EP3237357A1 - Feuerfeste erzeugnisse und ihre verwendung - Google Patents

Feuerfeste erzeugnisse und ihre verwendung

Info

Publication number
EP3237357A1
EP3237357A1 EP15816693.4A EP15816693A EP3237357A1 EP 3237357 A1 EP3237357 A1 EP 3237357A1 EP 15816693 A EP15816693 A EP 15816693A EP 3237357 A1 EP3237357 A1 EP 3237357A1
Authority
EP
European Patent Office
Prior art keywords
refractory
offset
binder
product
melts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15816693.4A
Other languages
English (en)
French (fr)
Inventor
Helge JANSEN.
Thomas Schemmel
Volker Stein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Refratechnik Holding GmbH
Original Assignee
Refratechnik Holding GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Refratechnik Holding GmbH filed Critical Refratechnik Holding GmbH
Publication of EP3237357A1 publication Critical patent/EP3237357A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/013Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics containing carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • C04B28/184Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type based on an oxide other than lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/043Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/043Refractories from grain sized mixtures
    • C04B35/0435Refractories from grain sized mixtures containing refractory metal compounds other than chromium oxide or chrome ore
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/053Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/20Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in magnesium oxide, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • C04B35/63476Phenol-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts

Definitions

  • the invention relates to refractory products, in particular according to DIN ISO / R 836, DIN 51060, in the form of dry, mineral offsets or mixtures based on at least one olivine raw material as coarse-grained Hauptkom- component suitable for the production of refractory products for lining of non-ferrous heavy metal melting furnaces, and in shape manufactured from the offsets, unshaped or molded, refractory products, such.
  • the invention also relates to the use of the unshaped or shaped refractory products produced from the stakes in a non-ferrous metal melting furnace, in particular in the area of an oxidized furnace zone, preferably in the slag melting zone of a non-ferrous metal melting furnace.
  • refractory product is used as a generic term for a refractory offset and for refractory products which are produced, for example, by using a liquid binder and / or water from an offset, for example by molding and / or or pressing.
  • grain sizes are referred to in the invention, the usual grain distributions, eg. B. Gaussian grain distributions, and whose maximum grain z. B. to 95 wt .-% less than 1, 0, in particular less than 0.5 mm, determined z. B. as Sieb pengangswert d 95 .
  • Coarse grained means that the granules usual grain distribution, z. B. Gaussian grain distribution with z. B. 95 wt .-% ⁇ 0.1, in particular ⁇ 0.5, preferably ⁇ 1, 0 mm, z. B. also determined as d 95 value.
  • Coarse-grained component or main component means, in particular, that the coarse grain size in a product produced from an offset can form a supporting framework with mutually supporting grains.
  • Non-ferrous metals also called non-ferrous metals, such as copper, lead, zinc, nickel or the like are commercially available in various vessels from z. Sulfide ores (e.g., Pierce-Smith converters, QSL reactors, or shaft furnaces). The melting processes are carried out in both reducing and oxidizing zones or under reducing and oxidizing melt processes in a non-ferrous metal melting furnace.
  • Sulfide ores e.g., Pierce-Smith converters, QSL reactors, or shaft furnaces.
  • the so-called duration of the ovens depends u. a. also on the type of refractory lining - also called lining - on the one hand protects the metal jacket of the furnace from the action of high Schmelzgut-, flame and atmospheric temperatures and on the other reduces heat loss.
  • lining - also called lining - on the one hand protects the metal jacket of the furnace from the action of high Schmelzgut-, flame and atmospheric temperatures and on the other reduces heat loss.
  • the copper ores are mainly compounds of metal, eg. As the copper, iron and sulfur. The compositions of the ores are highly dependent on the respective deposit.
  • the process of refining which starts with these ores, starts with a pre-treatment and the subsequent melting of the ores.
  • Characteristic for this process are sulfidic melts with high iron contents as well as a sulphurous atmosphere. in the subsequent step, this sulfidic melt is converted into a metal oxide melt, for.
  • a sulphide copper melt is converted into a so-called blister copper.
  • the iron component in the initially sulfidic melt eg Cu-Fe-S
  • the iron component in the initially sulfidic melt is first lowered to below 1% by means of a slag-forming process.
  • the iron is bound in a resulting fayalite slag (Fe 2 SiO 4 ) and removed from the process.
  • the remaining melt based on Me-S z.
  • Cu-S usually Cu 2 S
  • essential corrosive media in this process are the resulting fayalitic slag (Fe 2 SiO 4 ), the high concentration of sulfur in the atmosphere and the amount of copper and copper oxide formed at the end of the process.
  • the melt is further purified with removal of the remaining sulfur and iron.
  • the process is by liquid metal z.
  • the Ofenausmautation a non-ferrous heavy metal melting furnace is usually exposed to high thermal cycling and high mechanical and chemical stresses.
  • the thermal cycling results from the batch procedure and the injection of cold process materials.
  • Mechanical stresses are z. B. caused by rotational movements of the furnace.
  • Chemically, the masonry is claimed by the process slags and molten metals and by volatile compounds of the furnace atmosphere.
  • the furnaces are divided into different zones, because the zones are loaded differently during operation.
  • the reaction zone the oxidation zone and the associated nozzle zones.
  • the wear of the refractory material is mainly due to chemical corrosion and slag attack and other process materials as well as flaking of infiltrated layers by Tempe- ratur workflowhoven.
  • a large portion of the inner lining of a melting furnace is usually lined with normal MgO or MgO-Cr 2 O 3 bricks, the slag zones and, above all, the nozzle zones must be provided with very high-quality, so-called direct-bonded bricks , Magnesia brooks are reinforced.
  • Such refractory linings are found in all types of non-ferrous metal furnaces regardless of design.
  • the known fired refractory products have an open porosity which is approximately in the range between 13 and 20% by volume.
  • materials such as slags, melts or gases can infiltrate into these open pores and, through chemical reactions, decompose the structure of the stone and / or lead to completely changed thermomechanical properties of the structure compared to the original properties of the refractory material.
  • Changing chemical attacks as well as changing thermal and thermo-mechanical loads lead to accelerated wear and weakening, in particular after foreign matter infiltration and corrosion of the refractory product components or the stone components.
  • Fayalitic slags arise in the production of non-ferrous metals from the sulfidic ores, z.
  • copper from chalcopyrite (CuFeS 2 ).
  • Copper gravel is roasted, resulting in so-called copper cinder resulting copper sulfide (Cu 2 S) and iron compounds, eg. FeS and Fe 2 O 3 .
  • the matte is further processed into blister copper, with glutters of molten copper under air and addition of SiO 2 , z.
  • quartz in a converter. This produces a fayalitic slag containing mainly the mineral fayalite (2FeO ⁇ SiO 2 ) and crude copper oxide (Cu 2 O).
  • Magnesiachromite bricks also have limited or insufficient high temperature anti-wetting properties for nonferrous metal melts, and have insufficient penetration resistance to hot non-ferrous melts.
  • Magnesiachromitsteine are also used in melting units for the production of other non-ferrous metals or non-ferrous metals such as Ni, Pb, Sn, Zn and there are equally stored problems.
  • a refractory masonry of a non-ferrous metal melting furnace is known in which in an oxidizing zone of the furnace non-ferrous metals such as copper, lead, zinc, nickel or the like are melted at temperatures above 700 ° C, wherein the masonry of unfired stones refractory material such as MgO or refractory material in which MgO is at least partially replaced by spinel and / or corundum and / or bauxite and / or andalusite and / or mullite and / or flintelay and / or chamotte and / or zirconium oxide and / or zirconium silicate.
  • the stones have carbon in the form of graphite and a coking structure formed from carbonaceous binder.
  • the carbon is to reduce the slag infiltration as a result of an in situ, thin, sealing infiltration zone, evidently upon access of oxygen from the structural constituents of the stone Stone arise, which clog in situ pore channels of the stone, so that at least the further access of oxygen into the structure of the stone components is reduced and thus a further reaction of the oxygen with carbon is avoided.
  • DE 10 2012 015 026 A1 discloses a refractory product according to ISO R / 836, DIN 51060 for refractory masonry in non-ferrous metals Furnaces known in the form of an unshaped or shaped offset z. In the form of shaped bricks, the refractory product being highly resistant in situ to attack by faayaiitic slags (iron silicate slags) and sulphates and resistant to molten non-ferrous metals, in particular to molten copper.
  • faayaiitic slags iron silicate slags
  • sulphates resistant to molten non-ferrous metals, in particular to molten copper.
  • a good anti-wetting property is achieved against non-ferrous metal melts, in particular against molten copper, improved penetration resistance against fayalitic slags and improved resistance to sulfate attack at service temperatures through the use of an olivine raw material as the main component of the refractory product, as well as magnesium flour and silicon carbide flour ,
  • a refractory offset containing said substances may be mixed with a liquid binder in the form of silica sol.
  • olivine raw materials containing at least 70% by weight of forsterite contents ensures high corrosion resistance and infiltration resistance to the large amounts of fayaiitic slag (FeSiO 4 ). If a fayalite slag comes into contact with the refractory material of the structure of the refractory product, the liquidus temperature of the slag rises. The slag "freezes on the refractory, which does not cause further wear reactions. Furthermore, the olivine raw material or the forsterite in the raw wood raw material has a poor wettability against non-ferrous metal melts, in particular molten copper, and also very good resistance to corrosion corrosion.
  • Magnesia can react in the known refractory products at high corrosion rates to magnesium sulfate, which can cause structural damage.
  • calcium-containing silicate secondary phases such as dicallosilicate, merwinite, and monticellite in magnesia, can weaken the microstructure.
  • the refractory products or products described in DE 103 94 173 A1 and DE 10 2012 015 026 A1 have proven to be superior in comparison with the magnesia bromo-stones used previously.
  • the two refractory products based on MgO plus graphite (DE 103 94 173 A1) or olivine raw materials with at least 70% by weight of forsterite contents (DE 10 2012 015 026 A1) as well as on the magnesia brimstone in particular the low-viscosity metals wet.
  • Oxides e.g. As the thin liquid copper oxides, but partly also the thin liquid iron oxides, especially the thin liquid Me-Fe-oxides, eg.
  • the object of the invention is to provide refractory products based on olivine raw materials as coarse-grained main component, which are much more resistant during the melting process against the attack of low-viscosity non-ferrous oxides, especially of low-viscosity copper oxides, and / or low-viscosity non-ferrous iron oxides, in particular low-viscosity copper oxides.
  • the refractory products should also have the good anti-wetting properties against pure non-ferrous molten metal, in particular pure copper melt, resist well the penetration of fayalitic slags and ensure resistance to sulfate attack at operating temperatures.
  • a refractory product in the form of a refractory offset based on coarse-grained granules of at least one, in particular low-iron, hold Olivinrohstoff high Forsteritge, z. B. at least 70 wt .-% and low iron (III) oxide content of z. B.
  • magnesia meal especially high-quality and low-iron, sulfur-resistant magnesia meal, and at least one refractory during the melting process, refractory reactant, suitable for the reduction of molten low-viscosity Buntmetalloxiden and / or molten low-viscosity Buntmetalleisenoxiden , z. B. in the form of finely divided carbon, z.
  • High quality is intended to mean that the usual secondary phases such as Dikalziumsilikat, merwinite, monticellite, etc. with less than z. B. 2.5% by weight are present.
  • Sulfur resistant means that the MgO flour should be poor in such silicic minor phases, since these are usually attacked by sulfur compounds first.
  • the MgO content of the magnesia should be ⁇ 97% by weight.
  • Low iron is an olivine raw material and the magnesia flour, if less than z. B. 10 wt .-% iron (III) oxide are present.
  • the above-mentioned offset may additionally comprise a finely divided powdered silica as additive.
  • the mixture of olivine raw material, magnesium flour and reaction substance (basic offset) mixed together to give 100% by weight adds a respective additive and / or a respective additive.
  • the offset may preferably additionally contain per se known antioxidants for refractory products.
  • Finely divided z. B. mean that the silica is present in the form of microsilica and / or fumed silica and / or precipitated silica.
  • the invention thus provides for the use of at least one finely divided refractory reaction substance which has a reducing effect on the low-viscosity melts in the microstructure of a refractory lining product according to the invention for non-ferrous metal furnaces, the reaction substance having the property in situ, ie in a non-ferrous metal melting furnace , During the melting process with the structure in contact coming thin liquid Buntmetalloxidschmelze and / or to reduce non-ferrous heavy metal oxide melt to corresponding pure non-ferrous metal melts, so that the non-wetting properties of the other structural constituents of the refractory lining product and, in the case of the use of graphite, also the anti-wetting properties of the graphite can then act on the non-ferrous melts. This results in a high degree of corrosion and infiltration resistance of the lining products according to the invention.
  • a reducing reactant is preferably finely divided, z.
  • carbon black and / or anthracite and / or coke can be used.
  • the reducing reactants are preferably contained in amounts of between 1 and 20, especially between 5 and 15 wt .-% in the refractory base offset or in the refractory lining product based on the base offset components, for. B. with a fineness below 1000 microns.
  • the reducing reaction substance is contained in an offset according to the invention in admixture with the other constituents, in particular distributed homogeneously.
  • a refractory lining product made from an offset according to the invention in particular in a solidified molded article, e.g. B. in a refractory shaped stone, the reducing reactant in the structure of the body is also present in particular homogeneously distributed.
  • Unformed refractory products made from an inventive offset are e.g. B. with water and / or at least one known binder for refractory products, eg. B. a carbonaceous liquid binder, turned on and introduced as a refractory lining in a non-ferrous metal melting furnace, wherein z. B. a subsequent drying and / or tempering causes a solidification of the freshly prepared mass.
  • drying or tempering can also take place when starting up or heating up the non-ferrous metal melting furnace in situ.
  • Shaped refractory products such.
  • As stones made of a water and / or at least one known binder for refractory products, eg. Example, a carbonaceous liquid binder having offset, are usually dried and / or tempered and then used for lining a non-ferrous metal melting furnace. But you can also burn the products made from the offset ceramic and then use as intended.
  • An inventive refractory offset is mainly from the basic offset of a dry mixture of Olivinrohstoff, Magnesiamehl and reducing reactant, z. As graphite as reducing reactant formed.
  • a dry inventive offset expediently additionally up to 4, especially up to 2.5 wt .-%, for refractory products commonly used antioxidants, and / or other additives commonly used for refractory products and / or additives, but the Amount ratio of ingredients olivine raw material, MgO flour and reducing reagent, e.g. As graphite, the base offset should be preserved.
  • the reducing reactant such as the graphite and optionally also the carbon from the carbonaceous binder resulting from tempering or the other mentioned carbons in oxidizing conditions in situ, ie during a melt operation of a non-ferrous metal melting furnace, is consumed only insignificantly by oxidation.
  • the carbon in any case surprisingly reduces the structure of wetting and penetrating low-viscosity non-ferrous metal oxide melts and non-ferrous metal oxide melts of the melting process. so that pure non-ferrous metal melt is produced from the oxides, which then the anti-wetting property of existing in the structure of forsterite and possibly also the carbon, in particular of graphite, acts and so at least a further penetration of low-viscosity oxide melt in the structure is hindered.
  • constituents of an inventive offset or refractory product according to the invention made from an offset according to the invention mainly act as follows:
  • the naturally occurring olivine raw material available on the market is used as coarse-grained granulate and should preferably have as much as 100% by weight, but at least 70% by weight, of the mineral forsterite.
  • the remainder may be the mineral fayalite and / or other known contaminants of the raw material such as enstatite and / or monticellite and / or merwinite.
  • a synthetically produced, pure Forsterit- material alone or in combination with a natural Olivinrohstoff use As far as in the context of the invention of olivine raw material is mentioned, this also applies to the synthetic Forsteritwerkstoff.
  • the grain size of the Olivinrohstoffgranulats used is z. B. at least 95 wt .-% in the middle and coarse grain z. B. between 0.1 and 8, in particular between 1 and 8 mm, wherein the granules z. B. may have a Gaussian particle size distribution or may be formed of grain fractions with irregular grain distributions.
  • the olivine raw material is used in amounts of from 15 to 74% by weight, in particular from 30 to 65% by weight, in the basic offset mixture according to the invention.
  • Magnesia is finely divided in the form of a flour or powder with z. B. after a screening certain grain sizes (so-called sieve grain sizes), z. B. 95 wt .-% ⁇ , 1 mm (d 95 ⁇ 1 mm) used.
  • Magnesia z As fused magnesia and / or sintered magnesia and / or synthetic deadburned or caustic magnesia used.
  • the MgO content of the magnesia should preferably be> 90% by weight, in particular> 95% by weight.
  • the rest are common impurities such as silicates and / or iron oxide.
  • the MgO flours have z. B. on a Gaussian particle size distribution.
  • the MgO flour is used in the dry base mixture in amounts of from 25 to 55, in particular from 30 to 50 wt .-%.
  • the offset may additionally contain silicon carbide (SiC).
  • Silicon carbide is available on the market as a synthetic product with a high degree of purity and in various grain sizes and particle size distributions. and is inventively in powder form or in flour form z. B. with grain sizes z. B. 95 wt .-% ⁇ 1 mm (d 95 ) used.
  • the particle size distribution preferably corresponds to a Gaussian grain distribution.
  • the SiC powder is z. B. with a purity of> 90 wt .-%, in particular> 94 wt .-% of SiC used.
  • the additional amount used in the dry mixture is up to 15, in particular up to 10 wt .-%.
  • the additional finely divided, dry silica is z.
  • a silica which reacts with the MgO of Magnesiamehls in an aqueous medium to form Magnesiumsilikathydratphasen and z.
  • magnesium silicate hydrate gel and / or magnesium silicate hydrate crystallites and / or magnesium silicate hydrate crystals forms.
  • the SiO 2 content of the finely divided dry silica is preferably above 90% by weight, in particular above 94% by weight. It has surprisingly been found that dry finely divided silica on entry of water to the inventive offset faster forms with the MgO of Magnesia MSH phases and hardens faster and higher cold compressive strengths.
  • the silicic acid is to be selected so finely that in a fresh fresh mass containing water, which is formed by adding water to a dry offset and mixing according to the invention, a reaction takes place between the MgO of the particles of magnesia and particles of the silica and magnesium silicate hydrate phases - hereinafter also MSH- Called phases - z. B. as gel and / or crystallites and / or crystals, which cause a solidification of the water-containing mass in the manner of a hydraulic setting.
  • the offset is preferably composed in such a way that a pH of more than 7, in particular more than 10, is established in the aqueous medium, ie after the addition of water to the offset according to the invention.
  • crystalline quartz flours a fineness of the quartz particles below 500, especially below 200 microns. Furthermore, particularly suitable for the invention as dry, finely divided silicas are:
  • Silica fume is a very fine, non-crystalline, amorphous SiO 2 powder that is produced in an electric arc furnace as a by-product in the production of elemental silicon or silicon alloys. It is z. B. offered under the trade name silica fume or microsilica on the market and usually has about 85 wt .-% Si0 2 on. The particle size of silica fume - also called silica fume - is usually less than 1 mm. The English name is "silica fume".
  • Pyrogenic silicas are very pure amorphous SiO 2 powder with Si0 2 - contents z. B. to 99 wt .-% and usually with particle sizes z. B. between 5 and 50 nm and high specific surface z. B. between 50 and 600 m 2 / g. These silicas are produced by flame hydrolysis. Pyrogenic silica is on the market for. B. offered under the trade name Aerosil. The English name is "fumed silica".
  • the finely divided dry silica is added to the dry offset mixture to 10, in particular from 0.5 to 6 wt .-%.
  • the 100 wt .-% calculated dry basic offsets described above preferably only added to water for the production of refractory products according to the invention.
  • dry basis offsets are thus preferably compiled in% by weight:
  • Olivine raw material 15 to 74, in particular 30 to 65 magnesia flour: 25 to 55, in particular 30 to 50
  • Reducing reagent in particular
  • the following constituents may additionally be added to this mixture of the basic offset, preferably in the following amounts in% by weight. finely divided silica: 0 to 10, in particular 0.5 to 6
  • SiC 0 to 15, especially 0 to 10
  • Antioxidants 0 to 4, in particular 0.5 to 2.5
  • Coarse-grained refractory material granules 0 to 4, especially 0.1 to 3.5 refractory finely divided
  • the silica is at least one of the abovementioned amorphous silicas.
  • the amounts of the reactants MgO and Si0 2 in inventive offsets are selected so that when added to water from 1 to 10, in particular from 2.5 to 6 wt .-%, based on the dry matter of the offset, in a period between 6 and 120, in particular between 8 and 12 hours, in the temperature range of 50 to 200, in particular from 100 to 150 ° C, Kaitdruckfestmaschineen of 40 to 160, in particular from 60 to 150 MPa can be ensured.
  • the reactive MgO of the magnesia flour is present quantitatively predominantly to the reactive finely divided silica. This should result in the formation of MgO-rich MSH phases after addition of water, which on exposure to high temperatures up to z. B. 1350 ° C forsterite (2 MgO ⁇ Si0 2 ) can form, which increases the Forsteritanteil the Otivinrohstoffs invention.
  • prevailing mass ratios MgO to Si0 2 to 500: 1 are expedient. In particular, the ratio is between 1.2: 1 and 100: 1, preferably between 1.34: 1 and 50: 1, most preferably between 1.34: 1 and 35: 1.
  • Dry refractory products according to the invention are produced from dry stratified products according to the invention after addition of water, a mixture with amounts of water, based on the mass of the dry offset, being 1 to 10% by weight, preferably 2.5 to 6.0% by weight.
  • the shaped bricks are allowed to harden and dry in the temperature range between 15 and 200, preferably between 50 and 200, in particular between 100 and 150 ° C., MSH phases being formed.
  • the stones After curing, the stones have relatively high strengths and can be handled so that a refractory lining can be built from them.
  • the stones have cold compressive strengths, for. B. between 40 and 100, in particular between 60 and 80 MPa, on.
  • the ceramic firing is preferably carried out in the temperature range from 400 to 1400, in particular from 600 to 1200 ° C and for a period of 1 to 24, in particular from 4 to 12 hours, wherein it is advantageous to burn in a reducing atmosphere.
  • a product according to the invention is advantageously prepared by converting from an offset with at least the dry substances olivine raw material, magnesium flour and reducing reaction substance, eg. B.
  • the invention thus also relates to a dry offset exclusively from or z. B. mainly, ie, for example, about 80 wt .-%, preferably 90 wt%, in particular more than 95 wt .-% of Oiivinrohstoffgranuiat, MgO flour, finely divided carbon, in particular graphite, optionally a finely divided, dry silica, especially in the form of microsilica, and / or optionally a dry, e.g. B. powdery, z. B. carbonaceous, binder z.
  • At least one other refractory coarse-grained material granules and / or finely divided refractory material for.
  • B. Magnesiachromit, magnesium spinels, spinels, chromium oxide, zirconium oxide, silicon nitride, zirconium and / or at least one refractory, feinteilt- ger or flour-shaped additive such as magnesia chromite, magnesium spinels, spinels, chromium oxide, zirconium oxide, silicon nitride, zirconium.
  • at least one further known per se additive for refractory offsets such as liquefier and / or setting regulator, can expediently be present.
  • moldings pressed or unpressed are produced from a water-containing and / or binder-containing salt mixture specified above by pressing, and the moldings, apart from residual moistures, preferably between 0.1 and 2% by weight, for example.
  • B. brought by drying and / or tempering or the shaped bodies are additionally fired according to a further embodiment of the invention in a ceramic ceramic furnace at temperatures between preferably 400 and 1400, preferably between 600 and 1200 ° C, preferably in a reducing atmosphere for a period of time preferably between 1 and 24, in particular between 4 and 12 hours.
  • the firing conditions are inventively chosen so that the ingredients Oltvinrohstoff, MgO flour and reducing reactant, z.
  • Linings of non-ferrous metal melts converters can be created with the unfired and fired shaped bodies according to the invention, which are the previous linings with respect to infiltration and corrosion resistance to non-ferrous metal melts and liquid slags of non-ferrous metal smelting are superior.
  • the unbaked pressed dried shaped bodies have z.
  • the following properties apply:
  • Cold pressure resistance 40 to 100, in particular 60 to 85 MPa.
  • the fired shaped bodies according to the invention have z.
  • the following properties bulk density: 2.55 to 2.85 kg / m 3,
  • the finished parts according to the invention which are molded parts, in particular molded and pressed stones, have z.
  • Cold pressure resistance 30 to 180, in particular 50 to 150 MPa.
  • the inventive concept is based on the fact that based on olivine coarse grain as a supporting grain and a relatively high proportion of MgO fine grain or flour grain balance in the stone between the reactants from the stone and the slag only at Schmelz processes about 1000 ° C, z. B. between 1200 and 1350 ° C sets. At these temperatures, graphite is also still used in spite of oxidizing melting process conditions. lent anti-wetting effect against the previously described molten media. MgO reacts with SiO 2 to form further forsterite, reducing the pore volume of the microstructure.
  • MgO is selected in the stoichiometric excess to be SiO 2 available for a reaction in order to avoid the formation of enstatite which is not refractory.
  • This reaction in situ during the melting process largely seals the stone directly on the firing side and hampers the penetration through the very thin liquid molten metal, eg. B. molten copper.
  • the MgO In contact with the omnipresent fayalite slag melt (melting temperature 1210 ° C), the MgO also reacts with the forsterite (melting point 1890 ° C) to form olivine mixed crystals.
  • the liquidus temperature of the mixed crystal melt thereby increases, ie the reaction product slag product structure freezes, ie leads to a stiffening of the reaction product melt and the corrosion reaction or infiltration is stopped accordingly or at least greatly reduced.
  • At least Olivinrohstoff, MgO and optionally finely divided silica and reducing reactant, z. B. graphite-containing molded body z. B. have a water content between 1 and 5, in particular between 1, 5 and 3 wt .-%, harden, possibly forming MSH phases, which cause the hardening.
  • the hardening time is temperature-dependent.
  • the pressed moldings are expediently hardened for 6 to 120, in particular 24 to 96 hours, and dried in the temperature range between 50 and 200, in particular between 100 and 150 ° C, to residual moisture contents between 0.1 and 4.5, in particular between 0.1 and 2.5 wt .-% water content in a suitable drying unit.
  • the inventively produced non-pressed, poured into molds and possibly vibrated fresh masses for monolithic prefabricated components from the above-mentioned components have water contents between 4 and 10, in particular between 4 and 6 wt .-%. They are introduced into molds and vibrate if necessary. You let them z. B. in the air between 15 and 35 ° C and dry in the temperature range specified above for the pressed moldings except for residual moisture as in the pressed moldings. Cold pressure strengths of between 30 and 180, in particular between 50 and 150 MPa, are achieved.
  • At least one known per se water-containing binder for refractory products from the following group lignosulfonate, magnesium sulfate, ethyl silicate and molasses or other sugars used in an amount calculated on the dry matter of an offset of z. B. 2 to 5 wt .-% for pressed products and z. B. 4 to 10 wt .-% for prefabricated components and casting compounds.
  • the water content of these binders contributes to the MSH phase formation described above.
  • the products according to the invention are particularly suitable for use in PS converters for copper production, but are also with equal advantages compared to the usual refractory products in other applications in which fayalitic slags and low-viscosity non-ferrous metal melts occur, as in the non-ferrous metal melting processes the case is usable with the described advantages.
  • Stones produced from the stakes do not necessarily have to be fired, but it is generally sufficient that they are dried, possibly and / or tempered, so that they can be handled and used for lining masonry.
  • the invention will be explained in more detail below with reference to examples and illustrated by way of example with reference to a drawing. Show it:
  • Fig. 1 is a pressed, unfired fireproof invention
  • FIG. 2 shows a crucible made of stone according to the invention after testing with sulphidic matte melt
  • FIG. 3 shows a crucible made of stone according to the invention after testing with copper oxide-iron oxide melt
  • Fig. 4 is a crucible according to DE 102012 015 026 A1 after testing with sulfidic
  • Fig. 5 is a crucible according to DE 10 2012 015 026 A1 after test after test with
  • Figure 1 shows a pressed, unfired refractory stone according to the invention made from the following recipe:
  • the stone of the invention was dried at 200 ° C to a residual moisture content of 1, 3 wt .-%.
  • the matrix of the stone according to the invention shows a scaffold of relatively coarse olivine grains 1 (dark grains), finer grains 2 (white) and fine and very fine grains of MgO (not visible) and finest black material 3 of graphite.
  • the resistance of the invention to fayalitic melt and copper melt is already known from DE 10 2012 015 026 A1.
  • a sulphidic matte melt and a copper oxide-iron oxide melt from copper metallurgy with the following mineral phases were used:
  • the chemical composition of the sulfidic matte melt was as follows:
  • the chemical composition of the copper oxide-iron oxide melt was as follows:
  • the slag was powdered into a recess or crucible of a green brick prepared for a pot test heated to 1350 ° C and held for 6 hrs. At this temperature. After cooling, the crucibles were cut diagonally. Both molten slags have not penetrated the stone. The corrosion of the stone according to the invention is very low, as can be seen in the still sharp contours of the crucible. The sulfidic matte melt remained completely in the crucible with no apparent infiltration or dissolution processes (Figure 2). Furthermore, in the case of the copper oxide-iron oxide melt test, it can be clearly seen that a large part of the slag was reduced to metallic copper by the reducing agent present (FIG. 3).
  • the stone according to the invention therefore has the following advantages over the stone according to DE 10 2012 015 026 A1:
  • the stone according to the invention is not penetrated by sulphidic matte melt and copper oxide-iron oxide melt and therefore wears due to the higher thermo-mechanical resistance slower than a stone according to DE 10 2012 015 026 A1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Ceramic Products (AREA)

Abstract

Die Erfindung betrifft ein feuerfestes Erzeugnis in Form eines trockenen, mineralischen Versatzes aus feuerfesten mineralischen Werkstoffen, werkstoffmäßig derart zusammengestellt, dass daraus feuerfeste, gegen fayaiitische Schlacken, sulfidische Schmelzen (Matten), Sulfate und Buntmetallschmelzen langfristig beständige Produkte für eine feuerseitige Auskleidung von Buntmetallindustrieschmelzöfen erstellt werden können» und mindestens aufweisend: - mindestens einen grobkörnigen Olivin rohstoff als Hauptkomponente - Magnesiamehl (MgO-Mehl) - mindestens einen feuerfesten, während des Schmelzprozesses (in situ) auf Buntmetalloxidschmelzen und/oder Buntmetalleisenoxidschmelzen reduzierend und zu Buntmetallschmelzen konvertierend wirkenden Reaktionsstoff.

Description

Feuerfeste Erzeugnisse und ihre Verwendung
Die Erfindung betrifft feuerfeste Erzeugnisse insbesondere nach DIN ISO/R 836, DIN 51060, in Form von trockenen, mineralischen Versätzen bzw. Gemischen auf Basis mindestens eines Olivinrohstoffes als grobkörnige Hauptkom- ponente geeignet zur Herstellung von feuerfesten Produkten zur Auskleidung von Buntmetallindustrieschmelzöfen, sowie in Form von aus den Versätzen hergestellten, ungeformten oder geformten, feuerfesten Produkten, z. B. in Form von geformten Steinen, die bei Verwendung in Buntmetallindustrieschmelzöfen in hohem Maße widerstandsfähig sind gegen den Angriff von fa- yalitischen Schlacken (Eisensilikatschlacken), sulfidischen Schlacken (Matten) und Sulfaten und langfristig beständig gegen Buntmetallschmelzen, insbesondere gegen Kupferschmelze, sind. Die Erfindung betrifft außerdem die Verwendung der aus den Versätzen hergestellten ungeformten oder geformten feuerfesten Produkte in einem Buntmetallindustrieschmelzofen, insbesondere im Bereich einer oxidierend betriebenen Ofenzone, vorzugsweise in der Schlackenschmelzzone eines Buntmetallindustrieschmelzofens.
Im Rahmen der Erfindung wird der Begriff„feuerfestes Erzeugnis" als Oberbegriff verwendet für einen feuerfesten Versatz und für feuerfeste Produkte, die z. B. unter Verwendung eines flüssigen Bindemitteis und/oder Wasser aus ei- nem Versatz z. B. durch Formen und/oder Pressen hergestellt werden.
Mit den Begriffen„Mehl" oder„Pulver" werden im Rahmen der Erfindung Körnungen bezeichnet, die übliche Korn Verteilungen, z. B. Gaußsche Kornverteilungen, aufweisen und deren Maximalkorn z. B. zu 95 Gew.-% unter 1 ,0, insbesondere unter 0,5 mm liegt, bestimmt z. B. als Siebdurchgangswert d95. Grobkörnig meint, dass die Granulatkörnung übliche Korn Verteilung, z. B. Gaußsche Kornverteilung mit z. B. 95 Gew.-%≥0,1 , insbesondere≥ 0,5, vorzugsweise≥ 1 ,0 mm aufweist, z. B. ebenfalls bestimmt als d95-Wert. Grobkörnige Komponente bzw. Hauptkomponente bedeutet insbesondere, dass die grobe Körnung in einem aus einem Versatz herstellten Produkt ein Stützgerüst mit sich gegenseitig abstützenden Körnern bilden kann.
Buntmetalle, auch Nichteisenmetalle genannt, wie Kupfer, Blei, Zink, Nickel oder dergleichen werden großtechnisch in verschiedenen Gefäßen aus z. B. sulfidischen Erzen erschmolzen (z. B. Pierce-Smith-Konvertern, QSL- Reaktoren oder Schachtöfen). Die Schmelzprozesse werden sowohl in reduzierend als auch oxidierend betriebenen Zonen bzw. unter reduzierenden als auch oxidierenden Schmelzabläufen in einem Buntmetallindustrieschmelzofen durchgeführt.
Die so genannte Laufzeit der Öfen hängt u. a. auch von der Art der feuerfesten Ausmauerung - auch Auskleidung genannt - ab, die zum einen den Metallmantel des Ofens vor der Einwirkung hoher Schmelzgut-, Flammen- und Atmosphärentemperaturen schützt und zum anderen Wärmeverluste herabsetzt. Bei den sulfidischen Buntmetallerzen, z. B. den Kupfererzen, handelt es sich hauptsächlich um Verbindungen aus Metall, z. B. dem Kupfer, Eisen und Schwefel. Die Zusammensetzungen der Erze sind stark abhängig von der jeweiligen Lagerstätte.
Der bei diesen Erzen beginnende Prozess der Raffination startet mit einer Vorbehandlung und dem sich anschließenden Einschmelzen der Erze. Charakteristisch für diesen Prozess sind sulfidische Schmelzen mit hohen Eisengehalten sowie eine schwefelhaltige Atmosphäre. im nachfolgenden Schritt wird diese sulfidische Schmelze in eine Metalloxidschmelze, z. B. eine sulfidische Kupferschmelze in so genanntes Blis- terkupfer konvertiert. Hierzu wird zunächst über einen Schlackenbildungspro- zess der Eisenanteii in der anfänglich sulfidischen Schmelze (z. B. Cu-Fe-S) auf unter 1% abgesenkt. Dazu wird unter Zugabe von Quarzsand (SiO2) das Eisen in einer entstehenden Fayalit-Schlacke (Fe2SiO4) gebunden und aus dem Prozess entfernt. Die verbleibende Schmelze auf Basis Me-S z. B. Cu-S (in der Regel Cu2S), wird unter Einblasen von Luft in die Schmelze oxidiert, z. B. zum Blisterkupfer konvertiert. Wesentliche korrosive Medien in diesem Pro- zess sind neben der sulfidischen Schmelze (Me-Fe-S z. B. Cu-Fe-S mit sinkendem Fe-Gehalt im Zuge des Prozesses) die entstehende fayalitische Schlacke (Fe2SiO4), die hohe Konzentration von Schwefel in der Atmosphäre sowie die zum Ende des Prozesses entstehenden Anteile an Kupfer und Kupferoxid.
Im letzten Schritt der pyrometallurgischen Route wird die oxidierte Me- Schmelze zu reinem Metall, z. B. das Blisterkupfer zu Anodenkupfer, weiter- verarbeitet. Hierbei wird die Schmelze weiter gereinigt unter Abtrennung des verbliebenen Schwefels und Eisens. Im Wesentlichen ist der Prozess durch flüssiges Metall z. B. Kupfer und die entstehenden Schlackenphasen auf Basis Me-Fe-O geprägt, welche die Korrosionsstoffe darstellen.
Daneben tritt in allen genannten Prozessen bedingt durch teilweise turbulente Strömungsbedingungen hoher erosiver Verschleiß auf.
Die Ofenausmauerung eines Buntmetaflindustrieschmelzofens ist meist hohen Temperaturwechselbelastungen und hohen mechanischen und chemischen Beanspruchungen ausgesetzt. Die Temperaturwechselbelastungen resultieren aus der Chargenfahrweise sowie dem Einblasen kalter Prozessstoffe. Mecha- nische Beanspruchungen werden z. B. durch Drehbewegungen des Ofens bewirkt. Chemisch wird das Mauerwerk durch die Prozessschlacken und Metallschmelzen und durch volatile Verbindungen der Ofenatmosphäre beansprucht.
Die Schmelzöfen werden ausmauerungstechnisch eingeteilt in verschiedene Zonen, weil die Zonen im Betrieb unterschiedlich belastet werden. Z. B. beim QSL-Reaktor unterscheidet man den Reaktionsbereich, den Oxidationsbereich und die dazugehörigen Düsenzonen. Der Verschleiß des feuerfesten Materials ist hauptsächlich durch chemische Korrosion und durch Schlackenangriff und andere Prozessstoffe sowie Abplatzungen infiltrierter Schichten durch Tempe- raturwechselspannungen bedingt. Während nach dem Stand der Technik in der Regel ein großer Anteil der Innenausmauerung eines Schmelzofens mit normalen MgO- oder MgO-Cr2O3- Steinen ausgekleidet wird, müssen die Schlackenzonen und vor allem die Düsenzonen mit sehr hochwertigen hochgebrannten, so genannten direktgebun- denen, Magnesiachromsteinen verstärkt werden.
Solche feuerfesten Zustellungen finden sich in allen Typen von Nichteisen- Metall-Schmelzöfen unabhängig vom Design.
Naturgemäß weisen die bekannten gebrannten Feuerfest-Produkte eine offene Porosität auf, die etwa im Bereich zwischen 13 und 20 Vol.-% liegt. In diese offenen Poren können während des Prozesses Prozessstoffe wie Schlacken, Schmelzen oder Gase infiltrieren und durch chemische Reaktionen das Gefüge des Steins zersetzen und/oder zu vollkommen geänderten thermomechani- schen Eigenschaften des Gefüges führen im Vergleich zu den ursprünglichen Eigenschaften des Feuerfestmaterials. Wechselnde chemische Angriffe sowie wechselnde thermische und thermomechanische Belastungen führen zu beschleunigtem Verschleiß und Gefügeschwächung, insbesondere nach Fremdstoffinfiltrationen und Korrosion der Feuerfest-Produktkomponenten bzw. der Steinkomponenten.
Fayalitische Schlacken entstehen bei der Herstellung von Buntmetallen aus den sulfidischen Erzen, z. B. bei der Herstellung von Kupfer aus Kupferkies (CuFeS2). Kupferkies wird geröstet, woraus so genannter Kupferstein resultiert enthaltend Kupfersulfit (Cu2S) und Eisenverbindungen, z. B. FeS und Fe2O3. Der Kupferstein wird zu Rohkupfer weiterverarbeitet, wobei glutflüssiger Kupferstein unter Luftzufuhr und Zusatz von SiO2, z. B. in Form von Quarz, in ei- nem Konverter behandelt wird. Dabei entsteht eine fayalitische Schlacke, die hauptsächlich das Mineral Fayalit (2FeO · SiO2) enthält und Rohkupferoxid (Cu2O).
Man kleidet - wie bereits erwähnt - derzeit die Konverter zur Herstellung von Rohkupfer, z. B. einen Pierce-Smith-Konverter, feuerseitig hauptsächlich mit gebrannten Magnesiachromitsteinen aus (z. B. DE 14 71 231 A1 ). Diese feu- erfesten Erzeugnisse widerstehen aber dabei nur ungenügend dem Angriff von Sulfaten, die aus der Oxidation der Sulfide, z. B. in Form von Magnesiumsulfat, resultieren. Magnesiachromitsteine haben außerdem nur begrenzte bzw. ungenügende Hochtemperatur-Antiwetting-Eigenschaften für Buntmetalf- schmelzen, und sie weisen einen ungenügenden Penetrationswiderstand gegen heiße Buntmetallschmelzen auf.
Magnesiachromitsteine werden auch in Schmelzaggregaten für die Erzeugung der anderen Nichteisenmetalle bzw. Buntmetalle wie Ni, Pb, Sn, Zn eingesetzt und ergeben dort gleich gelagerte Probleme. Aus der DE 103 94 173 A1 ist ein feuerfestes Mauerwerk eines Buntmetallindustrieschmelzofens bekannt, in dem in einer oxidierenden Zone des Ofens Nichteisenmetalle wie Kupfer, Blei, Zink, Nickel oder dergleichen bei Temperaturen über 700 °C erschmolzen werden, wobei das Mauerwerk aus ungebrannten Steinen aus feuerfestem Material wie MgO oder feuerfestem Materi- al, bei dem MgO zumindest teilweise ausgetauscht ist gegen Spinell und/oder Korund und/oder Bauxit und/oder Andalusit und/oder Mullit und/oder Flintelay und/oder Schamotte und/oder Zirkonoxid und/oder Zirkonsilikat. Die Steine weisen zumindest Im feuerseitigen bzw. heißseitigen Oberflächenbereich des Mauerwerks Kohlenstoff in Form von Graphit und eines aus kohlenstoffhalti- gern Bindemittel entstandenen Koksgerüsts auf. Der Kohlenstoff soll im chemisch-physikalischen Milieu des in diesem Stand der Technik angegebenen feuerfesten Materials im Schlackenangriffsbereich die Schlackeninfiltration verringern infolge einer sich in situ einstellenden, dünnen, versiegelnden Infiltrationszone, wobei offenbar bei Zutritt von Sauerstoff aus den Gefügebestand- teilen des Steins erste Reaktionsprodukte im Stein entstehen, die in situ Porenkanäle des Steins verstopfen, so dass zumindest der weitergehende Zutritt von Sauerstoff in das Gefüge der Steinkomponenten verringert und damit eine weitergehende Reaktion des Sauerstoffs mit Kohlenstoff vermieden wird.
Aus der DE 10 2012 015 026 A1 ist ein feuerfestes Erzeugnis nach ISO R/836, DIN 51060 für feuerfestes Mauerwerk in Buntmetallindustrieschmelz- Öfen bekannt in Form eines ungeformten oder geformten Versatzes z. B. in Form von geformten Steinen, wobei das feuerfeste Erzeugnis in situ in hohem Maße widerstandsfähig ist gegen den Angriff fayaiitischer Schlacken (Eisensilikatschlacken) und Sulfaten und beständig gegen geschmolzene Buntmetalle, insbesondere gegen Kupferschmelze, sein soll. Erreicht wird eine gute Anti- wetting-Eigenschaft gegen Buntmetallschmelzen, insbesondere gegen Kupferschmelze, ein verbesserter Penetrationswiderstand gegen fayalitische Schlacken und ein verbesserter Widerstand gegen Sulfatangriff bei Einsatztemperaturen durch die Verwendung eines Olivinrohstoffs, als Hauptkompo- nente des feuerfesten Erzeugnisses, sowie Magnesiamehl und Siliciumcar- bidmehl. Ein die genannten Stoffe enthaltender feuerfester Versatz kann mit einem flüssigen Bindemittel in Form von Kieselsol versetzt sein.
Die Verwendung von Olivinrohstoffen, enthaltend Forsteritgehalte (MgSiO4) von mindestens 70 Gew.-%, gewährleisten eine hohe Korrosionsbeständigkeit und Infiltrationsbeständigkeit gegen die großen Mengen an fayaiitischer Schlacke (FeSiO4). Kommt eine Fayalit-Schlacke in Kontakt mit dem feuerfesten Material des Gefüges des feuerfesten Erzeugnisses, steigt die Liquidus- temperatur der Schlacke. Die Schlacke„friert auf auf dem feuerfesten Material, wodurch weitere verschleißende Reaktionen nicht ablaufen. Des Weiteren weist der Olivinrohstoff bzw. der Forsterit im Ofivinrohstoff eine schlechte Benetzbarkeit gegen Buntmetallschmelzen, insbesondere Kupferschmelze, und ebenfalls sehr gute Schwefelkorrosionsbeständigkeit auf.
Magnesia kann in den bekannten feuerfesten Erzeugnissen bei starken Korrosionsraten zu Magnesiumsulfat reagieren, was Gefügeschwächungen verur- Sachen kann. Außerdem können Kalzium haltige Silikatnebenphasen, wie Dik- alziumsilikat, Merwinit und Monticellit in der Magnesia das Gefüge schwächen.
Die in der DE 103 94 173 A1 und DE 10 2012 015 026 A1 beschriebenen, feuerfesten Erzeugnisse bzw. Produkte haben sich in überlegener Weise bewährt im Vergleich zu den davor verwendeten Magnesiachromitsteinen. Bei den beiden feuerfesten Erzeugnissen auf Basis von MgO plus Graphit (DE 103 94 173 A1 ) oder Olivinrohstoffen mit mindestens 70 Gew.-% Forsteritge- halten (DE 10 2012 015 026 A1 ) wie auch bei den Magnesiachromitsteinen benetzen jedoch insbesondere die dünnflüssigen Me-Oxide, z. B. die dünn- flüssigen Kupferoxide, teilweise aber auch die dünnflüssigen Eisenoxide, insbesondere die dünnflüssigen Me-Fe-Oxide, z. B. die Kupfereisenoxide, des Prozesses das basische Feuerfestmaterial sehr stark. Hieraus resultiert ein hohes Infiltrationspotenzial für diese dünnflüssigen Schmelzen mit der Folge, dass infiltriertes Gefüge geschwächt wird. Das Problem ist zwar bekannt, konnte aber bisher nicht befriedigend gelöst werden.
Aufgabe der Erfindung ist, feuerfeste Erzeugnisse auf Basis von Olivinrohstoffen als grobkörnige Hauptkomponente zu schaffen, die während des Schmelzprozesses wesentlich resistenter sind gegen den Angriff von dünnflüssigen Buntmetalloxiden, insbesondere von dünnflüssigen Kupferoxiden, und/oder dünnflüssigen Buntmetalleisenoxiden, insbesondere dünnflüssigen Kupfereisenoxiden. Dabei sollen die feuerfesten Erzeugnisse aber auch die guten Antiwetting-Eigenschaften gegen reine Buntmetallschmelze, insbesondere gegen reine Kupferschmelze, aufweisen, gut der Penetration von fayaliti- schen Schlacken widerstehen und Beständigkeit gegen Sulfatangriff bei Ein- satztemperaturen gewährleisten.
Diese Aufgabe wird gelöst durch ein feuerfestes Erzeugnis in Form eines feuerfesten Versatzes auf Basis von grobkörnigem Granulat aus mindestens einem, insbesondere eisenarmen, Olivinrohstoff mit hohen Forsteritge halten, von z. B. mindestens 70 Gew.-% und niedrigen Eisen(lll)Oxidgehalten von z. B. weniger als 10 Gew.-% als Hauptkomponente, sowie enthaltend Magnesiamehl, insbesondere hochwertiges und eisenarmes, schwefelbeständiges Magnesiamehl, und mindestens einen während des Schmelzprozesses reduzierend wirkenden, feuerfesten Reaktionsstoff, geeignet für die Reduzierung von geschmolzenen dünnflüssigen Buntmetalloxiden und/oder geschmolzenen dünnflüssigen Buntmetalleisenoxiden, z. B. in Form von feinteiligem Kohlenstoff, z. B. in Form von Graphit und/oder eines aus kohlenstoffhaltigem Bin- demittel für feuerfeste Erzeugnisse entstandenen Koksgerüsts und/oder Ruß und/oder Koks und/oder Anthrazit. Im Folgenden wird dieser Versatz mit diesen Bestandteilen auch Basis-Versatz genannt.
Hochwertig soll bedeuten, dass die üblicherweise vorhandenen Nebenphasen wie Dikalziumsilikat, Merwinit, Monticellit usw. mit weniger als z. B. 2,5 Gew.- % vorhanden sind. Schwefelbeständig soll bedeuten, dass das MgO-Mehl arm an solchen silikatischen Nebenphasen sein soll, da diese üblicherweise durch Schwefelverbindungen zuerst angegriffen werden. Z.B. sollte der MgO-Gehalt der Magnesia≥ 97 Gew.-% sein. Eisenarm ist ein Olivinrohstoff und das Magnesiamehl, wenn weniger als z. B. 10 Gew.-% Eisen(lll)Oxid vorhanden sind.
Vorzugsweise kann der oben angegebene Versatz zusätzlich eine feinteilige pulverförmige Kieselsäure als Zusatzstoff aufweisen.
Zusätzlich soll heißen, dass dem zu 100 Gew.-% zusammengemischten Gemenge aus Olivinrohstoff, Magnesiamehl und Reaktionsstoff (Basisversatz) ein jeweiliger Zusatzstoff und/oder ein jeweiliges Zusatzmittel addiert zugegeben ist.
Der Versatz kann vorzugsweise zusätzlich auch an sich bekannte Antioxidantien für feuerfeste Erzeugnisse enthalten. Feinteilig soll z. B. bedeuten, dass die Kieselsäure in Form von Mikrosilika und/oder pyrogener Kieselsäure und/oder gefällter Kieselsäure vorliegt.
Die Erfindung sieht somit die Verwendung mindestens eines feinteiligen mineralischen, auf die genannten dünnflüssigen Schmelzen reduzierend wirkenden feuerfesten Reaktionsstoffes im Gefüge eines aus einem erfindungsgemäßen Versatz hergestellten, erfindungsgemäßen feuerfesten Auskleidungsprodukts für Buntmetallschmelzöfen vor, wobei der Reaktionsstoff die Eigenschaft hat, in situ, d. h. in einem Buntmetallschmelzofen, während des Schmelzprozesses mit dem Gefüge in Kontakt kommende dünnflüssige Buntmetalloxidschmelze und/oder Buntmetalleisenoxidschmelze zu entsprechenden reinen Buntmetallschmelzen zu reduzieren, so dass dann auf die Buntmetallschmelzen die An- tiwetting-Eigenschaften der anderen Gefügebestandteile des feuerfesten Auskleidungsprodukts und, im Falle der Verwendung von Graphit, zudem auch die Antiwetting-Eigenschaften des Graphits einwirken können. Daraus resultiert ein hohes Maß an Korrosions- und Infiltrationsbeständigkeit der erfindungsgemäßen Auskleidungsprodukte.
Als reduzierender Reaktionsstoff wird vorzugsweise feinteiliger, z. B. mehlför- miger Kohlenstoff, insbesondere in Form von Graphit und/oder ein aus einem kohlenstoffhaltigen Bindemittel durch Temperatureinwirkung resultierender Kohlenstoff z. B. eines Koksgerüsts des Produktgefüges vorgesehen. Als alternative oder zusätzliche weitere feinteilige reduzierende Reaktionsstoffe können z. B. Ruß und/oder Anthrazit und/oder Koks verwendet werden.
Die reduzierenden Reaktionsstoffe sind vorzugsweise in Mengen zwischen 1 und 20, insbesondere zwischen 5 und 15 Gew.-% im feuerfesten Basisversatz oder im feuerfesten Auskleidungsprodukt bezogen auf die Basisversatzbestandteile enthalten, z. B. mit einer Feinheit unter 1000 μm.
Der reduzierende Reaktionsstoff ist in einem erfindungsgemäßen Versatz im Gemisch mit den anderen Bestandteilen, insbesondere homogen verteilt ent- halten. In einem aus einem erfindungsgemäßen Versatz hergestellten feuerfesten Ausmauerungsprodukt, insbesondere in einem verfestigten geformten Formkörper, z. B. in einem feuerfesten geformten Stein, ist der reduzierende Reaktionsstoff im Gefüge des Körpers auch insbesondere homogen verteilt vorhanden. Aus einem erfindungsgemäßen Versatz hergestellte ungeformte feuerfeste Produkte werden z. B. mit Wasser und/oder mindestens einem bekannten Bindemittel für feuerfeste Produkte, z. B. einem kohlenstoffhaltigen flüssigen Bindemittel, angemacht und als feuerfeste Auskleidung in einen Buntmetallschmelzofen eingebracht, wobei z. B. eine anschließende Trocknung und/oder Temperung eine Verfestigung der frisch angemachten Masse bewirkt. Die Trocknung oder das Tempern kann aber auch beim Anfahren bzw. Aufheizen des Buntmetallindustrieschmelzofens in situ erfolgen.
Geformte feuerfeste Produkte, wie z. B. Steine, hergestellt aus einem Wasser und/oder mindestens ein bekanntes Bindemittel für feuerfeste Produkte, z. B. ein kohlenstoffhaltiges flüssiges Bindemittel, aufweisenden Versatz, werden in der Regel getrocknet und/oder getempert und anschließend zur Auskleidung eines Buntmetallindustrieschmelzofens verwendet. Man kann die aus dem Versatz hergestellten Produkte aber auch keramisch brennen und anschließend bestimmungsgemäß verwenden. Ein erfindungsgemäßer feuerfester Versatz ist hauptsächlich aus dem Basisversatz aus einem Trockenstoffgemisch aus Olivinrohstoff, Magnesiamehl und reduzierendem Reaktionsstoff, z. B. Graphit als reduzierenden Reaktionsstoff, ausgebildet. Des Weiteren kann ein trockener erfindungsgemäßer Versatz zweckmäßigerweise zusätzlich bis zu 4, insbesondere bis zu 2,5 Gew.-%, für feuerfeste Produkte üblicherweise verwendete Antioxidantien, und/oder andere für feuerfeste Erzeugnisse üblicherweise verwendete Zusatzstoffe und/oder Zusatzmittel enthalten, wobei aber das Mengenverhältnis der Bestandteile Olivinrohstoff, MgO-Mehl und reduzierender Reaktionsstoff, z. B. Graphit, des Basisversatzes erhalten bleiben soll. Überraschend ist, dass der reduzierende Reaktionsstoff, wie der Graphit und gegebenenfalls auch der aus dem kohlenstoffhaltigen Bindemittel durch Tempern stammende Kohlenstoff oder die anderen genannten Kohlenstoffe bei oxidierenden Bedingungen in situ, d. h. während eines Schmelzbetriebs eines Buntmetallindustrieschmelzofens, durch Oxidation nur unwesentlich ver- braucht wird. Dazu tragen - sofern vorhanden - zum einen, wie an sich bekannt, Antioxidantien bei, zum anderen offenbar aber im Wesentlichen auch das Gefügemilieu einer erfindungsgemäßen Ausmauerung, was aber noch nicht erklärbar ist. Der Kohlenstoff wirkt jedenfalls in überraschender Weise im Gefüge auf benetzende und eindringende dünnflüssige Buntmetalloxidschmel- zen und Buntmetalleisenoxidschmelzen des Schmelzprozesses reduzierend, so dass reine Buntmetallschmelze aus den Oxiden erzeugt wird, auf die dann die Antiwetting-Eigenschaft des im Gefüge vorhandenen Forsterits und gegebenenfalls auch des Kohlenstoffs, insbesondere des Graphits, einwirkt und so ein weiteres Eindringen von dünnflüssiger Oxidschmelze in das Gefüge zu- mindest behindert wird.
Insofern wirken die Bestandteile eines erfindungsgemäßen Versatzes oder erfindungsgemäßen aus einem erfindungsgemäßen Versatz hergestellten feuerfestem Produkts hauptsächlich wie folgt:
Forsterit im Olivinrohstoff: Ansteifwirkung auf die fayalitische Schiackenschmelze und Antiwetting-
Wirkung gegen Buntmetallschmelze
MgO-Mehl:
Bildung von Forsterit mit dem Versatz zugesetzten SiO2 und/oder SiO2 aus Schlackenbestandteilen; daraus resultierend Verringerung der Porosität und Erwirkung der Forsteriteigenschaften
Reduzierender Reaktionsstoff:
Reduzierung von mit dem Gefüge in Kontakt kommenden dünnflüssigen Buntmetalloxidschmelzen oder Buntmetalleisenoxidschmelzen des Schmelzprozesses. Der natürlich vorkommende, auf dem Markt erhältliche Olivinrohstoff wird erfindungsgemäß als - auf dem Sachgebiet sogenanntes - Grobkorngranulat eingesetzt und soll erfindungsgemäß vorzugsweise möglichst 100 Gew.-%, mindestens jedoch 70 Gew.-% des Minerals Forsterit aufweisen. Der Rest kann das Mineral Fayalit und/oder können andere bekannte Verunreinigungen des Rohstoffs wie Enstatit und/oder Monticellit und/oder Merwinit sein. Es liegt im Rahmen der Erfindung, einen synthetisch hergestellten, reinen Forsterit- werkstoff allein oder in Kombination mit einem natürlichen Olivinrohstoff zu verwenden. Soweit im Rahmen der Erfindung von Olivinrohstoff die Rede ist, betrifft dies auch den synthetischen Forsteritwerkstoff.
Die verwendete Korngröße des Olivinrohstoffgranulats liegt z. B. zumindest zu 95 Gew.-% im Mittel- und Grobkornbereich z. B. zwischen 0,1 und 8, insbe- sondere zwischen 1 und 8 mm, wobei das Granulat z. B. eine Gaußsche Korngrößenverteilung aufweisen kann oder aus Kornfraktionen mit unregelmäßigen Kornverteilungen ausgebildet sein kann.
Der Olivinrohstoff wird in Mengen von 15 bis 74 Gew.-%, insbesondere von 30 bis 65 Gew.-%, im erfindungsgemäßen Basisversatzgemisch eingesetzt. Magnesia wird feinteilig in Form eines Mehls bzw. Pulvers mit z. B. nach einer Siebung bestimmten Korngrößen (sogenannten Siebkorngrößen), von z. B. 95 Gew.-%≤, 1 mm (d95≤ 1 mm) verwendet. Als Magnesia wird z. B. Schmelzmagnesia und/oder Sintermagnesia und/oder synthetische totgebrannte oder kaustische Magnesia eingesetzt. Die Begriffe„Mehl" und„Pulver" werden im Rahmen der Erfindung als gleiche Begriffe mit gleichem Begriffsinhalt verstanden, so wie sie auch auf dem Sachgebiet bekannt sind. Man versteht darunter i.d.R. trockene lose Kornhaufwerke aus festen Partikeln mit 95 Gew.-% (d95)≤ 1 mm Partikelgröße.
Der MgO-Gehalt der Magnesia soll vorzugsweise > 90 Gew.-%, insbesondere > 95 Gew.-% betragen. Der Rest sind übliche Verunreinigungen wie Silikate und/oder Eisenoxid.
Die MgO-Mehle weisen z. B. eine Gaußsche Korngrößenverteilung auf.
Das MgO-Mehl wird im trockenen Basisversatzgemisch in Mengen von 25 bis 55, insbesondere von 30 bis 50 Gew.-% verwendet. Der Versatz kann zusätzlich auch Siliciumcarbid (SiC) enthalten.
Siliciumcarbid ist auf dem Markt als synthetisches Produkt mit hohem Reinheitsgrad und in verschiedenen Körnungen und Korngrößenverteilungen er- hältlich und wird erfindungsgemäß in Pulverform bzw. in Mehlform z. B. mit Korngrößen z. B. 95 Gew.-%≤ 1 mm (d95) verwendet. Die Korngrößenverteilung entspricht vorzugsweise einer Gaußschen Korn Verteilung.
Das SiC-Pulver wird z. B. mit einer Reinheit von > 90 Gew.-%, insbesondere > 94 Gew.-% an SiC eingesetzt. Die verwendete zusätzliche Menge im trockenen Versatzgemisch beträgt bis 15, insbesondere bis 10 Gew.-%.
Die zusätzliche feinteilige, trockene Kieselsäure ist z. B. eine Kieselsäure, die mit dem MgO des Magnesiamehls in einem wässrigen Milieu unter Ausbildung von Magnesiumsilikathydratphasen reagiert und z. B. Magnesiumsilikathydrat- gel und/oder Magnesiumsilikathydratkristallite und/oder Magnesiumsilikathydratkristalle bildet. Der SiO2-Gehalt der feinteiligen trockenen Kieselsäure liegt vorzugsweise über 90 Gew.-%, insbesondere über 94 Gew.-%. Es hat sich in überraschender Weise ergeben, dass trockene feinteilige Kieselsäure bei Zutritt von Wasser zum erfindungsgemäßen Versatz schneller mit dem MgO der Magnesia MSH-Phasen bildet und schneller erhärtet und höhere Kaltdruckfestigkeiten ergibt.
Die Kieselsäure ist so feinteilig zu wählen, dass in einer Wasser enthaltenden Versatzfrischmasse, die durch Zugabe von Wasser zu einem erfindungsgemäßen trockenen Versatz und Mischen entsteht, eine Reaktion zwischen dem MgO der Magnesiateilchen und Teilchen der Kieselsäure stattfindet und sich Magnesiumsilikathydratphasen - im Folgenden auch MSH-Phasen genannt - z. B. als Gel und/oder Kristallite und/oder Kristalle bilden, die nach Art einer hydraulischen Abbindung eine Verfestigung der wasserhaltigen Masse bewirken. Vorzugsweise wird dafür der Versatz so zusammengestellt, dass sich im wässrigen Milieu, also nach Zugabe von Wasser zum erfindungsgemäßen Versatz, ein pH-Wert über 7, insbesondere über 10 einstellt.
Dementsprechend eignen sich für die Reaktion zu MSH-Phasen z. B. kristalline Quarzmehle einer Feinheit der Quarzteilchen unter 500, insbesondere unter 200 μm. Des Weiteren sind für die Erfindung als trockene, feinteilige Kieselsäuren besonders geeignet:
- Silikastaub
Silikastaub ist ein sehr feines, nicht kristallines amorphes SiO2-Pulver, das in einem Lichtbogenofen entsteht als Nebenprodukt bei der Herstellung von elementarem Silicium oder von Siliciumlegierungen. Es wird z. B. unter dem Handelsnamen Silikastaub oder Mikrosilica auf dem Markt angeboten und weist i.d.R. über 85 Gew.-% Si02 auf. Die Partikelgröße des Silikastaubs - auch Silikarauch genannt - liegt i.d.R. unter 1 mm. Die englische Bezeichnung ist„silica fume".
- Pyrogene Kieselsäure
Pyrogene Kieselsäuren sind sehr reine amorphe SiO2-Pulver mit Si02- Gehalten z. B. bis 99 Gew.-% und mit i.d.R. Teilchengrößen z. B. zwischen 5 und 50 nm und mit hoher spezifischer Oberfläche z. B. zwischen 50 und 600 m2/g. Diese Kieselsäuren werden durch Flammhydrolyse hergestellt. Pyrogene Kieselsäure wird auf dem Markt z. B. unter dem Handelsnamen Aerosil angeboten. Die englische Bezeichnung ist „fumed silica".
- Gefällte Kieselsäure
Bei der Herstellung von gefällter Kieselsäure auf nassem Wege geht man von Alkalisilikatlösungen aus, aus denen durch Zusatz von Säure sehr reine amorphe Kieselsäuren ausgefällt werden (86 - 88 Gew.-% Si02; 10 - 12 Gew.-% Wasser). Die Teiichengröße liegt zwischen 1 und 200 μιτ» und die spezifische Oberfläche zwischen 10 und 500 m2/g. Gehandelt werden gefällte Kieselsäuren z. B. unter dem Handelsnamen „Sipemat" oder„Ultrasil". Trotz des Wassergehalts sind diese Kieselsäuren nicht flüssig, sondern trocken und pulvrig. Im Rahmen der Erfindung wird nach einer besonderen Ausführungsform mindestens eine der oben genannten Kieselsäuren verwendet. Zweckmäßigerweise werden die Kieselsäuren bezüglich ihrer Reaktionsfähigkeit mit dem MgO des Magnesiamehls ausgewählt und dafür gesorgt, dass die Kieselsäure möglichst vollständig mit MgO beim Erhärten reagiert.
Die feinteilige trockene Kieselsäure wird dem trockenen Versatzgemisch bis 10, insbesondere von 0,5 bis 6 Gew.-% zugesetzt.
Den zu 100 Gew.-% errechneten erfindungsgemäßen oben beschriebenen trockenen Basis-Versätzen wird nach einer Ausführungsform erfindungsge- maß vorzugsweise lediglich noch Wasser beigemengt zur Herstellung von erfindungsgemäßen feuerfesten Produkten.
Vorzugsweise werden somit folgende trockene Basis-Versätze in Gew.-% zusammengestellt:
Olivinrohstoff: 15 bis 74, insbesondere 30 bis 65 Magnesiamehl: 25 bis 55, insbesondere 30 bis 50
Reduzierender Reaktionsstoff, insbesondere
Kohlenstoff, insbesondere
Graphit: 1 bis 30, insbesondere 5 bis 20
Diesem Gemisch des Basisversatzes können folgende Bestandteile zusätzlich, vorzugsweise in folgenden Mengen in Gew.-%, zugesetzt werden. feinteilige Kieselsäure: 0 bis 10, insbesondere 0,5 bis 6
SiC: 0 bis 15, insbesondere 0 bis 10
Antioxidantien: 0 bis 4, insbesondere 0,5 bis 2,5 Grobkörniges feuerfestes Werkstoffgranulat: 0 bis 4, insbesondere 0,1 bis 3,5 feuerfester feinteiliger
Werkstoff: 0 bis 4, insbesondere 0,1 bis 3,5 Zusatzmittel für feuerfeste
Erzeugnisse: 0 bis 2, insbesondere 0,1 bis 1 ,5 Bindemittel für feuerfeste
Erzeugnisse: 0 bis 10, insbesondere 0,1 bis 6 Vorzugsweise ist die Kieselsäure mindestens eine der oben genannten amorphen Kieselsäuren.
Die Mengen der Reaktionspartner MgO und Si02 in erfindungsgemäßen Versätzen werden so gewählt, dass bei Wasserzusatz von 1 bis 10, insbesondere von 2,5 bis 6 Gew.-%, bezogen auf die Trockensubstanz des Versatzes, in einem Zeitraum zwischen 6 und 120, insbesondere zwischen 8 und 12 Stunden, im Temperaturbereich von 50 bis 200, insbesondere von 100 bis 150 °C, Kaitdruckfestigkeiten von 40 bis 160, insbesondere von 60 bis 150 MPa gewährleistbar sind.
Bevorzugt wird erfindungsgemäß vorgesehen, dass das reaktionsfähige MgO des Magnesiamehls mengenmäßig überwiegend zur reaktionsfähigen feinteili- gen Kieselsäure vorliegt. Daraus soll resultieren, dass sich nach Wasserzugabe MgO-reiche MSH-Phasen bilden, die bei Einwirkung hoher Temperaturen bis z. B. 1350°C Forsterit (2 MgO · Si02) bilden können, der den Forsteritanteil des Otivinrohstoffs erfindungsgemäß erhöht. Erfindungsgemäß zweckmäßig sind überwiegende Massen Verhältnisse MgO zu Si02 bis 500:1. Insbesondere liegt das Verhältnis zwischen 1 ,2:1 und 100:1 , vorzugsweise zwischen 1 ,34:1 und 50:1 , ganz besonders vorzugsweise zwischen 1 ,34:1 und 35:1.
Aus erfindungsgemäßen Trockenversätzen werden erfindungsgemäße feuer- feste Produkte nach Zusatz von Wasser hergestellt, wobei eine Mischung mit Wassermengen, bezogen auf die Masse des trockenen Versatzes 1 bis 10 Gew.-%, vorzugsweise 2,5 bis 6,0 Gew.-% beträgt. Wasserhaltige sogenannte Frischmassen z. B. für monolithische Auskleidungen werden erfindungsgemäß mit Wassergehalten z. B. zwischen 1 und 5, insbesondere zwischen 1 ,5 und 3 Gew.-% mit üblichen Pressverfahren zu geformten Steinrohlingen gepresst. Die geformten Steine lässt man erfindungs- gemäß im Temperaturbereich zwischen 15 und 200, vorzugsweise zwischen 50 und 200, Insbesondere zwischen 100 und 150 °C aushärten und trocknen, wobei MSH-Phasen gebildet werden. Nach dem Aushärten weisen die Steine relativ hohe Festigkeiten auf und sind handhabbar, so dass daraus eine feuerfeste Auskleidung gemauert werden kann. Erfindungsgemäß weisen die Stei- ne Kaltdruckfestigkeiten z. B. zwischen 40 und 100, insbesondere zwischen 60 und 80 MPa, auf.
Es liegt im Rahmen der Erfindung, die geformten und ggf. getemperten sowie ggf. durch Bildung von MSH-Phasen erhärteten bzw. verfestigten und getrockneten Steine keramisch zu brennen, so dass z. B. aus MSH-Phasen Sinter- Produkte, z. B. aus Forsterit entstehen und Sinterbrücken aus z. B. Forsterit zwischen den Olivinkömern bzw. Olivinteilchen und/oder MgO-Mehlteilchen und/oder ggf. SiO2-Teilchen bilden. Das keramische Brennen wird vorzugsweise im Temperaturbereich von 400 bis 1400, insbesondere von 600 bis 1200 °C und während einer Zeitdauer von 1 bis 24, insbesondere von 4 bis 12 Stunden durchgeführt, wobei vorteilhaft ist, in reduzierender Atmosphäre zu brennen.
Für das Pressen von Steinen, insbesondere für die Ausbildung von MSH- Phasen, reicht es aus, einem erfindungsgemäßen Versatz von 1 bis 5, insbesondere von 1 ,5 bis 3 Gew.-% Wasser zuzusetzen. Es liegt im Rahmen der Erfindung, an sich bekannte Fließmittel zusätzlich im Versatz vorzusehen oder dem wasserhaltigen Gemenge zuzusetzen, um die Bildsamkeit des Gemenges zu erhöhen. Derartige Fließmittel sind dem Fachmann bekannt. Sie werden i.d.R. in Mengen bis 2, insbesondere von 0,1 bis 1 ,5 Gew.-% zugesetzt. Mit höheren Wassergehalten, z. B. von 4 bis 10 Gew.-%, insbesondere von 4 bis 6 Gew.-% werden erfindungsgemäß aus den erfindungsgemäßen trockenen Versätzen bildsame Gießmassen oder Stampfmassen erzeugt und daraus mittels Formgebung in Formen feuerfeste monolithische vorgeformte Fertigtei- ie hergestellt. Die Verfestigung im Falle von MSH-Phasenbildung erfolgt dabei z. B. bei Raumtemperaturen und die Trocknung mit einer entsprechenden erhöhten Temperaturbehandlung. Die Festigkeitsentwicklung der geformten Masse entspricht dabei der von geformten und getemperten ein Koksgerüst bildenden Steingefügen. Ein erfindungsgemäßes Produkt wird zweckmäßig hergestellt, indem aus einem Versatz mit zumindest den Trockenstoffen Olivinrohstoff, Magnesiamehl und reduzierendem Reaktionsstoff, z. B. Kohlenstoff in Form von Ruß und/oder Graphit und/oder Anthrazit und/oder Koks, sowie gegebenenfalls zusätzlich Kieselsäure und/oder SiC und/oder Antioxidantien und/oder trocke- nem, insbesondere pulverförmigem Kunstharz-Bindemittel, und/oder Fließmittel und Wasser und/oder einem flüssigen Bindemittel für feuerfeste Erzeugnisse mit geeigneten Mischern ein homogenes Gemenge mit vorgegebener plastischer bzw. bildsamer oder fließfähiger Verarbeitbarkeit erzeugt wird. Diese bildsame oder fließfähige Masse des Gemenges kann vor Ort zur Auskleidung von Schmelzkonvertern verwendet werden. Aus dem Gemenge können - wie bereits beschrieben - aber auch monolithisch geformte Fertigteile oder ge- presste Steine erzeugt werden; letztere können ungebrannt oder keramisch gebrannt zur Auskleidung von z. B. Schmefzkonvertern verwendet werden.
Die Erfindung betrifft somit auch einen trockenen Versatz ausschließlich aus oder z. B. hauptsächlich, d. h. z. B. über 80 Gew.-%, vorzugsweise 90 Gew.- %, insbesondere über 95 Gew.-% aus Oiivinrohstoffgranuiat, MgO-Mehl, fein- teiligem Kohlenstoff, insbesondere Graphit, gegebenenfalls einer feinteiligen, trockenen Kieselsäure, insbesondere in Form von Mikrosilika, und/oder gegebenenfalls einem trockenen, z. B. pulverförmigen, z. B. kohlenstoffhaltigen, Bindemittel z. B. einem Kunstharz-Bindemittel für feuerfeste Produkte und/oder SiC und/oder mindestens einem Antioxidans und/oder mindestens einem Zusatzmittel. Der jeweilige Rest kann z. B. mindestens ein anderes feuerfestes grobkörniges Werkstoffgranulat und/oder feinteiliger feuerfester Werkstoff, z. B. Magnesiachromit, Magnesiumspinelle, Spinelle, Chromoxid, Zirkonoxid, Siliciumnitrid, Zirkon und/oder mindestens ein feuerfester, feinteilt- ger bzw. mehlförmiger Zusatzstoff wie Magnesiachromit, Magnesiumspinelle, Spinelle, Chromoxid, Zirkonoxid, Siliciumnitrid, Zirkon sein. Außerdem kann zweckmäßigerweise mindestens ein weiteres an sich bekanntes Zusatzmittel für feuerfeste Versätze, wie Verflüssiger und/oder Abbinderegulator vorhanden sein. Beispielsweise werden im Rahmen der Erfindung aus einem oben angegebenen wasserhaltigen und/oder bindemittelhaltigen Versalzgemenge durch Pressen ge- presste oder ungepresste Formkörper hergestellt und die Formkörper bis auf Restfeuchten vorzugsweise zwischen 0,1 und 2 Gew.-% z. B. durch Trocknung und/oder Tempern gebracht oder die Formkörper werden nach einer weiteren Ausführungsform der Erfindung zusätzlich keramisch in einem keramischen Brennofen gebrannt bei Temperaturen zwischen vorzugsweise 400 und 1400, insbesondere zwischen 600 und 1200 °C, vorzugsweise in reduzierender Atmosphäre für eine Zeitdauer vorzugsweise zwischen 1 und 24, insbesondere zwischen 4 und 12 Stunden. Die Brennbedingungen werden dabei erfindungsgemäß so gewählt, dass die Bestandteile Oltvinrohstoff, MgO-Mehl und reduzierender Reaktionsstoff, z. B. Graphit, während des Brennens möglichst nicht oder nur zu einem geringen Anteil miteinander reagieren, damit diese Bestandteile im Gefüge in situ im Schmelzaggregat, z. B. im Konverter, beim Angriff einer Schmelze und/oder Schlacke für die erfindungsgemäße Gewährleistung der Feuerfestigkeit, insbesondere die Antiwettingwirkung für die Buntmetallschmelze und chemischphysikalische Ansteifwirkung gegen Schlackenschmelze sowie die reduzierende Wirkung des reduzierenden Reaktionsstoffes zur Verfügung stehen.
Mit den ungebrannten und gebrannten erfindungsgemäßen Formkörpern können Auskleidungen von Buntmetallschmelzkonvertern erstellt werden, die den bisherigen Auskleidungen bezüglich Infiltrations- und Korrosionswiderstand gegen Buntmetallschmelzen und flüssige Schlacken der Buntmetall Verhüttung überlegen sind. Insbesondere zeigt sich die Überlegenheit der erfindungsgemäßen feuerfesten Erzeugnisse in Kupferschmelzkonvertern, z. B. in einem Pierce-Smith-Konverter (PS-Konverter).
Die ungebrannten gepressten getrockneten Formkörper weisen z. B. die fol- genden Eigenschaften auf:
Rohdichte: 2,65 bis 2,85 kg/m3
Kaltdruckfestigkeit: 40 bis 100, insbesondere 60 bis 85 MPa.
Die gebrannten erfindungsgemäßen Formkörper weisen z. B. die folgenden Eigenschaften auf: Rohdichte: 2,55 bis 2,85 kg/m3,
Kaltdruckfestigkeit: 30 bis 80, insbesondere 40 bis 70 MPa.
Die erfindungsgemäßen Fertigteile, das sind geformte Teile, insbesondere geformte und gepresste Steine, weisen z. B. die folgenden Eigenschaften auf:
Rohdichte: 2,55 bis 2,85 kg/m3,
Kaltdruckfestigkeit: 30 bis 180, insbesondere 50 bis 150 MPa.
Die erfindungsgemäßen Erzeugnisse eignen sich zwar speziell für den Einsatz in PS-Konvertern für die Kupfererzeugung, sind aber auch mit Vorteilen gegenüber den üblichen feuerfesten Erzeugnissen in anderen Anwendungen, bei denen fayalitische Schlacken und dünnflüssige Buntmetalloxidschmelzen auf- treten wie das praktisch in der gesamten Buntmetallindustrie der Fall ist, mit den beschriebenen Vorteilen verwendbar.
Das erfindungsgemäße Konzept beruht darauf, dass basierend auf Olivin- grobkorn als Stützkorn und einem relativ hohen Anteil an MgO-Feinkorn bzw. Mehlkorn sich das Gleichgewicht im Stein zwischen den Reaktionsstoffen aus dem Stein und der Schlacke erst bei Schmelzprozesstemperaturen über 1000°C, z. B. zwischen 1200 und 1350°C einstellt. Bei diesen Temperaturen ist Graphit trotz oxidierender Schmelzprozessbedingungen auch noch bezüg- lieh Antiwettingwirkung gegen die bereits beschriebenen schmelzflüssigen Medien wirksam. MgO reagiert mit SiO2 zu weiterem Forsterit, wobei das Porenvolumen des Gefüges verringert wird. MgO wird erfindungsgemäß im stö- chiometrischen Überschuss zu für eine Reaktion verfügbarem SiO2 gewählt, um die Bildung von Enstatit, das nicht feuerfest ist, zu vermeiden. Diese Reaktion in situ während des Schmelzprozesses versiegelt den Stein unmittelbar feuerseitig weitgehend und behindert die Penetration durch die sehr dünnflüssige Metallschmelze, z. B. Kupferschmelze. In Kontakt mit der allgegenwärtigen Fayalitschlackenschmelze (Schmelztemperatur 1210 °C) reagiert außer- dem das MgO zusammen mit dem Forsterit (Schmelztemperatur 1890 °C) zu Olivin-Mischkristallen. Die Liquidus-Temperatur der Mischkristallschmelze steigt dadurch an, d. h. das Reaktionsprodukt Schlacke-Produktgefüge friert auf, d. h. führt zu einem Ansteifen der Reaktionsproduktschmelze und die Korrosionsreaktion bzw. Infiltration wird entsprechend gestoppt oder zumindest jedoch stark reduziert.
Nach der Erfindung lässt man somit gepresste, zumindest Olivinrohstoff, MgO und ggf. feinteiiige Kieselsäure sowie reduzierenden Reaktionsstoff, z. B. Graphit enthaltende Formkörper, die z. B. einen Wassergehalt zwischen 1 und 5, insbesondere zwischen 1 ,5 und 3 Gew.-% aufweisen, erhärten, wobei sich ggf. MSH-Phasen bilden, die die Erhärtung bewirken. Die Erhärtungszeit ist temperaturabhängig. Man lässt die gepressten Formkörper zweckmäßigerweise 6 bis 120, insbesondere 24 bis 96 Stunden erhärten und trocknen im Temperaturbereich zwischen 50 und 200, insbesondere zwischen 100 und 150 °C bis zu Restfeuchten zwischen 0,1 und 4,5, insbesondere zwischen 0,1 und 2,5 Gew.-% Wassergehalt in einem geeigneten Trocknungsaggregat. Es werden dabei Kaltdruckfestigkeiten zwischen 40 und 100, insbesondere zwischen 60 und 85 MPa erzielt.
Die erfindungsgemäß herstellbaren nicht gepressten, in Formen gegossenen und ggf. vibrierten Frischmassen für monolithische Fertigbauteile aus den oben genannten Bestandteilen weisen Wassergehalte zwischen 4 und 10, insbesondere zwischen 4 und 6 Gew.-% auf. Sie werden in Formen eingebracht und ggf. vibriert. Man lässt sie z. B. an der Luft zwischen 15 und 35 °C erhärten und im oben für die gepressten Formkörper angegebenen Temperaturbereich trocknen bis auf Restfeuchten wie bei den gepressten Formkörpern. Dabei erzielt man Kaltdruckfestigkeiten zwischen 30 und 180, insbesondere zwi- sehen 50 und 150 MPa.
Nach einer weiteren Ausführungsform der Erfindung wird anstelle von Wasser oder vorzugsweise in Kombination damit, z. B. für die MSH-Phasenbildung, mindestens ein an sich bekanntes wasserhaltiges Bindemittel für feuerfeste Erzeugnisse aus der folgenden Gruppe Ligninsulfonat, Magnesiumsulfat, Ethylsilikat und Melasse oder weitere Zuckerarten verwendet in einer Menge berechnet auf die Trockensubstanz eines Versatzes von z. B. 2 bis 5 Gew.-% für gepresste Erzeugnisse und von z. B. 4 bis 10 Gew.-% für Fertigbauteile und Gießmassen. Der Wasseranteil dieser Bindemittel trägt dabei zur oben beschriebenen MSH-Phasenbiidung bei. Des Weiteren wird im Rahmen einer Ausführungsform der Erfindung in erfindungsgemäßen Versätzen oder in erfindungsgemäßen Produkten ein an sich bekanntes Bindemittel für feuerfeste Erzeugnisse aus der Gruppe Pech und/oder Teer und insbesondere der bekannten Kunstharze wie Phenol- Formaldehyd harze verwendet, jeweils in Mengen von z. B. 2 bis 5 Gew.-% be- rechnet auf die Trockensubstanz.
Die erfindungsgemäßen Erzeugnisse eignen sich speziell für den Einsatz in PS-Konvertern für die Kupfererzeugung, sind aber auch mit gleichen Vorteilen im Vergleich zu den üblichen feuerfesten Erzeugnissen in anderen Anwendungen, bei denen fayalitische Schlacken und dünnflüssige Buntmetall- schmelzen auftreten, wie das in den Buntmetallschmelzprozessen der Fall ist, mit den beschriebenen Vorteilen verwendbar.
Aus den Versätzen hergestellte Steine müssen nicht unbedingt gebrannt, sondern es reicht in der Regel aus, dass sie getrocknet, ggf. und/oder getempert werden, so dass sie handhabbar und für Auskleidungsmauerwerk einsetzbar sind. Die Erfindung wird im Folgenden anhand von Beispielen näher erläutert und anhand einer Zeichnung beispielhaft verdeutlicht. Es zeigen:
Fig. 1 einen gepressten, ungebrannten erfindungsgemäßen feuerfesten
Stein;
Fig. 2 einen Tiegel aus erfindungsgemäßem Stein nach Test mit sulfidischer Matteschmelze;
Fig. 3 einenTiegel aus erfindungsgemäßem Stein nach Test mit Kupferoxid-Eisenoxid-Schmelze;
Fig. 4 einen Tiegel nach DE 102012 015 026 A1 nach Test mit sulfidischer
Matteschmelze.
Fig. 5 einen Tiegel nach DE 10 2012 015 026 A1 nach Test nach Test mit
Kupferoxid-Eisenoxid-Schmelze.
Figur 1 zeigt einen gepressten, ungebrannten erfindungsgemäßen feuerfesten Stein hergestellt aus der folgenden Rezeptur:
Der erfindungsgemäße Stein wurde bei 200°C getrocknet bis auf eine Restfeuchte von 1 ,3 Gew.-%.
Die Matrix des erfindungsgemäßen Steins zeigt ein Stützgerüst aus relativ groben Olivinkörnern 1 (dunkle Körner), feineren Körnern 2 (weiß) sowie feinen und feinsten Körnern aus MgO (nicht sichtbar) und feinstem schwarzem Material 3 aus Graphit. Die Beständigkeit der Erfindung gegenüber fayalitischer Schmelze und Kupferschmelze ist aus DE 10 2012 015 026 A1 bereits bekannt.
Die Überlegenheit der Erfindung gegenüber DE 10 2012 015 026 A1 und bisher eingesetzten Magnesiachromitsteinen besteht in der bereits beschriebe- nen Beständigkeit gegenüber Kupferoxidschmelze, Kupfereisenoxidschmelze und Kupfersulfidschmelze. Diese Überlegenheit ergibt sich aus den folgenden Tiegeftests nach DIN 51069.
Es wurde eine sulfidische Matteschmelze, sowie eine Kupferoxid-Eisenoxid- Schmelze aus der Kupfermetallurgie mit folgenden Mineralphasenbeständen verwendet:
Phasenbestand Sulfidische Matteschmelze:
Bornit Cu5FeS4
Cu2S
Wurtzit Zn0,6Fe0,4S
Cuprospinell CuFe2O4
Kupfer Cu
Phasenbestand Kupferoxid-Eisenoxid-Schmelze:
Delafossit CuFeO2
Cuprospinell CuFe2O4
Cuprit Cu2O
Kupfer Cu
Die chemische Zusammensetzung der Sulfidischen Matteschmelze war die folgende:
SiO2 0.29 %
Al2O3 0.17 %
Die chemische Zusammensetzung der Kupferoxid-Eisenoxid-Schmelze war die folgende:
Die Schlacke wurde als Pulver in eine Ausnehmung bzw. einen Tiegel eines für einen Tiegeltest vorbereiteten ungebrannten erfindungsgemäßen Steins gegeben, auf 1350°C erhitzt und 6 Std. bei dieser Temperatur gehalten. Nach Erkalten wurden die Tiegel diagonal aufgesägt. Beide geschmolzenen Schlacken sind nicht in den Stein eingedrungen. Auch die Korrosion des erfindungsgemäßen Steins ist sehr gering, wie an den noch scharfen Konturen der Tiegel zu erkennen ist. Die sulfidische Matteschmelze ist vollständig im Tiegel verblieben ohne erkennbare Infiltration oder Auflösungsvorgänge (Fig. 2). Im Falle des Tests mit Kupferoxid-Eisenoxid-Schmelze ist weiterhin deutlich zu erkennen, dass ein Großteil der Schlacke durch das enthaltene Reduktionsmittel zu metallischem Kupfer reduziert wurde (Fig. 3). Es wurden vergleichend hierzu Tiegeltests durchgeführt an Tiegeln, die nach DE 10 2012 015 026 A1 hergestellt worden sind. Hierzu wurden dieselben Schlacken verwendet. Nach dem Abkühlen und diagonalem Auftrennen der Tiegel zeigte sich, dass die sulfidische Matteschmelze teilweise in den Stein nach DE 10 2012 015 026 A1 eingedrungen ist (Fig. 4). Weiterhin zeigt sich, dass die Kupferoxid-Eisenoxid-Schmelze vollkommen in den Stein nach DE 10 2012 015 026 A1 eingedrungen ist (Fig. 5). Im Tiegel 4 aus dem FSM- Stein 10 ist hingegen noch die vollständige erstarrte Kupferschmelze 8 zu finden. Es ist fast nichts in den Stein eingedrungen.
Der erfindungsgemäße Stein weist daher gegenüber dem Stein nach DE 10 2012 015 026 A1 folgende Vorteile auf:
- anwendungstechnisch: der erfindungsgemäße-Stein wird nicht von sulfidischer Matteschmelze und Kupferoxid-Eisenoxid-Schmelze penetriert und verschleißt daher durch die höhere thermomechanische Beständigkeit langsamer ais ein Stein nach DE 10 2012 015 026 A1.

Claims

Patentansprüche 1. Feuerfestes Erzeugnis in Form eines trockenen, mineralischen Versatzes aus feuerfesten mineralischen Werkstoffen, werkstoffmäßig derart zusammengestellt, dass daraus feuerfeste, gegen fayalitische Schlacken, sulfidische Schmelzen (Matten), Sulfate und Buntmetallschmelzen langfristig beständige Produkte für eine feuerseitige Auskleidung von Buntmetall- industrieschmelzöfen erstellt werden können, und mindestens aufweisend:
- mindestens einen grobkörnigen Olivinrohstoff als Hauptkomponente
- Magnesiamehl (MgO-Mehl)
- mindestens einen feuerfesten, während des Schmelzprozes- ses (in situ) auf Buntmetalloxidschmelzen und/oder Buntmetalleisenoxidschmelzen reduzierend und zu Buntmetallschmelzen konvertierend wirkenden Reaktionsstoff.
2. Erzeugnis nach Anspruch 1 ,
dadurch g e k e n n z e i c h n e t , dass
der Reaktionsstoff feinteiliger Kohlenstoff, insbesondere Graphit und/oder Ruß und/oder Anthrazit und/oder Koks, vorzugsweise aber Graphit ist.
3. Erzeugnis nach Anspruch 1 und/oder 2,
g e k e n n z e i c h n e t durch folgende Trockenstoff- Zusammensetzungen:
- 15 bis 74, insbesondere 30 bis 65 Gew.-% Olivinrohstoff, insbesondere mit über 70, insbesondere über 75 Gew.-% Forsterit,
- 25 bis 55, insbesondere 30 bis 50 Gew.-% Magnesiamehl, insbesondere mit > 90, insbesondere > 95 Gew.-% MgO,
- 1 bis 30, insbesondere 5 bis 20 Gew.-% Reaktionsstoff.
4. Erzeugnis nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass
zusätzlich der Versatz SiC, vorzugsweise in Mengen bis 15, insbesondere bis 10 Gew.-% enthält.
5. Erzeugnis nach einem oder mehreren der Ansprüche 1 bis 4,
dadurch gekennzeichnet, dass
zusätzlich der Versatz mindestens eine feinteilige, bei Wasserzugabe zum Versatz mit dem MgO-Mehl zu Magnesiumsifikathydratphasen reagierende Kieselsäure, vorzugsweise in Mengen bis 10, insbesondere 0,5 bis 6 Gew.-% enthält.
6. Erzeugnis nach einem oder mehreren der Ansprüche 1 bis 5,
dadurch gekennzeichnet, dass
zusätzlich der Versatz mindestens ein an sich bekanntes Bindemittel für feuerfeste Produkte in trockener, feinteiliger Form, vorzugsweise in Mengen bis 10, insbesondere bis 6 Gew.-% enthält.
7. Versatz nach Anspruch 6,
dadurch gekennzeichnet, dass
das Bindemittel ein kohlenstoffhaltiges Bindemittel, insbesondere Teer und/oder Pech, vorzugsweise aber ein Kunstharzbindemittel ist.
8. Erzeugnis in Form eines geformten feuerfesten Steins, hergestellt aus ei- nem feuerfesten Versatz nach einem oder mehreren der Ansprüche 1 bis
7 durch Mischen des Versatzes mit Wasser und/oder einem flüssigen Bindemittel für feuerfeste Produkte zu einer formbaren Frischmasse und Pressen der Frischmasse und vorzugsweise Trocknung und/oder Temperung des Steins, wobei der Stein im Steingefüge mindestens die Bestand- teile nach einem oder mehreren der Ansprüche 1 bis 5 aufweist.
9. Erzeugnis nach Anspruch 8, aufweisend mindestens eine aus dem Bindemittel für feuerfeste Produkte erhärtete, die Versatzkörner fest verbindende Bindemittelphase.
10. Erzeugnis nach Anspruch 8 und/oder 9,
dadurch gekennzeichnet, dass
der Stein keramisch gebrannt ist und Sinterbrücken zwischen Versatzkörnern aufweist.
11. Erzeugnis nach einem oder mehreren der Ansprüche 8 bis 10,
dadurch gekennzeichnet, dass
die Bindemittelphase ein Koksgerüst aufweist.
12. Erzeugnis nach Anspruch 8 und/oder 9 sowie 11 ,
dadurch gekennzeichnet, dass
die Bindemittelphase Magnesiumsilikathydrat aufweist.
13. Feuerfestes Erzeugnis in Form eines feuerseitigen feuerfesten Mauerwerks in einem Buntmetaliindustrieschmelzofen, insbesondere in einem Kupferschmelzofen, gemauert aus feuerfesten Steinen gemäß einem oder mehreren der Ansprüche 8 bis 12.
14. Feuerfestes Erzeugnis in Form einer monolithischen feuerseitigen feuerfesten Auskleidung eines Buntmetallindustrieschmelzofens, insbesondere eines Kupferschmelzofens, hergestellt durch Mischen eines Versatzes nach einem oder mehreren der Ansprüche 1 bis 7 mit Wasser und/oder einem flüssigen Bindemittel für feuerfeste Produkte zu einer Frischmasse, feuerseitiges Auskleiden der Innenwandung des Buntmetallindustrieschmelzofens mit der Frischmasse und vorzugsweise Trocknung und/oder Temperung der Auskleidung.
EP15816693.4A 2014-12-22 2015-12-10 Feuerfeste erzeugnisse und ihre verwendung Withdrawn EP3237357A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014019351.9A DE102014019351A1 (de) 2014-12-22 2014-12-22 Feuerfeste Erzeugnisse und ihre Verwendung
PCT/EP2015/079307 WO2016102197A1 (de) 2014-12-22 2015-12-10 Feuerfeste erzeugnisse und ihre verwendung

Publications (1)

Publication Number Publication Date
EP3237357A1 true EP3237357A1 (de) 2017-11-01

Family

ID=55025013

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15816693.4A Withdrawn EP3237357A1 (de) 2014-12-22 2015-12-10 Feuerfeste erzeugnisse und ihre verwendung

Country Status (12)

Country Link
US (1) US10207955B2 (de)
EP (1) EP3237357A1 (de)
JP (1) JP6574254B2 (de)
CN (1) CN107108369B (de)
AU (1) AU2015371495B2 (de)
BR (1) BR112017013157A2 (de)
CA (1) CA2971767C (de)
CL (1) CL2017001598A1 (de)
DE (1) DE102014019351A1 (de)
MX (1) MX2017008256A (de)
RU (1) RU2693110C2 (de)
WO (1) WO2016102197A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013010854A1 (de) * 2013-06-28 2014-12-31 Refratechnik Holding Gmbh Feuerfester Versatz und seine Verwendung
CN105565794B (zh) * 2015-12-16 2019-04-23 淄博市鲁中耐火材料有限公司 一种低导热镁铝尖晶石砖的制备方法
ES2899921T3 (es) * 2017-12-19 2022-03-15 Refractory Intellectual Property Gmbh & Co Kg Mezcla refractaria, un procedimiento para la fabricación de un producto cerámico refractario no moldeado a partir de la mezcla así como un producto cerámico refractario no moldeado obtenido mediante el procedimiento
CN108455973B (zh) * 2017-12-27 2022-09-06 中色(宁夏)东方集团有限公司 一种冶炼钒铁合金的直筒炉炉衬的制造方法
MX2021009952A (es) 2019-02-20 2021-10-13 Intocast Ag Mezcla refractaria y aglutinante para la misma, metodo para su produccion y su uso.
DE102019001214A1 (de) * 2019-02-20 2020-08-20 Intocast Ag Feuerfestmasse und Bindemittel dafür, Verfahren zur deren Herstellung sowie Verwendung
JP7477643B2 (ja) * 2020-04-22 2024-05-01 ダニエリ アンド チ.オフィチーネ メカーニク エッセピア 金属製品用のコーティング組成物および関連する方法
WO2021214802A1 (en) * 2020-04-22 2021-10-28 Danieli & C. Officine Meccaniche S.P.A. Coated metallic product
RU2742265C1 (ru) * 2020-07-29 2021-02-04 Акционерное общество «Обнинское научно-производственное предприятие «Технология» им. А.Г.Ромашина» Сырьевая смесь для изготовления огнеупорных изделий
CN111995375B (zh) * 2020-08-07 2022-02-01 湖南鑫玺新材料有限公司 一种矿热炉用镁质环保炮泥及其制备方法
CN111960833A (zh) * 2020-08-26 2020-11-20 廊坊森德科技有限公司 一种环保型干式振动结合剂
JP7024147B1 (ja) 2021-08-06 2022-02-22 黒崎播磨株式会社 焼成炉用の乾式吹付材
CN113845364A (zh) * 2021-11-05 2021-12-28 瑞泰科技股份有限公司 一种方镁石-镁橄榄石质高温喷涂料
EP4448467A1 (de) * 2021-12-16 2024-10-23 OLIMENT ® GmbH Bewehrter magnesium-silikat-hydratverbundwerkstoff
CN115141005A (zh) * 2022-06-22 2022-10-04 北京钢研新冶工程技术中心有限公司 含Mg2+增强MgO-SiO2-H2O系结合不定形耐火浇注料及制备方法
TW202404927A (zh) * 2022-07-21 2024-02-01 法商卡德利斯耐火材料工業股份有限公司 用於分鋼槽之鎂質耐火止擋件的製造方法
CN117902881B (zh) * 2024-03-20 2024-06-14 锦州恒泰特种合金有限公司 一种用于钛铁合金真空熔炼捣打炉衬的复合耐火材料及其应用

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3248239A (en) 1963-04-19 1966-04-26 Gen Refractories Co Process of making magnesia chrome refractory brick of increased strength at elevated temperatures
JPS5742570A (en) * 1980-08-22 1982-03-10 Kurosaki Refractories Co Refractories for nonferrous metal manufacture
JPS58125659A (ja) * 1982-01-13 1983-07-26 新日本製鐵株式会社 溶融金属容器
DE3306423A1 (de) * 1983-02-24 1984-08-30 Didier-Werke Ag, 6200 Wiesbaden Ungebranntes feuerfestes bauteil in form einer platte fuer die verlorene auskleidung von metallurgischen gefaessen
AT385031B (de) 1985-03-19 1988-02-10 Veitscher Magnesitwerke Ag Rieselfaehige, plastische, kohlenstoffhaltige, feuerfeste masse
US5250479A (en) 1992-04-16 1993-10-05 Vesuvius Crucible Company Magnesia-carbon refractory compositions for slide gate plates and method of manufacture
US5262367A (en) 1992-11-25 1993-11-16 Indresco Inc. MgO-C brick containing a novel graphite
DE19925591C2 (de) 1999-06-04 2002-01-17 Refratechnik Holding Gmbh & Co Feuerfester Versatz, Formkörper hieraus und Verfahren zur Herstellung des Formkörpers
JP4187183B2 (ja) * 2001-11-30 2008-11-26 Jfe炉材株式会社 マグネシア−カーボンれんが
WO2005001359A1 (de) 2003-06-30 2005-01-06 Refratechnik Holding Gmbh Feuerfestes mauerwerk sowie feuerfeste steine zur herstellung des mauerwerks
DE102006007781B4 (de) * 2006-02-20 2008-09-25 Refratechnik Holding Gmbh Grobkeramischer feuerfester Versatz sowie feuerfestes Erzeugnis daraus
DE102006031700A1 (de) * 2006-07-08 2008-01-10 Refratechnik Holding Gmbh Verfahren für die Herstellung von basischen, kohlestoffhaltigen Erzeugnissen durch Gießformgebung und/oder bildsame Formgebung
DE202007018373U1 (de) 2007-03-07 2008-08-21 Refratechnik Holding Gmbh Feuerfester kohlenstoffgebundener Magnesiastein
CN101148362A (zh) * 2007-09-03 2008-03-26 武汉科技大学 一种镁橄榄石-碳质耐火砖及其制备方法
CN101328070B (zh) * 2008-07-10 2011-03-23 武汉科技大学 含镁橄榄石-C的MgO-SiC-C质耐火材料及其制备方法
RU2424213C1 (ru) * 2010-03-16 2011-07-20 Общество С Ограниченной Ответственностью "Группа "Магнезит" Огнеупорная торкрет-масса
CN102167569B (zh) * 2010-12-28 2013-07-31 高树森 矾土基纳米复合氧化物陶瓷结合Al2O3-MgO-C不烧制品及其制备方法
DE102012015026A1 (de) 2012-07-27 2014-01-30 Refratechnik Holding Gmbh Feuerfestes Erzeugnis und Verwendung des Erzeugnisses
DE102013008855B9 (de) 2013-05-23 2015-04-23 Refratechnik Holding Gmbh Graphithaltiges feuerfestes Erzeugnis und Verfahren zu seiner Herstellung
RS54129B1 (en) 2013-06-10 2015-12-31 Refractory Intellectual Property Gmbh & Co. Kg Batch Composition for the Production of Non-Formed Refractory Ceramics
DE102013010854A1 (de) * 2013-06-28 2014-12-31 Refratechnik Holding Gmbh Feuerfester Versatz und seine Verwendung
EA036340B1 (ru) 2013-08-05 2020-10-28 Имертеш Сас Литьевые огнеупорные составы и их использование в формировании и восстановлении монолитных огнеупорных футеровок
DE202013012201U1 (de) * 2013-12-10 2015-08-03 Refratechnik Holding Gmbh Grobkeramisches feuerfestes Erzeugnis

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2016102197A1 *

Also Published As

Publication number Publication date
WO2016102197A1 (de) 2016-06-30
MX2017008256A (es) 2017-10-02
JP6574254B2 (ja) 2019-09-11
RU2017126129A3 (de) 2019-01-24
JP2018505834A (ja) 2018-03-01
AU2015371495A1 (en) 2017-07-27
CN107108369A (zh) 2017-08-29
CA2971767A1 (en) 2016-06-30
AU2015371495B2 (en) 2019-05-02
BR112017013157A2 (pt) 2018-01-02
DE102014019351A1 (de) 2016-06-23
RU2017126129A (ru) 2019-01-24
CL2017001598A1 (es) 2018-04-02
CA2971767C (en) 2019-12-31
CN107108369B (zh) 2020-08-25
US10207955B2 (en) 2019-02-19
US20170341984A1 (en) 2017-11-30
RU2693110C2 (ru) 2019-07-01

Similar Documents

Publication Publication Date Title
WO2016102197A1 (de) Feuerfeste erzeugnisse und ihre verwendung
EP3013769B1 (de) Feuerfester versatz und seine verwendung
EP3237356B1 (de) Verwendung feuerfester erzeugnisse
EP2877437B1 (de) Feuerfestes erzeugnis und verwendung des erzeugnisses
EP1986978A2 (de) Grobkeramischer feuerfester versatz sowie feuerfestes erzeugnis daraus
EP0940376A1 (de) Basische freifliessende Giessmasse und daraus hergestellte Formteile
EP1234807B1 (de) Feuerfester Formkörper mit erhöhter Alkalibeständigkeit
DE1571359A1 (de) Feuerfeste Schmelzgusskoerper
DE102004010740C5 (de) Feuerfester keramischer Versatz und dessen Verwendung
BR112017013141B1 (pt) Uso de um produto na forma de um tijolo moldado refratário para a construção de uma alvenaria refratária ao lado do fogo de um forno industrial de fundição de metais não ferrosos, e uso de um produto refratário como um revestimento monolítico refratário ao lado do fogo
DE1811513A1 (de) Feuerfestes Futter fuer metallurgische OEfen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170706

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181122

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: REFRATECHNIK HOLDING GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20210511