WO2009003697A2 - Abgaskatalysator für salzsäure-haltige abgase - Google Patents

Abgaskatalysator für salzsäure-haltige abgase Download PDF

Info

Publication number
WO2009003697A2
WO2009003697A2 PCT/EP2008/005406 EP2008005406W WO2009003697A2 WO 2009003697 A2 WO2009003697 A2 WO 2009003697A2 EP 2008005406 W EP2008005406 W EP 2008005406W WO 2009003697 A2 WO2009003697 A2 WO 2009003697A2
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
metal
catalyst
iron
species
Prior art date
Application number
PCT/EP2008/005406
Other languages
English (en)
French (fr)
Other versions
WO2009003697A3 (de
Inventor
Ingo Hanke
Arno Tissler
Original Assignee
Süd-Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Süd-Chemie AG filed Critical Süd-Chemie AG
Priority to EP08773818A priority Critical patent/EP2162203A2/de
Priority to US12/667,622 priority patent/US20100221165A1/en
Priority to JP2010513780A priority patent/JP5285699B2/ja
Priority to CN2008800232425A priority patent/CN101687187B/zh
Publication of WO2009003697A2 publication Critical patent/WO2009003697A2/de
Publication of WO2009003697A3 publication Critical patent/WO2009003697A3/de
Priority to HK10108318.6A priority patent/HK1141752A1/xx

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/90Regeneration or reactivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/42Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst using halogen-containing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2045Hydrochloric acid

Definitions

  • the present invention relates to a process for reactivating a catalyst containing an iron species-doped zeolite comprising the step of treating the catalyst with hydrogen chloride-containing gas. Furthermore, the invention relates to a reactivated catalyst which is obtained by means of the inventive method and their use for the treatment of exhaust gases from combustion processes, in particular for the treatment of waste gases from waste incineration plants, especially for the reduction of nitrogen oxides.
  • Nitrogen oxides that are produced during combustion processes are among the main causes of acid rain and the associated environmental damage, and are the cause of the so-called summer smog, which leads to damage to health. Their emission should be prevented by removing them from the exhaust gases before they are released to the environment.
  • Sources of nitrogen oxide emissions into the environment are mainly motor vehicle traffic and incinerators, in particular power plants with furnaces or stationary internal combustion engines and waste incineration plants.
  • SCR Selective Catalytic Reduction
  • the reducing agents used are usually hydrocarbons (HC-SCR) or ammonia (NH 3 -SCR) or NH 3 precursors such as urea (AdBlue®).
  • HC-SCR hydrocarbons
  • NH 3 -SCR ammonia
  • AdBlue® NH 3 precursors
  • metal-exchanged zeolites also referred to as metal-doped zeolites
  • metal-doped zeolites have proven to be very active and can be used in a wide temperature range SCR catalysts. They are mostly non-toxic and produce less N 2 O and SO 3 than the usual V 2 Os based catalysts.
  • iron-doped zeolites owing to their high activity and resistance to sulfur under hydro-thermal conditions, are good alternatives to the vanadium catalysts conventionally used.
  • cluster species of the catalytically active metals are formed by the metal exchange in the interior of the zeolite, which are catalytically inactive, or whose presence greatly reduces the catalytic activity.
  • DE 38 41 990 discloses the use of molybdenum-containing Ca-doped zeolites, which are used in particular for use in flue gases from coal furnaces.
  • Methods for reactivating such catalysts of the catalysts for the denitrification of exhaust gases are also known and usually include the reduction of the inactivated catalysts or inactivated catalytically active species by means of a treatment with hydrogen (US 3,986,982).
  • EP 316 727 relates to the reactivation of noble metal-containing zeolites by means of a CCl 4 / ⁇ 2 / N 2 mixture.
  • the use of HCl is discouraged, since HCl gives poor results compared to CCI 4 and CFCl 2 and the reactivation is not completely successful.
  • cluster is understood to mean polynuclear bridged or unbacked metal compounds which contain at least three identical or different metal atoms. Metal-exchanged zeolites in which no metal clusters could be detected inside the zeolite framework are unknown.
  • This object is achieved by a process for reactivating a catalyst containing a metal species-doped zeolite comprising the step of treating the catalyst with hydrogen chloride-containing gas.
  • Hydrogen chloride can be used pure or with another gas such as N 2 . However, the gas contains no H 2 or organic chlorine compounds such as CCl 4 , CF 2 Cl 2, etc.
  • the catalyst can be treated in particular with pure HCl gas.
  • the metal species comprises iron, cobalt, copper or vanadium, most preferably iron.
  • metal species as used herein is further described below
  • the zeolite is also free of noble metals such as Pt, Pd, Rh, Ir, Ru, Os, Ag, Au.
  • the inventive method causes a conversion of the inactive metal species.
  • the catalytically inactive clusters are converted into active species, ie after the reaction, the metal-doped zeolite is substantially free of catalytically inactive or catalytically less active metal clusters, so that only monomeric (isolated species in the form of individual metal atoms or metal cations) or dimer catalytically highly active metal species in the pore structure or their Scaffold whose structure is formed by the pores.
  • Dimeric species are isolated species comprising two metal atoms, where the metal atoms may be either bridged (eg bridged by O atoms or OH group) or unbridged, i. have a metal-metal bond.
  • These are typically mixed oxo-hydroxo-metal species such as those described for iron in: M. Mauvezin et al., J. Phys. Chem. B 2001, 105, 928-035, or for other metals, for example, Verga et al. in "Catalysis by Microporous Materials” Elsevier 1005, pp. 665-672.
  • the process according to the invention significantly increases the activity and selectivity of the catalytically active metal-doped zeolite compared to the known zeolites of the prior art. It has been found that, in general, the metal-doped zeolites show an increase in activity over the prior art zeolites doped with the same metal, which, as explained above, are mostly metal clusters in the zeolite, ie not treated with HCl gas Metal by about 30% in the reduction of NO to N 2 show. This applies in particular to the Fe and Cu-containing zeolites. Moreover, inactive metal clusters reduce the pore volume and prevent gas diffusion or lead to undesirable side reactions, which can advantageously also be avoided by the process according to the invention.
  • zeolite is used in the context of the present invention as defined by the International Mineralogical Association (DS Coombs et al., Can. Mineralogist, 35, 1997, p. 1571) a crystalline substance from the group of aluminum silicates with spatial network structure of the general formula
  • the zeolite structure contains cavities and channels characteristic of each zeolite.
  • the zeolites are classified according to their topology into different structures (see above).
  • the zeolite framework contains open cavities in the form of channels and cages which are normally occupied by water molecules and extra framework cations that can be exchanged.
  • An aluminum atom has an excess negative charge which is compensated by these cations.
  • the interior of the pore system represents the catalytically active surface. The more aluminum and the less silicon a zeolite contains, the denser the negative charge in its lattice and the more polar its inner surface.
  • the pore size and structure are determined by the Si / Al ratio, which determines most of the catalytic character of a zeolite , In the present case, it is particularly preferred if the molar Si / Al ratio of an inventive according zeolites in the range of 10 to 20 is located. This corresponds to a ratio of SiO 2 / Al 2 O 3 of 20-40.
  • the presence of 2- or 3-valent cations as a tetrahedral center in the zeolite skeleton gives the zeolite a nega- tive charge in the form of so-called anion sites, in the vicinity of which the corresponding cation sites are located.
  • the negative charge is compensated by the incorporation of cations in the pores of the zeolite material.
  • the zeolites are mainly distinguished by the geometry of the cavities formed by the rigid network of SiO 4 / AlO 4 tetrahedra. The entrances to the cavities are formed by 8, 10 or 12 "rings" (narrow, medium and large pore zeolites).
  • Certain zeolites show a uniform structure structure (eg ZSM-5 with MFI topology) with linear or zigzagging channels, in others close behind the Poreno réelleen larger cavities, z. B. in the Y and A zeolites, with the topologies FAU and LTA. In general, 10 and 12 "ring" zeolites are erfmdungsgecut preferred.
  • any zeolite in particular any 10 and 12 "ring" zeolite, can be used in the present invention
  • preference is given to zeolites having the topologies AEL, BEA, CHA, EUO, FAO, FER, KFI, LTA, LTL, MAZ , MOR, MEL, MTW, LEV, OFF, TONE and MFI most preferably zeolites of the topological structures BEA, MFI, FER, MOR, MTW and TRI.
  • the pore sizes of the zeolites used in the process according to the invention are in the range from 0.4 to
  • the metal content or degree of exchange of a zeolite is significantly determined by the metal species present in the zeolite.
  • the zeolite can be doped with only one single metal or with different metals.
  • there are usually three different centers in zeolites, referred to as ⁇ , ⁇ and ⁇ positions, which are the locations of the exchange sites (also referred to as "interchangeable.”
  • Reaction accessible especially when using MFI, BEA, FER, MOR, MTW and TRI zeolites.
  • ⁇ -type cations show the weakest binding to Zeolithgerust and are filled in a liquid ion exchange last.
  • the ⁇ -type cations show an average binding strength to the zeolite skeleton, which in the exchange of ions, especially at low exchange rates, represents the most occupied position and most effectively catalyzes the HC-SCR reaction.
  • the ⁇ -type cations are those cations with the strongest binding to the zeolite framework and thermally most stable. They are the least occupied position in liquid ion exchange, but are filled up first. Cations, especially iron and cobalt, at these positions are highly active and are the most catalytically active cations.
  • the preferred metals for exchange and doping in the present invention are catalytically active metals such as Fe, Co, Cu, V and mixtures thereof, most preferably Fe, which also form bridged dimeric species as used in the process of the invention Zeolites, in particular after treatment.
  • the amount of metal calculated as the corresponding metal oxide 1 to 5 wt.% Based on the weight of the metal-doped zeolite.
  • the weight percentages are based on a metal oxide, it is always meant the most stable metal oxides, ie, in the case of the iron oxide, Fe 2 O 3 is meant.
  • more than 50% of the exchangeable sites ie ⁇ , ⁇ and ⁇ sites
  • more than 70% of interchangeable sites are replaced.
  • vacancies should still remain, which are preferably Br ⁇ nsted acid sites. This is because NO is strongly absorbed both on the exchanged metal centers and also in ion exchange positions or Br ⁇ nstedt centers of the zeolite framework.
  • NH 3 preferably reacts with the strongly acidic Br ⁇ nstedt centers, the presence of which is therefore very important for a successful NH 3 -SCR reaction.
  • the presence of free residue exchange sites and / or Bronstedt acidic centers and the metal-exchanged lattice sites is therefore very particularly preferred according to the invention. Therefore, a degree of exchange of 70-90% is most preferred. At more than 90% degree of exchange, activity reduction was observed in the reduction of NO to N 2 and the SCR-NH 3 reaction.
  • the doping metals do not form a stable compound with aluminum, as this promotes dealumination.
  • the object of the present invention is also the provision of an activated catalyst based on a metal-doped zeolite which has catalytically active metal species which catalyze the selective catalytic reduction of nitrogen oxides in combustion processes.
  • the object is achieved by a catalyst prepared by a process described above for reactivating a catalyst containing a metal species doped zeolite which would be treated with hydrogen chloride gas.
  • the preferred metals of the metal species are the same as described above.
  • the activity and selectivity of Catalysis largely depends on the coordination of the metal species in the zeolite.
  • the catalytic activity is also the metal species, depending on the occupation of the ⁇ , ⁇ and ⁇ positions.
  • the object is further achieved by a catalyst for selective catalytic reduction obtained by the process according to the invention comprising a zeolite which contains a monomeric and / or dimeric species of a metal, the catalyst having a pore volume of 0.35 to 0.7 ml / g particularly preferably from 0.4 to 0.5 ml / g.
  • the catalyst according to the invention contains either monomeric or dimeric metal species or monomeric and dimeric metal species. Again, the preferred metal species are those described above.
  • the basis of this solution of the object on which the invention is based is the surprising discovery that zeolites containing inactive metal clusters can be converted into zeolites which contain catalytically active monomeric and / or dimeric metal species by contacting or gaseous hydrogen chloride.
  • the subject of the teaching according to the invention are therefore catalysts for the selective catalytic reduction from a zeolite which contains a metal species which are obtained after contacting the metal-containing zeolite with gaseous hydrogen chloride. So that the reaction with chlorinated toff can proceed Lithen in sufficient speed in accordance with the method of this invention inside the Zeo-, it is advantageous if the catalyst has the above-mentioned Po ⁇ renvolumina.
  • the metal species of the catalyst of the invention is selected from iron, cobalt, copper or Vana ⁇ dium or mixtures thereof, particularly preferably iron species.
  • the zeolite is advantageously selected from the zeolites of the structural types AEL, BEA, CHA, EUO, FAO, FER, KFI, LTA, LTL, MAZ, MOR, MEL, MTW, LEV, OFF, TON and MFI, in particular from the structural types BEA, MFI, FER, MOR, MTW and ERI.
  • the reaction of the hydrogen chloride gas can be carried out with sufficient reaction rates.
  • the catalyst ie the metal-doped zeolite present as a powder for selective catalytic reduction, has a BET surface area between 100 and 500 m 2 / g, preferably between 200 and 400 m 2 / g.
  • the pore size of the zeolite is between 0, 4 and 1.5 nm.
  • the metal in particular iron, is present in an amount of from 1 to 5% by weight, calculated as metal oxide, based on the total weight of the zeolite.
  • the metal for selective catalytic reduction is a 10 or 12 "ring" zeolite In this type of zeolite, a sufficient amount of metal can be incorporated and the gases to be reacted reach the active sites.
  • the catalyst for selective catalytic reduction after reactivation more than 50% of the exchangeable sites of the zeolite skeleton are coated with metal, in particular iron.
  • the catalysts are used for the treatment of exhaust gases, in particular for the reduction of nitrogen oxides in exhaust gases from gasification and combustion processes.
  • the catalysts are used for the treatment of waste gas from waste incineration plants. Since the catalyst is particularly suitable for use in the treatment of exhaust gases containing acidic constituents, the catalysts of the invention can be used precisely in plants in which the exhaust gas from the combustion processes is not subjected to acidic scrubbing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Reaktivierung eines Katalysators, der einen mit einer Eisenspezies dotierten Zeolithen enthalt, das den Schritt der Behandlung des Katalysators mit Chlorwasserstoff enthaltendem Gas umfasst. Ferner betrifft die Erfindung einen reaktivierten Katalysator, der mit Hilfe des erfindungsgemaßen Verfahrens erhalten wird und dessen Verwendung zur Behandlung von Abgasen aus Verbrennungsprozessen, insbesondere für die Behandlung von Abgasen aus Mullverbrennungsanlagen, ganz besonders für die Reduktion von Stickoxiden.

Description

Abgaskatalysator für Salzsäure-haltige Abgase
Die vorliegende Erfindung betrifft ein Verfahren zur Reaktivierung eines Katalysators, der einen mit einer Eisenspezies dotierten Zeolithen enthält, das den Schritt der Behandlung des Katalysators mit Chlorwasserstoff enthaltendem Gas um- fasst. Ferner betrifft die Erfindung einen reaktivierten Katalysator, der mit Hilfe des erfindungsgemäßen Verfahrens gewonnen wird und deren Verwendung zur Behandlung von Abgasen aus Verbrennungsprozessen, insbesondere für die Behandlung von Abgasen aus Müllverbrennungsanlagen, ganz besonders für die Re- duktion von Stickoxiden.
Stickoxide, die bei Verbrennungsprozessen entstehen, zählen zu den Hauptverursachern von saurem Regens und den damit verbundenen Umweltschädigungen, und sind Auslöser des sogenannten Sommersmogs, der zu Gesundheitsschäden führt. Ihre Emission sollte durch Entfernung aus den Abgasen vor deren Abgabe an die Umgebung verhindert werden.
Quellen für Stickoxidabgabe in die Umwelt sind hauptsächlich der Kraftfahrzeugverkehr sowie Verbrennungsanlagen, insbesondere Kraftwerke mit Feuerungen oder stationäre Verbrennungsmotoren sowie Müllverbrennungsanlagen.
Aufgrund der schädlichen Auswirkung von Stickoxidemissionen auf die Umwelt ist es ein wichtiges Anliegen, diese Emissionen weiter zu verringern. Deutlich niedrigere NOx-Emissionsgrenz- werte für stationäre und KFZ Abgase als heutzutage üblich sind in den Vereinigten Staaten in naher Zukunft vorgesehen und werden auch in der Europäischen Union diskutiert.
Um diese Grenzwerte zu erzielen, kann im Fall von mobilen Verbrennungsmotoren (Dieselmotoren) dies nicht mehr durch inner- motorische Maßnahmen erfüllt werden, sondern nur noch durch eine Abgasnachbehandlung, beispielsweise mit geeigneten Katalysatoren .
Eine der wichtigsten Techniken zur Entfernung von Stickoxiden ist die selektive katalytische Reduktion (SCR) . Als Reduktionsmittel dienen üblicherweise Kohlenwasserstoffe (HC-SCR) oder Ammoniak (NH3-SCR) bzw. NH3-Vorläufer wie Harnstoff (Ad- Blue®) . Dabei haben sich Metall-ausgetauschte Zeolithe (auch als metalldotierte Zeolithe bezeichnet) als sehr aktive und in einem weiten Temperaturbereich einsetzbare SCR Katalysatoren erwiesen. Sie sind zumeist ungiftig und produzieren weniger N2O und SO3 als die üblichen auf V2Os basierenden Katalysatoren. Insbesondere stellen eisendotierte Zeolithe durch ihre hohe Aktivität und Beständigkeit gegenüber Schwefel unter hydro- thermalen Bedingungen gute Alternativen zu den herkömmlich eingesetzten Vanadiumkatalysatoren dar.
Probleme ergeben sich durch thermische Alterung des Katalysators beim Betrieb oder sogar schon beim Dotieren bzw. Einbrin- gen von aktiven Komponenten, wie z. B. Eisen, Vanadium, Kobalt und Kupfer in den Zeolithen, da oftmals verschiedene Oxidati- onsstufen dieser katalytisch aktiven Metalle nebeneinander vorliegen und auch nicht immer die gewünschten katalytisch aktiven Spezies erhalten werden bzw. die katalytisch aktiven Spezies beim Betrieb des Katalysators bei höheren Temperaturen oder beim Herstellungsverfahren (Sauerstoff, Temperatur, Feuchtigkeit, etc.) zu katalytisch inaktiven Spezies umgewandelt werden. Es hat sich gezeigt, dass bei praktisch samtlichen bekannten Verfahren des Standes der Technik Cluster-Spezies der kataly- tisch aktiven Metalle durch den Metallaustausch im innern des Zeolithen entstehen, die katalytisch inaktiv sind, bzw. deren Vorhandensein die katalytische Aktivität extrem herabsetzen.
Es gab im Stand der Technik schon des Langeren Bestrebungen, Katalysatoren zusatzlich vor ihrem Einsatz so zu aktivieren, dass das Vorhandensein katalytisch inaktiver Spezies wenn möglich vermieden wird.
So offenbart die DE 38 41 990 die Verwendung von Molybdan- enthaltenden Ca-dotierten Zeolithen, die insbesondere beim Einsatz in Rauchgasen von Kohlefeuerungen zum Einsatz kommen. Verfahren zur Reaktivierung derartiger von Katalysatoren für die Entstickung von Abgasen sind ebenfalls bekannt und umfassen zumeist die Reduktion der inaktivierten Katalysatoren bzw. inaktivierten katalytisch aktiven Spezies mittels einer Behandlung mit Wasserstoff (US 3,986,982).
Das US 4,835,319 beschreibt Katalysatoren zur Herstellung von 1, 4-bis- (4-Phenoxybenzoyl) Benzol, wobei der zeolithische Katalysator mittels einer kombinierten Wasserstoff-HCl-Behandlung reaktiviert bzw. aktiviert wird.
Die EP 316 727 betrifft die Reaktivierung von Edelmetall- haltigen Zeolithen mittels eines CCl42/N2-Gemisches . Von der Verwendung von HCl wird dabei abgeraten, da HCl gegenüber CCI4 und CFCl2 schlechte Ergebnisse erzielt und die Reaktivierung nicht vollständig gelingt.
Unter dem Begriff "Cluster" werden dabei mehrkernige verbruckte oder unverbruckte Metallverbindungen verstanden, die mindestens drei gleiche oder verschiedene Metallatome enthalten. Metall-ausgetauschte Zeolithe, bei denen im Inneren des Zeo- lithgerüsts keine Metallcluster nachgewiesen werden konnten, sind bislang unbekannt.
Aufgabe der vorliegenden Erfindung war es daher, ein weiteres Verfahren bereitzustellen, bei dem die inaktiven Metallspezies, die durch thermische Alterung oder beim Dotieren entstehen, in aktive Metallspezies umgewandelt werden können.
Diese Aufgabe wird gelöst durch ein Verfahren zur Reaktivie- rung eines Katalysators, der einen mit einer Metallspezies dotierten Zeolithen enthält, das den Schritt der Behandlung des Katalysators mit Chlorwasserstoff enthaltendem Gas umfasst. Chlorwasserstoff kann dabei rein oder mit einem weiteren Gas wie z.B. N2 verwendet werden. Das Gas enthält jedoch kein H2 oder organische Chlorverbindungen wie CCl4, CF2Cl2 etc. Der Katalysator kann insbesondere auch mit reinem HCl-Gas behandelt werden.
Bevorzugt umfasst die Metallspezies Eisen, Kobalt, Kupfer oder Vanadium, ganz besonders bevorzugt Eisen. Der Begriff der „Metallspezies" wie er vorliegend verwendet wird, ist nachfolgend näher erläutert. Der Zeolith ist ebenfalls frei von Edelmetallen, wie Pt, Pd, Rh, Ir, Ru, Os, Ag, Au.
Durch das erfindungsgemäße Verfahren wird eine Umsetzung der inaktiven Metallspezies bewirkt. Die katalytisch inaktiven Cluster werden zu aktiven Spezies umgesetzt, d.h. nach der Umsetzung ist der metalldotierte Zeolith im wesentlichen frei von katalytisch inaktiven bzw. katalytisch weniger aktiven Me- tallclustern, so dass nur monomere (isolierte Spezies in Form einzelner Metallatome bzw. Metallkationen) oder dimere katalytisch hochaktive Metallspezies in der Porenstruktur bzw. deren Gerüst vorliegen, dessen Struktur durch die Poren gebildet wird.
Bei dimeren Spezies handelt es sich um isolierte, zwei Metallatome umfassende Spezies, wobei die Metallatome entweder verb- rückt (z. B. über O-Atome bzw. OH Gruppe verbrückt) oder un- verbrückt sein können, d.h. eine Metall-Metall Bindung aufweisen. Hierbei handelt es sich typischerweise um gemischtes Oxo- Hydroxo-Metallspezies, wie sie für Eisen beispielsweise in: M. Mauvezin et al., J.Phys. Chem. B 2001, 105, 928-035 beschrie- ben wurden, bzw. für andere Metalle beispielsweise von Verga et al . in „Catalysis by Microporous Materials" Elsevier 1005, S. 665 - 672.
Durch das erfindungsgemäße Verfahren wird die Aktivität und Selektivität des katalytisch aktiven metalldotierten Zeolithen gegenüber den bekannten Zeolithen des Standes der Technik signifikant erhöht. Es wurde gefunden, dass allgemein die metalldotierten Zeolithe gegenüber den mit dem gleichen Metall dotierten Zeolithen des Standes der Technik, bei denen, wie vor- stehend erläutert, zumeist Metallcluster im Zeolithen vorliegen, also nicht mit HCl-Gas behandelt wurden, eine Aktivitätssteigerung für jedes Metall um ca. 30% bei der Reduktion von NO zu N2 zeigen. Dies betrifft insbesondere die Fe und Cu- haltigen Zeolithe. Inaktive Metallcluster erniedrigen darüber hinaus das Porenvolumen und hindern die Gasdiffusion oder führen zu unerwünschten Nebenreaktionen, was vorteilhafterweise durch das erfindungsgemäße Verfahren ebenfalls vermieden werden kann.
Unter dem Begriff "Zeolith" wird im Rahmen der vorliegenden Erfindung gemäß der Definition der International Mineralogical Association (D.S. Coombs et al . , Can . Mineralogist, 35, 1997, 1571) eine kristalline Substanz aus der Gruppe der Aluminiumsilikate mit Raumnetzstruktur der allgemeinen Formel
Mn+ n[ (AlO2) x (SiO2) yU'HzO
verstanden, die aus Siθ4/AlO4 Tetraedern bestehen, die durch gemeinsame Sauerstoffatome zu einem regelmäßigen dreidimensionalen Netzwerk verknüpft sind. Das Verhältnis von Si/Al=y/x betragt immer >1 gemäß der so genannten "Lowenstein-Regel" , die das benachbarte Auftreten zweier benachbarter negativ gelade- ner AlO4 ~Tetraeder verbietet. Dabei stehen bei einem geringen Si/Al-Verhaltnis zwar mehr Austauschplatze für Metalle zur Verfugung, der Zeolith wird jedoch zunehmend thermisch instabiler .
Die Zeolithstruktur enthalt Hohlräume und Kanäle, die für jeden Zeolithen charakteristisch sind. Die Zeolithe werden gemäß ihrer Topologie in verschiedene Strukturen (siehe oben) eingeteilt. Das Zeolithgerust enthalt offene Hohlräume in Form von Kanälen und Käfigen, die normalerweise von Wassermolekulen und extra Gerustkationen, die ausgetauscht werden können, besetzt sind. Auf ein Aluminiumatom kommt eine überschüssige negative Ladung, die durch diese Kationen kompensiert wird. Das Innere des Porensystems stellt die katalytisch aktive Oberflache dar. Je mehr Aluminium und je weniger Silizium ein Zeolith enthalt, desto dichter ist die negative Ladung in seinem Gitter und desto polarer seine innere Oberflache. Die Porengroße und Struktur wird neben den Parametern bei der Herstellung (Verwendung bzw. Art von Templaten, pH, Druck, Temperatur, Anwesenheit von Impfkristallen) durch das Si/Al-Verhaltnis be- stimmt, das den größten Teil des katalytischen Charakters eines Zeolithen bestimmen. Im vorliegenden Fall ist es besonders bevorzugt, wenn das molare Si/Al Verhältnis eines erfindungs- gemäßen Zeolithen im Bereich von 10 bis 20 liegt. Dies entspricht einem Verhältnis von SiO2/Al2O3 von 20 - 40.
Durch die Anwesenheit von 2- oder 3-wertigen Kationen als Tetraederzentrum im Zeolithgerust erhalt der Zeolith eine negati- ve Ladung in Form von so genannten Anionenstellen, in deren Nachbarschaft sich die entsprechenden Kationenpositionen befinden. Die negative Ladung wird durch den Einbau von Kationen in die Poren des Zeolithmaterials kompensiert. Die Zeolithe unterscheidet man hauptsachlich nach der Geometrie der Hohl- räume, die durch das starre Netzwerk der SiO4/AlO4-Tetraeder gebildet werden. Die Eingange zu den Hohlräumen werden von 8, 10 oder 12 "Ringen" gebildet (eng-, mittel- und weitporige Zeolithe) . Bestimmte Zeolithe zeigen einen gleichförmigen Strukturaufbau (z. B. ZSM-5 mit MFI-Topologie) mit linearen oder zickzackformig verlaufenden Kanälen, bei anderen schließen sich hinter den Porenoffnungen größere Hohlräume an, z. B. bei den Y- und A-Zeolithen, mit den Topologien FAU und LTA. Generell sind 10 und 12 „Ring"-Zeolithe erfmdungsgemaß bevorzugt .
Grundsatzlich kann im Rahmen der vorliegenden Erfindung jeder beliebige Zeolith, insbesondere jeder 10 und 12 „Ring"-Zeolith verwendet werden. Erfmdungsgemaß bevorzugt sind Zeolithe mit den Topologien AEL, BEA, CHA, EUO, FAO, FER, KFI, LTA, LTL, MAZ, MOR, MEL, MTW, LEV, OFF, TON und MFI. Ganz besonders bevorzugt Zeolithe der topologischen Strukturen BEA, MFI, FER, MOR, MTW und TRI.
Es ist bevorzugt, dass die Porengroßen der im erfindungsgema- ßen Verfahren verwendeten Zeolithen im Bereich von 0, 4 bis
1,5 nm liegen, was ebenfalls aufgrund der für monomere bzw. dimere Metallspezies gunstigeren sterischen Verhaltnissen zur Ausbildung von monomeren bzw. dimeren Metallspezies an Stelle von Metallclustern vorteilhaft beitragt.
Typischerweise wird der Metallgehalt bzw. der Austauschgrad eines Zeolithen maßgeblich durch die im Zeolithen vorliegende Metallspezies bestimmt. Dabei kann der Zeolith wie schon vorstehend gesagt, sowohl nur mit einem einzigen Metall oder mit verschiedenen Metallen dotiert sein.
Es gibt in Zeolithen üblicherweise drei verschiedene Zentren, die als so genannte α-, ß- und γ-Positionen bezeichnet werden, die die Position der Austauschplatze (auch als "austauschbare
Positionen bzw. Stellen" bezeichnet) definieren. Alle diese drei Positionen sind für Reaktanden wahrend der NH3-SCR-
Reaktion zugänglich, insbesondere beim Einsatz von MFI, BEA, FER, MOR, MTW und TRI Zeolithen.
Die so genannten α-Typ Kationen zeigen die schwächste Bindung zum Zeolithgerust und werden bei einem flussigen Ionenaustausch zuletzt aufgefüllt. Der Besetzungsgrad ist ab einem Austauschgrad von rund 10 % stark steigend mit steigendem Metallgehalt und betragt insgesamt rund 10 bis 50 % bei einem Austauschgrad bis M/Al=0,5. Kationen an dieser Stelle bilden sehr aktive Redox-Katalysatoren.
Die ß-Typ Kationen zeigen hingegen eine mittlere Bindungsstarke zum Zeolithgerust, die beim Flussigionenaustausch, insbesondere bei kleinen Austauschgraden, die am meisten besetzte Position darstellen und katalysieren die HC-SCR-Reaktion am effektivsten. Diese Position wird gleich nach der γ-Position aufgefüllt und ihr Besetzungsgrad ist ab einem Austauschgrad von rund 10 % sinkend mit steigenden Metallgehalt und Betragt rund 50 bis 90 % für einen Austauschgrad bis M/Al=0,5. Im Stand der Technik ist bekannt, dass ab einem Austauschgrad von M/Al>0,56 typischerweise nur noch mehrkernige Metalloxide abgelagert werden.
Die γ-Typ Kationen sind diejenigen Kationen mit der stärksten Bindung zum Zeolithgerüst und thermisch am stabilsten. Sie sind die beim Flüssigionenaustausch am wenigsten besetzte Position, werden aber zuerst aufgefüllt. Kationen, insbesondere Eisen und Kobalt, an diesen Positionen sind hochaktiv und sind die katalytisch aktivsten Kationen.
Die bevorzugten Metalle für den Austausch und die Dotierung im Rahmen der vorliegenden Erfindung sind katalytisch aktive Metalle wie Fe, Co, Cu, V sowie deren Mischungen, ganz besonders bevorzugt Fe, die auch verbrückte dimere Spezies bilden, wie sie bei dem im erfindungsgemäßen Verfahren verwendeten Zeoli- then insbesondere nach der Behandlung vorliegen.
Insgesamt beträgt die Menge an Metall berechnet als entsprechendes Metalloxid 1 bis 5 Gew.% bezogen auf das Gewicht des metalldotierten Zeolithen. Wenn im Folgenden die Angaben in Gewichtsprozent auf ein Metalloxid bezogen sind, sind immer die stabilsten Metalloxide gemeint, d.h. im Fall des Eisenoxids ist Fe2O3 gemeint. Insbesonders bevorzugt ist, dass mehr als 50 % der austauschbaren Stellen (d.h. α-, ß- und γ~ Stellen) ausgetauscht sind. Ganz besonders bevorzugt sind mehr als 70 % der austauschbaren Stellen ausgetauscht. Es sollten jedoch immer noch freie Stellen verbleiben, die bevorzugt Br0nstedt Säurezentren sind. Dies liegt daran, dass NO sowohl auf den ausgetauschten Metallzentren stark absorbiert wird und auch in Ionenaustauschpositionen oder an Br0nstedt Zentren des Zeolithgerüsts . Außerdem reagiert NH3 bevorzugt mit den stark sauren Br0nstedt Zentren, deren Anwesenheit somit für eine erfolgreiche NH3-SCR Reaktion sehr wichtig ist. Die Anwesenheit von freien Restaustauschplätzen und/oder Bronstedt-sauren Zentren und den metallgetauschten Gitterplätzen ist also erfindungsgemäß ganz besonders bevorzugt. Daher ist ein Austauschgrad von 70-90% am meisten bevorzugt. Bei mehr als 90% Austauschgrad wurde eine Aktivitätsminderung bei der Reduktion von NO zu N2 und der SCR-NH3 Reaktion beobachtet.
Aufgrund der Gefahr der hydrothermalen Desaktivierung von metalldotierten Zeolithen, der eine Dealuminierung und Abwanderung von Metall aus den Ionenaustauschzentren des Zeolithen vorausgeht, ist es bevorzugt, dass die Dotierungsmetalle mit Aluminium möglichst keine stabilen Verbindung bilden, da dadurch eine Dealuminierung begünstigt wird.
Aufgabe der vorliegenden Erfindung ist ferner die Bereit- Stellung eines aktivierten Katalysators auf Basis eines metalldotierten Zeolithen, der über katalytisch aktive Metallspezies verfügt, die die selektive katalytische Reduktion von Stickoxiden bei Verbrennungsprozessen katalysieren.
Erfindungsgemäß wird die Aufgabe gelöst durch einen Katalysator, der durch ein oben beschriebenes Verfahren zur Reaktivierung eines Katalysators hergestellt wird, der einen mit einer Metallspezies dotierten Zeolithen enthält, der mit Chlorwasserstoffgas behandelt würde.
Die Behandlung eines metalldotierten Katalysators mit Chlorwasserstoffgas bewirkt, dass die katalytisch inaktiven Metall- cluster umgesetzt werden. Bei der Umsetzung entstehen die unterschiedlichsten Metallspezies, die bei der reduktiven Umset- zung von Stickoxiden katalytisch aktiv sind.
Die bevorzugten Metalle der Metallspezies sind die gleichen wie vorstehend beschrieben. Die Aktivität und Selektivität der Katalyse hangt maßgeblich von der Koordination der Metallspezies im Zeolith ab. Ferner ist die Katalyseaktivitat abhangig von der Besetzung der α-, ß- und γ-Positionen auch die Metallspezies. Überraschenderweise ist gefunden worden, dass sich die Reaktion der Alterung der mit einem Metall dotierten Zeo- lithen, die zu einer Inaktivierung des Zeolithen fuhrt, und die Reaktion der Reaktivierung des Katalysators unter dem Ein- fluss von HCl-Gas die Waage halten kann. Die genaue Aufklarung, in welcher Form die Metallspezies vorliegen und wie deren Einfluss auf die Katalyse ist, ist dabei schwer zu spezi- fizieren.
Erfindungsgemaß wird die Aufgabe ferner gelost durch einen Katalysator zur selektiven katalytischen Reduktion erhalten durch das erfindungsgemaße vorstehende Verfahren enthaltend einen Zeolithen, der eine monomere und/oder dimere Spezies eines Metalls enthalt, wobei der Katalysator ein Porenvolumen von 0,35 bis 0,7 ml/g besonders bevorzugt von 0,4 bis 0,5 ml/g aufweist .
Der erfindungsgemaße Katalysator enthalt entweder monomere oder dimere Metallspezies oder monomere und dimere Metallspezies. Auch hier sind die bevorzugten Metallspezies die vorstehend beschriebenen. Grundlage dieser Losung der der Erfindung zugrundeliegenden Aufgabe ist die überraschende Erkenn- tms, dass inaktive Metallcluster enthaltende Zeolithe durch Kontaktierung bzw. Beaufschlagung mit gasformigem Chlorwasserstoff in Zeolithe umgewandelt werden können, die kataly- tisch aktive monomere und/oder dimere Metallspezies enthalten. Gegenstand der erfindungsgemaßen Lehre sind daher Katalysato- ren zur selektiven katalytischen Reduktion aus einem Zeolithen, der eine Metallspezies enthalt, die nach Kontaktierung des Metall enthaltenden Zeolithen mit gasformigem Chlorwasserstoff erhalten werden. Damit die Reaktion mit Chlorwassers- toff gemäß dem erfindungsgemäßen Verfahren im Innern des Zeo- lithen in ausreichender Geschwindigkeit ablaufen kann, ist es vorteilhaft, wenn der Katalysator über die oben genannten Po¬ renvolumina verfügt .
Erfindungsgemäß ist die Metallspezies des erfindungsgemäßen Katalysators ausgewählt aus Eisen, Kobalt, Kupfer oder Vana¬ dium bzw. deren Mischungen, besonders bevorzugt sind Eisenspezies .
Der Zeolith ist vorteilhafterweise ausgewählt aus den Zeoli- then der Strukturtypen AEL, BEA, CHA, EUO, FAO, FER, KFI, LTA, LTL, MAZ, MOR, MEL, MTW, LEV, OFF, TON und MFI, insbesondere aus den Strukturtypen BEA, MFI, FER, MOR, MTW und ERI. Bei diesen Zeolithstrukturtypen kann die Umsetzung des Chlorwas- serstoffgases mit ausreichenden Reaktionsgeschwindigkeiten durchgeführt werden.
Um ausreichende Reaktionsgeschwindigkeiten der zu katalysierenden Umsetzung zu erreichen verfügt der Katalysator, d.h. der als Pulver vorliegende metalldotierte Zeolith zur selektiven katalytischen Reduktion eine BET-Oberflache zwischen 100 und 500 m2/g, bevorzugt zwischen 200 und 400 m2/g. Aus denselben Gründen beträgt die Porengröße des Zeolithen zwischen 0, 4 und 1,5 nm beträgt.
In einer besonders bevorzugten erfindungsgemäßen Ausführungsform des Katalysators ist das Metall, insbesondere Eisen in einer Menge von 1 bis 5 Gew.-% berechnet als Metalloxid bezogen auf das Gesamtgewicht des Zeolithen vorhanden. Einerseits sollte soviel Metall wie möglich in dem Katalysator vorhanden sein, da das Metall die katalysierende Spezies ist, andererseits ist die Zahl der Belegungsstellen in dem Katalysator limitiert. Ferner ist bevorzugt, dass der Katalysator zur selektiven ka- talytischen Reduktion ein 10 oder 12 „Ring"-Zeolith ist. In dieses Zeolithtypen lässt sich eine ausreichende Menge an Metall einlagern und die umzusetzenden Gase erreichen die aktiven Zentren.
Ferner ist besonders bevorzugt, dass im Katalysator zur selektiven katalytischen Reduktion nach der Reaktivierung mehr als 50 % der austauschbaren Stellen des Zeolithgerüsts mit Metall, insbesondere Eisen belegt sind.
Erfindungsgemäß finden die Katalysatoren Verwendung für die Behandlung von Abgasen insbesondere für die Reduktion von Stickoxiden in Abgasen aus Vergasungs- und Verbrennungsprozessen. Insbesondere werden die Katalysatoren verwendet für die Behandlung von Abgas aus Müllverbrennungsanlagen. Da sich der Katalysator insbesondere für die Verwendung zur Behandlung von Abgasen eignet, die saure Bestandteile enthalten, können die erfindungsgemäßen Katalysatoren gerade in Anlagen verwendet werden, in denen das Abgas aus den Verbrennungsprozessen nicht einer sauren Wäsche unterzogen wird.

Claims

Patentansprüche
1. Verfahren zur Reaktivierung eines Katalysators, der einen mit einer Metallspezies dotierten Zeolithen enthält, umfas- send den Schritt der Behandlung des Katalysators mit Chlorwasserstoff enthaltendem Gas.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Metallspezies ausgewählt ist aus Eisen, Kobalt, Kupfer oder Vanadium.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Metallspezies Eisen ist.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Zeolith ausgewählt ist aus den Zeolithen der Strukturtypen AEL, BEA, CHA, EUO, FAO, FER, KFI, LTA, LTL, MAZ, MOR, MEL, MTW, LEV, OFF, TON und MFI, insbesondere aus den Strukturtypen BEA, MFI, FER, MOR, MTW und ERI.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Porengröße des Zeolithen 0,4 bis 1,5 nm beträgt.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Metall, bevorzugt Eisen, in einer Menge von 1 bis 5 Gew . % berechnet als Metalloxid bezogen auf das Gesamtgewicht des Zeolithen vorhanden ist.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Zeolith ein 10 oder 12 „Ring"- Zeolith ist.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass nach der Reaktivierung mehr als 50 % der austauschbaren Stellen des Zeolithgerüsts mit Metallspezies, bevorzugt Eisen belegt sind.
9. Reaktivierter Katalysator zur selektiven katalytischen Reduktion von Stickoxiden, hergestellt nach einem Verfahren gemäß einem der Ansprüche 1 bis 8.
10. Reaktivierter Katalysator nach Anspruch 9 enthaltend einen Zeolithen, der eine monomere und/oder dimere Spezies eines
Metalls enthält, wobei der Katalysator ein Porenvolumen von
0,35 bis 0,7 ml/g besonders bevorzugt von 0,4 bis 0,5 ml/g aufweist .
11. Reaktivierter Katalysator nach Anspruch 10, dadurch gekennzeichnet, dass die Metallspezies ausgewählt ist aus Eisen, Kobalt, Kupfer oder Vanadium.
12. Reaktivierter Katalysator nach Anspruch 10 oder Anspruch 11, dadurch gekennzeichnet, dass der Zeolith ausgewählt ist aus den Zeolithen der Strukturtypen AEL, BEA, CHA, EUO, FAO, FER, KFI, LTA, LTL, MAZ, MOR, MEL, MTW, LEV, OFF, TON und MFI, insbesondere aus den Strukturtypen BEA, MFI, FER, MOR, MTW und ERI.
13. Reaktivierter Katalysator nach einem der Ansprüche 10 bis
12, dadurch gekennzeichnet, dass die BET-Oberflache des Katalysators 100 bis 500 m2/g, bevorzugt 200 bis 400 m2/g beträgt .
14. Reaktivierter Katalysator nach einem der Ansprüche 10 bis
13, dadurch gekennzeichnet, dass die Porengröße des Zeolithen 0,4 bis 1,5 nm beträgt.
15. Reaktivierter Katalysator nach einem der Ansprüche 10 bis
14, dadurch gekennzeichnet, dass das Metall in einer Menge von 1 bis 5 Gew.-% berechnet als Metalloxid bezogen auf das Gesamtgewicht des Zeolithen vorhanden ist.
16. Reaktivierter Katalysator nach einem der Ansprüche 10 bis
15, dadurch gekennzeichnet, dass der Zeolith ein 10 oder 12 „Ring"-Zeolith ist.
17. Reaktivierter Katalysator nach einem der Ansprüche 10 bis
16, dadurch gekennzeichnet, dass nach der Reaktivierung mehr als 50 % der austauschbaren Stellen des Zeolithgerüsts mit Eisen belegt sind.
18. Verwendung eines reaktivierten Katalysators gemäß einem der Ansprüche 9 bis 17 für die Behandlung von Abgasen aus Vergasung- und Verbrennungsprozessen.
19. Verwendung nach Anspruch 18 für die Reduktion von Stickoxi- den in Abgasen aus Vergasungs- und Verbrennungsprozessen.
20. Verwendung nach Anspruch 18 oder Anspruch 19 für die Behandlung von Abgas aus Müllverbrennungsanlagen.
21. Verwendung nach einem der Ansprüche 18 bis 20, dadurch gekennzeichnet, dass der Katalysator vor einer sauren Wäsche betrieben wird.
PCT/EP2008/005406 2007-07-03 2008-07-02 Abgaskatalysator für salzsäure-haltige abgase WO2009003697A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP08773818A EP2162203A2 (de) 2007-07-03 2008-07-02 Abgaskatalysator für salzsäure-haltige abgase
US12/667,622 US20100221165A1 (en) 2007-07-03 2008-07-02 Off-gas catalyst for hydrochloric acid-containing off-gases
JP2010513780A JP5285699B2 (ja) 2007-07-03 2008-07-02 塩化水素含有排ガス用排ガス触媒
CN2008800232425A CN101687187B (zh) 2007-07-03 2008-07-02 用于含盐酸的废气的废气催化剂
HK10108318.6A HK1141752A1 (en) 2007-07-03 2010-09-02 Offgas catalyst for hydrochloric acid-containing offgases

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007030895A DE102007030895A1 (de) 2007-07-03 2007-07-03 Abgaskatalysator für Salzsäure-haltige Abgase
DE102007030895.9 2007-07-03

Publications (2)

Publication Number Publication Date
WO2009003697A2 true WO2009003697A2 (de) 2009-01-08
WO2009003697A3 WO2009003697A3 (de) 2009-03-19

Family

ID=39735503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/005406 WO2009003697A2 (de) 2007-07-03 2008-07-02 Abgaskatalysator für salzsäure-haltige abgase

Country Status (8)

Country Link
US (1) US20100221165A1 (de)
EP (1) EP2162203A2 (de)
JP (1) JP5285699B2 (de)
KR (1) KR20100041778A (de)
CN (1) CN101687187B (de)
DE (1) DE102007030895A1 (de)
HK (1) HK1141752A1 (de)
WO (1) WO2009003697A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11478748B2 (en) 2007-04-26 2022-10-25 Johnson Matthey Public Limited Company Transition metal/zeolite SCR catalysts

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010055728A1 (de) * 2010-12-22 2012-06-28 Süd-Chemie AG Verfahren zur Umsetzung stickstoffhaltiger Verbindungen
JP5974631B2 (ja) * 2012-05-23 2016-08-23 株式会社豊田中央研究所 排ガス浄化用触媒及びその製造方法
EP3205398A1 (de) * 2016-02-12 2017-08-16 Hyundai Motor Company Verfahren zur herstellung eines zeolithkatalsysators
KR101846914B1 (ko) * 2016-10-21 2018-04-09 현대자동차 주식회사 촉매 및 촉매의 제조 방법
US11192097B2 (en) * 2017-07-11 2021-12-07 Shell Oil Company Catalyst and method of use thereof in conversion of NOx and N2O

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0316727A1 (de) 1987-11-13 1989-05-24 Research Association For Utilization Of Light Oil Verfahren zur Reaktivierung von Katalysatoren
US4835319A (en) 1987-11-09 1989-05-30 E. I. Du Pont De Nemours And Company Process for the manufacture of 1,4-bis(4-phenoxybenzoyl)benzene with a zeolite catalyst

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1436622A (en) * 1973-06-21 1976-05-19 British Petroleum Co Regeneration of zeolite catalysts
US5776849A (en) * 1983-11-10 1998-07-07 Exxon Research & Engineering Company Regeneration of severely deactivated reforming catalysts
US4925819A (en) * 1983-11-10 1990-05-15 Exxon Research & Engineering Company Method of regenerating a deactivated catalyst
ES8606023A1 (es) * 1983-11-10 1986-04-16 Exxon Research Engineering Co Un procedimiento para reactivar un catalizador de zeolita tipo l que contiene coque
US5712214A (en) * 1983-11-10 1998-01-27 Exxon Research & Engineering Company Regeneration of aromatization catalysts
US4645751A (en) * 1984-02-16 1987-02-24 Mobil Oil Corporation Regeneration of noble metal-highly siliceous zeolite with sequential hydrogen halide and halogen or organic-halogen compound treatment
JPH084748B2 (ja) * 1987-11-13 1996-01-24 出光興産株式会社 失活触媒の再生方法
DE3841990A1 (de) * 1988-12-14 1990-06-21 Degussa Verfahren zur reduktion von stickoxiden aus abgasen
US6143681A (en) * 1998-07-10 2000-11-07 Northwestern University NOx reduction catalyst
JP4264643B2 (ja) * 2003-09-18 2009-05-20 日立造船株式会社 劣化触媒の再生方法
DE102004013165A1 (de) * 2004-03-17 2005-10-06 Adam Opel Ag Verfahren zur Verbesserung der Wirksamkeit der NOx-Reduktion in Kraftfahrzeugen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835319A (en) 1987-11-09 1989-05-30 E. I. Du Pont De Nemours And Company Process for the manufacture of 1,4-bis(4-phenoxybenzoyl)benzene with a zeolite catalyst
EP0316727A1 (de) 1987-11-13 1989-05-24 Research Association For Utilization Of Light Oil Verfahren zur Reaktivierung von Katalysatoren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
D.S. COOMBS ET AL., CAN. MINERALOGIST, vol. 35, 1997

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11478748B2 (en) 2007-04-26 2022-10-25 Johnson Matthey Public Limited Company Transition metal/zeolite SCR catalysts

Also Published As

Publication number Publication date
CN101687187B (zh) 2013-07-10
KR20100041778A (ko) 2010-04-22
CN101687187A (zh) 2010-03-31
WO2009003697A3 (de) 2009-03-19
JP2010531727A (ja) 2010-09-30
DE102007030895A1 (de) 2009-01-08
JP5285699B2 (ja) 2013-09-11
EP2162203A2 (de) 2010-03-17
US20100221165A1 (en) 2010-09-02
HK1141752A1 (en) 2010-11-19

Similar Documents

Publication Publication Date Title
EP2158038B1 (de) Metalldotierter zeolith und verfahren zu dessen herstellung
DE69815829T2 (de) Vierwegkatalysator für dieselabgase und verfahren zur verwendung
DE10001539B4 (de) Verfahren zur Beseitigung von NOx und N2O
EP1370342B1 (de) Verfahren zur verringerung des gehalts von n2o und nox in gasen
EP2678270B1 (de) Verfahren zur beseitigung von n2o und nox aus dem prozess zur salpetersäureherstellung und dafür geeignete anlage
WO2005088091A1 (de) Verfahren zur verbesserung der wirksamkeit der nox-reduktion in kraftfahrzeugen
DE102015206125A1 (de) Eisen- und kupferhaltiger Chabazit-Zeolith-Katalysator zur Verwendung bei der NOx-Reduktion
EP2654928B1 (de) Verfahren zur umsetzung stickstoffhaltiger verbindungen
DE102016102937A1 (de) Zweimetallische Molekularsiebkatalysatoren
EP2512667B1 (de) Eisenhaltiger zeolith, verfahren zur herstellung eisenhaltiger zeolithe und verfahren zur katalytischen reduktion von stickoxiden
WO2009103549A1 (de) Scr-katalysator mit ammoniak-speicherfunktion
WO2009003697A2 (de) Abgaskatalysator für salzsäure-haltige abgase
DE102011121971A1 (de) Verfahren zur Modifikation der Porengröße von Zeolithen
DE102017122671A1 (de) Neue Synthese eines metall-geförderten Zeolithkatalysators
DE102017120809A1 (de) JMZ-5 und JMZ-6, Zeolithe mit einer Kristallstruktur vom Typ SZR, und Verfahren zu deren Herstellung und Verwendung
DE2446006C3 (de) Verfahren zur Herstellung eines Reduktionskatalysators zur Abscheidung von Stickoxiden aus Abgasen
DE3634243A1 (de) Zeolith-katalysator und verfahren zur katalytischen reduktion von stickoxiden
DE102010055680A1 (de) Verfahren zur Umsetzung stickstoffhaltiger Verbindungen
DE102006033451B4 (de) Verfahren zur Dotierung von Zeolithen mit Metallen
EP3452215B1 (de) Scr-aktiver katalysator
DE102007024125A1 (de) Metalldotierter Zeolith und Verfahren zu dessen Herstellung
DE4317581C2 (de) Verfahren und Katalysator zur Zersetzung von Stickoxiden
EP3974059A1 (de) Verfahren zur herstellung eines katalysators zur oxidation von ammoniak
WO2008151823A2 (de) Zeolithischer katalysator zur entstickung von abgasen
DE19715475A1 (de) Verfahren zur selektiven katalytischen Umwandlung von Stickoxiden zu Stickstoff

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880023242.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08773818

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2010513780

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107001481

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2008773818

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12667622

Country of ref document: US