WO2009012621A1 - Élément de chauffage électrique d'un circuit de film épais de terre rare basé sur un substrat céramique de verre et procédé pour le préparer - Google Patents

Élément de chauffage électrique d'un circuit de film épais de terre rare basé sur un substrat céramique de verre et procédé pour le préparer Download PDF

Info

Publication number
WO2009012621A1
WO2009012621A1 PCT/CN2007/002477 CN2007002477W WO2009012621A1 WO 2009012621 A1 WO2009012621 A1 WO 2009012621A1 CN 2007002477 W CN2007002477 W CN 2007002477W WO 2009012621 A1 WO2009012621 A1 WO 2009012621A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
weight ratio
ceramic substrate
electric heating
heating element
Prior art date
Application number
PCT/CN2007/002477
Other languages
English (en)
French (fr)
Inventor
Kezheng Wang
Chen Wang
Original Assignee
Kezheng Wang
Chen Wang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kezheng Wang, Chen Wang filed Critical Kezheng Wang
Publication of WO2009012621A1 publication Critical patent/WO2009012621A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0054Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/003Thick film resistors

Definitions

  • Thick film circuit electric heating element based on glass-ceramic substrate and preparation process thereof
  • This invention relates to the field of electrical heating, and more particularly to a microcrystalline glass substrate thick film circuit controllable electric heating element and a process for its preparation.
  • the new heating element requires a small volume, a large power, a large surface thermal load, a small thermal inertia, a high thermal efficiency, a low power consumption, a fast hot start, and a uniform temperature field.
  • Electromagnetic pollution, green, environmentally friendly, safe and reliable In recent years, the induction cooker has been widely used in China, but the National Daily Electrical Appliance Quality Supervision and Inspection Center has done industry testing on the induction cooker products. It has found that only about 10% of the standard is reached. The biggest concern of the problem product is that it is prone to magnetic leakage. Generate electromagnetic radiation pollution. It is only the indicator of "near-area magnetic field strength". If the national standard of Switzerland, Sweden and other countries, that is, 0.2 micro Tesla, is passed, the domestic induction cooker that can pass the customs is very few.
  • the bigger hidden worry is: There is no feasible and reliable standard for electromagnetic radiation pollution detection of induction cookers.
  • the World Health Organization uses electromagnetic radiation such as "very low frequency electromagnetic fields" generated by induction cookers, together with benzene, welding fumes, etc. It is classified as a type of carcinogen. If there is a magnetic substance in the blood or cells, it is susceptible to magnetic induction, causing heavy metals to accumulate in the body, thereby preventing the normal activities of blood and cells from inducing cancer. And such an important test indicator, the domestic sales of induction cookers almost all "vacancy.” Unlike microwave ovens, induction cookers are unobstructed systems, and it is almost impossible to suppress electromagnetic radiation pollution. Therefore, how to study an environmentally friendly, energy-saving and safe electric heating element that can replace copper inductors without generating magnetic lines has become an urgent problem to be solved. . Summary of the invention
  • the object of the present invention is to provide a low cost, high power, high thermal efficiency, low power consumption, fast hot start, and temperature field hooks in order to solve the deficiencies of the prior art, such as steel, iron, aluminum, plastic, porcelain, All kinds of tableware can be heated, and there is no thick film circuit electric heating element based on glass-ceramic substrate with electromagnetic leakage and pollution.
  • Another object of the present invention is to provide a process for preparing a thick film circuit electrothermal element based on a glass-ceramic substrate.
  • a thick film circuit electric heating element based on a glass-ceramic substrate comprising a substrate, a series of electronic paste, characterized in that: the series of electronic pastes are thick film circuits
  • the form is prepared on a substrate.
  • the series of electronic pastes comprises a package slurry and an electrode slurry.
  • the series of electronic pastes are composed of a functional phase, an inorganic binder phase and an organic carrier.
  • the substrate is a quartz solid solution as a main crystalline phase.
  • the crystal nucleating agent is Ti0 2 or Zr0 2 .
  • the Li 2 0-Si0 :i - ⁇ -L3 ⁇ 40 :i system glass-ceramic substrate having a ⁇ -quartz solid solution as a main phase the weight ratio of each oxide is Li 2 02 ⁇ 16 %, Si ( 3 ⁇ 430 ⁇ 65 %, Al 2 0 3 5 ⁇ 26%, P 2 0 3 18 ⁇ 38%, La 2 0 3 0. 3 ⁇ 15%, Co 2 0 3 0. 05 ⁇ 6%, Ti0 2 l ⁇ 8 % , Zr0 2 l ⁇ 10%.
  • the substrate is a CaO-Al 2 0 :i - SiO:, -B 2 0 3 - L 0 :i system glass-ceramic substrate with ⁇ -wollastonite as the main crystal phase, and the composition weight of each oxide The ratio is: Ca018 ⁇ 38%, Al 2 0 3 5 ⁇ 26%, Si0 2 30 ⁇ 65%, ⁇ , 2 ⁇ 16%, La 2 0 :i 0. 3 ⁇ 15 %, Co 2 0:,0 05 ⁇ 6%, Ti0 2 l ⁇ 10 %, Zr0 2 l ⁇ : 10%.
  • the series of electronic paste further comprises a resistive paste having a rare earth element, the rare earth resistive paste consisting of a functional phase and an organic carrier, the ratio is (65 to 85): (35 ⁇ 15); and the functional phase component is composed of silver rhodium palladium. ⁇ composite powder and glass-ceramic powder composition, the ratio is (75 ⁇ 55): (25 ⁇ 45);
  • the weight ratio of silver iridium palladium iridium powder is (75 ⁇ 59) : (15 ⁇ 20. 5) : (5 ⁇ 20): (5 ⁇ 0.
  • the glass ceramic powder is CaO- Si0 2 - A1 2 0 3 -B 2 0 3 - Bi 2 0 3 -L3 ⁇ 40 3 series glass ceramics, the weight ratio of each oxide of the glass ceramics is Si0 2 20 ⁇ 60%, Ai 2 0 3 5 ⁇ 35%, Ca010 ⁇ 35%, Bi 2 0 3 10 ⁇ 30%, B 2 0 3 l ⁇ 10%, La 2 0 3 0. 3 ⁇ 8, ⁇ 0 2 1 ⁇ 89 ⁇ >, Zr0 2 l ⁇ 10%.
  • the electrode slurry is composed of a solid phase component and an organic solvent carrier, and the weight ratio thereof is (70 to 90): (30 to 10); wherein the solid phase component comprises a silver-palladium-ruthenium composite powder and a glass-ceramic powder, and the weight ratio thereof
  • the weight ratio of the palladium powder, the silver powder and the tantalum powder is: (0. 6 ⁇ ).
  • the weight ratio of the palladium powder, the silver powder and the niobium powder is: (0. 6 ⁇ 6): (0. 6 ⁇ 6); 10) : (99 ⁇ 82) : (0.
  • the glass ceramic is a SiO 2 -Al 2 0 3 -Ca0-B 2 0 s - BiA- L 0 3 system glass ceramic, the micro
  • the compositional weight ratio of each oxide of the crystal glass is Si0 2 20 ⁇ 60%, Al 2 0 3 5 ⁇ 35%, Ca010 ⁇ 35%, B 2 0 3 1 ⁇ ; 15%, L3 ⁇ 40 3 0. 3 ⁇ 15% , Bi 2 0 3 10 ⁇ 30%, Ti0J ⁇ 10%, Zr0 2 l ⁇ .10%.
  • the package paddle is composed of a solid phase component and an organic solvent carrier, and the weight ratio is (70 ⁇ 90): (30 ⁇ 10); the solid phase component is Si0 2 -M 2 0 3 -CaO- B 2 0 3 - L 0 3 is a glass-ceramic, the weight ratio of each oxide of the glass-ceramics is Si0 2 30 ⁇ 65%, A1A5 ⁇ 26%, Ca018 ⁇ 38%, ⁇ 2 ⁇ 16%, L 0 3 0. 3 ⁇ 15%, Co 2 0 :! 0. 05 ⁇ 6 %, Ti0J ⁇ 10%, ZrOJ-10%.
  • the organic solvent carrier is terpineol, tributyl citrate, ethyl cellulose, nitrocellulose, hydrogenated castor oil, lecithin.
  • the rare earth electrode slurry organic carrier formula (weight ratio) is 60 to 98% terpineol, 10 to 30% of tributyl citrate, 2 to 10% of ethyl cellulose, and 1 to 5% of nitrocellulose. 1 ⁇ 5% ⁇ Hydrogenated castor oil 0. 1 ⁇ 5%, lecithin 0. 1 ⁇ 5%. 5 ⁇ 10%, ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66
  • the substrate is prepared, the measured oxides are uniformly mixed by a three-dimensional mixer, and after being smelted in a furnace for 2 to 6 hours, the glass liquid is quickly poured into cold water, and the glass slag is obtained by water quenching; Ball milling, separating the zirconium ball and the glass powder with a colander, then using a sieve to perform wet screening, solid-liquid separation, drying, and then using a mortar to break up to obtain a glass powder of a desired particle size distribution, and doping the glass powder to fill the mold.
  • the cavity forming is crystallized by a crystallization kiln, and then processed into a microcrystalline glass substrate by laser, grinding, polishing, cutting and processing;
  • the film thickness is set to 10 ⁇ 15 ⁇ ⁇ ;
  • the invention adopts the glass-ceramic substrate to effectively replace the copper wire coil which generates the magnetic field in the electromagnetic oven, eliminates the occurrence of magnetic pollution, has good insulation performance, can withstand strong voltage and large current impact, and is reliable.
  • the rare earth elements such as rare earth lanthanum and cerium are added to the functional phase and the bonding phase.
  • the electrical properties, wettability, compatibility, intermolecular bond strength and processability of the slurry are greatly improved.
  • 2 0 3 ) and ⁇ ( ) mixed additives can reduce the sintering temperature of glass-ceramics, promote sintering, improve the process, improve efficiency, save energy, ⁇ can enhance the oxidation resistance and ductility of glass-ceramics, improve bonding strength, Adding a small amount of rare earth-rich rare earth to the Al-Zr alloy slurry Conductivity.
  • Rare earth element doping such as rare earth lanthanum (La) can greatly change the sintering properties, microstructure, density, phase composition and physical and mechanical properties of the glass-ceramic material and functional phase, thereby improving the rare earth thick film circuit electric heating element. , electrical properties, process performance and wettability, compatibility and molecular strength of the electronic paste, improve the process, significantly improve the product excellent rate.
  • La rare earth lanthanum
  • a thick film circuit electric heating element based on a glass-ceramic substrate comprises a substrate and a series of electronic pastes, and the series of electronic pastes are prepared on a substrate in the form of a thick film circuit.
  • the series of electronic pastes include packaged paste and electrode paste.
  • the series of electronic pastes are composed of three parts: functional phase, inorganic binder phase and organic carrier.
  • the substrate is a crystallized glass substrate having a ⁇ -quartz solid solution as a main crystalline phase Li 2 0-Al 2 O r SiO 3 -P 2 0 3 -La 2 0 3 system
  • the crystal nucleating agent is Ti0 2 , prepared by A rare earth thick film circuit electric heating element of a crystallized glass substrate of a Li 2 0-Al 2 0 3 -SiO r P 2 O r La 2 0 3 system with a ⁇ -quartz solid solution as the main phase.
  • the weight ratio of the components of each oxide is: Li 2 0 ( 2 to 16%), SiO 2 (30 to 65%), Al 2 0 3 (5 to 26%), P 2 0 3 (18 to 38%) , La 2 O 3 (0.3 to 15%), Co 2 O 3 (0.05 to 6%), Ti0 2 (1 to 8%), ZrO 2 (1 to 10%) to prepare a glass-ceramic plate.
  • the rare earth resistance slurry It consists of a functional phase and an organic carrier in a ratio of (65 ⁇ 85): (35 ⁇ 15).
  • the functional phase composition consists of silver-iridium-palladium-iridium composite powder and glass-ceramic powder in a ratio of (75 ⁇ 55): (25 ⁇ 45).
  • the weight ratio of silver iridium palladium iridium powder is: (75 ⁇ 59) : (15 ⁇ 20.5) : (5 ⁇ 20): (5 ⁇ 0.5).
  • the glass ceramic powder is CaO ⁇ Si0 2 — A1 2 0 3 — B 2 0 3 — Bi 2 0 3 — La 2 0 3 based glass ceramics; weight ratio of each oxide: SiO 2 20 ⁇ 60%, Ai 2 0 3 5 ⁇ 35%, CaO10 ⁇ 35%, Bi 2 O 3 10 ⁇ 30%, B 2 O 3 l ⁇ 10%, La 2 O 3 0.3 ⁇ 8, Ti0 2 l ⁇ 8%, ZrO 2 l ⁇ 10% ;
  • the rare earth resistor slurry organic solvent carrier formula (weight ratio) is: terpineol 68 ⁇ 78%, tributyl citrate 2 ⁇ 18%, ethyl cellulose 0.4 ⁇ 9%, nitrocellulose 0.4 ⁇ 9%, Hydrogenated castor oil 0.1 ⁇ 6%, lecithin 0.1 ⁇ 6%.
  • Preparation process of rare earth resistor paddle preparing a silver-palladium-ruthenium composite powder by preparing a glass-ceramic powder to prepare a composite solvent of a rare earth slurry.
  • the rare earth electrode slurry is prepared according to the rare earth electrode slurry formulation and the preparation process, and the electrode slurry is composed of a solid phase component and an organic solvent carrier, and the weight ratio thereof is: (70 ⁇ 90): (30 ⁇ 10); wherein the solid phase component
  • the method comprises the following steps: a silver-palladium-ruthenium composite powder and a glass-ceramic powder, the weight ratio of which is: (99.4 ⁇ 94): (0.6 ⁇ 6); the silver-palladium-ruthenium composite powder is composed of the following components (weight ratio), palladium powder, silver powder
  • the weight ratio with tantalum powder is: (0.6 ⁇ 10) : (99 ⁇ 82) : (0.4 ⁇ 8).
  • the glass ceramic is a SiO 2 —Al 2 0 3 —CaO—B 2 0 3 —Bi 2 0 3 —La 2 0 3 -based glass ceramic.
  • the weight ratio of the components of each oxide is: Si0 2 (20 to 60%), A1 2 0 3 (5 to 35%), CaO (10 to 35%), B 2 0 3 (15%), La 2 0 3 (0 ⁇ 3 ⁇ 15%), Bi 2 0 3 (10 ⁇ 30%), Ti0 2 ('Bu 10%), Zr0 2 (Bu 10%).
  • the rare earth electrode slurry organic carrier formula (weight ratio) is: terpineol 60 ⁇ 98%, tributyl citrate 10 ⁇ 30%, ethyl cellulose 2 ⁇ 10%, nitrocellulose 1 ⁇ 5%, hydrogenated Castor oil 0. 1 to 5%, lecithin 0.1 to 5%.
  • the preparation process of the rare earth electrode slurry is as follows: preparing rare earth glass-ceramic powder, preparing silver-palladium-ruthenium composite powder, preparing organic solvent carrier, three-dimensional mixing, three-rolling rolling, preparing a rare earth electrode slurry, arranging for bottling use.
  • the rare earth electrode slurry is prepared according to the rare earth encapsulating slurry formulation and the preparation process, and the slurry is composed of a solid phase component and an organic solvent carrier, and the weight ratio is 70 ⁇ 90: 30 ⁇ 10.
  • the solid phase component is: Si0 2 -Al 2 03-CaO-B 2 03-La 2 0 3 -based glass-ceramic, and the weight ratio of each oxide component is: SiO 2 (30 to 65%), Al 2 0 3 (5 ⁇ 26%), CaO (18 ⁇ 38%), B 2 0 3 ( 2 ⁇ 16%), La 2 O 3 (0.3 ⁇ 15%), Co 2 O 3 (0.05 ⁇ 6%), Ti0 2 (Bu 10%), Zr. 2 (Bu 10%).
  • the rare earth encapsulating slurry organic carrier formula (weight ratio) is 66 to 89% of butyl carbitol, 5 to 15% of tributyl citrate, 0.5 to 10% of ethyl cellulose, 0.1 to 5% of hydrogenated castor oil. Lecithin 0.1 to 5%.
  • the preparation process comprises the following steps: preparing a rare earth glass-ceramic powder ⁇ preparing an organic solvent carrier, three-dimensional mixing, three-rolling, rolling, one propeller, preparing one bottle for use;
  • a glass-ceramic substrate electric heating element is prepared according to a preparation process of a rare earth thick film circuit controllable electric heating (resistance) element based on a glass ceramic substrate.
  • the preparation process is as follows:
  • Substrate preparation - CAD plate making - Light drawing plate - Screen printing - Vacuum drying - Film layer inspection - Infrared sintering - Test packaging.
  • the thickness of the resistance track film layer is: 10 ⁇ 15 ⁇
  • the temperature rise and fall rate of the infrared sintering furnace is: 300 ⁇ 700°C: 100°C/min.
  • the substrate is a CaO-A1 2 0 3 - Si0 3 - B 2 0 3 -L 0 3 system crystallite having a ⁇ -wollastonite as a main crystal phase.
  • a glass substrate the component ratio of the weight of each oxide: Ca018 ⁇ 38%, Al 2 0 3 5 ⁇ 26%, Si0 2 30 ⁇ 65%, B 2 0 3 2 ⁇ 16%, LaAO.3 ⁇ 15. , Co 2 0 3 0.05 ⁇ 6%, Ti0 2 l ⁇ 10%, ⁇ 10%.
  • 1 electrical performance is a CaO-A1 2 0 3 - Si0 3 - B 2 0 3 -L 0 3 system crystallite having a ⁇ -wollastonite as a main crystal phase.
  • the component ratio of the weight of each oxide Ca018 ⁇ 38%, Al 2 0 3 5 ⁇ 26%, Si0 2 30 ⁇ 65%, B 2 0 3 2 ⁇ 16%, LaAO.3 ⁇ 15.
  • the performance parameters of the rare earth electrode slurry of the invention 1 electrical properties:
  • Performance parameters of the rare earth encapsulating slurry of the invention 1 physical properties:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Glass Compositions (AREA)

Description

基于微晶玻璃基板的厚膜电路电热元件及其制备工艺 技术领域
本发明涉及电加热领域,更具体地说是涉及微晶玻璃基板厚膜电路可 控电热元件及其制备工艺。
背景技术
在我国确立的可持续发展战略中,涉及到的两个方面是环境保护和提 高能量利用率, 改善能量结构。 在电加热领域中, 新型的加热元件要求体 积要小, 功率要大, 表面热负荷要大, 热惰性要小, 热效率要高, 耗电要 低, 热启动要快, 温度场要均匀, 无电磁污染, 绿色、 环保、 安全可靠。 近年来电磁炉在我国使用较为广泛,但国家日用电器质量监督检验中心曾 对电磁炉产品做过行业摸底测试, 结果发现达标的仅 10%左右, 问题产品 的最大隐忧就是极易发生磁泄漏, 从而产生电磁辐射污染。 仅仅是 "近区 磁场强度"这项指标, 如果按瑞士、 瑞典等国的国标, 即 0.2微特斯拉为 及格线, 能过关的国产电磁炉, 廖廖无几。
更大的隐忧在于: 有关电磁炉的电磁辐射污染检测, 迄今为止没有既 可行又可靠标准, 世界卫生组织 (WHO)将电磁炉产生的 "极低频电磁场" 等电磁辐射, 与苯烯、 电焊烟雾等一起归为一类致癌物质, 如果血液或细 胞中存在有磁性物质, 就容易受磁诱发作用, 造成重金属在体内积累, 从 而妨碍血液和细胞的正常活动诱发癌症等。而如此重要的检测指标, 内销 电磁炉几乎都告 "空缺"。 与微波炉不同, 电磁炉是畅开系统, 抑制电磁 辐射污染几乎不可能, 为此, 如何研究一种可以取代铜电感线圈, 不产生 磁力线的环保、 节能、 安全的电热元件已成为人们急需解决的问题。 发明内容
I
确认本 本发明的目的就是为了解决现有技术之不足而提供的一种不仅成本 低、 功率大、 热效率高, 耗电低、 热启动快、 温度场均勾, 钢、 铁、 铝、 塑、 瓷、 陶各类餐具均可加热, 而且绝不存在电磁泄漏与污染现象的基于 微晶玻璃基板的厚膜电路电热元件。
本发明的另一目的是提供一种基于微晶玻璃基板的厚膜电路电热元 件的制备工艺。
本发明是采用如下技术解决方案来实现上述目的:一种基于微晶玻璃 基板的厚膜电路电热元件, 包括基片、 系列电子浆料, 其特征在于: 所述 系列电子浆料以厚膜电路的形式制备在基片上,该系列电子浆料包括封装 浆料、 电极浆料, 系列电子浆料均由功能相、 无机粘接相、 有机载体三部 分组成。
作为上述方案的进一步说明, 所述基片为以 石英固溶体为主晶相
Li20-Al2OrSi03- P203-La203系统微晶玻璃基片, 晶核剂为 Ti02或 Zr02
所述以 β -石英固溶体为主晶相的 Li20- Si0:i- ΡΛ- L¾0:i系统微晶 玻璃基片, 各氧化物的成分重量配比为 Li202〜16 %, Si(¾30〜65 %, Al2035〜26%, P20318〜38%, La2030. 3〜15%, Co203 0. 05〜6%, Ti02l〜 8% , Zr02l〜10%。
所述基片为以 β -硅灰石为主晶相的 CaO- Al20:i- SiO:,- B203- L 0:i系统微 晶玻璃基片, 各氧化物的成分重量配比为: Ca018〜38 %, Al2035〜26%, Si0230〜65%, Β ,2〜16 %, La20:i0. 3〜15 %, Co20:,0. 05〜6%, Ti02l〜10 % , Zr02l〜: 10%。
所述系列电子浆料还包括具有稀土元素的电阻浆料, 该稀土电阻浆 料由功能相和有机载体组成, 比例为 (65〜85) : (35〜15 ) ; 功能相成 分由银钌钯钇复合粉和微晶玻璃粉组成, 比例为(75〜55) : (25〜45); 银钌钯钇粉的重量比为(75〜59) : ( 15〜20. 5) : (5〜20): (5〜0. 5); 微晶玻璃粉为 CaO- Si02- A1203-B203- Bi203-L¾03系微晶玻璃, 该微晶玻璃各 氧化物重量比为 Si0220〜60%, Ai2035〜35%, Ca010〜35%, Bi20310〜30%, B203l〜10%, La2030. 3〜8, Τί021〜89ί>, Zr02l〜10%。
所述电极浆料由固相成分与有机溶剂载体组成, 其重量比为 (70〜 90) : ( 30〜10) ; 其中固相成分包括银钯钇复合粉与微晶玻璃粉, 其重 量比为 (99. 4〜94) : (0. 6〜6) ; 该银钯钇复合粉由如下组分(重量比) 构成, 钯粉、银粉与钇粉的重量比为: (0. 6〜10 ) : (99〜82) : (0. 4〜 8); 所述微晶玻璃为 Si02-Al203-Ca0-B20s- BiA- L 03系微晶玻璃, 该微晶 玻璃各氧化物的成分重量配比为 Si0220〜60%, Al2035〜35%, Ca010〜35%, B2031〜; 15%, L¾030. 3〜15%, Bi20310〜30%, Ti0J〜10%, Zr02l〜.10%。
所述封装桨料由固相成分与有机溶剂载体组成,重量比为( 70〜90 ): (30〜10); 固相成分为 Si02-M203-CaO- B203- L 03系微晶玻璃, 该微晶玻 璃各氧化物的成分重量配比为 Si0230〜65%, A1A5〜26 %, Ca018〜38 % , Β 2〜16%, L 030. 3〜15%, Co20:!0. 05〜6 %, Ti0J〜10%, ZrOJ— 10%。
所述有机溶剂载体为松油醇、 柠檬酸三丁酯、 乙基纤维素、 硝基纤维 素、 氢化蓖麻油、 卵磷脂。
所述稀土电阻浆料有机溶剂载体配方 (重量比) 为松油醇 68〜78%, 柠檬酸三丁酯 2〜18%, 乙基纤维素 0. 4〜9%, 硝基纤维素 0. 4〜9%, 氢化 蓖麻油 0. 1〜6%, 卵磷脂 0. 1〜6%。
所述稀土电极浆料有机载体配方 (重量比) 为松油醇 60〜98%, 柠檬 酸三丁酯 10〜30%, 乙基纤维素 2〜10%, 硝基纤维素 1〜5%, 氢化蓖麻油 0. 1〜5%, 卵磷脂 0. 1〜5%。 所述稀土包封浆料有机载体配方(重量比)为: 丁基卡必醇 66〜89%, 柠檬酸三丁酯 5〜: 15%, 乙基纤维素 0. 5〜10%, 氢化蓖麻油 0. 1〜5%, 卵 磷脂 0. 1〜5%。
本发明的一种基于微晶玻璃基板的厚膜电路电热元件的制备工艺,其 特征在于, 它具有以下的工艺步骤:
a、 基片准备, 将所量取的各氧化物用三维混料机混合均匀, 装入熔 炉熔炼 2〜6小时后, 将玻璃液快速倒入冷水中, 水淬得玻璃渣; 将玻璃 渣球磨, 用漏勺分离锆球与玻璃粉, 然后用筛网进行湿法过筛, 固液分离 后干燥, 再用碾钵打散得到所需粒度分布的玻璃粉, 将玻璃粉掺杂后充填 模腔成型经晶化窑作晶化处理, 再经激光、 磨、 抛、 切、 加工线加工制成 微晶玻璃基片产品;
b、 CAD制版、 光绘制版、 丝网印刷;
c、 真空烘干;
d、 膜层检测, 将膜层厚度设置为 10〜15 μ πι;
e、 红外烧结, 测试包装。
本发明采用上述技术解决方案所能达到的有益效果是:
本发明采用微晶玻璃基板有效地替带了电磁炉产生磁场的铜电线 圈, 杜绝磁污染的发生, 绝缘性能好, 能承受强电压和大电流冲击, 安舍 可靠。
2、 功能相、 粘接相中加入稀土镧和钇等稀土元素, 浆料的电性能、 湿润性、 相溶性、 分子间键结合强度及工艺性都有很大提高, 采用稀土氧 化钇 (Y203) 和镧 ( ) 混合添加剂, 可以降低微晶玻璃烧结温度, 促进 烧结, 改进工艺, 提高效率, 节省能源, 钇能够增强微晶玻璃的抗氧化性 和延展性, 提高结合强度, 在 Al- Zr合金浆料中加入少量富钇稀土, 提高 导电率。
3、 稀土镧 (La) 等稀土元素掺杂可以极大地改变微晶玻璃材料及功 能相的烧结性能、 微观结构、 致密度、 相组成及物理和机械性能, 从而提 高稀土厚膜电路电热元件的、 电器性能、 工艺性能及电子浆料的湿润性、 兼容性和分子健结合强度, 改善工艺, 显著提高产品优良率。
4、 将不同沸点及挥发速度的主溶剂按比例合理配制使浆料在印刷、 烘干、烧结等过程中均匀挥发并排出, 避免溶剂集中挥发形成开裂、 针孔 等缺陷, 有效提高成品合格率。
具体实施方式
实施例 1
如图 1、 图 2所示, 本发明一种基于微晶玻璃基板的厚膜电路电热元 件, 包括基片、 系列电子浆料, 系列电子浆料以厚膜电路的形式制备在基 片上, 该系列电子浆料包括封装浆料、 电极浆料, 系列电子浆料均由功能 相、 无机粘接相、 有机载体三部分组成。 其中, 基片为以 β -石英固溶体 为主晶相 Li20-Al2OrSi03- P203-La203系统微晶玻璃基片,晶核剂为 Ti02、 制备以 β -石英固溶体为主晶相的 Li20-Al203-SiOrP2OrLa203系统微 晶玻璃基片的稀土厚膜电路电热元件. ·
按微晶玻璃配方:
各氧化物的成分重量配比为: Li20 (2〜16 % ), SiO2(30〜65 % ), Al203(5〜26%), P203(18〜38%), La2O3(0.3〜15%), Co2O3(0.05〜6%), Ti02(l〜8%), ZrO2(l〜10%)制备微晶玻璃板。
制备系列电子浆料:
按稀土电阻浆料配方及制备工艺制备稀土电阻浆料,该稀土电阻浆料 由功能相和有机载体组成, 比例为: (65〜85 ) : (35〜15 )。 功能相成分 由银钌钯钇复合粉和微晶玻璃粉组成, 比例为: (75〜55 ) : (25〜45 )。 银钌钯钇粉的重量比为: (75〜59) : ( 15〜20.5 ) : (5〜20): (5〜0.5 )。 微晶玻璃粉为 CaO~Si02— A1203— B203— Bi203— La203系微晶玻璃; 各 氧化物重量比: SiO220〜60%, Ai2035〜35%, CaO10〜35%, Bi2O310〜 30%, B2O3l〜10%, La2O30.3〜8, Ti02l〜8%, ZrO2l〜10%;
稀土电阻浆料有机溶剂载体配方(重量比)为: 松油醇 68〜78%, 柠 檬酸三丁酯 2〜18%, 乙基纤维素 0.4〜9%, 硝基纤维素 0.4〜9%, 氢化 蓖麻油 0.1〜6%, 卵磷脂 0.1〜6%.
稀土电阻桨料的制备工艺:微晶玻璃粉制备一银钯钇复合粉制备一配 制有机溶剂载体一稀土浆料综合调制。
按稀土电极浆料配方及制备工艺制备稀土电极浆料,该电极浆料由固 相成分与有机溶剂载体组成, 其重量比为: (70〜90) : (30〜10); 其中 固相成分包括: 银钯钇复合粉与微晶玻璃粉, 其重量比为: (99.4〜94) : (0.6〜6); 该银钯钇复合粉由如下组分 (重量比)构成, 钯粉、 银粉与钇粉 的重量比为: (0.6〜10 ) : ( 99〜82 ) : ( 0.4〜8 )。 微晶玻璃为 Si02-Al203-CaO-B203-Bi203-La203系微晶玻璃。 各氧化物的成分重量配比 为: Si02 (20〜60%), A1203 (5〜35%), CaO(10〜35%), B203 (卜 15%), La203 (0·3〜15%), Bi203 ( 10〜30%), Ti02 ('卜 10%), Zr02 (卜 10%)。
稀土电极浆料有机载体配方(重量比)为: 松油醇 60〜98%, 柠檬酸 三丁酯 10〜30%, 乙基纤维素 2〜10%, 硝基纤维素 1〜5%, 氢化蓖麻油 0。 1〜5%, 卵磷脂 0.1〜5%。
稀土电极浆料制备工艺为:制备稀土微晶玻璃粉一制备银钯钇复合粉 —配制有机溶剂载体一三维混料三棍轧制一稀土电极浆料调制→装瓶待 用。
按稀土封装浆料配方及制备工艺制备稀土电极浆料,该浆料由固相成 分与有机溶剂载体组成, 重量比为: 70〜90 : 30〜10。 固相成分为: Si02-Al203-CaO-B203-La203系微晶玻璃, 各氧化物的成分重量配比为: SiO2(30〜65%), Al203(5〜26%), CaO(18〜38%), B203(2〜16%), La2O3(0.3〜15%), Co2O3(0.05〜6%), Ti02(卜 10%), Zr。2(卜 10%)。
稀土包封浆料有机载体配方(重量比)为丁基卡必醇 66〜89%, 柠檬 酸三丁酯 5〜15%, 乙基纤维素 0.5〜10%, 氢化蓖麻油 0.1〜5%, 卵磷脂 0.1〜5%。 其制备工艺为: 制备稀土微晶玻璃粉→配制有机溶剂载体一三 维混料三棍轧制一桨料调制一装瓶待用;
按基于微晶玻璃基板的稀土厚膜电路可控电热 (电阻)元件制备工艺制 备微晶玻璃基板电热元件。
制备工艺路线如下:
基片准备- CAD制版 -光绘制版-丝网印刷-真空烘干 -膜层检测-红外烧 结 -测试包装。
重点工艺技术数椐:
(1)电阻轨迹膜层厚度为: 10〜15μπι
(2)电阻轨迹膜层长 X宽为: 5000X3mm
(3)红外烧结炉升降温速率为: 300〜700°C段: 100°C/min。
实施例 2
本实施例与上述实施方式的不同之处在于, 所述基片为以 β -硅灰石 为主晶相的 CaO- A1203- Si03- B203-L 03系统微晶玻璃基片,各氧化物的成分 重量配比为: Ca018〜38%, Al2035〜26%, Si0230〜65%, B2032~16%, LaAO.3〜15。 , Co2030.05〜6%, Ti02l〜10%,
Figure imgf000009_0001
〜10%。 ①电性能:
Figure imgf000010_0001
②物理性能
Figure imgf000010_0002
本发明的稀土电极浆料性能参数: ①电性能:
Figure imgf000010_0003
②物理性能
Figure imgf000010_0004
本发明的稀土包封浆料的性能参数: ①物理性能:
Figure imgf000010_0005
②电器性能:
Figure imgf000011_0001
本发明的微晶玻璃基板电热元件的性能参数:
①物理性能:
Figure imgf000011_0002
②电器性能:
Figure imgf000011_0003
以上所显示的仅为本发明的较佳实施例而己,不能以此来限定本发明 之权利范围, 因此依本发明申请专利范围所作的等同变化, 仍属本发明所 涵盖的范围。

Claims

权利要求
1、 一种基于微晶玻璃基板的厚膜电路电热元件,.包括基片、 系列电 子浆料,其特征在于:所述系列电子浆料以厚膜电路的形式制备在基片上, 该系列电子浆料包括封装 料、 电极浆料, 系列电子浆料均由功能相、无 机粘接相、 有机载体三部分组成。
2、 根据权利要求 1所述的基于微晶玻璃基板的厚膜电路电热元件, 其特征在于: 所述基片为以 β-石英固溶体为主晶相 Li20-Al203-Si03- P203-La203系统微晶玻璃基片, 晶核剂为 Ti02、 Zr02
.3、 根据权利要求 2所述的基于微晶玻璃基板的厚膜电路电热元件, 其特征在于: 所述以 β -石英固溶体为主晶相的 Li^)-Al20:「SiO:i- La20:i 系统微晶玻璃基片, 各氧化物的成分重量配比为 Li202〜16%, Si0230〜 65%, Al2035〜26%, P20318〜38%, L (M).3〜15%, Co2030.05〜6%, TiC 〜8%, ZrOJ〜: 10%。
4、 根据权利要求 1所述的基于微晶玻璃基板的厚膜电路电热元件, 其 特 征 在 于 : 所述基 片 为 以 β -硅 灰 石 为 主 晶 相 的 Ca0-Al20:-Si0,-B20:-La203系统微晶玻璃基片, 各氧化物的成分重量配比 为: Ca018〜38%, Al2035〜26%, Si0230〜65%, B2032〜16%, L 0:,0.3〜 15%, Co20:!0.05〜6%, Ti02l〜薦, Zr02l〜10%。
5、 根据权利要求 1所述的基于微晶玻璃基板的厚膜电路电热元件,' 其特征在于:所述系列电子浆料还包括具有稀土元素的电阻浆料, 该稀土 电阻浆料由功能相和有机载体组成, 比例为 (65〜85) : (35〜15) ; 功 能相成分由银钌钯钇复合粉和微晶玻璃粉组成,比例为(75〜55) : (25〜 45) ; 银钌钯钇粉的重量比为 (75〜59) : (15〜20.5) : (5〜20) :
(5〜0.5) ; 微晶玻璃粉为 CaO- Si02- Α1Λ- B20:i- BiA- L 0:i系微晶玻璃, 该微晶玻璃各氧化物重量比为 Si0220〜60%, Ai2035〜35%, Ca010〜35%, Bi20: 10〜30%, Β201〜10%, L¾0:i0. 3〜8, Ti02l〜8%, Zr0a〜10%。
6、 根据权利要求 1所述的基于微晶玻璃基板的厚膜电路电热元件, 其特征在于: 所述电极浆料由固相成分与有机溶剂载体组成, 其重量比为
( 70〜90) : ( 30〜10); 其中固相成分包括银钯钇复合粉与微晶玻璃粉, 其重量比为 (99. 4〜94) : (0. 6〜6) ; 该银钯钇复合粉由如下组分(重 量比)构成, 钯粉、 银粉与 f乙粉的重量比为: (0. 6〜10) : (99〜82) :
(0. 4〜8);所述微晶玻璃为 Si02-Al203- CaO- B20:i-Bi20:!- L¾0:!系微晶玻璃, 该微晶玻璃各氧化物的成分重量配比为 Si0220〜60%, Al2035〜35%, Ca010〜35%, B203l〜15%, La2030. 3〜15%, Bi20:,10〜30%, Ti02l〜10%, ZrOJ〜 10%。
7、 根据权利要求 1所述的基于微晶玻璃基板的厚膜电路电热元件, 其特征在于: 所述封装浆料由固相成分与有机溶剂载体组成, 重量比为 70〜90: 30〜10; 固相成分为 Si02_Al203_CaO- B20:i-La20:i系微晶玻璃, 该微 晶玻璃各氧化物的成分重量配比为 Si0230〜65 %, Al2035〜26%, Ca018〜 38%, B2032〜16%, La2030. 3〜15%, Co2030. 05〜6%, Ti02l〜10%, Zr02l〜 10%。
8、 根据权利要求 1所述的基于微晶玻璃基板的厚膜电路电热元件, 其特征在于: 所述有机溶剂载体为松油醇、 柠檬酸三丁酯、 乙基纤维素、 硝基纤维素、 氢化蓖麻油、 卵磷脂。
9、 根据权利要求 1所述的基于微晶玻璃基板的厚膜电路电热元件, 其特征在于: 所述稀土电阻浆料有机溶剂载体配方 (重量比) 为松油醇 68〜78%,柠檬酸三丁酯 2〜18%, 乙基纤维素 0. 4〜9%,硝基纤维素 0. 4〜 9%, 氢化蓖麻油 0. 1〜6%, 卵磷脂 0. 1〜6%。 10、 根据权利要求 1所述的基于微晶玻璃基板的厚膜电路电热元件, 其特征在于: 所述稀土电极浆料有机载体配方 (重量比) 为松油醇 60〜 98%, 柠檬酸三丁酯 10〜30%, 乙基纤维素 2〜10%, 硝基纤维素 1〜5%, 氢化蓖麻油 0. 1〜5%, 卵磷脂 0. 1〜5%。
1.1、 根据权利要求 1所述的基于微晶玻璃基板的厚膜电路电热元件, 其特征在于: 所述稀土包封浆料有机载体配方(重量比)为: 丁基卡必醇 66〜89%,柠檬酸三丁酯 5〜15%,乙基纤维素 0. 5〜10%,氢化蓖麻油 0. 1〜 5%, 卵磷脂 0. 1〜5%。
12、 根据权利要求 1〜11任意一项所述基于微晶玻璃基板的厚膜电路 电热元件的制备工艺, 其特征在于, 它具有以下的工艺步骤:
a、 基片准备, 将所量取的各氧化物用三维混料机混合均匀, 装入熔 炉熔炼 2〜6小时后, 将玻璃液快速倒入冷水中, 水淬得玻璃渣; 将玻璃 渣球磨, 用漏勺分离锆球与玻璃粉, 然后用筛网进行湿法过筛, 固液分离 后干燥, 再用碾钵打散得到所需粒度分布的玻璃粉, 将玻璃粉掺杂后充填 模腔成型经晶化窑作晶化处理, 再经激光、 磨、 抛、 切、 加工线加工制成 微晶玻璃基片产品;
b、 CAD制版、 光绘制版、 丝网印刷;
C 真空烘干;
d、 膜层检测, 将膜层厚度设置为 10〜15 m;
e、 红外烧结, 测试包装。
PCT/CN2007/002477 2007-07-24 2007-08-17 Élément de chauffage électrique d'un circuit de film épais de terre rare basé sur un substrat céramique de verre et procédé pour le préparer WO2009012621A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2007100293356A CN101106842B (zh) 2007-07-24 2007-07-24 基于微晶玻璃基板的厚膜电路电热元件及其制备工艺
CN200710029335.6 2007-07-24

Publications (1)

Publication Number Publication Date
WO2009012621A1 true WO2009012621A1 (fr) 2009-01-29

Family

ID=39000456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/002477 WO2009012621A1 (fr) 2007-07-24 2007-08-17 Élément de chauffage électrique d'un circuit de film épais de terre rare basé sur un substrat céramique de verre et procédé pour le préparer

Country Status (2)

Country Link
CN (1) CN101106842B (zh)
WO (1) WO2009012621A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104320866A (zh) * 2014-09-19 2015-01-28 王晨 复合材料基厚膜电路稀土电阻浆料及其制备工艺
EP3278959A1 (de) * 2016-08-01 2018-02-07 ROPEX Industrie-Elektronik GmbH Heizanordnung

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101321415B (zh) * 2008-07-14 2011-12-21 佛山市海辰科技有限公司 基于氮化铝微晶陶瓷基板的稀土厚膜电路电热元件及其制备工艺
CN101436441B (zh) * 2008-12-09 2011-06-15 彩虹集团公司 一种厚膜纳米金电极浆料及其制备方法
CN102158993B (zh) * 2011-05-06 2013-05-01 陈小蕾 高温铝合金基稀土厚膜电路电热元件及其制备技术
CN102256392A (zh) * 2011-05-18 2011-11-23 何小洁 一种基于原位晶化技术的微晶玻璃发热板的制备方法
CN102543257B (zh) * 2012-01-20 2014-05-28 上海玻纳电子科技有限公司 改性晶体硅太阳能电池用银厚膜浆料及其制备方法
CN102685942B (zh) * 2012-05-29 2014-05-07 王克政 一种ptc稀土厚膜电路智能电热元件及其制备方法
CN102760934B (zh) * 2012-07-26 2015-08-05 深圳市圣龙特电子有限公司 厚膜电路用导体浆料、应用该浆料的厚膜电路板及其制造方法
CN102791049B (zh) * 2012-08-09 2014-04-16 舒定涛 晶瓷厚膜电热器件及其制作方法
CN103582192A (zh) * 2013-10-10 2014-02-12 威瀚电子(佛山)有限公司 柔性网状发热丝制作方法及其制品
CN103833226B (zh) * 2014-01-21 2015-12-30 江苏奥蓝工程玻璃有限公司 一种微晶玻璃及其制备方法
CN104318979A (zh) * 2014-09-19 2015-01-28 王晨 复合材料基厚膜电路稀土介质浆料及其制备工艺
CN106298073A (zh) * 2016-08-31 2017-01-04 安徽斯迈尔电子科技有限公司 一种大功率电阻用导电相粉的制备方法
CN107808968B (zh) * 2016-08-31 2021-01-08 中国石油化工股份有限公司 电解质浆料及其制备方法和应用和电解质薄膜及其应用
CN108178510A (zh) * 2017-12-30 2018-06-19 安徽杜氏高科玻璃有限公司 一种抗老化装饰玻璃
CN111787649A (zh) * 2020-05-22 2020-10-16 广东日禾电器有限公司 一种急速发热浆料制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2273549Y (zh) * 1996-01-22 1998-02-04 桂林市利洋有限责任公司 一种新型电热器皿
CN1424728A (zh) * 2002-12-30 2003-06-18 中国人民解放军国防科学技术大学 基于不锈钢基板的大功率厚膜电路用导电浆料及其制备工艺
CN1424727A (zh) * 2002-12-30 2003-06-18 中国人民解放军国防科学技术大学 基于不锈钢基板的大功率厚膜电路用电阻浆料及其制备工艺
CN1909749A (zh) * 2006-07-28 2007-02-07 王克政 基于金属基板的稀土厚膜电路稀土介质浆料及其制备工艺
CN1909748A (zh) * 2006-07-28 2007-02-07 王克政 基于金属基板的稀土厚膜电路稀土电极浆料及其制备工艺
CN1972535A (zh) * 2006-07-28 2007-05-30 王克政 基于金属基板的稀土厚膜电路稀土电阻浆料及其制备工艺

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923697A (en) * 1974-02-01 1975-12-02 Harold Ellis Electrically conductive compositions and their use
DE3935863C2 (de) * 1989-10-27 1993-10-21 Philips Patentverwaltung CVD (Chemical Vapour Deposition)-Vorrichtung
IT1276016B1 (it) * 1995-03-08 1997-10-24 Ernesto Marelli Dispositivo di riscaldamento autotermoregolante
DE69629864T2 (de) * 1995-04-03 2004-07-15 Canon K.K. Verfahren zur Herstellung einer elektronenemittierende Vorrichtung, einer Elektronenquelle und eines Bilderzeugungsgerätes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2273549Y (zh) * 1996-01-22 1998-02-04 桂林市利洋有限责任公司 一种新型电热器皿
CN1424728A (zh) * 2002-12-30 2003-06-18 中国人民解放军国防科学技术大学 基于不锈钢基板的大功率厚膜电路用导电浆料及其制备工艺
CN1424727A (zh) * 2002-12-30 2003-06-18 中国人民解放军国防科学技术大学 基于不锈钢基板的大功率厚膜电路用电阻浆料及其制备工艺
CN1909749A (zh) * 2006-07-28 2007-02-07 王克政 基于金属基板的稀土厚膜电路稀土介质浆料及其制备工艺
CN1909748A (zh) * 2006-07-28 2007-02-07 王克政 基于金属基板的稀土厚膜电路稀土电极浆料及其制备工艺
CN1972535A (zh) * 2006-07-28 2007-05-30 王克政 基于金属基板的稀土厚膜电路稀土电阻浆料及其制备工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHI J. ET AL.: "Analysis on the material of an electrically heating film and its processes", JOURNAL OF SHENYANG INSTITUTE OF AERONAUTICAL ENGINEERING, vol. 13, no. 2, June 1996 (1996-06-01), pages 51 - 54 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104320866A (zh) * 2014-09-19 2015-01-28 王晨 复合材料基厚膜电路稀土电阻浆料及其制备工艺
EP3278959A1 (de) * 2016-08-01 2018-02-07 ROPEX Industrie-Elektronik GmbH Heizanordnung

Also Published As

Publication number Publication date
CN101106842A (zh) 2008-01-16
CN101106842B (zh) 2011-12-21

Similar Documents

Publication Publication Date Title
WO2009012621A1 (fr) Élément de chauffage électrique d'un circuit de film épais de terre rare basé sur un substrat céramique de verre et procédé pour le préparer
CN102685942B (zh) 一种ptc稀土厚膜电路智能电热元件及其制备方法
JP5468448B2 (ja) 高ジルコニア質耐火物及び溶融窯
CN100499942C (zh) 基于金属基板的稀土厚膜电路稀土电阻浆料及其制备工艺
WO2008014677A1 (fr) Boue d'électrode de terres rares destinée à un circuit à couche épaisse de terres rares basé sur un substrat métallique et procédé de production correspondant
WO2008014678A1 (fr) Boue de résistance métallique à base de terres rares destinée à un circuit à couche épaisse basé sur un substrat métallique et procédé de production correspondant
CN100499941C (zh) 基于金属基板的稀土厚膜电路稀土介质浆料及其制备工艺
CN103716924B (zh) 铝铜Cu+复合基稀土厚膜电路智能电热芯片的制备工艺
CN102795894A (zh) 一种高纯氧化铝陶瓷的表面金属化层及复合工艺
CN102531392B (zh) 一种低温共烧陶瓷材料及其制备方法
CN106977098B (zh) 一种低温无铅彩釉
CN109250920A (zh) 一种低温共烧陶瓷材料及其制备方法
CN104244486A (zh) Re-alsic-稀土-铝碳化硅基LED稀土厚膜电路电光源器件
CN105816010A (zh) 一种电磁炉用陶瓷锅及其制备
CN103739278B (zh) 与金属基涂层稳定结合的陶瓷基体材料及其制品
CN107068244A (zh) 一种应用于铝基板厚膜电路的绝缘介质浆料及其制备方法
CN102791049B (zh) 晶瓷厚膜电热器件及其制作方法
CN106673446B (zh) 一种低介高频微晶玻璃ltcc材料及其制备方法
CN104320866A (zh) 复合材料基厚膜电路稀土电阻浆料及其制备工艺
CN100427438C (zh) 一种兼有远红外发射和反射功能的电磁感应涡流发热复合涂层
CN103833422B (zh) 具有磁热效应的复合涂层材料及陶瓷器皿
CN104992744A (zh) 一种用于不锈钢基板的厚膜电路电阻浆料及其制备方法
CN102079661B (zh) 陶瓷放电管用干压瓷管的金属化工艺
CN110085346B (zh) 一种适配氮化硅基材的发热电阻浆料及其制备方法和应用
CN104318979A (zh) 复合材料基厚膜电路稀土介质浆料及其制备工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07800702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07800702

Country of ref document: EP

Kind code of ref document: A1