WO2008130210A1 - Proceso para producir vainillina a partir de microorganismos inmovilizados por cultivo de superficie - Google Patents

Proceso para producir vainillina a partir de microorganismos inmovilizados por cultivo de superficie Download PDF

Info

Publication number
WO2008130210A1
WO2008130210A1 PCT/MX2007/000053 MX2007000053W WO2008130210A1 WO 2008130210 A1 WO2008130210 A1 WO 2008130210A1 MX 2007000053 W MX2007000053 W MX 2007000053W WO 2008130210 A1 WO2008130210 A1 WO 2008130210A1
Authority
WO
WIPO (PCT)
Prior art keywords
biotransformation
process according
vanillin
solution
biotransformation process
Prior art date
Application number
PCT/MX2007/000053
Other languages
English (en)
French (fr)
Inventor
Ali Asaff Torres
Mayra DE LA TORRE MARTÍNEZ
Roberta Miguel Macias Ochoa
Original Assignee
Biokab, S.A. De C. V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biokab, S.A. De C. V. filed Critical Biokab, S.A. De C. V.
Priority to EP07747199.3A priority Critical patent/EP2157184B1/en
Priority to PCT/MX2007/000053 priority patent/WO2008130210A1/es
Priority to ES07747199T priority patent/ES2854374T3/es
Priority to MX2008012689A priority patent/MX2008012689A/es
Priority to US12/253,943 priority patent/US11401535B2/en
Publication of WO2008130210A1 publication Critical patent/WO2008130210A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/08Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
    • C12N11/098Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer formed in the presence of the enzymes or microbial cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/08Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
    • C12N11/082Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/08Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
    • C12N11/089Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C12N11/093Polyurethanes

Definitions

  • the invention relates to a process for producing vanillin. More particularly, it refers to a process for producing vanillin by biotransformation of ferulic acid by microorganisms immobilized from a surface culture, a simple mode of cultivation on solid substrate.
  • Vanillin is a compound widely used as a flavoring in the food industry, as an aroma in the cosmetology industry and as a precursor for the chemical synthesis of drugs in the pharmaceutical industry.
  • vanillin is obtained by chemical synthesis from guaiac and lignin as described by Clark, "Vanillin” in Perf Flavor (1990) 15: 45-54,
  • vanillin obtained by this method is suitable for use in the cosmetology and pharmaceutical industries, can confront legislative problems in the food industry.
  • the trend among consumers for products of natural origin is increasing, leaving aside synthetic products.
  • the commercialized natural vanillin has only been obtained by extracting the vanilla pods, although at a very high cost due to the limited raw material.
  • Juergen Rabenhorst and Rudolf Hopp in the European patent application EP-0405197, describe the isolation of a new strain of Amycolatopsis sp., Which in submerged culture is capable of converting 19.92 g L "1 of ferulic acid into 11.5 g L '1 of vanillin in 32 hours with a molar yield of 77.8%.
  • Enzymes and corresponding genes involved in vanillin biotransformation have recently been characterized and used for their production (WO-9735999, US-20010014467A1).
  • the growing knowledge of the enzymes involved in the biotransformation metabolic pathways offers new opportunities for metabolic engineering and for the construction of genetically modified organisms (US-20030070188A1, US-20030092143A1, US-6,372,461B1, WO-2004 / 006657A1).
  • vanillin is indicated as an intermediate compound in the metabolic pathways of degradation of its precursors.
  • Two publications refer specifically to the involvement of vanillin in the degradation of ferulic acid.
  • Toms and Wood, Biochemistry (1970) 9: 337-43 cultivated Pseudomonas sp. on ferulic acid and elucidated the degradation path.
  • the final product obtained was vanillinic acid, which means that vanillin is only an unstable intermediate in this way.
  • the ferulic acid used as a substrate for biotransformation is a very abundant compound in nature as it is a component of the cell wall of many plant species such as rice, corn, beets
  • the process has the steps of (a) immobilizing a microorganism of the order of the actinomycetes in a compressible inert porous support; (b) add a solution of ferulic acid or any of its salts; (c) incubating to carry out the biotransformation reaction; (d) recovering the biotransformation solution obtained in step (c); and (e) extracting the vanillin from the biotransformation solution obtained in step (d).
  • Figure 1 shows the actinomycete Streptomyces setonii developed and fixed in the polyurethane foam after its surface culture.
  • Figure 3 shows the analysis by High Performance Liquid Chromatography (HPLC) of the biotransformation medium at three times of the process. The products obtained are observed: 1) ferulic acid, 2) vanillin, 3) vanillinic alcohol, 4) vanillinic acid, and 5) guaiac.
  • HPLC High Performance Liquid Chromatography
  • Figure 4 shows the maximum concentration of vanillin reached during several biotransformation cycles and the volumetric productivity in each of them.
  • the invention contemplates a microbiological process with a high yield of biotransformation of ferulic acid in vanillin that initially comprises the surface culture in a nutritive medium of a microorganism of the order of actinomycetes, preferably of the streptomycete family, preferably of the Streptomyces bacteria setonü ATCC 39116.
  • the surface culture which is a simple mode of solid substrate culture, comprises a system with the following characteristics:
  • the aqueous culture medium after having been inoculated with the microorganism, is added to a compressible inert porous material , as polyurethane foam, in which it is absorbed.
  • the inoculated nutrient medium is forming very thin films of approximately 0.50 ⁇ m to approximately 0.90 ⁇ m thick.
  • approximately 1 g of foam containing between 5 mL to 50 mL of medium, preferably between 20 mL to 35 mL of medium provides a culture surface of 3000 cm 2 to 4000 cm 2 , as described in the doctoral thesis of Romero-Gómez, Universidad Autónoma Metropolitana (Iztapalapa), Mexico City (2001) and in Mexican patent MX-178723 for the production of enzymes and other fungal metabolites.
  • the foam is of a density of 0.005 g mL "1 to 0.070 g mL “ 1 , preferably 0.015 g mL “1 to 0.025 g mL “ 1 , cut into small cubes from 0.2 cm to 3.0 cm edge, preferably 0.4 cm at 0.9 cm edge, deposited in closed containers such as flasks or trays, with a bed height between 1 cm to 10 cm, preferably between 3 cm to 6 cm.
  • bed height refers to the distance between the base and the maximum vertical height reached by the polyurethane cubes deposited in the container containing them.
  • the system is incubated at a temperature of 30 0 C to 45 0 C for 6 h 35 h period in which the microorganism is growing as mycelium on the surface of the formed films, being fixed between the structures of the porous material inert compressible , as seen in Figure 1.
  • the biomass reaches a maximum and the carbon source, usually glucose, is depleted.
  • the residual nutrients such as the source of nitrogen and salts of the culture medium in solution are then separated from the biomass fixed in the support by compression. The residual aqueous culture medium is discarded.
  • a solution of ferulic acid or its salts with a concentration of about 5 g L “1 to about 30 g L " is added 1 , preferably from about 10 g L “1 to about 20 g L “ 1 , with a pH between 7 and 9, preferably between 7.5 and 8.5, in a volume of 5 mL to 50 mL, preferably 20 mL to 30 mL, per gram of inert support.
  • the biotransformation is carried out at a temperature of 30 0 C to 45 0 C for a period of 7 to 48h.
  • vanillin The recovery and purification of vanillin is carried out by adsorption on activated carbon or synthetic resins of the amberlite family, from the solution obtained from the biotransformation process. Adsorbed vanillin is eluted with 95% ethyl alcohol, then concentrating the resulting solution between
  • the suitable combination of a novel fermentation system such as surface cultivation with exact fermentation conditions and an effective purification process, allows the biotransformation of ferulic acid or its salts in vanillin with a high yield.
  • the fermentation system is based on the surface culture of a microorganism of the streptomy genus, preferably as noted above of the Streptomyces setonii species, preferably strain ATCC 39116, in a suitable culture medium.
  • an aqueous medium containing usual nutrients, which is absorbed by a compressible inert porous material, such as polyurethane foam, between which interstices form thin films.
  • a compressible inert porous material such as polyurethane foam
  • a suitable culture medium contains a carbon source, a nitrogen source, inorganic salts and growth factors.
  • glucose or maltose is preferably used in a concentration of about 8 g L “1 to about 40 g L “ 1 , preferably about 15 g L “1 to about 30 g L “ 1 .
  • yeast extract is usually used, at a concentration of approximately 1 g L “1 to approximately 15 g L “ 1 , preferably at a concentration of approximately 3 g L “1 to approximately 1O g L “1 .
  • a source of magnesium and a phosphate buffer solution (from pH 7 to pH 8) are used.
  • the prepared culture medium is sterilized and then inoculated with a Streptomyces strain.
  • the inoculum used comes from the submerged culture of microorganism in the same culture medium.
  • the culture medium with the inoculum is added to the sterile polyurethane foam where it is absorbed, in a volume of 5 ml_ to 50 ml_ per gram of foam, preferably 20 ml_ to 35 mL per gram of foam, starting the growth by surface cultivation Fermentation is developed from 30 0 C to 45 0 C, with a duration of growth of 6 h at 35, preferably 12 h to 24 h.
  • the polyurethane foam containing the biomass that was immobilized between its interstices is compressed, allowing the aqueous medium to drain out of the residual nutrients.
  • the foam recovers its absorbent capacity, being then fed with a solution of ferulic acid with a concentration of about 5 g L "1 to about 30 g L " 1 , preferably about 10 g L “1 to about 20 g L “1 , with a pH between 7 and 9, preferably between 7.5 to 8.5.
  • An adequate amount of feed is 5 mL to 50 mL per gram of foam, preferably 20 mL to 35 mL per gram of foam.
  • the biotransformation phase begins at the time of feeding and lasts from 7 h to 48 h, preferably from 15 h to 28 h, after which virtually all the substrate has been consumed and converted into vanillin and some minor by-products.
  • the foam containing the immobilized biomass is again separated from the aqueous medium containing the vanillin by compression.
  • the recovered solution drags a small amount of material cell that is separated by centrifugation or filtration and then proceed to the recovery and purification process, as described above.
  • the aqueous-free foam is again ready to start a new cycle of biotransformation by feeding a fresh solution of ferulic acid.
  • the system maintains its efficiency and conversion speed over 3 cycles to 15 cycles, preferably from 6 cycles to 10 cycles, after which there is a loss of cell viability as well as a gradual washing of the biomass.
  • the surface culture in the flasks was developed at 37 0 C for 18 h, after which the glucose was depleted. After this period, Polyurethane foam cubes were compressed into a syringe releasing the residual culture medium that was subsequently discarded.To start the biotransformation was added on the biomass immobilized in the polyurethane foam and placed again in the flasks, 20 mL of a 10 g L "1 solution of ferulic acid at pH 7.2.
  • the biotransformation was developed at 37 0 C for 20 h after which the foam was pressed, releasing the biotransformation solution which was recovered , containing 4.3 g L "1 vanillin, 0.7 g L" 1 ferulic acid, 0.12 g L “1 of vanillinic acid, 0.09 g of vanillinic alcohol and traces of guaiac. A molar yield of vanillin conversion of 60% was calculated.
  • the cubes with the immobilized microorganisms were returned to the flasks, adding 20 mL of a solution fresh 10 g L "1 of ferulic acid, keeping the flasks at 37 0 C for 24 h.
  • the recovered biotransformation solution had a content of 6.1 g L "1 of vanillin, 0.39 g L " 1 of ferulic acid, 0.06 g L '1 of vanillinic acid, 0.04 g L “1 of vanillinic alcohol and traces of guaiac.
  • the yield of biotransformation was 81%, 3 cycles of biotransformation were additionally repeated under the same temperature conditions and during the same period obtaining results similar to the previous one In the 5 cycles of biotransformation approximately a total of 90 mL of solution were collected per flask.
  • the culture medium contained 15 g L "1 of glucose, 6 g L “ 1 of yeast extract, 4 g L “1 Na 2 HPO 4 , 1 g L “ 1 of KH 2 PO 4 , 0.2 g L “1 of MgSO 4 • 7H 2 O, 0.2 g L “1 NaCI and 0.05 g L '1 of CaCI 2 • H 2 O, with a pH of 7.2.
  • the surface culture in the trays was developed at 37 0 C for 24 h, after which the glucose was depleted After this period, the polyurethane foam cubes were compressed inside the trays, releasing the residual culture medium that was discarded. Then 500 mL of a solution of 10 g L "1 of ferulic acid at pH was added 7.2.
  • the biotransformation was developed at 37 ° C for 24 h after which the biotransformation solution containing 4.71 g L “1 of vanillin, 0.63 g L " 1 of ferulic acid, was recovered in a similar manner to the previous example.
  • a molar conversion yield in vanillin of 64% was calculated.
  • 500 mL of a fresh solution of 10 g L "1 of ferulic acid was added again, keeping the trays at 37 0 C for 24 h.
  • the recovered biotransformation solution had a content of 5.87 g L " 1 of vanillin , 0.24 g
  • 150 g of amberlite XAD-4 were used instead of the activated carbon used in example 2, continuing the same steps until crystallization of the vanillin was reached.
  • the system used allows the microorganisms to be fixed on an inert porous support that can be compressed, which means that it can be reused in a new process of biotransformation (cycle) by fresh feeding of a solution of ferulic acid.
  • the process of the invention is of low technical complexity, whereby the costs of investment in facilities and equipment are much lower than those required for a submerged cultivation process. •
  • the recovery and purification process is highly favored because the solutions resulting from the biotransformation contain vanillin almost as a single product as the selective process. In addition, it does not contain inorganic salts or other residual nutrients from the culture medium as occurs in processes in submerged culture. - In general, the industrial scaling of processes in surface cultivation on solid substrates is easier than processes in submerged cultivation.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Un proceso de biotransformación de ácido ferúlico en vainillina, el proceso cuenta con los pasos de (a) inmovilizar un microorganismo del orden de los actinomicetos en un soporte poroso inerte compresible; (b) agregar una solución de ácido ferúlico o de alguna de sus sales; (c) incubar para llevar a cabo la reacción de biotransformación; (d) recuperar la solución de biotransformación obtenida en el paso (c); y (e) extraer la vainillina de Ia solución de biotransformación obtenida en el paso (d).

Description

PROCESO PARA PRODUCIR VAINILLINA A PARTIR DE MICROORGANISMOS INMOVILIZADOS POR CULTIVO DE SUPERFICIE
CAMPO TÉCNICO DE LA INVENCIÓN
La invención se refiere a un proceso para producir vainillina. Más particularmente, se refiere a un proceso para producir vainillina mediante biotransformación de ácido ferúlico por microorganismos inmovilizados a partir de un cultivo de superficie, una modalidad simple del cultivo sobre sustrato sólido.
ANTECEDENTES DE LA INVENCIÓN
La vainillina es un compuesto ampliamente utilizado como saborizante en Ia industria de alimentos, como aroma en Ia industria cosmetológica y como precursor para Ia síntesis química de fármacos en Ia industria farmacéutica. En su mayor parte, Ia vainillina es obtenida por síntesis química a partir del guayacol y Ia lignina como es descrita por Clark, "Vanillin" en Perf Flavor (1990) 15: 45-54, Sin embargo, si bien Ia vainillina obtenida por este método es adecuada para su uso en las industrias cosmetológica y farmacéutica, puede confrontar problemas legislativos en Ia industria de alimentos. Además en Ia actualidad, Ia tendencia entre los consumidores por productos de origen natural va en creciente aumento, dejando de lado los productos sintéticos. Hasta ahora Ia vainillina natural comercializada ha sido obtenida únicamente por extracción de las vainas de Ia vainilla, aunque a un costo muy elevado por Io limitado de Ia materia prima.
En los últimos 13 años se han hecho muchos esfuerzos para Ia obtención de vainillina natural por procesos biológicos alternativos, los cuales emplean microorganismos (bacterias, levaduras, hongos), células vegetales o sus sistemas enzimáticos.
En general, estos procesos biológicos involucran Ia biotransformación de un precursor adecuado en vainillina. Se han señalado como precursores al eugenol, isoeugenol, curcumina, algunas resinas y al ácido ferúlico. En Ia mayoría de los casos los rendimientos de transformación son muy bajos como se detalla en Ia revisión publicada en: "H. Priefert et al., Appl. Microbiol. Biotechnol. (2001) 56:
296-314". Solo en algunos casos los procesos fermentativos que se han descrito en los últimos años ofrecen rendimientos volumétricos elevados con un potencial económico atractivo.
Por ejemplo, Blandine Audras y Joeelle More, en Ia solicitud internacional de patente WO-9634971, describen un proceso en cultivo sumergido para Ia biotransformación de ácido ferúlico a vainillina por Streptomyces setonii (cepa CNCM n° 1-1555) con el microorganismo inmovilizado en esférulas de alginato de calcio. Aquí se alcanzaron concentraciones de vainillina entre 0.65 y 0.90 g L"1 en un periodo de 3 días con un rendimiento molar de 53% a 69% con respecto al ácido ferúlico consumido. Adicionalmente se obtuvieron 0.65 g L"1 de ácido vainillínico como subproducto de Ia fermentación. Una ventaja económica de este proceso es que el biocatalizador puede ser reciclado.
Juergen Rabenhorst y Rudolf Hopp, en Ia solicitud europea de patente EP- 0405197, describen el aislamiento de una nueva cepa de Amycolatopsis sp., que en cultivo sumergido es capaz de convertir 19.92 g L"1 de ácido ferúlico en 11.5 g L'1 de vainillina en 32 horas con un rendimiento molar del 77.8%.
Andreas Mυheim et al. en Ia patente estadounidense US-6,235,507Bl, revelan un proceso en cultivo sumergido para Ia biotransformación de ácido ferúlico en vainillina por Streptomyces setonii cepa ATCC 39116, alcanzando una concentración de vainillina de 9 g L"1 en un periodo de 26 horas de biotransformación, con un rendimientos molar del 51 %.
Las enzimas y los genes correspondientes involucrados en Ia biotransformación a vainillina han sido recientemente caracterizados y utilizados para su producción (WO-9735999, US-20010014467A1). El creciente conocimiento de las enzimas involucradas en Ia rutas metabólicas de biotransformación ofrece nuevas oportunidades para Ia ingeniería metabólica y para Ia construcción de organismos genéticamente modificados (US-20030070188A1, US-20030092143A1, US-6,372,461B1, WO- 2004/006657A1).
Sin embargo, el uso de organismos genéticamente modificados en Ia producción de vainillina puede resultar problemático por las objeciones de los consumidores a este tipo de productos, especialmente en Europa.
En diferentes publicaciones científicas se señala a Ia vainillina como un compuesto intermediario en las rutas metabólicas de degradación de sus precursores. Dos publicaciones se refieren concretamente a Ia implicación de Ia vainillina en Ia degradación del ácido ferúlico. Toms y Wood, Biochemistry (1970) 9: 337-43, cultivaron Pseudomonas sp. sobre ácido ferúlico y elucidaron Ia ruta de degradación. El producto final obtenido fue el ácido vainillínico por Io cual se dedujo que Ia vainillina es únicamente un intermediario inestable de esta vía. Sutherland et al., Can. 3. Microbiol. (1983) 29: 1253-57, estudiaron Ia degradación de ácido ferúlico en cultivos de Streptomyces setonii, encontrando que este microorganismo es capaz de acumular vainillina como un producto de degradación que puede ser posteriormente convertida en ácido vainillínico, alcohol vainillínico y/o guayacol. En ambos casos, el proceso de degradación del ácido ferúlico involucra un paso único de desacetilación de este compuesto que no emplea CoA.
El ácido ferúlico empleado como substrato para Ia biotransformación es un compuesto muy abundante en Ia naturaleza al ser un componente de Ia pared celular de muchas especies vegetales como el arroz, el maíz, Ia remolacha
' azucarera entre otras. Sin embargo, no se encuentra en forma libre sino formando enlaces glicosídicos con las cadenas de carbohidratos de Ia pared celular, por Io cual para su liberación se recurren a métodos hidróliticos ya sean estos enzimáticos o alcalinos. Birgit Michelsen et al., patente estadounidense US-6, 143,543 Al, describen un método enzimático para Ia obtención de ácido ferúlico libre. En Ia solicitud internacional de patente WO-2004/110975 Al se revela un proceso para Ia recuperación y purificación del ácido ferúlico ya en su forma libre a partir de las aguas de cocimiento del maíz conocidas como "nexayote" resultantes de Ia industria del nixtamal.
Los procesos de biotransformación para Ia obtención de vainillina hasta aquí descritos son desarrollados en cultivo sumergido. Este sistema de fermentación si bien permite llevar un control bueno de proceso, tiene costos de inversión y operación elevados debido a sus características intrínsecas y Ia productividad volumétrica alcanzada.
Durante los últimos años se ha despertado un gran interés por procesos en cultivo sobre sustrato sólido, o su modalidad más simple que es el cultivo de superficie, gracias un mejor desarrollo de muchos microorganismos en estos sistemas de cultivo, una velocidad específica de crecimiento alta, así como rendimientos elevados en Ia producción de metabolitos de importancia comercial y enzimas (Papagianni et al., Food Technol. Biotechnol. (2001) 39: 319-326). Es por tanto necesario proveer un proceso para producir vainillina en concentraciones que resultan industrialmente interesantes mediante Ia biotransformación de ácido ferúlico con microorganismos inmovilizados a partir de un cultivo de superficie.
SUMARIO DE LA INVENCIÓN
En vista de Io anteriormente descrito y con el propósito de dar solución a las limitantes encontradas, es objeto de Ia invención ofrecer un proceso de biotransformación de ácido ferúlico en vainillina, el proceso cuenta con los pasos de (a) inmovilizar un microorganismo del orden de los actinomicetos en un soporte poroso inerte compresible; (b) agregar una solución de ácido ferúlico o de alguna de sus sales; (c) incubar para llevar a cabo Ia reacción de biotransformación; (d) recuperar Ia solución de biotransformación obtenida en el paso (c); y (e) extraer Ia vainillina de Ia solución de biotransformación obtenida en el paso (d).
DESCRIPCIÓN BREVE DE LAS FIGURAS
Los detalles característicos de Ia invención se describen en los siguientes párrafos en conjunto con las figuras que Io acompañan, los cuales son con el propósito de definir al invento pero sin limitar el alcance de éste.
Figura 1 muestra al actinomiceto Streptomyces setonii desarrollado y fijado en Ia espuma de poliuretano después de su cultivo de superficie.
Figura 2 muestra perfiles de crecimiento de Streptomyces setonii en un cultivo sumergido conforme al estado de Ia técnica (μ = 0.22 h"1) y en un cultivo de superficie de acuerdo al invento (μ = 0.70 h'1). Figura 3 muestra los análisis por Cromatografía Líquida de Alta Resolución (HPLC) del medio de biotransformación a tres tiempos de iniciado el proceso. Se observa los productos obtenidos: 1) ácido ferúlico, 2) vainillina, 3) alcohol vainillínico, 4) ácido vainillínico, y 5) guayacol.
Figura 4 muestra Ia concentración máxima de vainillina alcanzada durante varios ciclos de biotransformación y Ia productividad volumétrica en cada uno de ellos.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
El invento contempla un proceso microbiológico con un alto rendimiento de biotransformación de ácido ferúlico en vainillina que comprende inicialmente el cultivo de superficie en un medio nutritivo de un microorganismo del orden de los actinomicetos, preferentemente de Ia familia de los estreptomicetos, preferentemente de Ia bacteria Streptomyces setonü ATCC 39116. El cultivo de superficie, que es una modalidad simple del cultivo sobre sustrato sólido, comprende un sistema con las siguientes características: El medio de cultivo acuoso, después haber sido inoculado con el microorganismo, es agregado a un material poroso inerte compresible, como espuma de poliuretano, en el cual es absorbido. Entre los intersticios de Ia espuma, el medio nutritivo inoculado va formando películas muy delgadas de aproximadamente 0.50 μm a aproximadamente 0.90 μm de espesor. De esta manera se obtiene un sistema muy compacto con gran superficie, donde aproximadamente 1 g de espuma conteniendo entre 5 mL a 50 mL de medio, preferentemente entre 20 mL a 35 mL de medio, brinda una superficie de cultivo de 3000 cm2 a 4000 cm2, tal como se describe en Ia tesis doctoral de Romero-Gómez, Universidad Autónoma Metropolitana (Iztapalapa), México D. F. (2001) y en Ia patente mexicana MX-178723 para Ia producción de enzimas y otros metabólitos fúngicos. La espuma es de una densidad de 0.005 g mL"1 a 0.070 g mL"1, preferentemente de 0.015 g mL"1 a 0.025 g mL"1, cortada en pequeños cubos de 0.2 cm a 3.0 cm de arista, preferentemente de 0.4 cm a 0.9 cm de arista, depositados en recipientes cerrados como matraces o bandejas, con una altura de lecho entre 1 cm a 10 cm, preferentemente entre 3 cm a 6 cm. El término "altura de lecho" está referido a Ia distancia entre Ia base y Ia cota vertical máxima alcanzada por los cubos de poliuretano depositados en el recipiente que los contiene. El sistema es incubado a una temperatura de 30 0C a 45 0C, durante 6 h a 35 h, periodo en el cual el microorganismo va creciendo como micelio sobre Ia superficie de las películas formadas, quedando fijado entre las estructuras del material poroso inerte compresible, tal y como se observa en Ia Figura 1. Al final de Ia fermentación, Ia biomasa alcanza un máximo y Ia fuente de carbono, generalmente glucosa, queda agotada. Los nutrientes residuales como Ia fuente de nitrógeno y sales del medio de cultivo en solución son entonces separados de Ia biomasa fijada en el soporte por compresión. El medio de cultivo acuoso residual es desechado.
Para el proceso de biotransformación, se agrega al material poroso inerte compresible conteniendo los microorganismos inmovilizados y libre del medio de cultivo residual, una solución de ácido ferúlico o de sus sales con una concentración de aproximadamente 5 g L"1 a aproximadamente 30 g L"1, preferentemente de aproximadamente 10 g L"1 a aproximadamente 20 g L"1, con un pH entré 7 y 9, preferentemente entre 7.5 a 8.5, en un volumen de 5 mL a 50 mL, preferentemente 20 mL a 30 mL, por gramo de soporte inerte. La biotransformación es llevada a cabo a una temperatura de 30 0C a 45 0C durante un periodo de 7 h a 48 h. Al término de esta fase es consumido prácticamente todo el precursor, acumulándose en las películas acuosas del cultivo de superficie Ia vainillina resultante en concentraciones de aproximadamente 3 g L"1 a aproximadamente 12 g L'1, con un rendimiento molar de 70 % a 80 %. También son producidos, aunque en mucha menor cantidad ácido vainillínico, alcohol vainillínico y trazas de guayacol. Todos los productos de Ia biotransformación son recuperados en solución compresión. Los microorganismos inmovilizados en el soporte libre del medio acuoso, pueden ser nuevamente utilizados para un nuevo proceso de biotransformación, agregando una solución fresca de ácido ferúlico. Este proceso puede ser repetido cíclicamente entre 2 veces a 15 veces, preferentemente entre 6 veces a 10 veces, con similares rendimientos de biotransformación.
Es importante finalizar el proceso de biotransformación del invento cuando el precursor está siendo agotado porque luego se produce Ia degradación de Ia vainillina formada en ácido vainillínico y alcohol vainillínico. En otros términos, se tienen prácticamente dos etapas claramente definidas que son Ia de formación y Ia de degradación de Ia vainillina. Considerar este punto es muy importante si se quiere facilitar el proceso de purificación y asegurar un rendimiento que sea industrialmente interesante.
La recuperación y purificación de Ia vainillina se realiza mediante adsorción en carbón activado o resinas sintéticas de Ia familia de Ia amberlita, a partir de Ia solución obtenida del proceso de biotransformación. La vainillina adsorbida es eluida con alcohol etílico al 95 %, concentrando luego Ia solución resultante entre
0.05 g mL"1 a 0.5 g mL"1, preferentemente entre 0.1 g mL"1 a 0.4 g mL"1. A Ia solución concentrada, se agrega agua donde Ia vainillina cristaliza. El proceso de purificación descrito es particularmente importante porque en él se hace uso de un solvente que es enteramente de origen natural. Como se ha señalado anteriormente, Ia combinación adecuada de un novedoso sistema de fermentación como el cultivo de superficie con condiciones exactas de fermentación y un proceso efectivo de purificación, permite Ia biotransformación de ácido ferúlico o sus sales en vainillina con un alto rendimiento. El sistema de fermentación está basado en el cultivo de superficie de un microorganismo del género estreptomices, preferentemente como se señaló anteriormente de Ia especie Streptomyces setonii, preferentemente Ia cepa ATCC 39116, en un medio de cultivo adecuado. ,
Para llevar a cabo el cultivo de superficie se utiliza un medio acuoso, conteniendo nutrientes usuales, el cual es absorbido por un material poroso inerte compresible, como Ia espuma de poliuretano, entre cuyos intersticios forma películas delgadas. Sobre las películas formadas el microorganismo se desarrolla como micelio. Un medio de cultivo adecuado contiene una fuente de carbono, una fuente de nitrógeno, sales inorgánicas y factores de crecimiento.
Como fuente de carbono se utiliza preferentemente glucosa o maltosa en una concentración de aproximadamente 8 g L"1 a aproximadamente 40 g L"1, preferentemente de aproximadamente 15 g L"1 a aproximadamente 30 g L"1. Como fuente de nitrógeno, factores de crecimiento y elementos traza, usualmente es empleado extracto de levadura, en una concentración de aproximadamente 1 g L"1 a aproximadamente 15 g L"1, preferentemente en una concentración de aproximadamente 3 g L"1 a aproximadamente 1O g L"1. Adicionalmente se emplea una fuente de magnesio y una solución amortiguadora de fosfatos (de pH 7 a pH 8).
El medio de cultivo preparado es esterilizado y luego inoculado con una cepa de Streptomyces. El inoculo utilizado proviene del cultivo sumergido del microorganismo en el mismo medio de cultivo. El inoculo con una edad de 15 h a 30 h, preferentemente de 18 h a 24 h, es añadido en un volumen de 3% a 6% (v/v). Posteriormente el medio de cultivo con el inoculo es agregado a Ia espuma de poliuretano estéril donde es absorbido, en un volumen de 5 ml_ a 50 ml_ por gramo de espuma, preferentemente de 20 ml_ a 35 mL por gramo de espuma, iniciándose el crecimiento por cultivo de superficie. La fermentación es desarrollada de 30 0C a 45 0C, con una duración del periodo de crecimiento de 6 h a 35 h, preferentemente de 12 h a 24 h.
Terminada Ia fase de crecimiento, Ia espuma de poliuretano conteniendo a Ia biomasa que quedó inmovilizada entre sus intersticios, es comprimida dejando escurrir el medio acuoso conteniendo los nutrientes residuales. De esta manera, Ia espuma recobra nuevamente su capacidad absorbente, siendo alimentada a continuación con una solución de ácido ferúlico con una concentración de aproximadamente 5 g L"1 a aproximadamente 30 g L"1, preferentemente de aproximadamente 10 g L"1 a aproximadamente 20 g L"1, con un pH entre 7 y 9, preferentemente entre 7.5 a 8.5. Una cantidad adecuada de alimentación es de 5 mL a 50 mL por gramo de espuma, preferentemente de 20 mL a 35 mL por gramo de espuma.
La fase de biotransformación se inicia en el momento de Ia alimentación y tiene una duración de 7 h a 48 h, preferentemente de 15 h a 28 h, al cabo de las cuales prácticamente todo el substrato ha sido consumido y convertido en vainillina y algunos subproductos minoritarios.
Terminada Ia fase de biotransformación, Ia espuma conteniendo Ia biomasa inmovilizada, nuevamente es separada del medio acuoso conteniendo Ia vainillina por compresión. La solución recuperada arrastra una pequeña cantidad de material celular que es separada por centrifugación o filtración para luego proceder al proceso de recuperación y purificación, tal como fue descrito anteriormente. La espuma libre de medio acuoso queda nuevamente lista para iniciar un nuevo ciclo de biotransformación por alimentación de una solución fresca de ácido ferúlico. El sistema mantiene su eficiencia y velocidad de conversión a Io largo de 3 ciclos a 15 ciclos, preferentemente de 6 ciclos a 10 ciclos, al cabo de los cuales se produce una pérdida de Ia viabilidad celular así como un lavado paulatino de Ia biomasa.
Es importante señalar que únicamente Ia fase de desarrollo del microorganismo es llevada en condiciones de esterilidad ya que posteriormente al ser eliminado el medio de cultivo no existe posibilidad de desarrollo de microorganismos no deseados. Tampoco durante el proceso de alimentación de Ia solución de ácido ferúlico y recuperación de Ia vainillina en solución pues ambos compuestos resultan tóxicos para una gran variedad de microorganismos, pudiendo únicamente sobrevivir aquellos que cuentan con un mecanismo de desintoxicación altamente especializado como Streptomyces setonü.
EJEMPLOS DE REALIZACIÓN DE LA INVENCIÓN
La invención ahora será descrita con respecto a los ejemplos siguientes, los cuales son únicamente con el propósito de representar Ia manera de llevar a cabo Ia implementación de los principios del invento. Los ejemplos siguientes no intentan ser una representación exhaustiva de Ia invención, ni intentan limitar el alcance de esta.
Ejemplo 1
Se prepararon matraces de 250 mL conteniendo 1 g de espuma de poliuretano cortada en pequeños cubos. Se les agregó 20 mL de medio de cultivo previamente inoculados con 0.8 mL de un precultivo de Streptomyces setonii ATCC 39116, crecido en un matraz agitado a 37 °C, a 190 min"1, por 20 h. El medio de cultivo contenía 10 g L"1 de glucosa, 4 g L'1 de extracto de levadura, 4 g L"1 Na2HPO4, 1 g L"1 de KH2PO4, 0.2 g L"1 de MgSO4 7H2O, 0.2 g L"1 NaCI y 0.05 g L"1 de CaCI2 H2O, con un pH de 7.2. El cultivo de superficie en los matraces fue desarrollado a 37 0C durante 18 h, al cabo de las cuales Ia glucosa fue agotada. Luego de este periodo, los cubos de espuma de poliuretano fueron comprimidos dentro de una jeringa liberando el medio de cultivo residual que fue posteriormente desechado. Para dar inicio a Ia biotransformación se agregó sobre Ia biomasa inmovilizada en Ia espuma de poliuretano y colocada nuevamente en los matraces, 20 mL de una solución de 10 g L"1 de ácido ferúlico a pH 7.2.
La biotransformación fue desarrollada a 37 0C durante 20 h al cabo de las cuales Ia espuma fue presionada, liberando Ia solución de biotransformación que fue recuperada con un contenido de 4.3 g L"1 de vainillina, 0.7 g L"1 de ácido ferúlico, 0.12 g L"1 de ácido vainillínico, 0.09 g de alcohol vainillínico y trazas de guayacol. Se calculó un rendimiento molar de conversión en vainillina del 60 %. Los cubos con los microorganismos inmovilizados fueron devueltos a los matraces, agregando 20 mL de una solución fresca de 10 g L"1 de ácido ferúlico, manteniendo los matraces a 37 0C durante 24 h. La solución de biotransformación recuperada tuvo un contenido de 6.1 g L"1 de vainillina, 0.39 g L"1 de ácido ferúlico, 0.06 g L'1 de ácido vainillínico, 0.04 g L"1 de alcohol vainillínico y trazas de guayacol. El rendimiento de biotransformación fue del 81 %. Se repitieron adicionalmente 3 ciclos de biotransformación bajo las mismas condiciones de temperatura y durante el mismo periodo obteniendo resultados similares al anterior. En los 5 ciclos de biotransformación se colectaron por matraz aproximadamente un total de 90 mL de solución. Ejemplo 2
Se prepararon bandejas con tapa de 12 L conteniendo 25 g de espuma de poliuretano cortada en pequeños cubos. Se les agregó 500 ml_ de medio de cultivo previamente inoculados con 20 ml_ de un precultivo de Streptomyces setonü ATCC 39116, crecido en un matraz agitado a 37 0C, a 190 min"1, por 20 h. El medio de cultivo contenía 15 g L"1 de glucosa, 6 g L"1 de extracto de levadura, 4 g L"1 Na2HPO4, 1 g L"1 de KH2PO4, 0.2 g L"1 de MgSO4 7H2O, 0.2 g L"1 NaCI y 0.05 g L'1 de CaCI2 H2O, con un pH de 7.2. El cultivo de superficie en las bandejas fue desarrollado a 37 0C durante 24 h, al cabo de las cuales Ia glucosa fue agotada. Luego de este periodo, los cubos de espuma de poliuretano fueron comprimidos dentro de las bandejas, liberando el medio de cultivo residual que fue desechado. Luego se agregó 500 mL de una solución de 10 g L"1 de ácido ferúlico a pH 7.2.
La biotransformación fue desarrollada a 37° C durante 24 h al cabo de las cuales se recuperó de manera similar al ejemplo anterior Ia solución de biotransformación conteniendo 4.71 g L"1 de vainillina, 0.63 g L"1 de ácido ferúlico,
0.07 g L'1 de ácido vainillínico, 0.06 g de alcohol vainillínico y trazas de guayacol.
Se calculó un rendimiento molar de conversión en vainillina del 64 %. En un segundo ciclo se agregó nuevamente 500 mL de una solución fresca de 10 g L"1 de ácido ferúlico, manteniendo las bandejas a 37 0C durante 24 h. La solución de biotransformación recuperada tuvo un contenido de 5.87 g L"1 de vainillina, 0.24 g
L"1 de ácido ferúlico, 0.14 g L"1 de ácido vainillínico, 0.10 g L"1 de alcohol vainillínico y 0.04 g de guayacol. El rendimiento de conversión fue del 77 %. Se repitieron adicionalmente 5 ciclos de biotransformación bajo las mismas condiciones de temperatura y durante el mismo periodo obteniendo resultados similares al anterior. En los 7 ciclos de biotransformación se colectaron por bandeja aproximadamente un total de 3.2 L de solución conteniendo 5.6 g L"1 de vainillina.
Ver Figura 4. Para Ia recuperación y purificación de Ia vainillina, a Ia solución de biotransformación se agregaron 100 g de carbón activado dejando en agitación 5 h, al cabo de las cuales el sobrenadante fue desechado. La desorción fue llevada a cabo con 100 mL de etanol al 95 % bajo agitación durante 3 h. La solución etanólica fue concentrada por evaporación, reduciendo su volumen a 30 mL. A continuación se agregaron 30 mL de agua, dejando en reposo 12 horas, al cabo de las cuales Ia vainillina cristalizó.
Ejemplo 3
En otra modalidad de Ia invención, se emplearon 150 g de amberlita XAD-4 en lugar del carbón activado empleado en el ejemplo 2, continuando los mismos pasos hasta alcanzar Ia cristalización de Ia vainillina.
Las ventajas del invento con respecto al estado de Ia técnica se pueden resumir en los siguientes puntos:
- El proceso permite Ia biotransformación de ácido ferúlico y Ia acumulación de vainillina en concentraciones que resultan industrialmente interesantes (de aproximadamente 3 g L'1 a aproximadamente 12 g L'1). Ver Figura 4. " Gracias a las ventajas intrínsecas del cultivo de superficie, Ia velocidad específica de crecimiento de Streptomyces setonii cepa ATCC 39116 es incrementada hasta en tres veces en comparación a su crecimiento en cultivo sumergido, reduciendo el tiempo para el desarrollo del microorganismo. Ver Figura 2. " El proceso de conversión en comparación a otros procesos en cultivo sumergido es selectivo ya que Ia vainillina es casi un único producto de biotransformación.
- El sistema utilizado permite fijar a los microorganismos en un soporte poroso inerte compresible por Io cual es posible su reutilización en un nuevo proceso de biotransformación (ciclo) por alimentación fresca de una solución de ácido ferúlico.
• Los costos de operación relacionados con las materias primas del medio de cultivo, así como servicios auxiliares son reducidos en igual número de veces a Ia cantidad de ciclos de biotransformación (de 3 ciclos a 15 ciclos) en comparación a un cultivo sumergido por lotes.
• El proceso del invento es de baja complejidad técnica, por Io cual los costos de inversión en instalaciones y equipos son por mucho menores a los requeridos para un proceso en cultivo sumergido. • El proceso de recuperación y purificación se ve altamente favorecido porque las soluciones resultantes de Ia biotransformación contienen vainillina casi como un único producto al ser el proceso selectivo. Además no contiene sales inorgánicas u otros nutrientes residuales del medio de cultivo como ocurre en procesos en cultivo sumergido. - En general el escalamiento industrial de los procesos en cultivo de superficie sobre sustrato sólido resulta más sencillo que los procesos en cultivo sumergido.
Basado en las realizaciones descritas anteriormente, se contempla que las modificaciones de los ambientes de realización descritos, así como los ambientes de realización alternativos serán considerados evidentes para una persona experta en el arte de Ia técnica bajo Ia presente descripción. Es por Io tanto, contemplado que las reivindicaciones abarcan dichas modificaciones y alternativas que estén dentro del alcance del presente invento o sus equivalentes.

Claims

REIVINDICACIONES
1. Un proceso de biotransformación de ácido ferúlico en vainillina caracterizado porque comprende los pasos de: (a) inmovilizar un microorganismo del orden de los actinomicetos en un soporte poroso inerte compresible;
(b) agregar una solución de ácido ferúlico o de alguna de sus sales;
(c) incubar para llevar a cabo Ia reacción de biotransformación;
(d) recuperar Ia solución de biotransformación obtenida en el paso (c); y (e) extraer Ia vainillina de Ia solución de biotransformación obtenida en el paso (d).
2. El proceso de biotransformación de conformidad con Ia reivindicación 1, caracterizado porque el paso (a) de inmovilizar un microorganismo del orden de los actinomicetos comprende los pasos de:
(a) adicionar un inoculo de dicho microorganismo a un medio de cultivo líquido;
(b) adicionar el medio de cultivo inoculado a un soporte poroso inerte compresible para formar películas entre los intersticios de dicho soporte;
(c) crecer al microorganismo en el soporte; y
(d) eliminar el medio de cultivo residual de dicho soporte poroso inerte compresible.
3. El proceso de biotransformación de conformidad con Ia reivindicación 1 o 2, caracterizado porque el microorganismo del orden de los actinomicetos es del género de Streptomyces.
4. El proceso de biotransformación de conformidad con Ia reivindicación 3, caracterizado porque el microorganismo es Streptomyces setonii, particularmente Ia cepa Streptomyces setonii ATCC 39116.
5. El proceso de biotransformación de conformidad con Ia reivindicación 2, caracterizado porque el inoculo del microorganismo se crece en agitación a 190 min"1, por un periodo de tiempo de 15 h a 30 h, a 370C.
6. El proceso de biotransformación de conformidad con Ia reivindicación 2, caracterizado porque el volumen del inoculo que se adiciona al medio de cultivo es del 3 % al 6 % del volumen total del medio.
7. El proceso de biotransformación de conformidad con Ia reivindicación 2, caracterizado porque el medio de cultivo líquido comprende: glucosa o maltosa en un rango de concentración entre 8 g L"1 a 40 g L"1; y extracto de levadura en un rango de concentración entre 1 g L""1 a 15 g L'1.
8. El proceso de biotransformación de conformidad con Ia reivindicación 1 o 2, caracterizado porque el soporte poroso inerte compresible es espuma de poliuretano.
9. El proceso de biotransformación de conformidad con Ia reivindicación 2, caracterizado porque el volumen del medio de cultivo inoculado que se adiciona al soporte poroso inerte compresible es de 5 mL por gramo de soporte a 50 mL por gramo de soporte, preferentemente de 20 mL por gramo de soporte a 35 mL por gramo de soporte.
10. El proceso de biotransformación de conformidad con Ia reivindicación 2, caracterizado porque Ia altura de lecho del soporte poroso inerte compresible es de 1 cm a 10 cm, preferentemente de 3 cm a 6 cm.
11. El proceso de biotransformación de conformidad con Ia reivindicación 2, caracterizado porque el paso (c) de crecer al microorganismo en el soporte se lleva a cabo a una temperatura de 30 0C a 45 0C por un periodo de tiempo de 6 h a 35 h.
12. El proceso de biotransformación de conformidad con Ia reivindicación 2, caracterizado porque el paso (d) de eliminar el medio de cultivo residual se lleva a cabo mediante Ia compresión del soporte poroso inerte compresible.
13. El proceso de biotransformación de conformidad con Ia reivindicación 1, caracterizado porque Ia solución de ácido ferúlico o de alguna de sus sales del paso (b) tiene una concentración de 5 g L"1 a 30 g L"1, preferentemente de 10 g L"1 a 20 g L"1.
14. El proceso de biotransformación de conformidad con Ia reivindicación 1, caracterizado porque Ia solución de ácido ferúlico o de alguna de sus sales del paso (b) tiene valores de pH entre 7 y 9, preferentemente valores de pH entre 7.5 y 8.5.
15. El proceso de biotransformación de conformidad con Ia reivindicación 1, caracterizado porque el tiempo de incubación para Ia reacción de biotransformación del paso (c) es de 7 h a 48 h, preferentemente de 15 h a 28 h.
16. El proceso de biotransformación de conformidad con Ia reivindicación 1, caracterizado porque el paso (d) de recuperar Ia solución de biotransformación se lleva a cabo mediante Ia compresión del soporte poroso inerte compresible.
17. El proceso de biotransformación de conformidad con Ia reivindicación 1, caracterizado porque los pasos (b), (c) y (d) se llevan a cabo entre 2 veces a 15 veces de forma cíclica.
18. El proceso de biotransformación de conformidad con Ia reivindicación 1, caracterizado porque el paso (e) de extraer Ia vainillina de Ia solución de biotransformación comprende los pasos de:
(a) tratar Ia solución de biotransformación con carbón activado o resinas sintéticas;
(b) eluir Ia vainillina adsorbida en el carbón activado o en las resinas sintéticas con una solución alcohólica;
(c) concentrar por evaporación Ia vainillina eluída en Ia solución alcohólica; y
(d) cristalizar Ia vainillina en agua.
19. El proceso de biotransformación de conformidad con Ia reivindicación 18, caracterizado porque las resinas sintéticas del paso (a) se seleccionan de Ia familia de Ia amberlita.
20. El proceso de biotransformación de conformidad con Ia reivindicación 18, caracterizado porque Ia solución alcohólica del paso (b) comprende una solución de alcohol etílico al 95%.
21. El proceso de biotransformación de conformidad con Ia reivindicación 18, caracterizado porque Ia etapa (c) de concentrar por evaporación Ia vainillina eluída en Ia solución alcohólica, se lleva a cabo a una temperatura entre 30 0C a 40 0C y a presión reducida.
PCT/MX2007/000053 2007-04-19 2007-04-19 Proceso para producir vainillina a partir de microorganismos inmovilizados por cultivo de superficie WO2008130210A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP07747199.3A EP2157184B1 (en) 2007-04-19 2007-04-19 Process for producing vanilin from microorganisms immobilized by surface culture
PCT/MX2007/000053 WO2008130210A1 (es) 2007-04-19 2007-04-19 Proceso para producir vainillina a partir de microorganismos inmovilizados por cultivo de superficie
ES07747199T ES2854374T3 (es) 2007-04-19 2007-04-19 Procedimiento para producir vainillina a partir de microorganismos inmovilizados por cultivo de superficie
MX2008012689A MX2008012689A (es) 2007-04-19 2008-10-02 Proceso para producir vainilla a partir de microorganismos inmovilizados por cultivo de superficies.
US12/253,943 US11401535B2 (en) 2007-04-19 2008-10-18 Process of production of vanillin with immobilized microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2007/000053 WO2008130210A1 (es) 2007-04-19 2007-04-19 Proceso para producir vainillina a partir de microorganismos inmovilizados por cultivo de superficie

Publications (1)

Publication Number Publication Date
WO2008130210A1 true WO2008130210A1 (es) 2008-10-30

Family

ID=39875680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2007/000053 WO2008130210A1 (es) 2007-04-19 2007-04-19 Proceso para producir vainillina a partir de microorganismos inmovilizados por cultivo de superficie

Country Status (3)

Country Link
EP (1) EP2157184B1 (es)
ES (1) ES2854374T3 (es)
WO (1) WO2008130210A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114174253A (zh) * 2019-07-30 2022-03-11 罗地亚经营管理公司 天然香草醛组合物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2873367T3 (es) 2012-08-28 2021-11-03 Privi Biotechnologies Pvt Ltd Biotransformación microbiana de ácidos aromáticos a sus ácidos aromáticos de carbono reducido
WO2016071476A1 (de) * 2014-11-07 2016-05-12 Basf Se Verfahren zur gewinnung aromatischer wertprodukte aus ligninhaltigen zusammensetzungen
CN105132472B (zh) * 2015-07-27 2019-01-08 厦门欧米克生物科技有限公司 一种沙链霉菌的用途及香兰素的生产方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2647119A1 (fr) * 1989-05-19 1990-11-23 Orstom Procede de culture de micro-organismes sur un milieu solide constitue d'un support solide, absorbant, compressible et non fermentable
EP0405197A1 (de) 1989-06-20 1991-01-02 Haarmann & Reimer Gmbh Verfahren zur Herstellung von natürlichem Vanillin
WO1996034971A1 (fr) 1995-05-05 1996-11-07 Orsan Procede de production de vanilline par bioconversion de precurseurs benzeniques
WO1997035999A2 (en) 1996-03-23 1997-10-02 Institute Of Food Research Production of vanillin
EP0885968A1 (en) * 1997-06-19 1998-12-23 Givaudan-Roure (International) S.A. Process for the production of vanillin
US5866380A (en) * 1994-09-13 1999-02-02 Institut National De La Recherche Agronomique-I.N.R.A. Methods for bioconversion of ferulic acid to vanillic acid or vanillin and for the bioconversion of vanillic acid to vanillin using filamentous fungi
US6143543A (en) 1995-05-23 2000-11-07 Danisco A/S Enzyme system comprising ferulic acid esterase from Aspergillus
US6372461B1 (en) 1998-09-18 2002-04-16 Board Of Directors Operating Michigan State University Synthesis of vanillin from a carbon source
US20030070188A1 (en) 1997-07-15 2003-04-10 Daphna Havkin-Frenkel Vanillin biosynthetic pathway enzyme from Vanilla planifolia
US20030092143A1 (en) 1999-12-14 2003-05-15 Jurgen Rabenhorst Enzymes and genes used for producing vanillin
WO2004006657A1 (en) 2002-07-11 2004-01-22 Bureau Of Sugar Experiment Stations Transgenic plants used as a bioreactor system
WO2004110975A1 (es) 2003-06-19 2004-12-23 Biokab, S.A. De C.V. Proceso para la recuperacion de ácido ferúlico.
EP1734128A1 (en) * 2005-06-17 2006-12-20 Zhejiang Hangzhou Xinfu Pharmaceutical Co. Ltd Method for producing vanillic acid and vanillin from waste residue of rice bran oil by fermentation and biotransformation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0307232D0 (en) * 2003-03-28 2003-04-30 Zylepsis Ltd Production of vanillin

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX178723A (es) 1989-05-19 1995-07-14 Orstom Procedimiento de cultivo de microorganismos en un medio solido constituido por un soporte solidoabsorbente comprensible y no fermentable
FR2647119A1 (fr) * 1989-05-19 1990-11-23 Orstom Procede de culture de micro-organismes sur un milieu solide constitue d'un support solide, absorbant, compressible et non fermentable
EP0405197A1 (de) 1989-06-20 1991-01-02 Haarmann & Reimer Gmbh Verfahren zur Herstellung von natürlichem Vanillin
US5866380A (en) * 1994-09-13 1999-02-02 Institut National De La Recherche Agronomique-I.N.R.A. Methods for bioconversion of ferulic acid to vanillic acid or vanillin and for the bioconversion of vanillic acid to vanillin using filamentous fungi
WO1996034971A1 (fr) 1995-05-05 1996-11-07 Orsan Procede de production de vanilline par bioconversion de precurseurs benzeniques
FR2733763A1 (fr) * 1995-05-05 1996-11-08 Orsan Procede de production de vanilline par bioconversion de precurseurs benzeniques
US6143543A (en) 1995-05-23 2000-11-07 Danisco A/S Enzyme system comprising ferulic acid esterase from Aspergillus
WO1997035999A2 (en) 1996-03-23 1997-10-02 Institute Of Food Research Production of vanillin
US20010014467A1 (en) 1996-03-23 2001-08-16 Arjan Narbad Production of vanillin
EP0885968A1 (en) * 1997-06-19 1998-12-23 Givaudan-Roure (International) S.A. Process for the production of vanillin
US6235507B1 (en) 1997-06-19 2001-05-22 Givaudan Roure (International) Sa Microbiological process for producing vanillin
US20030070188A1 (en) 1997-07-15 2003-04-10 Daphna Havkin-Frenkel Vanillin biosynthetic pathway enzyme from Vanilla planifolia
US6372461B1 (en) 1998-09-18 2002-04-16 Board Of Directors Operating Michigan State University Synthesis of vanillin from a carbon source
US20030092143A1 (en) 1999-12-14 2003-05-15 Jurgen Rabenhorst Enzymes and genes used for producing vanillin
WO2004006657A1 (en) 2002-07-11 2004-01-22 Bureau Of Sugar Experiment Stations Transgenic plants used as a bioreactor system
WO2004110975A1 (es) 2003-06-19 2004-12-23 Biokab, S.A. De C.V. Proceso para la recuperacion de ácido ferúlico.
EP1734128A1 (en) * 2005-06-17 2006-12-20 Zhejiang Hangzhou Xinfu Pharmaceutical Co. Ltd Method for producing vanillic acid and vanillin from waste residue of rice bran oil by fermentation and biotransformation

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
CASTILHO L. ET AL., BIOCHEMICAL ENGINEERING JOURNAL, vol. 4, 2000, pages 239 - 247
CLARK: "Vanillin", PERF FLAVOR, vol. 15, 1990, pages 45 - 54
H. PRIEFERT ET AL., APPL. MICROBIOL. BIOTECHNOL., vol. 56, 2001, pages 296 - 314
JENKINS N.E. ET AL., BIOCONTROL NEWS AND INFORMATION, vol. 19, 1998, pages 21N - 31N
PAPAGIANNI ET AL., FOOD TECHNOL. BIOTECHNOL., vol. 39, 2001, pages 319 - 326
PAPAGIANNI M. ET AL., FOOD TECHNOLOGY AND BIOTECHNOLOGY, vol. 39, 2001, pages 319 - 326
See also references of EP2157184A4
SUTHERLAND ET AL., CAN. J. MICROBIOL., vol. 29, 1983, pages 1253 - 57
TOMS; WOOD, BIOCHEMISTRY, vol. 9, 1970, pages 337 - 43
TORRE P. ET AL.: "Bioconversion of ferulate into vanillin by Escherichia coli strain JM109/pBB1 in immobilized-cell reactor", ANNALS OF MICROBIOLOGY, vol. 54, no. 4, 2004, pages 517 - 527, XP008122084 *
VINIEGRA-GONZÁLEZ G. ET AL., BIOCHEMICAL ENGINEERING JOURNAL, vol. 3643, 2002, pages 1 - 11

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114174253A (zh) * 2019-07-30 2022-03-11 罗地亚经营管理公司 天然香草醛组合物

Also Published As

Publication number Publication date
EP2157184A1 (en) 2010-02-24
EP2157184B1 (en) 2020-11-18
EP2157184A4 (en) 2012-12-26
ES2854374T3 (es) 2021-09-21

Similar Documents

Publication Publication Date Title
ES2258290T7 (es) Proceso para la producción de vainillina
JP6720420B2 (ja) メチロピラ及びその選択的分割による(S)−α−エチル−2−オキソ−1−ピロリジン酢酸塩の調製における使用
ES2854374T3 (es) Procedimiento para producir vainillina a partir de microorganismos inmovilizados por cultivo de superficie
ES2294456T3 (es) Preparacion de acido lactico a partir de un sustrato conteniendo pentosa.
CN102690762A (zh) 游离细胞法生物转化l-天冬氨酸生产l-丙氨酸的方法
CN103602609A (zh) 一种发酵生产l-丙氨酸的高产菌株及其制备方法
CN102719502A (zh) 一种诱变乳酸产生菌生产l-丙氨酸的方法
US11401535B2 (en) Process of production of vanillin with immobilized microorganisms
JP4365862B2 (ja) カンジダトロピカリスcj−fid菌株(kctc10457bp)およびそれを利用したキシリトールの生産方法
KR100656980B1 (ko) 쌀겨로부터 추출된 유용미생물 배양액의 대량 제조 방법및 상기 유용미생물 배양액을 이용한 유용 미생물활성액의 대량 제조 방법
JP4742610B2 (ja) フマル酸の製造方法
CN1219071C (zh) 两步发酵法生产酵母胞外海藻糖的方法
CN103173398B (zh) 一株短小杆菌以及由其发酵制备海藻糖的方法
CN113234609A (zh) 合成低聚果糖的专用菌株及其用于合成低聚果糖的方法
CN101294176B (zh) 用核糖醇发酵液生物转化制备l-核糖的方法
JP4194152B2 (ja) エリスリトールの製造方法
JP2009106278A (ja) 発酵法によるd−乳酸の製法
JP3798336B2 (ja) イグサを用いた酵素の生産方法
CN1648242A (zh) 透性化细胞海藻糖合酶及其制备和用途
RU2183218C2 (ru) Штамм гриба aspergillus niger вкпм f - 790 - продуцент глюконовой и лимонной кислот
JP3840538B2 (ja) D‐タガトースの製造方法
JP4613322B2 (ja) 好熱性細菌によるキトサンオリゴ糖の製造方法
KR0162168B1 (ko) 에리스리톨의 제조방법
WO2013161674A1 (ja) 乳酸の製造方法
JPH067180A (ja) 天然型アブシジン酸の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: MX/A/2008/012689

Country of ref document: MX

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07747199

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007747199

Country of ref document: EP