JP2009046999A - 火花点火式内燃機関 - Google Patents

火花点火式内燃機関 Download PDF

Info

Publication number
JP2009046999A
JP2009046999A JP2007211025A JP2007211025A JP2009046999A JP 2009046999 A JP2009046999 A JP 2009046999A JP 2007211025 A JP2007211025 A JP 2007211025A JP 2007211025 A JP2007211025 A JP 2007211025A JP 2009046999 A JP2009046999 A JP 2009046999A
Authority
JP
Japan
Prior art keywords
expansion ratio
valve
compression ratio
exhaust
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007211025A
Other languages
English (en)
Other versions
JP4725561B2 (ja
Inventor
Daisuke Akihisa
大輔 秋久
Daisaku Sawada
大作 澤田
Eiichi Kamiyama
栄一 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007211025A priority Critical patent/JP4725561B2/ja
Priority to RU2010105068/06A priority patent/RU2439351C2/ru
Priority to US12/672,143 priority patent/US8356582B2/en
Priority to DE112008002190.2T priority patent/DE112008002190B4/de
Priority to PCT/JP2008/064680 priority patent/WO2009022751A1/ja
Priority to CN2008801028219A priority patent/CN101779024B/zh
Publication of JP2009046999A publication Critical patent/JP2009046999A/ja
Application granted granted Critical
Publication of JP4725561B2 publication Critical patent/JP4725561B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/02Varying compression ratio by alteration or displacement of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0226Variable control of the intake valves only changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

【課題】熱効率の高い火花点火式内燃機関を提供する。
【解決手段】火花点火式内燃機関は、機械膨張比を変更可能な可変膨張比機構Aと、排気弁9の開弁時期を変更可能な排気可変動弁機構Cとを具備する。機械膨張比及び排気弁の開弁時期は、機関負荷が低くなるほど機械膨張比が高くされると共に排気弁の開弁時期が排気下死点側へ遅角されるように、機関負荷に応じて設定される。このように機関負荷に応じて機械膨張比を設定することにより、例えば実圧縮比を一定にするように機械膨張比を設定する場合に比べて熱効率を高めることができる。
【選択図】図1

Description

本発明は、火花点火式内燃機関に関する。
機械圧縮比を変更可能な可変圧縮比機構と吸気弁の閉弁時期を制御可能な可変動弁機構とを具備し、機関中負荷運転時及び機関高負荷運転時には過給機による過給作用を行い、且つこれら機関中高負荷運転時においては実圧縮比を一定に保持した状態で機関負荷が低くなるにつれて機械圧縮比を増大すると共に吸気弁の閉弁時期を遅くするようにした火花点火式内燃機関が公知である(例えば特許文献1を参照)。
この火花点火式内燃機関によれば、機関中負荷運転時においては機械圧縮比が高くされ且つ吸気弁の閉弁時期が遅くされるため機関中負荷運転時における燃費が向上せしめられ、機関高負荷運転時においては機械圧縮比が低くされ且つ吸気弁の閉弁時期が早くされるため機関高負荷運転時における出力トルクが増大せしめられる。
特開2004−218522 特開2003−314315 特開2003−232233 特開2001−263099 特開2004−239174
ところで、上記火花点火式内燃機関では実圧縮比が一定になるように可変圧縮比機構及び可変動弁機構を制御している。具体的には、機関負荷に応じた吸入空気量となるように吸気弁の閉弁時期を決定し、この吸気弁の閉弁時期に基づいて実圧縮比が一定となるように機械圧縮比を決定することになる。
しかしながら、このような制御方法では熱効率を十分に向上させることはできない。すなわち、熱効率を高めるためには機械膨張比(機械圧縮比に等しい)を可能な限り大きくすることが必要となる。しかしながら、上記制御方法では機械膨張比は最初に決定された吸気弁の閉弁時期等に応じて従属的に決定されるため、可能な限り大きい機械膨張比が設定されるとは限らない。
そこで、本発明の目的は、熱効率の高い火花点火式内燃機関を提供することにある。
上記課題を解決するために、第1の発明では、機械膨張比を変更可能な可変膨張比機構と、排気弁の開弁時期を変更可能な排気可変動弁機構とを具備し、機関負荷が低くなるほど機械膨張比を高くすると共に排気弁の開弁時期を排気下死点側へ遅角させるように機械膨張比及び排気弁の開弁時期を機関負荷に応じて設定するようにした。
ここで、実膨張比を高くすることにより、すなわち機械膨張比を高くし且つ排気弁の開弁時期を排気下死点側に遅角させることにより、熱効率を高めることができる。しかしながら、機械膨張比を高くすると吸入空気量が減少し、排気弁の開弁時期を排気下死点側に遅角させると排気ガスの抜けが悪化する。このため、機関高負荷運転時に実膨張比を高くすると十分な機関出力を得ることができなくなってしまう。
これに対して、第1の発明によれば、機械膨張比及び排気弁の開弁時期は機関負荷に応じて設定される。このため、機関低負荷運転時には熱効率が高くなるように実膨張比を高め、逆に機関高負荷運転時には十分な機関出力を得られるように実膨張比を低く維持することができるようになり、よって十分な機関出力を得られるようにしつつ熱効率を高めることができる。
特に、第1の発明によれば、機関負荷に応じて機械膨張比が設定されるため、実圧縮比を一定にするように機械膨張比を設定する場合に比べて熱効率を高めることができる。
第2の発明では、第1の発明において、上記機械膨張比の最大値が20以上である。
第3の発明では、第1又は第2の発明において、実際の機関負荷が基準負荷よりも低い場合には機械膨張比をほぼ一定に制御する。
第4の発明では、第3の発明において、上記基準負荷は機械膨張比が最大とされるときの機関負荷である。
第5の発明では、第1〜第4のいずれか一つの発明において、吸気弁の閉弁時期を変更可能な吸気可変動弁機構を更に具備し、機関負荷が低くなるほど吸気弁の閉弁時期を吸気下死点から離れる方向へ移動させるようにした。
第6の発明では、第1〜第5のいずれか一つの発明において、ノッキングが生じたときには点火時期を遅角させるようにした。
本発明によれば、例えば実圧縮比を一定にするように機械膨張比を設定する場合に比べて、熱効率を高めることができる。
以下、図面を参照して本発明の実施形態について詳細に説明する。図1は火花点火式内燃機関の側面断面図を示す。
図1を参照すると、1はクランクケース、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は燃焼室5の頂面中央部に配置された点火プラグ、7は吸気弁、8は吸気ポート、9は排気弁、10は排気ポートをそれぞれ示す。吸気ポート8は吸気枝管11を介してサージタンク12に連結され、各吸気枝管11にはそれぞれ対応する吸気ポート8内に向けて燃料を噴射するための燃料噴射弁13が配置される。なお、燃料噴射弁13は各吸気枝管11に取付ける代りに各燃焼室5内に配置してもよい。
サージタンク12は吸気ダクト14を介して排気ターボチャージャ15のコンプレッサ15aの出口に連結され、コンプレッサ15aの入口は例えば熱線を用いた吸入空気量検出器16を介してエアクリーナ17に連結される。吸気ダクト14内にはアクチュエータ18によって駆動されるスロットル弁19が配置される。
一方、排気ポート10は排気マニホルド20を介して排気ターボチャージャ15の排気タービン15bの入口に連結され、排気タービン15bの出口は排気管21を介して排気浄化触媒を内蔵した触媒コンバータ22に連結される。排気管21内には空燃比センサ23が配置される。
一方、図1に示した実施形態では、クランクケース1とシリンダブロック2との連結部にクランクケース1とシリンダブロック2のシリンダ軸線方向の相対位置を変化させることによりピストン4が圧縮上死点に位置するときの燃焼室5の容積を変更可能な可変圧縮比機構Aが設けられている。また、本実施形態では、吸気弁7のバルブ特性を変更可能な吸気可変動弁機構B、及び排気弁9のバルブ特性を変更可能な排気可変動弁機構Cが設けられている。
電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。吸入空気量検出器16の出力信号および空燃比センサ23の出力信号はそれぞれ対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル40にはアクセルペダル40の踏込み量に比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して点火プラグ6、燃料噴射弁13、スロットル弁駆動用アクチュエータ18および可変圧縮比機構Aに接続される。
図2は図1に示す可変圧縮比機構Aの分解斜視図を示しており、図3は図解的に表した内燃機関の側面断面図を示している。図2を参照すると、シリンダブロック2の両側壁の下方には互いに間隔を隔てた複数個の突出部50が形成されており、各突出部50内にはそれぞれ断面円形のカム挿入孔51が形成されている。一方、クランクケース1の上壁面上には互いに間隔を隔ててそれぞれ対応する突出部50の間に嵌合せしめられる複数個の突出部52が形成されており、これらの各突出部52内にもそれぞれ断面円形のカム挿入孔53が形成されている。
図2に示したように一対のカムシャフト54、55が設けられており、各カムシャフト54、55上には一つおきに各カム挿入孔51内に回転可能に挿入される円形カム56が固定されている。これらの円形カム56は各カムシャフト54、55の回転軸線と共軸をなす。一方、各円形カム56間には図3においてハッチングで示すように各カムシャフト54、55の回転軸線に対して偏心配置された偏心軸57が延びており、この偏心軸57上に別の円形カム58が偏心して回転可能に取付けられている。図2に示したようにこれら円形カム58は各円形カム56間に配置されており、これら円形カム58は対応する各カム挿入孔53内に回転可能に挿入されている。
図3(A)に示すような状態から各カムシャフト54、55上に固定された円形カム56を図3(A)において実線の矢印で示したように互いに反対方向に回転させると偏心軸57が下方中央に向けて移動するために円形カム58がカム挿入孔53内において図3(A)の破線の矢印に示すように円形カム56とは反対方向に回転し、図3(B)に示したように偏心軸57が下方中央まで移動すると円形カム58の中心が偏心軸57の下方へ移動する。
図3(A)と図3(B)とを比較するとわかるようにクランクケース1とシリンダブロック2の相対位置は円形カム56の中心と円形カム58の中心との距離によって定まり、円形カム56の中心と円形カム58の中心との距離が大きくなるほどシリンダブロック2はクランクケース1から離れる。シリンダブロック2がクランクケース1から離れるとピストン4が圧縮上死点に位置するときの燃焼室5の容積は増大し、従って各カムシャフト54、55を回転させることによってピストン4が圧縮上死点に位置するときの燃焼室5の容積を変更することができる。
図2に示したように各カムシャフト54、55をそれぞれ反対方向に回転させるために駆動モータ59の回転軸にはそれぞれ螺旋方向が逆向きの一対のウォームギア61、62が取付けられており、これらウォームギア61、62と噛合する歯車63、64がそれぞれ各カムシャフト54、55の端部に固定されている。この実施形態では駆動モータ59を駆動することによってピストン4が圧縮上死点に位置するときの燃焼室5の容積を広い範囲に亘って変更することができる。なお、図1から図3に示した可変圧縮比機構Aは一例を示すものであっていかなる形式の可変圧縮比機構でも用いることができる。
一方、図4は図1において吸気弁7を駆動するためのカムシャフト70に対して設けられている吸気可変動弁機構Bを示している。図4に示したように吸気可変動弁機構Bはカムシャフト70の一端に取付けられてカムシャフト70のカムの位相を変更するためのカム位相変更部B1と、カムシャフト70と吸気弁7のバルブリフタ26との間に配置されてカムシャフト70のカムの作用角を異なる作用角に変更して吸気弁7に伝達するカム作用角変更部B2から構成されている。なお、カム作用角変更部B2については図4に側面断面図と平面図とが示されている。
まず初めに吸気可変動弁機構Bのカム位相変更部B1について説明すると、このカム位相変更部B1は機関のクランク軸によりタイミングベルトを介して矢印方向に回転せしめられるタイミングプーリ71と、タイミングプーリ71と一緒に回転する円筒状ハウジング72と、カムシャフト70と一緒に回転し且つ円筒状ハウジング72に対して相対回転可能な回転軸73と、円筒状ハウジング72の内周面から回転軸73の外周面まで延びる複数個の仕切壁74と、各仕切壁74の間で回転軸73の外周面から円筒状ハウジング72の内周面まで延びるベーン75とを具備しており、各ベーン75の両側にはそれぞれ進角用油圧室76と遅角用油圧室77とが形成されている。
各油圧室76、77への作動油の供給制御は作動油供給制御弁78によって行われる。この作動油供給制御弁78は各油圧室76、77にそれぞれ連結された油圧ポート79、80と、油圧ポンプ81から吐出された作動油の供給ポート82と、一対のドレインポート83、84と、各ポート79、80、82、83、84間の連通遮断制御を行うスプール弁85とを具備している。
カムシャフト70のカムの位相を進角すべきときは図4においてスプール弁85が下方に移動せしめられ、供給ポート82から供給された作動油が油圧ポート79を介して進角用油圧室76に供給されると共に遅角用油圧室77内の作動油がドレインポート84から排出される。このとき回転軸73は円筒状ハウジング72に対して矢印X方向に相対回転せしめられる。
これに対し、カムシャフト70のカムの位相を遅角すべきときは図4においてスプール弁85が上方に移動せしめられ、供給ポート82から供給された作動油が油圧ポート80を介して遅角用油圧室77に供給されると共に進角用油圧室76内の作動油がドレインポート83から排出される。このとき回転軸73は円筒状ハウジング72に対して矢印Xと反対方向に相対回転せしめられる。
回転軸73が円筒状ハウジング72に対して相対回転せしめられているときにスプール弁85が図4に示した中立位置に戻されると回転軸73の相対回転動作は停止せしめられ、回転軸73はそのときの相対回転位置に保持される。従ってカム位相変更部B1によってカムシャフト70のカムの位相を図5(A)に示したように所望の量だけ進角又は遅角させることができる。すなわち、カム位相変更部B1によって吸気弁7の閉弁時期を任意に進角又は遅角させることができることになる。
次に吸気可変動弁機構Bのカム作用角変更部B2について説明すると、このカム作用角変更部B2はカムシャフト70と平行に並列配置され且つアクチュエータ91によって軸線方向に移動せしめられる制御ロッド90と、カムシャフト70のカム92と係合し且つ制御ロッド90上に形成された軸線方向に延びるスプライン93に摺動可能に嵌合せしめられている中間カム94と、吸気弁7を駆動するためにバルブリフタ26と係合し且つ制御ロッド90上に形成された螺旋状に延びるスプライン95に摺動可能に嵌合する揺動カム96とを具備しており、揺動カム96上にはカム97が形成されている。
カムシャフト90が回転するとカム92によって中間カム94が常に一定の角度だけ揺動せしめられ、このとき揺動カム96も一定の角度だけ揺動せしめられる。一方、中間カム94及び揺動カム96は制御ロッド90の軸線方向には移動不能に支持されており、従って制御ロッド90がアクチュエータ91によって軸線方向に移動せしめられたときに揺動カム96は中間カム94に対して相対回転せしめられることになる。
中間カム94と揺動カム96との相対回転位置関係によりカムシャフト70のカム92が中間カム94と係合しはじめたときに揺動カム96のカム97がバルブリフタ26と係合しはじめる場合には図5(B)においてaで示したように吸気弁7の開弁期間及びリフトは最も大きくなる。これに対し、アクチュエータ91によって揺動カム96が中間カム94に対して図4の矢印Y方向に相対回転せしめられると、カムシャフト70のカム92が中間カム94に係合した後、暫らくしてから揺動カム96のカム97がバルブリフタ26と係合する。この場合には図5(B)においてbで示したように吸気弁7の開弁期間及びリフト量はaに比べて小さくなる。
揺動カム96が中間カム94に対して図4の矢印Y方向に更に相対回転せしめられると図5(B)においてcで示したように吸気弁7の開弁期間及びリフト量は更に小さくなる。すなわち、アクチュエータ91により中間カム94と揺動カム96の相対回転位置を変更することによって吸気弁7の開弁期間を任意に変えることができる。ただし、この場合、吸気弁7のリフト量は吸気弁7の開弁期間が短くなるほど小さくなる。
このようにカム位相変更部B1によって吸気弁7の閉弁時期を任意に変更することができ、カム作用角変更部B2によって吸気弁7の開弁期間を任意に変更することができるのでカム位相変更部B1とカム作用角変更部B2との双方によって、すなわち吸気可変動弁機構Bによって吸気弁7の閉弁時期と開弁期間とを、すなわち吸気弁7の開弁時期と閉弁時期とを任意に変更することができることになる。
なお、図1及び図4に示した可変動弁機構Bは一例を示すものであって、図1及び図4に示した例以外の種々の形式の可変動弁機構を用いることができる。また、排気可変動弁機構Cも、基本的に吸気可変動弁機構Bと同様な構成を有し、排気弁9の開弁時期及び閉弁時期を任意に変更することができる。
次に図6、図7を参照しつつ本願において使用されている用語の意味について説明する。なお、図6及び図7には説明のために燃焼室容積が50mlでピストンの行程容積が500mlであるエンジンが示されており、これら図6及び図7において燃焼室容積とはピストンが圧縮上死点に位置するときの燃焼室の容積を表している。
図6(A)は機械圧縮比について説明している。機械圧縮比は圧縮行程時のピストンの行程容積と燃焼室容積のみから機械的に定まる値であってこの機械圧縮比は(燃焼室容積+行程容積)/燃焼室容積で表される。図6(A)に示した例ではこの機械圧縮比は(50ml+500ml)/50ml=11となる。
図6(B)は実圧縮比について説明している。この実圧縮比は実際に圧縮作用が開始されたときからピストンが上死点に達するまでの実際のピストン行程容積と燃焼室容積から定まる値であってこの実圧縮比は(燃焼室容積+実際の行程容積)/燃焼室容積で表される。すなわち、図6(B)に示したように圧縮行程においてピストンが上昇を開始しても吸気弁が開弁している間は圧縮作用は行われず、吸気弁が閉弁したときから実際の圧縮作用が開始される。従って実圧縮比は実際の行程容積を用いて上記の如く表される。図6(B)に示した例では実圧縮比は(50ml+450ml)/50ml=10となる。
図7(A)は機械膨張比について説明している。機械膨張比は膨張行程時のピストンの行程容積と燃焼室容積から定まる値であってこの機械膨張比は(燃焼室容積+行程容積)/燃焼室容積で表される。図7(A)に示した例ではこの膨張比は(50ml+500ml)/50ml=11となる。
図7(B)は実膨張比について説明している。この実膨張比はピストンが上死点にあるときから実際の膨張作用が終了するまでの実際のピストン行程容積と燃焼室容積から定まる値であってこの実膨張比は(燃焼室容積+実際の行程容積)/燃焼室容積で表される。すなわち、図7(B)に示したように膨張行程においてピストンの下降中であっても排気弁が開弁されてからは膨張作用は行われず、排気弁が開弁するまでに実際の膨張作用が行われる。従って実膨張比は実際の行程容積を用いて上記の如く表される。図7(B)に示した例では実膨張比は(50ml+450ml)/50ml=10となる。
次に図8及び図9を参照しつつ本発明において最も基本となっている特徴について説明する。なお、図8は理論熱効率と膨張比との関係を示しており、図9は本発明において負荷に応じ使い分けられている通常のサイクルと超高膨張比サイクルとの比較を示している。なお、図8及び図9では、機械膨張比と実膨張比とが同一となっている場合の例を示しており、よって以下では機械膨張比と実膨張比とを分けずに共に単に膨張比として説明する。
図9(A)は吸気弁が下死点近傍で閉弁し、ほぼ圧縮下死点付近からピストンによる圧縮作用が開始される場合の通常のサイクルを示している。この図9(A)に示す例でも図6及び図7に示す例と同様に燃焼室容積が50mlとされ、ピストンの行程容積が500mlとされている。図9(A)からわかるように通常のサイクルでは機械圧縮比は(50ml+500ml)/50ml=11であり、実圧縮比もほぼ11であり、膨張比も(50ml+500ml)/50ml=11となる。すなわち、通常の内燃機関では機械圧縮比と実圧縮比と膨張比とがほぼ等しくなる。
図8における実線は実圧縮比と膨張比とがほぼ等しい場合の、すなわち通常のサイクルにおける理論熱効率の変化を示している。この場合には膨張比が大きくなるほど、すなわち実圧縮比が高くなるほど理論熱効率が高くなることがわかる。従って通常のサイクルにおいて理論熱効率を高めるには実圧縮比を高くすればよいことになる。しかしながら機関高負荷運転時におけるノッキングの発生の制約により実圧縮比は最大でも12程度までしか高くすることができず、斯くして通常のサイクルにおいては理論熱効率を十分に高くすることはできない。
一方、このような状況下で本発明者は機械圧縮比と実圧縮比とを厳密に区分して理論熱効率を高めることについて検討し、その結果理論熱効率は膨張比が支配し、理論熱効率に対して実圧縮比はほとんど影響を与えないことを見出したのである。すなわち、実圧縮比を高くすると爆発力は高まるが圧縮するために大きなエネルギが必要となり、斯くして実圧縮比を高めても理論熱効率はほとんど高くならない。
これに対し、膨張比を大きくすると膨張行程時にピストンに対し押下げ力が作用する期間が長くなり、斯くしてピストンがクランクシャフトに回転力を与えている期間が長くなる。従って膨張比は大きくすれば大きくするほど理論熱効率が高くなる。図8の破線は実圧縮比を10に固定した状態で膨張比を高くしていった場合の理論熱効率を示している。このように実圧縮比を低い値に維持した状態で膨張比を高くしたときの理論熱効率の上昇量と、図8の実線で示す如く実圧縮比も膨張比と共に増大せしめられる場合の理論熱効率の上昇量とは大きな差がないことがわかる。
このように実圧縮比が低い値に維持されているとノッキングが発生することがなく、従って実圧縮比を低い値に維持した状態で膨張比を高くするとノッキングの発生を阻止しつつ理論熱効率を大巾に高めることができる。図9(B)は可変圧縮比機構A及び吸気可変動弁機構Bを用いて、実圧縮比を低い値に維持しつつ膨張比を高めるようにした場合の一例を示している。
図9(B)を参照すると、この例では可変圧縮比機構Aにより燃焼室容積が50mlから20mlまで減少せしめられる。一方、吸気可変動弁機構Bによって実際のピストン行程容積が500mlから200mlになるまで吸気弁の閉弁時期が遅らされる。その結果、この例では実圧縮比は(20ml+200ml)/20ml=11となり、膨張比は(20ml+500ml)/20ml=26となる。図9(A)に示した通常のサイクルでは前述したように実圧縮比がほぼ11で膨張比が11であり、この場合に比べると図9(B)に示した場合には膨張比のみが26まで高められていることがわかる。これが超高膨張比サイクルと称される所以である。
前述したように一般的に言って内燃機関では機関負荷が低いほど熱効率が悪くなり、従って車両走行時における熱効率を向上させるためには、すなわち燃費を向上させるには機関低負荷運転時における熱効率を向上させることが必要となる。一方、図9(B)に示した超高膨張比サイクルでは圧縮行程時の実際のピストン行程容積が小さくされるために燃焼室5内に吸入しうる吸入空気量は少なくなり、従ってこの超高膨張比サイクルは機関負荷が比較的低いときにしか採用できないことになる。従って本発明では機関低負荷運転時には図9(B)に示す超高膨張比サイクルとし、機関高負荷運転時には図9(A)に示す通常のサイクルとするようにしている。これが本発明が基本としている特徴である。
図10及び図11は、機関回転数の低い定常運転時における運転制御全般について示している。以下、これら図10及び図11を参照して運転制御全般について説明する。
図10には、機関負荷に応じた機械圧縮比、吸気弁7の閉弁時期、実圧縮比、吸入空気量、スロットル弁19の開度の各変化が示されている。なお、本発明による実施形態では、触媒コンバータ22内の三元触媒によって排気ガス中の未燃HC、CO及びNOxを同時に低減しうるように、通常、燃焼室5内における平均空燃比は空燃比センサ23の出力信号に基づいて理論空燃比にフィードバック制御されている。
上述したように機関高負荷運転時には図9(A)に示した通常のサイクルが実行される。従って、図10に示したようにこのときには機械圧縮比が低くされ、図10に実線で示したように吸気弁7の閉弁時期は早められている。また、このときにはスロットル弁19の開度は全開又はほぼ全開に保持されている。
一方、図10に示したように機関負荷が低くなるとそれに伴って機械圧縮比が増大される。また、機関負荷が低くなると燃焼室5内に充填すべき空気量(目標吸入空気量)が減少するため、それに伴って吸気弁7の閉弁時期が遅くされる(図10の実線)。なお、このときにもスロットル弁19は全開又はほぼ全開に保持されており、従って燃焼室5内に供給される空気量はスロットル弁19によらずに吸気弁7の閉弁時期を変えることによって制御されている。
このとき、吸気弁7の閉弁時期が機関負荷に比例して遅角されるのに対して、機械圧縮比は機関負荷に比例せずに増大される。換言すると、ピストン4が圧縮上死点に達したときの燃焼室5の容積は吸入空気量に比例しない。このため、ほとんどの場合実圧縮比は、機関負荷にかかわらずに一定になることはなく、機関負荷に応じて変化することになる。本実施形態では、図10に示したように機関負荷が低くなるにつれて実圧縮比が増大せしめられる。
機関負荷が更に低くなると機械圧縮比は更に増大せしめられ、機械圧縮比が燃焼室5の構造上限界となる限界機械圧縮比に達すると、機械圧縮比が限界機械圧縮比に達したときの機関負荷L1(基準負荷)よりも負荷の低い領域では、機械圧縮比が限界機械圧縮比に保持される。従って、機関低負荷運転時には機械圧縮比は最大となる。別の言い方をすると、本発明では、機関低負荷運転時に最大の実膨張比が得られるように機械圧縮比が最大にされる。また、このとき実圧縮比は機関中高負荷運転時とほぼ同じ実圧縮比に維持される。
一方、図10において実線で示したように吸気弁7の閉弁時期は機関負荷が低くなるにつれて燃焼室5内に供給される吸入空気量を制御しうる限界閉弁時期まで遅らされ、吸気弁7の閉弁時期が限界閉弁時期に達したときの機関負荷L2よりも負荷の低い領域では吸気弁7の閉弁時期が限界閉弁時期に保持される。吸気弁7の閉弁時期が限界閉弁時期に保持されるともはや吸気弁7の閉弁時期の変化によっては吸入空気量を制御しえないので何らかの他の方法によって吸入空気量を制御する必要がある。
図10に示した実施形態では、このとき、すなわち吸気弁7の閉弁時期が限界閉弁時期に達したときの機関負荷L2よりも負荷の低い領域ではスロットル弁19によって燃焼室5内に供給される吸入空気量が制御される。
なお、上述したように図9(B)に示す超高膨張比サイクルでは膨張比が26とされる。この膨張比は高いほど好ましいが、20以上であればかなり高い理論熱効率を得ることができる。従って、本発明では膨張比が20以上となるように可変圧縮比機構Aが形成されている。
また、図10に示した例では、機械圧縮比は機関負荷に応じて連続的に変化せしめられている。しかしながら、機械圧縮比は機関負荷に応じて段階的に変化させることもできる。
一方、図10において破線で示すように機関負荷が低くなるにつれて吸気弁7の閉弁時期を早めることによってもスロットル弁19によらずに吸入空気量を制御することができる。従って、図10において実線で示される場合と破線で示される場合とをいずれも包含しうるように表現すると、本発明による実施形態では吸気弁7の閉弁時期は、機関負荷が低くなるにつれて、燃焼室5内に供給される吸入空気量を制御しうる限界閉弁時期L2まで吸気下死点BDCから離れる方向に移動せしめられることになる。
図11には、機関負荷に応じた機械膨張比、排気弁9の開弁時期、実膨張比の各変化が示されている。
図6及び図7からわかるように、機械膨張比は機械圧縮比と同一である。このため、機関高負荷運転時には図9(A)に示した通常のサイクルが実行されると、図11に示したように機械膨張比が低くされ、また排気弁9の開弁時期は早められている。このように排気弁9の開弁時期が早められているため、燃焼により燃焼室5内に多量の排気ガスが発生しても迅速に排気ガスを燃焼室5内から排出することができる。
一方、図11に示したように機関負荷が低くなるとそれに伴って機械膨張比が増大される。また、機関負荷が低くなると燃焼によって燃焼室5内に発生する排気ガス量が少なくなるため、それに伴って排気弁9の開弁時期が遅くされる。このため、機関負荷が低くなるにつれて図7(B)における燃焼室容積が小さくなると共に実際の行程容積が増大せしめられることから、実膨張比は増大せしめられる。
機関負荷が更に低くなって機械膨張比が限界機械膨張比(限界機械圧縮比に等しい)に達すると、上述したように機械膨張比が限界膨張比に保持される。一方、排気弁9の開弁時期は機関負荷が低くなるにつれて排気下死点BDC又はその排気下死点BDC付近であって燃焼ガスのエネルギを最大限ピストンに伝達することができる時期(以下、単に排気下死点BDC付近と称す)まで遅らされ、排気弁9の開弁時期が排気下死点BDC付近に達したときの機関負荷L3よりも負荷の低い領域では、排気弁9の閉弁時期が排気下死点BDC付近に保持される。
図12は、機械膨張比、吸気弁7の閉弁時期等の目標値の設定手順について示している。以下、図12を参照してこれらパラメータの目標値の設定手順について説明する。
図12(A)は、実圧縮比が一定となるように機械圧縮比及び吸気弁の閉弁時期を設定する従来の設定手順を示している。図12(A)からわかるように、まず機関負荷に基づいて吸気弁の目標閉弁時期が設定される。これは、機関負荷に応じて燃焼室5内に吸入すべき空気量(目標吸入空気量)が定まるため、実際の吸入空気量がこの目標吸入空気量となるように吸気弁の目標閉弁時期を設定するものである。その後、吸気弁の目標閉弁時期と目標実圧縮比(上記一定の実圧縮比)とに基づいて目標機械圧縮比が設定される。
一方、図12(B)は、本発明の実施形態における機械圧縮比及び吸気弁7の閉弁時期の設定手順を示している。図12(B)からわかるように、本発明の実施形態における設定手順では、機関負荷のみに基づいて熱効率が最大となるように目標機械圧縮比が設定される。吸気弁の目標閉弁時期は上記従来の設定手順と同様に機関負荷に基づいて設定される。したがって、目標機械圧縮比及び吸気弁の目標閉弁時期は互いの設定値とは無関係に機関負荷に基づいて設定される。吸気弁の目標閉弁時期が設定されると、その設定値及び機関負荷に基づいて目標スロットル開度が設定される。これにより、吸気弁の閉弁時期のみでは吸入空気量を適切に制御することができないと判断された場合に、スロットル開度を調整することによって吸入空気量を適切なものとすることができる。
図12(A)に示したように目標機械圧縮比を設定した場合には、実圧縮比を一定とすることはできるが、熱効率に関してして機械圧縮比を最適な値とすることはできず、よって熱効率を最大とすることはできない。これに対して、本発明の実施形態によれば、機関負荷のみに基づいて熱効率が最大となるように目標機械圧縮比が設定されるため、熱効率を高いものとすることができる。
また、本発明の実施形態では、機関負荷又は吸入空気量に基づいて排気弁9の目標開弁時期が設定される。ここで、内燃機関の熱効率は図8に示したように実膨張比が高いほど高くなるため、熱効率という観点からは排気弁9の目標開弁時期は排気下死点BDC付近に設定する方が好ましい。一方、排気弁9の開弁時期が遅いと燃焼室5内の排気ガスが抜けにくくなるため、排気ガスの抜け易さという観点からは排気弁9の開弁時期は早いほうが好ましい。特に、排気ガスの抜けが問題になるのは吸入空気量が多い時、すなわち機関高負荷運転時であるため、本発明の実施形態では機関負荷が高いときには排気弁9の開弁時期を早くし、逆に機関負荷が低いときには実膨張比が高くなるように排気弁9の開弁時期を排気下死点BDC付近に設定することとしている。これにより、本発明の実施形態によれば、機関高負荷運転時における機関出力を十分なものとしつつ熱効率の向上を図ることができる。
図13は、本実施形態における内燃機関の運転制御の制御ルーチンを示すフローチャートである。図13に示した制御ルーチンは一定時間間隔の割り込みによって行われる。
図13を参照すると、まずステップS11において負荷センサ41によって要求負荷が検出される。次いで、ステップS12において、ステップS11で検出された要求負荷が前回の要求負荷から変更されているか否かが判定される。ステップS11において要求負荷が変更されていないと判定された場合には、ステップS17へと進む。一方、要求負荷が変更されたと判定された場合にはステップS13へと進む。
次いで、ステップS13では、ステップS11において検出された要求負荷と図14(A)に示したマップとに基づいて目標機械圧縮比が算出される。次いで、ステップS14では、検出された要求負荷と図14(B)に示したマップとに基づいて吸気弁7の目標閉弁時期が算出される。その後、ステップS15では、検出された要求負荷と、ステップS14で算出された吸気弁7の目標閉弁時期と、図14(C)に示したマップとに基づいて目標スロットル開度が算出され、ステップS16では、要求負荷と図14(D)に示したマップとに基づいて排気弁9の目標開弁時期が算出され、ステップS17へと進む。
ステップS17では、ノックセンサ(図示せず)によって燃焼室5内でノッキングが発生しているか否かが判定される。ノッキングが発生していると判定された場合には、ステップS18へと進む。ステップS18では、点火プラグ6による点火時期が所定角度だけ遅角せしめられ、制御ルーチンが終了せしめられる。一方、ノッキングが発生していないと判定された場合にはステップS18がスキップせしめられ、制御ルーチンが終了せしめられる。
火花点火式内燃機関の全体図である。 可変圧縮比機構の分解斜視図である。 図解的に表した内燃機関の側面断面図である。 可変動弁機構を示す図である。 吸気弁のリフト量を示す図である。 機械圧縮比及び実圧縮比を説明するための図である。 機械膨張比及び実膨張比を説明するための図である。 理論熱効率と膨張比との関係を示す図である。 通常のサイクル及び超高膨張比サイクルを説明するための図である。 機関負荷に応じた機械圧縮比等の変化を示す図である。 機関負荷に応じた機械膨張比等の変化を示す図である。 機械膨張比等の設定手順について説明するための図である。 内燃機関の運転制御の制御ルーチンを示すフローチャートである。 目標機械圧縮比等を算出するためのマップを示す図である。
符号の説明
1 クランクケース
2 シリンダブロック
3 シリンダヘッド
4 ピストン
5 燃焼室
7 吸気弁
9 排気弁
19 スロットル弁
A 可変圧縮比機構
B 吸気可変動弁機構
C 排気可変動弁機構

Claims (6)

  1. 機械膨張比を変更可能な可変膨張比機構と、排気弁の開弁時期を変更可能な排気可変動弁機構とを具備し、機関負荷が低くなるほど機械膨張比を高くすると共に排気弁の開弁時期を排気下死点側へ遅角させるように機械膨張比及び排気弁の開弁時期を機関負荷に応じて設定するようにした、火花点火式内燃機関。
  2. 上記機械膨張比の最大値が20以上である、請求項1に記載の火花点火式内燃機関。
  3. 実際の機関負荷が基準負荷よりも低い場合には機械膨張比をほぼ一定に制御する、請求項1又は2に記載の火花点火式内燃機関。
  4. 上記基準負荷は機械膨張比が最大とされるときの機関負荷である、請求項3に記載の火花点火式内燃機関。
  5. 吸気弁の閉弁時期を変更可能な吸気可変動弁機構を更に具備し、機関負荷が低くなるほど吸気弁の閉弁時期を吸気下死点から離れる方向へ移動させるようにした、請求項1〜4のいずれか1項に記載の火花点火式内燃機関。
  6. ノッキングが生じたときには点火時期を遅角させるようにした、請求項1〜5のいずれか1項に記載の火花点火式内燃機関。
JP2007211025A 2007-08-13 2007-08-13 火花点火式内燃機関 Expired - Fee Related JP4725561B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007211025A JP4725561B2 (ja) 2007-08-13 2007-08-13 火花点火式内燃機関
RU2010105068/06A RU2439351C2 (ru) 2007-08-13 2008-08-12 Двигатель внутреннего сгорания с искровым зажиганием
US12/672,143 US8356582B2 (en) 2007-08-13 2008-08-12 Spark ignition type internal combustion engine
DE112008002190.2T DE112008002190B4 (de) 2007-08-13 2008-08-12 Verbrennungsmotor der Funkenzündungsart
PCT/JP2008/064680 WO2009022751A1 (ja) 2007-08-13 2008-08-12 火花点火式内燃機関
CN2008801028219A CN101779024B (zh) 2007-08-13 2008-08-12 火花点火式内燃机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007211025A JP4725561B2 (ja) 2007-08-13 2007-08-13 火花点火式内燃機関

Publications (2)

Publication Number Publication Date
JP2009046999A true JP2009046999A (ja) 2009-03-05
JP4725561B2 JP4725561B2 (ja) 2011-07-13

Family

ID=40350799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007211025A Expired - Fee Related JP4725561B2 (ja) 2007-08-13 2007-08-13 火花点火式内燃機関

Country Status (6)

Country Link
US (1) US8356582B2 (ja)
JP (1) JP4725561B2 (ja)
CN (1) CN101779024B (ja)
DE (1) DE112008002190B4 (ja)
RU (1) RU2439351C2 (ja)
WO (1) WO2009022751A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125694A1 (ja) * 2009-04-28 2010-11-04 トヨタ自動車株式会社 火花点火式内燃機関

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4259546B2 (ja) * 2006-07-13 2009-04-30 トヨタ自動車株式会社 火花点火式内燃機関
WO2010113332A1 (ja) * 2009-04-02 2010-10-07 トヨタ自動車株式会社 エンジン制御装置
US9528437B2 (en) 2012-05-31 2016-12-27 Toyota Jidosha Kabushiki Kaisha Internal combustion engine comprising variable compression ratio mechanism
JP6666232B2 (ja) * 2016-11-15 2020-03-13 日立オートモティブシステムズ株式会社 内燃機関の可変システム及びその制御方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07156693A (ja) * 1993-12-06 1995-06-20 Mazda Motor Corp 車両のパワーユニット
JP2005090299A (ja) * 2003-09-16 2005-04-07 Toyota Motor Corp 可変圧縮比機構を備えた内燃機関
JP2006177176A (ja) * 2004-12-21 2006-07-06 Nissan Motor Co Ltd 内燃機関の制御装置及び制御方法
JP2007056796A (ja) * 2005-08-25 2007-03-08 Toyota Motor Corp 可変圧縮比機構を備えた内燃機関
JP2007071046A (ja) * 2005-09-05 2007-03-22 Toyota Motor Corp 可変圧縮比機構を備えた内燃機関
JP2007092610A (ja) * 2005-09-28 2007-04-12 Toyota Motor Corp 可変圧縮比内燃機関

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4174683A (en) * 1978-01-20 1979-11-20 Vivian Howard C High efficiency variable expansion ratio engine
JP2872842B2 (ja) * 1991-09-27 1999-03-24 ヤマハ発動機株式会社 筒内噴射式2サイクルエンジンの燃焼制御装置
JP3286957B2 (ja) * 1992-03-06 2002-05-27 ヤマハ発動機株式会社 自動二輪車用エンジンの燃料供給装置及びv型エンジン
US6481394B1 (en) * 1999-09-27 2002-11-19 Sanshin Kogyo Kabushiki Kaisha Control system for two-cycle engine
JP4402798B2 (ja) 2000-03-15 2010-01-20 日産自動車株式会社 内燃機関の制御装置
JP3979081B2 (ja) * 2001-01-16 2007-09-19 日産自動車株式会社 内燃機関の燃焼制御システム
JP2003232233A (ja) * 2001-12-06 2003-08-22 Nissan Motor Co Ltd 内燃機関の制御装置
JP4135394B2 (ja) 2002-04-26 2008-08-20 日産自動車株式会社 内燃機関の制御装置
JP4416377B2 (ja) * 2002-05-16 2010-02-17 日産自動車株式会社 内燃機関の制御装置
JP4345307B2 (ja) * 2003-01-15 2009-10-14 トヨタ自動車株式会社 可変圧縮比機構を備えた内燃機関の制御装置
JP2004239174A (ja) 2003-02-06 2004-08-26 Toyota Motor Corp 圧縮比変更期間における内燃機関の制御
JP4188158B2 (ja) * 2003-07-03 2008-11-26 本田技研工業株式会社 内燃機関の制御装置
CN1934341A (zh) * 2004-04-16 2007-03-21 杨增利 一种让内燃机超膨胀作功、低温排气的方法及往复循环内燃机
CN1657752A (zh) * 2005-03-11 2005-08-24 大连理工大学 柴油机低压缩比和高膨胀比燃烧系统
JP5114046B2 (ja) * 2006-03-13 2013-01-09 日産自動車株式会社 可変膨張比エンジン

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07156693A (ja) * 1993-12-06 1995-06-20 Mazda Motor Corp 車両のパワーユニット
JP2005090299A (ja) * 2003-09-16 2005-04-07 Toyota Motor Corp 可変圧縮比機構を備えた内燃機関
JP2006177176A (ja) * 2004-12-21 2006-07-06 Nissan Motor Co Ltd 内燃機関の制御装置及び制御方法
JP2007056796A (ja) * 2005-08-25 2007-03-08 Toyota Motor Corp 可変圧縮比機構を備えた内燃機関
JP2007071046A (ja) * 2005-09-05 2007-03-22 Toyota Motor Corp 可変圧縮比機構を備えた内燃機関
JP2007092610A (ja) * 2005-09-28 2007-04-12 Toyota Motor Corp 可変圧縮比内燃機関

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125694A1 (ja) * 2009-04-28 2010-11-04 トヨタ自動車株式会社 火花点火式内燃機関
JP5045850B2 (ja) * 2009-04-28 2012-10-10 トヨタ自動車株式会社 火花点火式内燃機関
US8701605B2 (en) 2009-04-28 2014-04-22 Toyota Jidosha Kabushiki Kaisha Spark ignition type internal combustion engine

Also Published As

Publication number Publication date
CN101779024A (zh) 2010-07-14
US8356582B2 (en) 2013-01-22
RU2010105068A (ru) 2011-08-20
DE112008002190B4 (de) 2022-07-28
JP4725561B2 (ja) 2011-07-13
DE112008002190T5 (de) 2010-10-14
WO2009022751A1 (ja) 2009-02-19
US20100206271A1 (en) 2010-08-19
CN101779024B (zh) 2013-12-25
RU2439351C2 (ru) 2012-01-10

Similar Documents

Publication Publication Date Title
JP4305477B2 (ja) 火花点火式内燃機関
JP4259545B2 (ja) 火花点火式内燃機関
JP4259546B2 (ja) 火花点火式内燃機関
JP4428442B2 (ja) 火花点火式内燃機関
JP2007303423A (ja) 火花点火式内燃機関
JP4450024B2 (ja) 火花点火式内燃機関
JP2008138631A (ja) 火花点火式内燃機関
JP4450025B2 (ja) 火花点火式内燃機関
JP4788747B2 (ja) 火花点火式内燃機関
JP4631848B2 (ja) 火花点火式内燃機関
JP4367549B2 (ja) 火花点火式内燃機関
JP4849188B2 (ja) 火花点火式内燃機関
JP4725561B2 (ja) 火花点火式内燃機関
JP4367548B2 (ja) 火花点火式内燃機関
JP4367551B2 (ja) 火花点火式内燃機関
JP2009019593A (ja) 火花点火式内燃機関
JP2009008016A (ja) 火花点火式内燃機関
JP2009215913A (ja) 火花点火式内燃機関
JP2008274962A (ja) 火花点火式内燃機関
JP4911144B2 (ja) 火花点火式内燃機関
JP2009114949A (ja) 火花点火式内燃機関
JP5321422B2 (ja) 火花点火式内燃機関
JP5516461B2 (ja) 可変圧縮比機構を備える内燃機関
JP5640753B2 (ja) 火花点火内燃機関
JP4420105B2 (ja) 火花点火式内燃機関

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110328

R151 Written notification of patent or utility model registration

Ref document number: 4725561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees