WO2009012750A2 - Verfahren und vorrichtung zur laserstrukturierung von solarzellen - Google Patents

Verfahren und vorrichtung zur laserstrukturierung von solarzellen Download PDF

Info

Publication number
WO2009012750A2
WO2009012750A2 PCT/DE2008/001153 DE2008001153W WO2009012750A2 WO 2009012750 A2 WO2009012750 A2 WO 2009012750A2 DE 2008001153 W DE2008001153 W DE 2008001153W WO 2009012750 A2 WO2009012750 A2 WO 2009012750A2
Authority
WO
WIPO (PCT)
Prior art keywords
laser
roll
solar cells
substrate
parallel
Prior art date
Application number
PCT/DE2008/001153
Other languages
English (en)
French (fr)
Other versions
WO2009012750A3 (de
Inventor
Mario SCHRÖDNER
Ralph-Ingo Stohn
Original Assignee
Thüringisches Institut für Textil- und Kunststoff-Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. filed Critical Thüringisches Institut für Textil- und Kunststoff-Forschung e.V.
Priority to DE112008002580T priority Critical patent/DE112008002580A5/de
Publication of WO2009012750A2 publication Critical patent/WO2009012750A2/de
Publication of WO2009012750A3 publication Critical patent/WO2009012750A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0838Devices involving movement of the workpiece in at least one axial direction by using an endless conveyor belt
    • B23K26/0846Devices involving movement of the workpiece in at least one axial direction by using an endless conveyor belt for moving elongated workpieces longitudinally, e.g. wire or strip material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0676Dividing the beam into multiple beams, e.g. multifocusing into dependently operating sub-beams, e.g. an array of spots with fixed spatial relationship or for performing simultaneously identical operations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition

Definitions

  • the invention relates to a device and a method for continuous, highly productive and thermally gentle roll-to-roll laser structuring of electrodes and functional layers on a solar module with the aim of separating individual solar cells and interconnecting them in parallel or in series.
  • EP 0962990 uses a laser for structuring a cadmium sulfide film of a solar cell. Also known is the laser structuring of transparent metal oxide layers such as indium tin oxide (ITO), eg EP 0322258, JP 10256583, JP 2006114428 and thin metallic layers, eg WO 03/061013.
  • ITO indium tin oxide
  • JP 2000208794 a laser structuring method for solar cells is described, in which a plurality of thin rectangular beam profiles are generated by pumping a plurality of laser oscillators (dye lasers) and with these the solar module, which can be moved with an x-y table in two mutually perpendicular directions, is structured.
  • the known structuring and separation techniques are not or only partially suitable.
  • DE 10212639 describes a roll-to-roll laser structuring method for structuring functional polymers in which a homogeneously illuminated mask is used. This method allows the production of arbitrary electrode structures with high resolution.
  • a disadvantage, however, is that for energetic reasons, the area structurable per laser pulse can amount to only a few square centimeters. As a result, only substrate widths smaller than approx. 4 cm can be processed continuously in the roll-to-roll process.
  • a mask method with an excimer laser for structuring ITO and metallic conductors in multilayer structures on plastic films for use in LCDs and OLEDs is also described in WO02065527 as well as the thus structured multilayer structures in US 2002/0110673.
  • the disadvantage of this method is again the small surface processable per laser pulse and the resulting small processing width of a few centimeters.
  • UV lasers with very short pulse lengths of 20 ns and below, since here the material removal occurs predominantly photochemically without significant thermal stress.
  • UV light is absorbed well by almost all plastic films, so that no additional absorber layers are needed.
  • a major disadvantage of all previously known methods is the limitation of the process speed to values of a few square meters / hour.
  • the object of the invention is to specify a method and a device for the efficient roll-to-roll laser structuring of electrodes and functional layers on a solar module, with the aim of separating individual solar cells and connecting them to one another in series boarded. Larger working widths are to be achieved by enlarging the area which can be processed per laser pulse, as well as high belt speeds, and thermal loading of the flexible carrier material or of thermally sensitive organic functional materials is to be avoided.
  • This object is achieved in that the laser structuring of the relevant layers, which were previously deposited on a flexible carrier material, occurs with continuous movement of the coated carrier material in a roll-to-roll process and the available laser light is efficiently utilized, by focusing on the very narrow, only about 100 micron wide areas to be exposed via a beam shaping unit.
  • belt speeds of several meters / second can be achieved with a web width of 5 cm to about 1 m, which enables process speeds of a few thousand square meters / hour.
  • the structuring takes place by local removal of the layers with a UV laser pulse of sufficiently high intensity. It must be ensured that the complete removal takes place with only one laser pulse so as not to interrupt the process flow. With a laser pulse one or more layers can be removed simultaneously. In order to minimize the thermal damage to the adjacent, non-ablated areas, a pulse duration of a few nanoseconds and below is preferably used. At the same time, this ensures that the strip moves only insignificantly during the exposure time, ie, significantly less than 1 ⁇ m.
  • the belt speed and the pulse rate of the laser are coordinated so that a complete structuring takes place in the running direction.
  • a powerful suction is used.
  • the structuring can take place in a vacuum and / or a subsequent one
  • the cleaning step must be such that loosely-adhering material is removed but the functionalities remaining on the substrate are removed. layers are not replaced. For this purpose, for example, compressed air or a high pressure water jet into consideration.
  • the device according to the invention for roll-to-roll laser structuring of solar modules consists of an unwinding unit 3, a take-up unit 4, a laser 1, a beam shaping unit 2, a substrate table 7, a synchronization unit 8 and an extraction unit.
  • the winding and unwinding units ensure the transport of the coated substrate 5 at a constant, adjustable speed. This speed is matched to the pulse rate of the laser and the length of the laser pulse to be ablated lines.
  • the regulation of the pulse rate relative to the belt speed is handled by the synchronization unit, which may be a camera system, for example.
  • the substrate table is adjustable in height and ensures that the coated substrate is held in a defined plane, eg by suction with slight negative pressure.
  • the laser used may be pulsed excimer lasers or a frequency-tripled Nd: YAG laser whose pulse energy and pulse rate can be regulated within a certain range.
  • the beam shaping unit can be designed differently.
  • the laser beam is split with one or more beam splitters 10 into a plurality of beams. These partial beams are then focused with cylindrical lenses 11 and 12 so that a plurality of parallel line-shaped exposure zones are formed. All optical elements are made of UV-transparent quartz glass. This field of parallel lines can be aligned either parallel or perpendicular to the direction of travel of the belt so that insulating trenches can be created either longitudinally or transversely to the direction of travel. In this embodiment of the method and the device, tape speeds of the moving coated substrate of several m / s can be achieved.
  • the workable web width results from the number of sub-beams produced and the line spacing required for the optimum function of the solar module on the substrate.
  • the machinable web width results from the geometric length of the cylindrical lens 12 used for focusing.
  • Another variant of the beamforming unit produces a focused laser beam having a square or circular beam profile both transversely and at a high pulse repetition rate across the substrate surface is moved longitudinally to the direction. The distraction can be done with a galvano scanner.
  • the achievable belt speeds of the moving coated substrate are in the range of a few cm / s.
  • An ITO-coated polyester film with an ITO layer thickness of 100 nm and a surface resistance of 60 ⁇ is irradiated with an excimer laser pulse of wavelength 248 nm, the pulse energy 45 mJ and a pulse duration of about 20 ns.
  • two crossed plano-convex cylindrical lenses made of quartz glass are used for focusing and beam shaping. The distance of the lenses was 25 cm.
  • the laser-side lens has a focal length of 100 mm and a length of 50 mm.
  • the substrate-side lens has a focal length of 60 mm and a length of 50 mm. In this way, an insulating trench is obtained in the ITO layer with a width of 117 ⁇ m and a length of 50 mm.
  • a coating coated with ITO and / or the solar-active layer tetes band with a width of 30 cm is to be divided longitudinally into 25, electrically insulated strips of 1 cm width.
  • an array of 26 cylindrical lenses (according to Fig. 2) is used to generate 26 line-shaped, parallel partial beams with a length of 3 cm.
  • the coated surface is exactly or at least approximately in the focus of the cylindrical lenses.
  • an excimer laser with a wavelength of 248 nm, a pulse energy of 650 mJ, a pulse duration of about 20 ns and a repetition rate of 100 Hz is used.
  • the coated belt can be moved at a speed of up to 3 m / s to obtain continuous lines, resulting in a process speed of 3240 m 2 / h.
  • Such tape speeds are not feasible with a writing beam.
  • even higher belt speeds and / or greater processing widths can be achieved with a further optimized device according to the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Mit einem Verfahren und einer Vorrichtung zur Laserstrukturierung von Elektroden und Funktionsschichten werden in einem kontinuierlichen Rolle-zu-Rolle-Prozess Solarmodule in einzelne Solarzellen separiert und miteinander elektrisch verschaltet. Durch eine Vergrößerung der pro Laserimpuls bearbeiteten Fläche sowie bei Bandgeschwindigkeiten von mehreren Metern/s der ein- oder mehrfach mit Funktionsmaterialien beschichteten flexiblen Trägerfolie wird eine thermisch schonende Strukturierung bei hohen Prozessgeschwindigkeiten erzielt.

Description

Verfahren und Vorrichtung zur Laserstrukturierung von Solarzellen
[Beschreibung]
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur kontinuierlichen, hochproduktiven und thermisch schonenden Rolle-zu-Rolle-Laserstrukturierung von Elektroden und Funktionsschichten auf einein Solarmodul mit dem Ziel, einzelne Solarzellen zu separieren und diese miteinander parallel oder in Reihe zu verschalten.
[Stand der Technik]
Zur Herstellung großflächiger Solarmodule ist es erforderlich, diese in einzelne Solarzellen einer bestimmten Größe zu unterteilen und diese Solarzellen dann je nach Erfordernis miteinander parallel oder in Reihe zu verschalten. Gemäß dem Stand der Technik wird dies dadurch erreicht, dass die üblicherweise im Herstellungsprozess großflächig aufgebrachten Front- und/oder Rückelektroden mittels mechanischen Ritzens, Photolithografie oder Laserabtrag in kleinere, voneinander isolierte Elektrodenabschnitte unterteilt werden. Für die Herstellung von anorganischen Dünnschichtsolarzellen auf Glas sind diese Verfahren etabliert. Hierbei wird z.B. mit einem fokussierten Laserstrahl, welcher mit hoher Geschwindigkeit abgelenkt wird, die transparente ITO-Schicht und/oder die Metallisierung und/oder die fotoaktive Schicht lokal entfernt. So wird in EP 0962990 ein Laser zur Strukturierung eines Cadmiumsulfidfilms einer Solarzelle verwendet. Ebenfalls bekannt ist die Laserstrukturierung von transparenten Metalloxidschichten wie Indium-Zinn-Oxid (ITO), z.B. EP 0322258, JP 10256583, JP 2006114428 und dünnen metallischen Schichten, z.B. WO 03/061013.
In JP 2000208794 wird eine Laserstrukturierungsmethode für Solarzellen beschrieben, bei der mehrere dünne rechteckige Strahlprofile durch Pumpen mehrerer Laseroszillatoren (Farbstofflaser) generiert werden und mit diesen das Solarmodul, welches mit einem x-y-Tisch in zwei zu einander senkrechten Richtungen bewegt werden kann, strukturiert wird. Jedoch sind zur Herstellung von Solarzellen auf flexiblen Substraten wie Kunststofffolien, welche in einem kontinuierlichen Rolle-zu-Rolle-Prozess hergestellt werden, die bekannten Strukturierungs- und Separierungstechniken nicht oder nur bedingt geeignet. So wird in DE 10212639 ein Rolle-zu-Rolle- Laserstrukturierungsverfahren zur Strukturierung von Funkti- onspolymeren beschrieben, bei welchem eine homogen ausgeleuchtete Maske benutzt wird. Dieses Verfahren erlaubt die Herstellung beliebiger Elektrodenstrukturen mit hoher Auflösung. Ein Nachteil jedoch ist, dass aus energetischen Gründen die je Laserpuls strukturierbare Fläche nur wenige Quadrat- Zentimeter betragen kann. Das hat zur Folge, dass nur Substratbreiten kleiner ca. 4 cm kontinuierlich im Rolle-zu- Rolle-Prozess bearbeitet werden können.
Ebenfalls ein Maskenverfahren mit einem Excimerlaser zur Strukturierung von ITO und metallischen Leitern in Mehr- Schichtstrukturen auf Kunststofffolien für die Verwendung in LCDs und OLEDs wird in WO02065527 sowie die so strukturierten Mehrschichtstrukturen in US 2002/0110673 beschrieben. Der Nachteil dieses Verfahrens ist wieder die geringe pro Laserpuls bearbeitbare Fläche und die daraus resultierende geringe Bearbeitungsbreite von wenigen Zentimetern.
Eine Vorrichtung und ein Verfahren zur Herstellung von parallelen elektrischen Leitern aus Metallen oder ITO auf Kunststofffolien oder Glas wird auch in US 5216543 angegeben. Hierbei wird ein Array aus Zylinderlinsen benutzt, welches mit dem aufgeweiteten Strahl eines YAG-Lasers durchstrahlt wird. Das im Fokus der Linsen befindliche leitfähige Material bzw. eine darunter befindliche Absorberschicht wird dabei thermisch verdampft und dadurch werden isolierende Gräben erzeugt. Das Zylinderlinsenarray ist z.B. eine entsprechend strukturierte Kunststoffplatte oder -folie. Nachteil dieses Verfahrens ist die thermische Verdampfung von Material, wodurch angrenzende Bereiche, insbesondere solche, die mit thermisch empfindlichen organischen Funktionsmaterialien, wie bei der Polymer- oder organischen Solarzelle, beschichtet sind, beeinträchtigt werden können.
Deshalb ist es günstiger, UV-Laser mit sehr kurzen Pulslängen von 20 ns und darunter zu verwenden, da hier der Materialab- trag überwiegend photochemisch ohne nennenswerte thermische Belastung erfolgt. Darüber hinaus wird UV-Licht von fast allen Kunststofffolien gut absorbiert, so dass keine zusätzlichen Absorberschichten benötigt werden. Ein wesentlicher Nachteil aller bisher bekannten Verfahren ist die Beschränkung der Prozessgeschwindigkeit auf Werte von einigen wenigen Quadratmeter/Stunde.
[Aufgabe der Erfindung] Aufgabe der Erfindung ist es, ein Verfahren und eine Vorrich- tung zur effizienten Rolle-zu-Rolle-Laserstrukturierung von Elektroden und Funktionsschichten auf einem Solarmodul anzugeben, mit dem Ziel, einzelne Solarzellen zu separieren und diese miteinander in Reihe zu verschalten. Dabei sollen größere Arbeitsbreiten durch Vergrößerung der pro Laserimpuls bearbeitbaren Fläche sowie hohe Bandgeschwindigkeiten erzielt und eine thermische Belastung des flexiblen Trägermaterials oder von thermisch empfindlichen organischen Funktionsmaterialien vermieden werden. Diese Aufgabe wird dadurch gelöst, dass die Laserstrukturie- rung der betreffenden Schichten, welche zuvor auf einem flexiblen Trägermaterial abgeschieden wurden, bei kontinuierlicher Fortbewegung des beschichteten Trägermaterials in einem Rolle-zu-Rolle-Prozess geschieht und das zur Verfügung stehende Laserlicht effizient ausgenutzt wird, indem es auf die sehr schmalen, nur ca. 100 μm breiten zu belichtenden Bereiche über eine Strahlformungseinheit konzentriert wird. Je nach Ausgestaltung der Erfindung können dabei Bandge- schwindigkeiten von mehreren Metern/Sekunde bei einer Bahnbreite von 5 cm bis ca. I m erreicht werden, wodurch Prozessgeschwindigkeiten von einigen Tausend Quadratmetern/Stunde ermöglicht werden. Die Strukturierung erfolgt durch lokalen Abtrag der Schichten mit einem UV-Laserpuls ausreichend hoher Intensität. Dabei ist zu gewährleisten, dass der vollständige Abtrag mit nur einem Laserpuls erfolgt, um den Prozessfluss nicht zu unterbrechen. Mit einem Laserimpuls kann eine Schicht oder mehrere Schichten gleichzeitig abgetragen werden. Um die thermische Schädigung der angrenzenden, nicht abgetragenen Bereiche zu minimieren, wird bevorzugt eine Pulsdauer von wenigen Nanosekunden und darunter verwendet. Gleichzeitig wird damit sicher gestellt, dass sich das Band während der Belichtungszeit nur unwesentlich, d.h. deutlich weniger als 1 μm, weiter bewegt. Die Bandgeschwindigkeit und die Pulsrate des Lasers werden dabei so aufeinander abgestimmt, dass eine lückenlose Strukturierung in der Laufrichtung erfolgt. Um die Ablagerung von abgetragenem Material auf dem Solarmodul zu vermeiden, wird eine leistungsfähige Absaugung benutzt. Alternativ dazu oder zusätzlich kann die Struk- turierung im Vakuum erfolgen und/oder ein nachträglicher
Reinigungsschritt durchgeführt werden. Der Reinigungsschritt muss so gestaltet sein, dass lose haftendes Material entfernt wird, jedoch die auf dem Substrat verbleibenden Funktions- schichten nicht abgelöst werden. Hierfür kommen z.B. Druckluft oder ein Hochdruckwasserstrahl in Betracht. Die erfindungsgemäße Vorrichtung zur Rolle-zu-Rolle- Laserstrukturierung von Solarmodulen besteht aus einer Abwi- ckeleinheit 3, einer Aufwickeleinheit 4, einem Laser 1, einer Strahlformungseinheit 2, einem Substrattisch 7, einer Synchronisationseinheit 8 und einer Absaugung. Die Auf- und Abwickeleinheit sorgen für den Transport des beschichteten Substrats 5 mit einer konstanten, einstellbaren Geschwindig- keit. Diese Geschwindigkeit ist auf die Pulsrate des Lasers und die Länge der je Laserpuls abzutragenden Linien abgestimmt. Die Regelung der Pulsrate relativ zur Bandgeschwindigkeit übernimmt die Synchronisationseinheit, welche z.B. ein Kamerasystem sein kann. Der Substrattisch ist höhenver- stellbar und sorgt dafür, dass das beschichtete Substrat in einer definierten Ebene gehalten wird, z.B. durch Ansaugen mit leichtem Unterdruck. Als Laser können gepulste Excimerla- ser oder ein frequenzverdreifachter Nd:YAG-Laser verwendet werden, deren Pulsenergie und Pulsrate in einem gewissen Bereich geregelt werden können.
Die Strahlformungseinheit kann unterschiedlich gestaltet sein. In einer bevorzugten Variante wird der Laserstrahl mit einem oder mehreren Strahlteilern 10 in mehrere Strahlen aufgeteilt. Diese Teilstrahlen werden dann mit Zylinderlinsen 11 und 12 so fokussiert, dass mehrere parallele linienförmige Belichtungszonen entstehen. Alle optischen Elemente bestehen aus UV-transparentem Quarzglas. Dieses Feld paralleler Linien kann entweder parallel oder senkrecht zur Laufrichtung des Bandes ausgerichtet werden, so dass isolierende Gräben entwe- der längs oder quer zur Laufrichtung erzeugt werden können. Bei dieser Ausgestaltung des Verfahrens und der Vorrichtung können Bandgeschwindigkeiten des bewegten beschichteten Substrates von mehreren m/s erreicht werden. Bei Ausrichtung der Isoliergräben parallel zur Laufrichtung ergibt sich die bearbeitbare Bahnbreite aus der Anzahl der erzeugten Teilstrahlen und dem für die optimale Funktion des Solarmoduls erforderlichen Linienabstand auf dem Substrat. Bei Ausrichtung der Isoliergräben senkrecht zur Laufrichtung ergibt sich die bearbeitbare Bahnbreite aus der geometrischen Länge der zum Fokussieren verwendeten Zylinderlinse 12. Eine andere Variante der Strahlformungseinheit erzeugt einen fokussierten Laserstrahl mit quadratischem oder kreisförmigem Strahlprofil, der mit einer hohen Pulswiederhohlrate über die Substratoberfläche sowohl quer als auch längs zur Laufrichtung bewegt wird. Die Ablenkung kann mit einem Galvanoscanner erfolgen. Bei dieser Ausgestaltung des Verfahrens und der Vorrichtung liegen die erreichbaren Bandgeschwindigkeiten des bewegten beschichteten Substrates im Bereich von einigen cm/s .
Beispiel 1
Eine ITO beschichtete Polyesterfolie mit einer ITO- Schichtdicke von 100 nm und einem Oberflächenwiderstand von 60 Ω wird mit einem Excimerlaserpuls der Wellenlänge 248 nm, der Pulsenergie 45 mJ und einer Pulsdauer von ca. 20 ns bestrahlt. Zur Fokussierung und Strahlformung werden zwei gekreuzte plankonvexe Zylinderlinsen aus Quarzglas verwendet. Der Abstand der Linsen betrug 25 cm. Die laserseitige Linse hat eine Brennweite von 100 mm und eine Länge von 50 mm. Die substratseitige Linse hat eine Brennweite von 60 mm und eine Länge von 50 mm. Auf diese Weise erhält man einen isolierenden Graben in der ITO-Schicht mit einer Breite von 117 μm und einer Länge von 50 mm.
Beispiel 2
Nachstehendes Beispiel demonstriert die Vorteile der Erfindung. Ein mit ITO und/oder der solaraktiven Schicht beschich- tetes Band mit einer Breite von 30 cm soll in Längsrichtung in 25, voneinander elektrisch isolierte Streifen von 1 cm Breite unterteilt werden. Dazu werden mit einem Array aus 26 Zylinderlinsen (gem. Bild 2) 26 linienförmige, parallele Teilstrahlen mit einer Länge von 3 cm erzeugt. Die beschichtete Oberfläche befindet sich genau oder mindestens annähernd im Fokus der Zylinderlinsen. Zur Strukturierung wird ein Excimerlaser mit einer Wellenlänge von 248 nm, einer Pulsenergie von 650 mJ, einer Pulsdauer von ca. 20 ns und einer Wiederholrate von 100 Hz verwendet. Bei einer Breite der geritzten Gräben von 50 μm ergibt sich unter der Annahme, dass 500 mJ Laserenergie (77% der emittierten Strahlung) auf der Substratoberfläche ankommen, eine Bestrahlung in den belichteten Bereichen von 1280 mJ/cm2, was für die vollstän- dige Durchtrennung der dünnen Schichten völlig ausreichend ist. Unter diesen Bedingungen kann das beschichtete Band mit einer Geschwindigkeit bis 3 m/s bewegt werden, um durchgängige Linien zu erhalten, woraus eine Prozessgeschwindigkeit von 3240 m2/h resultiert. Derartige Bandgeschwindigkeiten sind mit einem schreibenden Strahl nicht machbar. Prinzipiell lassen sich mit einer weiter optimierten erfindungsgemäßen Vorrichtung noch höhere Bandgeschwindigkeiten und/oder größere Verarbeitungsbreiten erzielen.
[Bezugszeichenliste]
I Laser 2 Strahlformungseinheit
3 Abwickeleinheit
4 Aufwickeleinheit
5 beschichtetes flexibles Substrat (Solarmodul)
6 Spiegel 7 Substrattisch
8 Synchronisationseinheit
10 Strahlteiler
II Zylinderlinse
12 Zylinderlinse

Claims

[Patentansprüche]
1. Verfahren zur effizienten Rolle-zu-Rolle-Laserstruk- turierung von Elektroden und Funktionsschichten auf einem Solarmodul, bei dem in einem kontinuierlichen, hochproduktiven und schnell laufenden Rolle-zu-Rolle-Prozess mit einem Nanosekunden-Laserpuls lokal und schichtweise Material thermisch schonend von dem beschichteten flexiblen Trägermaterial, welches mit mindestens einer Funktions- schicht beschichtet ist, abgetragen wird, so dass parallele, von einander isolierte Leiterbahnen und Solarzellen entstehen, und wobei die hohe Produktivität dadurch erreicht wird, dass der Laserstrahl in parallele, fokus- sierte Linien über die gesamte Breite der Rolle aufgefä- chert wird und die Durchgängigkeit der Isolationsgräben zwischen den Solarzellen durch die Abstimmung der Pulsrate auf die Bandgeschwindigkeit mittels einer Synchroni- sierungseinheit garantiert wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass auf dem beschichteten Trägermaterial nur eine Schicht strukturiert wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass auf dem beschichteten Trägermaterial, mehrere Schichten gleichzeitig strukturiert werden .
4. Verfahren nach Anspruch 1-3, dadurch gekennzeichnet, dass der lokale Abtrag mit genau einem Laserpuls erfolgt.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Wellenlänge des verwendeten Lasers im UV liegt und die Pulsdauer ≤ 20 ns ist.
6. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass die parallelen Leiterbahnen und Solarzellen parallel zur Bewegungsrichtung des Foliensubstrates generiert werden.
7. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass die parallelen Leiterbahnen und Solarzellen senkrecht zur Bewegungsrichtung des Foliensubstrates generiert werden.
8. Verfahren nach Anspruch 1-7, dadurch gekennzeichnet, dass das abgetragene Material abgesaugt wird.
9. Verfahren nach Anspruch 1-8, dadurch gekennzeichnet, dass nach der Laserbearbeitung ein Reinigungsschritt durchgeführt wird, bei dem lose anhaftendes Material entfernt wird.
10. Vorrichtung zur Separierung von flexiblen Dünnschichtsolarzellen bestehend aus einer Abwickeleinheit, einer Aufwickeleinheit, einem Laser, einer Strahlformungseinheit, einer Synchronisierungseinheit und einem Substrattisch, die es ermöglicht, die Separierung in einem kontinuierlichen, hochproduktiven Rolle-zu-Rolle-Prozess durchzuführen, wobei von dem sich kontinuierlich bewegenden beschichteten Substratmaterial lokal und schichtweise Material abgetragen wird.
11. Vorrichtung nach Anspruch 10 dadurch gekennzeichnet, dass der Laser ein gepulster UV-Laser, insbesondere ein Excimer- oder ein frequenzvervielfachter Nd:YAG-Laser ist .
12. Vorrichtung nach Anspruch 10 dadurch gekennzeichnet, dass die Strahlformungseinheit aus mehreren Strahlteilern und zueinander parallel angeordneten Zylinderlinsen besteht, wobei sich die Substratebene genau im Fokus der Zylinderlinsen befindet.
13. Vorrichtung nach Anspruch 10 dadurch gekennzeichnet, dass die Synchronisierungseinheit die Bandgeschwindigkeit misst und den Laser entsprechend der Bandgeschwindigkeit triggert.
PCT/DE2008/001153 2007-07-23 2008-07-12 Verfahren und vorrichtung zur laserstrukturierung von solarzellen WO2009012750A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112008002580T DE112008002580A5 (de) 2007-07-23 2008-07-12 Verfahren und Vorrichtung zur Laserstrukturierung von Solarzellen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007034644.3 2007-07-23
DE102007034644A DE102007034644A1 (de) 2007-07-23 2007-07-23 Verfahren und Vorrichtung zur Laserstrukturierung von Solarzellen

Publications (2)

Publication Number Publication Date
WO2009012750A2 true WO2009012750A2 (de) 2009-01-29
WO2009012750A3 WO2009012750A3 (de) 2009-07-09

Family

ID=40157168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2008/001153 WO2009012750A2 (de) 2007-07-23 2008-07-12 Verfahren und vorrichtung zur laserstrukturierung von solarzellen

Country Status (2)

Country Link
DE (2) DE102007034644A1 (de)
WO (1) WO2009012750A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115815821A (zh) * 2022-12-08 2023-03-21 深圳铭创智能装备有限公司 激光加工连续图形的装置与方法及电子器件蚀刻装置与方法
WO2024046736A1 (de) 2022-09-01 2024-03-07 Saint-Gobain Glass France Verbundglasscheibe mit verbesserter spektraler reflektion

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202009011260U1 (de) 2009-08-15 2009-10-22 Bentzinger, Frank Photovoltaikmodul mit wenigstens einer Solarzelle
DE102009037964A1 (de) 2009-08-15 2011-03-03 Frank Bentzinger Photovoltaikmodul mit wenigstens einer Solarzelle und Verfahren zur Strukturierung einer Solarzelle
DE102010001036A1 (de) * 2010-01-20 2011-07-21 Robert Bosch GmbH, 70469 Verfahren und Vorrichtung zur mehrfachen Nutzung von Laserquellen
DE102010038259B4 (de) * 2010-10-19 2013-02-07 4Jet Sales + Service Gmbh Verfahren und Vorrichtung zum Gravieren eines flexiblen Bands
CN109841549B (zh) * 2017-11-28 2020-11-13 中国科学院金属研究所 一种无损转移自支撑低维材料的方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0536431A1 (de) * 1991-10-07 1993-04-14 Siemens Aktiengesellschaft Laserbearbeitungsverfahren für einen Dünnschichtaufbau
US5216543A (en) * 1987-03-04 1993-06-01 Minnesota Mining And Manufacturing Company Apparatus and method for patterning a film
US6034349A (en) * 1997-05-28 2000-03-07 Komatsu Ltd. Laser machining system for sequential irradiation of machining points
US6040552A (en) * 1997-01-30 2000-03-21 Jain; Kanti High-speed drilling system for micro-via pattern formation, and resulting structure
DE19915666A1 (de) * 1999-04-07 2000-10-19 Fraunhofer Ges Forschung Verfahren und Vorrichtung zur selektiven Kontaktierung von Solarzellen
WO2001041967A1 (en) * 1999-12-07 2001-06-14 First Solar, Llc Apparatus and method for laser scribing a coated substrate
WO2002092274A1 (en) * 2001-05-17 2002-11-21 Laser Machining, Inc. Method and apparatus for improving laser hole resolution
US20030047695A1 (en) * 2001-09-07 2003-03-13 Preco Laser Systems, Llc System and method for synchronizing a laser beam to a moving web
WO2003067671A1 (en) * 2002-02-06 2003-08-14 Bp Corporation North America Inc. Process for producing photovoltaic devices
WO2003080285A1 (de) * 2002-03-21 2003-10-02 Louis Pöhlau Lohrentz Vorrichtung und verfahren zur laserstrukturierung von funktionspolymeren und verwendungen
JP2007027283A (ja) * 2005-07-13 2007-02-01 Fuji Electric Holdings Co Ltd 薄膜太陽電池製造方法および製造装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3880807T2 (de) 1987-12-23 1993-08-12 Semiconductor Energy Lab Verfahren fuer die herstellung von duennen filmmustern auf substraten.
JP3017422B2 (ja) * 1995-09-11 2000-03-06 キヤノン株式会社 光起電力素子アレー及びその製造方法
JPH10256583A (ja) 1997-03-14 1998-09-25 Mitsubishi Heavy Ind Ltd 集積型薄膜太陽電池
JPH11354818A (ja) 1998-06-05 1999-12-24 Matsushita Battery Industrial Co Ltd 太陽電池の製造方法
JP2000208794A (ja) 1999-01-19 2000-07-28 Fuji Electric Co Ltd 薄膜太陽電池等のパタ―ン状薄膜層のレ―ザパタ―ニング方法および装置
US20020110673A1 (en) 2001-02-14 2002-08-15 Ramin Heydarpour Multilayered electrode/substrate structures and display devices incorporating the same
US6762124B2 (en) 2001-02-14 2004-07-13 Avery Dennison Corporation Method for patterning a multilayered conductor/substrate structure
EP1466368A1 (de) * 2002-01-07 2004-10-13 BP Corporation North America Inc. Herstellungsverfahren für dünnfilm photovoltaic module
DE102004016313A1 (de) * 2004-03-29 2005-10-13 Klaus Dr. Kalberlah Verfahren und Einrichtung zur Separation von Einzelzellen aus einem flexiblen Solarzellen-Band
US20050272175A1 (en) * 2004-06-02 2005-12-08 Johannes Meier Laser structuring for manufacture of thin film silicon solar cells
JP4641172B2 (ja) 2004-10-18 2011-03-02 大日本印刷株式会社 Ito膜のパターンニング方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216543A (en) * 1987-03-04 1993-06-01 Minnesota Mining And Manufacturing Company Apparatus and method for patterning a film
EP0536431A1 (de) * 1991-10-07 1993-04-14 Siemens Aktiengesellschaft Laserbearbeitungsverfahren für einen Dünnschichtaufbau
US6040552A (en) * 1997-01-30 2000-03-21 Jain; Kanti High-speed drilling system for micro-via pattern formation, and resulting structure
US6034349A (en) * 1997-05-28 2000-03-07 Komatsu Ltd. Laser machining system for sequential irradiation of machining points
DE19915666A1 (de) * 1999-04-07 2000-10-19 Fraunhofer Ges Forschung Verfahren und Vorrichtung zur selektiven Kontaktierung von Solarzellen
WO2001041967A1 (en) * 1999-12-07 2001-06-14 First Solar, Llc Apparatus and method for laser scribing a coated substrate
WO2002092274A1 (en) * 2001-05-17 2002-11-21 Laser Machining, Inc. Method and apparatus for improving laser hole resolution
US20030047695A1 (en) * 2001-09-07 2003-03-13 Preco Laser Systems, Llc System and method for synchronizing a laser beam to a moving web
WO2003067671A1 (en) * 2002-02-06 2003-08-14 Bp Corporation North America Inc. Process for producing photovoltaic devices
WO2003080285A1 (de) * 2002-03-21 2003-10-02 Louis Pöhlau Lohrentz Vorrichtung und verfahren zur laserstrukturierung von funktionspolymeren und verwendungen
JP2007027283A (ja) * 2005-07-13 2007-02-01 Fuji Electric Holdings Co Ltd 薄膜太陽電池製造方法および製造装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024046736A1 (de) 2022-09-01 2024-03-07 Saint-Gobain Glass France Verbundglasscheibe mit verbesserter spektraler reflektion
CN115815821A (zh) * 2022-12-08 2023-03-21 深圳铭创智能装备有限公司 激光加工连续图形的装置与方法及电子器件蚀刻装置与方法
CN115815821B (zh) * 2022-12-08 2023-08-11 深圳铭创智能装备有限公司 激光加工连续图形的装置与方法及电子器件蚀刻装置与方法

Also Published As

Publication number Publication date
WO2009012750A3 (de) 2009-07-09
DE102007034644A1 (de) 2009-01-29
DE112008002580A5 (de) 2010-06-24

Similar Documents

Publication Publication Date Title
DE69928488T2 (de) Laserbearbeitung von einer Dünnschicht
WO2009012750A2 (de) Verfahren und vorrichtung zur laserstrukturierung von solarzellen
DE4229399C2 (de) Verfahren und Vorrichtung zum Herstellen einer Funktionsstruktur eines Halbleiterbauelements
EP1166358B1 (de) Verfahren zum abtragen von dünnen schichten auf einem trägermaterial
DE102005030576B4 (de) Verfahren und Vorrichtung zum Zerteilen eines Substrats unter Verwendung eines Femtosekundenlasers
DE102016224214B4 (de) Bearbeitungsverfahren für einen Wafer
DE102014106472B4 (de) Verfahren zum Strahlungsritzen eines Halbleitersubstrats
EP0536431A1 (de) Laserbearbeitungsverfahren für einen Dünnschichtaufbau
EP1598121A2 (de) Lasergestütztes Entschichtungsverfahren
EP2427910A2 (de) Verfahren zur herstellung und serienverschaltung von photovoltaischen elementen zu einem solarmodul und solarmodul
DE112010003736T5 (de) Ritzen von quer verlaufenden ISO-Linien, verknüpfen, und vereinfachte Laser- und Scannersteuerungen
DE102009021273A1 (de) Verfahren und Vorrichtung zur Herstellung eines photovoltaischen Dünnschichtmoduls
DE19933703B4 (de) Vorrichtung und Verfahren zum Abtragen von Schichten auf einer Solarzelle
EP2883247A1 (de) Laserbasiertes verfahren und bearbeitungstisch zur lokalen kontaktierung eines halbleiterbauelements
DE102011101585A1 (de) Verfahren zur Herstellung von Leuchtdioden oder photovoltaischen Elementen
EP2513982B1 (de) Verfahren zur herstellung eines dünnschichtbauelements
DE102011103481B4 (de) Selektives Abtragen dünner Schichten mittels gepulster Laserstrahlung zur Dünnschichtstrukturierung
EP2101354A2 (de) Verfahren und Vorrichtung zur Bildung der Trennlinien eines photovoltaischen Moduls mit serienverschalteten Zellen
EP2520394B1 (de) Vorrichtung und Verfahren zum Randentschichten und Kerben beschichteter Substrate mit zwei von der gleichen Seite auf das beschichtete transparente Substrat einwirkenden Laserquellen
DE102009059193B4 (de) Verfahren zur Dotierung von Halbleitermaterialien
DE10326505B4 (de) Laserritzen von Dünnschichthalbleiterbauelementen
DE112010004503T5 (de) Verfahren und vorrichtung zum abtragen dünnerschichten von einem substrat
DE102008038118A1 (de) Verfahren und Anlagen zum Entschichten mit Laserstrahlen
DE102010005340A1 (de) Verfahren und Vorrichtung zur Strukturierung einer auf einem Substrat angeordneten Lage
Feng et al. Laser patterning of printed silver for selective lighting of electroluminescence film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08784336

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 1120080025800

Country of ref document: DE

REF Corresponds to

Ref document number: 112008002580

Country of ref document: DE

Date of ref document: 20100624

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08784336

Country of ref document: EP

Kind code of ref document: A2