WO2009007584A2 - Procédé et une mach i n e électri que de freinage d ' un moteur thermique de véhicule lors de la phase d' arrêt de celui -ci - Google Patents

Procédé et une mach i n e électri que de freinage d ' un moteur thermique de véhicule lors de la phase d' arrêt de celui -ci Download PDF

Info

Publication number
WO2009007584A2
WO2009007584A2 PCT/FR2008/051133 FR2008051133W WO2009007584A2 WO 2009007584 A2 WO2009007584 A2 WO 2009007584A2 FR 2008051133 W FR2008051133 W FR 2008051133W WO 2009007584 A2 WO2009007584 A2 WO 2009007584A2
Authority
WO
WIPO (PCT)
Prior art keywords
engine
phase
alternator
during
rotor
Prior art date
Application number
PCT/FR2008/051133
Other languages
English (en)
Other versions
WO2009007584A3 (fr
Inventor
Farouk Boudjemai
Jean-Marc Dubus
Oussama Rouis
Sylvain Delion
Khadija El Baraka
Jean-Claude Matt
Original Assignee
Valeo Equipements Electriques Moteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Equipements Electriques Moteur filed Critical Valeo Equipements Electriques Moteur
Priority to CN2008800224344A priority Critical patent/CN101689826B/zh
Priority to US12/663,424 priority patent/US8587229B2/en
Priority to EP08806065A priority patent/EP2158675A2/fr
Publication of WO2009007584A2 publication Critical patent/WO2009007584A2/fr
Publication of WO2009007584A3 publication Critical patent/WO2009007584A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/003Dynamic electric braking by short circuiting the motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/12Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by short-circuit or resistive braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0859Circuits or control means specially adapted for starting of engines specially adapted to the type of the starter motor or integrated into it
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/22Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by short-circuit or resistive braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/48Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • F02D2041/0095Synchronisation of the cylinders during engine shutdown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/003Starters comprising a brake mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N2011/0881Components of the circuit not provided for by previous groups
    • F02N2011/0896Inverters for electric machines, e.g. starter-generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a method and a rotating electrical machine for braking a thermal engine of a motor vehicle during the stopping phase thereof.
  • a motor vehicle is equipped with rotating electrical machines, in particular an alternator or an alternator / starter.
  • rotating electrical machines in particular an alternator or an alternator / starter.
  • Figure 1 there is shown schematically a rotating electrical machine in the form of a reversible alternator of the polyphase type for a motor vehicle with a heat engine.
  • alternator-starter Such a reversible alternator is called alternator-starter.
  • this reversible alternator transforms mechanical energy into electrical energy, in particular for recharging the battery of the motor vehicle and / or electrically powering the vehicle accessories.
  • the reversible alternator operates in alternator mode, that is to say as a current generator.
  • the reversible alternator transforms electrical energy into mechanical energy, in particular for starting the engine of the motor vehicle. It is said that in this case the reversible alternator works in starter mode, that is to say in electric motor.
  • alternator-starter can stop the engine of the vehicle, for example at a red light or in traffic jams, and restart it for example according to a determined or predetermined strategy.
  • This strategy takes into account, for example, the state of the gearbox and the clutch pedal; the engine is stopped when the gearbox is in neutral and the action on the release pedal released and vice versa to restart.
  • This function is called "Stop-Start" in the English language.
  • alternator-starter performs this function in starter mode to save fuel especially when driving in the city.
  • the alternator-starter can also, depending on its power, perform other functions in starter mode that is to say when it operates as an electric motor.
  • WO 02/060711 it may be used to drive an accessory, such as an air-conditioning compressor, when the vehicle is stationary at the red lights, or to assist with the start of operation.
  • an accessory such as a turbo compressor.
  • This alternator-starter 1 is mounted here in place of a conventional alternator and comprises a drive member in the form of a pulley 20 integral with a shaft.
  • This alternator-starter 1 is connected to the crankshaft of the engine of the motor vehicle here via its drive member 20 belonging to a motion transmission device intervening between the alternator-starter and the heat engine.
  • This pulley 20 is connected to a pulley 21 of the crankshaft of the heat engine via at least one belt 40.
  • This alternator-starter 1 comprises, as best seen in FIG. 2, which is a simplified sectional view of the alternator. starter, a housing 10 carrying a stator 16 surrounding a rotor 4 integral with a shaft 14, of axis X, carrying at its front end the pulley 20.
  • the stator 16 comprises a ring-shaped body 18 in the form of a packet of notched plates forming grooves for mounting armature windings 5 having buns extending on either side of the ends 24, 26 of the body 18.
  • the body 18 is therefore made of ferromagnetic material.
  • the alternator of Figure 1 has three phases. As a variant, it comprises more than three phases, for example five, six or seven phases.
  • Each phase comprises at least one armature coil 5.
  • These coils 5 are angularly offset and connected in a star or a triangle as can be seen in FIG. 1. They are connected at their output to a current rectifier 8 reciprocating current continuous described below.
  • the coils or windings 5 may be made with conductive wire wound in the notches of the stator body, for example undulating or in the form of coils wound around a tooth of the stator body, or with shaped conductor elements. bars mounted in the notches and interconnected for example by welding to form networks.
  • each phase comprises at least two windings connected in series or in parallel with the presence in this case of two rectifier bridges connected in parallel and star-star or star-delta or delta-triangle connections of three-phase windings of the phases.
  • One or more windings 5 are mounted in each notch of the stator body.
  • the shaft 14 of the rotor 4 is centrally rotatably mounted in the housing, in the case here of non-referenced ball bearings.
  • the rotor 4 shown in FIG. 2 is, as described in document EP A 0515259, a claw rotor comprising polar wheels 50, made of ferromagnetic material, provided with flanges having teeth at their outer periphery.
  • An excitation coil 41 is mounted between the flanges. Permanent magnets can be inserted between the teeth of the pole wheels, as described, for example, in document FR A
  • the rotor is salient poles, an excitation coil being mounted around each salient pole belonging to the body of the rotor, for example in the form of a pack of sheets.
  • this salient pole rotor also comprises permanent magnets alternating circumferentially with the excitation windings as described in the WO document.
  • the housing has at least two perforated parts for air circulation. One of these parts is called front bearing, the other part is called rear bearing.
  • the bearings are metallic and connected to the mass of the vehicle.
  • the rotor then carries at at least one of its axial ends an internal fan, not referenced in FIG. 2, to cool the alternator as visible in the two WO documents.
  • the rear bearing carries a brush holder represented by a dashed rectangle in FIG. 2, whose brushes 42, 43 (FIG. 1) cooperate with slip rings 44, 45 carried by the rear end of the shaft 14. rings are electrically connected to the ends of the excitation winding (s) 41.
  • the pulley 20 the shaft 14 and the rotor 4 are rotated and the winding or windings 41 are electrically powered from the brushes.
  • the inductor rotor 4 is then magnetized, a magnetic field is created and the coils 5 of the induced stator generate an alternating induced current.
  • the current rectifying device 8 of FIG. 1 synchronously transforms this AC direct current to charge the battery and / or supply the electrical consumers of the vehicle's on-board electrical system.
  • This recovery device 8 belongs here to an electronic control and power unit 2, which also comprises a management module 9, which receives information for determining the position and the rotation speed of the rotor 4 of the alternator-starter 1.
  • This information is for example information provided by sensors 11, such as Hall effect sensors. These sensors are mounted for example on an angularly adjustable sensor holder as described in the document WO 01/697 (see for example FIGS. 7 and 9). In a variant, the sensors 11 are replaced by a resolver.
  • the unit 2 is here offset with respect to the alternator-starter, a cable and connectors providing the connection between the rear bearing of the alternator-starter 1 and the unit 2.
  • the rectifying device 8 comprises controllable current rectifying elements, such as transistors 7-7 'connected in parallel on diodes 6-6' as described, for example, in document FR-A-2 745445.
  • the transistors are advantageously Power transistors of the MOSFET type and constitute switches of the static type, which can be controlled, in starter mode, by acting on the gates of these transistors. These transistors 7-7 'integrate the diodes 6-6' by construction.
  • the current rectifying device 8 belongs to a power stage of the unit 2. It constitutes a reversible power converter which provides control in operation in starter mode and synchronous rectification in alternator mode.
  • the voltage regulator of the alternator-starter 1 belongs here also to the module 9.
  • the voltage regulator controls the excitation winding 41 or the rotor 4 via the brushes 42, 43, the slip rings 44 , 45, a collector with blades and wired links as described for example in the document FR 2710199.
  • the electrical line EXC connects the voltage regulator of the module 9 to the brush 43, itself connected to one end of the coil 43, whose other end is connected is connected to the track 44 and the brush 42 connected to ground.
  • the module 9 thus manages the voltage regulation when the machine operates in alternator mode, as well as the power in starter mode and alternator mode.
  • This module 9 can also manage safety functions and monitor the state of the battery and the state of the battery charge and / or perform other functions, especially when braking or decelerating the vehicle as described. in the aforementioned WO02 / 080334
  • This module 9 comprises driving devices, called drivers in English, for driving the gates of transistors 7-7 '.
  • the module 9 is configured to output, via the drivers, signals A, B, C and A ', B', C to the gates of the transistors 7.
  • This module 9 may be equipped with a device for protecting against overvoltages as described in WO 2005/025025 to which reference will be made.
  • each phase winding output two transistors 7-7 'of the integrated diode MOSFET type 6-6'.
  • the number of arms or branch 81 depends on the applications and in particular the number of phases of the alternator-starter.
  • Transistors 7-7 ', constituting controlled power switches, are therefore grouped in pairs of transistors connected to the same output of a phase winding.
  • the transistor 7 ', 6' of power connected to the positive line 83 is called a "high side” transistor, while the power transistor 7.6 connected to the negative line 84 is called a "low side” transistor.
  • the control devices are able to act on the gates of the transistors 7-7 'to make them pass (closed transistor) or blocked (open transistor). These control devices receive information provided by the resolver or the position sensors 1 1 of the rotor 4, as well as information of the logic type of validation of the alternator mode and validation of the starter mode. For more details, see WO 2005/025025 cited above.
  • the management module 9, in the aforementioned manner, is configured to control the transistors 7-7 'and to send on the gate thereof the signals A, B ... to make these transistors passing or open; each driver or driver here being associated with two signals A, A'-B, B'-C, C.
  • the device 8 is an inverter, which supplies the windings 5 of the phases of the stator 1 6; transistors 7-7 'being then driven.
  • a DC current which is advantageously maximum, is imposed in the excitation winding or windings of the rotor, constituting the inductor of the alternator, and on the windings of the stator phases are provided phase-shifted signals which are ideally sinusoidal and, in a variant, trapezoidal. or squares.
  • the device 8 is a current rectifier bridge for rectifying the alternating current of the coils 5 of the phases in a direct current.
  • Transistors 7-7 ' are not controlled in this alternator mode; the diodes 6-6 'are then active.
  • the module 9 can also receive information on the temperature of the alternator-starter and / or the recovery device 8 or receive information from the engine control unit "ECU" in English language.
  • ECU engine control unit
  • This module 9 therefore comprises hardware resources, including a microprocessor and memory, a multi-channel connector, and possibly software resources, including one or more stop / restart algorithms to perform these various functions. These functions can also be realized from circuits of the ASIC type or generally by wired logic.
  • the module 9 is powered by the battery B of the vehicle to which it is electrically connected via a switch 12 controlled for example by the ignition key of the vehicle.
  • the module 9 optionally comprises means for recognizing a coded signal authorizing the starting of the vehicle engine and driving the MOSFET transistors 7-7 'only if it receives the coded signal.
  • alternator is not reversible as described for example in EP A 0515259.
  • the current rectifier is a diode bridge.
  • the invention aims to take advantage of the alternator or the alternator-starter of the motor vehicle to brake the engine of the motor vehicle during the stopping phase thereof.
  • a method of braking a thermal engine of a motor vehicle using a polyphase rotating electrical machine connected to the heat engine and comprising a stator, a rotor comprising at least one excitation winding is characterized in that during the stopping phase of the heat engine at least one phase of the rotating electrical machine is short-circuited.
  • a polyphase rotary electric machine intended to be connected to the engine of a motor vehicle, of the type comprising a stator, a rotor comprising at least one excitation coil is characterized in that it is intended for braking the engine of a motor vehicle during the stopping phase thereof by being equipped with short-circuit means for short-circuiting during the stopping phase of the engine at least one of its phases.
  • the engine is assisted to stop and the engine thermal engine downtime is reduced because a resistive torque is generated on the rotor shaft of the rotating electrical machine during the engine stopping phase. because at least one phase of the machine is short-circuited.
  • the rotor and the rotor shaft connected to the crankshaft of the engine are thus idle.
  • the crankshaft is also slowing down.
  • the rotor windings are electrically energized, that is to say energized, so that the rotor can be rotated. magnetized and generates an induced current in the closed circuit comprising at least one phase winding, connections, wiring, or static switches. This current gives rise to the appearance of losses by Joule effect and the appearance of a resisting torque on the rotor shaft.
  • the current induced in the closed circuit comprises a reactive part linked to the induction of the rotor and an active part related to the resistance of the closed circuit.
  • the rotating electrical machine behaves as an electromagnetic retarder during the stopping phase of the engine. In one embodiment, all the phases are bypassed to obtain a better result and a better performance.
  • the invention takes advantage of the windings of the phases and of the stator body, which is preferably made of ferromagnetic material.
  • the excitation winding or coils of the rotor of the machine are piloted during the stopping phase of the heat engine. Thanks to this characteristic it is possible to adjust and vary the current in the closed circuit to obtain a better slowdown and braking of the rotor and therefore of the rotor shaft of the machine. This braking can therefore be controlled and is thus optimum. It is therefore possible to filter, reduce or eliminate the vibrations due to the acyclisms of the engine during the stopping phase thereof.
  • the machine is provided with means for supplying the rotor excitation winding or windings.
  • These means are in a different embodiment of the voltage regulator that comprises an alternator or alternator-starter of a motor vehicle.
  • These supply means can be controlled by the engine control unit (ECU).
  • ECU engine control unit
  • means are constituted by the voltage regulator so that one derives part of it.
  • excitation of the excitation winding and the short circuit of at least one phase are prolonged after stopping the heat engine.
  • the current rectification device which comprises an alternator or an alternator-starter, is used.
  • At least one current rectification element of the current rectification device is replaced by a controllable switch, such as a MOSFET-type controllable transistor. Therefore, at least one controllable switch is mounted instead of a current rectifying element, such as a diode connected to a power supply line. of the current rectifier device and this switch is turned on during the stopping phase of the thermal engine in order to short-circuit at least one phase of the machine.
  • a controllable switch such as a MOSFET-type controllable transistor. Therefore, at least one controllable switch is mounted instead of a current rectifying element, such as a diode connected to a power supply line. of the current rectifier device and this switch is turned on during the stopping phase of the thermal engine in order to short-circuit at least one phase of the machine.
  • This alternator is associated with a starter configured to perform the "Stop-Start" function.
  • the current rectifying device belongs to an electronic command and control unit comprising a management module configured to control the piloted switches and the starter.
  • the switches are taken advantage of. controlled by the rectifier device of the alternator-starter. These switches are therefore controllable. More precisely, at least one of these controllable switches connected to a supply line of the current rectification device is used and this switch is turned on during the stopping phase of the heat engine in order to short-circuit at least one phase of the machine. .
  • At least two current rectification elements of an alternator belonging to the same supply line of the rectifying device may be replaced by two controllable switches or at least two of the controllable switches of a starter-alternator belonging to one to a same power line of the recovery device
  • the management module which comprises in the aforementioned manner, the alternator-starter to configure said module to perform the control of the switch or switches during the stopping phase of the engine.
  • controllable switch or switches are controllable transistors of the MOSFET type. In another embodiment these controllable switches are thyristors. In general, any other controllable component is possible, in particular bipolar transistors, IGTB, relays.
  • FIG. 1 is a diagrammatic view of a starter-alternator for a motor vehicle with a thermal engine of the prior art, whose management module is configured, according to a first embodiment of the invention, to manage a short-circuit circuit of at least one phase of the alternator-starter during the stopping phase of the engine;
  • FIG. 2 is a simplified sectional view of the casing carrying the stator and the rotor of the alternator-starter of FIG. 1;
  • FIG. 3 is a comparative diagram between the prior art and the present invention; coordinating the rotational speed of the rotor of the rotating electrical machine during the braking phase and the abscissa the time;
  • FIG. 4 is a diagram with the ordinate rate of the duty cycle ratio of the excitation winding or windings of the rotor of the rotating electrical machine and in abscissa the time;
  • FIGS. 5 to 7 are views similar to FIG. 1 respectively for a second, a third and a fourth embodiment of the invention.
  • Curve G of FIG. 3 is representative of what happens during the stopping phase of a motor vehicle heat engine.
  • the ordinate shows the speed of rotation V in revolutions per minute (rpm) of the shaft 14 of the rotor 4 of the alternator-starter 1 and the abscissa time t.
  • the rotational speed of the shaft 14 is representative of that of the engine of the vehicle, more precisely that of its crankshaft.
  • the belt transmission device 20, 21, 40 has a transmission ratio of about 2.5 to 3.
  • the idle speed of the engine generally corresponds to an idle speed of 1500 rpm.
  • the stopping phase of the engine for example at a red light or in traffic jams, begins globally at point H and ends at point I, that is to say a duration of 600 milliseconds (ms) overall. It is therefore desirable to reduce this time.
  • the rotating electrical machine is equipped with short-circuit means for short-circuiting at least one of its phases during the stopping phase of the heat engine.
  • the rotating electrical machine is, as mentioned above, an alternator-starter and the curve K of FIG. 3 is the curve obtained according to this first embodiment.
  • the stopping time 300 ms
  • the circuit 100 acts on the gates of the transistors 7 'which all belong to the positive line 83 because they are connected thereto.
  • the circuit 100 is activated during this stop phase and receives information for this purpose. This information comes for example from the ECU line and the engine control unit. It is also possible to take into account the position of the gearbox - neutral position - and the position of the clutch-action pedal on the released pedal. One can also take into account the position of the brake pedal. It all depends on the strategy of the "Stop-Start" function
  • the shaft 14 of the rotor 4 is thus slowed down because of the creation of a resisting torque which opposes the rotation of the shaft 14.
  • the heat engine is, via the transmission device 20, 21 and 40, and slowed down and braked without mechanical contact.
  • the excitation winding (s) 41 of the rotor 4 is electrically supplied by the excitation line EXC connected to the voltage regulator integrated in this case to the module 9.
  • the voltage regulator therefore belongs to supply means, here of the winding 41 of FIG. 2.
  • this current is modulated by electrically powered supply in a controlled manner.
  • the winding or windings 41 are driven by supplying them with current via the voltage regulator in pulse mode, of the pulse width modulation type or "Pulse Width Modulation "(PWM in French); the controller being controlled for example by a microcontroller belonging to the management module 9.
  • the duty cycle is varied as can be seen in FIG. 4, the cyclic ratio T on the ordinate as a function of the number of revolutions per minute (rpm) of the shaft 14 on the abscissa.
  • the curve L is obtained; the stopping phase of the engine and the alternator-starter taking place between the points P and Q.
  • the duty cycle increases from point P to point R.
  • this cyclic ratio could have been decreased as visible in dotted line (curve S) in FIG. 4.
  • This solution is less satisfactory because at point Q the heat engine can be the object of a movement in the opposite direction, more precisely the object of oscillations around its equilibrium position in particular following a problem of fuel injection.
  • the rotor 41 is premagnetized, which prepares the electric machine for a faster restart.
  • the curve K according to the invention makes it possible to minimize these phenomena, the bumps being greatly reduced.
  • the excitation winding (s) 41 By controlling the excitation winding (s) 41, the induced currents of the closed circuit are adjusted and the damping phenomena are better dampened, and the comfort of the passengers of the vehicle during a stop and a restart is further increased (Stop - Start) of the vehicle and further reduce the noise.
  • An optimum braking of the heat engine is obtained by slowing down the shaft 14. This is also favorable for reducing the stopping time of the heat engine.
  • the slowdown and the braking of the engine are better controlled by making the alternator / starter work in an unconventional manner as an electromagnetic retarder.
  • the engine alternator-alternator can, in another embodiment, work in starter mode to position the pistons of the engine for a better restart and all the more that the rotor is already premagnetized.
  • the curve L depends on the applications and the number of pistons thereof.
  • the alternator-starter is associated with a complementary starter, in particular for a cold start of the heat engine as described in document WO 01/11231.
  • a complementary starter in particular for a cold start of the heat engine as described in document WO 01/11231.
  • one or more temperature sensors are connected to the module 9, as well as detection means for detect a lack of startup; said module comprising comparison means.
  • one of the transistor series 7-7 ' can be replaced by diodes 60 as can be seen in FIG.
  • This device receives information from the engine control unit via the ECU line II can also receive information from the sensors
  • the circuit 200 belongs to the short-circuit means as well as the transistors 7 '.
  • the module 9 also drives the starter 25, configured accordingly.
  • the number of switches made during the stopping phase of the heat engine is in an embodiment less than the number of phases as shown in the third embodiment of the invention of FIG. 6, in which only two transistors 7 'are provided; the other transistor of FIG. 5 being replaced by a diode 60 '.
  • the rotating electrical machine can therefore be an alternator working as an electromagnetic retarder during the stopping phase of the engine to slow down the shaft 14 and brake the engine without mechanical contact.
  • the circuit 300 of the short circuit means is simplified since it controls only two grids.
  • the switches of the short circuit means may be located outside the current rectifying device 8. They may, as shown in FIG. module 2 'close to the outputs of the windings 5 of the phases and to be controlled by a circuit 400 belonging to the module 9.
  • the circuit 400 is distinct from the module 9 and is controlled for example by the engine control unit.
  • the module 2 ' is equipped for example with MOSFET transistors for shorting at least one phase, as well as with two power supply lines such as unit 2.
  • the MOSFET transistors which are controllable and controllable static power switches, may be replaced by thyristors or any other controllable switch, such as a relay.
  • the current rectifying device 8 of the alternator-starter or the alternator may comprise more than three arms or branch 81, for example five, six or seven arms.
  • Each power transistor 7-7 ' is in one embodiment constituted by a set of transistors connected in parallel to reduce heating.
  • the alternator-starter or the alternator in one embodiment is cooled at least in part by water as described for example in document FR 2,835,978.
  • the transistors 7-7 'of the MOSFET type of the device 8 are alternatively placed on electrically conductive traces mounted electrically insulated on a mezzanine arranged above the rear bearing of the alternator-starter as in the document WO 2004/040738.
  • One of the traces may carry at least two controllable transistors and the other traces of the diodes to obtain the assembly of Figure 5.
  • the device 8 may comprise several modules mounted on the rear bearing of the alternator-starter as disclosed in the document FR 2 886 477.
  • the control devices (the drivers) can belong to the aforementioned modules.
  • module 9 in a variant is carried in part by the rear bearing of the alternator-starter and partly offset with respect thereto.
  • the electronic unit 2 is carried by the outer periphery of the housing of the alternator-starter.
  • the voltage regulator can be carried by the rear bearing of the alternator-starter and thus being offset from the remainder of the module 9 and connected to said module.
  • the electronic unit 2 can be deported and belong to a closure cover of a receiving tray of energy storage units, such as batteries or "supercapacitors” or Ultra-capacitors as written in the document WO 2006/100391.
  • energy storage units such as batteries or "supercapacitors” or Ultra-capacitors as written in the document WO 2006/100391.
  • the pulleys 20, 21 and the belt 40 can be replaced by another motion transmission device comprising, for example, toothed wheels and at least one chain or by gears.
  • the alternator-starter instead of being deported may be of the integrated type being mounted adjacent to at least one clutch intervening between the output of the crankshaft of the engine thermal and the input shaft of a motion transmission, such as a gearbox, as described for example in WO 00/06897.
  • This alternator-starter can be mounted upstream or alternatively downstream of the clutch or clutches.
  • the alternator-starter can act on one of the shafts of the gearbox.
  • alternator-starter is connected to the crankshaft of the engine.
  • the sensors 11 or the resolver are alternatively deported relative to the alternator-starter.
  • the number of functions managed by the module 9 depends on the applications and in particular the power of the alternator-starter.
  • This module 9 can therefore perform a lesser number of functions, for example it may not perform the "boost" function or the energy recovery function and be simplified, as well as the device 8.
  • alternator-starter or the alternator may be brushless type, the excitation winding being in this case fixed so that the brushes and the slip rings are removed.
  • the control of the transistors 7-7 ' can be carried out, as above, as in the document FR-A-2745445 or alternatively by a pulse width control as described in the document WO 2005/109624 to which reference will be made.
  • the invention during the stopping phase of the engine, it decreases the stopping time of the engine, as well as noise and vibration phenomena.
  • the resistive torque and thus the braking, is generally proportional to the excitation current of the rotor excitation winding or coils so that this resistive torque can be adjusted in the aforementioned manner. All the energy is dissipated in the machine which allows to obtain a high resistant torque without reinjecting energy into the battery.
  • the number of shorted phases depends on the applications. One can bypass at least two phases or all phases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Control Of Eletrric Generators (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

Le procédé de freinage d 'un moteur thermique d'u n véhicule automobile à l 'aide d'une machine électrique tou rnante polyphasée ( 1 ) reliée au moteur thermique et comprenant un stator et un rotor (4) comportant au moins un bobinag d 'excitation (41 ), fait intervenir un cou rt-circuit d 'au moins une des phases de la machine pendant la phase d'arrêt du moteur thermique. La machine électrique tournante polyphasée est destinée à freiner le moteur thermique d 'un véhicule automobile pendant la phase d 'arrêt de celui-ci en étant équipée de moyens de cou rt- circuit pour court-circuiter pendant la phase d 'arrêt du moteur thermique au moins une de ses phases.

Description

Procédé et une machine électrique de freinage d'un moteur thermique de véhicule lors de la phase d'arrêt de celui-ci.
Domaine de l'invention
La présente invention concerne un procédé et une machine électrique tournante de freinage d'un moteur thermique d'un véhicule automobile lors de la phase d'arrêt de celui-ci.
Etat de la technique
Ainsi qu'on le sait un véhicule automobile est équipé de machines électriques tournantes, notamment d'un alternateur ou d'un alterno-démarreur. En se reportant à la figure 1, on a représenté schématiquement une machine électrique tournante sous la forme d'un alternateur réversible du type polyphasé pour véhicule automobile à moteur thermique.
Un tel alternateur réversible est appelé alterno-démarreur. De manière connue, dans un mode de fonctionnement, cet alternateur réversible transforme de l'énergie mécanique en énergie électrique pour notamment recharger la batterie du véhicule automobile et /ou alimenter électriquement les accessoires du véhicule. On dit dans ce cas l'alternateur réversible fonctionne en mode alternateur, c'est-à-dire en générateur de courant.
Dans un autre mode de fonctionnement l'alternateur réversible transforme de l'énergie électrique en énergie mécanique pour notamment démarrer le moteur thermique du véhicule automobile. On dit que dans ce cas l'alternateur réversible travaille en mode démarreur, c'est-à-dire en moteur électrique.
Ainsi grâce à l'alterno-démarreur on peut arrêter le moteur thermique du véhicule, par exemple au feu rouge ou dans les embouteillages, et redémarrer celui-ci par exemple selon une stratégie déterminée ou prédéterminiée. Cette stratégie prend en compte par exemple l'état de la boîte de vitesses et de la pédale de débrayage ; le moteur étant arrêté lorsque la boîte de vitesses est au point mort et l'action sur la pédale de débrayage relâchée et vice versa pour redémarrer. Cette fonction est dite « Stop-Start » dans la langue Anglaise.
Dans tous les cas l'alterno-démarreur réalise cette fonction en mode démarreur afin d'économiser du carburant notamment lors de la conduite en ville. L'alterno-démarreur peut également, selon sa puissance, réaliser d'autres fonctions en mode démarreur c'est-à-dire lorsqu'il fonctionne comme un moteur électrique.
Par exemple, comme décrit dans le document WO 02/060711, il peut servir à entraîner un accessoire, tel qu'un compresseur de climatisation, lorsque le véhicule est à l'arrêt aux feux rouge, ou aider à la mise en route d'un accessoire, tel qu'un turbo compresseur.
Il peut intervenir pour déplacer temporairement le véhicule lors de manœuvres au parking II peut, comme décrit par exemple dans le document WO
02/080334, éviter que le moteur thermique du véhicule cale (fonction dite fonction BOOST), charger, lors du freinage ou à la décélération du véhicule automobile, un ou des accumulateur d'énergie, tel que des « supercondensateurs » ou Ultra capacités.
Dans la figure 1 on a représenté un alterno-démarreur séparé du type de celui décrit dans le document WO 01/69762 auquel on se reportera.
Cet alterno-démarreur 1 est monté ici en lieu et place d'un alternateur classique et comporte un organe d'entraînement sous la forme d'une poulie 20 solidaire d'un arbre.
Cet alterno-démarreur 1 est relié au vilebrequin du moteur thermique du véhicule automobile ici via son organe d'entraînement 20 appartenant à un dispositif de transmission de mouvement intervenant entre l'alterno-démarreur et le moteur thermique.
Plus précisément cette poulie 20 est reliée à une poulie 21 du vilebrequin du moteur thermique via au moins une courroie 40. Cet alterno-démarreur 1 comporte, comme mieux visible à la figure 2, qui est une vue en coupe simplifiée de l'alterno-démarreur, un carter 10 portant un stator 16 entourant un rotor 4 solidaire d'un arbre 14, d'axe X, portant à son extrémité avant la poulie 20.
Le stator 16 comporte un corps 18 de forme annulaire sous la forme d'un paquet de tôles à encoches formant des rainures pour le montage de bobinages 5 d'induit présentant des chignons s'étendant de part et d'autre des extrémités 24, 26 du corps 18.
Le corps 18 est donc en matériau ferromagnétique.
Un faible entrefer existe entre la périphérie interne du corps 18 et la périphérie externe du rotor 4.
L'alternateur de la figure 1 comporte trois phases. En variante il comporte plus de trois phases, par exemple cinq, six ou sept phases.
Chaque phase comporte au moins un bobinage d'induit 5. Ces bobinages 5 sont décalés angulairement et connectés en en étoile ou en triangle comme visible à la figure 1. Ils sont reliés à leur sortie à un dispositif de redressement de courant 8 alternatif en courant continu décrit ci-dessous.
Les bobinages ou enroulements 5 peuvent être réalisés avec du fil conducteur bobiné dans les encoches du corps du stator, par exemple de manière ondulée ou sous la forme de bobines enroulées autour d'une dent du corps du stator, ou avec des éléments conducteurs en forme de barres montées dans les encoches et reliés entre elles par exemple par soudage pour former des réseaux. En variante chaque phase comporte au moins deux bobinages montés en série ou en parallèle avec présence dans ce cas de deux ponts redresseurs montés en parallèle et des connections étoile-étoile ou étoile - triangle ou triangle- triangle des bobinages triphasés des phases. Un ou plusieurs bobinages 5 sont donc montés dans chaque encoche du corps du stator.
L'arbre 14 du rotor 4 est monté centralement à rotation dans le carter à la faveur ici de roulements à billes non référencés. Le rotor 4 représenté à la figure 2 est, comme décrit dans le document EP A 0515259, un rotor à griffes comprenant des roues polaires 50, en matériau ferromagnétique, dotées de flasques présentant à leur périphérie externe des dents.
Un bobinage d'excitation 41 est monté entre les flasques, Des aimants permanents peuvent être intercalés entre les dents des roues polaires, comme décrit par exemple dans le document FR A
2793085.
En variante le rotor est à pôles saillants, un bobinage d'excitation étant monté autour de chaque pôle saillant appartenant au corps du rotor, par exemple sous la forme d'un paquet de tôles. En variante ce rotor à pôles saillants comporte également des aimants permanents alternants circonférentiellement avec les bobinages d'excitation comme décrit dans le document WO
02/054566. Le carter comporte au moins deux parties ajourées pour circulation de l'air. L'une de ces parties est appelée palier avant, l'autre partie est appelée palier arrière. Les paliers sont métalliques et reliés à la masse du véhicule.
Le rotor porte alors à l'une au moins de ses extrémités axiales un ventilateur interne, non référencé à la figure 2, pour refroidir l'alternateur comme visible dans les deux documents WO
02/054566 et EP A 0515259.
Le palier arrière porte un porte-balais représenté par un rectangle en pointillés à la figure 2, dont les balais 42, 43 (figure 1) coopèrent avec des bagues collectrices 44, 45 portées par l'extrémité arrière de l'arbre 14. Ces bagues sont reliées électriquement aux extrémités du ou des bobinages d'excitation 41. Lorsque le moteur thermique du véhicule tourne, la poulie 20 l'arbre 14 et le rotor 4 sont entraînés en rotation et le ou les bobinages 41 sont alimentés électriquement à partir des balais. Le rotor 4 inducteur est alors magnétisé, un champ magnétique est crée et les bobinages 5 du stator induit génèrent un courant induit alternatif.
Le dispositif de redressement de courant 8 de la figure 1, transforme de manière synchrone ce courant induit alternatif en courant continu pour charger la batterie et/ou alimenter les consommateurs électriques du réseau de bord du véhicule.
Ce dispositif de redressement 8 appartient ici à une unité électronique de contrôle et de puissance 2, qui comporte également un module de gestion 9, qui reçoit des informations permettant de déterminer la position et la vitesse de rotation du rotor 4 de l'alterno-démarreur 1. Ces informations sont par exemple des informations fournies par des capteurs 11, tel que des capteurs à effet Hall. Ces capteurs sont montés par exemple sur un porte- capteurs réglable angulairement comme décrit dans le document WO 01/697précité (voir par exemple figures 7 et 9). En variante les capteurs 11 sont remplacés par un résolveur.
L'unité 2 est ici déportée par rapport à l'alterno-démarreur, un câble et des connecteurs assurant la liaison entre le palier arrière de l'alterno-démarreur 1 et l'unité 2.
Le dispositif de redressement 8 comporte des éléments de redressement de courant pilotables, tels que transistors 7-7' montés en parallèle sur des diodes 6-6' comme décrit par exemple dans le document FR-A-2 745445. Les transistors sont avantageusement des transistors de puissance du type MOSFET et constituent des interrupteurs du type statique, que l'on peut commander, en mode démarreur, en agissant sur les grilles de ces transistors. Ces transistors 7-7' intègrent par construction les diodes 6-6'. Le dispositif de redressement de courant 8 appartient à un étage de puissance de l'unité 2. Il constitue un convertisseur de puissance réversible qui assure le pilotage en fonctionnement en mode démarreur et le redressement synchrone en mode alternateur. Le régulateur de tension de l'alterno-démarreur 1 appartient ici également au module 9. Pour mémoire on rappellera que le régulateur de tension pilote le ou les bobinage d'excitation 41 du rotor 4 via les balais 42, 43, les bagues collectrices 44, 45, un collecteur à lames et des liaisons filaires comme décrit par exemple dans le document FR 2710199. A la figure 1, la ligne électrique EXC relie le régulateur de tension du module 9 au balai 43, lui- même relié à une extrémité du bobinage 43, dont l'autre extrémité est reliée est reliée à la piste 44 et au balais 42 relié à la masse.
Le module 9 gère donc la régulation de tension lorsque la machine fonctionne en mode alternateur, ainsi que la puissance en mode démarreur et mode alternateur. Ce module 9 peut également gérer des fonctions de sécurité et surveiller l'état de la batterie et l'état de la charge de la batterie et /ou assurer d'autres fonctions, notamment lors du freinage ou d'une décélération du véhicule comme décrit dans le document WO02/080334 précité
Ce module 9 comporte des dispositifs de pilotage, appelés drivers en Anglais, pour piloter les grilles des transistors 7-7'. Ainsi le module 9 est configuré pour en sortie envoyer, via les drivers, des signaux A, B, C et A', B', C aux grilles des transistors 7. Ce module 9 peut être équipé d'un dispositif de protection contre les surtensions comme décrit dans le document WO 2005/025025 auquel on se reportera.
Comme décrit dans ce document et comme visible à la figure 1, il est associé à chaque sortie de bobinage 5 de phase deux transistors 7-7' du type MOSFET à diode 6-6' intégrée. Ces deux transistors 7,7' appartiennent à un bras ou branche 81 intervenant, d'une part, entre une ligne d'alimentation électrique 83, dite ligne positive, reliée à la borne positive 82 de la batterie B et au potentiel positif 85 d'au moins un réseau de bord du véhicule et d'autre part, une ligne 84, dite ligne négative, reliée à la masse.
Le nombre de bras ou de branche 81 dépend des applications et notamment du nombre de phases de l'alterno-démarreur. Les transistors 7-7', constituant des interrupteurs de puissance commandés, sont donc groupés par paires de transistors connectés à une même sortie d'un bobinage 5 de phase. Le transistor 7', 6' de puissance connecté à la ligne positive 83 est appelé transistor « high side » , tandis que le transistor de puissance 7,6 connecté à la ligne négative 84 est appelé transistor « low side ».
Les dispositifs de pilotage sont propres à agir sur les grilles des transistors 7-7' pour les rendre passants (transistor fermé) ou bloqués (transistor ouvert). Ces dispositifs de pilotage reçoivent des informations fournies par le résolveur ou les capteurs de position 1 1 du rotor 4, ainsi qu'une information du type logique de validation du mode alternateur et de validation du mode démarreur. Pour plus de précisions on se reportera au document WO 2005/025025 précité. Le module de gestion 9, de manière précitée, est configurée pour commander les transistors 7-7' et envoyer sur la grille de ceux-ci les signaux A, B... pour rendre ces transistors passant ou ouvert; chaque dispositif de pilotage ou driver étant ici associé à deux signaux A, A'- B, B'- C, C. En mode démarreur, le dispositif 8 est un onduleur, qui alimente les bobinages 5 des phases du stator 1 6 ; les transistors 7-7' étant alors pilotés. Par exemple on impose un courant continu, avantageusement maximal, dans le ou les bobinages d'excitation du rotor, constituant l'inducteur de l'alternateur, et on délivre sur les bobinages des phases du stator des signaux déphasés idéalement sinusoïdaux et en variante trapézoïdaux ou carrés.
En mode alternateur le dispositif 8 est un pont redresseur de courant pour redresser le courant alternatif des bobinages 5 des phases en un courant continu. Les transistors 7-7' ne sont pas pilotés dans ce mode alternateur ; les diodes 6-6' sont alors actives.
Le module 9 peut également recevoir des informations sur la température de l'alterno-démarreur et/ou du dispositif de redressement 8 ou recevoir des informations de l'unité de contrôle moteur « ECU » en langue Anglaise. Dans cette figure 1 on a représenté par la référence ECU la ligne de liaison électrique avec cette unité de contrôle moteur.
Ce module 9 comporte donc des ressources matérielles, notamment un microprocesseur et de la mémoire, un connecteur multivoies, et éventuellement des ressources logicielles, notamment un ou plusieurs algorithmes d'arrêt/redémarrage pour réaliser ces diverses fonctions. Ces fonctions peuvent être réalisées également à partir de circuits du type ASIC ou d'une manière générale par de la logique câblée.
Le module 9 est alimenté par la batterie B du véhicule à laquelle il est relié électriquement par l'intermédiaire d'un interrupteur 12 commandé par exemple par la clé de contact du véhicule. Le module 9 comporte de manière optionnelle des moyens pour la reconnaissance d'un signal codé autorisant le démarrage du moteur du véhicule et pilote les transistors MOSFET 7-7' que si elle reçoit le signal codé.
En variante l'alternateur n'est pas réversible comme décrit par exemple dans le document EP A 0515259.
Dans ce cas le dispositif de redressement de courant est un pont de diodes.
Objet de l'invention
L'invention a pour objet de tirer partie de l'alternateur ou de l'alterno-démarreur du véhicule automobile pour freiner le moteur thermique du véhicule automobile lors de la phase d'arrêt de celui- ci.
Suivant l'invention un procédé de freinage d'un moteur thermique d'un véhicule automobile à l'aide d'une machine électrique tournante polyphasée reliée au moteur thermique et comprenant un stator, un rotor comportant au moins un bobinage d'excitation, est caractérisé en ce que pendant la phase d'arrêt du moteur thermique on court-circuite au moins une phase de la machine électrique tournante. Suivant l'invention une machine électrique tournante polyphasée, destinée à être reliée au moteur thermique d'un véhicule automobile, du type comprenant un stator, un rotor comportant au moins un bobinage d'excitation, est caractérisée en ce qu'elle est destinée à freiner le moteur thermique d'un véhicule automobile pendant la phase d'arrêt de celui-ci en étant équipée de moyens de court-circuit pour court-circuiter pendant la phase d'arrêt du moteur thermique au moins une de ses phases.
Grâce à l'invention on aide le moteur thermique à s'arrêter et on diminue le temps d'arrêt du moteur thermique car on engendre un couple résistif sur l'arbre du rotor de la machine électrique tournante pendant la phase d'arrêt du moteur thermique du fait que l'on court-circuite au moins une phase de la machine. On ralenti donc le rotor et l'arbre du rotor relié au vilebrequin du moteur thermique. Le vilebrequin est donc également ralentit.
On impose ainsi un couple résistant sur le vilebrequin du moteur thermique durant cette phase en commandant la machine électrique tournante. Ce couple résistant ralenti et donc freine le moteur thermique. Ce freinage est réalisé sans contact mécanique. Plus précisément en cou rt-ci rcuitant une ou plusieu rs phases on crée u n ci rcuit fermé entre une ou plusieu rs phases.
Avantageusement le ou les bobinages du rotor sont alimentés électriquement, c'est-à-di re excités, pou r que le rotor i nducteu r soit magnétisé et engendre un courant induit dans le circuit fermé comportant au moins un bobinage de phase, des connexions, du câblage, ou des interrupteurs statiques. Ce courant donne lieu à l'apparition de pertes par effet Joule et a l'apparition d'un couple résistant sur l'arbre du rotor.
En d'autres termes le courant induit dans le circuit fermé comporte une partie réactive liée à l'induction du rotor et une partie active liée à la résistance du circuit fermé. La partie réactive et en quadrature avec la force électromotrice qui l'engendre et ne crée pas de couple, tandis que la partie active en phase avec cette force électromotrice et engendre un couple résistant sur l'arbre du rotor.
La machine électrique tournante se comporte comme un ralentisseur électromagnétique pendant la phase d'arrêt du moteur thermique. Dans un mode de réalisation on court-circuite toutes les phases pour obtenir un meilleur résultat et un meilleur rendement.
On peut donc dans tous les cas redémarrer plus rapidement le moteur thermique par exemple suite à un arrêt au feu rouge ou dans les embouteillages. Des courants sont donc générés de manière non conventionnelle dans le corps du stator de la machine pendant cette phase d'arrêt du moteur thermique constituant une phase de freinage par ralentissement du moteur thermique.
Cela est rendu possible car la phase d'arrêt est rendue plus courte en sorte que le corps du stator ne chauffe pas outre mesure.
L'invention tire partie des bobinages des phases et du corps du stator, qui est de préférence en matériau ferromagnétique.
Bien entendu lorsque le rotor de la machine est doté d'aimants on diminue encore ce temps d'arrêt. Tout cela est bénéfique pour le confort du passager.
Selon une autre caractéristique on pilote le ou les bobinages d'excitation du rotor de la machine pendant la phase d'arrêt du moteur thermique. Grâce à cette caractéristique on peut ajuster et faire varier le courant dans le circuit fermé pour obtenir un meilleur ralentissement et freinage du rotor et donc de l'arbre du rotor de la machine. Ce freinage peut donc être contrôlé et est ainsi optimum. On peut donc filtrer, réduire voir éliminer les vibrations dues aux acyclismes du moteur thermique pendant la phase d'arrêt de celui-ci.
Cela est bénéfique pour le confort du passager et permet de réduire encore les bruits. La machine est dotée de moyens d'alimentation du ou des bobinages d'excitation du rotor.
Ces moyens sont dans un mode de réalisation distincts du régulateur de tension que comporte un alternateur ou un alterno- démarreur de véhicule automobile. Ces moyens d'alimentation peuvent être pilotés par l'unité de contrôle moteur (ECU).
Dans un mode de réalisation sont moyens sont constitués par le régulateur de tension en sorte que l'on tire partie de celui-ci.
Dans un mode de réalisation l'excitation du bobinage d'excitation et le court-circuit d'au moins une phase sont prolongés après l'arrêt du moteur thermique.
Cela à pour éviter que le moteur thermique tourne à l'envers, plus précisément oscille autour de sa position d'équilibre, après son arrêt, notamment lorsqu'il comporte un nombre impair de cylindre.
L'arrêt du moteur est ainsi stable et bien amorti. Dans un mode de réalisation on tire partie du dispositif de redressement de courant, que comporte un alternateur ou un alterno-démarreur.
Ainsi s'agissant d'un alternateur on remplace au moins un élément de redressement de courant du dispositif de redressement de courant par un interrupteur commandable, tels qu'un transistor pilotable du type MOSFET. On monte donc au moins un interrupteur commandable en lieu et place d'un élément de redressement de courant, tel qu'une diode reliée à une ligne d'alimentation électrique du dispositif de redressement de courant et on rend passant cet interrupteur pendant la phase d'arrêt du moteur thermique pour court-circuiter au moins une phase de la machine.
On associe cet alternateur à un démarreur configuré pour réaliser la fonction « Stop-Start »
Dans un mode de réalisation le dispositif de redressement de courant appartient à une unité électronique de commande et de contrôle comportant un module de gestion configuré pour piloter les interrupteurs pilotés et le démarreur, S'agissant d'un alterno-démarreur on tire partie des interrupteurs pilotables que comporte le dispositif de redressement de l'alterno-démarreur. Ces interrupteurs sont donc commandables. Plus précisément on utilise au moins un de ces interrupteurs pilotables relié à une ligne d'alimentation du dispositif de redressement de courant et on rend passant cet interrupteur pendant la phase d'arrêt du moteur thermique pour court-circuiter au moins une phase de la machine.
Bien entendu en variante on peut remplacer au moins deux éléments de redressements de courant d'un alternateur appartenant à une même ligne d'alimentation du dispositif de redressement par deux interrupteurs commandables ou utiliser au moins deux des interrupteurs pilotables d'un alterno-démarreur appartenant à une à une même ligne d'alimentation du dispositif de redressement
Dans un mode de réalisation on tire partie du module de gestion, que comporte de manière précitée, l'alterno-démarreur pour configurer ledit module afin de réaliser le pilotage du ou des interrupteurs pendant la phase d'arrêt du moteur thermique.
Dans un mode de réalisation le ou les interrupteurs commandables sont des transistors pilotables du type MOSFET. Dans un autre mode de réalisation ces interrupteurs commandables sont des thyristors. D'une manière générale tout autre composant commandable est envisageable, notamment des transistors bipolaires, IGTB, des relais.
Bien entendu toutes les caractéristiques précitées sont à considérer seule ou en combinaison.
D'autres avantages apparaîtront en référence à la description qui va suivre et aux dessins annexés.
Brève description des dessins
- la figure 1 est une vue schématique d'un alterno-démarreur pour véhicule automobile à moteur thermique de l'art antérieur, dont le module de gestion est configuré pour, selon un premier mode de réalisation de l'invention, gérer un court-circuit d'au moins une phase de l'alterno-démarreur pendant la phase d'arrêt du moteur thermique ;
- la figure 2 est une vue en coupe simplifiée du carter portant le stator et le rotor de l'alterno-démarreur de la figure 1 ;
- la figure 3 est un diagramme comparatif entre l'art antérieur et la présente invention; avec en coordonnée la vitesse de rotation du rotor de la machine électrique tournante pendant la phase de freinage et en abscisse le temps ; - la figure 4 est un diagramme avec en ordonnée le taux du rapport cyclique d'excitation du ou des bobinages d'excitation du rotor de la machine électrique tournante et en abscisse le temps ;
-les figures 5 à 7 sont des vues analogues à la figure 1 respectivement pour un second, un troisième et un quatrième mode de réalisation de l'invention.
Description d'exemples de réalisations de l'invention Dans la description, qui va suivre, les éléments identiques ou similaires seront affectés des mêmes signes de référence.
La courbe G de la figure 3 est représentative de ce qui se passe durant la phase d'arrêt d'un moteur thermique du véhicule automobile. En ordonnée on a représenté la vitesse de rotation V en tours par minute (rpm) de l'arbre 14 du rotor 4 de l'alterno- démarreur 1 et en abscisse le temps t.
La vitesse de rotation de l'arbre 14 est représentative de celle du moteur thermique du véhicule, plus précisément de celle de son vilebrequin. En effet le dispositif de transmission 20, 21, 40 à courroie présente un rapport de transmission d'environ 2, 5 à 3.
Dans cette figure 3 on voit que le régime de ralenti du moteur thermique correspond globalement à un régime de ralenti de 1500 rpm.
La phase d'arrêt du moteur thermique, par exemple à un feu rouge ou dans les embouteillages, commence globalement au point H et se termine au point I, soit une durée globalement de 600 millisecondes (ms). II est donc souhaitable de diminuer ce temps.
Pour ce faire il est proposé un procédé de freinage, à l'aide d'une machine électrique tournante polyphasée reliée au moteur thermique. Selon ce procédé on court-circuite au moins une phase de la machine électrique tournante pendant la phase d'arrêt du moteur thermique.
La machine électrique tournante est équipée de moyens de court-circuit pour court-circuiter au moins une de ses phases pendant la phase d'arrêt du moteur thermique.
Dans le mode de réalisation de la figure 1 la machine électrique tournante est, de manière précitée, un alterno-démarreur et la courbe K de la figure 3 est la courbe obtenue selon ce premier mode de réalisation. Ainsi en se reportant à la courbe K selon l'invention on voit que l'on diminue par deux le temps d'arrêt (300ms).
Dans ce mode de réalisation de la figure 1 on court-circuite toutes les phases de la machine et le module de gestion 9 est configuré en conséquence. Plus précisément il présente un circuit
100 destiné, lorsque l'on est en mode démarreur, c'est-à-dire lorsque les transistors 7' «high side » sont pilotables, à rendre passant, lors de la phase d'arrêt du moteur thermique, ces transistors 7', qui alors sont tous reliés, d'une part à l'une des phases et d'autre part, à la lignes positive 83.
Le circuit 100 agit sur les grilles des transistors 7' qui appartiennent tous à la ligne positive 83 du fait qu'ils sont reliés à celle-ci.
Il agit sur ici sur les signaux A', B', C des grilles pour rendre passant les transistors 7'.
Le circuit 100 est activé lors de cette phase d'arrêt et reçoit une information à cet effet. Cette information vient par exemple de la ligne ECU et de l'unité de contrôle moteur. On peut également prendre en compte la position de la boîte de vitesses -position point mort- et de la position de la pédale de débrayage -action sur la pédale relâchée. On peut également prendre en compte la position de la pédale de frein. Tout dépend de la stratégie de la fonction «Stop-Start »
Le pilotage en tout ou rien de ces transistors 7' est inhibé lors de cette phase d'arrêt. Le circuit 100 et les transistors 7' font donc partie des moyens de court-circuit.
Bien entendu on peut faire l'inverse et rendre passant, lors de cette phase d'arrêt, tous les transistors 7 « low side » reliés à la ligne négative 84, c'est-à-dire appartenant à celle-ci. On fait travailler, lors de cette phase d'arrêt, l'alterno- démarreur comme un ralentisseur électromagnétique.
Plus précisément dans ce mode de réalisation durant la phase d'arrêt du moteur thermique le ou les bobinages 41 du rotor 4 inducteur sont excités, c'est à dire alimentés électriquement. Le rotor est donc magnétisé en sorte que des courants induits naissent dans les bobinages 5 des phases portées par corps 1 8, ici en matière ferromagnétique, du stator 16 de la figure 2. Un circuit fermé entre les phases existe du fait que chaque bobinage 5 est relié électriquement ici à la ligne 83. Ce circuit fermé comporte un circuit élémentaire fermé pour chaque phase, ce circuit élémentaire comportant le bobinage de phase, les connexions électriques, le câblage et le transistors MOSFET concerné rendu passant.
Il y a création de courants dans les bobinages 5 des phases avec apparition de pertes par effet Joule. Cette dissipation de puissance par pertes à effet Joule implique, en vertu de la conservation de l'énergie, qu'une puissance identique soit absorbée au niveau du rotor inducteur par l'apparition d'un couple résistant sur l'arbre 14 de rotor de la machine électrique tournante.
L'arbre 14 du rotor 4 est donc ralenti du fait de la création d'un couple résistant qui s'oppose à la rotation de l'arbre 14. Le moteur thermique est, via le dispositif de transmission 20, 21 et 40, ainsi ralenti et freiné sans contact mécanique.
Lors de cette phase d'arrêt du moteur thermique on alimente électriquement le ou les bobinages d'excitation 41 du rotor 4 par la ligne d'excitation EXC reliée au régulateur de tension intégré dans ce cas au module 9.
Le régulateur de tension appartient donc à des moyens d'alimentation, ici du bobinage 41 de la figure 2.
Cela est réalisé dans un mode de réalisation en alimentant électriquement le ou les bobinages 41 à courant constant pour créer des courants induits dans les phases du stator, plus précisément dans les bobinages 5 de celles-ci.
Dans un autre mode de réalisation, celui de la figure 4, on module ce courant en alimentant électriquement de manière pilotée le ou les bobinages 41. Dans ce mode de réalisation on pilote le ou les bobinages 41. en alimentant ceux-ci en courant par l'intermédiaire du régulateur de tension en mode impulsions, du type à modulation de largeur d'impulsions ou « Puise Width Modulation » (PWM en Français) ; le régulateur étant piloté par exemple par un microcontrôleur appartenant au module de » gestion 9.
On fait varier le rapport cyclique comme visible à la figure 4, le rapport cyclique T en ordonnée en fonction du nombre de tours par minute (rpm) de l'arbre 14 en abscisse. On obtient la courbe L ; la phase d'arrêt du moteur thermique et de l'alterno-démarreur ayant lieu entre les points P et Q.
Le rapport cyclique croît à partir du point P jusqu'au point R.
Puis il reste maximum (environ 80%) jusqu'au point Q.
Ensuite il décroît, puis reste stable et cela au-delà de l'arrêt du point Q, qui correspond à l'arrêt du moteur thermique.
En variante, par exemple vers 500 rpm, on aurait pu faire décroître ce rapport cyclique comme visible en pointillés (courbe S) à la figure 4. Cette solution est moins satisfaisante car au point Q le moteur thermique peut être l'objet d'un mouvement en sens inverse, plus précisément l'objet d'oscillations autour de sa position d'équilibre notamment suite à un problème d'injection de carburant.
En maintenant le pilotage du ou des bobinages 41 ainsi que le court-circuit, et donc en maintenant un rapport cyclique, on évite ce problème. L'arrêt du moteur thermique est donc prolongé.
En outre on prémagnétise le rotor 41 ce qui prépare la machine électrique pour un redémarrage plus rapide.
En faisant varier l'alimentation en courant dans le bobinage 41, c'est-à-dire en pilotant celui-ci on peut amortir de manière appropriée les vibrations et on réduit les bruits ce qui permet d'améliorer encore le confort des occupants du véhicule lors d'une période de « Stop-Start ». En effet en se reportant à la figure 3, et en comparant les courbes G et K, on voit que la courbe G présente des bosses dues aux mouvements des pistons du moteur thermique lorsque celui-ci s'arrête. Le moteur thermique est alors l'objet de phénomènes d'acyclismes.
La courbe K selon l'invention permet de minimiser ces phénomènes, les bosses étant fortement diminuées.
En pilotant le ou les bobinages d'excitation 41 on ajuste et on fait varier les courants induits du circuit fermé pour mieux amortir les phénomènes de vibration, augmenter encore le confort des passagers du véhicule lors d'un arrêt et d'un redémarrage (Stop- Start ) du véhicule et réduire encore plus les bruits. On obtient un freinage optimum du moteur thermique par ralentissement de l'arbre 14. Cela est favorable également pour la réduction du temps d'arrêt du moteur thermique.
On contrôle mieux le ralentissement et le freinage du moteur thermique et ce en faisant travailler l'alterno-démarreur de manière non conventionnelle comme un ralentisseur électromagnétique. Après l'arrêt, ici prolongé, du moteur thermique l'alterno- démarreur peut, dans un autre mode de réalisation, travailler en mode démarreur pour bien positionner les pistons du moteur thermique en vue d'un meilleur redémarrage et ce d'autant plus que le rotor est déjà prémagnétisé. Bien entendu la courbe L dépend des applications et du nombre de pistons de celui-ci.
En variante l'alterno-démarreur est associé à un démarreur complémentaire notamment pour un démarrage à froid du moteur thermique comme décrit dans le document WO 01/11231. Pour plus de précisions on se reportera à ce document notamment à la figure 1 de celui-ci. Dans ce cas un ou plusieurs capteurs de température sont reliés au module 9, ainsi que des moyens de détection pour détecter une absence de démarrage ; le dit module comportant des moyens de comparaison.
Dans un mode de réalisation l'une des séries de transistor 7- 7' peut être remplacée par des diodes 60 comme visible à la figure 5.
Dans cette figure 5 on a, selon un second mode de réalisation de l'invention, remplacé tous les transistors «low side » reliés à la ligne négative 84 par des diodes 60. Ces diodes sont non pilotables contrairement aux transistors 7-7'. En variante on peut faire l'inverse et remplacer tous les transistors «high side » reliés à la ligne positive 83 par des diodes
Dans ce cas on est en présence d'un simple alternateur associé à un démarreur 25 permettant de faire redémarrer le moteur thermique. Le contacteur 23 du démarreur 25 est alors relié au module 9 à la faveur d'une ligne D. On voit en 27 une partie de la couronne de démarrage et en 200 un circuit de pilotage des grilles
A', B', C des grilles des transistors 7' « high side » dans cet exemple de réalisation. Ce dispositif reçoit des informations en provenance de l'unité de contrôle moteur via la ligne ECU II peut recevoir également des informations en provenance des capteurs
11.
Le circuit 200 appartient aux moyens de court-circuit ainsi que les transistors 7'. Le module 9 pilote également le démarreur 25, configuré en conséquence.
De manière précitée le nombre d'interrupteurs rendus passant lors de la phase d'arrêt du moteur thermique est dans un mode de réalisation inférieur au nombre de phases comme montré dans le troisième mode de réalisation de l'invention de la figure 6, dans laquelle seulement deux transistors 7' sont prévus ; l'autre transistor de la figure 5 étant remplacé par une diode 60'.
La machine électrique tournante peut donc être un alternateur travaillant comme un ralentisseur électromagnétique pendant la phase d'arrêt du moteur thermique pour ralentir l'arbre 14 et freiner le moteur thermique sans contact mécanique.
Le circuit 300 des moyens de court-circuit est simplifié puisqu'il commande que deux grilles. En variante selon un quatrième mode de réalisation de l'invention, les interrupteurs des moyens de court circuit peuvent être implantés à l'extérieur du dispositif de redressement de courant 8. I ls peuvent, comme représenté à la figure 7, être montés dans un module 2' proche des sorties des bobinages 5 des phases et être commandé par un circuit 400 appartenant au module 9. En variante le circuit 400 est distinct du module 9 et est commandé par exemple par l'unit é de contrôle moteur.
Le module 2' est doté par exemple de transistors du type MOSFET pour court-circuiter au moins une phase, ainsi que de deux lignes d'alimentation électrique comme l'unité 2.
Bien entendu dans ces modes de réalisation, les transistors du type MOSFET, qui sont des interrupteurs statiques de puissance pilotables et commandables, peuvent être remplacés par des thyristors ou tout autre interrupteur commandable, tel qu'un relais.
Bien entendu la présente invention n'est pas limitée aux exemples de réalisation décrits.
Ainsi, de manière précitée, le dispositif de redressement de courant 8 de l'alterno-démarreur ou de l'alternateur peut comporter plus de trois bras ou branche 81 , par exemple cinq, six ou sept bras.
Chaque transistor de puissance 7-7' est dans un mode de réalisation constitué par un ensemble de transistors montés en parallèle pour réduire les échauffements.
L'alterno-démarreur ou l'alternateur dans un mode de réalisation est refroidit au moins en partie par eau comme décrit par exemple dans le document FR 2 835 978. Les transistors 7-7' du type MOSFET du dispositif 8 sont en variante placés sur des traces électriquement conductrices montées à isolation électrique sur une mezzanine agencée au-dessus du palier arrière de l'alterno-démarreur comme dans le document WO 2004/040738. L'une des traces peut porter au moins deux transistors pilotables et l'autre des traces des diodes pour obtenir le montage de la figure 5.
Le dispositif 8 peut comporter plusieurs modules montés sur le palier arrière de l'alterno-démarreur comme divulgué dans le document FR 2 886 477.
Les dispositifs de pilotage (les drivers) peuvent appartenir aux modules précités.
Ainsi le module 9, dans une variante est porté en partie par le palier arrière de l'alterno-démarreur et en partie déporté par rapport à celui-ci.
En variante, comme indiqué dans le document WO 01 //69762, l'unité électronique 2 est portée par la périphérie externe du carter de l'alterno-démarreur.
A la lumière de ce document WO 01 //69762, le régulateur de tension peut être porté par le palier arrière de l'alterno-démarreur en étant ainsi déporté par rapport au reste du module 9 et relié audit module.
L'unité électronique 2 peut être déportée et appartenir à un couvercle de fermeture d'un bac de réception d'unités de stockage d'énergie, tels que des batteries ou des « supercondensateurs » ou Ultra-capacités comme d écrit dans le document WO 2006/100391 .
Les poulies 20, 21 et la courroie 40 peuvent être remplacées par un autre dispositif de transmission de mouvement comportant par exemple des roues dentées et au moins une chaîne ou par des engrenages.
L'alterno-démarreur au lieu d'être déporté peut être du type intégré en étant monté de manière adjacente à au moins un embrayage intervenant entre la sortie du vilebrequin du moteur thermique et l'arbre d'entrée d'une transmission de mouvement, telle qu'une boîte de vitesses, comme décrit par exemple dans le document WO 00/06897.
Cet alterno-démarreur peut être monté en amont ou en variante en aval du ou des embrayages. Par exemple l'alterno- démarreur peut agir sur l'un des arbres de la boîte de vitesses.
Dans tous les cas l'alterno-démarreur est relié au vilebrequin du moteur thermique.
Les capteurs 11 ou le résolveur sont en variante déportés par rapport à l'alterno-démarreur.
On, peut ainsi en variante mesurer directement la position ou la vitesse de rotation du vilebrequin du moteur thermique et utiliser des capteurs de position déjà présent sur le véhicule. Bien entendu le nombre de fonctions gérées par le module 9 dépend des applications et notamment de la puissance de l'alterno- démarreur.
Ce module 9 peut donc réaliser un nombre de fonctions moindre, par exemple il peut ne pas réaliser la fonction « Boost » ou la fonction récupération d'énergie et être simplifié, ainsi que le dispositif 8.
Bien entendu l'alterno-démarreur ou l'alternateur peuvent être du type sans balais, le bobinage d'excitation étant dans ce cas fixe en sorte que l'on supprime les balais et les bagues collectrices. La commande des transistors 7-7' peut être réalisée, de manière précitée, comme dans le document FR-A- 2745445 ou en variante par une commande à largeur d'impulsions comme décrit dans le document WO 2005/109624 auquel on se reportera.
Grâce à l'invention, pendant la phase d'arrêt du moteur thermique, on diminue le temps d'arrêt du moteur thermique, ainsi que les bruits et les phénomènes de vibrations.
Le confort du ou des passagers est ainsi accru. On notera que le couple résistant, et donc le freinage, est globalement proportionnel au courant d'excitation du ou des bobinages d'excitation du rotor en sorte que ce couple résistant peut être ajusté de manière précitée. Toute l'énergie est dissipée dans la machine ce qui permet d'obtenir un couple résistant élevé sans réinjecter de l'énergie dans la batterie.
Seul au moins un des transistors d'une des séries des transistors 7-7' est passant en sorte que l'on ne risque pas de réaliser un mouvement du rotor et que cela ne pose pas de problème de sécurité.
Le nombre de phases court-circuitées dépend des applications. On peut court-circuiter une, au moins deux phases ou toutes les phases.

Claims

REVENDICATIONS
1. Procédé de freinage d'un moteur thermique d'un véhicule automobile à l'aide d'une machine électrique tournante polyphasée (1) reliée au moteur thermique et comprenant un stator (16) et un rotor (4) comportant au moins un bobinage d'excitation (41), caractérisé en ce que pendant la phase d'arrêt du moteur thermique on court-circuite au moins une phase de la machine électrique tournante.
2. Procédé selon la revendication 1, caractérisé en ce que pendant la phase d'arrêt du moteur thermique on court-circuite toutes les phases de la machine électrique tournante.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que pendant la phase d'arrêt du moteur thermique on excite le ou les bobinages d'excitation (41) du rotor (4) de la machine électrique tournante.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que pendant la phase d'arrêt du moteur thermique on pilote le ou les bobinages d'excitation (41) du rotor (4) de la machine électrique tournante.
5. Procédé selon la revendication 3 ou 4, caractérisé en ce que l'on maintien l'excitation du ou des bobinages d'excitation (41) du rotor (4) après l'arrêt du moteur thermique.
6. Procédé selon la revendication 4 ou 5, caractérisé en ce que pendant la phase d'arrêt du moteur thermique on pilote le ou les bobinages d'excitation (41) du rotor (4) de la machine électrique tournante à l'aide du régulateur de tension que comporte la machine.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que pendant la phase d'arrêt du moteur thermique on rend passant au moins un interrupteur commandable pour court-circuiter au moins une phase de la machine électrique tournante.
8. Procédé selon la revendication 7, caractérisé en ce que l'on rend passant au moins un interrupteur pilotable (7-7') appartenant au dispositif de redressement de courant (8), que comporte la machine électrique tournante sous la forme d'un alterno-démarreur de véhicule automobile et en ce que l'interrupteur pilotable est relié à une ligne d'alimentation (83, 84) du dispositif de redressement de courant (8).
9. Procédé selon la revendication 8, caractérisée en ce que l'on rend passant au moins un interrupteur commandable (7-7') monté en lieu et place d'un élément de redressement de courant (60) appartenant au dispositif de redressement de courant (8) que comporte la machine électrique tournante sous la forme d'un alternateur de véhicule automobile et en ce que l'interrupteur commandable est relié à une ligne d'alimentation (83, 84) du dispositif de redressement de courant (8).
10. Procédé selon la revendication 8 ou 9, caractérisé en ce que l'on rend passant le ou les interrupteurs commandables à l'aide d'un module de gestion (9) associé au dispositif de redressement de courant (8).
11. Machine électrique tournante polyphasée destinée à être reliée au moteur thermique d'un véhicule automobile, du type comprenant un stator (16), un rotor (4) comportant au moins un bobinage d'excitation (41), caractérisée en ce qu'elle est destinée à freiner le moteur thermique d'un véhicule automobile pendant la phase d'arrêt de celui-ci en étant équipée de moyens de court- circuit pour court-circuiter pendant la phase d'arrêt du moteur thermique au moins une de ses phases.
12. Machine selon la revendication 11, caractérisée en ce qu'elle est dotée de moyens d'alimentation du ou des bobinages d'excitation (41) de son rotor (4) pour exciter le ou lesdits bobinages d'excitation pendant la phase d'arrêt du moteur thermique.
13. Machine selon la revendication 1 1 ou 12, caractérisée en ce que les moyens de court-circuit comportent au moins un interrupteur commandable rendu passant pendant la phase d'arrêt du moteur thermique pour court-circuiter au moins une phase de la machine électrique tournante.
14. Machine selon la revendication 13, caractérisée en ce qu'elle consiste en un alterno-démarreur de véhicule automobile comprenant un dispositif de redressement de courant (8) doté d'interrupteurs pilotables (7, 7'), en ce qu'au moins un des interrupteurs pilotables (7,7') appartient aux moyens de court-circuit et est relié à une ligne d'alimentation du dispositif de redressement de courant (8).
15. Machine selon la revendication 13, caractérisée en ce qu'elle consiste en un alternateur de véhicule automobile comprenant un dispositif de redressement de courant (8) doté d'éléments de redressement de courant (60), en ce qu'au moins un interrupteur commandable des moyens de court-circuit se monte en lieu et place d'un élément de redressement de courant (60) et est relié à une ligne d'alimentation du dispositif de redressement de courant (8).
PCT/FR2008/051133 2007-06-27 2008-06-24 Procédé et une mach i n e électri que de freinage d ' un moteur thermique de véhicule lors de la phase d' arrêt de celui -ci WO2009007584A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2008800224344A CN101689826B (zh) 2007-06-27 2008-06-24 用于在车辆热机停止阶段期间对其制动的电机和方法
US12/663,424 US8587229B2 (en) 2007-06-27 2008-06-24 Method and electrical machine for braking a thermal engine of vehicle during the stop phase thereof
EP08806065A EP2158675A2 (fr) 2007-06-27 2008-06-24 Procédé et une machine électrique de freinage d'un moteur thermique de véhicule lors de la phase d'arrêt de celui-ci

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0756086A FR2918222B1 (fr) 2007-06-27 2007-06-27 Procede et une machine electrique de freinage d'un moteur thermique et vehicule lors de la phase d'arret de celui-ci.
FR0756086 2007-06-27

Publications (2)

Publication Number Publication Date
WO2009007584A2 true WO2009007584A2 (fr) 2009-01-15
WO2009007584A3 WO2009007584A3 (fr) 2009-04-16

Family

ID=39091884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/051133 WO2009007584A2 (fr) 2007-06-27 2008-06-24 Procédé et une mach i n e électri que de freinage d ' un moteur thermique de véhicule lors de la phase d' arrêt de celui -ci

Country Status (5)

Country Link
US (1) US8587229B2 (fr)
EP (1) EP2158675A2 (fr)
CN (1) CN101689826B (fr)
FR (1) FR2918222B1 (fr)
WO (1) WO2009007584A2 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2934331B1 (fr) * 2008-07-24 2010-08-20 Valeo Equip Electr Moteur Procede et dispositif de controle du temps de demarrage d'un moteur thermique d'un vehicule.
CN103221253B (zh) * 2010-11-22 2015-10-07 雅马哈发动机株式会社 二轮电动车
DE102011006037A1 (de) * 2011-03-24 2012-09-27 Robert Bosch Gmbh Verfahren zum Betreiben einer von einem Verbrennungsmotor angetriebenen elektrischen Maschine in einem Kraftfahrzeug
FR2980320B1 (fr) * 2011-09-20 2016-01-15 Valeo Equip Electr Moteur Procede et systeme de controle de la charge progressive d'un alternateur de vehicule automobile, et alternateur de vehicule automobile comprenant un tel systeme
JP5726369B2 (ja) * 2012-03-07 2015-05-27 三菱電機株式会社 車両用発電電動機の電力変換装置および車両用発電電動機の制御方法
JP2015091174A (ja) * 2013-11-05 2015-05-11 トヨタ自動車株式会社 車両制御装置
JP5962681B2 (ja) * 2014-01-21 2016-08-03 トヨタ自動車株式会社 内燃機関の制御装置
JP6377393B2 (ja) * 2014-04-10 2018-08-22 三菱重工サーマルシステムズ株式会社 電動圧縮機制御システム及びこれを備えた車両空気調和装置用電動圧縮機
FR3040567B1 (fr) * 2015-08-25 2019-08-09 Selni Moteur electrique tubulaire comprenant un systeme de freinage avec des moyens de freinage magnetiques
GB201612983D0 (en) * 2016-07-27 2016-09-07 Avid Tech Ltd An electric machine
GB2552663B (en) * 2016-08-01 2019-07-24 Protean Electric Ltd A method and controller for controlling an electric motor
FR3056359A1 (fr) * 2016-09-21 2018-03-23 Valeo Equipements Electriques Moteur Alternateur comportant une fonction d'aide a l'arret d'un moteur thermique de vehicule automobile
FR3059179B1 (fr) * 2016-11-24 2018-10-26 Valeo Equipements Electriques Moteur Procede de limitation de l'energie d'avalanche en fin de mode moteur pour un onduleur d'alterno-demarreur par etablissement d'un court-circuit dans le stator
FR3068534B1 (fr) * 2017-06-29 2019-08-02 Valeo Equipements Electriques Moteur Machine electrique tournante integrant une fonction de convertisseur continu/continu
JP6930250B2 (ja) * 2017-06-30 2021-09-01 株式会社デンソー エンジン制御装置及びエンジン制御方法
FR3078213B1 (fr) * 2018-02-22 2020-03-20 Valeo Equipements Electriques Moteur Procede d'estimation du couple applique par une machine electrique tournante lors d'une phase d'assistance au calage d'un moteur thermique.
FR3078215B1 (fr) * 2018-02-22 2020-03-20 Valeo Equipements Electriques Moteur Procede d'assistance au calage d'un moteur thermique par une machine electrique tournante
FR3078214B1 (fr) * 2018-02-22 2020-03-20 Valeo Equipements Electriques Moteur Procede d'assistance au calage d'un moteur thermique par une machine electrique tournante
DE102018123207A1 (de) 2018-09-20 2020-03-26 Valeo Siemens Eautomotive Germany Gmbh Steuerungseinrichtung für einen Wechselrichter, Wechselrichter für ein Fahrzeug, Fahrzeug und Verfahren zum Betreiben eines Wechselrichters

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3230607A1 (de) * 1982-08-18 1984-02-23 Volkswagenwerk Ag Antriebsanordnung mit einer brennkraftmaschine, die ein einen ungleichfoermigkeitsgrad aufweisendes drehmoment abgibt
FR2722738A1 (fr) * 1994-07-01 1996-01-26 Nippon Denso Co Dispositif de commande pour emploi dans une automobile hybride de serie
DE19532163A1 (de) * 1995-08-31 1997-03-06 Clouth Gummiwerke Ag System zur aktiven Verringerung von Drehungleichförmigkeiten einer Welle, insbesondere der Triebwelle eines Verbrennungsmotors, und Verfahren hierzu
EP0792769A1 (fr) * 1996-02-28 1997-09-03 Valeo Electronique Alternateur de véhicule automobile fonctionnant comme générateur et comme moteur électrique et procédé pour la commande d'un tel alternateur
DE19914428C1 (de) * 1999-03-30 2000-11-30 Mannesmann Sachs Ag Antriebsanordnung für ein Kraftfahrzeug
US20030114269A1 (en) * 2000-07-18 2003-06-19 Georg Grassl Control unit for a transmission and associated operating method
FR2838576A1 (fr) * 2002-04-12 2003-10-17 Valeo Equip Electr Moteur Procede de commande d'une machine electrique tournante polyphasee et reversible associee a un moteur thermique d'un vehicule automobile et agencement pour la mise en oeuvre de ce procede

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3135891A1 (de) * 1981-09-10 1983-03-24 Robert Bosch Gmbh, 7000 Stuttgart Gleichstrombordnetzanlage fuer fahrzeuge, insbesondere kraftfahrzeuge
US4720638A (en) * 1986-07-31 1988-01-19 Briggs & Stratton Corporation Electronically commutated coaxial starter motor/alternator for an internal combustion engine
JPH0522970A (ja) * 1991-07-15 1993-01-29 Shinano Kenshi Kk モータ制御装置
JP2804395B2 (ja) * 1991-08-08 1998-09-24 本田技研工業株式会社 四輪操舵装置
IT1258950B (it) * 1992-06-05 1996-03-11 Black & Decker Inc Dispositivo di frenatura controllata per motori elettrici, in particolare di utensili portatili
JP3178503B2 (ja) * 1994-07-01 2001-06-18 株式会社デンソー ハイブリッド自動車の制御装置
US7038406B2 (en) * 2003-02-07 2006-05-02 Visteon Global Technologies, Inc. Bi-directional field control for proportional control based generator/alternator voltage regulator
JP4376589B2 (ja) * 2003-10-29 2009-12-02 日産自動車株式会社 四輪駆動車両
ATE324700T1 (de) * 2003-11-14 2006-05-15 Ebm Papst Mulfingen Gmbh & Co Verfahren zum reduzieren der auslaufzeit eines elektromotors
JP5120586B2 (ja) * 2005-06-28 2013-01-16 株式会社デンソー 界磁巻線型同期機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3230607A1 (de) * 1982-08-18 1984-02-23 Volkswagenwerk Ag Antriebsanordnung mit einer brennkraftmaschine, die ein einen ungleichfoermigkeitsgrad aufweisendes drehmoment abgibt
FR2722738A1 (fr) * 1994-07-01 1996-01-26 Nippon Denso Co Dispositif de commande pour emploi dans une automobile hybride de serie
DE19532163A1 (de) * 1995-08-31 1997-03-06 Clouth Gummiwerke Ag System zur aktiven Verringerung von Drehungleichförmigkeiten einer Welle, insbesondere der Triebwelle eines Verbrennungsmotors, und Verfahren hierzu
EP0792769A1 (fr) * 1996-02-28 1997-09-03 Valeo Electronique Alternateur de véhicule automobile fonctionnant comme générateur et comme moteur électrique et procédé pour la commande d'un tel alternateur
DE19914428C1 (de) * 1999-03-30 2000-11-30 Mannesmann Sachs Ag Antriebsanordnung für ein Kraftfahrzeug
US20030114269A1 (en) * 2000-07-18 2003-06-19 Georg Grassl Control unit for a transmission and associated operating method
FR2838576A1 (fr) * 2002-04-12 2003-10-17 Valeo Equip Electr Moteur Procede de commande d'une machine electrique tournante polyphasee et reversible associee a un moteur thermique d'un vehicule automobile et agencement pour la mise en oeuvre de ce procede

Also Published As

Publication number Publication date
CN101689826B (zh) 2013-11-13
WO2009007584A3 (fr) 2009-04-16
US8587229B2 (en) 2013-11-19
FR2918222A1 (fr) 2009-01-02
EP2158675A2 (fr) 2010-03-03
CN101689826A (zh) 2010-03-31
US20100244753A1 (en) 2010-09-30
FR2918222B1 (fr) 2010-06-04

Similar Documents

Publication Publication Date Title
EP2158675A2 (fr) Procédé et une machine électrique de freinage d'un moteur thermique de véhicule lors de la phase d'arrêt de celui-ci
EP1537328B1 (fr) Dispositif de commande d une machine electrique tournante reversible
KR100841158B1 (ko) 다상 가역 회전 전기 기계의 제어 방법
EP0792769B1 (fr) Alternateur de véhicule automobile fonctionnant comme générateur et comme moteur électrique et procédé pour la commande d'un tel alternateur
EP1632019B1 (fr) Circuit de commande a modulation en largeur d'impulsions pour machine electrique multi mode et machine electrique multi mode equipee d'un tel circuit de commande
WO2008059681A1 (fr) Système d'aide de moteur hybride pour véhicule
FR2838576A1 (fr) Procede de commande d'une machine electrique tournante polyphasee et reversible associee a un moteur thermique d'un vehicule automobile et agencement pour la mise en oeuvre de ce procede
EP1627462B1 (fr) Procede de commande d'une machine electrique tournante polyphasee et reversible pour vehicule automobile a moteur thermique
FR2833776A1 (fr) Alternateur a pont de redressement, notamment pour vehicule automobile
EP3324035A1 (fr) Procédé de commande d'un démarreur générateur
JP2015192499A (ja) 三相交流発電スタータ装置
FR2843841A1 (fr) Dispositif et procede de commande d'une machine electrique tournante pour vehicule
FR2983661A1 (fr) Procede de gestion d'une machine electrique a excitation independante equipant un vehicule automobile
JP3484807B2 (ja) 内燃機関駆動式発電システム
JPH0243029B2 (fr)
FR2836763A1 (fr) Procede de commande d'une machine electrique tournante et reversible pour vehicule automobile a moteur thermique
WO2001045250A1 (fr) Procede et dispositif pour la commande de l'alimentation d'un bobinage de rotor d'une machine electrique telle qu'un alternateur-demarreur de vehicule
EP1665490B1 (fr) Dispositif de commande pour alterno-demarreur, notamment pour vehicule automobile
EP4059131B1 (fr) Module de contrôle et procédé de gestion de fin de mode moteur pour une machine electrique tournante
FR3056359A1 (fr) Alternateur comportant une fonction d'aide a l'arret d'un moteur thermique de vehicule automobile
FR3129044A1 (fr) Procédé de pilotage d'une machine électrique tournante à l'état passif
FR2917915A1 (fr) Dispositif et procede de commande d'une machine electrique tournante pour vehicule
FR2802365A1 (fr) Procede et dispositif pour la commande de l'alimentation d'un bobinage de rotor d'une machine electrique telle qu'un alternateur-demarreur de vehicule, notamment automobile
Nair et al. Role of Integral Starter/Generator for Future Passenger Cars and Two wheelers
FR2802361A1 (fr) Perfectionnement aux dispositifs et procedes pour la commande de l'alimentation d'un bobinage de rotor d'une machine electrique telle qu'un alternateur-demareur de vehicule, notamment automobile

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880022434.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08806065

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2008806065

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12663424

Country of ref document: US