WO2013161674A1 - 乳酸の製造方法 - Google Patents
乳酸の製造方法 Download PDFInfo
- Publication number
- WO2013161674A1 WO2013161674A1 PCT/JP2013/061519 JP2013061519W WO2013161674A1 WO 2013161674 A1 WO2013161674 A1 WO 2013161674A1 JP 2013061519 W JP2013061519 W JP 2013061519W WO 2013161674 A1 WO2013161674 A1 WO 2013161674A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lactic acid
- mass
- fermentation
- filamentous fungus
- culture
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/56—Lactic acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P2203/00—Fermentation products obtained from optionally pretreated or hydrolyzed cellulosic or lignocellulosic material as the carbon source
Definitions
- the present invention relates to a method for producing lactic acid.
- Filamentous fungi such as Rhizopus oryzae contained in fungi tend to become mycelium (pellets).
- pellet-like filamentous fungus When such a pellet-like filamentous fungus is used for the production of lactic acid, it is known that the product can be easily separated from the medium after fermentation and continuous production is possible (Patent Document 1). .
- Patent Document 1 there is a report that lactic acid was continuously produced for 25 days (25 cycles) by a semi-batch reaction method using pellets of Rhizopus oryzae.
- the filamentous fungus is adjusted to a phosphate ion, potassium ion, sodium ion, magnesium ion and calcium ion concentration of 5 to 60 mM, 5 to 60 mM, 2 to 50 mM, 0.5 to 9 mM and 0.5 to 12 mM, respectively.
- a phosphate ion, potassium ion, sodium ion, magnesium ion and calcium ion concentration of 5 to 60 mM, 5 to 60 mM, 2 to 50 mM, 0.5 to 9 mM and 0.5 to 12 mM, respectively.
- fermentation is performed using one or more bacterial cells selected from filamentous fungal pellets and immobilized filamentous fungi in a liquid medium containing a carbon source and having a phosphate ion concentration controlled to less than 0.007% by mass.
- the present invention provides a method for producing lactic acid, which includes a first fermentation step for obtaining lactic acid by the above method.
- An object of the present invention is to provide a method for producing lactic acid by filamentous fungi, which can maintain high productivity of lactic acid even when continuously produced.
- the present inventors have controlled the concentration of a specific component in a liquid medium containing a carbon source to be less than a predetermined value, thereby causing filamentous fungus pellets or It has been found that the mycelium form of the immobilized filamentous fungus is maintained and that high productivity of lactic acid can be maintained even when continuously produced.
- a method for producing lactic acid by filamentous fungi which can maintain high productivity even if lactic acid is continuously produced while maintaining the mycelial morphology of filamentous fungal pellets or immobilized filamentous fungi.
- the phosphate ion concentration is controlled to be less than 0.007% by mass, and one or more bacteria selected from filamentous fungus pellets and immobilized filamentous fungi in a liquid medium containing a carbon source.
- filamentous fungus used in the present invention examples include microorganisms belonging to the genus Rhizopus, the genus Aspergillus and the genus Mucor, and among them, the genus Rhizopus is preferable. Specifically, Rhizopus oryzae, Aspergillus oryzae, Aspergillus niger, Aspergillus termulus, and Aspergillus terum -Orizae (Rhizopus oryzae) is more preferable.
- the filamentous fungus may be used alone in the form of a filamentous fungus pellet or an immobilized filamentous fungus, or may be used as a mixture of the filamentous fungus pellet and the immobilized filamentous fungus.
- pellet refers to a mycelial mass having a size of several hundred ⁇ m to several mm formed spontaneously by liquid culture.
- immobilized filamentous fungus refers to a filamentous fungus that is held or embedded in a carrier.
- the filamentous fungus pellet and the immobilized filamentous fungus those obtained commercially may be used, or those prepared by the following steps may be used.
- Filamentous fungal pellets can be prepared by culture.
- the medium may be any of a synthetic medium, a natural medium, and a semi-synthetic medium to which natural components are added as long as it is a liquid medium capable of growing filamentous fungi.
- the medium generally contains a carbon source, a nitrogen source, an inorganic salt, and the like, but the composition of each component can be selected as appropriate.
- the phosphate ion concentration in the medium can be appropriately selected from the phosphate ion concentration of the medium usually used for culturing filamentous fungi, and does not need to be less than 0.007% by mass.
- the culture temperature is preferably 20 to 40 ° C., more preferably 25 to 30 ° C.
- the initial pH (25 ° C.) of the medium is preferably 3 to 7, more preferably 4 to 6.
- a well-known method can be employ
- the aeration condition is preferably 0.25 to 4 vvm, more preferably 0.5 to 2 vvm.
- the culture period is preferably 30 minutes to 7 days, more preferably 0.5 to 6 days, and further preferably 1 to 5 days after inoculating filamentous fungal spores in a liquid medium.
- a conventionally well-known thing can be employ
- Specific examples include an aeration and stirring type culture tank, a bubble column type culture tank, and a fluidized bed culture tank.
- the filamentous fungal pellet is extracted from the culture tank together with the culture solution, and can be separated and recovered by simple operations such as filtration and centrifugation, and used in the next step, but the filamentous fungal pellet remains in the culture tank, It is also possible to perform the next step in the same culture tank. In addition, this step can be further divided into two or more steps.
- Immobilized filamentous fungi can be prepared by culture.
- a well-known method can be employ
- the material for the filamentous fungus immobilization carrier include urethane polymers, olefin polymers, diene polymers, condensation polymers, silicone polymers, and fluorine polymers.
- the shape of the carrier for immobilizing filamentous fungi may be any of a flat plate shape, a multilayer plate shape, a corrugated plate shape, a tetrahedron shape, a spherical shape, a string shape, a net shape, a columnar shape, a lattice shape, a cylindrical shape, and the like.
- the form of the filamentous fungus-immobilized carrier is preferably a foam, a thin piece, a sheet, a hollow body, a resin molded body or the like, and more preferably a foam.
- the size of the filamentous fungus immobilization carrier is preferably 0.1 mm to 10 mm, more preferably 0.5 to 5 mm, and still more preferably 0.7 to 2 mm.
- the medium and culture tank used for immobilization of filamentous fungi can be the same as the filamentous fungus pellet described above, and the same culture conditions as those of the filamentous fungus pellet described above are adopted. can do. Furthermore, after culturing, the immobilized filamentous fungus can be separated and recovered by the same operation as the filamentous fungus pellet and used in the next step, but the immobilized filamentous fungus is left in the culture tank and the next process is performed in the same culture tank. It is also possible. In addition, this step can be further divided into two or more steps.
- This step is a step of producing lactic acid by fermenting a carbon source using bacterial cells.
- Lactic acid may be any of L-form, R-form and racemate.
- the medium used in this step is not particularly limited as long as it is a liquid medium that contains a carbon source and the phosphate ion concentration is controlled below a predetermined value, such as a nitrogen source, inorganic salts other than phosphate, vitamins, and the like. It may be included.
- a predetermined value such as a nitrogen source, inorganic salts other than phosphate, vitamins, and the like. It may be included.
- the carbon source to be used contains the above nutrient source at a concentration suitable for culture, it is possible to use only the carbon source.
- the phosphate ion concentration in the medium used in this step is less than 0.007% by mass, but preferably 0.006 from the viewpoint of maintaining high productivity of lactic acid while maintaining the mycelial morphology of the filamentous fungal pellet. It is at most mass%, more preferably at most 0.005 mass%, further preferably at most 0.004 mass%, further preferably at most 0.003% by mass.
- the lower limit of the phosphate ion concentration in the medium is not particularly limited, and may be 0% by mass, that is, phosphate ions may not be included.
- the phosphate ion concentration is 0% by mass is a concept including a case where the phosphate ion concentration in the medium is measured by the enzyme colorimetric method and is below the detection limit.
- the range of the phosphate ion concentration is 0 to less than 0.007% by mass, preferably 0 to 0.006% by mass, more preferably 0 to 0.005% by mass, and still more preferably 0 to 0.004% by mass. %, More preferably 0 to 0.003 mass%. The reason why such a range is preferable is not necessarily clear, but the present inventors speculate that excessive growth of filamentous fungi is suppressed and the mycelial morphology is maintained.
- a phosphate ion when the phosphate ion is contained in the culture medium used at this process, a phosphate ion can be contained with the form of a phosphate.
- Specific examples of the phosphate include the same as those exemplified in the second fermentation step described later.
- the carbon source is contained in the culture medium used at this process
- saccharides are mentioned as a carbon source.
- Specific examples include glucose, fructose, xylose, sucrose, and the like. These can be used alone or in combination of two or more. Among these, glucose and fructose are preferable from the viewpoint of maintaining high productivity of lactic acid.
- a sugar solution containing such a saccharide can also be used as a carbon source.
- sugar liquid obtained from starch, molasses (waste molasses), sugar liquid obtained from lignocellulosic biomass can be mentioned. These can be used alone or in combination of two or more.
- lignocellulose-based biomass in the present specification means biomass mainly composed of cellulose, hemicellulose, and lignin.
- lignocellulosic biomass include inawara, rice husk, straw, bagasse, coconut shell, corn cob, weed, wood, and pulp and paper produced therefrom.
- starch examples include extracts of millet such as corn and beans such as soybean, and examples of molasses include those derived from sugar cane and sugar beet.
- the initial carbon concentration in the medium is preferably 1% by mass or more, more preferably 3% by mass or more, still more preferably 5% by mass or more, and preferably 40% from the viewpoint of maintaining high productivity of lactic acid. It is not more than mass%, more preferably not more than 30 mass%, still more preferably not more than 20 mass%.
- the range of the initial carbon concentration in the medium is preferably 1 to 40% by mass, more preferably 3 to 30% by mass, and still more preferably 5 to 20% by mass.
- the medium used in this step can contain a nitrogen source.
- the nitrogen source include nitrogen-containing compounds such as urea, ammonium nitrate, potassium nitrate, and sodium nitrate.
- the initial nitrogen concentration in the medium is preferably 0.01 to 1% by mass, more preferably 0.02 to 0.8% by mass, and still more preferably 0.04 to 0% from the viewpoint of maintaining high productivity of lactic acid. .6% by mass.
- the medium used in this step can contain sulfate.
- Specific examples of the sulfate include magnesium sulfate, zinc sulfate, potassium sulfate, and sodium sulfate.
- the initial sulfate ion concentration in the medium is preferably 0.001 to 0.1% by mass, more preferably 0.005 to 0.08% by mass, and still more preferably 0.001% from the viewpoint of maintaining high productivity of lactic acid. 01 to 0.04% by mass.
- the medium used in this step can contain a magnesium salt. Specific examples of the magnesium salt include magnesium sulfate, magnesium nitrate, and magnesium chloride.
- the initial magnesium ion concentration in the medium is preferably 0 to 0.5% by mass, more preferably 0.001 to 0.2% by mass, and still more preferably 0.002 to 0.5% from the viewpoint of maintaining high productivity of lactic acid. 0.1% by mass.
- the medium used in this step can contain a zinc salt.
- the zinc salt include zinc sulfate, zinc nitrate, and zinc chloride.
- the initial zinc ion concentration in the medium is preferably 0 to 0.1% by mass, more preferably 0.00001 to 0.01% by mass, and still more preferably 0.00005 to 0.01% by mass from the viewpoint of maintaining high productivity of lactic acid. 0.005% by mass.
- the culture temperature is preferably 20 to 40 ° C, more preferably 30 to 37 ° C.
- the pH of the medium (25 ° C.) is preferably 2 to 7, more preferably 4 to 6, from the viewpoint of bacterial cell growth and lactic acid productivity.
- the pH can be controlled using a base such as calcium hydroxide, sodium hydroxide, calcium carbonate or ammonia, or an acid such as sulfuric acid or hydrochloric acid.
- anaerobic conditions or aerobic conditions can be selected as appropriate.
- the aeration condition in the aerobic condition is preferably 0.25 to 4 vvm, more preferably 0.5 to 2 vvm.
- the culture tank used for the culture conventionally known ones can be appropriately employed. From the viewpoint of improving the production rate of lactic acid, an aeration and stirring type culture tank, a bubble column type culture tank, and a fluidized bed culture tank are used. Preferably used.
- This step can be performed, for example, by seeding the cells in a medium having the above conditions. Moreover, it can also carry out by leaving the microbial cell after a preparation process in a culture tank, and adding the culture medium of said conditions to this.
- This step may be carried out by any of batch, semi-batch and continuous methods, but a continuous method is preferred from the viewpoint of improving productivity. For example, when it is carried out in a semi-batch manner, the microbial cells and the fermentation broth can be separated, and a medium can be added to the separated and recovered microbial cells for further fermentation.
- the method of extracting the same quantity of fermented liquor can be employ
- the liquid level may be controlled by a liquid level sensor or the like so that the liquid level in the fermenter is kept constant.
- the second fermentation step can be performed after the first fermentation step from the viewpoint of activation of mycelia and maintenance of high productivity of lactic acid. That is, the second fermentation process ends the first fermentation process when the production rate maintenance rate of lactic acid in the first fermentation process reaches 50 to 95%, and the cells used in the first fermentation process. Is a step of performing fermentation in a liquid medium having a phosphate ion concentration of 0.007% by mass to 1% by mass and containing a carbon source.
- the production rate maintenance rate of lactic acid in the first fermentation step is preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, preferably 95% or less, more preferably It is preferable to carry out when it becomes 90% or less, more preferably 85% or less, from the viewpoint of activation of hyphae and maintenance of high productivity of lactic acid.
- the range of the production rate maintenance rate of lactic acid is usually 50 to 95%, preferably 50 to 90%, more preferably 60 to 90%, further preferably 70 to 90%, more preferably 70 to 85%. It is.
- production rate maintenance rate of lactic acid refers to a value obtained by the following formula (i).
- T [%] Vt [g / L / h] / Vi [g / L / h] ⁇ 100 (i)
- T represents the production rate maintenance rate [%] of lactic acid
- Vt represents the lactic acid production rate [g / L / h] of the sample
- Vi represents the control value [g / L of lactic acid production rate] / H].
- the lactic acid production rate [g / L / h] is a value obtained by dividing the lactic acid concentration (g / L) in the sample by the fermentation time (h).
- the control value (Vi) of the lactic acid production rate is a value determined based on the relationship between the lactic acid concentration in the fermentation liquid and the fermentation time according to the first fermentation step.
- the control value of the lactic acid production rate may be determined based on the relationship between the lactic acid concentration in the fermentation broth previously determined prior to actual operation and the fermentation time, or in the fermented liquor obtained during actual operation. You may determine based on the relationship between lactic acid concentration and fermentation time. In this case, the theoretical value (g / L) of the lactic acid concentration produced from the carbon source in the liquid medium can be taken into consideration.
- the control value (Vi) of the lactic acid production rate is not uniform depending on the production scale and the like, but is preferably 0.1 g / L / h or more, more preferably 0.3 g / L / h or more, and 0.5 g / L / h or more is more preferable, and 40 g / L / h or less is preferable, 30 g / L / h or less is more preferable, and 20 g / L / h or less is more preferable.
- the range of the lactic acid production rate control value (Vi) is preferably 0.1 to 40 g / L / h, more preferably 0.3 to 30 g / L / h, still more preferably 0.5 to 20 g / L / h. h.
- the bacterial cells and the fermentation broth may be separated, and the recovered bacterial cells may be seeded in a newly prepared liquid medium according to the present step.
- phosphate ions may be added to the liquid medium used in the first step to adjust to a predetermined phosphate ion concentration.
- the medium used in this step is the same as the liquid medium used in the first fermentation step except that the phosphate ion concentration is 0.007% by mass or more and 0.1% by mass or less.
- a nitrogen source, inorganic salts other than phosphate, vitamins and the like may be included.
- the carbon source to be used contains the above nutrient source at a concentration suitable for culture, it is possible to use only the carbon source.
- the phosphate ion concentration in the medium used in this step is preferably 0.007% by mass or more, more preferably 0.01% by mass or more, and still more preferably, from the viewpoint of activation of hyphae and maintaining high productivity of lactic acid. Is 0.03% by mass or more.
- the phosphate ion concentration in the medium used in this step is preferably 0.1% by mass or less, more preferably 0.09% by mass or less, and still more preferably 0.0% by mass, from the viewpoint of maintaining the cell morphology. It is 08 mass% or less.
- the range of the phosphate ion concentration in the medium is preferably 0.007 to 0.1% by mass, more preferably 0.01 to 0.09% by mass, and still more preferably 0.03 to 0.08% by mass. is there.
- Phosphate ions contained in the medium used in this step can be contained in the form of phosphate in the medium. Specific examples of the phosphate include dipotassium monohydrogen phosphate, monopotassium dihydrogen phosphate, disodium monohydrogen phosphate, monosodium dihydrogen phosphate, and the like.
- the culture temperature is preferably 20 to 40 ° C., more preferably 30 to 37 ° C.
- the pH of the medium (25 ° C.) is preferably 2 to 7, more preferably 4 to 6, from the viewpoint of bacterial cell growth and lactic acid productivity.
- the pH can be controlled using a base such as calcium hydroxide, sodium hydroxide, calcium carbonate or ammonia, or an acid such as sulfuric acid or hydrochloric acid.
- any one of anaerobic conditions and aerobic conditions can be appropriately selected.
- the aeration condition in the aerobic condition is preferably 0.25 to 4 vvm, more preferably 0.5 to 2 vvm.
- the time when the temperature of the medium satisfies the conditions of 20 ° C. or more and 40 ° C. or less and the pH (25 ° C.) of 2 or more and 7 or less is set as the start time of this step.
- the aeration conditions satisfy the conditions of 0.25 vvm or more and 4 vvm or less, it is set as the start time of this process.
- This step is preferably continued for 1 hour or longer, more preferably 12 hours or longer, and even more preferably 24 hours or longer after the start of this step, from the viewpoint of activating hyphae and maintaining high productivity of lactic acid.
- this step is preferably completed within 240 hours, more preferably within 120 hours, still more preferably within 60 hours, and even more preferably within 48 hours after the start of this step.
- the fermentation time in this step is preferably 1 to 240 hours, more preferably 12 to 120 hours, still more preferably 24 to 60 hours, still more preferably 24 to 48 hours.
- ⁇ Third fermentation process> when a 2nd fermentation process is performed, it is preferable to perform a 3rd fermentation process after a 2nd fermentation process from a viewpoint of higher productivity maintenance of lactic acid. That is, in the third fermentation step, fermentation is performed in a liquid medium containing a carbon source with the phosphate ion concentration controlled to less than 0.007% by mass using the cells used in the second fermentation step. It is a process.
- the cells used in the second fermentation step can be separated and recovered after the completion of the second fermentation step, and the collected cells are newly prepared books. What is necessary is just to seed
- the liquid medium used in this step is the same as the liquid medium used in the first fermentation step, and the specific configuration is as described in the first fermentation step.
- the productivity of lactic acid when the productivity of lactic acid has decreased, the productivity of lactic acid can be reactivated by performing the second fermentation step again.
- Separation of the bacterial cells and fermentation broth after the fermentation process may be performed by solid-liquid separation with a filter in the fermenter, or only after the cells are taken out of the tank and subjected to solid-liquid separation such as liquid cyclone or filtration. May be returned to the fermenter.
- Step of recovering lactic acid from the fermentation broth after the separation step After concentrating the fermentation broth obtained in the separation step, crystallization method, ion exchange method, solvent extraction method, method of depositing lactic acid as alkaline earth metal salt and then acid-decomposing the precipitate, or distillation as lactic acid ester Lactic acid can be separated and recovered from the fermentation broth by a method such as hydrolysis after purification.
- the present invention further discloses the following method for producing lactic acid.
- Lactic acid is obtained by fermentation using one or more bacterial cells selected from filamentous fungus pellets and immobilized filamentous fungi in a liquid medium containing a carbon source with a phosphate ion concentration controlled to less than 0.007% by mass.
- the production rate maintenance rate of lactic acid is preferably 50 to 95%
- the phosphate ion concentration is 0.007 using the cells used in the first fermentation step.
- the production rate maintenance rate of the lactic acid is preferably 50% or more, more preferably 60% or more, further preferably 70% or more, preferably 90% or less, more preferably 85% or less, ⁇ 2 > Method for producing lactic acid as described above.
- lactic acid production rate maintenance rate is preferably 50 to 90%, more preferably 60 to 90%, still more preferably 70 to 90%, and still more preferably 70 to 85%.
- ⁇ 5> The method for producing lactic acid according to any one of ⁇ 2> to ⁇ 4>, wherein the production rate maintenance rate of the lactic acid is preferably a value obtained by the following formula (i).
- T [%] Vt [g / L / h] / Vi [g / L / h] ⁇ 100 (i)
- T represents the production rate maintenance rate [%] of lactic acid
- Vt represents the lactic acid production rate [g / L / h] of the sample
- Vi represents the control value [g / L of lactic acid production rate] / H].
- the control value of the lactic acid production rate is preferably 0.1 g / L / h or more, more preferably 0.3 g / L / h or more, still more preferably 0.5 g / L / h or more, preferably 40 g. / L / h or less, More preferably, it is 30 g / L / h or less, More preferably, it is 20 g / L / h or less, The manufacturing method of the lactic acid of said ⁇ 5> description.
- the control value of the lactic acid production rate is preferably 0.1 to 40 g / L / h, more preferably 0.3 to 30 g / L / h, still more preferably 0.5 to 20 g / L / h,
- the second fermentation step is preferably continued for 1 hour or longer, more preferably 12 hours or longer, more preferably 24 hours or longer, preferably within 240 hours, more preferably within 120 hours, still more preferably within 60 hours, More preferably, the method for producing lactic acid according to any one of ⁇ 2> to ⁇ 7>, which is completed within 48 hours.
- ⁇ 12> The method for producing lactic acid according to any one of ⁇ 1> to ⁇ 11>, wherein the filamentous fungus is preferably genus Rhizopus.
- ⁇ 14> The method for producing lactic acid according to any one of ⁇ 1> to ⁇ 13>, wherein the carbon source is preferably a saccharide.
- the saccharide is preferably one or more selected from the group consisting of a sugar solution obtained from starch, molasses, and a sugar solution obtained from lignocellulosic biomass.
- the phosphate ion concentration in the liquid medium used in the first fermentation step is preferably 0.006% by mass or less, more preferably 0.005% by mass or less, still more preferably 0.004% by mass or less, and still more preferably.
- the phosphate ion concentration in the liquid medium used in the first fermentation step is preferably 0 to less than 0.007% by mass, more preferably 0 to 0.006% by mass, and still more preferably 0 to 0.005% by mass.
- the process for producing lactic acid according to any one of ⁇ 1> to ⁇ 15> above.
- the phosphate medium is not contained in the liquid medium used in the first fermentation step (phosphate ion concentration is 0% by mass) or the phosphate medium is contained in the liquid medium, it is preferably 0.006.
- ⁇ 1> to ⁇ 15> wherein the content is not more than mass%, more preferably not more than 0.005 mass%, still more preferably not more than 0.004 mass%, still more preferably not more than 0.003 mass%.
- the content is not more than mass%, more preferably not more than 0.005 mass%, still more preferably not more than 0.004 mass%, still more preferably not more than 0.003 mass%.
- the phosphate ion concentration in the liquid medium used in the second fermentation step is preferably 0.1% by mass or less, more preferably 0.09% by mass or less, and further preferably 0.08% by mass or less.
- the phosphate ion concentration in the liquid medium used in the second fermentation step is preferably 0.007 to 0.1% by mass, more preferably 0.01 to 0.09% by mass, and still more preferably 0.03.
- the phosphate ion concentration in the liquid medium used in the third fermentation step is preferably 0.006% by mass or less, more preferably 0.005% by mass or less, still more preferably 0.004% by mass or less, still more preferably.
- the phosphate ion concentration in the liquid medium used in the third fermentation step is preferably 0 to less than 0.007% by mass, more preferably 0 to 0.006% by mass, and still more preferably 0 to 0.005% by mass.
- the liquid medium used in the third fermentation step does not contain phosphate ions (phosphate ion concentration is 0% by mass), or contains phosphate ions in the liquid medium, it is preferably 0.006.
- phosphate ion concentration is 0% by mass
- the content is not more than mass%, more preferably not more than 0.005 mass%, still more preferably not more than 0.004 mass%, still more preferably not more than 0.003 mass%.
- the initial carbon concentration in the liquid medium is preferably 1% by mass or more, more preferably 3% by mass or more, and further preferably 5%.
- the initial carbon concentration in the liquid medium is preferably 1 to 40% by mass, more preferably 3 to 30% by mass, and still more preferably The method for producing lactic acid according to any one of ⁇ 1> to ⁇ 24>, wherein the step is carried out at 5 to 20% by mass.
- the initial nitrogen concentration in the liquid medium is preferably 0.01 to 1% by mass, more preferably 0.02 to 0. 0%. The method for producing lactic acid according to any one of ⁇ 1> to ⁇ 25>, which is performed at 8% by mass, more preferably 0.04 to 0.6% by mass.
- the initial sulfate ion concentration in the liquid medium is preferably 0.001 to 0.1% by mass, more preferably 0.005.
- the initial magnesium ion concentration in the liquid medium is preferably 0 to 0.5% by mass, more preferably 0.001 to 0.
- the initial zinc ion concentration in the liquid medium is preferably 0 to 0.1% by mass, more preferably 0.00001 to 0.
- At least one of the first, second, and third fermentation steps is preferably performed, and a fixed amount of liquid medium is supplied into the fermentor at a constant rate, and the same amount of fermentation broth is removed from the fermenter.
- the method for producing lactic acid according to any one of ⁇ 1> to ⁇ 29> which is performed in a continuous manner.
- Lactic acid is obtained by fermentation using one or more bacterial cells selected from filamentous fungus pellets and immobilized filamentous fungi in a liquid medium containing a carbon source with a phosphate ion concentration controlled to less than 0.007% by mass.
- the phosphate cell concentration is 0.007 using the cells used in the first fermentation step.
- a method for reactivating cells used for lactic acid production comprising a second fermentation step in which fermentation is performed in a liquid medium containing at least 1% by mass and not more than 1% by mass.
- filamentous fungus pellet> Preparation of spore suspension
- filamentous fungus R. oryzae NBRC5384 obtained from National Institute of Technology and Evaluation (NITE) was used.
- Filamentous fungi are streaked / coated on slanted agar medium (Difco Potato Dextrose Agar, Becton, Dickinson and Company) formed in a test tube, statically cultured at 25 ° C, and periodically passaged. Teenager.
- the filamentous fungus pellet was prepared by the following two-stage culture.
- a 200 mL baffled Erlenmeyer flask charged with 60 mL of PDB medium (Difco Potato Dextrose Broth, Becton, Dickinson and Company) was sterilized, and the spore suspension prepared by the above-mentioned method was sterilized at 1 ⁇ 10 4.
- the cells were inoculated so that the number of cells was 1 spore / mL, and cultured for 3 days under a culture condition of 27 ° C. and 100 r / m (PRECI, PRXYg-98R).
- pellet formation medium glucose (manufactured by Wako Pure Chemical Industries, Ltd.) 10% by mass, magnesium sulfate heptahydrate 0.025% by mass, zinc sulfate heptahydrate 0.009% by mass, ammonium sulfate 0 Sterilize 2L airlift fermenter charged with 2L, inoculate 120mL of the first stage culture solution at 27 ° C, aeration rate 1vvm
- pH 3N sodium hydroxide solution was appropriately added to maintain pH (25 ° C.) of 6.0.
- the filamentous fungus pellet culture obtained at each stage was filtered with gauze for 1 minute until the filtrate drip settled to obtain wet filamentous fungus pellets.
- the pellets obtained in the second stage were immediately subjected to fermentability evaluation.
- the immobilized filamentous fungus was prepared by the following two-stage culture.
- the first stage culture is 30 mL immobilized medium (glucose (manufactured by Wako Pure Chemical Industries, Ltd.) 5% by mass, magnesium sulfate heptahydrate 0.025% by mass, zinc sulfate heptahydrate 0.009% by mass, Sterilize a 100 mL Erlenmeyer flask containing 5 masses of urea 0.2 mass%, monopotassium dihydrogen phosphate 0.06 mass%), and 0.8 mm square polyurethane foam (Nisshinbo Co., Ltd., APG).
- a spore suspension prepared in the same manner as the fungal pellet was inoculated to 2 ⁇ 10 4 spore / mL and cultured at 35 ° C. and 200 r / m (PRECI, PRXYg-98R). I went for one day.
- the culture in the second stage is a cell growth medium (glucose (manufactured by Wako Pure Chemical Industries, Ltd.) 10% by mass, magnesium sulfate heptahydrate 0.025% by mass, zinc sulfate heptahydrate 0.009% by mass, urea Sterilize a 500 mL Erlenmeyer flask containing 100 mL of 0.1 mass%, monopotassium dihydrogen phosphate 0.06 mass%, calcium carbonate 5 mass%) and inoculate the filamentous fungus immobilized on the carrier in the first stage Then, the cultivation was performed at 35 ° C. and 200 r / m (PRECI, PRXYg-98R) for 2 days.
- a cell growth medium glucose (manufactured by Wako Pure Chemical Industries, Ltd.) 10% by mass, magnesium sulfate heptahydrate 0.025% by mass, zinc sulfate heptahydrate 0.009% by mass, urea Steril
- the lactic acid fermentation broth was continuously supplied into the fermenter at a rate of 2 L / day, and the same amount of the fermented broth was extracted outside the fermenter.
- the culture solution was supplied while keeping the fermentation solution level constant by controlling the pump for the collected solution with a solution level sensor. After the culture, only the fermentation broth was collected while the filamentous fungus pellets were left in the tank by a sintered filter installed in the fermentation broth.
- the immobilized filamentous fungus was recovered, and the recovered immobilized filamentous fungus was added to a 500 mL Erlenmeyer flask to which 100 mL of sterilized lactic acid fermentation broth was added again, and 35 ° C., 200 r / m (PRECI, PRXYg-98R). ) For 2 days, and the immobilized filamentous fungi were recovered. Then, batch culture by the same operation was repeatedly performed using the recovered immobilized filamentous fungi.
- Production rate maintenance rate of lactic acid T [%] Lactic acid production rate of sample [g / L / h] / Control value of lactic acid production rate [g / L / h] ⁇ 100
- Example 1 Effect of reducing phosphoric acid concentration during lactic acid production
- a filamentous fungus pellet was prepared using the filamentous fungus R. oryzae NBRC5384.
- ⁇ Evaluation of fermentability> Using the lactic acid fermentation broth in which glucose, urea, magnesium sulfate heptahydrate and zinc sulfate heptahydrate were dissolved at the concentrations shown in Table 2, the fermentability described in Fermentation Example 1 was evaluated. In addition, glucose (made by Wako Pure Chemical Industries) was used as a glucose source. The evaluation results are shown in Table 4.
- Example 2 A filamentous fungus pellet was prepared under the same conditions as in Example 1 except that 0.5% by mass of sorbitan monolaurate (trade name Leidol SP-L10, manufactured by Kao Corporation) was added to the PDB medium in the first stage culture. It was.
- Example 1 with the exception of using the lactic acid fermentation broth shown in Table 2 in which monopotassium dihydrogen phosphate was added and the phosphate ion concentration of the lactic acid fermentation broth was 0.0014% by mass (0.15 mM). Fermentability was evaluated under the same conditions. The evaluation results are shown in Table 4.
- Example 3 Example 2 with the exception of using the lactic acid fermentation broth shown in Table 2 in which monopotassium dihydrogen phosphate was added and the phosphate ion concentration of the lactic acid fermentation broth was 0.0035% by mass (0.37 mM). Preparation of filamentous fungal pellets and evaluation of fermentability were performed under the same conditions. The evaluation results are shown in Table 4.
- Example 1 Example 1 except that the lactic acid fermentation broth shown in Table 3 was used except that monopotassium dihydrogen phosphate was added and the phosphate ion concentration of the lactic acid fermentation broth was 0.0070 mass% (0.73 mM). Preparation of filamentous fungal pellets and evaluation of fermentability were performed under the same conditions. The evaluation results are shown in Table 5.
- Example 2 Example 1 except that the lactic acid fermentation broth shown in Table 3 was used except that monopotassium dihydrogen phosphate was added and the phosphate ion concentration of the lactic acid fermentation broth was 0.042% by mass (4.4 mM). Preparation of filamentous fungal pellets and evaluation of fermentability were performed under the same conditions. The evaluation results are shown in Table 5.
- Example 4 Preparation of immobilized filamentous fungi>
- an immobilized filamentous fungus was prepared using the filamentous fungus R. oryzae NBRC5384.
- ⁇ Evaluation of fermentability> Using the lactic acid fermentation broth in which glucose, urea, magnesium sulfate heptahydrate and zinc sulfate heptahydrate were dissolved at the concentrations shown in Example 1 (Table 2), the fermentability evaluation described in Fermentation Example 2 was performed. 50 days (25 cycles) were performed. In addition, glucose (made by Wako Pure Chemical Industries) was used as a glucose source. The evaluation results are shown in Table 6.
- Example 5 Preparation of immobilized filamentous fungi>
- an immobilized filamentous fungus was prepared using the filamentous fungus R. oryzae NBRC5384.
- ⁇ Evaluation of fermentability> Using the lactic acid fermentation broth in which glucose, urea, magnesium sulfate heptahydrate and zinc sulfate heptahydrate were dissolved at the concentrations shown in Example 1 (Table 2), the fermentability evaluation described in Fermentation Example 2 was performed. After 36 days (18 cycles), the immobilized filamentous fungi were collected.
- the control value of the lactic acid production rate was set to 1.6 [g / L / h], and the lactic acid production rate after 36 days was 1.3 [g / L / h]. Then, using the recovered immobilized filamentous fungi, the culture solution was changed to the lactic acid fermentation broth shown in Comparative Example 2 (Table 3), and cultured for 2 days to recover the immobilized filamentous fungus. Subsequently, using the recovered immobilized filamentous fungi, the culture solution was changed to the lactic acid fermentation broth shown in Example 1 (Table 2) again, and the fermentability was evaluated for 12 days (6 cycles). In addition, glucose (made by Wako Pure Chemical Industries) was used as a glucose source. The evaluation results are shown in Table 6.
Landscapes
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
本発明は、連続的に生産しても乳酸の高い生産性を維持できる、糸状菌による乳酸の製造方法を提供することにある。
糸状菌ペレット及び固定化糸状菌は、商業的に入手したものを使用しても、次の工程により調製したものを使用してもよい。
糸状菌ペレットは、培養により調製することができる。
培地としては、糸状菌を生育可能な液体培地であれば、合成培地、天然培地及び天然成分を添加した半合成培地のいずれでもよい。培地には、炭素源、窒素源、無機塩等が含まれるのが一般的であるが、各成分組成は適宜選択可能である。また、培地中のリン酸イオン濃度は、糸状菌の培養に通常使用される培地のリン酸イオン濃度を適宜採用することが可能であり、0.007質量%未満であることを要しない。
培養条件としては、培養温度が、好ましくは20~40℃、より好ましくは25~30℃である。また、培地の初発pH(25℃)は、好ましくは3~7、より好ましくは4~6である。
培養方法は、公知の方法を採用することができる。例えば、糸状菌の胞子を液体培地に植菌後、胞子を発芽させて菌糸とし、その菌糸から菌体を形成させペレット化させる。この培養は、通常、好気的条件で行われる。通気条件は、好ましくは0.25~4vvm、より好ましくは0.5~2vvmである。培養期間は、糸状菌の胞子を液体培地に植菌後、好ましくは30分~7日間、より好ましくは0.5~6日間、更に好ましくは1~5日間である。また、培養に用いる培養槽は、従来公知のものを適宜採用することができる。具体的には、通気撹拌型培養槽、気泡塔型培養槽、流動床培養槽等が挙げられる。
培養後、糸状菌ペレットは、培養液と共に培養槽から抜き出して、ろ別、遠心分離等の簡便な操作により分離回収し次工程に使用することができるが、培養槽に糸状菌ペレットを残し、同一培養槽で次工程を行うことも可能である。
また、本工程は2以上の工程に更に分けて行うこともできる。
固定化糸状菌は、培養により調製することができる。
培養方法は、公知の方法を採用することができる。例えば、糸状菌の胞子を糸状菌固定化用担体の存在する液体培地に植菌後、胞子を発芽させて菌糸とし、担体内へ捕捉された菌糸から固定化糸状菌を調製する。糸状菌固定化用担体の材質としては、ウレタン系重合体、オレフィン系重合体、ジエン系重合体、縮合系重合体、シリコーン系重合体、フッ素系重合体等が挙げられる。糸状菌固定化用担体の形状としては、平板状、多層板状、波板状、四面体状、球状、紐状、網状、円柱状、格子状、円筒状等のいずれでもよい。糸状菌固定化担体の形態としては、発泡体、薄片体、シート体、中空体、樹脂成型体等が好ましく、発泡体がより好ましい。また、糸状菌固定化用担体のサイズとしては、0.1mm~10mmが好ましく、0.5~5mmがより好ましく、0.7~2mmが更に好ましい。
なお、糸状菌の固定化に使用する培地及び培養槽としては前述の糸状菌ペレットと同様のものを使用することが可能であり、また培養条件についても前述の糸状菌ペレットと同様の条件を採用することができる。更に、培養後、固定化糸状菌は、糸状菌ペレットと同様の操作により分離回収し次工程に使用することができるが、培養槽に固定化糸状菌を残し、同一培養槽で次工程を行うことも可能である。
また、本工程は2以上の工程に更に分けて行うこともできる。
本工程は、菌体を用いて炭素源を発酵させて乳酸を生産する工程である。乳酸は、L体、R体及びラセミ体のいずれでもよい。
本工程においては、炭素源として、このような糖類を含有する糖液を使用することもできる。具体的には、でんぷんから得られる糖液、糖蜜(廃糖蜜)、リグノセルロース系バイオマスから得られる糖液が挙げられる。これらは1種又は2種以上組み合わせて使用することができる。ここで、本明細書において「リグノセルロース系バイオマス」とは、セルロース、ヘミセルロース、及びリグニンを主成分とするバイオマスを意味する。リグノセルロース系バイオマスとしては、具体例には、イナワラ、籾殻、麦わら、バガス、ヤシ殻、コーンコブ、雑草、木材、並びにそれらから製造されたパルプ及び紙等が挙げられる。また、でんぷんとしては、例えば、トウモロコシ等の雑穀類、大豆等の豆類の抽出物が挙げられ、糖蜜としては、例えば、サトウキビ、テンサイ等に由来するものが挙げられる。
本工程で使用する培地には、硫酸塩を含有することができる。硫酸塩としては、具体的には、硫酸マグネシウム、硫酸亜鉛、硫酸カリウム、硫酸ナトリウム等が挙げられる。培地中の初発の硫酸イオン濃度は、乳酸の高い生産性維持の観点から、好ましくは0.001~0.1質量%、より好ましくは0.005~0.08質量%、更に好ましくは0.01~0.04質量%である。
本工程で使用する培地には、マグネシウム塩を含有することができる。マグネシウム塩としては、具体的には、硫酸マグネシウム、硝酸マグネシウム、塩化マグネシウム等が挙げられる。培地中の初発のマグネシウムイオン濃度は、乳酸の高い生産性維持の観点から、好ましくは0~0.5質量%、より好ましくは0.001~0.2質量%、更に好ましくは0.002~0.1質量%である。
本工程で使用する培地には、亜鉛塩を含有することができる。亜鉛塩としては、具体的には、硫酸亜鉛、硝酸亜鉛、塩化亜鉛等が挙げられる。培地中の初発の亜鉛イオン濃度は、乳酸の高い生産性維持の観点から、好ましくは0~0.1質量%、より好ましくは0.00001~0.01質量%、更に好ましくは0.00005~0.005質量%である。
培養方法は、嫌気的条件及び好気的条件のいずれかを適宜選択することができる。好気的条件における通気条件は、好ましくは0.25~4vvm、より好ましくは0.5~2vvmである。また、培養に用いる培養槽は、従来公知のものを適宜採用することができるが、乳酸の生産速度の向上の観点から、通気撹拌型培養槽、気泡塔型培養槽、及び流動床培養槽が好ましく使用される。
本工程は、回分式、半回分式及び連続式のいずれで行ってもよいが、生産性向上の観点から、連続式が好ましい。
例えば、半回分式で行う場合、菌体と発酵液とを分離し、分離回収した菌体に培地を加えて更に発酵を行うことができる。また、連続式で行う場合、一定量の培地を発酵槽内に一定速度で供給するとともに、同量の発酵液を抜き取るという方法を採用することができる。その場合、発酵槽内の液面高さを一定に保つように、液面高さを液面センサー等により制御してもよい。また、発酵時に炭素源のみを供給することも可能であり、炭素源の供給は、流速で制御しても、グルコース濃度で制御してもよい。
本発明においては、菌糸の活性化、乳酸の高い生産性維持の観点から、第1の発酵工程後、第2の発酵工程を行うことができる。すなわち、第2の発酵工程は、第1の発酵工程における乳酸の生産速度維持率が50~95%となったときに第1の発酵工程を終了し、第1の発酵工程で使用した菌体を用いて、リン酸イオン濃度が0.007質量%以上1質量%以下であり、かつ炭素源を含む液体培地にて発酵を行う工程である。
T[%]=Vt[g/L/h]/Vi[g/L/h]×100 (i)
本工程で使用する培地中のリン酸イオン濃度は、菌糸の活性化、乳酸の高い生産性維持の観点から、好ましくは0.007質量%以上、より好ましくは0.01質量%以上、更に好ましくは0.03質量%以上である。また、本工程で使用する培地中のリン酸イオン濃度は、菌体の形態の維持の観点から、好ましくは0.1質量%以下、より好ましくは0.09質量%以下、更に好ましくは0.08質量%以下である。培地中のリン酸イオン濃度の範囲としては、好ましくは0.007~0.1質量%、より好ましくは0.01~0.09質量%、更に好ましくは0.03~0.08質量%である。
本工程で使用する培地に含まれるリン酸イオンは、培地中にリン酸塩の形態で含有することができる。リン酸塩としては、具体的には、リン酸一水素二カリウム、リン酸二水素一カリウム、リン酸一水素二ナトリウム、リン酸二水素一ナトリウム等が挙げられる。
培養方法は、嫌気的条件及び好気的条件のいずれかの培養方法を適宜選択することができる。好気的条件における通気条件は、好ましくは0.25~4vvm、より好ましくは0.5~2vvmである。
本工程では、培地の温度が20℃以上40℃以下、かつpH(25℃)が2以上7以下の条件を満たした時を本工程の開始時間とする。なお、好気的条件で行う場合には、前述の条件に加え、更に通気条件が0.25vvm以上4vvm以下の条件を満たした時を本工程の開始時間とする。
本発明においては、第2の発酵工程を行った場合には、乳酸のより高い生産性維持の観点から、第2の発酵工程後、第3の発酵工程を行うことが好ましい。すなわち、第3の発酵工程は、第2の発酵工程で使用した菌体を用いて、リン酸イオン濃度が0.007質量%未満に制御され、かつ炭素源を含む液体培地にて発酵を行う工程である。
第2の発酵工程で使用した菌体は、第2の発酵工程終了後、菌体と発酵液とを分離して回収することが可能であり、また回収した菌体は、新たに調製した本工程に係る液体培地に播種すればよい。
本工程で使用する液体培地は、第1の発酵工程で使用する液体培地と同様であり、具体的な構成は前述の第1の発酵工程において説明したとおりである。
発酵工程後の菌体と発酵液の分離は、発酵槽内でフィルタにより固液分離してもよいし、一度槽外に抜き出して液体サイクロンやろ過等の固液分離に供した後に菌体のみを発酵槽内に戻してもよい。
分離工程により得られた発酵液を濃縮した後、晶析法、イオン交換法、溶剤抽出法、乳酸をアルカリ土類金属塩として析出させた後析出物を酸分解する方法、あるいは乳酸エステルとして蒸留精製後加水分解する方法等により、発酵液から乳酸を分離し回収することができる。
リン酸イオン濃度が0.007質量%未満に制御され、かつ炭素源を含む液体培地にて、糸状菌ペレット及び固定化糸状菌から選ばれる1種以上の菌体を用いて発酵により乳酸を得る第1の発酵工程を含む、乳酸の製造方法。
前記第1の発酵工程において、乳酸の生産速度維持率が好ましくは50~95%となったときに、第1の発酵工程で使用した前記菌体を用いて、リン酸イオン濃度が0.007質量%以上1質量%以下であり、かつ炭素源を含む液体培地にて発酵を行う第2の発酵工程を有する、前記<1>記載の乳酸の製造方法。
<3>
前記乳酸の生産速度維持率が、好ましくは50%以上、より好ましくは60%以上、更に好ましくは70%以上であって、好ましくは90%以下、更に好ましくは85%以下である、前記<2>記載の乳酸の製造方法。
<4>
前記乳酸の生産速度維持率が、好ましくは50~90%、更に好ましくは60~90%、更に好ましくは70~90%、更に好ましくは70~85%である、前記<2>又は<3>記載の乳酸の製造方法。
<5>
前記乳酸の生産速度維持率が、好ましくは下記式(i)により求められる値である、前記<2>~<4>のいずれか一に記載の乳酸の製造方法。
T[%]=Vt[g/L/h]/Vi[g/L/h]×100 (i)
〔式(i)中、Tは乳酸の生産速度維持率[%]を示し、Vtは試料の乳酸生産速度[g/L/h]を示し、Viは乳酸生産速度の管理値[g/L/h]を示す。〕
前記乳酸生産速度の管理値が、好ましくは0.1g/L/h以上、より好ましくは0.3g/L/h以上、更に好ましくは0.5g/L/h以上であって、好ましくは40g/L/h以下、より好ましくは30g/L/h以下、更に好ましくは20g/L/h以下である、前記<5>記載の乳酸の製造方法。
<7>
前記乳酸生産速度の管理値が、好ましくは0.1~40g/L/h、より好ましくは0.3~30g/L/h、更に好ましくは0.5~20g/L/hである、前記<5>又は<6>記載の乳酸の製造方法。
<8>
前記第2の発酵工程を、好ましくは1時間以上、より好ましくは12時間以上、更に好ましくは24時間以上継続し、好ましくは240時間以内、より好ましくは120時間以内、更に好ましくは60時間以内、更に好ましくは48時間以内に終了する、前記<2>~<7>のいずれか一に記載の乳酸の製造方法。
<9>
前記第2の発酵工程を、好ましくは1~240時間、より好ましくは12~120時間、更に好ましくは24~60時間、更に好ましくは24~48時間行う、前記<2>~<8>のいずれか一に記載の乳酸の製造方法。
<10>
前記第2の発酵工程後、好ましくは第2の発酵工程で使用した前記菌体を用いて、リン酸イオン濃度が0.007質量%未満に制御され、かつ炭素源を含む液体培地にて発酵を行う第3の発酵工程を有する、前記<2>~<9>のいずれか一に記載の乳酸の製造方法。
前記第1の発酵工程前に、好ましくは糸状菌のペレット及び固定化糸状菌から選ばれる1種以上の菌体を調製する調製工程を有する、前記<1>~<10>のいずれか一に記載の乳酸の製造方法。
<12>
前記糸状菌が好ましくはリゾプス(Rhizopus)属である、前記<1>~<11>のいずれか一に記載の乳酸の製造方法。
<13>
前記糸状菌が好ましくはリゾプス・オリザエ(Rhizopus・oryzae)である、前記<1>~<12>のいずれか一に記載の乳酸の製造方法。
<14>
前記炭素源が好ましくは糖類である、前記<1>~<13>のいずれか一に記載の乳酸の製造方法。
<15>
前記糖類が好ましくはデンプンから得られる糖液、糖蜜、及びリグノセルロース系バイオマスから得られる糖液よりなる群から選ばれる1種以上である、前記<14>に記載の乳酸の製造方法。
前記第1の発酵工程で使用する液体培地中のリン酸イオン濃度が、好ましくは0.006質量%以下、より好ましくは0.005質量%以下、更に好ましくは0.004質量%以下、更に好ましくは0.003質量%以下、更に好ましくは0質量%である、前記<1>~<15>のいずれか一に記載の乳酸の製造方法。
<17>
前記第1の発酵工程で使用する液体培地中のリン酸イオン濃度が、好ましくは0~0.007質量%未満、より好ましくは0~0.006質量%、更に好ましくは0~0.005質量%、更に好ましくは0~0.004質量%、更に好ましくは0~0.003質量%である、前記<1>~<15>のいずれか一に記載の乳酸の製造方法。
<18>
前記第1の発酵工程で使用する液体培地中にリン酸イオンを含まないか(リン酸イオン濃度が0質量%)、あるいは液体培地中にリン酸イオンを含む場合には、好ましくは0.006質量%以下、より好ましくは0.005質量%以下、更に好ましくは0.004質量%以下、更に好ましくは0.003質量%以下である、前記<1>~<15>のいずれか一に記載の乳酸の製造方法。
<19>
前記第2の発酵工程で使用する液体培地中のリン酸イオン濃度が、好ましくは0.1質量%以下、より好ましくは0.09質量%以下、更に好ましくは0.08質量%以下であって、好ましくは0.007質量%以上、より好ましくは0.01質量%以上、更に好ましくは0.03質量%以上である、前記<2>~<18>のいずれか一に記載の乳酸の製造方法。
<20>
前記第2の発酵工程で使用する液体培地中のリン酸イオン濃度が、好ましくは0.007~0.1質量%、より好ましくは0.01~0.09質量%、更に好ましくは0.03~0.08質量%である、前記<2>~<19>のいずれか一に記載の乳酸の製造方法。
前記第3の発酵工程で使用する液体培地中のリン酸イオン濃度が、好ましくは0.006質量%以下、より好ましくは0.005質量%以下、更に好ましくは0.004質量%以下、更に好ましくは0.003質量%以下、更に好ましくは0質量%である、前記<10>~<20>のいずれか一に記載の乳酸の製造方法。
<22>
前記第3の発酵工程で使用する液体培地中のリン酸イオン濃度が、好ましくは0~0.007質量%未満、より好ましくは0~0.006質量%、更に好ましくは0~0.005質量%、更に好ましくは0~0.004質量%、更に好ましくは0~0.003質量%である、前記<10>~<20>のいずれか一に記載の乳酸の製造方法。
<23>
前記第3の発酵工程で使用する液体培地中にリン酸イオンを含まないか(リン酸イオン濃度が0質量%)、あるいは液体培地中にリン酸イオンを含む場合には、好ましくは0.006質量%以下、より好ましくは0.005質量%以下、更に好ましくは0.004質量%以下、更に好ましくは0.003質量%以下である、前記<10>~<20>のいずれか一に記載の乳酸の製造方法。
<24>
前記第1、第2及び第3の発酵工程のうちの1以上の工程を、液体培地中の初発の炭素濃度が、好ましくは1質量%以上、より好ましくは3質量%以上、更に好ましくは5質量%以上であって、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは20質量%以下で行う、前記<1>~<23>のいずれか一に記載の乳酸の製造方法。
<25>
前記第1、第2及び第3の発酵工程のうちの1以上の工程を、液体培地中の初発の炭素濃度が、好ましくは1~40質量%、より好ましくは3~30質量%、更に好ましくは5~20質量%で行う、前記<1>~<24>のいずれか一に記載の乳酸の製造方法。
<26>
前記第1、第2及び第3の発酵工程のうちの1以上の工程を、液体培地中の初発の窒素濃度が、好ましくは0.01~1質量%、より好ましくは0.02~0.8質量%、更に好ましくは0.04~0.6質量%で行う、前記<1>~<25>のいずれか一に記載の乳酸の製造方法。
<27>
前記第1、第2及び第3の発酵工程のうちの1以上の工程を、液体培地中の初発の硫酸イオン濃度が、好ましくは0.001~0.1質量%、より好ましくは0.005~0.08質量%、更に好ましくは0.01~0.04質量%で行う、前記<1>~<26>のいずれか一に記載の乳酸の製造方法。
<28>
前記第1、第2及び第3の発酵工程のうちの1以上の工程を、液体培地中の初発のマグネシウムイオン濃度が、好ましくは0~0.5質量%、より好ましくは0.001~0.2質量%、更に好ましくは0.002~0.1質量%で行う、前記<1>~<27>のいずれか一に記載の乳酸の製造方法。
前記第1、第2及び第3の発酵工程のうちの1以上の工程を、液体培地中の初発の亜鉛イオン濃度が、好ましくは0~0.1質量%、より好ましくは0.00001~0.01質量%、更に好ましくは0.00005~0.005質量%で行う、前記<1>~<28>のいずれか一に記載の乳酸の製造方法。
<30>
前記第1、第2及び第3の発酵工程のうちの1以上の工程を、好ましくは一定量の液体培地を発酵槽内に一定速度で供給するとともに、同量の発酵液を発酵槽外に抜き取る連続式にて行う、前記<1>~<29>のいずれか一に記載の乳酸の製造方法。
<31>
リン酸イオン濃度が0.007質量%未満に制御され、かつ炭素源を含む液体培地にて、糸状菌ペレット及び固定化糸状菌から選ばれる1種以上の菌体を用いて発酵により乳酸を得る第1の発酵工程において、乳酸の生産速度維持率が好ましくは50~95%となったときに、前記第1の発酵工程で使用した前記菌体を用いて、リン酸イオン濃度が0.007質量%以上1質量%以下であり、かつ炭素源を含む液体培地にて発酵を行う第2の発酵工程を含む、乳酸産生に使用する菌体の再活性化方法。
[高速液体クロマトグラフ(HPLC)による各種成分の測定]
発酵液を0.0085規定硫酸水溶液で適宜希釈し、孔径が0.22μmのセルロースアセテート製メンブレンフィルタ(ADVANTEC社製)を用いて濾過を行い、HPLC分析用サンプルとした。HPLCの分析条件は、次の通りである。
・カラム :ICSep ICE-ION-300
・溶離液 :0.0085規定 硫酸、0.4mL/min
・検出法 :RI(HITACHI、L-2490)
・カラム温度:40℃
・注入液量 :20μL
・保持時間 :40min
・グルコース:16min
・乳酸 :23min
・エタノール:34min
<糸状菌ペレットの調製>
〔胞子懸濁液の調製〕
菌株は独立行政法人 製品評価技術基盤機構(NITE)より入手した糸状菌R.oryzae NBRC5384を使用した。糸状菌は、試験管内に形成させた斜面状寒天培地(Difco Potato Dextrose Agar、Becton, Dickinson and Company)上に菌体を画線/塗布し、25℃にて静置培養し、定期的に継代を行った。菌体使用時には菌体増殖した試験管に10mLの滅菌蒸留水を添加後、タッチミキサにて4分間撹拌することで胞子を回収し、更に無菌の蒸留水を添加して希釈することで1×106 spores/mLに調整したものを胞子懸濁液とした。
糸状菌ペレットの調製は以下の2段階の培養にて行った。
1段目の培養は、60mLのPDB培地(Difco Potato Dextrose Broth、Becton,Dickinsonand Company)を仕込んだ200mL容バッフル付き三角フラスコを滅菌し、前述の方法で調製した胞子懸濁液を1×104個-胞子/mLとなるように植菌して27℃,100r/m(PRECI社、PRXYg-98R)の培養条件にて3日間行った。
2段目の培養は、ペレット形成培地(グルコース(和光純薬工業社製)10質量%、硫酸マグネシウム七水和物 0.025質量%、硫酸亜鉛七水和物 0.009質量%、硫酸アンモニウム 0.1質量%、リン酸二水素一カリウム 0.06質量%)2Lを仕込んだ2L容エアリフト型発酵槽を滅菌し、1段目の培養液120mLを植菌して27℃、通気速度1vvmで空気を供給した条件にて1.5日間行った。pHは3N水酸化ナトリウム溶液を適宜添加して、pH(25℃)6.0を維持した。
上記の各段で得られた糸状菌ペレット培養液を、ガーゼにてろ液のドリップが落ち着くまで1分ろ過し、ウエット状態の糸状菌ペレットを得た。2段目で得られたペレットは速やかに発酵性の評価に供した。
〔糸状菌の担体固定化〕
固定化糸状菌の調製は以下の2段階の培養にて行った。
1段目の培養は、30mLの固定化培地(グルコース(和光純薬工業社製)5質量%、硫酸マグネシウム七水和物 0.025質量%、硫酸亜鉛七水和物 0.009質量%、尿素 0.2質量%、リン酸二水素一カリウム 0.06質量%)、及び0.8mm角ポリウレタン発泡体(日清紡社製、APG)を5個仕込んだ100mL三角フラスコを滅菌し、前述の糸状菌ペレットと同様の方法で調製した胞子懸濁液を2×104個-胞子/mLとなるように植菌して35℃,200r/m(PRECI社、PRXYg-98R)の培養条件にて1日間行った。
2段目の培養は、菌体増殖培地(グルコース(和光純薬工業社製)10質量%、硫酸マグネシウム七水和物 0.025質量%、硫酸亜鉛七水和物 0.009質量%、尿素 0.1質量%、リン酸二水素一カリウム 0.06質量%、炭酸カルシウム5質量%)100mLを仕込んだ500mL容三角フラスコを滅菌し、1段目で担体に固定化した糸状菌を植菌して35℃,200r/m(PRECI社、PRXYg-98R)の培養条件にて2日間行った。
上記の各段で得られた固定化糸状菌培養液を、ガーゼにてろ液のドリップが落ち着くまで1分ろ過し、ウエット状態の固定化糸状菌を得た。2段目で得られた固定化糸状菌は速やかに発酵性の評価に供した。
<発酵性の評価>
〔培養方法1〕
乳酸発酵培養液2Lを滅菌済の2L容エアリフト型発酵槽に添加し、続いて培養例1で調製した糸状菌ペレット全量(ウエット状態)を添加した。その直後に培養0時間目のサンプリングを行った後、35℃、通気速度1vvmで空気を供給した条件にて培養を行った。その後経時的にサンプリングを行いながら、14日間培養を行った。pHは3N水酸化ナトリウム溶液を適宜添加して、pH(25℃)6.0を維持した。発酵時には発酵槽内に2L/日の速度で乳酸発酵培養液を連続的に供給するとともに、同量の発酵液を発酵槽外に抜き取った。なお、培養液の供給は、液面センサーにより回収液用のポンプを制御することで発酵液面を一定に保ちながら行った。培養後、発酵液内に設置した焼結フィルタにより糸状菌ペレットを槽内に残したまま、発酵液のみを回収した。
<発酵性の評価>
〔培養方法2〕
乳酸発酵培養液100mLを滅菌済の500mL容三角フラスコに添加し、続いて培養例2で調製した固定化糸状菌全量(ウエット状態)を添加した。その直後に培養0時間目のサンプリングを行った後、35℃、200r/m(PRECI社、PRXYg-98R)の培養条件にて2日間行った。発酵終了時にサンプリングを行った。その後、固定化糸状菌の回収を行い、再度滅菌した乳酸発酵培養液100mLを添加した500mL容三角フラスコに回収した固定化糸状菌を添加し、35℃、200r/m(PRECI社、PRXYg-98R)の培養条件にて2日間行い、固定化糸状菌を回収した。その後、回収した固定化糸状菌を用いて同様の操作によるバッチ培養を繰り返し行った。
発酵液の分析値から、(1)糖から乳酸への変換率(P[%]、(2)糖からエタノールへの変換率(Q[%])、(3)前記エタノール変換で発生する二酸化炭素への変換率(R[%])の3項目を評価軸とした。各項目の算出式を表1及び式(1)~(3)に示す。なお、式中、供給糖液のグルコース濃度をG0と定義した。また、式(4)に示すように中和剤による発酵液の希釈率をS[-]と定義した。フラスコを用いた発酵では培地中に予め添加した炭酸カルシウムで中和するため、希釈率Sを1とした。
P[%]=L/(G0×S-G)×100 (1)
糖からエタノールへの変換率
Q[%]=E/(G0×S-G)×100 (2)
前記エタノール変換で発生する二酸化炭素への変換率
R[%]=Q×(CO2分子量/EtOH分子量)×100 (3)
中和剤による発酵液の希釈率
S[-]=1/(1+(L/90/3)) (4)
T[%]=試料の乳酸生産速度[g/L/h]/乳酸生産速度の管理値[g/L/h]×100
〔実施例1〕
<糸状菌ペレットの調製>
上記培養例1により、糸状菌R.oryzae NBRC5384を用いて糸状菌ペレットを調製した。
<発酵性の評価>
グルコース、尿素、硫酸マグネシウム七水和物及び硫酸亜鉛七水和物を表2に示す濃度で溶解した乳酸発酵培養液を用いて、発酵例1に記載の発酵性の評価を行った。なお、グルコース源として、グルコース(和光純薬工業社製)を用いた。評価結果を表4に示す。
1段目の培養でPDB培地に0.5質量%のソルビタンモノラウレート(商品名レオドールSP-L10、花王製)を添加した以外は実施例1と同一の条件で糸状菌ペレットの調製を行った。リン酸二水素一カリウムを添加し、乳酸発酵培養液のリン酸イオン濃度を0.0014質量%(0.15mM)にした、表2に示す乳酸発酵培養液を用いた以外は実施例1と同一の条件で発酵性の評価を行った。評価結果を表4に示す。
リン酸二水素一カリウムを添加し、乳酸発酵培養液のリン酸イオン濃度を0.0035質量%(0.37mM)にした、表2に示す乳酸発酵培養液を用いた以外は実施例2と同一の条件で糸状菌ペレットの調製及び発酵性の評価を行った。評価結果を表4に示す。
リン酸二水素一カリウムを添加し、乳酸発酵培養液のリン酸イオン濃度を0.0070質量%(0.73mM)にした、表3に示す乳酸発酵培養液を用いた以外は実施例1と同一の条件で糸状菌ペレットの調製及び発酵性の評価を行った。評価結果を表5に示す。
リン酸二水素一カリウムを添加し、乳酸発酵培養液のリン酸イオン濃度を0.042質量%(4.4mM)にした、表3に示す乳酸発酵培養液を用いた以外は実施例1と同一の条件で糸状菌ペレットの調製及び発酵性の評価を行った。評価結果を表5に示す。
<固定化糸状菌の調製>
上記培養例2により、糸状菌R.oryzae NBRC5384を用いて固定化糸状菌を調製した。
<発酵性の評価>
グルコース、尿素、硫酸マグネシウム七水和物及び硫酸亜鉛七水和物を実施例1(表2)に示す濃度で溶解した乳酸発酵培養液を用いて、発酵例2に記載の発酵性の評価を50日間(25サイクル)行った。なお、グルコース源として、グルコース(和光純薬工業社製)を用いた。評価結果を表6に示す。
<固定化糸状菌の調製>
上記培養例2により、糸状菌R.oryzae NBRC5384を用いて固定化糸状菌を調製した。
<発酵性の評価>
グルコース、尿素、硫酸マグネシウム七水和物及び硫酸亜鉛七水和物を実施例1(表2)に示す濃度で溶解した乳酸発酵培養液を用いて、発酵例2に記載の発酵性の評価を36日間(18サイクル)行い、固定化糸状菌を回収した。なお、乳酸生産速度の管理値は、1.6〔g/L/h〕に設定し、36日後の乳酸生産速度は、1.3〔g/L/h〕であった。その後、回収した固定化糸状菌を用い、培養液を比較例2(表3)に示す乳酸発酵培養液に替えて2日間培養を行い、固定化糸状菌を回収した。次いで、回収した固定化糸状菌を用い、培養液を再び実施例1(表2)に示す乳酸発酵培養液に替えて発酵性の評価を12日間(6サイクル)行った。なお、グルコース源として、グルコース(和光純薬工業社製)を用いた。評価結果を表6に示す。
Claims (7)
- リン酸イオン濃度が0.007質量%未満に制御され、かつ炭素源を含む液体培地にて、糸状菌ペレット及び固定化糸状菌から選ばれる1種以上の菌体を用いて発酵により乳酸を得る第1の発酵工程を含む、乳酸の製造方法。
- 第1の発酵工程における乳酸の生産速度維持率が50~95%となったときに、第1の発酵工程で使用した前記菌体を用いて、リン酸イオン濃度が0.007質量%以上1質量%以下であり、かつ炭素源を含む液体培地にて発酵を行う第2の発酵工程を有する、請求項1記載の乳酸の製造方法。
- 第2の発酵工程後、第2の発酵工程で使用した前記菌体を用いて、リン酸イオン濃度が0.007質量%未満に制御され、かつ炭素源を含む液体培地にて発酵を行う第3の発酵工程を有する、請求項2記載の乳酸の製造方法。
- 第1の発酵工程前に、糸状菌ペレット及び固定化糸状菌から選ばれる1種以上の菌体を調製する調製工程を有する、請求項1~3の何れか1項に記載の乳酸の製造方法。
- 糸状菌がリゾプス(Rhizopus)属である、請求項1~4の何れか1項に記載の乳酸の製造方法。
- 炭素源が糖類である、請求項1~5の何れか1項に記載の乳酸の製造方法。
- 糖類がデンプンから得られる糖液、糖蜜、及びリグノセルロース系バイオマスから得られる糖液よりなる群から選ばれる1種以上である、請求項6に記載の乳酸の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112014022905-8A BR112014022905B1 (pt) | 2012-04-27 | 2013-04-18 | Método para a produção de ácido lático |
CN201380020347.6A CN104245948B (zh) | 2012-04-27 | 2013-04-18 | 乳酸的制造方法 |
US14/384,072 US20150010972A1 (en) | 2012-04-27 | 2013-04-18 | Method for producing lactic acid |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012102305 | 2012-04-27 | ||
JP2012-102305 | 2012-04-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013161674A1 true WO2013161674A1 (ja) | 2013-10-31 |
Family
ID=49482995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/061519 WO2013161674A1 (ja) | 2012-04-27 | 2013-04-18 | 乳酸の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20150010972A1 (ja) |
JP (1) | JP6121226B2 (ja) |
CN (1) | CN104245948B (ja) |
BR (1) | BR112014022905B1 (ja) |
WO (1) | WO2013161674A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG11202011770XA (en) * | 2018-05-31 | 2020-12-30 | Ngee Ann Polytechnic | D-psicose production using probiotic microorganisms |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01157395A (ja) * | 1987-12-11 | 1989-06-20 | Santoole Kk | 微生物の培養法 |
JPH06253871A (ja) * | 1993-03-02 | 1994-09-13 | Musashino Kagaku Kenkyusho:Kk | 乳酸の製造方法 |
JP2005198585A (ja) * | 2004-01-16 | 2005-07-28 | National Agriculture & Bio-Oriented Research Organization | 乳酸デヒドロゲナーゼ遺伝子による糸状菌の乳酸生成能の判別法 |
JP2006312157A (ja) * | 2005-05-04 | 2006-11-16 | Toru Ueda | 稲藁等からの高効率乳酸・コハク酸生産方法及び石膏系土壌改良材・建築用資材生産方法 |
JP2010193846A (ja) * | 2009-02-27 | 2010-09-09 | Chube Univ | 乳酸発酵方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2446982T3 (es) * | 1996-12-27 | 2014-03-11 | Suntory Holdings Limited | Medios para cultivar microorganismos y método para producir ácidos grasos insaturados o lípidos que los contienen |
CN101497901B (zh) * | 2009-03-03 | 2011-11-09 | 合肥工业大学 | 米根霉半连续高密度发酵产高光学纯度l-乳酸新工艺方法 |
-
2013
- 2013-04-18 WO PCT/JP2013/061519 patent/WO2013161674A1/ja active Application Filing
- 2013-04-18 JP JP2013087482A patent/JP6121226B2/ja active Active
- 2013-04-18 US US14/384,072 patent/US20150010972A1/en not_active Abandoned
- 2013-04-18 BR BR112014022905-8A patent/BR112014022905B1/pt not_active IP Right Cessation
- 2013-04-18 CN CN201380020347.6A patent/CN104245948B/zh not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01157395A (ja) * | 1987-12-11 | 1989-06-20 | Santoole Kk | 微生物の培養法 |
JPH06253871A (ja) * | 1993-03-02 | 1994-09-13 | Musashino Kagaku Kenkyusho:Kk | 乳酸の製造方法 |
JP2005198585A (ja) * | 2004-01-16 | 2005-07-28 | National Agriculture & Bio-Oriented Research Organization | 乳酸デヒドロゲナーゼ遺伝子による糸状菌の乳酸生成能の判別法 |
JP2006312157A (ja) * | 2005-05-04 | 2006-11-16 | Toru Ueda | 稲藁等からの高効率乳酸・コハク酸生産方法及び石膏系土壌改良材・建築用資材生産方法 |
JP2010193846A (ja) * | 2009-02-27 | 2010-09-09 | Chube Univ | 乳酸発酵方法 |
Non-Patent Citations (1)
Title |
---|
X. WANG ET AL.: "Reducing by-product formation in L-lactic acid fermentation by Rhizopus oryzae", JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, vol. 32, no. 1, January 2005 (2005-01-01), pages 38 - 40, XP019357670, DOI: doi:10.1007/s10295-004-0198-6 * |
Also Published As
Publication number | Publication date |
---|---|
CN104245948B (zh) | 2017-08-25 |
BR112014022905B1 (pt) | 2022-04-19 |
JP6121226B2 (ja) | 2017-04-26 |
JP2013240321A (ja) | 2013-12-05 |
CN104245948A (zh) | 2014-12-24 |
US20150010972A1 (en) | 2015-01-08 |
BR112014022905A2 (pt) | 2022-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101899410B (zh) | 一种小链霉菌及其在达托霉素制备中的应用 | |
JP5337773B2 (ja) | ペントース含有基質からの乳酸の製造 | |
CN105112476B (zh) | 一种发酵生产脂肽类生物表面活性剂的方法 | |
JPS6137919B2 (ja) | ||
Almousa et al. | Citric acid fermentation by Aspergillus niger | |
CN101033457B (zh) | 一种伯克霍尔德菌生产冠毒素的方法及其发酵培养基 | |
WO2011099595A1 (ja) | (s)-1,1,1-トリフルオロ-2-プロパノールの工業的な製造方法 | |
US20230220428A1 (en) | Yeast strain and use thereof and preparation method of ergothioneine | |
CN104531810B (zh) | 一种高效微生物转化制备麦芽糖酸的方法 | |
CN107058414B (zh) | 一种制备l-丙氨酸的方法 | |
JP6121226B2 (ja) | 乳酸の製造方法 | |
JP2013048563A6 (ja) | 生分解性プラスチック分解酵素の製造方法及びこれに使用されるPseudozyma antarctica | |
US7083955B2 (en) | Preparation of lactic acid from a pentose-containing substrate | |
CN105567584A (zh) | 一种能拆分(+/-)γ-内酰胺得到(+)γ-内酰胺的芽孢杆菌及其筛选和应用 | |
CN108641961B (zh) | 一种高密度培养番石榴叶内生菌的方法 | |
RU2492229C1 (ru) | ШТАММ ДРОЖЖЕЙ Saccharomyces cerevisiae, ИСПОЛЬЗУЕМЫЙ ДЛЯ ПОЛУЧЕНИЯ СПИРТА | |
CN109136313A (zh) | 利用密西根克雷伯氏菌合成2’-脱氧腺苷的方法 | |
JP6857022B2 (ja) | 有機酸の製造方法 | |
WO2016171215A1 (ja) | フマル酸の製造方法 | |
JP4742610B2 (ja) | フマル酸の製造方法 | |
CN108587923B (zh) | 一种改善苹果酸发酵性能的方法 | |
WO2018221482A1 (ja) | 糸状菌ペレットの製造方法 | |
CN104498542A (zh) | 连续法发酵生产l-乳酸的方法 | |
CN114214370B (zh) | 一种提高曲霉产有机酸效率的方法 | |
RU2001949C1 (ru) | Штамм гриба TRICHODERMA REESEI - продуцент целлюлолитических ферментов |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13781612 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14384072 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014022905 Country of ref document: BR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13781612 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 112014022905 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140916 |
|
ENPC | Correction to former announcement of entry into national phase, pct application did not enter into the national phase |
Ref document number: 112014022905 Country of ref document: BR Kind code of ref document: A8 Free format text: ANULADA A PUBLICACAO CODIGO 1.3 NA RPI NO 2424 DE 20/06/2017 POR TER SIDO INDEVIDA. |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01E Ref document number: 112014022905 Country of ref document: BR Kind code of ref document: A8 Free format text: APRESENTE A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE JP 2012-102305; OU DECLARACAO DE QUE OS DADOS DO PEDIDO INTERNACIONAL ESTAO FIELMENTE CONTIDOS NA PRIORIDADE REIVINDICADA, CONTENDO TODOS OS DADOS IDENTIFICADORES DESTA (TITULARES,NUMERO DE REGISTRO, DATA E TITULO), CONFORME ART. 16, 2O DA LPI E ART. 25 DA RESOLUCAO NO 77/2013. CABE SALIENTAR QUE NAO FOI POSSIVEL IDENTIFICAR OS TITULARES DO PEDIDO VISTO QUE TODOS OS DOCUMENTOS APRESENTADOS NA OMPI E NAS PETICOES DO PEDIDO ESTAO EM JAPONES. |
|
ENP | Entry into the national phase |
Ref document number: 112014022905 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140916 |