloastragenol monoglucoside, preparation, pharmaceutical composition and application thereof

Country Status (5)

Country Link
US (1) US8835134B2 (zh)
EP (1) EP2199402A4 (zh)
JP (1) JP5294509B2 (zh)
CN (1) CN101225424B (zh)
WO (1) WO2009046620A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102030799B (zh) * 2009-09-27 2012-09-05 天津药物研究院 环黄芪醇-6-O-β-D葡萄糖苷一水合物及其晶体
CN102652731A (zh) * 2011-03-04 2012-09-05 天津药物研究院 一种环黄芪醇的单葡萄糖苷注射液、其制备方法及应用
CN103397064B (zh) 2013-08-14 2015-04-15 苏州汉酶生物技术有限公司 一种酶法制备瑞鲍迪甙m的方法
EP3508584A1 (en) * 2014-01-28 2019-07-10 PepsiCo, Inc. Method for preparing rebaudioside m by using enzyme method
CN104152491B (zh) * 2014-08-18 2017-02-15 中国农业科学院兰州畜牧与兽药研究所 一种发酵黄芪的制备方法及其总皂苷的提取方法
CN105154404A (zh) * 2015-10-27 2015-12-16 东营凤起生物科技发展有限公司 黄芪提取物fqr-8及其在肿瘤细胞免疫治疗中的应用
CN105566434B (zh) * 2015-12-15 2017-10-24 安徽诚亚生物科技有限公司 一种高效制备环黄芪醇的方法
CN109890973B (zh) 2016-10-21 2023-05-23 百事可乐公司 一种酶法制备瑞鲍迪甙n的方法
US11359222B2 (en) 2016-10-21 2022-06-14 Pepsico, Inc. Enzymatic method for preparing Rebaudioside j
CN117051063A (zh) 2016-10-21 2023-11-14 百事可乐公司 一种酶法制备瑞鲍迪甙c的方法
CN107034261B (zh) * 2017-05-05 2020-09-04 北京化工大学 炭黑曲霉转化黄芪甲苷制备6-o-葡萄糖-环黄芪醇的方法
CN107058445B (zh) * 2017-05-09 2020-11-20 北京化工大学 一种利用两步酶解法转化黄芪甲苷制备环黄芪醇的方法
CN109718379B (zh) * 2017-10-31 2024-04-12 鲁南制药集团股份有限公司 一种环黄芪醇制剂
CN114369636A (zh) * 2021-12-27 2022-04-19 泰州丹鼎生物科技有限公司 一种环黄芪醇的生物催化制备方法
CN115645418B (zh) * 2022-11-11 2024-01-30 中国医学科学院药用植物研究所 环黄芪醇及组合物在制备抗血小板及抗血栓药物中的应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040020277A1 (en) 2002-07-31 2004-02-05 Mcgarvey Gordon Bryce Monitoring erosion of ceramic insulation or shield with wide area pneumatic grids
CN1172677C (zh) 2000-07-14 2004-10-27 复旦大学附属中山医院 黄芪甲苷在制备药物组合物中的应用
CN1544458A (zh) * 2003-11-27 2004-11-10 上海博泰医药科技有限公司 高纯度黄芪甲苷的制备方法
CN1543976A (zh) 2003-11-27 2004-11-10 上海博泰医药科技有限公司 黄芪甲苷注射剂制剂及其制备方法
WO2005000248A2 (en) * 2003-06-25 2005-01-06 Geron Corporation Compositions and methods for skin conditioning
CN1569884A (zh) * 2004-04-29 2005-01-26 南京医科大学 黄芪甲苷的制法及在制备防治糖尿病肾病药物中的应用
CN1189176C (zh) 2002-07-22 2005-02-16 江苏正大天晴药业股份有限公司 黄芪甲甙组合物及其制备方法
CN1669566A (zh) * 2004-03-19 2005-09-21 天津药物研究院 一种黄芪甲苷原料药的制备方法及其原料药和制剂
CN1793132A (zh) * 2006-01-12 2006-06-28 天津药物研究院 环黄芪醇类衍生物以及用途
CN1809364A (zh) 2003-06-23 2006-07-26 杰龙公司 增加端粒酶活性的组合物和方法
CN1854148A (zh) * 2005-02-06 2006-11-01 成都地奥九泓制药厂 黄芪总苷提取物及其制备方法
CN1919203A (zh) * 2005-06-23 2007-02-28 维京仲华(上海)生物医药科技有限公司 利用黄耆皂苷调节营养物质吸收之方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPO644897A0 (en) * 1997-04-28 1997-05-22 Novogen Inc Preparation of isoflavones from legumes

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1172677C (zh) 2000-07-14 2004-10-27 复旦大学附属中山医院 黄芪甲苷在制备药物组合物中的应用
CN1189176C (zh) 2002-07-22 2005-02-16 江苏正大天晴药业股份有限公司 黄芪甲甙组合物及其制备方法
US20040020277A1 (en) 2002-07-31 2004-02-05 Mcgarvey Gordon Bryce Monitoring erosion of ceramic insulation or shield with wide area pneumatic grids
CN1809364A (zh) 2003-06-23 2006-07-26 杰龙公司 增加端粒酶活性的组合物和方法
WO2005000248A2 (en) * 2003-06-25 2005-01-06 Geron Corporation Compositions and methods for skin conditioning
CN1544458A (zh) * 2003-11-27 2004-11-10 上海博泰医药科技有限公司 高纯度黄芪甲苷的制备方法
CN1543976A (zh) 2003-11-27 2004-11-10 上海博泰医药科技有限公司 黄芪甲苷注射剂制剂及其制备方法
CN1669566A (zh) * 2004-03-19 2005-09-21 天津药物研究院 一种黄芪甲苷原料药的制备方法及其原料药和制剂
CN1569884A (zh) * 2004-04-29 2005-01-26 南京医科大学 黄芪甲苷的制法及在制备防治糖尿病肾病药物中的应用
CN1854148A (zh) * 2005-02-06 2006-11-01 成都地奥九泓制药厂 黄芪总苷提取物及其制备方法
CN1919203A (zh) * 2005-06-23 2007-02-28 维京仲华(上海)生物医药科技有限公司 利用黄耆皂苷调节营养物质吸收之方法
CN1793132A (zh) * 2006-01-12 2006-06-28 天津药物研究院 环黄芪醇类衍生物以及用途

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ISAO KITAGAWA ET AL., CHEM. PHARM. BULL., vol. 31, no. 2, 1983, pages 698 - 708
KITAGAWA, I. ET AL.: "Saponin and Sapogenol. XXXV. Chemical constituents of Astragali Radix, the root of Astragalus membranaceus Bunge. (2). Astragalosides I, II, and IV, acetylastragaloside I and isoastragalosides I and II.", CHEM. PHARM. BULL., vol. 31, no. 2, 1983, pages 698 - 708, XP008132216 *
See also references of EP2199402A4 *

Also Published As

Publication number Publication date
EP2199402A1 (en) 2010-06-23
CN101225424A (zh) 2008-07-23
US20110218161A1 (en) 2011-09-08
JP5294509B2 (ja) 2013-09-18
JP2010538621A (ja) 2010-12-16
US8835134B2 (en) 2014-09-16
CN101225424B (zh) 2013-05-29
EP2199402A4 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
WO2009046620A1 (en) Cycloastragenol monoglucoside, preparation, pharmaceutical composition and application thereof
WO2013139111A1 (zh) 黄蜀葵花总黄酮提取物及其制备方法
WO2018133563A1 (zh) 一种人参属植物提取物及其药物组合物和应用
US20070213280A1 (en) Steroidal Saponins Compound, the Process for Producing the Same and the Use Thereof
WO2008145064A1 (fr) Procédé d&#39;obtention d&#39;un extrait contenant du séquoyitol à partir d&#39;une espèce du genre trifolium, de soja et de ginkgo biloba, et utilisation de celui-ci
WO2021063391A1 (zh) 一种山羊角角蛋白、其制备方法、其药物组合物及用途
CN103520375B (zh) 包含杜仲花提取物的中药组合物
CN102552191A (zh) 一种5-ht受体激动剂口腔崩解片及其制备方法
JP2002528511A (ja) 生薬を主成分とした安定化された抗ガン剤組成物及びその製造方法
CA2782967C (en) Traditional chinese drug comprising danshen extracts and sanqi extracts and use thereof
CN102525972A (zh) 一种钙离子拮抗剂口腔崩解片及其制备方法
WO2004032941A1 (fr) Compositions pharmaceutiques contenant de la polydatine ou ses sels et utilisations de ces dernieres
JP2021512997A (ja) 分離された防風多糖及びその用途
CN102552192A (zh) 一种镇静催眠药口腔崩解片及其制备方法
CN101974011B (zh) 一种具有药用活性的新化合物灯盏细辛酸甲酯
WO2019149285A1 (zh) 一种分离的白茅根多糖及其用途
CN102961409B (zh) 一种蟾皮提取物干粉吸入剂
CN100355415C (zh) 黄芪冻干粉针剂的制备方法
CN102716231B (zh) 一种治疗脑损伤和脑水肿的中药组合物及其应用
CN102451169B (zh) 氯雷他定冻干片及其制备方法
CN101176772B (zh) 一种由蒲黄与红花制成的药物组合物
CN102351874B (zh) 一种具有药用活性的新化合物灯盏细辛酯
CN110623965B (zh) 一种知母皂苷组合物及其在治疗病毒性心肌炎上的应用
CN102961406B (zh) 一种蟾皮提取物干粉吸入剂
CN101974012A (zh) 一种具有药用活性的新化合物灯盏细辛酸乙酯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08783682

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2010524334

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008783682

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12678025

Country of ref document: US