WO2009030207A1 - Alkaliresistente keramische erzeugnisse und schutzschichten und verfahren zu deren herstellung - Google Patents

Alkaliresistente keramische erzeugnisse und schutzschichten und verfahren zu deren herstellung Download PDF

Info

Publication number
WO2009030207A1
WO2009030207A1 PCT/DE2008/001455 DE2008001455W WO2009030207A1 WO 2009030207 A1 WO2009030207 A1 WO 2009030207A1 DE 2008001455 W DE2008001455 W DE 2008001455W WO 2009030207 A1 WO2009030207 A1 WO 2009030207A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic products
protective layers
layers according
production
ceramic
Prior art date
Application number
PCT/DE2008/001455
Other languages
English (en)
French (fr)
Inventor
Christos Aneziris
Ernst Schlegel
Tim Kratsmer
Original Assignee
Calsitherm Verwaltungs Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsitherm Verwaltungs Gmbh filed Critical Calsitherm Verwaltungs Gmbh
Priority to EP08801262A priority Critical patent/EP2188227A1/de
Publication of WO2009030207A1 publication Critical patent/WO2009030207A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/19Alkali metal aluminosilicates, e.g. spodumene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5037Clay, Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3472Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5212Organic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9692Acid, alkali or halogen resistance

Definitions

  • the invention relates to both alkali corrosion resistant refractory materials, Värmedämmstoffe and ceramic alkali corrosion protective coatings for metallic ind ceramic products and also processes for their preparation, which are applicable for the / letallurgie, cement industry, aerospace, chemical industry and yiüllverbrennung.
  • the furnace wall losses increase, so that the fuel consumption and the CO 2 - imission.
  • the refractory building materials and metal structures are attacked and destroyed in shorter times hemically, so that the material consumption, the repair and Vartungskuesten increase sharply.
  • the invention aims to remedy this from an engineering and icological point of view obvious malady by the development of ilkalikorrosionsbe responsible for metallic components, because the recovery of separable waste as secondary fuels in the high-temperature processes lus economic and ecological point of view only makes sense if the current problems of corrosion protection against alkalis are overcome.
  • UJS of DE 10 2005 052 380 A1 discloses heat-insulating, alkali-resistant materials based on highly porous alkali- ⁇ -aluminate. Such materials require a high content of alumina and have to be stabilized with special additives in order to achieve adequate thermal shock resistance. Furthermore, at higher temperatures, ⁇ -alumina is a prime cationic conductor and would not adequately protect the uremic or metallic materials in contact with the alkali ⁇ -cluminates via alkali-cation transport.
  • eldspat (from Swedish: fjäll, Berg and "Spat" because of the good cleavage) is a group of very common silicate minerals of general chemical composition (Ba 1 Ca 1 Na 1 K 1 NH 4 ) (Al 1 B 1 Si) 4 O 8 .
  • the elements in parenthesis may each represent each other, but are always in the same proportion to the other components of the mineral.
  • eldspäte can be divided into three different groups:
  • Plagioclase also Kalknatronfelds fonde
  • ⁇ lbit NaAISi 3 O 8
  • anorthite CaAI 2 Si 2 O 8
  • Oligoklas, ⁇ ndesin, Labradorit and Bytownit are characterized by a large content in calcium and sodium.
  • Microspheres are used in the ceramics industry to introduce the alkalis in water-insoluble form into the ceramic raw material and to provide at high temperatures both a fluxing action and some stability against formation of the hot sintered products. Furthermore Feldsharite / on the corrosion effects of firebricks are known. At higher temperatures and strong alkali supply may occur in firebricks for the formation of 5-solid alkali aluminum silicate felds undi Kaliophilit (K 2 O Al 2 O 3 2SiO 2 ) with a melting temperature of about 1800 0 C or ⁇ -Carnegieit Na 2 O Al 2 O 3 2 SiO 2 melting point 1526 ° C) come.
  • these known "corrosion products" of the> chammottesteine and the fluxes for the ceramic industry porcelain production) on potassium or sodium or potassium and sodium : eldspatbasis are used as suitable materials for alkali-resistant constructions so that the flux effect ensures additional corrosion protection by closing the porosity at the appropriate temperature.
  • feldspars can be used, such as e.g. Andesin, Northit, Anorthoklas, Bytownit, Periklin, Maskelynite, Celsian, Hyalophan, Labradoht, i / likroklin, Amazonite, Oligoclas, Aventurine feldspar, Adular.
  • the feldspars can be treated with thermal coating methods: .B. by flame spraying, applied to ceramic or metallic substrates ⁇ / ground. Intermediate layers, for example based on aluminum titanate or zirconium dioxide or layers of the system alumina, zirconia, silica, and 'itandioxid be used to compensate for the thermal expansion coefficient ind / or elasticity modules.
  • the feldspars can be orsynthesized and subsequently applied or consist of their oxides and are generated during application in situ during the thermal application process.
  • the alkali-resistant thermal insulation materials with a high / likroporostician can be produced hydrothermally according to the invention, inter alia.
  • pre-synthesized ind / or natural feldspars are already present during initial ceramic molding "the feldspars are generated in situ during the subsequent firing
  • products with primary feldspar (already present) and secondary feldspar (in situ production) can be manufactured.
  • a flexible film can be produced via the paper technology with the addition of cellulose fibers or ceramic fibers in a low-viscosity (very high proportion of water) ceramic feldspar with subsequent filtration through a sieve, which already has its alkali resistance in the case of rimarf feldspar before the fire or before use at the application temperature, or maintains its resistance to alkali after fire or during use during high temperature use.
  • alkali-resistant protective caps based on feldspar for netallic and / or ceramic products can be manufactured by means of slip casting, pressing or injection molding with an ensuing fire.
  • irfindungshunt alkali-resistant, ceramic foils on the same picture can be: orm sculpture ⁇ rzeugt with the addition of organic and / or inorganic plasticizers.
  • these can obtain their alkali resistance even before firing or before use at the temperature of use, ider their alkali resistance is given by a fire or in situ during the ⁇ hole-temperature use.
  • the alkali-resistant materials can be used in the cement, in the waste incineration and in the chemical industry. Furthermore, they can be used in metallurgical blast furnaces or units as luch for the protection of metal sheets in the automotive and aerospace industries.
  • a thermally pre-synthesized Kaliophilit (K 2 OU 2 O 3 2SiO 2 ) consisting of fine and coarse grain sizes of about 20 microns to about! mm Transfered grain in a ceramic slurry with about 10% water and other emporär excipients and airborne on low-porous spinel stones.
  • K 2 OU 2 O 3 2SiO 2 a thermally pre-synthesized Kaliophilit
  • Hydrothermally pre-synthesized Kaliophilit is set using an extruder in strands and then burned white at about 1200 0 C.
  • Using a: lamb spray gun of Kaliophilit is applied to mechanically and chemically treated steel sheets and steel anchors.
  • the protective layer is approximately 0% of an amorphous phase of the chemical composition of the Kaliophilits and crystalline Kaliophilit.
  • the layers thus applied provide an excellent alkali corrosion protection layer over the light melting phase.
  • the r eststoffanteil preferably consists of about 10% cellulose fibers, 30% Mumosilikatfasem and 50% pre-synthesized Kaliophilit, about 5% vinylamine, 3% .atex and about 2% dextrose.
  • the low-viscosity slurry is filtered through a sieve and a thin film is produced, which is rolled and dried. In its unfired state it can be applied to produce; during the ⁇ pplication a dense alkaline protective film is formed on feldspar in situ by a> artial sintering and fusion at about 1600 0 C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Alkaliresistente keramische Erzeugnisse und Schutzschichten und Verfahren zu deren Herstellung. Die Erfindung betrifft sowohl alkalikorrosionsbeständige Feuerfestwerkstoffe, Wärmedämmstoffe und keramische Alkalikorrosionsschutzschichten für metallische und keramische Erzeugnisse und auch Verfahren zu deren Herstellung, die für die Metallurgie, Zementindustrie, Luft- und Raumfahrt, chemische Industrie sowie Müllverbrennung anwendbar sind. Die alkaliresistenten keramischen Erzeugnisse und Schutzschichten sind dadurch gekennzeichnet, dass sie aus Feldspäten als Basismaterial bestehen.

Description

Ukaliresistente keramische Erzeugnisse und Schutzschichten und Verfahren :u deren Herstellung
)ie Erfindung betrifft sowohl alkalikorrosionsbeständige Feuerfestwerkstoffe, Värmedämmstoffe und keramische Alkalikorrosionsschutzschichten für metallische ind keramische Erzeugnisse und auch Verfahren zu deren Herstellung, die für die /letallurgie, Zementindustrie, Luft- und Raumfahrt, chemische Industrie sowie yiüllverbrennung anwendbar sind.
)ie Unbeständigkeit von kommerziell erhältlichen feuerfesten Bau- und Värmedämmstoffen gegen den Angriff von Alkalien ist ein seit langem bekanntes echnisches Problem. Die Ursache liegt in der weiten Verbreitung der Ukaliverbindungen in den natürlichen Rohstoffen und damit in der praktisch immer Orhandenen Anwesenheit der Alkaliverbindungen bei der Stoffwandlung. Die ^Ikaliverbindungen wirken auf die meisten feuerfesten Verbindungen als Flussmittel, I. h. es entstehen bei relativ niedrigen Temperaturen Schmelzen, die die Funktion ler Hochtemperaturwerkstoffe einschränken bzw. diese Feststoffe zerstören.
n den letzten Jahren wurden aus Gründen der Ökonomie- und Stoffeffizienz Hochtemperaturverfahren entwickelt und eingeführt, bei denen sich die Konzentration der Alkaliverbindungen in Stoff- und Recyclingkreisläufen im Ofen um ..ehnerpotenzen gegenüber dem Alkaliein- und Alkaliaustrag anreichern. Außerdem verden zur Erzeugung der hohen Temperaturen im zunehmenden Maße sogenannte Sekundärbrennstoffe verwendet, die den korrosiven Alkali-, Chlorid-, Sulfat- und :luorideintrag in den Hochtemperaturprozess stark erhöhen bzw. überhaupt rerursachen.
\ls Notmaßnahme zur kurzfristigen Lösung des Korrosionsproblems, insbesondere auch das der äußeren Metallteile der Öfen, werden die Außenwände der Öfen heute licht mehr wärmegedämmt, sondern mit hochwärmeleitenden Baustoffen zugestellt, m die Außenhaut der Öfen über dem Taupunkt der Ofenatmosphäre zu halten. Als problematisches Ergebnis dieser Maßnahmen hat sich herausgestellt:
Die Ofenwandverluste steigen, damit der Brennstoffverbrauch und die CO2- imission.
Die gasförmige Emission schädlicher Abgase mit Chloriden, Sulfaten, Fluoriden teigt.
Die feuerfesten Baustoffe und Metallkonstruktionen werden in kürzeren Zeiten hemisch angegriffen und zerstört, so dass der Materialverbrauch, die Reparatur und Vartungskosten stark ansteigen.
)ie Erfindung zielt auf die Behebung dieser aus ingenieurtechnischer und ikologischer Sicht offenbaren Missstandes durch die Entwicklung von ilkalikorrosionsbeständigen Feuerfestwerkstoffen, ebensolchen Wärmedämmstoffen ind Schutzschichten für metallische Komponenten, denn die Verwertung von trennbaren Abfällen als Sekundärbrennstoffe in den Hochtemperaturprozessen ist lus gesamtökonomischer und ökologischer Sicht erst dann sinnvoll, wenn die iktuellen Probleme des Korrosionsschutzes gegen Alkalien bewältigt werden.
UJS der DE 10 2005 052 380 A1 sind wärmedämmende, alkaliresistente Werkstoffe luf der Basis von hochporösem Alkali-ß-Aluminat bekannt. Solche Werkstoffe »enötigen einen hohen Aluminiumoxidgehalt und müssen mit speziellen Zusätzen stabilisiert werden, um eine ausreichende Temperaturwechselbeständigkeit lachzuweisen. Weiterhin ist ß-Aluminiumoxid bei höheren Temperaturen ein lervorragender Kationenleiter und würde über einen Alkali - Kationentransport die urämischen oder metallischen Werkstoffe, die sich in Kontakt mit den Alkali-ß- kluminaten befinden, nicht ausreichend schützen.
Eine preiswertere, temperaturwechselbeständigere und insbesondere »Ikaliresistentere Alternative bieten erfindungsgemäß Feuerfestwerkstoffe oder Wärmedämmstoffe oder Schutzschichten auf der Basis von Feldspäten / Feldspaten in. :eldspat (von schwedisch: fjäll, Berg und "Spat" wegen der guten Spaltbarkeit) ist iine Gruppe sehr häufiger Silikat-Minerale der allgemeinen chemischen -usammensetzung (Ba1Ca1Na1K1NH4)(AI1B1Si)4O8. Die in Klammern angegebenen Elemente können sich jeweils gegenseitig vertreten, stehen jedoch immer im selben yiengenverhältnis zu den anderen Bestandteilen des Minerals.
:eldspäte lassen sich in drei verschiedene Gruppen einteilen:
Alkalifeldspäte der Ab-Or-Mischreihe mit den Endgliedern Albit (NaAISi3O8) und Califeldspat (KAISi3O8) bzw. Orthoklas/Mikroklin und den Mischkristallen Anorthoklas, Ja-Sanidin und Sanidin haben einen hohen Anteil an Kalium und Natrium. Sie sind »Ilerdings nur bei hohen Temperaturen stabil mischbar. Bei der Abkühlung kommt es >hne die Zugabe von Stabilisatoren -wie z.B. MgO1 TiO2- zu Entmischungen, die sich n natriumreichen Lamellen in Kalifeldspat („Perthit"), bzw. in kaliumreichen Lamellen n Albit („Antiperthit") äußern. Den Vorgang selbst bezeichnet man als "perthitische Entmischung".
Plagioklase (auch Kalknatronfeldspäte) der Ab-An-Mischreihe mit den Endgliedern \lbit (NaAISi3O8) und Anorthit (CaAI2Si2O8) und den Mischkristallen Oligoklas, \ndesin, Labradorit und Bytownit zeichnen sich dagegen durch einen großen Gehalt in Calcium und Natrium aus.
Ternäre Feldspäte im inneren des Dreiecks aus Kalifeldspat-Albit-Anorthit mit einer edoch bei sinkenden Temperaturen zunehmend großen Mischungslücke.
Mkalifeldspäte werden in der keramischen Industrie verwendet, um die Alkalien in vasserunlöslicher Form in die keramische Rohmasse einzuführen und um bei hohen Temperaturen sowohl eine Flussmittelwirkung als auch eine gewisse Stabilität gegen /erformung der heißen Sinterprodukte zu gewährleisten. Weiterhin sind Feldspäte /on den Korrosionswirkungen bei Schamottesteinen bekannt. Bei höheren Temperaturen und starker Alkalizufuhr kann es bei Schamottesteinen zur Bildung der 5uerfesten Alkalialuminiumsilikatfeldspäte Kaliophilit (K2O AI2O3 2SiO2) mit einer Schmelztemperatur von ca. 18000C oder α-Carnegieit Na2O AI2O3 2 SiO2 Schmelztemperatur 1526°C) kommen. In Steinen mit höherem Kieselsäuregehalt önnen der Feldspatvertreter Leuzit (K2O Al2θ3 4 SiO2) mit einer Schmelztemperatur on ca. 16800C bzw. die Feldspäte Orthoklas oder Albit gebildet werden Schmelztemperaturen bei ca. 11800C und 11180C entsprechend). Weiterhin ist die iydrothermale Synthese dieser Feldspäte bei 200...250 0C mit dem Ziel der Verwendung als Flussmittel in den Patentschriften DD 252 820 A1 und DD 210676 »ekannt. Veröffentlichungen über den Einsatz der Feldspäte als ilkalikorrosionsbeständiges Feuerfest-, Wärmedämm- oder Schutzschicht-Material ind nicht bekannt.
irfindungsgemäß werden diese bekannte „Korrosionsprodukte" der >chammottesteine und die Flussmittel für die keramische Industrie Porzellanfertigung) auf Kalium- oder Natrium- oder Kalium- und Natrium - :eldspatbasis als geeignete Werkstoffe für alkaliresistente Konstruktionen iingesetzt. Abhängig von der Einsatztemperatur werden erfindungsgemäß interschiedliche Feldspäte eingesetzt, so dass über die Flussmittelwirkung ein :usätzlicher Korrosionsschutz über die Schließung der Porosität bei der intsprechenden Temperatur gewährleistet wird.
:ür Hochtemperaturanwendungen werden erfindungsgemäß der Kaliophilit, der .euzit und der Sanidin eingesetzt. Für niedrigere Anwendungstemperaturen interhalb 1000 0C werden erfindungsgemäß die Feldspäte Orthoklas oder Albit »evorzugt.
Ξrfindungsgemäß können weitere Feldspäte zum Einsatz kommen, wie z.B. Andesin, ^northit, Anorthoklas, Bytownit, Periklin, Maskelynit, Celsian, Hyalophan, Labradoht, i/likroklin, Amazonit, Oligoklas, Aventurin-Feldspat, Adular.
irfindungsgemäß können die Feldspäte mit thermischen Beschichtungsverfahren, :.B. durch Flammspritzen, auf keramische oder metallische Substrate aufgebracht ι/erden. Zwischenschichten, z.B. auf Basis Aluminiumtitanat oder Zirkondioxid oder Schichten aus dem System Aluminiumoxid, Zirkondioxid, Siliziumdioxid und 'itandioxid, werden zum Ausgleich der thermischen Ausdehnungskoeffizienten ind/oder Elastizitätsmodulen eingesetzt. Erfindungsgemäß können die Feldspäte orsynthetisiert und nachträglich aufgetragen werden oder die bestehen aus ihren )xiden und werden während des Auftragens in situ beim thermischen ^uftragverfahren erzeugt. Die alkaliresistenten Wärmedämmstoffe mit einer hohen /likroporosität können erfindungsgemäß u.a. hydrothermal erzeugt werden. Ukaliresistente, keramische Erzeugnisse auf Feldspatbasis können (rfindungsgemäß über Gieß-, Press- oder bildsamen Formgebung erzeugt werden ind anschließend gebrannt werden. Erfindungsgemäß liegen vorsynthetisierte ind/oder natürliche Feldspäte während der keramischen Urformgebung schon vor »der Feldspäte werden während des anschließenden Brandes in situ erzeugt, irfindungsgemäß können Erzeugnisse mit Primärfeldspat (schon vorhanden) und Jekundärfeldspat (in situ Erzeugung) gefertigt werden.
Erfindungsgemäß kann über die Papiertechnologie mit der Zugabe von .ellulosefasem oder keramischen Fasern in einem niedrigviskosen (sehr hoher 'Vasseranteil) keramischen feldspatreichen Schlicker mit anschließender Filtration lurch ein Sieb eine flexible Folie erzeugt werden, die ihre Alkaliresistenz im Falle von 'rimärfeldspat schon vor dem Brand oder vor dem Einsatz bei der ^nwendungstemperatur aufweist, oder ihre Alkaliresistenz nach einem Brand oder in »itu während des Hochtemperatureinsatzes erhält.
irfindungsgemäß können mittels Schlickergießens, Pressens oder Spritzgießens mit inschließendem Brand alkaliresistente Schutzkappen auf Feldspatbasis für netallische und/oder keramische Erzeugnisse gefertigt werden.
irfindungsgemäß können alkalibeständige, keramische Folien über die bildsame :ormgebung mit der Zugabe von organischen und/oder anorganischen Plastifizierern ϊrzeugt werden. Diese können im Falle von Primärfeldspat ihre Alkaliresistenz schon vor dem Brand oder vor dem Einsatz bei der Anwendungstemperatur erhalten, ider ihre Alkaliresistenz wird nach einem Brand oder in situ während des lochtemperatureinsatzes gegeben.
Schließlich können erfindungsgemäß die alkalibeständigen Werkstoffe in der .ement-, in der Müllverbrennungs- und in der chemischen- Industrie eingesetzt ι/erden. Weiterhin können sie in metallurgischen Hochöfen oder Aggregaten als luch zur Schutz von Metallblechen in der Automobil- und Luft- und Raumfahrt - ndustrie eingesetzt werden.
lusführungsbeispiele
. Feldspatschlicker auf Kaliophilit - Basis
'um Schutz vor Alkaliangriff von spinellhaltigen Feuerfestprodukten bei "emperaturen von ca. 1550 0C, wird ein thermisch vorsynthetisierter Kaliophilit (K2O U2O3 2SiO2) bestehend aus fein- und grobkörnigen Körnungen von ca. 20 μm bis ca. ! mm Korn in einem keramischen Schlicker mit ca. 10 % Wasser und weiteren emporären Hilfsstoffen überführt und auf niedrig porösen Spinellsteinen lufgetragen. Während der Anwendung bei ca. 15500C sintert der Kaliophilit zu einer lichten Schicht und unterdrückt den Alkaliangriff.
!. Hydrothermale Herstellung von Pulvern oder direkt von Erzeugnissen auf Sanidin - Jasis
Eine weitere Möglichkeit zur Erzeugung von alkaliresistenten Wärmedämmstoffen >ietet die Hydrothermalsynthese. Über die Aufbereitung eines Schlickers mit ca. 12% Kaliumhydroxid, 50% SiO2 und 38% Kaolinit in einem Intensivmischer verläuft iie hydrothermale Drucksynthse in einem Autoklav unter den Bedingungen 2000C Temperatur und 1 ,6 MPa Druck bei einer isothermen Haltezeit von ca. 24 h ab. Λ/ährend des Autoklavenprozesses erfolgt eine Verfestigung des ϊyntheseproduktes. Es entsteht ein hochporöser Stein auf Sanidin - Basis mit einer einen Mikroporosität.
\. Flammgespritzter - Kaliophilit auf metallischen oder keramischen Erzeugnissen
Hydrothermal vorsynthetisierter Kaliophilit wird mit Hilfe eines Extruders in Strängen imgesetzt und anschließend bei ca. 1200 0C weißgebrannt. Mit Hilfe einer :lammspritzpistole wird der Kaliophilit auf mechanisch und chemisch vorbehandelten Stahlblechen und Stahlverankerungen aufgetragen. Die Schutzschicht besteht zu ca. O% von einer amorphen Phase der chemischen Zusammensetzung des Kaliophilits jnd aus kristallinem Kaliophilit. Die damit aufgebrachten Schichten bieten über die lichte Schmelzphase eine hervorragende Alkalikorrosionsschutzschicht.
k Feldspatfolie
Ξin Schlicker mit ca. 2% Feststoffgehalt und 98% Wasser wird aufbereitet. Der reststoffanteil besteht vorzugsweise aus ca. 10% Cellulose Fasern, 30% Mumosilikatfasem und 50% vorsynthetisiertem Kaliophilit, ca. 5% Vinylamin, 3% .atex und ca.2 % Dextrose. Der niedrigviskose Schlicker wird über ein Sieb filtriert jnd es entsteht eine dünne Folie, die gewalzt und getrocknet wird. In ihrem nicht jebrannten Zustand kann sie auf Erzeugnisse aufgebracht werden; während der \nwendung wird eine dichte Alkalischutzfolie auf Feldspatbasis in situ durch eine >artielle Sinterung und Verschmelzung bei ca. 1600 0C erzeugt.

Claims

Insprüche
1. Keramische Erzeugnisse und Schutzschichten mit hoher Resistenz gegenüber in Gas- bzw. Dampfphasen enthaltenen Alkalien, dadurch gekennzeichnet, dass sie aus Feldspäten bestehen.
2. Keramische Erzeugnisse und Schutzschichten nach Anspruch 1 , dadurch gekennzeichnet, dass sie aus Kaliophilit, Leuzit, Sanidin, Orthoklas, Albit, Andesin, Anorthit, Anorthoklas, Bytownit, Periklin, Maskelynit, Celsian, Hyalophan, Labradorit, Mikroklin, Amazonit, Oligoklas, Aventurin-Feldspat oder Adular oder Mischungen davon bestehen.
3. Keramische Erzeugnisse und Schutzschichten nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass für Hochtemperaturanwendungen oberhalb 10000C Kaliophilit, Leuzit oder Sanidin oder Mischungen davon eingesetzt werden.
4. Keramische Erzeugnisse und Schutzschichten nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass für niedrigere Anwendungstemperaturen unterhalb 1000 0C Orthoklas, Albit, Andesin, Anorthit, Anorthoklas, Bytownit, Periklin, Maskelynit, Celsian, Hyalophan, Labradorit, Mikroklin, Amazonit, Oligoklas, Aventurin-Feldspat oder Adular oder Mischungen davon eingesetzt werden.
5. Verfahren zur Herstellung keramischer Erzeugnisse und Schutzschichten nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass natürliche oder thermisch vorsynthetisierte oder hydrothermal vorsynthetisierte Feldspatpulver oder Mischungen davon eingesetzt werden.
6. Verfahren zur Herstellung keramischer Erzeugnisse und Schutzschichten nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die feldspathaltigen Schichten mittels thermischer Spritzverfahren aufgebracht werden.
7. Verfahren zur Herstellung keramischer Erzeugnisse und Schutzschichten nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die feldspathaltigen Schichten mittels Flammspritzen aufgebracht werden.
8. Verfahren zur Herstellung keramischer Erzeugnisse und Schutzschichten nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass über die Papiertechnologie mit Hilfe einer Zugabe von Zellulosefasern und/oder keramischen Fasern in einem keramischen, feldspatreichen - Schlicker mit Wassergehalten größer 60 Gew.% und mit anschließender Filtration durch ein Sieb eine flexible Folie erzeugt wird, die ihre Resistenz gegenüber in Gas - bzw. Dampfphasen enthaltenen Alkalien im Falle von Primärfeldspat schon vor dem Brand oder vor dem Einsatz bei der Anwendungstemperatur aufweist oder ihre Resistenz nach einem Brand oder in situ während des Hochtemperatureinsatzes erhält.
9. Verfahren zur Herstellung keramischer Erzeugnisse und Schutzschichten nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Schutzkappen mittels Spritzgusses oder Schlickergusses oder Pressverfahren erzeugt werden.
10. Verfahren zur Herstellung keramischer Erzeugnisse und Schutzschichten nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Folien über die bildsame Formgebung mit der Zugabe von organischen und/oder anorganischen Plastifizierern erzeugt werden und ihre Resistenz gegenüber in Gas- bzw. Dampfphasen enthaltenen Alkalien im Falle von Primärfeldspat schon vor dem Brand oder vor dem Einsatz bei der Anwendungstemperatur aufweisen oder ihre Resistenz gegenüber in Gasbzw. Dampfphasen enthaltenen Alkalien nach einem Brand oder in situ während des Hochtemperatureinsatzes erhalten.
PCT/DE2008/001455 2007-09-08 2008-09-03 Alkaliresistente keramische erzeugnisse und schutzschichten und verfahren zu deren herstellung WO2009030207A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08801262A EP2188227A1 (de) 2007-09-08 2008-09-03 Alkaliresistente keramische erzeugnisse und schutzschichten und verfahren zu deren herstellung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007042881A DE102007042881A1 (de) 2007-09-08 2007-09-08 Alkaliresistente keramische Erzeugnisse und Schutzschichten und Verfahren zu deren Herstellung
DE102007042881.4 2007-09-08

Publications (1)

Publication Number Publication Date
WO2009030207A1 true WO2009030207A1 (de) 2009-03-12

Family

ID=39968029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2008/001455 WO2009030207A1 (de) 2007-09-08 2008-09-03 Alkaliresistente keramische erzeugnisse und schutzschichten und verfahren zu deren herstellung

Country Status (3)

Country Link
EP (1) EP2188227A1 (de)
DE (1) DE102007042881A1 (de)
WO (1) WO2009030207A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116639957A (zh) * 2023-05-19 2023-08-25 萍乡市石化填料有限责任公司 一种强耐碱的瓷球及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021200368A1 (de) 2021-01-15 2022-07-21 Thyssenkrupp Ag Zweistufige Isolation von warme Gase führenden Anlageteilen
BE1029023B1 (de) 2021-01-15 2022-08-16 Thyssenkrupp Ind Solutions Ag Zweistufige Isolation von warme Gase führenden Anlageteilen

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1801333A1 (de) * 1967-10-05 1969-05-29 Foseco Trading Ag UEberzugsmassen fuer den Schutz von Metalloberflaechen
GB1466250A (en) * 1972-12-27 1977-03-02 Toppan Printing Co Ltd Ceramics
DD210676A1 (de) 1982-10-14 1984-06-20 Freiberg Bergakademie Verfahren zur herstellung alkalihaltiger synthetischer flussmittel
DD252820A1 (de) 1986-09-25 1987-12-30 Ve Wissenschaftlich Techn Betr Verfahren zur herstellung alkalihaltiger verbindungen mit flussmittelwirkung
EP0272745A2 (de) * 1986-12-23 1988-06-29 American Thermocraft Corp. Durchscheinende Dentalporzellanzusammensetzung, Verfahren zu ihrer Herstellung und daraus hergestellte Restauration
US4798536A (en) * 1987-05-15 1989-01-17 American Thermocraft Corp. High strength feldspathic dental porcelains containing crystalline leucite
US4973564A (en) * 1989-09-05 1990-11-27 Corning Incorporated Bonding frits for ceramic composites
US5744413A (en) * 1995-09-25 1998-04-28 Saint-Gobain/Norton Industrial Ceramics Corporation Cryolite resistant refractory liner
DE102005052380A1 (de) 2005-10-31 2007-05-03 Calsitherm Silikatbaustoffe Gmbh Hochtemperaturfester Aluminat-Wärmedämmstoff

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1441336B1 (de) * 1962-08-29 1971-04-22 Permadent Products Corp Dentalteil,insbesondere Zahn,aus einer Metallunterlage und einer Porzellankappe und Verfahren zu seiner Herstellung
DE2504083A1 (de) * 1975-01-31 1976-08-05 Bayer Rickmann Gmbh Poroese, anorganische, nicht-metallische ueberzuege auf einem metallsubstrat fuer selbstreinigende systeme
JPS60156446A (ja) * 1984-01-26 1985-08-16 而至歯科工業株式会社 陶歯の強化方法
DD249004A1 (de) * 1985-03-27 1987-08-26 Freiberg Bergakademie Keramischer kompositwerkstoff mit variierbarem linearen thermischen ausdehnungskoeffizienten
US5071801A (en) * 1990-07-25 1991-12-10 Uop High density leucite based ceramics from zeolite

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1801333A1 (de) * 1967-10-05 1969-05-29 Foseco Trading Ag UEberzugsmassen fuer den Schutz von Metalloberflaechen
GB1466250A (en) * 1972-12-27 1977-03-02 Toppan Printing Co Ltd Ceramics
DD210676A1 (de) 1982-10-14 1984-06-20 Freiberg Bergakademie Verfahren zur herstellung alkalihaltiger synthetischer flussmittel
DD252820A1 (de) 1986-09-25 1987-12-30 Ve Wissenschaftlich Techn Betr Verfahren zur herstellung alkalihaltiger verbindungen mit flussmittelwirkung
EP0272745A2 (de) * 1986-12-23 1988-06-29 American Thermocraft Corp. Durchscheinende Dentalporzellanzusammensetzung, Verfahren zu ihrer Herstellung und daraus hergestellte Restauration
US4798536A (en) * 1987-05-15 1989-01-17 American Thermocraft Corp. High strength feldspathic dental porcelains containing crystalline leucite
US4973564A (en) * 1989-09-05 1990-11-27 Corning Incorporated Bonding frits for ceramic composites
US5744413A (en) * 1995-09-25 1998-04-28 Saint-Gobain/Norton Industrial Ceramics Corporation Cryolite resistant refractory liner
DE102005052380A1 (de) 2005-10-31 2007-05-03 Calsitherm Silikatbaustoffe Gmbh Hochtemperaturfester Aluminat-Wärmedämmstoff

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BARBIERI L ET AL: "The microstructure and mechanical properties of sintered celsian and strontium-celsian glass-ceramics", MATERIALS RESEARCH BULLETIN, ELSEVIER, KIDLINGTON, GB, vol. 30, no. 1, 1 January 1996 (1996-01-01), pages 27 - 41, XP004067032, ISSN: 0025-5408 *
BOLELLI G ET AL: "Plasma-sprayed glass-ceramic coatings on ceramic tiles: microstructure, chemical resistance and mechanical properties", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, ELSEVIER SCIENCE PUBLISHERS, BARKING, ESSEX, GB, vol. 25, no. 11, 1 July 2005 (2005-07-01), pages 1835 - 1853, XP004940215, ISSN: 0955-2219 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116639957A (zh) * 2023-05-19 2023-08-25 萍乡市石化填料有限责任公司 一种强耐碱的瓷球及其制备方法

Also Published As

Publication number Publication date
EP2188227A1 (de) 2010-05-26
DE102007042881A1 (de) 2009-04-23

Similar Documents

Publication Publication Date Title
DE102006028963B4 (de) Hochtemperaturstabile Schichten oder Beschichtungen sowie Zusammensetzung zu deren Herstellung
EP2331479A1 (de) Materialzusammensetzung zur herstellung eines feuerfestwerkstoffes sowie ihre verwendung und feuerfestformkörper sowie verfahren zu seiner herstellung
DE102017121452B4 (de) Verfahren zur Herstellung einer porösen Sintermagnesia, Versatz zur Herstellung eines grobkeramischen feuerfesten Erzeugnisses mit einer Körnung aus der Sintermagnesia, Verwendung des Versatzes zur Herstellung des Erzeugnisses sowie Verfahren zur Herstellung des Erzeugnisses
EP2329195B1 (de) Materialmischung zur herstellung eines feuerfestwerkstoffes, feuerfestformkörper und verfahren zu seiner herstellung
EP3237357A1 (de) Feuerfeste erzeugnisse und ihre verwendung
CN103601507B (zh) 一种低气孔镁铝尖晶石-铬刚玉氧化锆复合烧结耐火材料及其生产工艺
DE10220086A1 (de) Verfestigung mineralischer Werkstoffe
RU2014129858A (ru) Водная суспензия для получения тепловых и от воздействия внешних условий барьерных покрытий и способы их получения и применения
CN104870399A (zh) 氧化铬制品
WO2016102149A1 (de) Feuerfeste erzeugnisse und ihre verwendung
EP2188227A1 (de) Alkaliresistente keramische erzeugnisse und schutzschichten und verfahren zu deren herstellung
JP2011526541A (ja) ガス化反応装置内部コーティング
EP1957428B1 (de) Hochtemperaturfester aluminat-wärmedämmstoff
EP2504280B1 (de) Alkaliresistenter erdalkali-aluminium-wärmedämmstoff, verfahren zu seiner herstellung und seine verwendung
JP2007145701A (ja) 不定形耐火物、耐火物および窯炉
DE102012003478B4 (de) Verwendung eines oxidkeramischen Werkstoffes aus CaZrO3 als Auskleidungsmaterial für Vergasungsanlagen
US20170190625A1 (en) Fire-resistant ceramic product
EP1234807A1 (de) Feuerfester Formkörper mit erhöhter Alkalibeständigkeit
WO2012062913A1 (de) Auskleidungsmaterial für vergasungsanlagen bestehend aus einem alkalikorrosionsbeständigen und temperaturwechselbeständigen chromoxid- und kohlenstofffreien oxidkeramischen werkstoff und seine verwendung
DE102014008892B4 (de) Verfahren zur Verbesserung der Thermoschockbeständigkeit von feuerfesten Erzeugnissen
DE10042026A1 (de) Keramik
TWI512095B (zh) 耐火無機組成物、耐火無機層及其製造方法
Vitkalova et al. LANTHANUM OXIDE IMPACT ON THE PROPERTIES OF CHEMICALLY RESISTANT CERAMICS PRODUCED USING GALVANIC SLUDGE
EP2350547B1 (de) Verwendung einer zu einem wärmedämmstoff selbst aushärtenden paste
EP1305266B1 (de) Verwendung eines gebrannten feuerfesten keramischen formteils

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08801262

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008801262

Country of ref document: EP