WO2009022751A1 - 火花点火式内燃機関 - Google Patents

火花点火式内燃機関 Download PDF

Info

Publication number
WO2009022751A1
WO2009022751A1 PCT/JP2008/064680 JP2008064680W WO2009022751A1 WO 2009022751 A1 WO2009022751 A1 WO 2009022751A1 JP 2008064680 W JP2008064680 W JP 2008064680W WO 2009022751 A1 WO2009022751 A1 WO 2009022751A1
Authority
WO
WIPO (PCT)
Prior art keywords
expansion ratio
valve
exhaust
compression ratio
engine load
Prior art date
Application number
PCT/JP2008/064680
Other languages
English (en)
French (fr)
Inventor
Daisuke Akihisa
Daisaku Sawada
Eiichi Kamiyama
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US12/672,143 priority Critical patent/US8356582B2/en
Priority to DE112008002190.2T priority patent/DE112008002190B4/de
Priority to CN2008801028219A priority patent/CN101779024B/zh
Publication of WO2009022751A1 publication Critical patent/WO2009022751A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/02Varying compression ratio by alteration or displacement of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0226Variable control of the intake valves only changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a spark ignition internal combustion engine.
  • variable compression ratio mechanism that can change the mechanical compression ratio
  • a variable valve mechanism that can control the closing timing of the intake valve, and supercharged by a turbocharger during engine high load operation and engine high load operation
  • the mechanical compression ratio is increased and the intake valve closing timing is delayed as the engine load decreases while the actual compression ratio is kept constant.
  • a spark ignition type internal combustion engine is known (see, for example, Japanese Patent Laid-Open No. 2000-0 2 1 8 5 2).
  • the mechanical compression ratio is increased and the closing timing of the intake valve is delayed during the engine medium load operation, so that the fuel consumption during the engine medium load operation is improved and the engine high load is increased.
  • the mechanical compression ratio is lowered and the closing timing of the intake valve is advanced, so that the output torque during engine high-load operation is increased.
  • variable compression ratio mechanism and the variable valve mechanism are controlled so that the actual compression ratio becomes constant. Specifically, the closing timing of the intake valve is determined so that the amount of intake air corresponding to the engine load is reached, and the mechanical compression ratio is set so that the actual compression ratio becomes constant based on the closing timing of the intake valve. Will be determined.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a spark-ignition internal combustion engine with high thermal efficiency.
  • the present invention provides a spark ignition type internal combustion engine described in each of the claims as means for solving the above-mentioned problems.
  • variable expansion ratio mechanism capable of changing a mechanical expansion ratio and an exhaust variable valve mechanism capable of changing a valve opening timing of the exhaust valve, and the mechanical expansion ratio decreases as the engine load decreases.
  • the mechanical expansion ratio and the exhaust valve opening timing are set according to the engine load so that the exhaust valve opening timing is retarded to the exhaust bottom dead center.
  • the thermal efficiency can be increased.
  • the mechanical expansion ratio is increased, the amount of intake air is reduced, and if the opening timing of the exhaust valve is retarded to the bottom dead center side of the exhaust gas, exhaust gas escape will worsen. For this reason, if the actual expansion ratio is increased during high engine load operation, sufficient engine output cannot be obtained.
  • the mechanical expansion ratio and the opening timing of the exhaust valve are set according to the engine load. For this reason, it is possible to increase the actual expansion ratio so as to increase the thermal efficiency during low engine load operation and to maintain the actual expansion ratio low so that sufficient engine output can be obtained during high engine load operation. So that sufficient engine output can be obtained. The thermal efficiency can be increased.
  • the thermal efficiency can be increased as compared with the case where the mechanical expansion ratio is set so that the actual compression ratio is constant.
  • the maximum value of the mechanical expansion ratio is 20 or more.
  • the mechanical expansion ratio is controlled to be substantially constant when the actual engine load is lower than the reference load.
  • the reference load is an engine load when the mechanical expansion ratio is maximized.
  • the fifth aspect of the present invention further includes an intake variable valve mechanism that can change the closing timing of the intake valve, and moves the closing timing of the intake valve away from the intake bottom dead center as the engine load decreases. I tried to make it.
  • the ignition timing is retarded.
  • the thermal efficiency can be increased as compared with the case where the mechanical expansion ratio is set so that the actual compression ratio is constant.
  • Figure 1 is an overall view of a spark ignition internal combustion engine.
  • FIG. 2 is an exploded perspective view of the variable compression ratio mechanism.
  • 3A and 3B are schematic side sectional views of the internal combustion engine.
  • FIG. 4 is a view showing a variable valve mechanism.
  • 5A and 5B are diagrams showing the lift amount of the intake valve.
  • 6A and 6B are diagrams for explaining the mechanical compression ratio and the actual compression ratio.
  • 7A and 7B are diagrams for explaining the mechanical expansion ratio and the actual expansion ratio.
  • Fig. 8 shows the relationship between theoretical thermal efficiency and expansion ratio.
  • 9A and 9B are diagrams for explaining a normal cycle and an ultra-high expansion ratio cycle.
  • Fig. 10 is a diagram showing changes in the mechanical compression ratio etc. according to the engine load.
  • Fig. 11 is a diagram showing changes in the mechanical expansion ratio etc. according to the engine load.
  • Fig. 1 2A and Fig. 1 2 B is a diagram for explaining a procedure for setting a mechanical expansion ratio and the like.
  • FIG. 10 is a diagram showing changes in the mechanical compression ratio etc. according to the engine load.
  • Fig. 11 is a diagram showing changes in the mechanical expansion ratio etc. according to the engine load.
  • Fig. 1 2A and Fig. 1 2 B is a diagram for explaining a procedure for setting a mechanical expansion ratio and the like.
  • FIG. 13 is a flowchart showing a control routine for operation control of the internal combustion engine.
  • FIG. 14A to FIG. 14D are diagrams showing maps for calculating the target mechanical compression ratio and the like.
  • Figure 1 shows a side cross-sectional view of a spark ignition internal combustion engine.
  • 1 is a crankcase
  • 2 is a cylinder block
  • 3 is a cylinder head
  • 4 is a piston
  • 5 is a combustion chamber
  • 6 is a spark plug placed in the center of the top surface of the combustion chamber 5
  • 7 Is an intake valve
  • 8 is an intake port
  • 9 is an exhaust valve
  • 10 is an exhaust port.
  • the intake port 8 is connected to the surge tank 1 2 via the intake branch pipe 1 1, and each intake branch pipe 1 1 1 is provided with a fuel injection valve 13 for injecting fuel into the corresponding intake port 8.
  • the fuel injection valve 13 may be arranged in each combustion chamber 5 instead of being attached to each intake branch pipe 11.
  • the surge tank 1 2 is connected to the outlet of the compressor 15 5 a of the exhaust turbocharger 15 via an intake duct 14, and the inlet of the compressor 15 5 a is connected to an intake air amount detector 1 6 using, for example, heat rays.
  • an intake air amount detector 1 6 using, for example, heat rays.
  • the exhaust port 10 is connected to the inlet of the exhaust turbine 15 b of the exhaust turbocharger 15 via the exhaust manifold 20, and the outlet of the exhaust evening bin 15 b is exhausted via the exhaust pipe 21.
  • catalyst converter 2 2 Connected to catalyst converter 2 2 with built-in purification catalyst.
  • An air-fuel ratio sensor 2 3 is disposed in the exhaust pipe 2 1.
  • the piston 4 is compressed by changing the relative position of the crankcase 1 and the cylinder block 2 in the cylinder axial direction at the connecting portion between the crankcase 1 and the cylinder block 2.
  • a variable compression ratio mechanism A capable of changing the volume of the combustion chamber 5 when located at the top dead center is provided.
  • an intake variable valve mechanism B that can change the valve characteristic of the intake valve 7
  • an exhaust variable valve mechanism C that can change the valve characteristic of the exhaust valve 9 are provided.
  • the electronic control unit 30 consists of a digital computer and is connected to each other by a bidirectional bus 3 1, ROM (read only memory) 3 2, RAM (random access memory) 3 3, CPU (microphone processor) 3 4, It has input port 3 5 and output port 3 6.
  • ROM read only memory
  • RAM random access memory
  • CPU microphone processor
  • the output signal of the intake air amount detector 1 6 and the output signal of the air-fuel ratio sensor 2 3 are input to the input port 3 5 via the corresponding AD converter 3 7.
  • the accelerator pedal 4 0 has the accelerator pedal 4 A load sensor 41 that generates an output voltage proportional to the depression amount of 0 is connected, and the output voltage of the load sensor 41 is input to the input port 35 via the corresponding AD converter 37.
  • crank angle sensor 42 that generates an output pulse every time the crankshaft rotates, for example, 30 ° is connected to the input port 35.
  • the output port 36 is connected to the spark plug 6, the fuel injection valve 13, the throttle valve driving actuator 18 and the variable compression ratio mechanism A through the corresponding drive circuit 3 8.
  • FIG. 2 is an exploded perspective view of the variable compression ratio mechanism A shown in FIG. 1, and FIGS. 3A and 3B are side sectional views of the internal combustion engine schematically shown.
  • a plurality of protrusions 50 spaced from each other are formed below both side walls of the cylinder block 2, and each of the protrusions 50 has a circular cam insertion hole. 5 1 is formed.
  • a cam insertion hole 53 having a circular cross section is also formed in 52.
  • a pair of cam shafts 5 4 and 5 5 are provided, and every other cam shaft 5 4 and 5 5 is rotatably inserted into each cam insertion hole 51.
  • the circular cam 5 6 is fixed.
  • These circular cams 56 are coaxial with the rotational axes of the cam shafts 5 4 and 5 5.
  • an eccentric shaft 5 7 that is eccentrically arranged with respect to the rotation axis of each of the cam shafts 5 4 and 5 5 extends between the circular cams 5 6 as shown by hatching in FIGS. 3A and 3B.
  • another circular cam 58 is eccentrically mounted. As shown in FIG.
  • the circular cams 58 are disposed between the circular cams 56, and the circular cams 58 are rotatably inserted into the corresponding cam insertion holes 53.
  • the circular cams 56 fixed on the camshafts 5 4 and 5 5 are rotated in opposite directions as shown by solid line arrows in FIG. 3A from the state shown in FIG. 5 7 moves toward the lower center so that the circular cam 5 8 rotates in the opposite direction to the circular cam 5 6 in the cam insertion hole 5 3 as indicated by the broken arrow in FIG.
  • As shown in B when the eccentric shaft 5 7 moves to the lower center, the center of the circular cam 5 8 moves below the eccentric shaft 5 7.
  • crankcase 1 and cylinder block 2 are determined by the distance between the center of circular cam 5 6 and the center of circular cam 5 8 and the center of circular cam 5 6
  • the cylinder block 2 moves away from the crankcase 1 as the distance between the center and the center of the circular cam 58 increases.
  • the volume of the combustion chamber 5 increases when the piston 4 is positioned at the compression top dead center. Therefore, the pistons are rotated by rotating the camshafts 5 4 and 5 5.
  • the volume of the combustion chamber 5 when the ton 4 is located at the compression top dead center can be changed.
  • a pair of worm gears 6 1, 6 with opposite spiral directions are arranged on the rotation shaft of the drive motor 59 to rotate the camshafts 5 4, 5 5 in opposite directions. 2 are attached, and gears 6 3 and 6 4 meshing with the worm gears 6 1 and 6 2 are fixed to end portions of the cam shafts 5 4 and 5 5, respectively.
  • the variable compression ratio mechanism A shown in FIGS. 1 to 3 shows an example, and any type of variable compression ratio mechanism can be used.
  • Fig. 4 shows the camshaft for driving the intake valve 7 in Fig. 1.
  • the intake variable valve mechanism B provided for the cylinder 70 is shown.
  • the variable intake valve mechanism B is attached to one end of the camshaft 70, and the force phase changer B1 for changing the cam phase of the camshaft 70, and the camshaft 70
  • the cam working angle changing portion B 2 is arranged between the valve operating valve 26 and the valve lift 26 of the intake valve 7 and changes the cam working angle of the cam shaft 70 to a different working angle and transmits it to the intake valve 7.
  • the cam working angle changing portion B 2 a side sectional view and a plan view are shown in FIG.
  • the cam phase changing portion B 1 of the intake variable valve mechanism B will be described.
  • the cam phase changing portion B 1 is rotated by the crankshaft of the engine in the direction of the arrow through the timing belt.
  • 7 1 a cylindrical housing 7 2 that rotates together with the timing pulley 7 1, a rotating shaft 7 3 that rotates together with the camshaft 70 and that can rotate relative to the cylindrical housing 7 2, and a cylinder
  • a plurality of partition walls 7 4 extending from the inner peripheral surface of the cylindrical housing 7 2 to the outer peripheral surface of the rotary shaft 7 3, and the inner wall of the cylindrical housing 7 2 from the outer peripheral surface of the rotary shaft 7 3 between the partition walls 74
  • a vane 75 extending to the peripheral surface is provided, and an advance hydraulic chamber 7 6 and a retard hydraulic chamber 7 7 are formed on both sides of each vane 75, respectively.
  • the hydraulic oil supply control to each of the hydraulic chambers 7 6 and 7 7 is performed by a hydraulic oil supply control valve 7 8.
  • the hydraulic oil supply control valve 7 8 includes hydraulic ports 7 9 and 80 connected to the hydraulic chambers 7 6 and 7 7, a hydraulic oil supply port 8 2 discharged from the hydraulic pump 8 1, and A pair of drain ports 8 3, 8 4 and a spool valve 85 for controlling communication between the ports 79, 80, 82, 83, 84 are provided.
  • spool valve 85 When the cam phase of camshaft 70 should be advanced, spool valve 85 is moved downward in Fig. 4 and supplied from supply port 82. The supplied hydraulic fluid is supplied to the advance hydraulic chamber 7 6 through the hydraulic port 79 and the hydraulic fluid in the retard hydraulic chamber 7 7 is discharged from the drain port 84. At this time, the rotary shaft 7 3 is rotated relative to the cylindrical housing 7 2 in the direction of the arrow X.
  • the cam phase change unit B 1 can advance or retard the cam phase of the cam shaft ⁇ 0 by a desired amount as shown in FIG. 5A. That is, the cam phase changing unit B 1 can arbitrarily advance or retard the closing timing of the intake valve 7.
  • This cam working angle changing portion B 2 of the intake variable valve mechanism B will be described.
  • This cam working angle changing portion B 2 is arranged in parallel with the cam shaft 70 and is also provided by Therefore, the control rod 90 can be moved in the axial direction, and can slide on the axially extending spline 9 3 formed on the control rod 90 and engaging the cam 92 of the cam shaft 70.
  • an intermediate cam 94 which is fitted to the control valve 90, and a spirally extending spline 95 formed on the control rod 90 to engage the valve lift 26 to drive the intake valve 7.
  • the swinging force 9 6 is slidably fitted, and the cam 9 7 is formed on the swinging cam 9 6. ing.
  • the intermediate cam 94 When the camshaft 90 is rotated, the intermediate cam 94 is always swung by a certain angle by the cam 92, and at this time, the rocking cam 96 is also swung by a certain angle.
  • the intermediate cam 94 and the swing cam 96 are supported so as not to move in the axial direction of the control rod 90, and accordingly, the control rod 90 is moved in the axial direction by the actuator 9 1.
  • the swing cam 96 is rotated relative to the intermediate cam 94.
  • the valve opening period and lift amount of the intake valve 7 are as shown by c in FIG. It becomes even smaller.
  • the valve opening period of the intake valve 7 can be arbitrarily changed by changing the relative rotational positions of the intermediate cam 94 and the swing cam 96 according to the action 91.
  • the lift amount of the intake valve 7 becomes smaller as the opening period of the intake valve 7 becomes shorter.
  • valve closing timing of the intake valve 7 can be arbitrarily changed by the cam phase changing portion B 1, and the intake valve 7 can be changed by the cam operating angle changing portion B 2.
  • the valve opening period of the intake valve 7 can be changed arbitrarily, so that both the cam phase changing unit B 1 and the cam working angle changing unit B 2, that is, the intake variable valve mechanism B can be used to close and open the intake valve 7.
  • the period, that is, the opening timing and closing timing of the intake valve 7 can be arbitrarily changed.
  • variable valve mechanism B shown in FIGS. 1 and 4 shows an example, and various types of variable valve mechanisms other than the examples shown in FIGS. 1 and 4 can be used.
  • variable exhaust valve mechanism C basically has the same configuration as the variable intake valve mechanism B, and the opening timing and closing timing of the exhaust valve 9 can be arbitrarily changed.
  • FIGS. 6A, 6B, 7A, and 7B show an engine having a combustion chamber volume of 50 ml and a piston stroke volume of 500 ml for the sake of explanation.
  • the combustion chamber volume represents the volume of the combustion chamber when the piston is located at the compression top dead center.
  • Figure 6A illustrates the mechanical compression ratio.
  • Figure 6B illustrates the actual compression ratio.
  • FIG. 7A illustrates the mechanical expansion ratio.
  • Figure 7B illustrates the actual expansion ratio.
  • FIG. 8 shows the relationship between the theoretical thermal efficiency and the expansion ratio
  • Figs. 9A and 9B show a comparison between the normal cycle that is used properly according to the load and the ultra-high expansion ratio cycle in the present invention. Show. Note that Fig. 8, Fig. 9A, and Fig. 9B show examples in which the mechanical expansion ratio and the actual expansion ratio are the same. Both are explained simply as expansion ratios.
  • Fig. 9A shows the normal cycle when the intake valve closes near bottom dead center and the compression action by piston starts from around compression bottom dead center. ing.
  • the combustion chamber volume is set to 50 ml and the piston stroke volume is set to 500 ml as in the examples shown in FIGS. 6A, 6B, 7A, and 7B. Has been.
  • Fig. 9A shows the normal cycle when the intake valve closes near bottom dead center and the compression action by piston starts from around compression bottom dead center. ing.
  • the combustion chamber volume is set to 50 ml and the piston stroke volume is set to 500 ml as in the examples shown in FIGS. 6A, 6B, 7A, and 7B.
  • the piston stroke volume is set to 500 ml as in the examples shown in FIGS. 6A, 6B, 7A, and 7B. Has been.
  • the solid line in Fig. 8 shows the change in theoretical thermal efficiency in a normal cycle when the actual compression ratio and expansion ratio are almost equal.
  • the theoretical thermal efficiency increases as the expansion ratio increases, that is, as the actual compression ratio increases. Therefore, in order to increase the theoretical thermal efficiency in the normal cycle, the actual compression ratio should be increased.
  • the actual compression ratio can only be increased to a maximum of about 12 by limiting the occurrence of knocking during engine high-load operation, and therefore the theoretical thermal efficiency must be sufficiently high in a normal cycle. I can't.
  • the present inventor has studied to increase the theoretical thermal efficiency by strictly dividing the mechanical compression ratio and the actual compression ratio. As a result, the theoretical thermal efficiency is governed by the expansion ratio. Thus, they found that the actual compression ratio had little effect. In other words, if the actual compression ratio is increased, the explosive force increases, but a large amount of energy is required for compression. Therefore, even if the actual compression ratio is increased, the theoretical thermal efficiency is hardly increased.
  • FIG. 9B shows an example of using the variable compression ratio mechanism A and the intake variable valve mechanism B to increase the expansion ratio while maintaining the actual compression ratio at a low value.
  • variable compression ratio mechanism A reduces the combustion chamber volume from 50 ml to 20 ml.
  • the intake valve closing timing is delayed by the variable intake valve mechanism B until the actual piston stroke volume is reduced from 500 ml to 200 ml.
  • the actual compression ratio is almost 1 1 and the expansion ratio is 1 1 as described above. Compared with this case, only the expansion ratio is 2 6 It can be seen that it has been raised. This is why it is called an ultra-high expansion ratio cycle.
  • the thermal efficiency during engine low load operation It is necessary to improve.
  • the ultra-high expansion ratio cycle shown in FIG. 9B since the actual piston stroke volume during the compression stroke is reduced, the amount of intake air that can be drawn into the combustion chamber 5 is reduced. Therefore, this ultra-high expansion ratio cycle can be used only when the engine load is relatively low. Therefore, according to the present invention, the super high expansion ratio cycle shown in FIG. 9B is used during low engine load operation, and the normal cycle shown in FIG. 9A is used during high engine load operation. This is a basic feature of the present invention.
  • Fig. 10 and Fig. 11 show the overall operation control during steady operation with a low engine speed. The overall operation control will be described below with reference to FIGS. 10 and 11.
  • FIG. 10 shows changes in the mechanical compression ratio, the closing timing of the intake valve 7, the actual compression ratio, the intake air amount, and the opening degree of the throttle valve 19 according to the engine load.
  • the combustion chamber is generally designed so that the three-way catalyst in the catalyst compressor 22 2 can reduce unburned HC, exhaust gas and 1 ⁇ O !
  • the average air-fuel ratio in 5 is feedback controlled to the stoichiometric air-fuel ratio based on the output signal of the air-fuel ratio sensor 23.
  • the normal cycle shown in FIG. 9A is executed during engine high-load operation. Therefore, as shown in FIG. 10, the mechanical compression ratio is lowered at this time, and the closing timing of the intake valve 7 is advanced as shown by the solid line in FIG. At this time, the throttle valve 19 is kept fully open or almost fully open.
  • the volume of the combustion chamber 5 when the piston 4 reaches the compression top dead center is not proportional to the intake air amount. For this reason, in most cases, the actual compression ratio will not be constant regardless of the engine load, but will change according to the engine load. In this embodiment, as shown in FIG. 10, the actual compression ratio is increased as the engine load decreases.
  • the mechanical compression ratio When the engine load is further reduced, the mechanical compression ratio is further increased, and when the mechanical compression ratio reaches the limit mechanical compression ratio that is the structural limit of the combustion chamber 5, the mechanical compression ratio reaches the limit mechanical compression ratio. In the region where the load is lower than the engine load (reference load), the mechanical compression ratio is maintained at the limit mechanical compression ratio. Therefore, the mechanical compression ratio is maximized during low engine load operation. In other words, in the present invention, the mechanical compression ratio is maximized so that the maximum actual expansion ratio can be obtained during engine low load operation. At this time, the actual compression ratio is maintained at substantially the same actual compression ratio as that during medium-high load operation.
  • the closing timing of the intake valve 7 is delayed to the limit closing timing that can control the amount of intake air supplied into the combustion chamber 5 as the engine load decreases.
  • the closing timing of the intake valve 7 is held at the limit closing timing. If the closing timing of the intake valve 7 is held at the limit closing timing, the intake air amount can no longer be controlled depending on the change in the closing timing of the intake valve 7, so the intake air amount can be controlled by some other method. Need to control.
  • the expansion ratio is 26 in the ultra-high expansion ratio cycle shown in FIG. 9B.
  • the higher the expansion ratio the better.
  • the variable compression ratio mechanism A is formed so that the expansion ratio is 20 or more.
  • the mechanical compression ratio is continuously changed according to the engine load.
  • the mechanical compression ratio can be changed in stages according to the engine load.
  • the intake air amount can be controlled regardless of the throttle valve 19 even if the closing timing of the intake valve 7 is advanced as the engine load decreases. Can do. Accordingly, in the embodiment according to the present invention, the closing timing of the intake valve 7 is low when the engine load is low, if both the case indicated by the solid line and the case indicated by the broken line are included in FIG. As a result, it is moved in the direction away from the intake bottom dead center BDC until the limit valve closing timing L 2 that can control the amount of intake air supplied into the combustion chamber 5.
  • Fig. 11 shows changes in the mechanical expansion ratio, the opening timing of the exhaust valve 9 and the actual expansion ratio according to the engine load.
  • the mechanical expansion ratio is the same as the mechanical compression ratio. For this reason, when the normal cycle shown in Fig. 9A is executed during high engine load operation, the mechanical expansion ratio is lowered as shown in Fig. 11 and the opening timing of the exhaust valve 9 is advanced. The Since the opening timing of the exhaust valve 9 is advanced in this way, even if a large amount of exhaust gas is generated in the combustion chamber 5 due to combustion, the exhaust gas can be quickly discharged from the combustion chamber 5. .
  • the exhaust valve 9 opens at or near the exhaust bottom dead center BDC and is the time when the energy of the combustion gas can be transmitted to the piston to the maximum (hereinafter referred to as the piston bottom dead center BDC).
  • the piston bottom dead center BDC simply delayed until referred to as exhaust bottom dead center near BDC, in the region of a load lower than the engine load L 3 when the opening timing of the exhaust valves 9 reaches the vicinity of the exhaust bottom dead center BDC, the exhaust valve The valve closing timing of 9 is maintained near the exhaust bottom dead center BDC.
  • Fig. 1 2 A and Fig. 1 2 B show the procedure for setting target values such as the mechanical expansion ratio and the closing timing of intake valve 7. The procedure for setting the target values for these parameters will be described below with reference to FIGS. 12A and 12B.
  • Fig. 12 A shows the conventional setting procedure for setting the mechanical compression ratio and intake valve closing timing so that the actual compression ratio is constant.
  • the target valve closing timing of the intake valve is first set based on the engine load. This is because the amount of air to be sucked into the combustion chamber 5 (target intake air amount) is determined according to the engine load, so the target valve closing timing of the intake valve is such that the actual intake air amount becomes this target intake air amount. Is set. Thereafter, the target mechanical compression ratio is set based on the target valve closing timing of the intake valve and the target actual compression ratio (the constant actual compression ratio described above).
  • FIG. 12 A shows the conventional setting procedure for setting the mechanical compression ratio and intake valve closing timing so that the actual compression ratio is constant.
  • the target mechanical compression ratio is set so that the thermal efficiency is maximized based only on the engine load.
  • the target closing timing of the intake valve is set based on the engine load in the same way as the conventional setting procedure described above. Therefore, the target mechanical compression ratio and the target valve closing timing of the intake valve are set based on the engine load regardless of the set values of each other.
  • the target throttle opening is set based on the set value and the engine load. As a result, if it is determined that the intake air amount cannot be appropriately controlled only by the closing timing of the intake valve, the intake air amount may be made appropriate by adjusting the throttle opening. it can.
  • the target mechanical compression ratio is set as shown in Fig. 1 2 A, the actual compression ratio can be kept constant, but the mechanical compression ratio cannot be optimized in terms of thermal efficiency. Therefore, thermal efficiency cannot be maximized.
  • the target mechanical compression ratio is set so that the thermal efficiency is maximized based only on the engine load, the thermal efficiency can be increased.
  • the target valve opening timing of the exhaust valve 9 is set based on the engine load or the intake air amount.
  • the thermal efficiency of the internal combustion engine increases as the actual expansion ratio increases as shown in Fig. 8, so the target valve opening timing of the exhaust valve 9 is set near the exhaust bottom dead center BDC from the viewpoint of thermal efficiency. Is preferred.
  • the opening timing of the exhaust valve 9 is preferably earlier from the viewpoint of easy exhaust gas removal. In particular, exhaust gas exhaustion becomes a problem when the amount of intake air is large, that is, during high engine load operation.
  • the opening timing of the exhaust valve 9 is set near the exhaust bottom dead center BDC so that the actual expansion ratio is high. .
  • FIG. 13 is a flowchart showing the control routine of the operation control of the internal combustion engine in the present embodiment.
  • the control routine shown in Fig. 13 is performed by interruption at a fixed time interval.
  • step S 1 it is determined whether the required load force detected in step S 1 1 has been changed from the previous required load. If it is determined in step S 1 1 that the requested load is not missed, the process proceeds to step S 1 7.
  • step S 1 the giant mechanical compression ratio is calculated based on the load demand detected in step S 11 and the map shown in FIG. 14A.
  • step S 14 the target valve closing timing of the intake valve 7 is calculated based on the detected required load and the map shown in FIG. 14 B. Then, in step s 15, the detected request Load and
  • the target valve closing timing of the intake valve 7 calculated in step S 14 is shown in Fig. 14
  • the giant throttle opening is calculated based on the top shown in C, and in Satsuno S 16 the target opening of the exhaust valve 9 is calculated based on the required load and the map shown in Fig. 14D.
  • the valve timing is calculated, and the process proceeds to step S17.
  • step S 17 the combustion chamber is detected by means of a knock sensor (not shown).
  • step S 18 the ignition timing by the spark plug 6 is retarded by a predetermined angle, and the control routine is terminated. On the other hand, if it is determined that no knocking has occurred, step S 18 is skipped and the control routine is terminated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

火花点火式内燃機関は、機械膨張比を変更可能な可変膨張比機構(A)と、排気弁(9)の開弁時期を変更可能な排気可変動弁機構(C)とを具備する。機械膨張比及び排気弁の開弁時期は、機関負荷が低くなるほど機械膨張比が高くされると共に排気弁の開弁時期が排気下死点側へ遅角されるように、機関負荷に応じて設定される。このように機関負荷に応じて機械膨張比を設定することにより、例えば実圧縮比を一定にするように機械膨張比を設定する場合に比べて熱効率を高めることができる。これにより、熱効率の高い火花点火式内燃機関が提供される。

Description

明 細 書 火花点火式内燃機関 技術分野
本発明は、 火花点火式内燃機関に関する。 背景技術
機械圧縮比を変更可能な可変圧縮比機構と吸気弁の閉弁時期を制 御可能な可変動弁機構とを具備し、 機関中負荷運転時及び機関高負 荷運転時には過給機による過給作用を行い、 且つこれら機関中高負 荷運転時においては実圧縮比を一定に保持した状態で機関負荷が低 くなるにつれて機械圧縮比を増大すると共に吸気弁の閉弁時期を遅 くするようにした火花点火式内燃機関が公知である (例えば特開 2 0 0 4 — 2 1 8 5 2 2号公報を参照) 。
この火花点火式内燃機関によれば、 機関中負荷運転時においては 機械圧縮比が高く され且つ吸気弁の閉弁時期が遅く されるため機関 中負荷運転時における燃費が向上せしめられ、 機関高負荷運転時に おいては機械圧縮比が低く され且つ吸気弁の閉弁時期が早く される ため機関高負荷運転時における出力 トルクが増大せしめられる。
ところで、 上記火花点火式内燃機関では実圧縮比が一定になるよ うに可変圧縮比機構及び可変動弁機構を制御している。 具体的には 、 機関負荷に応じた吸入空気量となるように吸気弁の閉弁時期を決 定し、 この吸気弁の閉弁時期に基づいて実圧縮比が一定となるよう に機械圧縮比を決定することになる。
しかしながら、 このような制御方法では熱効率を十分に向上させ ることはできない。 すなわち、 熱効率を高めるためには機械膨張比 (機械圧縮比に等しい) を可能な限り大きくすることが必要となる 。 しかしながら、 上記制御方法では機械膨張比は最初に決定された 吸気弁の閉弁時期等に応じて従属的に決定されるため、 可能な限り 大きい機械膨張比が設定されるとは限らない。 発明の開示
本発明は、 上記課題に鑑みてなされたものであって、 熱効率の高 い火花点火式内燃機関を提供することを目的とする。
本発明は、 上記課題を解決するための手段として、 請求の範囲の 各請求項に記載された火花点火式内燃機関を提供する。
本発明の 1番目の態様では、 機械膨張比を変更可能な可変膨張比 機構と、 排気弁の開弁時期を変更可能な排気可変動弁機構とを具備 し、 機関負荷が低くなるほど機械膨張比を高くすると共に排気弁の 開弁時期を排気下死点側へ遅角させるように機械膨張比及び排気弁 の開弁時期を機関負荷に応じて設定するようにした。
ここで、 実膨張比を高くすることにより、 すなわち機械膨張比を 高く し且つ排気弁の開弁時期を排気下死点側に遅角させることによ り、 熱効率を高めることができる。 しかしながら、 機械膨張比を高 くすると吸入空気量が減少し、 排気弁の開弁時期を排気下死点側に 遅角させると排気ガスの抜けが悪化する。 このため、 機関高負荷運 転時に実膨張比を高くすると十分な機関出力を得ることができなく なってしまう。
これに対して、 上記態様によれば、 機械膨張比及び排気弁の開弁 時期は機関負荷に応じて設定される。 このため、 機関低負荷運転時 には熱効率が高くなるように実膨張比を高め、 逆に機関高負荷運転 時には十分な機関出力を得られるように実膨張比を低く維持するこ とができるようになり、 よって十分な機関出力を得られるようにし つつ熱効率を高めることができる。
特に、 上記態様によれば、 機関負荷に応じて機械膨張比が設定さ れるため、 実圧縮比を一定にするように機械膨張比を設定する場合 に比べて熱効率を高めることができる。
本発明の 2番目の態様では、 上記機械膨張比の最大値が 2 0以上 である。
本発明の 3番目の態様では、 実際の機関負荷が基準負荷より も低 い場合には機械膨張比をほぼ一定に制御する。
本発明の 4番目の態様では、 上記基準負荷は機械膨張比が最大と されるときの機関負荷である。
本発明の 5番目の態様では、 吸気弁の閉弁時期を変更可能な吸気 可変動弁機構を更に具備し、 機関負荷が低くなるほど吸気弁の閉弁 時期を吸気下死点から離れる方向へ移動させるようにした。
本発明の 6番目の態様では、 ノ ッキングが生じたときには点火時 期を遅角させるようにした。
本発明によれば、 例えば実圧縮比を一定にするように機械膨張比 を設定する場合に比べて、 熱効率を高めることができる。
以下、 添付図面と本発明の好適な実施形態の記載から、 本発明を 一層十分に理解できるであろう。 図面の簡単な説明
図 1 は、 火花点火式内燃機関の全体図である。
図 2 は、 可変圧縮比機構の分解斜視図である。
図 3 A及び図 3 Bは、 図解的に表した内燃機関の側面断面図であ る。
図 4は、 可変動弁機構を示す図である。
図 5 A及び図 5 Bは、 吸気弁のリ フ ト量を示す図である。 図 6 A及び図 6 Bは、 機械圧縮比及び実圧縮比を説明するための 図である。
図 7 A及び図 7 Bは、 機械膨張比及び実膨張比を説明するための 図である。
図 8は、 理論熱効率と膨張比との関係を示す図である。
図 9 A及び図 9 Bは、 通常のサイクル及び超高膨張比サイクルを 説明するための図である。
図 1 0は、 機関負荷に応じた機械圧縮比等の変化を示す図である 図 1 1 は、 機関負荷に応じた機械膨張比等の変化を示す図である 図 1 2 A及び図 1 2 Bは、 機械膨張比等の設定手順について説明 するための図である。
図 1 3は、 内燃機関の運転制御の制御ルーチンを示すフローチヤ 一卜である。
図 1 4 A〜図 1 4 Dは、 目標機械圧縮比等を算出するためのマツ プを示す図である。 発明を実施するための最良の形態
以下、 図面を参照して、 本発明の実施形態について詳細に説明す る。 なお、 図面において、 同一または類似の構成要素には共通の参 照番号を付す。 図 1 は火花点火式内燃機関の側面断面図を示す。
図 1 を参照すると、 1 はクランクケース、 2はシリンダブロック 、 3はシリ ンダヘッ ド、 4はピス トン、 5は燃焼室、 6は燃焼室 5 の頂面中央部に配置された点火プラグ、 7は吸気弁、 8は吸気ポー ト、 9は排気弁、 1 0は排気ポートをそれぞれ示す。 吸気ポート 8 は吸気枝管 1 1 を介してサージタンク 1 2に連結され、 各吸気枝管 1 1 にはそれぞれ対応する吸気ポー ト 8内に向けて燃料を噴射する ための燃料噴射弁 1 3が配置される。 なお、 燃料噴射弁 1 3 は各吸 気枝管 1 1 に取付ける代り に各燃焼室 5内に配置してもよい。
サージタンク 1 2 は吸気ダク ト 1 4を介して排気ターボチャージ ャ 1 5のコンプレッサ 1 5 aの出口に連結され、 コンプレッサ 1 5 aの入口は例えば熱線を用いた吸入空気量検出器 1 6 を介してエア ク リーナ 1 7 に連結される。 吸気ダク ト 1 4内にはァクチユエ一夕 1 8 によって駆動されるスロッ トル弁 1 9が配置される。
一方、 排気ポー ト 1 0は排気マニホルド 2 0 を介して排気ターボ チャージャ 1 5の排気タービン 1 5 bの入口に連結され、 排気夕一 ビン 1 5 bの出口は排気管 2 1 を介して排気浄化触媒を内蔵した触 媒コンバータ 2 2 に連結される。 排気管 2 1 内には空燃比センサ 2 3が配置される。
一方、 図 1 に示した実施形態では、 クランクケース 1 とシリ ンダ ブロック 2 との連結部にクランクケース 1 とシリ ンダブロック 2の シリ ンダ軸線方向の相対位置を変化させることにより ピス トン 4が 圧縮上死点に位置するときの燃焼室 5の容積を変更可能な可変圧縮 比機構 Aが設けられている。 また、 本実施形態では、 吸気弁 7 のバ ルブ特性を変更可能な吸気可変動弁機構 B、 及び排気弁 9のバルブ 特性を変更可能な排気可変動弁機構 Cが設けられている。
電子制御ュニッ ト 3 0 はデジタルコンピュータからなり、 双方向 性バス 3 1 によって互いに接続された R O M (リー ドオンリ メモリ ) 3 2 、 R A M (ランダムアクセスメモリ) 3 3 、 C P U (マイク 口プロセッサ) 3 4、 入力ポー ト 3 5および出力ポー ト 3 6 を具備 する。 吸入空気量検出器 1 6の出力信号および空燃比センサ 2 3の 出力信号はそれぞれ対応する A D変換器 3 7 を介して入力ポー ト 3 5 に入力される。 また、 アクセルペダル 4 0 にはアクセルペダル 4 0の踏込み量に比例した出力電圧を発生する負荷センサ 4 1が接続 され、 負荷センサ 4 1の出力電圧は対応する A D変換器 3 7 を介し て入力ポート 3 5に入力される。 更に入力ポート 3 5にはクランク シャフ トが例えば 3 0 ° 回転する毎に出力パルスを発生するクラン ク角センサ 4 2が接続される。 一方、 出力ポート 3 6は対応する駆 動回路 3 8 を介して点火プラグ 6、 燃料噴射弁 1 3、 スロッ トル弁 駆動用ァクチユエ一夕 1 8および可変圧縮比機構 Aに接続される。
図 2は図 1 に示す可変圧縮比機構 Aの分解斜視図を示しており、 図 3 A及び図 3 Bは図解的に表した内燃機関の側面断面図を示して いる。 図 2を参照すると、 シリ ンダブロック 2の両側壁の下方には 互いに間隔を隔てた複数個の突出部 5 0が形成されており、 各突出 部 5 0内にはそれぞれ断面円形のカム挿入孔 5 1が形成されている 。 一方、 クランクケース 1 の上壁面上には互いに間隔を隔ててそれ ぞれ対応する突出部 5 0の間に嵌合せしめられる複数個の突出部 5 2が形成されており、 これらの各突出部 5 2内にもそれぞれ断面円 形のカム挿入孔 5 3が形成されている。
図 2 に示したように一対のカムシャフ ト 5 4 、 5 5が設けられて おり、 各カムシャフ ト 5 4 、 5 5上には一つおきに各カム揷入孔 5 1内に回転可能に挿入される円形カム 5 6が固定されている。 これ らの円形カム 5 6は各カムシャフ ト 5 4 、 5 5の回転軸線と共軸を なす。 一方、 各円形カム 5 6間には図 3 A及び図 3 Bにおいてハツ チングで示すように各カムシャフ ト 5 4 、 5 5の回転軸線に対して 偏心配置された偏心軸 5 7が延びており、 この偏心軸 5 7上に別の 円形カム 5 8が偏心して回転可能に取付けられている。 図 2 に示し たようにこれら円形カム 5 8は各円形カム 5 6間に配置されており 、 これら円形カム 5 8は対応する各カム挿入孔 5 3内に回転可能に 挿入されている。 図 3 Aに示すような状態から各カムシャフ ト 5 4 、 5 5上に固定 された円形カム 5 6 を図 3 Aにおいて実線の矢印で示したように互 いに反対方向に回転させると偏心軸 5 7が下方中央に向けて移動す るために円形カム 5 8がカム挿入孔 5 3内において図 3 Aの破線の 矢印に示すように円形カム 5 6 とは反対方向に回転し、 図 3 Bに示 したように偏心軸 5 7が下方中央まで移動すると円形カム 5 8の中 心が偏心軸 5 7の下方へ移動する。
図 3 Aと図 3 Bとを比較するとわかるようにクランクケース 1 と シリンダブロック 2の相対位置は円形カム 5 6の中心と円形カム 5 8の中心との距離によって定まり、 円形カム 5 6の中心と円形カム 5 8の中心との距離が大きくなるほどシリ ンダブロック 2はクラン クケース 1から離れる。 シリンダブロック 2がクランクケース 1か ら離れるとピス トン 4が圧縮上死点に位置するときの燃焼室 5の容 積は増大し、 従って各カムシャフ ト 5 4 、 5 5を回転させることに よってピス トン 4が圧縮上死点に位置するときの燃焼室 5の容積を 変更することができる。
図 2 に示したように各カムシャフ ト 5 4 、 5 5をそれぞれ反対方 向に回転させるために駆動モー夕 5 9の回転軸にはそれぞれ螺旋方 向が逆向きの一対のウォームギア 6 1 、 6 2が取付けられており、 これらウォームギア 6 1 、 6 2 と嚙合する歯車 6 3 、 6 4がそれぞ れ各カムシャフ ト 5 4 、 5 5の端部に固定されている。 この実施形 態では駆動モー夕 5 9を駆動することによってピス トン 4が圧縮上 死点に位置するときの燃焼室 5の容積を広い範囲に亘つて変更する ことができる。 なお、 図 1から図 3に示した可変圧縮比機構 Aは一 例を示すものであっていかなる形式の可変圧縮比機構でも用いるこ とができる。
一方、 図 4は図 1 において吸気弁 7 を駆動するためのカムシャフ ト 7 0 に対して設けられている吸気可変動弁機構 Bを示している。 図 4に示したように吸気可変動弁機構 Bはカムシャフ ト 7 0の一端 に取付けられてカムシャフ ト 7 0のカムの位相を変更するための力 ム位相変更部 B 1 と、 カムシャフ ト 7 0 と吸気弁 7 のバルブリ フ夕 2 6 との間に配置されてカムシャフ ト 7 0のカムの作用角を異なる 作用角に変更して吸気弁 7 に伝達するカム作用角変更部 B 2から構 成されている。 なお、 カム作用角変更部 B 2 については図 4 に側面 断面図と平面図とが示されている。
まず初めに吸気可変動弁機構 Bのカム位相変更部 B 1 について説 明すると、 このカム位相変更部 B 1 は機関のクランク軸によりタイ ミングベルトを介して矢印方向に回転せしめられるタイ ミ ングブー リ 7 1 と、 タイミ ングプーリ 7 1 と一緒に回転する円筒状ハウジン グ 7 2 と、 カムシャフ ト 7 0 と一緒に回転し且つ円筒状ハウジング 7 2 に対して相対回転可能な回転軸 7 3 と、 円筒状ハウジング 7 2 の内周面から回転軸 7 3の外周面まで延びる複数個の仕切壁 7 4 と 、 各仕切壁 7 4の間で回転軸 7 3の外周面から円筒状ハウジング 7 2の内周面まで延びるベーン 7 5 とを具備しており、 各べーン 7 5 の両側にはそれぞれ進角用油圧室 7 6 と遅角用油圧室 7 7 とが形成 されている。
各油圧室 7 6 、 7 7への作動油の供給制御は作動油供給制御弁 7 8 によって行われる。 この作動油供給制御弁 7 8 は各油圧室 7 6 、 7 7 にそれぞれ連結された油圧ポー ト 7 9 、 8 0 と、 油圧ポンプ 8 1から吐出された作動油の供給ポー ト 8 2 と、 一対の ドレイ ンポー 卜 8 3 、 8 4 と、 各ポー ト 7 9 、 8 0 、 8 2 、 8 3 、 8 4間の連通 遮断制御を行うスプール弁 8 5 とを具備している。
カムシャフ ト 7 0 のカムの位相を進角すべきときは図 4において スプール弁 8 5が下方に移動せしめられ、 供給ポー ト 8 2から供給 された作動油が油圧ポー ト 7 9 を介して進角用油圧室 7 6 に供給さ れると共に遅角用油圧室 7 7 内の作動油がドレイ ンポー ト 8 4から 排出される。 このとき回転軸 7 3 は円筒状ハウジング 7 2 に対して 矢印 X方向に相対回転せしめられる。
これに対し、 カムシャフ ト 7 0のカムの位相を遅角すべきときは 図 4 においてスプール弁 8 5が上方に移動せしめられ、 供給ポー ト 8 2から供給された作動油が油圧ポー ト 8 0 を介して遅角用油圧室 7 7 に供給されると共に進角用油圧室 7 6内の作動油がドレイ ンポ — ト 8 3から排出される。 このとき回転軸 7 3 は円筒状ハウジング 7 2 に対して矢印 Xと反対方向に相対回転せしめられる。
回転軸 7 3が円筒状ハウジング 7 2 に対して相対回転せしめられ ているときにスプール弁 8 5が図 4に示した中立位置に戻されると 回転軸 7 3の相対回転動作は停止せしめられ、 回転軸 7 3はそのと きの相対回転位置に保持される。 従ってカム位相変更部 B 1 によつ てカムシャフ ト Ί 0のカムの位相を図 5 Aに示したように所望の量 だけ進角又は遅角させることができる。 すなわち、 カム位相変更部 B 1 によって吸気弁 7の閉弁時期を任意に進角又は遅角させること ができることになる。
次に吸気可変動弁機構 Bのカム作用角変更部 B 2 について説明す ると、 このカム作用角変更部 B 2 はカムシャフ ト 7 0 と平行に並列 配置され且っァクチユエ一夕 9 1 によつて軸線方向に移動せしめら れる制御ロッ ド 9 0 と、 カムシャフ ト 7 0のカム 9 2 と係合し且つ 制御ロッ ド 9 0上に形成された軸線方向に延びるスプライ ン 9 3 に 摺動可能に嵌合せしめられている中間カム 9 4 と、 吸気弁 7 を駆動 するためにバルブリ フ夕 2 6 と係合し且つ制御ロッ ド 9 0上に形成 された螺旋状に延びるスプライ ン 9 5 に摺動可能に嵌合する揺動力 ム 9 6 とを具備しており、 揺動カム 9 6上にはカム 9 7が形成され ている。
カムシャフ ト 9 0が回転するとカム 9 2 によって中間カム 9 4が 常に一定の角度だけ揺動せしめられ、 このとき揺動カム 9 6 も一定 の角度だけ揺動せしめられる。 一方、 中間カム 9 4及び揺動カム 9 6 は制御ロッ ド 9 0の軸線方向には移動不能に支持されており、 従 つて制御ロッ ド 9 0がァクチユエ一夕 9 1 によって軸線方向に移動 せしめられたときに揺動カム 9 6は中間カム 9 4に対して相対回転 せしめられることになる。
中間カム 9 4 と揺動カム 9 6 との相対回転位置関係により力ムシ ャフ ト 7 0のカム 9 2が中間カム 9 4 と係合しはじめたときに揺動 カム 9 6 の力ム 9 7がバルブリ フ夕 2 6 と係合しはじめる場合には 図 5 Bにおいて aで示したように吸気弁 7 の開弁期間及びリ フ トは 最も大きくなる。 これに対し、 ァクチユエ一夕 9 1 によって揺動力 ム 9 6が中間カム 9 4に対して図 4の矢印 Y方向に相対回転せしめ られると、 カムシャフ ト 7 0のカム 9 2が中間カム 9 4 に係合した 後、 暫らく してから揺動カム 9 6のカム 9 7がバルブリ フ夕 2 6 と 係合する。 この場合には図 5 Bにおいて bで示したように吸気弁 7 の開弁期間及びリ フ ト量は aに比べて小さくなる。
揺動カム 9 6が中間カム 9 4に対して図 4の矢印 Y方向に更に相 対回転せしめられると図 5 Bにおいて cで示したように吸気弁 7 の 開弁期間及びリ フ ト量は更に小さくなる。 すなわち、 ァクチユエ一 夕 9 1 により 中間カム 9 4 と揺動カム 9 6の相対回転位置を変更す ることによって吸気弁 7 の開弁期間を任意に変えることができる。 ただし、 この場合、 吸気弁 7 のリ フ ト量は吸気弁 7 の開弁期間が短 くなるほど小さくなる。
このようにカム位相変更部 B 1 によって吸気弁 7 の閉弁時期を任 意に変更することができ、 カム作用角変更部 B 2 によって吸気弁 7 の開弁期間を任意に変更することができるのでカム位相変更部 B 1 とカム作用角変更部 B 2 との双方によって、 すなわち吸気可変動弁 機構 Bによって吸気弁 7 の閉弁時期と開弁期間とを、 すなわち吸気 弁 7 の開弁時期と閉弁時期とを任意に変更することができることに なる。
なお、 図 1及び図 4 に示した可変動弁機構 Bは一例を示すもので あって、 図 1及び図 4に示した例以外の種々の形式の可変動弁機構 を用いることができる。 また、 排気可変動弁機構 Cも、 基本的に吸 気可変動弁機構 Bと同様な構成を有し、 排気弁 9 の開弁時期及び閉 弁時期を任意に変更することができる。
次に図 6 A、 図 6 B、 図 7 A及び図 7 Bを参照しつつ本願におい て使用されている用語の意味について説明する。 なお、 図 6 A、 図 6 B、 図 7 A及び図 7 Bには説明のために燃焼室容積が 5 0 m lでピ ス トンの行程容積が 5 0 0 m lであるエンジンが示されており、 これ ら図 6 A、 図 6 B、 図 7 A及び図 7 Bにおいて燃焼室容積とはピス トンが圧縮上死点に位置するときの燃焼室の容積を表している。 図 6 Aは機械圧縮比について説明している。 機械圧縮比は圧縮行 程時のピス トンの行程容積と燃焼室容積のみから機械的に定まる値 であってこの機械圧縮比は (燃焼室容積 +行程容積) Z燃焼室容積 で表される。 図 6 Aに示した例ではこの機械圧縮比は ( 5 0 m l + 5 0 0 m l ) 5 0 m l = 1 1 となる。
図 6 Bは実圧縮比について説明している。 この実圧縮比は実際に 圧縮作用が開始されたときからピス トンが上死点に達するまでの実 際のピス トン行程容積と燃焼室容積から定まる値であってこの実圧 縮比は (燃焼室容積 +実際の行程容積) Z燃焼室容積で表される。 すなわち、 図 6 Bに示したように圧縮行程においてピス トンが上昇 を開始しても吸気弁が開弁している間は圧縮作用は行われず、 吸気 弁が閉弁したときから実際の圧縮作用が開始される。 従って実圧縮 比は実際の行程容積を用いて上記の如く表される。 図 6 Bに示した 例では実圧縮比は ( 5 0 ml+ 4 5 0 ml) ノ 5 0 ml = 1 0 となる。
図 7 Aは機械膨張比について説明している。 機械膨張比は膨張行 程時のビス トンの行程容積と燃焼室容積から定まる値であってこの 機械膨張比は (燃焼室容積 +行程容積) Z燃焼室容積で表される。 図 7 Aに示した例ではこの膨張比は ( 5 0 ml + δ 0 0 ml) / 5 0 ml = 1 1 となる。
図 7 Bは実膨張比について説明している。 この実膨張比はビス ト ンが上死点にあるときから実際の膨張作用が終了するまでの実際の ピス トン行程容積と燃焼室容積から定まる値であってこの実膨張比 は (燃焼室容積 +実際の行程容積) /燃焼室容積で表される。 すな わち、 図 7 Bに示したように膨張行程においてピス トンの下降中で あっても排気弁が開弁されてからは膨張作用は行われず、 排気弁が 開弁するまでに実際の膨張作用が行われる。 従って実膨張比は実際 の行程容積を用いて上記の如く表される。 図 7 Bに示した例では実 膨張比は ( 5 0 ml+ 4 5 0 ml) ノ 5 0 ml= 1 0 となる。
次に図 8、 図 9 A及び図 9 Bを参照しつつ本発明において最も基 本となっている特徴について説明する。 なお、 図 8は理論熱効率と 膨張比との関係を示しており、 図 9 A及び図 9 Bは本発明において 負荷に応じ使い分けられている通常のサイクルと超高膨張比サイク ルとの比較を示している。 なお、 図 8、 図 9 A及び図 9 Bでは、 機 械膨張比と実膨張比とが同一となっている場合の例を示しており、 よって以下では機械膨張比と実膨張比とを分けずに共に単に膨張比 として説明する。
図 9 Aは吸気弁が下死点近傍で閉弁し、 ほぼ圧縮下死点付近から ピス トンによる圧縮作用が開始される場合の通常のサイクルを示し ている。 この図 9 Aに示す例でも図 6 A、 図 6 B、 図 7 A及び図 7 Bに示す例と同様に燃焼室容積が 5 0 mlとされ、 ピス トンの行程容 積が 5 0 0mlとされている。 図 9 Aからわかるように通常のサイク ルでは機械圧縮比は ( 5 0ml+ 5 0 0nil) Z 5 0ml= l lであり、 実圧縮比もほぼ 1 1であり、 膨張比も ( 5 0ml+ 5 0 0ml) / 5 0 ml= 1 1 となる。 すなわち、 通常の内燃機関では機械圧縮比と実圧 縮比と膨張比とがほぼ等しくなる。
図 8における実線は実圧縮比と膨張比とがほぼ等しい場合の、 す なわち通常のサイクルにおける理論熱効率の変化を示している。 こ の場合には膨張比が大きくなるほど、 すなわち実圧縮比が高くなる ほど理論熱効率が高くなることがわかる。 従って通常のサイクルに おいて理論熱効率を高めるには実圧縮比を高くすればよいことにな る。 しかしながら機関高負荷運転時におけるノ ッキングの発生の制 約により実圧縮比は最大でも 1 2程度までしか高くすることができ ず、 斯く して通常のサイクルにおいては理論熱効率を十分に高くす ることはできない。
一方、 このような状況下で本発明者は機械圧縮比と実圧縮比とを 厳密に区分して理論熱効率を高めることについて検討し、 その結果 理論熱効率は膨張比が支配し、 理論熱効率に対して実圧縮比はほと んど影響を与えないことを見出したのである。 すなわち、 実圧縮比 を高くすると爆発力は高まるが圧縮するために大きなエネルギが必 要となり、 斯く して実圧縮比を高めても理論熱効率はほとんど高く ならない。
これに対し、 膨張比を大きくすると膨張行程時にピス トンに対し 押下げ力が作用する期間が長くなり、 斯く してピス トンがクランク シャフ トに回転力を与えている期間が長くなる。 従って膨張比は大 きくすれば大きくするほど理論熱効率が高くなる。 図 8の破線は実 圧縮比を 1 0に固定した状態で膨張比を高く していった場合の理論 熱効率を示している。 このように実圧縮比を低い値に維持した状態 で膨張比を高く したときの理論熱効率の上昇量と、 図 8の実線で示 す如く実圧縮比も膨張比と共に増大せしめられる場合の理論熱効率 の上昇量とは大きな差がないことがわかる。
このように実圧縮比が低い値に維持されているとノ ッキングが発 生することがなく、 従って実圧縮比を低い値に維持した状態で膨張 比を高くするとノ ッキングの発生を阻止しつつ理論熱効率を大巾に 高めることができる。 図 9 Bは可変圧縮比機構 A及び吸気可変動弁 機構 Bを用いて、 実圧縮比を低い値に維持しつつ膨張比を高めるよ うにした場合の一例を示している。
図 9 Bを参照すると、 この例では可変圧縮比機構 Aにより燃焼室 容積が 5 0mlから 2 0mlまで減少せしめられる。 一方、 吸気可変動 弁機構 Bによって実際のビス トン行程容積が 5 0 0 mlから 2 0 0 ml になるまで吸気弁の閉弁時期が遅らされる。 その結果、 この例では 実圧縮比は ( 2 0ml+ 2 0 0 ml) / 2 0ml= l lとなり、 膨張比は ( 2 0 ml + 5 0 0 ml) 2 0ml = 2 6となる。 図 9 Aに示した通常 のサイクルでは前述したように実圧縮比がほぼ 1 1で膨張比が 1 1 であり、 この場合に比べると図 9 Bに示した場合には膨張比のみが 2 6まで高められていることがわかる。 これが超高膨張比サイクル と称される所以である。
前述したように一般的に言って内燃機関では機関負荷が低いほど 熱効率が悪くなり、 従って車両走行時における熱効率を向上させる ためには、 すなわち燃費を向上させるには機関低負荷運転時におけ る熱効率を向上させることが必要となる。 一方、 図 9 Bに示した超 高膨張比サイクルでは圧縮行程時の実際のピス トン行程容積が小さ く されるために燃焼室 5内に吸入しうる吸入空気量は少なくなり、 従ってこの超高膨張比サイクルは機関負荷が比較的低いときにしか 採用できないことになる。 従って本発明では機関低負荷運転時には 図 9 Bに示す超高膨張比サイクルと し、 機関高負荷運転時には図 9 Aに示す通常のサイクルとするようにしている。 これが本発明が基 本としている特徴である。
図 1 0及び図 1 1 は、 機関回転数の低い定常運転時における運転 制御全般について示している。 以下、 これら図 1 0及び図 1 1 を参 照して運転制御全般について説明する。
図 1 0 には、 機関負荷に応じた機械圧縮比、 吸気弁 7 の閉弁時期 、 実圧縮比、 吸入空気量、 スロッ トル弁 1 9の開度の各変化が示さ れている。 なお、 本発明による実施形態では、 触媒コンパ一夕 2 2 内の三元触媒によって排気ガス中の未燃 H C、 じ〇及び1^〇!(を同 時に低減しうるように、 通常、 燃焼室 5内における平均空燃比は空 燃比センサ 2 3の出力信号に基づいて理論空燃比にフィー ドバック 制御されている。
上述したように機関高負荷運転時には図 9 Aに示した通常のサイ クルが実行される。 従って、 図 1 0 に示したようにこのときには機 械圧縮比が低く され、 図 1 0 に実線で示したように吸気弁 7 の閉弁 時期は早められている。 また、 このときにはスロッ トル弁 1 9の開 度は全開又はほぼ全開に保持されている。
一方、 図 1 0 に示したように機関負荷が低くなるとそれに伴って 機械圧縮比が増大される。 また、 機関負荷が低くなると燃焼室 5内 に充填すべき空気量 (目標吸入空気量) が減少するため、 それに伴 つて吸気弁 7 の閉弁時期が遅く される (図 1 0の実線) 。 なお、 こ のときにもスロッ トル弁 1 9 は全開又はほぼ全開に保持されており 、 従って燃焼室 5内に供給される空気量はスロッ トル弁 1 9 によら ずに吸気弁 7 の閉弁時期を変えることによって制御されている。 このとき、 吸気弁 7 の閉弁時期が機関負荷に比例して遅角される のに対して、 機械圧縮比は機関負荷に比例せずに増大される。 換言 すると、 ピス トン 4が圧縮上死点に達したときの燃焼室 5の容積は 吸入空気量に比例しない。 このため、 ほとんどの場合実圧縮比は、 機関負荷にかかわらずに一定になることはなく、 機関負荷に応じて 変化することになる。 本実施形態では、 図 1 0 に示したように機関 負荷が低くなるにつれて実圧縮比が増大せしめられる。
機関負荷が更に低くなると機械圧縮比は更に増大せしめられ、 機 械圧縮比が燃焼室 5の構造上限界となる限界機械圧縮比に達すると 、 機械圧縮比が限界機械圧縮比に達したときの機関負荷 (基準 負荷) より も負荷の低い領域では、 機械圧縮比が限界機械圧縮比に 保持される。 従って、 機関低負荷運転時には機械圧縮比は最大とな る。 別の言い方をすると、 本発明では、 機関低負荷運転時に最大の 実膨張比が得られるように機械圧縮比が最大にされる。 また、 この とき実圧縮比は機関中高負荷運転時とほぼ同じ実圧縮比に維持され る。
一方、 図 1 0 において実線で示したように吸気弁 7 の閉弁時期は 機関負荷が低くなるにつれて燃焼室 5内に供給される吸入空気量を 制御しうる限界閉弁時期まで遅らされ、 吸気弁 7 の閉弁時期が限界 閉弁時期に達したときの機関負荷 L 2より も負荷の低い領域では吸 気弁 7 の閉弁時期が限界閉弁時期に保持される。 吸気弁 7の閉弁時 期が限界閉弁時期に保持されるともはや吸気弁 7 の閉弁時期の変化 によっては吸入空気量を制御しえないので何らかの他の方法によつ て吸入空気量を制御する必要がある。
図 1 0 に示した実施形態では、 このとき、 すなわち吸気弁 7 の閉 弁時期が限界閉弁時期に達したときの機関負荷 L 2より も負荷の低 い領域ではスロッ トル弁 1 9 によって燃焼室 5内に供給される吸入 空気量が制御される。
なお、 上述したように図 9 Bに示す超高膨張比サイクルでは膨張 比が 2 6 とされる。 この膨張比は高いほど好ましいが、 2 0以上で あればかなり高い理論熱効率を得ることができる。 従って、 本発明 では膨張比が 2 0以上となるように可変圧縮比機構 Aが形成されて いる。
また、 図 1 0 に示した例では、 機械圧縮比は機関負荷に応じて連 続的に変化せしめられている。 しかしながら、 機械圧縮比は機関負 荷に応じて段階的に変化させることもできる。
一方、 図 1 0 において破線で示すように機関負荷が低くなるにつ れて吸気弁 7 の閉弁時期を早めることによつてもスロッ トル弁 1 9 によらずに吸入空気量を制御することができる。 従って、 図 1 0 に おいて実線で示される場合と破線で示される場合とをいずれも包含 しうるように表現すると、 本発明による実施形態では吸気弁 7 の閉 弁時期は、 機関負荷が低くなるにつれて、 燃焼室 5内に供給される 吸入空気量を制御しうる限界閉弁時期 L 2まで吸気下死点 B D Cか ら離れる方向に移動せしめられることになる。
図 1 1 には、 機関負荷に応じた機械膨張比、 排気弁 9 の開弁時期 、 実膨張比の各変化が示されている。
図 6 A、 図 6 B、 図 7 A及び図 7 Bからわかるように、 機械膨張 比は機械圧縮比と同一である。 このため、 機関高負荷運転時には図 9 Aに示した通常のサイクルが実行されると、 図 1 1 に示したよう に機械膨張比が低く され、 また排気弁 9の開弁時期は早められてい る。 このように排気弁 9の開弁時期が早められているため、 燃焼に より燃焼室 5内に多量の排気ガスが発生しても迅速に排気ガスを燃 焼室 5内から排出することができる。
一方、 図 1 1 に示したように機関負荷が低くなるとそれに伴って 機械膨張比が増大される。 また、 機関負荷が低くなると燃焼によつ て燃焼室 5内に発生する排気ガス量が少なくなるため、 それに伴つ て排気弁 9の開弁時期が遅く される。 このため、 機関負荷が低くな るにつれて図 7 Bにおける燃焼室容積が小さくなると共に実際の行 程容積が増大せしめられることから、 実膨張比は増大せしめられる 機関負荷が更に低くなつて機械膨張比が限界機械膨張比 (限界機 械圧縮比に等しい) に達すると、 上述したように機械膨張比が限界 膨張比に保持される。 一方、 排気弁 9の開弁時期は機関負荷が低く なるにつれて排気下死点 B D C又はその排気下死点 B D C付近であ つて燃焼ガスのエネルギを最大限ピス トンに伝達することができる 時期 (以下、 単に排気下死点 B D C付近と称す) まで遅らされ、 排 気弁 9の開弁時期が排気下死点 B D C付近に達したときの機関負荷 L 3より も負荷の低い領域では、 排気弁 9の閉弁時期が排気下死点 B D C付近に保持される。
図 1 2 A及び図 1 2 Bは、 機械膨張比、 吸気弁 7 の閉弁時期等の 目標値の設定手順について示している。 以下、 図 1 2 A及び図 1 2 Bを参照してこれらパラメ一夕の目標値の設定手順について説明す る。
図 1 2 Aは、 実圧縮比が一定となるように機械圧縮比及び吸気弁 の閉弁時期を設定する従来の設定手順を示している。 図 1 2 Aから わかるように、 まず機関負荷に基づいて吸気弁の目標閉弁時期が設 定される。 これは、 機関負荷に応じて燃焼室 5内に吸入すべき空気 量 (目標吸入空気量) が定まるため、 実際の吸入空気量がこの目標 吸入空気量となるように吸気弁の目標閉弁時期を設定するものであ る。 その後、 吸気弁の目標閉弁時期と目標実圧縮比 (上記一定の実 圧縮比) とに基づいて目標機械圧縮比が設定される。 一方、 図 1 2 Bは、 本発明の実施形態における機械圧縮比及び吸 気弁 7 の閉弁時期の設定手順を示している。 図 1 2 Bからわかるよ うに、 本発明の実施形態における設定手順では、 機関負荷のみに基 -づいて熱効率が最大となるように目標機械圧縮比が設定される。 吸 気弁の目標閉弁時期は上記従来の設定手順と同様に機関負荷に基づ いて設定される。 したがって、 目標機械圧縮比及び吸気弁の目標閉 弁時期は互いの設定値とは無関係に機関負荷に基づいて設定される 。 吸気弁の目標閉弁時期が設定されると、 その設定値及び機関負荷 に基づいて目標スロッ トル開度が設定される。 これにより、 吸気弁 の閉弁時期のみでは吸入空気量を適切に制御することができないと 判断された場合に、 スロッ トル開度を調整することによって吸入空 気量を適切なものとすることができる。
図 1 2 Aに示したように目標機械圧縮比を設定した場合には、 実 圧縮比を一定とすることはできるが、 熱効率に関してして機械圧縮 比を最適な値とすることはできず、 よって熱効率を最大とすること はできない。 これに対して、 本発明の実施形態によれば、 機関負荷 のみに基づいて熱効率が最大となるように目標機械圧縮比が設定さ れるため、 熱効率を高いものとすることができる。
また、 本発明の実施形態では、 機関負荷又は吸入空気量に基づい て排気弁 9の目標開弁時期が設定される。 ここで、 内燃機関の熱効 率は図 8 に示したように実膨張比が高いほど高くなるため、 熱効率 という観点からは排気弁 9の目標開弁時期は排気下死点 B D C付近 に設定する方が好ましい。 一方、 排気弁 9の開弁時期が遅いと燃焼 室 5内の排気ガスが抜けにく くなるため、 排気ガスの抜け易さとい う観点からは排気弁 9の開弁時期は早いほうが好ましい。 特に、 排 気ガスの抜けが問題になるのは吸入空気量が多い時、 すなわち機関 高負荷運転時であるため、 本発明の実施形態では機関負荷が高いと きには排気弁 9の開弁時期を早く し、 逆に機関負荷が低いときには 実膨張比が高 <なるように排気弁 9 の開弁時期を排気下死点 B D C 付近に設定する ととしている。 これにより、 本発明の実施形 、に よれば、 機関高負荷運転時における機関出力を十分なものとしつつ 熱効率の向上を図ることができる。
図 1 3 は、 本実施形態における内燃機関の運転制御の制御ル ―チ ンを示すフロ ―チヤー 卜である。 図 1 3 に示した制御ルーチンは一 定時間間隔の割 Ό込みによって行われる。
図 1 3 を参照すると、 まずステツプ S 1 1 において負荷センサ 4
1 によつて要求負荷が検出される。 次いで、 ステップ S 1 2 におい て、 ステップ S 1 1 で検出された要求負荷力 前回の要求負荷から変 更されているか否かが判定される。 ステップ S 1 1 において要求負 荷が恋 wされていないと判定された場合には、 ステップ S 1 7へと 進む 方 、 要求負荷が変更されたと判定された場 αに 【3·ステップ
S 1 3へと進む
次いで 、 ステップ S 1 3では、 ステツプ S 1 1 において検出され た 求負荷と図 1 4 Aに示したマツプとに基づいて巨標機械圧縮比 が算出される。 次いで、 ステップ S 1 4では、 検出された要求負荷 と図 1 4 Bに示したマップとに づいて吸気弁 7 の目標閉弁時期が 算出される その後、 ステップ s 1 5では、 検出された要求負荷と
、 ステップ S 1 4で算出された吸気弁 7 の目標閉弁時期と 、 図 1 4
Cに示した Ύップとに基づいて巨標スロッ トル開度が算出され、 ス アツ ノ S 1 6では、 要求負荷と図 1 4 Dに示したマップとに基づい て排気弁 9 の目標開弁時期が算出され、 ステップ S 1 7へと進む。
ステップ S 1 7では、 ノ ックセンサ (図示せず) によつて燃焼室
5内でノ ッキングが発生しているか否かが判定される。 ノ ッキング が発生していると判定された場 αには、 ステップ S 1 8へと進む。 ステップ S 1 8では、 点火プラグ 6による点火時期が所定角度だけ 遅角せしめられ、 制御ルーチンが終了せしめられる。 一方、 ノツキ ングが発生していないと判定された場合にはステップ S 1 8がスキ ップせしめられ、 制御ルーチンが終了せしめられる。
なお、 本発明について特定の実施形態に基づいて詳述しているが 、 当業者であれば本発明の請求の範囲及び思想から逸脱することな く、 様々な変更、 修正等が可能である。

Claims

請 求 の 範 囲
1 . 機械膨張比を変更可能な可変膨張比機構と、 排気弁の開弁時 期を変更可能な排気可変動弁機構とを具備し、 機関負荷が低くなる ほど機械膨張比を高くすると共に排気弁の開弁時期を排気下死点側 へ遅角させるように機械膨張比及び排気弁の開弁時期を機関負荷に 応じて設定するようにした、 火花点火式内燃機関。
2 . 上記機械膨張比の最大値が 2 0以上である、 請求項 1 に記載 の火花点火式内燃機関。
3 . 実際の機関負荷が基準負荷より も低い場合には機械膨張比を ほぼ一定に制御する、 請求項 1 又は 2 に記載の火花点火式内燃機関
4 . 上記基準負荷は機械膨張比が最大とされるときの機関負荷で ある、 請求項 3 に記載の火花点火式内燃機関。
5 . 吸気弁の閉弁時期を変更可能な吸気可変動弁機構を更に具備 し、 機関負荷が低くなるほど吸気弁の閉弁時期を吸気下死点から離 れる方向へ移動させるようにした、 請求項 1〜 4のいずれか 1項に 記載の火花点火式内燃機関。
6 . ノ ッキングが生じたときには点火時期を遅角させるようにし た、 請求項 1 〜 5のいずれか 1項に記載の火花点火式内燃機関。
PCT/JP2008/064680 2007-08-13 2008-08-12 火花点火式内燃機関 WO2009022751A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/672,143 US8356582B2 (en) 2007-08-13 2008-08-12 Spark ignition type internal combustion engine
DE112008002190.2T DE112008002190B4 (de) 2007-08-13 2008-08-12 Verbrennungsmotor der Funkenzündungsart
CN2008801028219A CN101779024B (zh) 2007-08-13 2008-08-12 火花点火式内燃机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007211025A JP4725561B2 (ja) 2007-08-13 2007-08-13 火花点火式内燃機関
JP2007-211025 2007-08-13

Publications (1)

Publication Number Publication Date
WO2009022751A1 true WO2009022751A1 (ja) 2009-02-19

Family

ID=40350799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/064680 WO2009022751A1 (ja) 2007-08-13 2008-08-12 火花点火式内燃機関

Country Status (6)

Country Link
US (1) US8356582B2 (ja)
JP (1) JP4725561B2 (ja)
CN (1) CN101779024B (ja)
DE (1) DE112008002190B4 (ja)
RU (1) RU2439351C2 (ja)
WO (1) WO2009022751A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102137994A (zh) * 2009-04-28 2011-07-27 丰田自动车株式会社 火花点火式内燃机
WO2013179465A1 (ja) * 2012-05-31 2013-12-05 トヨタ自動車株式会社 可変圧縮比機構を備える内燃機関

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4259546B2 (ja) * 2006-07-13 2009-04-30 トヨタ自動車株式会社 火花点火式内燃機関
WO2010113332A1 (ja) * 2009-04-02 2010-10-07 トヨタ自動車株式会社 エンジン制御装置
JP6666232B2 (ja) * 2016-11-15 2020-03-13 日立オートモティブシステムズ株式会社 内燃機関の可変システム及びその制御方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004218522A (ja) * 2003-01-15 2004-08-05 Toyota Motor Corp 可変圧縮比機構を備えた内燃機関の制御装置
JP2005090299A (ja) * 2003-09-16 2005-04-07 Toyota Motor Corp 可変圧縮比機構を備えた内燃機関
JP2006177176A (ja) * 2004-12-21 2006-07-06 Nissan Motor Co Ltd 内燃機関の制御装置及び制御方法
JP2007056796A (ja) * 2005-08-25 2007-03-08 Toyota Motor Corp 可変圧縮比機構を備えた内燃機関
JP2007071046A (ja) * 2005-09-05 2007-03-22 Toyota Motor Corp 可変圧縮比機構を備えた内燃機関
JP2007092610A (ja) * 2005-09-28 2007-04-12 Toyota Motor Corp 可変圧縮比内燃機関

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4174683A (en) * 1978-01-20 1979-11-20 Vivian Howard C High efficiency variable expansion ratio engine
JP2872842B2 (ja) * 1991-09-27 1999-03-24 ヤマハ発動機株式会社 筒内噴射式2サイクルエンジンの燃焼制御装置
JP3286957B2 (ja) * 1992-03-06 2002-05-27 ヤマハ発動機株式会社 自動二輪車用エンジンの燃料供給装置及びv型エンジン
JP3412646B2 (ja) * 1993-12-06 2003-06-03 マツダ株式会社 車両のパワーユニット
US6481394B1 (en) * 1999-09-27 2002-11-19 Sanshin Kogyo Kabushiki Kaisha Control system for two-cycle engine
JP4402798B2 (ja) 2000-03-15 2010-01-20 日産自動車株式会社 内燃機関の制御装置
JP3979081B2 (ja) * 2001-01-16 2007-09-19 日産自動車株式会社 内燃機関の燃焼制御システム
JP2003232233A (ja) 2001-12-06 2003-08-22 Nissan Motor Co Ltd 内燃機関の制御装置
JP4135394B2 (ja) 2002-04-26 2008-08-20 日産自動車株式会社 内燃機関の制御装置
JP4416377B2 (ja) 2002-05-16 2010-02-17 日産自動車株式会社 内燃機関の制御装置
JP2004239174A (ja) 2003-02-06 2004-08-26 Toyota Motor Corp 圧縮比変更期間における内燃機関の制御
JP4188158B2 (ja) * 2003-07-03 2008-11-26 本田技研工業株式会社 内燃機関の制御装置
CN1934341A (zh) * 2004-04-16 2007-03-21 杨增利 一种让内燃机超膨胀作功、低温排气的方法及往复循环内燃机
CN1657752A (zh) * 2005-03-11 2005-08-24 大连理工大学 柴油机低压缩比和高膨胀比燃烧系统
JP5114046B2 (ja) 2006-03-13 2013-01-09 日産自動車株式会社 可変膨張比エンジン

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004218522A (ja) * 2003-01-15 2004-08-05 Toyota Motor Corp 可変圧縮比機構を備えた内燃機関の制御装置
JP2005090299A (ja) * 2003-09-16 2005-04-07 Toyota Motor Corp 可変圧縮比機構を備えた内燃機関
JP2006177176A (ja) * 2004-12-21 2006-07-06 Nissan Motor Co Ltd 内燃機関の制御装置及び制御方法
JP2007056796A (ja) * 2005-08-25 2007-03-08 Toyota Motor Corp 可変圧縮比機構を備えた内燃機関
JP2007071046A (ja) * 2005-09-05 2007-03-22 Toyota Motor Corp 可変圧縮比機構を備えた内燃機関
JP2007092610A (ja) * 2005-09-28 2007-04-12 Toyota Motor Corp 可変圧縮比内燃機関

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102137994A (zh) * 2009-04-28 2011-07-27 丰田自动车株式会社 火花点火式内燃机
US8701605B2 (en) 2009-04-28 2014-04-22 Toyota Jidosha Kabushiki Kaisha Spark ignition type internal combustion engine
WO2013179465A1 (ja) * 2012-05-31 2013-12-05 トヨタ自動車株式会社 可変圧縮比機構を備える内燃機関
CN104350258A (zh) * 2012-05-31 2015-02-11 丰田自动车株式会社 具备可变压缩比机构的内燃机
JPWO2013179465A1 (ja) * 2012-05-31 2016-01-14 トヨタ自動車株式会社 可変圧縮比機構を備える内燃機関
US9528437B2 (en) 2012-05-31 2016-12-27 Toyota Jidosha Kabushiki Kaisha Internal combustion engine comprising variable compression ratio mechanism

Also Published As

Publication number Publication date
CN101779024A (zh) 2010-07-14
CN101779024B (zh) 2013-12-25
US8356582B2 (en) 2013-01-22
JP4725561B2 (ja) 2011-07-13
JP2009046999A (ja) 2009-03-05
DE112008002190B4 (de) 2022-07-28
US20100206271A1 (en) 2010-08-19
RU2010105068A (ru) 2011-08-20
DE112008002190T5 (de) 2010-10-14
RU2439351C2 (ru) 2012-01-10

Similar Documents

Publication Publication Date Title
JP4259545B2 (ja) 火花点火式内燃機関
JP4305477B2 (ja) 火花点火式内燃機関
JP4428442B2 (ja) 火花点火式内燃機関
JP5177303B2 (ja) 火花点火式内燃機関
JP4450024B2 (ja) 火花点火式内燃機関
WO2011067865A1 (ja) 火花点火式内燃機関
JP2007303423A (ja) 火花点火式内燃機関
KR101032288B1 (ko) 불꽃 점화식 내연기관
JP4450025B2 (ja) 火花点火式内燃機関
JP4631848B2 (ja) 火花点火式内燃機関
JP4367549B2 (ja) 火花点火式内燃機関
WO2009060921A1 (ja) 火花点火式内燃機関
JP4849188B2 (ja) 火花点火式内燃機関
JP4367548B2 (ja) 火花点火式内燃機関
JP4367551B2 (ja) 火花点火式内燃機関
WO2009022751A1 (ja) 火花点火式内燃機関
JP2009008016A (ja) 火花点火式内燃機関
JP4930337B2 (ja) 火花点火式内燃機関
JP4367547B2 (ja) 火花点火式内燃機関
WO2012169079A1 (ja) 火花点火内燃機関
JP2008274962A (ja) 火花点火式内燃機関
JP4911144B2 (ja) 火花点火式内燃機関
JP4420105B2 (ja) 火花点火式内燃機関
JP2010024856A (ja) 火花点火式内燃機関

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880102821.9

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08792526

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 195/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12672143

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010105068

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 08792526

Country of ref document: EP

Kind code of ref document: A1

RET De translation (de og part 6b)

Ref document number: 112008002190

Country of ref document: DE

Date of ref document: 20101014

Kind code of ref document: P