WO2009041159A1 - 素子搭載用基板及びその製造方法、回路装置及びその製造方法、携帯機器 - Google Patents

素子搭載用基板及びその製造方法、回路装置及びその製造方法、携帯機器 Download PDF

Info

Publication number
WO2009041159A1
WO2009041159A1 PCT/JP2008/063924 JP2008063924W WO2009041159A1 WO 2009041159 A1 WO2009041159 A1 WO 2009041159A1 JP 2008063924 W JP2008063924 W JP 2008063924W WO 2009041159 A1 WO2009041159 A1 WO 2009041159A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating base
base material
main surface
surface side
layer
Prior art date
Application number
PCT/JP2008/063924
Other languages
English (en)
French (fr)
Inventor
Masayuki Nagamatsu
Ryosuke Usui
Yasunori Inoue
Original Assignee
Sanyo Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co., Ltd. filed Critical Sanyo Electric Co., Ltd.
Priority to US12/679,615 priority Critical patent/US20100288550A1/en
Priority to CN200880106516A priority patent/CN101803007A/zh
Priority to JP2009534230A priority patent/JPWO2009041159A1/ja
Publication of WO2009041159A1 publication Critical patent/WO2009041159A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • H05K1/112Pads for surface mounting, e.g. lay-out directly combined with via connections
    • H05K1/113Via provided in pad; Pad over filled via
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4007Surface contacts, e.g. bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/0557Disposition the external layer being disposed on a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05571Disposition the external layer being disposed in a recess of the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01011Sodium [Na]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0191Dielectric layers wherein the thickness of the dielectric plays an important role
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0388Other aspects of conductors
    • H05K2201/0394Conductor crossing over a hole in the substrate or a gap between two separate substrate parts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09509Blind vias, i.e. vias having one side closed
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09509Blind vias, i.e. vias having one side closed
    • H05K2201/09527Inverse blind vias, i.e. bottoms outwards in multilayer PCB; Blind vias in centre of PCB having opposed bottoms
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09563Metal filled via
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/002Etching of the substrate by chemical or physical means by liquid chemical etching

Definitions

  • the present invention relates to an element mounting substrate, a manufacturing method thereof, a circuit device, a manufacturing method thereof, and a portable device.
  • the present invention relates to an element mounting substrate that uses a wiring layer protruding toward one main surface side of an insulating base as a bump electrode by using a through hole of the insulating base and a method for manufacturing the same.
  • the present invention relates to a circuit device provided with such a substrate, a manufacturing method thereof, and a portable device. book
  • a circuit board device 16 1 and a manufacturing method thereof described below with reference to FIGS. 22 and 23 are known ( (For example, refer to Japanese Patent Laid-Open No. 2 0 2-7 6 1 8 5).
  • FIG. 22 is a cross-sectional view of the circuit board device 16 1 disclosed in Japanese Patent Laid-Open No. 2000-076 1 85.
  • FIGS. 23 (A) to 23 (E) are cross-sectional views for explaining a method of manufacturing the circuit board device 16 1.
  • a wiring layer 16 3 is formed on the upper surface of the insulating substrate 16 2 made of a resin material.
  • Insulating substrate 1 6 3 including upper surface of wiring layer 1 6 2 A protective layer 1 6 4 made of a resin material is formed on the upper surface. A part of the wiring layer 16 3 protrudes through the opening of the protective layer 16 4, and the protruding portions 1 65 and 16 6 are used as conductive bumps.
  • a bare chip 1 6 7 is mounted on the insulating substrate 1 6 2. At this time, bare chips on the insulating substrate 1 6 2 so that the tips of the protruding parts 1 6 5 and 1 6 6 as the conductive bumps contact the pads 1 6 8 and 1 6 9 of the bare chip 1 6 7 1 6 7 is implemented.
  • the gap between the insulating substrate 1 6 2 and the bare chip 1 6 7 is filled with sealing resin 1 70.
  • via holes 1 71 and 1 7 2 are formed on the lower surface side of the insulating substrate 16 2, and a part of the wiring layer 1 6 3 is exposed from the via holes 1 7 1 and 1 7 2.
  • the circuit board device 1 6 1 is mounted on an external mounting board or the like via the wiring layer 1 6 3 exposed from the via holes 1 7 1 and 1 7 2.
  • Template Recesses 1 7 4 and 1 75 are formed in the area where the projecting portions 1 6 5 and 1 6 6 (see FIG. 2 2) are arranged.
  • a seed layer 1 76 is formed on the template 1 73 as a cathode for the electroplating method to be performed later.
  • a resist film 1 7 7 is formed on the seed layer 1 7 6, and the resist film 1 is opened so that a region where the wiring layer 1 6 3 (see FIG. 23 (B)) is formed is opened.
  • 7 Selectively remove 7
  • the seed layer 1 76 is used as the cathode, and the wiring layer 16 3 is formed by the electroplating method. At this time, the wiring layer 16 3 having a uniform film thickness is also formed in the recesses 1 74 and 1 75.
  • the resist film 1 7 7 (see FIG. 23 (A)) is removed.
  • the insulating substrate 16 2 is formed on the template 17 3 including the wiring layer 16 3 using, for example, an electrodeposition method.
  • a polyimide resin having high flexibility and excellent flexibility is used.
  • via holes 1 71 and 17 2 having a diameter of about 100 ⁇ m are formed in the insulating substrate 16 2 by a carbon dioxide laser or the like.
  • the insulating substrate 16 2 is peeled off from the template 17 3 (see Fig. 23 (C)).
  • the seed layer 1 7 6 (Fig. 23 (A)) is then etched by wet etching. (See below).
  • a protective layer 1 6 4 made of epoxy resin is formed on the upper surface of the insulating substrate 1 6 2 on the side where the wiring layer 1 6 3 is formed.
  • the protective layer 16 4 is formed by applying a varnish-like epoxy resin over the entire surface of the insulating substrate 16 2 by a curtain coating method or the like, curing, polymerizing and curing. After that, the resin formed at the tip of the protrusions 1 6 5 and 1 6 6 as conductive bumps is wet-etched with an aqueous solution of permanganate aqueous solution or the like, and the protrusions 1 6 5 and 1 The tip of 6 6 is exposed from the protective layer 1 6 4.
  • the bare chip 1 67 is mounted on the protrusions 1 65 and 16 6 as conductive bumps.
  • the sealing resin 1 7 placed between the insulating substrate 1 6 2 and the pair chip 1 6 7 1 7 0 flows, and the sealing resin 170 fills the gap between the insulating substrate 16 2 and the bare chip 16 7. Disclosure of the invention
  • the wiring layer 1 is formed on the upper surface of the insulating substrate 1 6 2. 6 3 is formed, and the protrusions 1 6 5 and 1 6 6 of the wiring layer 1 6 3 are used as conductive bumps. Then, the protrusions 1 65 and 16 6 as the conductive bumps are electrically connected to the pads 1 6 8 and 16 9 of the bare chip 1 67.
  • the thickness of the circuit board device 1 61 the thickness of the insulating substrate 1 6 2 located below the wiring layer 1 6 3 is an essential thickness, and the thickness of the circuit board device 1 61 is reduced. There is a problem that it is difficult. In particular, in mobile devices such as mobile phones, the mobile devices themselves are becoming thinner, and the circuit board device 16 1 mounted on the mobile devices is required to be thinner and smaller.
  • the template 1 7 3 is used to form the protrusions 1 6 5 and 1 6 6 on the wiring layer 1 6 3 on the upper surface of the insulating substrate 1 6 2. Then, the template 1 7 3 is used to form the seed layer 1 7 6, the wiring layer 1 6 3, the insulating substrate 1 6 2, the process of peeling the insulating substrate 1 6 2, etc. from the template 1 7 3, insulation A step of removing the seed layer 1 76 from the substrate 1 6 2 is required. For this reason, there are problems in that the number of manufacturing processes is increased, manufacturing costs are reduced, and manufacturing time is difficult to shorten.
  • the protrusions 1 6 5 and 1 6 6 of the wiring layer 1 6 3 are formed by the flanges 1 7 4 and 1 7 5 formed on the template 1 7 3.
  • the protruding height is determined.
  • an insulating base material having a pair of main surfaces, and one main surface side from the other main surface side of the insulating base material A through hole penetrating into the through hole, and a wiring layer protruding from the other main surface side of the insulating base toward the one main surface side in the through hole, and the protruding portion of the wiring layer serves as an electrode. It is characterized by being used.
  • an insulating base material is prepared, a support member is attached to one main surface side of the insulating base material, and the one main surface of the insulating base material Forming a through-hole in the insulating base material by selectively removing the conductive member and using the conductive member as a mask Forming a metal layer so as to cover the other main surface of the insulating base and the inside of the through hole, selectively removing the metal layer to form a wiring layer, and the support member. And a step of etching the insulating base material from one main surface side of the insulating base material and causing a part of the wiring layer to protrude to the main surface side of the insulating base material.
  • an insulating base material is prepared, and a conductive member is provided on one main surface side of the insulating base material and on the other main surface side facing the one main surface.
  • the circuit device of the present invention is a circuit device having an element mounting substrate and a circuit element mounted on the element mounting substrate, and the element mounting substrate has a pair of main surfaces. And a through-hole penetrating the insulating base material, and a wiring layer protruding from the other main surface side of the insulating base material toward the one main surface side in the through-hole, The protruding portion is used as an electrode that is electrically connected to the pad electrode of the circuit element.
  • the portable device of the present invention is a circuit device having an element mounting substrate, a circuit device mounted on the element mounting substrate, and a portable device on which the circuit device is mounted, and the element mounting substrate. And an insulating base material having a pair of main surfaces, a through hole penetrating the insulating base material, and projecting from the other main surface side of the insulating base material toward one main surface side in the through hole. And a protruding portion of the wiring layer is used as an electrode electrically connected to a pad electrode of the circuit element.
  • the element mounting substrate can be made thinner, and further, the circuit device using the element mounting substrate can be made thinner.
  • the protruding portion of the wiring layer is used as a bump electrode of the element mounting substrate.
  • a part of the wiring layer is used as a bump electrode, and the thinned substrate for mounting an element is used for a CSP type circuit device, a WLP type circuit device, and a multichip module.
  • a CSP type circuit device a part of the wiring layer is used as a bump electrode, and the thinned substrate for mounting an element is used for a CSP type circuit device, a WLP type circuit device, and a multichip module.
  • a part of the wiring layer can be used as a bump electrode, and a thinned device mounting board can be used as a multilayer wiring board.
  • the insulating base material is etched, and the wiring layer formed in the through hole of the insulating base material is protruded to the insulating base surface side.
  • the conductive layer used as a mask for forming a through hole in the insulating base material is not removed, and a wiring layer is formed on the upper surface thereof.
  • FIG. 1A is a sectional view for explaining a circuit device using an element mounting substrate in the first embodiment of the present invention
  • FIG. 1B is a sectional view
  • FIG. FIG. 9 is a cross-sectional view for explaining a method of manufacturing a circuit device using the element mounting substrate in the first embodiment of the present invention
  • FIG. 9 shows a modification of the first embodiment of the present invention
  • FIGS. 10A and 10B are (A) a cross-sectional view and (B) a cross-sectional view for explaining a circuit device using an element mounting board according to a second embodiment of the present invention.
  • FIGS. 1 to 17 are sectional views for explaining a method of manufacturing a circuit device using an element mounting substrate according to the second embodiment of the present invention, and FIG.
  • FIG. 18 is a second embodiment of the present invention.
  • FIG. 19 is a cross-sectional view showing a modification of the embodiment, and FIG. 19 shows a circuit using the element mounting substrate in the third embodiment of the present invention.
  • FIG. 20 is a cross-sectional view for explaining the device, and FIG. 20 is a cross-sectional view for explaining the circuit device using the element mounting substrate in the fourth embodiment of the present invention.
  • FIG. 23 is a sectional view for explaining a circuit board device manufacturing method according to a conventional embodiment. It is sectional drawing, (D) sectional drawing, (E) sectional drawing. BEST MODE FOR CARRYING OUT THE INVENTION ⁇ First embodiment>
  • FIG. 1 (A) is a cross-sectional view for explaining a circuit device using the element mounting substrate according to the present embodiment.
  • FIG. 1 (B) is a cross-sectional view for explaining a bump electrode according to the present embodiment.
  • 2 to 8 are cross-sectional views for explaining a method of manufacturing a circuit device using the element mounting substrate according to the present embodiment.
  • the element mounting substrate and the manufacturing method thereof are also described.
  • the circuit device 1 is a resin-sealed CSP (ChipSizePackage) having a slightly larger outer dimension than the built-in semiconductor element 2.
  • the external appearance of the circuit device 1 is a rectangular parallelepiped shape or a cubic shape.
  • the case of a CSP type circuit device will be described.
  • the present application is not limited to this, and for example, the outer dimensions of the circuit device are substantially the same size as the semiconductor element to be mounted. The same effect can be obtained even in the case of WL P (Wa fer L evel Package).
  • the element mounting board 3 is mainly composed of an insulating base material 4, a wiring layer 5 formed on the insulating base material 4, and a covering layer 6 covering the back surface side of the insulating base material 4.
  • the covering layer 6 may be disposed on the back surface side of the insulating base material 4 or may not be disposed.
  • the insulating substrate 4 is glass epoxy or the like in which glass fiber is impregnated with an epoxy resin, and is an interposer mainly composed of a resin material.
  • the film thickness is, for example, 30 to 80 m.
  • the insulating substrate 4 has the semiconductor element 2 mounted on the front surface side and the wiring layer 5 formed on the back surface side.
  • the insulating base material 4 also has a function of mechanically supporting the semiconductor element 2 in the manufacturing process.
  • materials other than resin-based materials can be used.
  • a substrate made of an inorganic material such as ceramic or Si may be used.
  • the substrate may be a substrate in which a metal substrate made of a metal such as aluminum is covered with an insulating layer made of a resin or the like and is insulated.
  • the wiring layer 5 for example, a Cu plating layer formed by an electrolytic plating method or the like is selectively selected.
  • the film thickness is, for example, about 20 to 50 m.
  • the wiring layer 5 is arranged in a pattern on the back side of the insulating substrate 4.
  • the wiring layer 5 protrudes to the surface side of the insulating substrate 4 through the through holes 7, 8, 9, 10 formed in the insulating substrate 4, and the protruding portions 1 1, 1 2, 1 3, 14 protrudes upward through the through holes 7, 8, 9, 10 and is used as a pump electrode.
  • the protruding parts 1 1, 1 2, 1 3 and 14 protrude from the surface of the insulating base 4 by about 10 to 30 ⁇ m, but the protruding height can be arbitrarily changed depending on the application. Is possible.
  • the wiring layer 5 is not arranged in a pattern on the surface side of the insulating base material 4, and only the protruding portions 1 1, 1 2, 1 3, and 14 are formed.
  • the covering layer 6 covers the back side of the insulating base material 4, and an opening is formed in the covering layer 6 where the external electrodes 15 and 16 are formed.
  • the covering layer 6 is made of a thermosetting resin such as an epoxy resin or a thermoplastic resin such as polyethylene.
  • the thickness of the covering layer 6 covering the upper surface of the wiring layer 5 is, for example, 20 to 1 0 0 It is about ⁇ m.
  • the coating layer 6 may be a solder resist (PS R: Pho t o sol d e r r e s i sst).
  • the external electrodes 15 and 16 are made of a conductive material such as solder, and are BGA (Ball Grid A rray) provided in a dull shape on the back side of the insulating base 4.
  • the external electrodes 15 and 16 are electrically connected to the semiconductor element 2 incorporated in the circuit device 1 via the wiring layer 5. Since the circuit device can be a SIP (Systemin Package) or the like, the positions of the external electrodes 15 and 16 may be arranged around the insulating substrate 4 in a ring shape. It may be good or randomly arranged.
  • the semiconductor element 2 (circuit element) is connected to the insulating base 4 via the protruding parts 11, 12, 13, 14. Specifically, bump electrodes 21, 22, 23, and 24 made of, for example, Au are formed on the pad electrodes 17, 18, 19, and 20 of the semiconductor element 2. Then, the bump electrodes 2 1, 2 2, 2 3, 2 4 of the semiconductor element 2 are formed on the protrusions 1 1, 1 2, 1 3, 1 4, by solder chip, for example, by flip chip bonding technology. It is mounted via a conductive material 25, 2 6, 2 7, 2 8 made of brazing material or conductive paste.
  • the present invention is not limited to this case.
  • pad electrodes 1 7, 1 8, 1 9, 2 0 and protrusions 1 1, 1 2, 1 3, 1 4 are connected via conductive materials 2 5, 2 6, 2 7, 2 8. It is also possible to make a direct electrical connection. Also protruding Place liquid resin or sheet-like resin on insulating substrate 4 where parts 1 1, 1 2, 1 3 and 1 4 are placed, pressurize when mounting semiconductor element 2, and cure those resins It may be in the case of resin bonding.
  • the semiconductor element 2 is employed as the circuit element incorporated in the circuit device 1, but other circuit elements may be employed. Specifically, active elements such as IC, LSI, discrete transistors, and diodes may be employed as circuit elements. Furthermore, passive elements such as chip resistors, chip capacitors, and sensors may be employed as circuit elements. Furthermore, a system in which a plurality of passive elements and active elements are combined and internally connected may be built in the circuit device 1. In this case, the protruding portion of the wiring layer 5 is further arranged on the surface side of the insulating grave material 4, and a passive element such as a chip resistor is arranged next to the semiconductor element 2 shown in FIG. 1 (A).
  • active elements such as IC, LSI, discrete transistors, and diodes
  • passive elements such as chip resistors, chip capacitors, and sensors may be employed as circuit elements.
  • a system in which a plurality of passive elements and active elements are combined and internally connected may be built in the circuit device 1.
  • the element mounting board 3 can be applied to a module on which only circuit elements are mounted and a circuit device in which the entire board is sealed. Further, semiconductor chips and passive elements are conceivable as circuit elements mounted on the substrate or the circuit device. Moreover, these circuit elements are provided in a three-dimensional or planar manner in which a plurality of semiconductor chips are stacked. In this way, a system is configured by providing a plurality of circuit elements.
  • the underfill 29 is arranged so as to fill a gap between the semiconductor element 2 and the insulating base 4 and is made of, for example, an epoxy resin, and is generated due to a difference in thermal expansion coefficient between the semiconductor element 2 and the insulating base 4. It is also used as a reinforcing material for bump connections against thermal stress.
  • the thermal expansion coefficient and viscosity of the underfill 29 are adjusted by the filler content mixed in the epoxy resin.
  • the sealing resin 30 is formed so as to cover the upper surfaces of the semiconductor element 2 and the insulating base material 4 and is formed by a thermosetting resin formed by transfer molding or heat formed by an injection mold. Made of plastic resin.
  • the insulating base material 4 is formed with a through hole 7 penetrating from the back surface side to the front surface side. Then, the wiring layer 5 protrudes toward the front surface side of the insulating base material 4 via the inner surface of the force through-hole 7 arranged in a pattern on the back surface side of the insulating base material 4.
  • the projecting portion 11 is formed by etching the insulating base material 4 from the surface side of the insulating base material 4. Since the wiring layer 5 has a structure embedded in the insulating base material 4, the thickness h 1 of the region used as a bump electrode is used for element mounting. The thickness of the substrate 3 can be reduced, and further, the thickness of the circuit device 1 can be reduced.
  • the protrusion height h 2 protruding from the surface side of the insulating base material 4 is arbitrarily set by adjusting the etching amount of the insulating base material 4 according to the application when used as a bump electrode. It is.
  • the protrusion height h 2 By increasing the protrusion height h 2, the separation distance between the insulating substrate 4 and the semiconductor element 2 can be increased, and the conductive material 25 due to the thermal stress generated by the difference in thermal expansion coefficient between the two can be obtained. Can alleviate damage and improve connection reliability.
  • the pump electrode 21 on the semiconductor element 2 side can be omitted, or the height of the pump electrode 21 can be decreased.
  • the insulating base material 4 is prepared, and the conductive member and the entire surface on the front side and the back side of the insulating base material 4 are bonded to the conductive member by, for example, a plating method, a vapor deposition method, a sputtering method or a rolling method.
  • the conductive member may be Al, Fe, or Fe—Ni foil.
  • the insulating substrate 4 is made of a resin material, an inorganic material, or a metal material (including a material whose surface is insulated).
  • the insulating substrate 4 also has a function of mechanically supporting the semiconductor element 2 (see FIG. 1 (A)) in the manufacturing process.
  • the role as a support member for supporting the insulating base material 4 It is not necessary to be a conductive member.
  • through-holes 7, 8, 9, 10 are formed from the back side of the insulating base 4.
  • an etching solution of ferric chloride or cupric chloride is applied to 1! Foil 3 2 on the area where the through holes 7, 8, 9, 10 are formed.
  • An opening is formed by the wet etching used.
  • the insulating base 4 is removed by the carbon dioxide gas laser until the Cu foil 31 is exposed, and through holes 7, 8, 9, 10 are formed. To do.
  • an etching solution such as sodium permanganate or ammonium persulfate. This residue is removed by wet etching.
  • an electroless mech layer 33 having a thickness of about 1 ⁇ m is deposited on the Cu foil 32 on the back side by an electroless mech method.
  • the material of the electroless metal layer 33 may be the same material as the Cu foils 31 and 32 (for example, Cu) or may be other metal materials.
  • the electroless plating layer 33 is deposited by the above-described electroless plating method with the upper surface of the Cu foil 31 covered entirely with a protective film (not shown). Is going.
  • a Cu plating layer 34 is formed on the electroless plating layer 33 by an electrolytic plating method using the electroless plating layer 33 as a feeding wire. That is, the Cu plating layer 34 is also formed on the inner surface of the through holes 7, 8, 9, 10 and the upper surface of the Cu foil 3 2. On the upper surface of the Cu foil 32, the Cu foil 32, the electroless plating layer 33, and the Cu plating layer 34 are stacked and short-circuited. In the description of FIG. 5 and subsequent figures, ⁇ 11 foil 3 2, electroless plating layer 3 3 and Cu plating layer 3 4 are shown as a single unit as Cu plating layer 3 4.
  • a photo resist (not shown) is formed as an etching mask on the upper surface of the Cu plating layer 34 used as the wiring layer 5 by using a known photolithography technique. To do. Then, for example, the Cu plating layer 34 is selectively etched by wet etching using an etching solution of ferric chloride or cupric chloride to form the wiring layer 5.
  • the Cu foil 3 1 bonded to the surface side of the insulating base 4 is peeled off.
  • chemical etching using ferric chloride or cupric chloride is sufficient, and the Cu foil of the insulating base material 4 is completely removed, so that the through holes 7, 8, 9, 10 are formed.
  • the wiring layer 5 is exposed from the surface side of the formed insulating base material 4.
  • the insulating substrate 4 is etched from the surface side, and a part of the wiring layer 5 is projected to the surface side of the insulating substrate 4.
  • dry etching or wet etching can be used.
  • the insulating substrate 4 is changed under the conditions of a plasma output of 50 to 1550 W and a processing time of 3 to 30 min. Etch.
  • wet etching for example, an aqueous solution mainly composed of sodium permanganate and sodium hydroxide is used as an etching solution, and the processing temperature is set to 70 to 85 ° C.
  • Processing Insulating base material 4 is etched under conditions of time 5 to 30 min. By these etching steps, protrusions 1 1, 1 2, 1 3, and 14 of about 10 to 30 ⁇ m are formed on the surface side of the insulating base 4.
  • the projections 1 1, 1 2, 1 3 and 14 are used as pump electrodes.
  • the projecting height of 4 can be changed arbitrarily by changing the processing time according to the application.
  • the protrusions 1 1, 1 2, 1 3, and 14 can be easily Therefore, the manufacturing method can be simplified and the manufacturing cost can be reduced.
  • the semiconductor element 2 is mounted on the protrusions 11, 12, 13, and 14 used as bump electrodes.
  • conductive materials 25, 26, 27, 28 are applied onto the projections 11, 12, 13, 13 and 14 by screen printing.
  • the bump electrodes 21, 2 2, 2 3, 2 4 of the semiconductor element 2 are positioned on the projecting portions 1 1, 1 2, 1 3, 14.
  • the semiconductor element 2 is mounted on the insulating base 4 by mounting and reflowing.
  • underfill 29 is injected into the gap between the semiconductor element 2 and the insulating substrate 4.
  • the underfill 29 for example, an epoxy resin is used, and the liquid underfill 29 is injected from one or two sides of the semiconductor element 2 by, for example, the capillary method, and then heated and cured. .
  • the viscosity of the underfill 29 can be adjusted by the content of the boiler mixed in the underfill 29.
  • the sealing resin 30 is formed so that the upper surfaces of the semiconductor element 2 and the insulating base 4 are covered.
  • a thermosetting resin is used
  • a thermoplastic resin is used.
  • the coating layer 6 is formed so as to cover the wiring layer 5 arranged in a pattern on the back surface side of the insulating base material 4.
  • a thermosetting resin such as an epoxy resin or a thermoplastic resin such as polyethylene is used.
  • the covering layer 6 on the wiring layer 5 on which the external electrodes 15 and 16 are formed is opened, and the external electrodes 15 and 16 made of, for example, solder balls are formed using the openings. .
  • Fig. 9 shows the state in which treatment by both plating methods was performed without using a protective film.
  • the upper surface of the Cu foil 31 is covered with an electroless layer 3 3 and a Cu layer 3 4.
  • the wiring layer 5 is formed, and the Cu foil 31, the electroless plating layer 3 3, and the Cu plating layer 3 4 covering the upper surface of the insulating base 4 are formed.
  • the removal of the Cu foil 31, the electroless plating layer 3 3, and the Cu plating layer 3 4 and the formation of the wiring layer 45 may be performed simultaneously, or either One may precede the other.
  • FIG. 10 (A) is a sectional view for explaining a circuit device using the element mounting substrate according to the present embodiment.
  • FIG. 10 (B) is a cross-sectional view for explaining the pump electrode according to the present embodiment.
  • FIG. 11 to FIG. 17 are cross-sectional views for explaining a method of manufacturing a circuit device using the element mounting substrate according to the present embodiment. In the description of the circuit device and the manufacturing method thereof in FIGS. 10 to 17, the element mounting substrate and the manufacturing method thereof are also described.
  • the circuit device 41 is a resin-sealed CSP having a size that is slightly larger than the size of the built-in semiconductor element 42.
  • the external appearance of the circuit device 4 1 is a rectangular parallelepiped shape or a cubic shape.
  • the case of a CSP type circuit device will be described.
  • the present application is not limited thereto.
  • the outer dimensions of the circuit device are substantially the same size as the semiconductor element to be mounted. The same effect can be obtained even in the case of WLP.
  • the element mounting substrate 4 3 mainly includes an insulating base 4 4, a wiring layer 4 5 formed on the insulating base 4 4, and a covering layer 4 6 covering the back side of the insulating base 4 4. .
  • the coating layer 4 6 It may be arranged on the back side of the insulating base material 44 or not.
  • the insulating substrate 44 is glass epoxy or the like in which glass fiber is impregnated with an epoxy resin, and is an interposer mainly composed of a resin material.
  • the film thickness is, for example, 30 to 80 / m.
  • the insulating substrate 44 has a semiconductor element 42 mounted on the front side and a wiring layer 45 formed on the back side.
  • the insulating base material 44 also has a function of mechanically supporting the semiconductor element 42 in the manufacturing process.
  • materials other than resin-based materials can be used.
  • a substrate made of an inorganic material such as ceramic or Si may be used.
  • a substrate formed by coating a metal substrate made of a metal such as aluminum with an insulating layer made of resin or the like and performing an insulation process may be used.
  • the wiring layer 45 is formed by selectively etching a Cu plating layer formed by, for example, an electrolytic plating method, and the film thickness is, for example, about 20 to 50 ⁇ m.
  • the wiring layer 45 is arranged in a pattern on the back side of the insulating base material 44.
  • the wiring layer 4 5 protrudes to the surface side of the insulating base material 4 4 through the through holes 4 7, 4 8, 4 9 and 50 formed in the insulating base material 4 4, and the protruding portion 5 1 , 5 2, 5 3, 5 4 protrude above the through holes 4 7, 4 8, 4 9, 50 and are used as bump electrodes.
  • the protruding parts 51, 52, 53, and 54 protrude from the surface of the insulating substrate 44 by about 10 to 10 m, but the protruding height can be changed arbitrarily according to the application. Is possible. Further, the wiring layer 45 is not arranged in a pattern on the surface side of the insulating base material 44, and only the protruding portions 51, 52, 53, and 54 are formed.
  • the coating layer 46 covers the back side of the insulating base material 44, and an opening is formed in the coating layer 46 where the external electrodes 55, 56 are formed.
  • the covering layer 46 is made of a thermosetting resin such as an epoxy resin or a thermoplastic resin such as polyethylene, and the thickness of the covering layer 46 covering the upper surface of the wiring layer 45 is, for example, 20 to ⁇ ⁇ It is about ⁇ ⁇ m.
  • the covering layer 46 may be a solder resist (PSR).
  • the external electrodes 55 and 56 are BGAs made of a conductive material such as solder and provided in a grid on the back side of the insulating base material 44.
  • the external electrodes 5 5 and 5 6 are electrically connected to the semiconductor element 4 2 incorporated in the circuit device 4 1 via the wiring layer 4 5. Since the circuit device can be a SIP or the like, the positions of the external electrodes 55 and 56 may be arranged in a ring shape around the insulating base material 44 or randomly. May be arranged.
  • the semiconductor element 4 2 (circuit element) is projected on the insulating base 4 4 5 1, 5 2, 5 3, 5 4 Connected through.
  • bump electrodes 6 1, 6 2, 6 3, 6 4 made of, for example, Au are formed on the pad electrodes 5 7, 5 8, 5 9, 60 of the semiconductor element 42. It is.
  • the bump electrodes 6 1, 6 2, 6 3, 6 4 of the semiconductor element 4 2 are formed on the protrusions 5 1, 5 2, 5 3, 5 4 by, for example, flip chip bonding technology. It is mounted via a conductive material 6 5, 6 6, 6 7, 6 8 made of solder cream, brazing material or conductive paste.
  • the present invention is not limited to this case.
  • pad electrodes 5 7, 5 8, 5 9, 60 and projecting portions 5 1, 5 2, 5 3, 5 4 are connected via conductive material 6 5, 6 6, 6 7, 6 8. It is also possible to make a direct electrical connection.
  • liquid resin or sheet-like resin is placed on the insulating base material 4 4 on which the protrusions 51, 52, 53, 54 are placed, and when the semiconductor element 42 is mounted, they are pressurized. It may be the case of resin bonding in which the resin is cured and connected.
  • the semiconductor element 42 is used as the circuit element incorporated in the circuit device 41, but other circuit elements may be used. Specifically, active elements such as IC, LSI, discrete transistors, and diodes may be employed as circuit elements. Furthermore, passive elements such as a chip resistor, a chip capacitor, and a sensor may be employed as the circuit element. Furthermore, a system in which a plurality of passive elements and active elements are combined and connected internally may be built inside the circuit device 41. In this case, the protruding part of the wiring layer 45 is further arranged on the surface side of the insulating base material 44, and a passive element such as a chip resistor is arranged next to the semiconductor element 42 shown in FIG. Is done.
  • the element mounting board 43 can be applied to a module on which only circuit elements are mounted and a circuit device in which the entire board is sealed. Further, semiconductor chips and passive elements are conceivable as circuit elements mounted on the substrate or the circuit device. Moreover, these circuit elements are provided in a three-dimensional or planar manner in which a plurality of semiconductor chips are stacked. In this way, a system is configured by providing a plurality of circuit elements.
  • the underfill 6 9 is arranged so as to fill a gap between the semiconductor element 4 2 and the insulating base material 4 4.
  • the underfill 69 is made of epoxy resin, and is thermally expanded between the semiconductor element 4 2 and the insulating base material 4 4. It is also used as a reinforcement for bump connection parts against thermal stresses generated by the difference in coefficients. Note that the heat of the underfill 69 depends on the filler content mixed in the epoxy resin. The expansion coefficient and viscosity are adjusted.
  • the sealing resin 70 is formed so that the upper surfaces of the semiconductor element 42 and the insulating base material 44 are covered, and is a thermosetting resin formed by transfer molding, or a thermoplastic resin formed by induction molding. Consists of.
  • the insulating base material 44 is formed with a through hole 47 that penetrates from the back surface side to the front surface side.
  • the wiring layer 45 is arranged in a pattern on the back surface side of the insulating base material 44, but the through hole 47 is embedded and protrudes to the front surface side of the insulating base material 44.
  • the protruding portion 51 is formed by etching the insulating base material 44 from the surface side of the insulating base material 44. Since the wiring layer 45 has a structure embedded in the insulating base material 44, the thickness of the element mounting substrate 43 can be reduced by the thickness h3 of the region used as the pump electrode. Furthermore, the thickness of the circuit device 41 can be reduced.
  • the protruding height h 4 protruding from the surface side of the insulating base material 44 can be arbitrarily set by adjusting the etching amount of the insulating base material 44 according to the application when used as a bump electrode. Determined.
  • the protrusion height h 4 By increasing the protrusion height h 4, the distance between the insulating substrate 4 4 and the semiconductor element 4 2 can be increased, and the conductive material 6 5 due to the thermal stress generated by the difference in the thermal expansion coefficient of the rainer 6 5 Can alleviate damage and improve connection reliability.
  • the bump electrode 61 on the semiconductor element 42 side can be omitted or the height of the bump electrode 61 can be reduced.
  • an insulating base material 4 4 is prepared, and the entire surface of the insulating base material 4 4 on the front side and the back side is formed by, for example, a plating method, a vapor deposition method, a sputtering method or a rolling method.
  • the Cu foils 7 1 and 7 2 as the conductive members are pasted.
  • the conductive member may be Al, Fe, or Fe-Ni foil.
  • the insulating substrate 44 is made of a resin material, an inorganic material, or a metal material (including a material whose surface is insulated).
  • the insulating base material 44 also has a function of mechanically supporting the semiconductor element 4 2 (see FIG. 10 (A)) in the manufacturing process.
  • through holes 4 7, 4 8, 4 9, 5 0 from the surface side of insulating base 4 4 Form As shown in Fig. 12, through holes 4 7, 4 8, 4 9, 5 0 from the surface side of insulating base 4 4 Form.
  • Cu foil 7 1 on the region where through-holes 4 7, 4 8, 4 9, 50 are formed for example, ferric chloride or cupric chloride ethtin
  • the opening is formed by wet etching using a polishing solution.
  • the insulating base material 4 4 was removed by the carbon dioxide laser until the Cu foil 7 2 was exposed, and the through holes 4 7, 4 8, 4 9 and 50 were Form.
  • an electroless plating layer 73 having a thickness of about 1 ⁇ m is attached on the Cu foil 7 1 on the surface side by an electroless plating method. At this time, the electroless plating layer 73 is also attached to the front side surface of the Cu foil 71 and the upper surface of the insulating base material 44.
  • the material of the electroless plating layer 73 may be the same material as the Cu foils 71 and 72 (for example, Cu) or other metal materials. In this step, since the lower surface of the Cu foil 72 is covered with a protective film (not shown), the metal film by the plating method is not attached to the 11 foil 7 2.
  • the electroless plating layer 7 3 is used as a feeding power wire, and the Cu plating layer 7 is formed on the electroless plating layer 7 3 by the filling electrolytic plating method.
  • Form 4 That is, the Cu plating layer 74 is embedded in the inner side surface of the through holes 47, 48, 49, 50, and is also formed on the upper surface of the Cu foil 71. Then, on the upper surfaces of the Cu foils 71 and 72, the Cu foils 71 and 72, the electroless plating layer 73 and the Cu plating layer 74 are laminated and short-circuited.
  • the Cu foil layers 7 1 and 7 2 the electroless plating layer 7 3 and the Cu plating layer 7 4 are integrated into the Cu plating layer 7 4. And illustrated.
  • the Cu plating layer 7 4 (see Fig. 13) is etched on the surface side of the insulating base 4 4 to form protrusions 51, 52, 53, 54 To do.
  • the Cu foil 7 2 (see FIG. 13) is etched on the back side of the insulating base material 4 4 to form the wiring layer 45.
  • Etch a photoresist (not shown) on the upper surface of the region where the protrusions 51, 52, 53, 54 and the wiring layer 45 are formed using the well-known photolithography technique. It is formed as a mask.
  • the Cu plating layer 74 and the Cu foil 72 are selectively etched by wet etching using an etching solution of ferric chloride or cupric chloride. To form the protruding parts 5 1, 5 2, 5 3, 5 4 and wiring layer 4 5.
  • the insulating base material 4 4 is etched from the surface side so that the protrusions 51, 52, 53, and 54 have a desired protrusion height.
  • a method for etching the insulating substrate 44 dry etching or wet etching can be used.
  • dry etching for example, in a mixed atmosphere of oxygen and nitrogen, the insulating substrate 4 4 under the conditions of a plasma output of 50 to 150 W and a processing time of 3 to 30 min. Etch.
  • wet etching for example, an aqueous solution mainly composed of sodium permanganate and sodium hydroxide is used as the etching solution, and the processing temperature is set to 70 to 85 °.
  • protrusions 51, 52, 53, and 54 for example, about 10 to 30 Xm are formed on the surface side of the insulating substrate 44.
  • the protrusions 51, 52, 53, 54 are used as bump electrodes, so that the protrusions 51, 5
  • the protruding heights of 2, 5 3, and 5 4 can be changed arbitrarily by changing the processing time according to the application. In other words, by changing the etching time without changing the manufacturing equipment (including manufacturing tools, etc.), the protrusion height of the protrusions 51, 52, 53, and 54 can be changed easily. It is possible to simplify the manufacturing method and reduce the manufacturing cost.
  • the semiconductor element 42 is mounted on the protrusions 51, 52, 53, and 54 used as bump electrodes.
  • a conductive material 6 5, 6 6, 6 7, 6 8 such as a solder cream is applied on the protrusions 5 1, 5 2, 5 3, 5 4 by screen printing.
  • the bump electrodes 6 1, 6 2, 6 3, 6 4 of the semiconductor element 4 2 are projected on the protrusions 5 1, 5 2, 5 3, 5 4.
  • the semiconductor element 42 is mounted on the insulating base material 44 by mounting and reflowing so as to be positioned at the position.
  • underfill 69 is injected into the gap between the semiconductor element 4 2 and the insulating base material 4 4.
  • the underfill 69 for example, an epoxy resin is used, and the liquid underfill 69 is injected from one or two sides of the semiconductor element 42 by, for example, a capillary method, and then heated and cured.
  • the viscosity of the underfill 69 can be adjusted by the filler content mixed in the underfill 69.
  • the sealing resin 70 is formed so that the upper surfaces of the semiconductor element 42 and the insulating base material 44 are covered. Then, the sealing resin 70 is formed by transfer molding. Thermosetting resin is used when forming, and sealing resin is used with an injection mold.
  • thermoplastic resin ' is used.
  • the covering layer 46 is formed so as to cover the wiring layer 45 arranged in a pattern on the back surface side of the insulating base material 44.
  • a thermosetting resin such as an epoxy resin or a thermoplastic resin such as polyethylene is used.
  • the covering layer 46 on the wiring layer 45 on which the external electrodes 55 and 56 are formed is opened, and the external electrodes 55 and 56 made of, for example, solder balls are used by using the opening.
  • the manufacturing method described above can be modified as follows. That is, in the description with reference to FIG. 13, the plating process was performed with the Cu foil 7 2 provided on the lower surface of the insulating base material 4 4 covered with the protective film.
  • the plating process may be performed without using. Referring to FIG. 18, in this case, electroless plating layer 73 and Cu plating layer 74 are laminated on the lower surface of Cu foil 72.
  • the thickness of the metal film covering the lower surface of the insulating substrate 44 increases, so that the wiring layer 4 formed by selectively etching the metal film with reference to FIG. As a result, 5 is formed thick.
  • FIG. 19 is a cross-sectional view for explaining a circuit device using the element mounting substrate according to the present embodiment.
  • the structure of the protrusion used as the bump electrode of the element mounting substrate is the same as that of the bump electrode of the first embodiment described above. Reference is made to the description of the embodiment.
  • the circuit device 8 1 is configured as a multichip module in which semiconductor elements 83 and 84 are mounted on an insulating base material 82.
  • the semiconductor elements 83 and 84 are mounted on the insulating base material 82 in a bare chip state, whereby high-density mounting is realized and the circuit device 81 is downsized.
  • FIG. 19 only the semiconductor elements 8 3 and 8 4 are shown, but a large number of semiconductor elements (circuit elements) may be mounted.
  • the element mounting board 8 5 is mainly composed of an insulating base 8 2 and a wiring layer formed on the insulating base 8 2.
  • the covering layer 87 may be disposed on the back surface side of the insulating base member 82 or may not be disposed.
  • Insulating base material 8 2 is made of resin material, inorganic material or metal material (the surface is insulated) Including).
  • the insulating base 8 2 also has a function of mechanically supporting the semiconductor elements 8 3 and 8 4 in the manufacturing process.
  • the wiring layer 86 is formed, for example, by selectively etching a Cu plating layer formed by an electrolytic plating method or the like.
  • the wiring layer 86 is arranged in a pattern on the back side of the insulating base material 82.
  • the wiring layer 8 6 protrudes to the surface side of the insulating substrate 8 2 through the through holes 8 8, 8 9, 9 0, 9 1 formed in the insulating substrate 8 2, and the protruding portion 9 2, 9 3, 9 4 and 9 5 protrude above the through holes 8 8, 8 9, 9 0 and 9 1 and are used as bump electrodes.
  • the protrusions 9 2, 9 3, 9 4 and 9 5 protrude about 10 to 30 ⁇ m from the surface of the insulating base 8 2, but the protrusion height can be arbitrarily set according to the application. Design changes are possible.
  • the covering layer 8 7 covers the back side of the insulating base 8 2, and external electrodes 9 6, 9 7, 9 8, 9 9, 1 0 0, 1 0 1, 1 0 2, 1 0 3 are formed. An opening is formed in the covering layer 87 at the location.
  • the covering layer 87 is made of a thermosetting resin such as an epoxy resin or a thermoplastic resin such as polyethylene.
  • External electrodes 9 6, 9 7, 9 8, 9 9, 10 0, 1 0 1, 1 0 2, 1 0 3 are formed on the back side of insulating base 8 2 and provided in a grid shape. BGA.
  • the semiconductor elements 8 3 and 8 4 are mounted on the protrusions 9 2, 9 3, 9 4 and 9 5 through the conductive materials 1 0 4, 1 0 5, 1 0 6 and 1 0 7 Is done.
  • the present invention is limited to this case. It is not a thing.
  • pad electrodes 1 1 2, 1 1 3, 1 1 4, 1 1 5 of semiconductor elements 8 3, 8 4 and protrusions 9 2, 9 3, 9 4, 9 5 of wiring layer 8 6 Direct electrical connection may be possible via the conductive material 10 4, 1 0 5, 1 0 6, 1 0 7.
  • resin bonding using liquid resin or sheet resin may be used.
  • the circuit device 8 1 shows a structure in which semiconductor elements 8 3 and 8 4 are incorporated. As other circuit elements, active elements such as ICs, LSIs, discrete transistors, diodes, etc. May be included. Further, the circuit device 8 1 may further include a passive element such as a chip resistor, a chip capacitor, and a sensor, and a system in which a plurality of passive elements and active elements are connected internally may be constructed. .
  • the underfill 1 1 6 is arranged so as to fill a gap between the semiconductor elements 8 3 and 8 4 and the insulating base material 8 2.
  • the underfill 1 1 6 is made of, for example, an epoxy resin.
  • the sealing resin 1 17 is made of a thermosetting resin formed by transfer molding or a thermoplastic resin formed by injection molding.
  • a part of the wiring layer 86 used as a pump electrode penetrates the insulating base material 82, thereby reducing the thickness of the element mounting board 85. Furthermore, the thickness of the circuit device 81 can be reduced. Further, the protruding heights of the protruding portions 9 2, 9 3, 9 4 and 95 used as the bump electrodes are arbitrarily adjusted according to the etching amount of the insulating base material 8 2.
  • the present invention is not limited to this case.
  • the same effect can be obtained even when the protrusion used as the bump electrode has the structure described in the second embodiment.
  • FIG. 20 is a cross-sectional view for explaining a circuit device using the element mounting substrate according to the present embodiment.
  • the structure of the protrusion used as the bump electrode of the element mounting substrate is the same as that of the bump electrode of the second embodiment described above. Reference is made to the description of the embodiment.
  • the circuit device 1 2 1 is a resin-sealed CSP having a size that is slightly larger than that of the built-in semiconductor element 1 2 2.
  • the external appearance of the circuit device 1 2 1 is a rectangular parallelepiped shape or a cubic shape.
  • the case of a CSP type circuit device will be described.
  • the present application is not limited to this, and for example, the outer dimensions of the circuit device are substantially the same size as the semiconductor element to be mounted. The same effect can be obtained even in the case of WLP.
  • the element mounting substrate 1 2 3 is mainly composed of the first insulating base 1 2 4, the second insulating base 1 2 5, the third insulating base 1 2 6, and the first to third insulating bases. It consists of three multilayer wiring layers 1 2 7 formed on the materials 1 2 4, 1 2 5 and 1 2 6, and a covering layer 1 2 8 covering the back side of the third insulating substrate 1 2 6.
  • the covering layer 1 2 8 may be disposed on the back surface side of the third insulating substrate 1 2 6 or may not be disposed.
  • 1st to 3rd insulating base materials 1 2 4, 1 2 5, 1 2 6 are resin materials, inorganic materials or gold It is made of genus materials (including those whose surfaces are insulated) and laminated.
  • the first to third insulating base materials 1 2 4, 1 2 5, 1 2 6 also have a function of mechanically supporting the semiconductor element 1 2 2 in the manufacturing process.
  • Through holes 1 2 9 and 1 30 are formed in the first insulating base material 1 2 4.
  • the through holes 1 2 9 and 1 30 are buried by wiring layers 1 2 7 A and B, and the wiring layers 1 2 7 A and B are formed by, for example, a Cu membrane formed by a filling electrolytic plating method. It is a camellia layer.
  • the wiring layers 1 27 A and B protrude to the surface side of the first insulating base material 1 24 and the protruding portions 1 31 1 and 13 2 are used as bump electrodes.
  • the protruding portions 1 3 1 and 1 3 2 of the wiring layers 1 2 7 A and B protrude from the surface of the first insulating base material 1 2 4 by about 10 to 30 m.
  • the design can be changed arbitrarily according to the application.
  • wiring layers 1 27 C, D, and E are formed on the front surface side, and wiring layers 1 27 F, G, and H are formed on the back surface side thereof.
  • Wiring layer 1 2 7 C is connected to wiring layer 1 2 7 A, wired to the back side of second insulating substrate 1 2 5 through through hole 1 3 3, and wiring layer 1 2 7 F Connect with.
  • the wiring layer 1 2 7 E is connected to the wiring layer 1 2 7 B and wired to the back surface side of the second insulating base material 1 2 5 through the through hole 1 3 4. 2 Connect to 7 H.
  • the wiring layers 1 27 C, D, and E are formed by selectively etching a Cu plating layer formed by, for example, an electrolytic plating method.
  • the wiring layers 1 27 F, G, and H are formed, for example, by etching a Cu foil attached to the second insulating base material 1 25.
  • wiring layers 1 2 7 I, J, and K are formed on the third insulating base material 1 2 6.
  • the wiring layer 1 2 7 I is connected to the wiring layer 1 2 7 F and wired to the back surface side of the third insulating substrate 1 2 6 through the through hole 1 3 5.
  • the wiring layer 1 2 7 J is connected to the wiring layer 1 2 7 H and wired to the back surface side of the third insulating substrate 1 2 6 through the through hole 1 3 6.
  • the wiring layers 1 27 I, J, and K are formed by selectively etching, for example, a Cu plating layer formed by an electrolytic plating method or the like.
  • the wiring layers 1 2 7 1, J, and K are arranged in a pattern on the back surface side of the third insulating base material 1 2 6.
  • Covering layer 1 2 8 covers the back side of third insulating substrate 1 2 6, and openings are formed in covering layer 1 2 8 where external electrodes 1 3 7 and 1 3 8 are formed.
  • the covering layer 1 2 8 is made of a thermosetting resin such as an epoxy resin or a thermoplastic resin such as polyethylene.
  • External electrodes 1 3 7 and 1 3 8 are formed on the back side of the third insulating substrate 1 2 6 B GA provided in a shape.
  • the semiconductor element 1 2 2 (circuit element) is mounted on the protrusions 1 3 1 and 1 3 2 via the conductive materials 1 3 9 and 1 4 0.
  • the pad electrodes 1 4 3 and 1 44 of the semiconductor element 1 2 2 and the protruding parts 1 3 1 and 1 3 2 of the wiring layers 1 2 7 A and B are electrically conductive materials 1 3 9 and 1 4 0 Direct electrical connection may be possible via Alternatively, liquid resin may be used for resin bonding using a sheet-like resin.
  • the circuit device 1 2 1 shows a structure in which a semiconductor element 1 2 2 is incorporated, but as other circuit elements, an active element such as an IC, an LSI, a discrete transistor, or a diode is incorporated. It may be done.
  • the circuit device 1 2 1 further incorporates passive elements such as chip resistors, chip capacitors, sensors, etc., and a system in which a plurality of passive elements and active elements are combined and connected internally is constructed. But it ’s okay.
  • the underfill 1 4 5 is disposed so as to fill a gap between the semiconductor element 1 2 2 and the first insulating substrate 1 2 4.
  • the underfill 1 4 5 is made of, for example, an epoxy resin.
  • the sealing resin 14 6 is made of a thermosetting resin formed by transfer molding or a thermoplastic resin formed by injection molding.
  • the multichip module according to the present embodiment Even in the multichip module according to the present embodiment, a part of the wiring layers 1 2 7 A and B used as the pump electrodes penetrates the first insulating base material 1 2 4, thereby The thickness of the substrate 1 2 3 can be reduced, and further, the thickness of the circuit device 1 2 1 can be reduced. Further, the protruding heights of the protruding portions 1 31, 1 3 2 used as bump electrodes are arbitrarily adjusted according to the etching amount of the first insulating substrate 1 2 4.
  • the present invention is not limited to this case.
  • the same effect can be obtained even when the protrusion used as the bump electrode has the structure described in the first embodiment.
  • FIG. 21 (A) illustrates a cellular phone equipped with a circuit device using the element mounting substrate according to the present embodiment.
  • FIG. 21 (B) is a cross-sectional view for explaining the internal structure of the mobile phone according to the present embodiment.
  • the circuit device mounted on the mobile phone according to the present embodiment is the circuit device described in the first to fourth embodiments described above, and the first embodiment is appropriately used. To the description of the fourth embodiment. As shown in FIG.
  • the cellular phone 15 1 is composed of a device body including a first casing 15 2 and a second casing 15 3, and the first casing 15 2
  • the second casing 1 5 3 is connected by a movable portion 1 5 4.
  • the first casing 15 2 and the second casing 15 3 can rotate around the movable portion 15 4 as an axis.
  • the display unit 1 5 5 is provided in the first housing 1 5 2.
  • the display unit 1 5 5 includes, for example, a liquid crystal display (L C D), and information such as characters and images is displayed on the display unit 1 5 5.
  • L C D liquid crystal display
  • the speaker part 1 5 6 is provided above the display unit 1 5 5 of the first housing 1 5 2.
  • the operation unit 1 5 7 is provided in the second casing 1 5 3.
  • the operation unit 1 5 7 includes a power key for turning on the power, a mail key for starting the mail mode, a cross key, and a numeric character key.
  • the microphone unit 1 5 8 is provided below the operation unit 1 5 7 of the second casing 15 3.
  • the circuit device 160 includes a power supply circuit for driving each circuit, an RF generation circuit for generating RF (Radio Frequency), a DAC (Digital 1 Analog Converter) circuit, an Used as a backlight drive circuit as a light source for an encoder circuit and a liquid crystal panel.
  • RF generation circuit for generating RF (Radio Frequency)
  • DAC Digital 1 Analog Converter
  • the circuit device 160 can be reduced in thickness and size by thinning the element mounting board on which the circuit element is mounted. As a result, the ratio of the circuit device 160 in the thickness direction of the mobile phone 15 1 is reduced, and the mobile phone 15 1 can be thinned.
  • a mobile phone is used as the mobile device.
  • portable devices include personal digital assistants (PDA), Electronic devices such as a digital video camera (DVC), music player, and digital still camera (DSC) may be used.
  • PDA personal digital assistants
  • DVC digital video camera
  • DSC digital still camera

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

従来の素子搭載用基板及びその基板を用いた回路装置では、基板上に配線層が形成され、その配線層の一部を突出させバンプ電極として用いるため、薄型化し難いという問題があった。本発明の素子搭載用基板及びその基板を用いた回路装置では、絶縁基材4に貫通孔7が設げられ、配線層5が貫通孔7を介して絶縁基材4表面に突出する。そして、配線層5の突出部11は、バンプ電極として用いられ、絶縁基材4上に半導体素子2が実装される。この構造により、素子搭載用基板が薄型化され、その基板を用いた回路装置も薄型化される。

Description

素子搭載用基板及ぴその製造方法、 回路装置及びその製造方法、 携帯機器
技術分野
本発明は、 素子搭載用基板及びその製造方法、 回路装置及びその製造方法、 携帯機 器に関する。 特に、 本発明は、 絶縁基材の貫通孔を利用して、 絶縁基材の一の主面側 に突出した配線層をバンプ電極と して用いる素子搭載用基板及びその製造方法に関す 明
る。 更に、 本発明は、 この様な基板を備えた回路装置及ぴその製造方法、 携帯機器に 関する。 書
背景技術
従来の回路基板装置及びその製造方法の一実施例と して、 下記に第 2 2図及び第 2 3図を用いて説明する回路基板装置 1 6 1及ぴその製造方法が知られている(例えば、 特開 2 0 0 2— 7 6 1 8 5号公報参照。)。
第 2 2図は、 特開 2 0 0 2— 7 6 1 8 5号公報に開示された回路基板装置 1 6 1の 断面図である。 第 2 3図 (A) から (E) は、 回路基板装置 1 6 1の製造方法を説明 するための断面図である。
第 2 2図に示す如く、樹脂材製の絶縁基板 1 6 2上面に配線層 1 6 3が形成される。 配線層 1 6 3上面を含む絶縁基板 1 6 2上面には樹脂材製の保護層 1 6 4が形成され る。 保護層 1 6 4の開口部を介して配線層 1 6 3の一部が突出し、 突出部 1 6 5、 1 6 6は導電性バンプと して用いられる。
絶縁基板 1 6 2上にはベアチップ 1 6 7が実装される。 このとき、 導電性バンプと しての突出部 1 6 5、 1 6 6の先端とベアチップ 1 6 7のパッ ド 1 6 8、 1 6 9 とが 接するように、 絶縁基板 1 6 2上にベアチップ 1 6 7が実装される。 そして、 絶縁基 板 1 6 2 とベアチップ 1 6 7 との間隙には、 封止樹脂 1 7 0が充填される。
一方、 絶縁基板 1 6 2の下面側にはビア孔 1 7 1、 1 7 2が形成され、 ビア孔 1 7 1、 1 7 2から配線層 1 6 3の一部が露出する。 回路基板装置 1 6 1は、 ビア孔 1 7 1、 1 7 2から露出する配線層 1 6 3を介して外部の実装基板等に実装される。
第 2 3図 (A) に示す如く、 型板となるテンプレート 1 7 3を準備する。 テンプレ ート 1 7 3には、 突出部 1 6 5、 1 6 6 (第 2 2図参照) が配置される領域に凹部 1 7 4、 1 7 5が形成される。 次に、 テンプレート 1 7 3上に後に行う電気めつき法の 陰極となるシード層 1 7 6を形成する。 その後、 シ一ド層 1 7 6にレジス ト膜 1 7 7 を形成し、 配線層 1 6 3 (第 2 3図 (B) 参照) が形成される領域が開口するよ うに、 レジス ト膜 1 7 7を選択的に除去する。
第 2 3図 (B) に示す如く、 シード層 1 7 6を陰極と して用い、 電気めつき法によ り配線層 1 6 3を形成する。 このとき、 凹部 1 7 4、 1 7 5内にも均一な膜厚の配線 層 1 6 3が形成される。 次に、 レジス ト膜 1 7 7 (第 2 3図 (A) 参照) を除去する。 第 2 3図 (C) に示す如く、 例えば、 電着法等を用い、 配線層 1 6 3上を含むテン プレート 1 7 3上に絶縁基板 1 6 2を形成する。 絶縁基板 1 6 2 と しては、 可撓性が 高く屈曲性に優れたポリイ ミ ド榭脂等を用いる。 次に、 炭酸ガスレーザ等により絶縁 基板 1 6 2に直径 1 0 0 μ m程度のビア孔 1 7 1、 1 7 2を形成する。
第 2 3図 (D) に示す如く、 テンプレート 1 7 3 (第 2 3図 (C) 参照) から絶縁 基板 1 6 2を剥離する。 このとき、 テンプレート 1 7 3 とシード層 1 7 6 (第 2 3図 (C) 参照) の界面から剥離されるため、 その後、 ウエッ トエッチングによりシード 層 1 7 6 (第 2 3図 (A) 参照) を除去する。 次に、 配線層 1 6 3が形成されている 側の絶縁基板 1 6 2上面にエポキシ榭脂等から成る保護層 1 6 4を形成する。 このと き、 保護層 1 6 4は、 ワニス状のエポキシ樹脂をカーテンコート法等で絶縁基板 1 6 2全面に渡り塗布し、 キュアを行い、 重合 ·硬化させることで形成される。 その後、 導電性バンプと しての突出部 1 6 5、 1 6 6の先端に形成された樹脂を過マンガン酸 力リ ゥム水溶液等でゥエ ツ トエッチングし、 突出部 1 6 5、 1 6 6の先端を保護層 1 6 4から露出させる。
第 2 3図 (E) に示す如く、 フリ ップチップボンダ等を用い、 導電性バンプと して の突出部 1 6 5、 1 6 6上にベアチップ 1 6 7を実装する。 このとき、 ベアチップ 1 6 7を実装する際に荷重を加えた状態で、 .全体を加熱するこ とで、 絶縁基板 1 6 2 と ペアチップ 1 6 7 との間に配置された封止樹脂 1 7 0は流動し、 封止樹脂 1 7 0は絶 縁基板 1 6 2 とベアチップ 1 6 7 との間隙を充填する。 発明の開示
上述したよ うに、 従来の回路基板装置 1 6 1では、 絶縁基板 1 6 2上面に配線層 1 6 3が形成され、 配線層 1 6 3の突出部 1 6 5、 1 6 6が、 導電性バンプと して用い られる。 そして、 導電性バンプと しての突出部 1 6 5、 1 6 6 とベアチップ 1 6 7の パッ ド 1 6 8、 1 6 9 とが電気的に接続される。 この構造により、 回路基板装置 1 6 1 の厚みにおいて、 配線層 1 6 3の下方に位置する絶縁基板 1 6 2の厚みは必須な厚 みであり、 回路基板装置 1 6 1の厚みを薄く し難いという問題がある。 特に、 携帯電 話機等の携帯機器では、 携帯機器自体の薄型化が進み、 その携帯機器に実装される回 路基板装置 1 6 1の薄型化、 小型化が要望されている。
また、 回路基板装置 1 6 1の製造方法では、 絶縁基板 1 6 2上面の配線層 1 6 3に 突出部 1 6 5、 1 6 6を形成するために、テンプレート 1 7 3を用いている。そして、 テンプレート 1 7 3を利用してシード層 1 7 6、 配線層 1 6 3、 絶縁基板 1 6 2を形 成すると共に、 テンプレート 1 7 3から絶縁基板 1 6 2等を剥離する工程、 絶縁基板 1 6 2からシード層 1 7 6を除去する工程等が必要となる。 そのため、 製造工程が多 くなり、 製造コス トを削減し、 製造時間を短縮し難いという問題がある。
また、 回路基板装置 1 6 1の製造方法では、 テンプレート 1 7 3に形成された囬部 1 7 4、 1 7 5によ り、 配線層 1 6 3の突出部 1 6 5、 1 6 6の突出高さが決定され る。 この製造方法により、 実装時の用途に応じて、 簡易に、 突出部 1 6 5、 1 6 6の 突出高さを変更し難いという問題がある。
上述した各事情に鑑みて成されたものであり、 本発明の素子搭載用基板では、 一対 の主面を有する絶縁基材と、 前記絶縁基材の他の主面側から一の主面側に貫通する貫 通孔と、 前記貫通孔において、 前記絶縁基材の他の主面側から一の主面側に向かって 突出した配線層を具備し、 前記配線層の突出部は電極と して用いられることを特徴と する。
また、 本癸明の素子搭載用基板の製造方法では、 絶縁基材を準備し、 前記絶縁基材 の一の主面側に支持部材を貼着し、 前記絶緣基材の前記一の主面と対向する他の主面 側に導電性部材を貼着する工程と、 前記導電性部材を選択的に除去し、 前記導電性部 材をマスクと して、 前記絶縁基材に貫通孔を形成する工程と、 前記絶縁基材の他の主 面上及ぴ前記貫通孔内を被覆するよ うに金属層を形成し、 前記金属層を選択的に除去 し配線層を形成すると共に、 前記支持部材を剥離する工程と、 前記絶縁基材の一の主 面側から前記絶縁基材をエッチングし、 前記配線層の一部を前記絶縁基材の一の主面 側に突出させる工程とを具備することを特徴とする。 また、 本発明の素子搭載用基板の製造方法では、 絶縁基材を準備し、 前記絶縁基材 の一の主面側及び前記一の主面と対向する他の主面側に導電性部材を貼着する工程と、 前記絶縁基材の一の主面側の導電性部材を選択的に除去し、 前記一の主面側の導電性 部材をマスク と して、前記絶縁基材に貫通孔を形成する工程と、前記貫通孔を埋設し、 前記絶縁基材の一の主面側を被覆するよ うに金属層を形成し、 前記金属層及ぴ前記絶 縁基材の他の主面側の前記導電性部材を選択的に除去し配線層を形成する工程と、 前 記絶縁基材の一の主面側から前記絶縁基材をエッチングし、 前記配線層の一部を前記 絶縁基材の一の主面側に突出させる工程とを具備することを特徴とする。
また、 本発明の回路装置では、 素子搭載用基板と、 前記素子搭載用基板に実装され た回路素子とを有する回路装置であり、 前記素子搭載用基板は、 一対の主面を有する 絶縁基材と、 前記絶縁基材を貫通する貫通孔と、 前記貫通孔において、 前記絶縁基材 の他の主面側から一の主面側に向かって突出した配線層とを具備し、 前記配線層の突 出部は、 前記回路素子のパッ ド電極と電気的に接続する電極と して用いられることを 特徴とする。
また、 本発明の携帯機器では、 素子搭载用基板と、 前記素子搭載用基板に実装され た回路素子とを有する回路装置と、 前記回路装置が搭載される携帯機器であり、 前記 素子搭載用基板は、 一対の主面を有する絶縁基材と、 前記絶縁基材を貫通する貫通孔 と、 前記貫通孔において、 前記絶縁基材の他の主面側から一の主面側に向かって突出 した配線層とを具備し、 前記配線層の突出部は、 前記回路素子のパッ ド電極と電気的 に接続する電極と して用いられることを特徴とする。
本発明では、 素子搭載用基板を構成する絶縁基材に貫通孔が形成され、 配線層の一 部が、 貫通孔を介して絶縁基材表面側に突出する。 この構造により、 素子搭載用基板 の薄型化が実現され、 更には、 その素子搭載用基板を用いた回路装置の薄型化が実現 される。
また、 本発明では、 配線層の突出部が、 素子搭載用基板のバンプ電極と して用いら れる。 この構造によ り、 熱膨張係数の異なる絶縁基材と半導体素子との離間距離を大 きくでき、 両者の熱膨張係数の差により発生する熱応力による導電性材料へのダメー ジを緩和し、 接続信頼性が向上する。
また、 本発明では、 配線層の一部をバンプ電極と して用い、 薄型化された素子搭载 用基板を C S P型の回路装置、 W L P型の回路装置、 マルチチップモジュールに用い ることができる。
また、 本発明では、 配線層の一部をバンプ電極と して用い、 薄型化された素子搭載 用基板を多層配線基板と しても用いることができる。
また、 本発明では、 絶縁基材をエッチングし、 絶縁基材の貫通孔内に形成された配 線層を絶縁基材表面側に突出させる。 この製造方法により、 バンプ電極と して用いら れる配線層の突出部の突出高さを簡易に調整でき、 製造プロセスを簡略化することが できる。
また、 本発明では、 絶縁基材に貫通孔を形成するマスク と して用いる導電性部材を 除去せず、その上面に配線層を形成する。 この製造方法により、製造工程を低減でき、 製造プロセスを簡略化することができる。 図面の簡単な説明
第 1図は本発明の第 1の実施の形態における素子搭載用基板を用いた回路装置を 説明するための (A ) 断面図、 (B ) 断面図であり、 第 2図から第 8図は本発明の第 1 の実施の形態における素子搭载用基板を用いた回路装置の製造方法を説明するための 断面図であり、 第 9図は本発明の第 1の実施の形態の変形例を示す断面図であり、 第 1 0図は本発明の第 2の実施の形態における素子搭載用基板を用いた回路装置を説明 するための (A ) 断面図、 (B ) 断面図であり、 第 1 1図から第 1 7図は本発明の第 2 の実施の形態における素子搭載用基板を用いた回路装置の製造方法を説明するための 断面図であり、 第 1 8図は本発明の第 2の実施の形態の変形例を示す断面図であり、 第 1 9図は本発明の第 3の実施の形態における素子搭載用基板を用いた回路装置を説 明するための断面図であり、 第 2 0図は本発明の第 4の実施の形態における素子搭载 用基板を用いた回路装置を説明するための断面図であり、 第 2 1図は本発明の第 5の 実施の形態における素子搭載用基板を用いた携帯機器を説明するための( A )斜視図、 ( B ) 断面図であり、 第 2 2図は従来の実施の形態における回路基板装置を説明する ための断面図であり、 第 2 3図は従来の実施の形態における回路基板装置の製造方法 を説明するための (A ) 断面図、 (B ) 断面図、 (C ) 断面図、 (D ) 断面図、 (E ) 断 面図である。 発明を実施するための最良の形態 <第 1 の実施の形態 >
以下に、 第 1図から第 8図を参照し、 本実施の形態である素子搭載用基板を用いた 回路装置及び素子搭載用基板を用いた回路装置の製造方法について説明する。 第 1図 (A) は、 本実施の形態である素子搭載用基板を用いた回路装置を説明するための断 面図である。 第 1図 (B) は、 本実施の形態であるバンプ電極を説明するための断面 図である。 第 2図から第 8図は、 本実施の形態である素子搭載用基板を用いた回路装 置の製造方法を説明するための断面図である。 尚、 第 1図から第 8図の回路装置及び その製造方法の説明において、 素子搭載用基板及ぴその製造方法の説明も併せて記載 する。
先ず、 第 1図 (A) 及び (B) を参照し、 素子搭載用基板を用いた回路装置を説明 する。
第 1図に示す如く、 回路装置 1 は、 内蔵される半導体素子 2より も外形寸法が若干 大きいサイズの樹脂封止型の C S P ( C h i p S i z e P a c k a g e )である。 回路装置 1の外観は直方体形状または立方体形状である。 尚、 本実施の形態では、 C S P型の回路装置の場合について説明するが、 本願はそれに限定するものではなく、 例えば、 回路装置の外形寸法が、 実装される半導体素子と実質的に同じサイズとなる WL P (Wa f e r L e v e l P a c k a g e ) となる場合でも同様の効果を得 られるものである。
素子搭載用基板 3は、 主に、 絶縁基材 4 と、 絶縁基材 4に形成された配線層 5 と、 絶縁基材 4裏面側を被覆する被覆層 6 とから成る。 尚、 被覆層 6は、 絶緣基材 4の裏 面側に配置される場合でも、 配置されない場合でも良い。
絶縁基材 4は、 ガラス繊維にエポキシ樹脂が含浸されたガラスエポキシ等であり、 樹脂材料を主体とするィンターポーザーであり、 膜厚は、 例えば、 3 0から 8 0 m である。 絶縁基材 4は、 その表面側に半導体素子 2が実装され、 その裏面側に配線層 5が形成される。 そして、 絶縁基材 4は、 製造工程に於いて半導体素子 2を機械的に 支持する機能も有する。 絶縁基材 4の材料と しては、 樹脂を主体とする材料以外も採 用可能であり、 例えば、 セラミ ックまたは S i等の無機材料から成る基板であっても 良く、 また、 銅やアルミニウム等の金属から成る金属基板等が樹脂等から成る絶縁層 によ り被覆され、 絶縁処理されて成る基板であっても良い。
配線層 5は、 例えば、 電解メ ツキ法等によ り形成された C uメ ツキ層を選択的にェ ツチングすることで形成され、 膜厚は、 例えば、 2 0から 5 0 m程度である。 配線 層 5は、 絶縁基材 4の裏面側にパターン配置される。 そして、 配線層 5は、 絶縁基材 4に形成された貫通孔 7、 8、 9、 1 0を介して絶縁基材 4の表面側に突出し、 その 突出部 1 1、 1 2、 1 3、 1 4は、 貫通孔 7、 8、 9、 1 0上方に突出し、 パンプ電 極として用いられる。 尚、 突出部 1 1、 1 2、 1 3、 1 4は、 絶縁基材 4の表面から 1 0から 3 0 μ m程度突出するが、 その突出高さは、 用途に応じて任意に設計変更が 可能である。 また、 絶縁基材 4の表面側には配線層 5はパターン配置されず、 突出部 1 1、 1 2、 1 3、 1 4のみが形成される。
被覆層 6は、 絶縁基材 4の裏面側を被覆し、 外部電極 1 5、 1 6が形成される箇所 の被覆層 6には開口部が形成される。 被覆層 6は、 エポキシ樹脂等の熱硬化性樹脂ま たはポリエチレン等の熱可塑性樹脂から成り、 被覆層 6が、 配線層 5の上面を被覆す る厚みは、 例えば、 2 0から 1 0 0 μ m程度である。 尚、 被覆層 6は、 ソルダーレジ ス ト (P S R : P h o t o s o l d e r r e s i s t ) でも良い。
外部電極 1 5、 1 6は、 半田等の導電性材料から成り、 絶縁基材 4の裏面側にダリ ッ ド状に設けられる B GA (B a l l G r i d A r r a y) である。 そして、 外 部電極 1 5、 1 6は、 回路装置 1 に内蔵される半導体素子 2 と配線層 5を介して電気 的に接続される。 尚、 回路装置と しては、 S I P ( S y s t e m i n P a c k a g e ) 等でも可能であることから、 外部電極 1 5、 1 6の位置は、 絶縁基材 4の周囲 にリ ング状に配置されても良いし、 ランダムに配置されても良い。
半導体素子 2 (回路素子) は、 絶縁基材 4上に突出部 1 1、 1 2、 1 3、 1 4を介 して接続される。 具体的には、 半導体素子 2のパッ ド電極 1 7、 1 8、 1 9、 2 0上 には、 例えば、 Auから成るバンプ電極 2 1、 2 2、 2 3、 2 4が形成される。 そし て、 半導体素子 2のバンプ電極 2 1、 2 2、 2 3、 2 4は、 例えば、 フリ ツプチップ ボンディング技術により、 突出部 1 1、 1 2、 1 3、 1 4上に、 半田ク リーム、 ロウ 材または導電性ペース ト等から成る導電性材料 2 5、 2 6、 2 7、 2 8を介して実装 される。
尚、 本実施の形態では、 半導体素子 2側にバンプ電極 2 1、 2 2、 2 3、 2 4が形 成されている場合について説明したが、 この場合に限定するものではない。 例えば、 パッ ド電極 1 7、 1 8、 1 9、 2 0 と突出部 1 1、 1 2、 1 3、 1 4 とが、 導電性材 料 2 5、 2 6、 2 7、 2 8を介して直接電気的に接続する場合でも良い。 また、 突出 部 1 1、 1 2、 1 3、 1 4が配置された絶縁基材 4上に液状樹脂やシート状樹脂を配 置し、 半導体素子 2を実装する際に加圧し、 それらの樹脂を硬化させて接続する樹脂 接合の場合でも良い。
ここでは、 回路装置 1 に内蔵される回路素子と して半導体素子 2が採用されている が、 他の回路素子が採用されても良い。 具体的には、 I C、 : L S I 、 ディスク リート 型の トランジスタ、 ダイオード等の能動素子が回路素子と して採用されても良い。 更 には、 チップ抵抗、 チップコンデンサ、 センサ等の受動素子が回路素子と して採用さ れても良い。 更に、 受動素子と能動素子とを複数個組み合わせて内部接続されたシス テムが、 回路装置 1の内部に構築されていても良い。 この場合、 絶縁墓材 4の表面側 には、'配線層 5の突出部が更に配置され、 第 1図 (A ) に示す半導体素子 2の隣にチ ップ抵抗等の受動素子が配置される。
尚、 この素子搭載用基板 3は、 回路素子のみを載せたモジュール、 基板全体を封止 した回路装置に適用可能である。 更にこの基板や回路装置に載せられる回路素子と し て半導体チップや受動素子が考えられる。 しかもこれらの回路素子は、 複数の半導体 チップがスタックされた 3次元的または平面的に設けられる。 このよ うに複数の回路 素子が設けられてシステムが構成されるものである。
アンダーフィル 2 9は、 半導体素子 2 と絶縁基材 4 との間隙を充填するよ うに配置 され、 例えば、 エポキシ樹脂から成り、 半導体素子 2 と絶縁基材 4 との熱膨張係数の 差により発生する熱応力に対し、 バンプ接続部の補強材と しても用いられる。 尚、 そ のエポキシ樹脂内に混入されるフィラー含有量によりアンダーフィル 2 9の熱膨張係 数、 粘度が調整される。
封止樹脂 3 0は、 半導体素子 2及ぴ絶縁基材 4の上面が覆われるよ うに形成され、 トランスファーモールドにより形成される熱硬化性樹脂、 または、 インジェクショ ン モールドによ り形成される熱可塑性樹脂から成る。
第 1図 (B ) に示す如く、 絶縁基材 4には、 その裏面側から表面側に貫通する貫通 孔 7が形成される。 そして、 配線層 5は、 絶縁基材 4の裏面側にパターン配置される 力 貫通孔 7の内側面を介して絶縁基材 4の表面側へと突出する。 詳細は、 回路装置 の製造方法の説明の際に後述するが、 突出部 1 1 は、 絶縁基材 4の表面側から絶縁基 材 4をエッチングすることで形成される。 そして、 配線層 5は、 絶縁基材 4内に埋設 された構造であるから、 バンプ電極と して用いられる領域の厚み h 1だけ素子搭載用 基板 3の厚みを薄くすることができ、 更には、 回路装置 1の厚みを薄くすることがで きる。
その一方で、 絶縁基材 4の表面側から突出する突出高さ h 2は、 バンプ電極と して 使用する際の用途に応じて絶縁基材 4のエッチング量を調整することで任意に設定さ れる。 そして、 突出高さ h 2を高くすることで、 絶縁基材 4 と半導体素子 2 との離間 距離を大きくでき、 両者の熱膨張係数の差によ り発生する熱応力による導電性材料 2 5へのダメージを緩和し、 接続信頼性を向上させることができる。 また、 突出高さ h 2を高くすることで、 半導体素子 2側のパンプ電極 2 1 を省略するか、 あるいは、 パ ンプ電極 2 1の高さを低くすることができる。
次に、 第 2図から第 8図を参照し、 第 1図 (A ) に示す素子搭載用基板を用いた回 路装置の製造方法を説明する。 尚、 第 1図 (A ) に示す素子搭載用基板を用いた回路 装置と同じ構成部材には、 同じ符番を付す。
第 2図に示す如く、絶縁基材 4を準備し、絶縁基材 4の表面側及ぴ裏面側の全面に、 例えば、 メ ツキ法、 蒸着法、 スパッタ法または圧延法により、 導電性部材と しての C u箔 3 1、 3 2を貼着する。 導電性部材と しては、 C u以外にも A l、 F e、 F e— N i箔の場合でも良い。 上述したように、 絶縁基材 4は、 樹脂材料、 無機材料または 金属材料 (表面が絶縁処理されたものを含む) から成る。 そして、 絶縁基材 4は、 製 造工程に於いて半導体素子 2 (第 1図 (A ) 参照) を機械的に支持する機能も有する。 尚、 絶縁基材 4の表面側の C u箔 3 1 は、 後工程での配線層を形成する工程におい て剥離されるため、 絶縁基材 4を支持するための支持部材と しての役割を果たせば良 く、 必ずしも導電性部材である必要はない。
第 3図に示す如く、 絶縁基材 4の裏面側から貫通孔 7、 8、 9、 1 0を形成する。 公知のフォ ト リ ソグラフィ技術を用い、 貫通孔 7、 8、 9、 1 0が形成される領域上 のじ 1!箔 3 2に、 例えば、 塩化第 2鉄または塩化第 2銅のエッチング液を用いたゥェ ッ トエッチングによ り開口部を形成する。 そして、 残存した C u箔 3 2をマスク と し て用い、 炭酸ガスレーザーにより C u箔 3 1が露出するまで絶縁基材 4を除去して貫 通孔 7、 8、 9、 1 0を形成する。 尚、 炭酸ガスレーザーで絶縁基材 4を蒸発させた 後、 貫通孔 7、 8、 9、 1 0の底部に残査がある場合は、 過マンガン酸ソーダまたは 過硫酸アンモニゥム等のエッチング液を用いたゥエツ トエッチングにより、 この残查 を取り除く。 第 4図に示す如く、 貫通孔 7、 8、 9、 1 0内側面の絶縁基材 4上、 貫通孔 7、 8、 9、 1 0底部の C u箔 3 1上及ぴ絶縁基材 4裏面側の C u箔 3 2上に、 例えば、 厚み が 1 μ m程度の無電解メ ッキ層 3 3を無電解メ ッキ法により付着させる。 無電解メ ッ キ層 3 3の材料と しては、 C u箔 3 1、 3 2 と同じ材料 (例えば、 C u ) でも良いし、 他の金属材料でも良い。 尚、 本工程では、 C u箔 3 1の上面を保護膜 (図示せず) に より全面的に被覆した状態で、 上記した無電解メ ツキ法による無電解メ ツキ層 3 3の 被着を行っている。
次に、 無電解メ ツキ層 3 3を給電用のメ ツキ線の如き用い、 電解メ ツキ法によ り、 無電解メ ツキ層 3 3上に C uメ ツキ層 3 4を形成する。 即ち、 C uメ ツキ層 3 4は、 貫通孔 7、 8、 9、 1 0内側面及ぴ C u箔 3 2上面にも形成される。 そして、 C u箔 3 2上面では、 C u箔 3 2、 無電解メ ツキ層 3 3及び C uメ ツキ層 3 4が積層され短 絡された状態となる。 尚、 第 5図以下の説明では、 < 11箔3 2、 無電解メ ツキ層 3 3 及び C uメ ツキ層 3 4を一体と し C uメ ツキ層 3 4 と して図示する。
第 5図に示す如く、 公知のフォ トリ ソグラフィ技術を用い、 配線層 5 と して用いら れる C uメ ツキ層 3 4上面にフォ ト レジス ト (図示せず) をエッチングマスク と して 形成する。 そして、 例えば、 塩化第 2鉄または塩化第 2銅のエッチング液を用いたゥ ェッ トエッチングにより、 C uメ ツキ層 3 4を選択的にェツチングし、 配線層 5を形 成する。
次に、 C u箔 3 1 の上面を被覆する保護膜を除去した後、 絶縁基材 4の表面側に貼 着された C u箔 3 1 を剥離する。 この剥離工程では、 塩化第 2鉄または塩化第 2銅を 用いたケミカルエッチングで良く、 絶縁基材 4の C u箔は全面的に除去され、 それに よって貫通孔 7、 8、 9、 1 0が形成された絶縁基材 4の表面側から配線層 5が露出 する。
第 6図に示す如く、 絶縁基材 4をその表面側からエッチングし、 配線層 5の一部を 絶縁基材 4の表面側に突出させる。 絶縁基材 4をエッチングする方法と して、 ドライ エッチングまたはゥエツ トエッチングを用いることができる。 ドライエッチングの場 合には、例えば、酸素と窒素との混合雰囲気中で、プラズマ出力を 5 0から 1 5 0 W、 処理時間を 3から 3 0 m i nの条件によ り、 絶縁基材 4をエッチングする。 また、 ゥ ェッ トエッチングの場合には、 例えば、 過マンガン酸ナトリ ゥムと水酸化ナト リ ウム を主成分とする水溶液をエッチング液と して用い、 処理温度を 7 0から 8 5 °C、 処理 時間を 5から 3 0 m i nの条件により、 絶縁基材 4をエッチングする。 これらのエツ チング工程により、 絶縁基材 4の表面側に、 例えば、 1 0から 3 0 μ m程度の突出部 1 1、 1 2、 1 3、 1 4を形成する。
第 1図 (B) を用いて上述したよ うに、 突出部 1 1、 1 2、 1 3、 1 4はパンプ電 極と して用いられるため、 突出部 1 1、 1 2、 1 3、 1 4の突出高さは、 用途に応じ て、 処理時間を変えることで任意の設計変更が可能である。 つまり、 本実施の形態で は、 製造装置 (金型等を含む) を変更することなく、 エッチング時間を変更すること で、 簡易に突出部 1 1、 1 2、 1 3、 1 4の突出髙さを変更できるので、 製造方法の 簡略化や製造コス トの低減を実現できる。
第 7図に示す如く、半導体素子 2をバンプ電極と して用いられる突出部 1 1、 1 2、 1 3、 1 4上に実装する。 例えば、 半田タ リーム等の導電性材料 2 5、 2 6、 2 7、 2 8をスク リーン印刷により突出部 1 1、 1 2、 1 3、 1 4上に塗布する。 そして、 例えば、 フリ ップチップボンディ ング技術により、 半導体素子 2のバンプ電極 2 1、 2 2、 2 3、 2 4が突出部 1 1、 1 2、 1 3、 1 4上に位置するよ うにマウント しリ フローすることで、 絶縁基材 4上に半導体素子 2を実装する。
次に、 半導体素子 2 と絶縁基材 4 との間隙にアンダーフィル 2 9を注入する。 アン ダーフィル 2 9 と して、例えば、エポキシ樹脂を用い、液状のアンダーフィル 2 9を、 例えば、 毛管法によ り半導体素子 2の 1辺もしく は 2辺から注入した後、 加熱し硬化 させる。 尚、 アンダーフィル 2 9内に混入されるブイラ一含有量により、 アンダーフ ィル 2 9の粘度を調整することができる。
第 8図に示す如く、 半導体素子 2および絶縁基材 4の上面が覆われるよ うに封止樹 月旨 3 0を形成する。 そして、 トランスファーモールドによ り封止樹脂 3 0を形成する 場合には熱硬化性樹脂が用いられ、 インジヱクショ ンモールドにより封止樹脂 3 0を 形成する場合には熱可塑性樹脂が用いられる。
次に、 絶縁基材 4の裏面側にパターン配置された配線層 5を被覆するよ うに被覆層 6を形成する。 被覆層 6 と しては、 エポキシ樹脂等の熱硬化性樹脂またはポリヱチレ ン等の熱可塑性樹脂が用いられる。 そして、 外部電極 1 5、 1 6が形成される配線層 5上の被覆層 6は開口され、 その開口部を利用して、 例えば、 半田ボールから成る外 部電極 1 5、 1 6を形成する。
上記した製造方法は、 次のよ うに変更することが可能である。 即ち、 第 4図を参照 した説明では、 C u箔 3 1の上面を保護膜により被覆した状態で無電解メ ツキ法およ ぴ電解メ ッキ法を行ったが、この保護膜を使用せずに両メ ツキ法を行う ことができる。 第 9図に、 保護膜を用いずに両メ ツキ法による処理を行った状態を示す。 この図を参 照すると、 C u箔 3 1の上面が無電解メ ッキ層 3 3および C uメ ッキ層 3 4により被 覆されている。 この状態で、 図 5に示すように配線層 5が形成されて、 絶縁基材 4の 上面を被覆する C u箔 3 1、 無電解メ ツキ層 3 3および C uメ ッキ層 3 4が除去され る。 ここで、 C u箔 3 1、 無電解メ ッキ層 3 3および C uメ ッキ層 3 4の除去と、 配 線層 4 5の形成とは、 同時に行われても良いし、 どちらか一方が他方に先行して行わ れても良い。
く第 2の実施の形態 >
以下に、 第 1 0図から第 1 7図を参照し、 本実施の形態である素子搭載用基板を用 いた回路装置及び素子搭載用基板を用いた回路装置の製造方法について説明する。 そ して、 第 2の実施の形態では、 バンプ電極 5 1、 5 2、 5 3、 5 4の突出構造及ぴバ ンプ電極 5 1、 5 2、 5 3、 5 4の形成方法が、 上述した第 1の実施の形態と異なる ことを特徴とする。 第 1 0図 (A ) は、 本実施の形態である素子搭載用基板を用いた 回路装置を説明するための断面図である。 第 1 0図 (B ) は、 本実施の形態であるパ ンプ電極を説明するための断面図である。 第 1 1図から第 1 7図は、 本実施の形態で ある素子搭載用基板を用いた回路装置の製造方法を説明するための断面図である。尚、 第 1 0図から第 1 7図の回路装置及ぴその製造方法の説明において、 素子搭載用基板 及ぴその製造方法の説明も併せて記載する。
先ず、 第 1 0図 (A ) 及び (B ) を参照し、 素子搭載用基板を用いた回路装置を説 明する。
第 1 0図に示す如く、 回路装置 4 1は、 内蔵される半導体素子 4 2より も外形寸法 が若干大きいサイズの樹脂封止型の C S Pである。 回路装置 4 1 の外観は直方体形状 または立方体形状である。 尚、 本実施の形態では、 C S P型の回路装置の場合につい て説明するが、本願はそれに限定するものではなく、例えば、回路装置の外形寸法が、 実装される半導体素子と実質的に同じサイズとなる W L P となる場合でも同様な効果 を得られるものである。
素子搭載用基板 4 3は、 主に、 絶縁基材 4 4 と、 絶縁基材 4 4に形成された配線層 4 5 と、 絶縁基材 4 4裏面側を被覆する被覆層 4 6 とから成る。 尚、 被覆層 4 6は、 絶縁基材 4 4の裏面側に配置される場合でも、 配置されない場合でも良い。
絶縁基材 4 4は、ガラス繊維にエポキシ樹脂が含浸されたガラスエポキシ等であり、 樹脂材料を主体とするインターポーザーであり、 膜厚は、 例えば、 3 0から 8 0 / m である。
絶緣基材 44は、 その表面側に半導体素子 4 2が実装され、 その裏面側に配線層 4 5が形成される。 そして、 絶縁基材 4 4は、 製造工程に於いて半導体素子 4 2を機械 的に支持する機能も有する。 絶縁基材 4 4の材料と しては、 樹脂を主体とする材料以 外も採用可能であり、 例えば、 セラミ ツクまたは S i等の無機材料から成る基板であ つても良く、 また、 銅やアルミニウム等の金属から成る金属基板等が樹脂等から成る 絶縁層により被覆され、 絶縁処理されて成る基板であっても良い。
配線層 4 5は、 例えば、 電解メ ツキ法等により形成された C uメ ツキ層を選択的に ェツチングすることで形成され、 膜厚は、 例えば、 2 0から 5 0 μ m程度である。 配 線層 4 5は、 絶縁基材 4 4の裏面側にパターン配置される。 そして、 配線層 4 5は、 絶縁基材 4 4に形成された貫通孔 4 7、 4 8、 4 9、 5 0を介して絶縁基材 4 4の表 面側に突出し、 その突出部 5 1、 5 2、 5 3、 5 4は、 貫通孔 4 7、 4 8、 4 9、 5 0上方に突出し、 バンプ電極と して用いられる。 尚、 突出部 5 1、 5 2、 5 3、 5 4 は、絶縁基材 4 4の表面から 1 0から m程度突出しているが、その突出高さは、 用途に応じて任意に設計変更が可能である。 また、 絶縁基材 4 4の表面側には配線層 4 5はパターン配置されず、 突出部 5 1、 5 2、 5 3、 5 4のみが形成される。
被覆層 4 6は、 絶縁基材 4 4の裏面側を被覆し、 外部電極 5 5、 5 6が形成される 箇所の被覆層 4 6には、 開口部が形成される。 被覆層 4 6は、 エポキシ樹脂等の熱硬 化性樹脂またはポリエチレン等の熱可塑性樹脂から成り、 被覆層 4 6が、 配線層 4 5 の上面を被覆する厚みは、 例えば、 2 0から Ι Ο Ο μ m程度である。 尚、 被覆層 4 6 は、 ソルダーレジス ト (P S R) でも良い。
外部電極 5 5、 5 6は、 半田等の導電性材料から成り、 絶縁基材 4 4の裏面側にグ リ ツ ド状に設けられる B GAである。 そして、 外部電極 5 5、 5 6は、 回路装置 4 1 に内蔵される半導体素子 4 2 と配線層 4 5を介して電気的に接続される。 尚、 回路装 置と しては、 S I P等でも可能であることから、 外部電極 5 5、 5 6の位置は、 絶縁 基材 4 4の周囲にリ ング状に配置されても良いし、 ランダムに配置されても良い。 半導体素子 4 2 (回路素子) は、 絶縁基材 4 4上に突出部 5 1、 5 2、 5 3、 5 4 を介して接続されている。 具体的には、 半導体素子 4 2のパッ ド電極 5 7、 5 8、 5 9、 6 0上には、 例えば、 A uから成るバンプ電極 6 1、 6 2、 6 3、 6 4が形成さ れる。 そして、 半導体素子 4 2のバンプ電極 6 1、 6 2、 6 3、 6 4は、 例えば、 フ リ ップチップボンディング技術によ り、 突出部 5 1、 5 2、 5 3、 5 4上に、 半田ク リーム、 ロウ材または導電性ペース ト等から成る導電性材料 6 5、 6 6、 6 7、 6 8 を介して実装される。
尚、 本実施の形態では、 半導体素子 4 2側にバンプ電極 6 1、 6 2、 6 3、 6 4が 形成される場合について説明したが、 この場合に限定するものではない。 例えば、 パ ッ ド電極 5 7、 5 8、 5 9、 6 0 と突出部 5 1、 5 2、 5 3、 5 4 とが、 導電性材料 6 5、 6 6、 6 7、 6 8を介して直接電気的に接続する場合でも良い。 また、 突出部 5 1、 5 2、 5 3、 5 4が配置された絶縁基材 4 4上に液状樹脂やシート状樹脂を配 置し、 半導体素子 4 2を実装する際に加圧し、 それらの樹脂を硬化させて接続する樹 脂接合の場合でも良い。
ここでは、 回路装置 4 1に内蔵される回路素子と して半導体素子 4 2が採用されて いるが、 他の回路素子が採用されても良い。 具体的には、 I C、 : L S I 、 ディスク リ 一ト型の トランジスタ、ダイォード等の能動素子が回路素子と して採用されても良い。 更には、 チップ抵抗、 チップコンデンサ、 センサ等の受動素子が回路素子と して採用 されても良い。 更に、 受動素子と能動素子とを複数個組み合わせて内部接続されたシ ステムが、 回路装置 4 1の内部に構築されていても良い。 この場合、 絶縁基材 4 4の 表面側には、 配線層 4 5の突出部が更に配置され、 第 1 0図 (A) に示す半導体素子 4 2の隣にチップ抵抗等の受動素子が配置される。
尚、 この素子搭載用基板 4 3は、 回路素子のみを載せたモジュール、 基板全体を封 止した回路装置に適用可能である。 更にこの基板や回路装置に載せられる回路素子と して半導体チップや受動素子が考えられる。 しかもこれらの回路素子は、 複数の半導 体チップがスタックされた 3次元的または平面的に設けられる。 このよ うに複数の回 路素子が設けられてシステムが構成されるものである。
アンダーフィル 6 9は、 半導体素子 4 2 と絶縁基材 4 4 との間隙を充填するよ うに 配置され、 例えば、 エポキシ榭脂から成り、 半導体素子 4 2 と絶縁基材 4 4 との熱膨 張係数の差によ り発生する熱応力に対し、バンプ接続部の補強材と しても用いられる。 尚、 そのエポキシ樹脂内に混入されるフイラ一含有量によりアンダーフィル 6 9の熱 膨張係数、 粘度が調整される。
封止樹脂 7 0は、 半導体素子 4 2および絶縁基材 4 4の上面が覆われるよ うに形成 され、 トランスファーモールドにより形成される熱硬化性樹脂、 または、 インジエタ ションモールドにより形成される熱可塑性樹脂から成る。
第 1 0図 (B ) に示す如く、 絶縁基材 4 4には、 その裏面側から表面側に貫通する 貫通孔 4 7が形成される。 そして、 配線層 4 5は、 絶縁基材 4 4の裏面側にパターン 配置されるが、 貫通孔 4 7を埋設して絶縁基材 4 4の表面側へと突出する。 詳細は、 回路装置の製造方法の説明の際に後述するが、 突出部 5 1は、 絶緣基材 4 4の表面側 から絶縁基材 4 4をエッチングすることで形成される。 そして、 配線層 4 5は、 絶縁 基材 4 4内に埋設された構造であるから、 パンプ電極と して用いられる領域の厚み h 3だけ素子搭載用基板 4 3の厚みを薄くすることができ、 更には、 回路装置 4 1 の厚 みを薄くすることができる。
その一方で、 絶縁基材 4 4の表面側から突出する突出高さ h 4は、 バンプ電極とし て使用する際の用途に応じて絶縁基材 4 4のエッチング量を調整することで任意に設 定される。 そして、 突出高さ h 4を高くすることで、 絶縁基材 4 4 と半導体素子 4 2 との離間距離を大きくでき、 雨者の熱膨張係数の差により発生する熱応力による導電 性材料 6 5へのダメージを緩和し、 接続信頼性を向上させることができる。 また、 突 出高さ h 4を高くすることで、 半導体素子 4 2側のバンプ電極 6 1を省略するか、 あ るいは、 バンプ電極 6 1 の高さを低くすることができる。
次に、 第 1 1図から第 1 7図を参照し、 第 1 0図 (A ) に示す素子搭載用基板を用 いた回路装置の製造方法を説明する。 尚、 第 1 0図 (A ) に示す素子搭載用基板を用 いた回路装置と同じ構成部材には、 同じ符番を付す。
第 1 1図に示す如く、 絶縁基材 4 4を準備し、 絶縁基材 4 4の表面側及ぴ裏面側の 全面に、 例えば、 メ ツキ法、 蒸着法、 スパッタ法または圧延法によ り、 導電性部材と しての C u箔 7 1、 7 2を貼着する。 導電性部材と しては、 C u以外にも A l、 F e、 F e - N i箔の場合でも良い。 上述したよ うに、 絶縁基材 4 4は、 樹脂材料、 無機材 料または金属材料 (表面が絶縁処理されたものを含む) から成る。 そして、 絶縁基材 4 4は、 製造工程に於いて半導体素子 4 2 (第 1 0図 (A ) 参照) を機械的に支持す る機能も有する。
第 1 2図に示す如く、 絶縁基材 4 4の表面側から貫通孔 4 7、 4 8、 4 9、 5 0を 形成する。 公知のフォ ト リ ソグラフィ技術を用い、 貫通孔 4 7、 4 8、 4 9、 5 0が 形成される領域上の C u箔 7 1に、 例えば、 塩化第 2鉄または塩化第 2銅のエツチン グ液を用いたウエッ トエッチングにより開口部を形成する。 そして、 C u箔 7 1 をマ スクとして用い、 炭酸ガスレーザーにより C u箔 7 2が露出するまで絶縁基材 4 4を 除去して、 貫通孔 4 7、 4 8、 4 9、 5 0を形成する。 尚、 炭酸ガスレーザーで絶縁 基材 44を蒸発させた後、 貫通孔 4 7、 4 8、 4 9、 5 0の底部に残査がある場合は、 過マンガン酸ソーダまたは過硫酸ァンモニゥム等のエツチング液を用いたゥエツ トェ ツチングによ り、 この残査を取り除く。
第 1 3図に示す如く、 貫通孔 4 7、 4 8、 4 9、 5 0內側面の絶縁基材 4 4上、 貫 通孔 4 7、 4 8、 4 9、 5 0底部の C u箔 7 2上及び絶縁基材 4 4表面側の C u箔 7 1上に、 例えば、 厚みが 1 μ m程度の無電解メ ツキ層 7 3を無電解メ ツキ法によ り付 着させる。 このとき、 C u箔 7 1の表側面及ぴ絶縁基材 4 4の上面にも無電解メ ツキ 層 7 3が付着される。 無電解メ ツキ層 7 3の材料と しては、 C u箔 7 1、 7 2 と同じ 材料 (例えば、 C u) でも良いし、 他の金属材料でも良い。 尚、 本工程では、 C u箔 7 2の下面は保護膜 (不図示) にて被覆された状態と成っているので、 ( 11箔 7 2に はメ ツキ法による金属膜は付着されない。
次に、 無電解メ ツキ層 7 3を給電用のメ ッキ線の如き用い、 フイ リ ング電解メ ッキ 法によ り、 無電解メ ツキ層 7 3上に C uメ ッキ層 7 4を形成する。 即ち、 C uメ ツキ 層 7 4は、 貫通孔 4 7、 4 8、 4 9、 5 0内側面を埋設し、 更に、 C u箔 7 1上面に も形成される。 そして、 C u箔 7 1、 7 2上面では、 C u箔 7 1、 7 2、 無電解メ ッ キ層 7 3及ぴ C uメ ツキ層 7 4が積層され短絡された状態となる。 尚、 第 1 4図以下 の説明では、 C u箔 7 1、 7 2、 無電解メ ッキ層 7 3及ぴ C uメ ッキ層 7 4を一体と し C uメ ツキ層 7 4 と して図示する。
第 1 4図に示す如く、 絶縁基材 4 4の表面側では C uメ ツキ層 7 4 (第 1 3図参照) をエッチングして突出部 5 1、 5 2、 5 3、 5 4を形成する。 一方、 絶縁基材 4 4の 裏面側では C u箔 7 2 (第 1 3図参照) をエッチングして配線層 4 5を形成する。 公 知のフォ トリ ソグラフィ技術を用い、 突出部 5 1、 5 2、 5 3、 5 4を形成する領域 及ぴ配線層 4 5を形成する領域上面にフォ ト レジス ト (図示せず) をエッチングマス ク と して形成する。 そして、 例えば、 塩化第 2鉄または塩化第 2銅のエッチング液を 用いたウエッ トエッチングによ り、 C uメ ツキ層 7 4及ぴ C u箔 7 2を選択的にエツ チングし、 突出部 5 1、 5 2、 5 3、 5 4及ぴ配線層 4 5を形成する。
第 1 5図に示す如く、 絶縁基材 4 4をその表面側からエッチングし、 突出部 5 1、 5 2、 5 3、 5 4が、 所望の突出高さとなるようにする。 絶縁基材 4 4をエッチング する方法と して、 ドライエッチングまたはウエッ トエッチングを用いることができる。 ドライエッチングの場合には、 例えば、 酸素と窒素との混合雰囲気中で、 プラズマ出 力を 5 0力 ら 1 5 0 W、 処理時間を 3力 ら 3 0 m i nの条件により、 絶縁基材 4 4を エッチングする。 また、 ウエッ トエッチングの場合には、 例えば、 過マンガン酸ナト リ ゥムと水酸化ナト リ ゥムを主成分とする水溶液をェツチング液と して用い、 処理温 度を 7 0から 8 5°C、 処理時間を 5から 3 0 m i nの条件により、 絶縁基材 4 4をェ ツチングする。 これらのエッチング工程により、 絶縁基材 4 4の表面側に、 例えば、 1 0力 ら 3 0 X m程度の突出部 5 1、 5 2、 5 3、 5 4を形成する。
本実施の形態では、 第 1 0図 (B) を用いて上述したよ うに、 突出部 5 1、 5 2、 5 3 , 5 4はバンプ電極と して用いられるため、 突出部 5 1、 5 2、 5 3、 5 4の突 出高さは、 用途に応じて、 処理時間を変えることで任意の設計変更が可能である。 つ まり、 製造装置 (製造用道具等を含む) を変更することなく、 エッチング時間を変更 することで、 簡易に突出部 5 1、 5 2、 5 3、 5 4の突出高さを変更できるので、 製 造方法の簡略化や製造コス トの低減を実現できる。
第 1 6図に示す如く、 半導体素子 4 2をバンプ電極と して用いられる突出部 5 1、 5 2、 5 3、 5 4上に実装する。 例えば、 半田ク リーム等の導電性材料 6 5、 6 6、 6 7、 6 8をスク リーン印刷によ り突出部 5 1、 5 2、 5 3、 5 4上に塗布する。 そ して、 例えば、 フリ ップチップボンディング技術によ り、 半導体素子 4 2のパンプ電 極 6 1、 6 2、 6 3、 6 4が突出部 5 1、 5 2、 5 3、 5 4上に位置するよ うにマウ ント しリ フローすることで、 絶縁基材 4 4上に半導体素子 4 2を実装する。
次に、 半導体素子 4 2 と絶縁基材 4 4 との間隙にアンダーフィル 6 9を注入する。 アンダーフィル 6 9 と して、 例えば、 エポキシ樹脂を用い、 液状のアンダーフィル 6 9を、 例えば、 毛管法によ り半導体素子 4 2の 1辺もしくは 2辺から注入した後、 加 熱し硬化させる。 尚、 アンダーフィル 6 9内に混入されるフイラ一含有量により、 ァ ンダーフィル 6 9の粘度を調整することができる。
第 1 7図に示す如く、 半導体素子 4 2および絶縁基材 4 4の上面が覆われるよ うに 封止樹脂 7 0を形成する。 そして、 トランスファーモールドによ り封止樹脂 7 0を形 成する場合には熱硬化性樹脂が用いられ、 インジ クショ ンモールドにより封止樹脂
7 0を形成する場合には熱可塑性樹脂'が用いられる。
次に、 絶縁基材 4 4の裏面側にパターン配置された配線層 4 5を被覆するように被 覆層 4 6を形成する。 被覆層 4 6 と しては、 エポキシ樹脂等の熱硬化性樹脂またはポ リエチレン等の熱可塑性樹脂が用いられる。 そして、 外部電極 5 5、 5 6が形成され る配線層 4 5上の被覆層 4 6は開口され、 その開口部を利用して、 例えば、 半田ボー ルから成る外部電極 5 5、 5 6を形成する。
上記した製造方法は、 次に様に変更することができる。 即ち、 第 1 3図を参照した 説明では、 絶縁基材 4 4の下面に設けた C u箔 7 2を保護膜にて被覆した状態で、 メ ツキ処理が行われていたが、 この保護膜を使用せずにメ ツキ処理が行われても良い。 第 1 8図を参照して、 この場合は、 C u箔 7 2の下面に無電解メ ツキ層 7 3および C uメ ツキ層 7 4が積層される。 このことにより、 絶縁基材 4 4の下面を被覆する金属 膜の厚みが厚くなるので、 第 1 4図を参照して、 この金属膜を選択的にエッチングす ることで形成される配線層 4 5 も結果的に厚く形成される。
く第 3の実施の形態 >
以下に、第 1 9図を参照し、本実施の形態である素子搭載用基板を用いた回路装置、 具体的には、 マルチチップモジュールについて説明する。 第 1 9図は、 本実施の形態 である素子搭載用基板を用いた回路装置を説明するための断面図である。 尚、 本実施 の形態では、 素子搭載用基板のバンプ電極と して用いられる突出部の構造が、 上述し た第 1の実施の形態のパンプ電極と同様な構造となるため、 適宜、 第 1の実施の形態 の説明を参照するものとする。
図示の如く、 回路装置 8 1 は、 絶縁基材 8 2上に、 半導体素子 8 3、 8 4が実装さ れ、 マルチチップモジュールと して構成される。 そして、 半導体素子 8 3、 8 4は、 絶縁基材 8 2上にベアチップの状態で実装されることで、 高密度実装が実現され、 回 路装置 8 1の小型化が実現される。 尚、 第 1 9図では、 半導体素子 8 3、 8 4のみが 示されているが、 多数の半導体素子 (回路素子) が実装される場合でも良い。
素子搭載用基板 8 5は、 主に、 絶縁基材 8 2 と、 絶縁基材 8 2に形成された配線層
8 6 と、 絶縁基材 8 2裏面側を被覆する被覆層 8 7 とカゝら成る。 尚、 被覆層 8 7は、 絶縁基材 8 2の裏面側に配置される場合でも、 配置されない場合でも良い。
絶縁基材 8 2は、 樹脂材料、 無機材料または金属材料 (表面が絶縁処理されたもの を含む) から成る。 そして、 絶縁基材 8 2は、 製造工程に於いて半導体素子 8 3、 8 4を機械的に支持する機能も有する。
配線層 8 6は、 例えば、 電解メ ッキ法等により形成された C uメ ッキ層を選択的に エッチングすることで形成される。 配線層 8 6は、 絶縁基材 8 2の裏面側にパターン 配置される。 そして、 配線層 8 6は、 絶縁基材 8 2に形成された貫通孔 8 8、 8 9、 9 0 , 9 1 を介して絶縁基材 8 2の表面側に突出し、 その突出部 9 2、 9 3、 9 4、 9 5は、 貫通孔 8 8、 8 9、 9 0、 9 1上方に突出し、 バンプ電極と して用いられる。 尚、 突出部 9 2、 9 3、 9 4、 9 5は、 絶縁基材 8 2の表面から 1 0から 3 0 μ m程 度突出するが、 その突出高さは、 用途に応じて任意に設計変更が可能である。
被覆層 8 7は、 絶縁基材 8 2の裏面側を被覆し、 外部電極 9 6、 9 7、 9 8、 9 9、 1 0 0、 1 0 1、 1 0 2、 1 0 3が形成される箇所の被覆層 8 7には開口部が形成さ れる。 被覆層 8 7は、 エポキシ樹脂等の熱硬化性樹脂またはポリエチレン等の熱可塑 性樹脂から成る。
外部電極 9 6、 9 7、 9 8、 9 9、 1 0 0、 1 0 1、 1 0 2、 1 0 3は、 絶縁基材 8 2の裏面側に形成され、 グリ ッ ド状に設けられる B G Aである。
半導体素子 8 3、 8 4 (回路素子) は、 導電性材料 1 0 4、 1 0 5、 1 0 6、 1 0 7を介して突出部 9 2、 9 3、 9 4、 9 5上に実装される。
尚、 本実施の形態では、 半導体素子 8 3、 8 4側にバンプ電極' 1 0 8、 1 0 9、 1 1 0、 1 1 1が形成される場合について説明したが、 この場合に限定するものではな い。 例えば、 半導体素子 8 3、 8 4のパッ ド電極 1 1 2、 1 1 3、 1 1 4、 1 1 5 と 配線層 8 6の突出部 9 2、 9 3、 9 4、 9 5 とが、 導電性材料 1 0 4、 1 0 5、 1 0 6、 1 0 7を介して、 直接電気的に接続する場合でも良い。 また、 液状樹脂やシート 状樹脂を用いた樹脂接合の場合でも良い。
回路装置 8 1 には、 半導体素子 8 3、 8 4が内臓されている構造が図示されている が、 他の回路素子と して I C、 L S I、 ディスク リート型の トランジスタ、 ダイォー ド等の能動素子が内臓される場合でも良い。 また、 回路装置 8 1 には、 更に、 チップ 抵抗、 チップコンデンサ、 センサ等の受動素子が內臓され、 受動素子と能動素子とを 複数個組み合わせて内部接続されたシステムが構築される場合でも良い。
アンダーフィル 1 1 6は、 半導体素子 8 3、 8 4 と絶縁基材 8 2 との間隙を充填す るよ うに配置される。 アンダーフィル 1 1 6は、 例えば、 エポキシ樹脂から成る。 封止樹脂 1 1 7は、 トランスファーモールドにより形成される熱硬化性樹脂、 また は、 ィンジェクショ ンモールドによ り形成される熱可塑性樹脂から成る。
本実施の形態であるマルチチップモジュールにおいても、 パンプ電極と して用いら れる配線層 8 6の一部が絶縁基材 8 2を貫通することで、 素子搭載用基板 8 5の厚み を薄く し、 更には、 回路装置 8 1の厚みを薄くすることができる。 また、 バンプ電極 と して用いられる突出部 9 2、 9 3、 9 4、 9 5の突出高さが、 絶縁基材 8 2のエツ チング量に応じて任意に調整される。
尚、 本実施の形態では、 バンプ電極と して用いられる突出部が、 第 1の実施の形態 で説明した構造となる場合について説明したが、 この場合に限定するものではない。 例えば、 バンプ電極と して用いられる突出部が、 第 2の実施の形態で説明した構造と なる場合でも同様な効果を得ることができる。
く第 4の実施の形態 >
以下に、第 2 0図を参照し、本実施の形態である素子搭載用基板を用いた回路装置、 具体的には、 多層配線構造の回路装置について説明する。 第 2 0図は、 本実施の形態 である素子搭載用基板を用いた回路装置を説明するための断面図である。 尚、 本実施 の形態では、 素子搭載用基板のバンプ電極と して用いられる突出部の構造が、 上述し た第 2の実施の形態のバンプ電極と同様な構造となるため、 適宜、 第 2の実施の形態 の説明を参照するものとする。
図示の如く、 回路装置 1 2 1は、 内蔵される半導体素子 1 2 2よ り も外形寸法が若 干大きいサイズの樹脂封止型の C S Pである。 回路装置 1 2 1の外観は直方体形状ま たは立方体形状である。 尚、 本実施の形態では、 C S P型の回路装置の場合について 説明するが、 本願はそれに限定するものではなく、 例えば、 回路装置の外形寸法が、 実装される半導体素子と実質的に同じサイズとなる W L Pとなる場合でも同様な効果 を得られるものである。
素子搭載用基板 1 2 3は、 主に、 第 1の絶縁基材 1 2 4、 第 2の絶縁基材 1 2 5、 第 3の絶縁基材 1 2 6 と、 第 1から第 3絶縁基材 1 2 4、 1 2 5、 1 2 6に形成され た 3層の多層配線層 1 2 7 と、 第 3の絶縁基材 1 2 6裏面側を被覆する被覆層 1 2 8 とから成る。 尚、 被覆層 1 2 8は、 第 3の絶縁基材 1 2 6の裏面側に配置される場合 でも、 配置されない場合でも良い。
第 1から第 3の絶縁基材 1 2 4、 1 2 5、 1 2 6は、 樹脂材料、 無機材料または金 属材料 (表面が絶縁処理されたものを含む) から成り、 積層されている。 そして、 第 1から第 3の絶縁基材 1 2 4、 1 2 5、 1 2 6は、 製造工程に於いて半導体素子 1 2 2を機械的に支持する機能も有する。
第 1の絶縁基材 1 2 4には、 貫通孔 1 2 9、 1 3 0が形成される。 貫通孔 1 2 9、 1 3 0內は、 配線層 1 2 7 A、 Bにより埋設され、 配線層 1 2 7 A、 Bは、 例えば、 フイ リ ング電解メ ツキ法により形成された C uメ ツキ層である。 そして、 配線層 1 2 7 A、 Bは、 第 1の絶縁基材 1 2 4の表面側に突出し、 その突出部 1 3 1、 1 3 2は バンプ電極と して用いられる。 尚、 配線層 1 2 7 A、 Bの突出部 1 3 1、 1 3 2は、 第 1の絶縁基材 1 2 4の表面から 1 0から 3 0 m程度突出しているが、 その突出高 さは、 用途に応じて任意に設計変更が可能である。
第 2の絶縁基材 1 2 5には、 その表面側に配線層 1 2 7 C、 D、 Eが形成され、 そ の裏面側に配線層 1 2 7 F、 G、 Hが形成される。 配線層 1 2 7 Cは、 配線層 1 2 7 Aと接続し、 貫通孔 1 3 3を介して第 2の絶縁基材 1 2 5の裏面側へと配線され、 配 線層 1 2 7 Fと接続する。 同様に、 配線層 1 2 7 Eは、 配線層 1 2 7 Bと接続し、 貫 通孔 1 3 4を介して第 2の絶縁基材 1 2 5の裏面側へと配線され、 配線層 1 2 7 Hと 接続する。 そして、 配線層 1 2 7 C、 D、 Eは、 例えば、 電解メ ツキ法等により形成 された C uメ ッキ層を選択的にェツチングすることで形成される。 配線層 1 2 7 F、 G、 Hは、 例えば、 第 2の絶縁基材 1 2 5に貼着された C u箔をエッチングすること で形成される。
第 3の絶縁基材 1 2 6には、 配線層 1 2 7 I、 J、 Kが形成される。 配線層 1 2 7 I は、 配線層 1 2 7 Fと接続し、 貫通孔 1 3 5を介して第 3の絶縁基材 1 2 6の裏面 側へと配線される。 同様に、 配線層 1 2 7 J は、 配線層 1 2 7 Hと接続し、 貫通孔 1 3 6を介して第 3の絶縁基材 1 2 6の裏面側へと配線される。 そして、 配線層 1 2 7 I、 J、 Kは、 例えば、 電解メ ツキ法等によ り形成された C uメ ツキ層を選択的にェ ツチングすることで形成される。 配線層 1 2 7 1、 J、 Kは、 第 3の絶縁基材 1 2 6 の裏面側にパターン配置される。
被覆層 1 2 8は、 第 3の絶縁基材 1 2 6の裏面側を被覆し、 外部電極 1 3 7、 1 3 8が形成される箇所の被覆層 1 2 8には開口部が形成される。 被覆層 1 2 8は、 ェポ キシ樹脂等の熱硬化性樹脂またはポリエチレン等の熱可塑性樹脂から成る。
外部電極 1 3 7、 1 3 8は、 第 3の絶縁基材 1 2 6の裏面側に形成され、 グリ ッ ド 状に設けられる B GAである。
半導体素子 1 2 2 (回路素子) は、 導電性材料 1 3 9、 1 4 0を介して突出部 1 3 1、 1 3 2上に実装される。
尚、 本実施の形態では、 半導体素子 1 2 2側にバンプ電極 1 4 1、 1 4 2が形成さ れる場合について説明したが、 この場合に限定するものではない。 例えば、 半導体素 子 1 2 2のパッ ド電極 1 4 3、 1 44 と配線層 1 2 7 A、 Bの突出部 1 3 1、 1 3 2 とが、 導電性材料 1 3 9、 1 4 0を介して、 直接電気的に接続する場合でも良い。 ま た、 液状榭脂ゃシー ト状樹脂を用いた樹脂接合の場合でも良い。
回路装置 1 2 1 には、半導体素子 1 2 2が内臓されている構造が図示されているが、 他の回路素子と して I C、 L S I 、 ディスク リート型の トランジスタ、 ダイォード等 の能動素子が内臓される場合でも良い。 また、 回路装置 1 2 1には、 更に、 チップ抵 抗、 チップコンデンサ、 センサ等の受動素子が内臓され、 受動素子と能動素子とを複 数個組み合わせて内部接続されたシステムが構築される場合でも良い。
アンダーフィル 1 4 5は、 半導体素子 1 2 2 と第 1の絶縁基材 1 2 4 との間隙を充 填するよ うに配置される。アンダーフィル 1 4 5は、例えば、エポキシ樹脂から成る。 封止樹脂 1 4 6は、 トランスファーモール ドにより形成される熱硬化性樹脂、 また は、 ィンジェクショ ンモールドにより形成される熱可塑性樹脂から成る。
本実施の形態であるマルチチップモジュールにおいても、 パンプ電極と して用いら れる配線層 1 2 7 A、 Bの一部が第 1の絶縁基材 1 2 4を貫通することで、 素子搭載 用基板 1 2 3の厚みを薄く し、 更には、 回路装置 1 2 1の厚みを薄くすることができ る。 また、 バンプ電極と して用いられる突出部 1 3 1、 1 3 2の突出高さが、 第 1の 絶縁基材 1 2 4のエッチング量に応じて任意に調整される。
尚、 本実施の形態では、 バンプ電極と して用いられる突出部が、 第 2の実施の形態 で説明した構造となる場合について説明したが、 この場合に限定するものではない。 例えば、 バンプ電極と して用いられる突出部が、 第 1の実施の形態で説明した構造と なる場合でも同様な効果を得ることができる。
<第 5の実施の形態 >
以下に、 第 2 1図を参照し、 本実施の形態である素子搭載用基板を用いた回路装置 を搭載する携帯機器、 具体的には、 携帯電話機について説明する。 第 2 1図 (A) は、 本実施の形態である素子搭載用基板を用いた回路装置を搭載する携帯電話機を説明す るための斜視図である。 第 2 1図 (B) は、 本実施の形態である携帯電話機の内部構 造を説明するための断面図である。 尚、 本実施の形態である携帯電話機に搭載される 回路装置は、 上述した第 1の実施の形態から第 4の実施の形態にて説明した回路装置 であり、適宜、第 1の実施の形態から第 4の実施の形態の説明を参照するものとする。 第 2 1図 (A) に示す如く、 携帯電話機 1 5 1は第 1の筐体 1 5 2 と第 2の筐体 1 5 3を含む機器本体から成り、 第 1の筐体 1 5 2 と第 2の筐体 1 5 3 とは、 可動部 1 5 4によって連結される。 そして、 第 1の筐体 1 5 2 と第 2の筐体 1 5 3は、 可動部 1 5 4を軸として回転動作が可能である。
表示部 1 5 5は、 第 1の筐体 1 5 2に設けられる。 表示部 1 5 5は、 例えば、 液晶 ディスプレイ (L C D) から成り、 表示部 1 5 5には、 文字や画像等の情報が表示さ れる。
スピーカ一部 1 5 6は、 第 1の筐体 1 5 2の表示部 1 5 5上方に設けられる。
操作部 1 5 7は、 第 2の筐体 1 5 3に設けられる。 操作部 1 5 7は、 電源投入する ための電源キー、 メールモー ドを起動させるメールキー、 十字キー、 数字 ' 文字キー 等から構成される。
マイク部 1 5 8は、 第 2の筐体 1 5 3の操作部 1 5 7下方に設けられる。
第 2 1図 (B) に示す如く、 第 1の筐体 1 5 2内側には、 その背面側にプリ ント基 板 1 5 9が配置される。 プリ ント基板 1 5 9上には、 表示部 1 5 5、 回路装置 1 6 0 等が実装される。 回路装置 1 6 0 と表示部 1 5 5等とは、 プリ ント基板 1 5 9上の配 線層を介して電気的に接続する。 そして、 本実施の形態の回路装置 1 6 0は、 各回路 を駆動するための電源回路、 R F (R a d i o F r e q u e n c y) 発生する R F 発生回路、 DAC (D i g i t a 1 An a l o g C o n v e r t e r ) 回路、 ェ ンコーダ回路、 液晶パネルの光源と してのバックライ トの駆動回路等と して用いられ る。
上述したように、 回路装置 1 6 0では、 回路素子が実装される素子搭載用基板を薄 型化することで、 回路装置 1 6 0の薄型化、 小型化が実現される。 その結果、 携帯電 話機 1 5 1の厚み方向に占める回路装置 1 6 0の割合が低減され、 携帯電話機 1 5 1 の薄型化が実現される。
尚、 本実施の形態では、 携帯機器と して携帯電話機を用いて説明したが、 .この場合 に限定するものではない。 例えば、 携帯機器と しては、 個人用携帯端末機 (P DA)、 デジタルビデオカメラ (D V C)、 音楽プレーヤ、 デジタルスチルカメラ (D S C) 等 のよ うな電子機器であっても良い。

Claims

請 求 の 範 囲
1 . 一対の主面を有する絶縁基材と、
前記絶縁墓材の他の主面側から一の主面側に貫通する貫通孔と、 前記貫通孔におい て、 前記絶縁基材の他の主面側から一の主面側に向かって突出した配線層を具備し、 前記配線層の突出部は電極と して用いられることを特徴とする素子搭載用基板。
2 . 前記配線層は、 前記絶縁基材の他の主面上に形成され、 前記絶縁基材の他の主面 側には前記配線層の一部が露出するように被覆層が形成されることを特徴とする請求 の範囲第 1項に記載の素子搭載用基板。
3 . 前記配線層は、 前記絶縁基材に多層配線と して形成されることを特徴とする請求 の範囲第 1項または請求の範囲第 2項に記載の素子搭載用基板。
4 . 絶縁基材を準備し、 前記絶縁基材の一の主面側に支持部材を貼着し、 前記絶縁基 材の前記一の主面と対向する他の主面側に導電性部材を貼着する工程と、
前記導電性部材を選択的に除去し、 前記導電性部材をマスク と して、 前記絶縁基材 に貫通孔を形成する工程と、
前記絶縁基材の他の主面上及び前記貫通孔内を被覆するよ うに金属層を形成し、 前 記金属層を選択的に除去し配線層を形成すると共に、前記支持部材を剥離する工程と、 前記絶縁基材の一の主面側から前記絶縁基材をェツチングし、 前記配線層の一部を前 記絶縁基材の一の主面側に突出させる工程とを具備することを特徴とする素子搭載用 基板の製造方法。
5 . 前記金属層を形成する工程では、 前記絶縁基材の他の主面上及び前記貫通孔內を 被覆するように無電解メ ツキ層を形成し、 前記無電解メ ツキ層を電極と して電解メッ キ法により前記金属層を形成することを特徴とする請求の範囲第 4項に記載の素子搭 載用基板の製造方法。
6 . 前記無電解メ ツキ層を形成する工程では、 前記導電性部材が貼着された状態にお いて無電解メ ツキを行い、 前記導電性部材上に前記無電解メ ッキ層を形成することを 特徴とする請求の範囲第 5項に記載の素子搭載用基板の製造方法。
7 . 絶縁基材を準備し、 前記絶縁基材の一の主面側及ぴ前記一の主面と対向する他の 主面側に導電性部材を貼着する工程と、
前記絶縁基材の一の主面側の導電性部材を選択的に除去し、 前記一の主面側の導電 性部材をマスク として、 前記絶縁基材に貫通孔を形成する工程と、
前記貫通孔を埋設し、前記絶縁基材の一の主面側を被覆するように金属層を形成し、 前記金属層及ぴ前記絶縁基材の他の主面側の前記導電性部材を選択的に除去し配線層 を形成する工程と、
前記絶縁基材の一の主面側から前記絶縁基材をエッチングし、 前記配線層の一部を 前記絶縁基材の一の主面側に突出させる工程とを具備することを特徴とする素子搭載 用基板の製造方法。
8 . 前記金属層を形成する工程では、 前記絶縁基材の一の主面上及び前記貫通孔内を 被覆するように無電解メ ツキ層を形成し、 前記無電解メ ツキ層を電極と して電解メ ッ キ法によ り前 IB金属層を形成することを特徴とする請求の範囲第 7項に記載の素子搭 載用基板の製造方法。
9 . 前記無電解メ ツキ層を形成する工程では、 前記導電性部材が貼着された状態にお いて無電解メ ツキを行い、 前記導電性部材上に前記無電解メ ツキ層を形成することを 特徴とする請求の範囲第 7項に記載の素子搭載用基板の製造方法。
1 0 . 前記電解メ ツキ法は、 フィ リ ング電解メ ツキ法であることを特徴とする請求の 範囲第 8項に記載の素子搭載用基板の製造方法。
1 1 . 素子搭載用基板と、 前記素子搭載用基板に実装された回路素子とを有する回路 装置であり、 前記素子搭載用基板は、 一対の主面を有する絶縁墓材と、 前記絶縁基材 を貫通する貫通孔と、 前記貫通孔において、 前記絶縁基材の他の主面側から一の主面 側に向かって突出した配線層とを具備し、
前記配線層の突出部は、 前記回路素子のパッ ド電極と電気的に接続する電極と して 用いられることを特徴とする回路装置。
1 2 . 前記配線層は、 前記絶縁基材の他の主面上に形成され、 前記絶縁基材の他の主 面側には前記配線層の一部が露出するよ うに被覆層が形成され、 前記被覆層から露出 する配線層には、 外部電極が形成されることを特徴とする請求の範囲第 1 1項に記載 の回路装置。
1 3 . 前記回路素子は、 前記絶縁基材上に複数個実装されることを特徴とする請求の 範囲第 1 1項に記載の回路装置。
1 4 . 前記回路素子と前記絶縁基材との間には、 アンダーフィルが配置されることを 特徴とする請求の範囲第 1 1項に記載の回路装置。
1 5 . 前記配線層は、 前記絶縁基材に多層配線と して形成されることを特徴とする請 求の範囲第 1 1項に記載の回路装置。
1 6 . 絶縁基材の一の主面側に突出部を有し、 前記一の主面側と対向する他の主面側 にパターン配置される配線層を有する素子搭載用基板を形成する工程と、 前記突出部 と電気的に接続される回路素子を前記素子搭載用基板上に実装する工程とを具備する 回路装置の製造方法であり、
前記素子搭載用基板を形成する工程は、 前記絶縁基材を準備し、 前記絶縁基材のー の主面側に支持部材を貼着し、 前記絶縁基材の前記他の主面側に導電性部材を貼着す る第 1工程と、
前記導電性部材を選択的に除去し、 前記導電性部材をマスクと して、 前記絶縁基材 に貫通孔を形成する第 2工程と、
前記絶縁基材の他の主面上及び前記貫通孔内を被覆するよ うに金属層を形成し、 前 記金属層を選択的に除去し配線層を形成すると共に、 前記支持部材を剥離する第 3ェ 程と、
前記絶縁基材の一の主面側から前記絶縁基材をエッチングし、 前記配線層の一部を 前記絶縁基材の一の主面側に突出させ、 前記突出部を形成する第 4工程とを具備する ことを特徴とする回路装置の製造方法。
1 7 . 前記金属層を形成する工程では、 前記絶縁基材の他の主面上及び前記貫通孔内 を被覆するよ うに無電解メ ッキ層を形成し、 前記無電解メ ッキ層を電極と して電解メ ツキ法により前記金属層を形成することを特徴とする請求の範囲第 1 6項に記載の回 路装置の製造方法。
1 8 . 前記無電解メ ツキ層を形成する工程では、 前記導電性部材が貼着された状態に おいて無電解メ ツキを行い、 前記導電性部材上に前記無電解メ ッキ層を形成すること を特徴とする請求の範囲第 1 7項に記載の回路装置の製造方法。
1 9 . 絶縁基材の一の主面側に突出部を有し、 前記一の主面側と対向する他の主面側 にパターン配置される配線層を有する素子搭載用基板を形成する工程と、 前記突出部 と電気的に接続される回路素子を前記基板上に実装する工程とを具備する回路装置の 製造方法であり、
前記素子搭載用基板を形成する工程は、 前記絶縁基材を準備し、 前記絶縁基材のー の主面側及び前記他の主面側に導電性部材を貼着する第 1工程と、 前記絶縁基材の一の主面側の導電性部材を選択的に除去し、 前記導電性部材をマス クと して、 前記絶縁基材に貫通孔を形成する第 2工程と、
前記貫通孔を埋設し、前記絶縁基材の一の主面側を被覆するように金属層を形成し、 前記金属層及ぴ前記絶縁基材の他の主面側の前記導電性部材を選択的に除去し前記配 線層を形成する第 3工程と、
前記絶縁基材の一の主面側から前記絶縁基材をエッチングし、 前記配線層の一部を 前記絶縁基材の一の主面側に突出させ、 前記突出部を形成する第 4工程とを具備する ことを特徴とする回路装置の製造方法。
2 0 . 前記金属層を形成する工程では、 前記絶縁基材の一の主面上及び前記貫通孔内 を被覆するよ うに無電解メ ツキ層を形成し、 前記無電解メ ツキ層を電極と して電解メ ツキにより、 前記貫通孔を埋設し、 前記絶縁基材の一の主面側を被覆するよ うに金属 層を形成することを特徴とする請求の範囲第 1 9項に記載の回路装置の製造方法。
2 1 . 前記無電解メ ツキ層を形成する工程では、 前記導電性部材が貼着された状態に おいて無電解メ ツキ法を行い、 前記導電性部材上に前記無電解メ ッキ層を形成するこ とを特徴とする請求の範囲第 2 0項に記載の回路装置の製造方法。
2 2 . 前記電解メ ツキ法は、 ブイ リ ング電解メ ツキ法であることを特徴とする請求の 範囲第 2 0項に記載の回路装置の製造方法。
2 3 . 素子搭載用基板と、 前記素子搭載用基板に実装された回路素子とを有する回路 装置と、 前記回路装置が搭載される携帯機器であり、 前記素子搭載用基板は、 一対の 主面を有する絶縁基材と、 前記絶縁基材を貫通する貫通孔と、 前記貫通孔において、 前記絶縁基材の他の主面側から一の主面側に向かって突出した配線層とを具備し、 前記配線層の突出部は、 前記回路素子のパッ ド電極と電気的に接続する電極と して 用いられることを特徴とする携帯機器。
2 4 . 前記配線層は、 前記絶縁基材の他の主面上に形成され、 前記絶縁基材の他の主 面側には前記配線層の一部が露出するよ うに被覆層が形成され、 前記被覆層から露出 する配線層には、 外部電極が形成されることを特徴とする請求の範囲第 2 3項に記載 の携帯機器。
2 5 . 前記回路素子は、 前記絶縁基材上に複数個実装されることを特徴とする請求の 範囲第 2 3項に記載の携帯機器。
2 6 . 前記配線層は、 前記絶縁基材に多層配線と して形成されることを特徴とする請 求の範囲第 2 3項に記載の携帯機器。
PCT/JP2008/063924 2007-09-28 2008-07-28 素子搭載用基板及びその製造方法、回路装置及びその製造方法、携帯機器 WO2009041159A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/679,615 US20100288550A1 (en) 2007-09-28 2008-07-28 ELEMENT MOUNTING SUBSTRATE AND METHOD OF FABRICATING THE SAME, CIRCUIT DEVICE AND METHOD OF FABRICATING THE SAME, AND MOBILE APPLIANCE ( as amended
CN200880106516A CN101803007A (zh) 2007-09-28 2008-07-28 元件搭载用基板及其制造方法、电路装置及其制造方法、便携式设备
JP2009534230A JPWO2009041159A1 (ja) 2007-09-28 2008-07-28 素子搭載用基板及びその製造方法、回路装置及びその製造方法、携帯機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-256091 2007-09-28
JP2007256091 2007-09-28

Publications (1)

Publication Number Publication Date
WO2009041159A1 true WO2009041159A1 (ja) 2009-04-02

Family

ID=40511056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/063924 WO2009041159A1 (ja) 2007-09-28 2008-07-28 素子搭載用基板及びその製造方法、回路装置及びその製造方法、携帯機器

Country Status (4)

Country Link
US (1) US20100288550A1 (ja)
JP (1) JPWO2009041159A1 (ja)
CN (1) CN101803007A (ja)
WO (1) WO2009041159A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198798A (ja) * 2010-03-17 2011-10-06 Hitachi Chem Co Ltd プリント配線板およびそれを使用した半導体パッケージ
CN102420581A (zh) * 2010-09-21 2012-04-18 株式会社大真空 电子部件封装用密封构件以及电子部件封装
JP2016178247A (ja) * 2015-03-20 2016-10-06 新光電気工業株式会社 配線基板、半導体装置及び配線基板の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101097628B1 (ko) * 2010-06-21 2011-12-22 삼성전기주식회사 인쇄회로기판 및 이의 제조방법
DE102010025966B4 (de) * 2010-07-02 2012-03-08 Schott Ag Interposer und Verfahren zum Herstellen von Löchern in einem Interposer
JP2017139316A (ja) * 2016-02-03 2017-08-10 ソニー株式会社 半導体装置および製造方法、並びに電子機器
US10959336B2 (en) * 2019-03-28 2021-03-23 Mikro Mesa Technology Co., Ltd. Method of liquid assisted binding
TWI743557B (zh) 2019-09-05 2021-10-21 朋程科技股份有限公司 功率元件封裝結構

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077568A (ja) * 1998-08-28 2000-03-14 Nippon Circuit Kogyo Kk プリント配線基板の構造及びその製造方法
JP2003163458A (ja) * 2001-11-29 2003-06-06 Fujitsu Ltd 多層配線基板及びその製造方法
JP2003249601A (ja) * 2002-02-22 2003-09-05 Fujitsu Ltd 半導体装置用基板及びその製造方法及び半導体パッケージ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913955A (en) * 1987-06-05 1990-04-03 Shin-Kobe Electric Machinery Co., Ltd. Epoxy resin laminate
US5121299A (en) * 1989-12-29 1992-06-09 International Business Machines Corporation Multi-level circuit structure utilizing conductive cores having conductive protrusions and cavities therein
TW530377B (en) * 2002-05-28 2003-05-01 Via Tech Inc Structure of laminated substrate with high integration and method of production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077568A (ja) * 1998-08-28 2000-03-14 Nippon Circuit Kogyo Kk プリント配線基板の構造及びその製造方法
JP2003163458A (ja) * 2001-11-29 2003-06-06 Fujitsu Ltd 多層配線基板及びその製造方法
JP2003249601A (ja) * 2002-02-22 2003-09-05 Fujitsu Ltd 半導体装置用基板及びその製造方法及び半導体パッケージ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198798A (ja) * 2010-03-17 2011-10-06 Hitachi Chem Co Ltd プリント配線板およびそれを使用した半導体パッケージ
CN102420581A (zh) * 2010-09-21 2012-04-18 株式会社大真空 电子部件封装用密封构件以及电子部件封装
EP2432013A3 (en) * 2010-09-21 2014-12-10 Daishinku Corporation Sealing member for electronic component package and electronic component package
US9000304B2 (en) 2010-09-21 2015-04-07 Daishinku Corporation Sealing member for piezoelectric resonator device and pieoelectric resonator device
JP2016178247A (ja) * 2015-03-20 2016-10-06 新光電気工業株式会社 配線基板、半導体装置及び配線基板の製造方法

Also Published As

Publication number Publication date
CN101803007A (zh) 2010-08-11
JPWO2009041159A1 (ja) 2011-01-20
US20100288550A1 (en) 2010-11-18

Similar Documents

Publication Publication Date Title
TWI384630B (zh) 製造電子部件封裝結構之方法
US8258620B2 (en) Circuit device, method of manufacturing the circuit device, device mounting board and semiconductor module
US8274148B2 (en) Semiconductor module
WO2009041159A1 (ja) 素子搭載用基板及びその製造方法、回路装置及びその製造方法、携帯機器
US8022533B2 (en) Circuit apparatus provided with asperities on substrate surface
JP2001217337A (ja) 半導体装置及びその製造方法
US8373281B2 (en) Semiconductor module and portable apparatus provided with semiconductor module
JPWO2007043639A1 (ja) プリント配線基板及びプリント配線基板の製造方法
US20090168391A1 (en) Substrate for mounting device and method for producing the same, semiconductor module and method for producing the same, and portable apparatus provided with the same
JP2002261190A (ja) 半導体装置、その製造方法及び電子機器
US20100230823A1 (en) Semiconductor device, electronic device and method of manufacturing semiconductor device
US7678612B2 (en) Method of manufacturing semiconductor device
TW200947607A (en) Chip embedded package structure and method for fabricating the same
WO2005034231A1 (ja) 電子デバイスおよびその製造方法
JP5439713B2 (ja) 回路装置及びその製造方法、携帯機器
US20080224276A1 (en) Semiconductor device package
JP4157829B2 (ja) 半導体装置およびその製造方法
JP2010087229A (ja) 半導体モジュール、半導体モジュールの製造方法および携帯機器
JP2003007921A (ja) 回路装置およびその製造方法
US20090183906A1 (en) Substrate for mounting device and method for producing the same, semiconductor module and method for producing the same, and portable apparatus provided with the same
JP5427476B2 (ja) 半導体センサ装置
JP2009004813A (ja) 半導体搭載用配線基板
JP2006013367A (ja) 回路装置およびその製造方法
JP2001274184A (ja) 回路装置の製造方法
JP2005268701A (ja) 半導体装置、半導体装置の製造方法、これを用いた積層モジュールおよびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880106516.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08778364

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009534230

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12679615

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 08778364

Country of ref document: EP

Kind code of ref document: A1