WO2018221482A1 - 糸状菌ペレットの製造方法 - Google Patents

糸状菌ペレットの製造方法 Download PDF

Info

Publication number
WO2018221482A1
WO2018221482A1 PCT/JP2018/020443 JP2018020443W WO2018221482A1 WO 2018221482 A1 WO2018221482 A1 WO 2018221482A1 JP 2018020443 W JP2018020443 W JP 2018020443W WO 2018221482 A1 WO2018221482 A1 WO 2018221482A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
pellet
filamentous fungus
filamentous
culture
Prior art date
Application number
PCT/JP2018/020443
Other languages
English (en)
French (fr)
Inventor
岳史 坂本
裕 入江
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to JP2019521219A priority Critical patent/JP7295796B2/ja
Priority to US16/618,075 priority patent/US11220665B2/en
Priority to CN201880035280.6A priority patent/CN110678542A/zh
Publication of WO2018221482A1 publication Critical patent/WO2018221482A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/065Ethanol, i.e. non-beverage with microorganisms other than yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/46Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method for producing filamentous fungal pellets.
  • Filamentous fungi are useful microorganisms that are indispensable in industry for the microbiological production of useful substances such as organic acids and enzymes.
  • filamentous fungi When filamentous fungi are subjected to liquid culture, the form changes to a fibrous, lump or pellet form depending on the amount of spore inoculation, the pH of the culture, the flow conditions, and the like.
  • Filamentous fungal pellets have the advantage that they can be easily separated from the medium after fermentation (for example, Patent Document 1).
  • Non-Patent Document 1 reports that a specific nonionic surfactant is added to a culture solution to form a filamentous fungus pellet. Further, Non-Patent Document 2 reports the formation of Aspergillus niger mycelium aggregates.
  • Patent Document 1 JP-A-6-253871
  • Non-Patent Document 1 Journal of Industrial Microbiology, 4, 1989, p. 155-161
  • Non-Patent Document 2 48th Chemical Engineering Society Poster, LQ268
  • the present invention provides a method for producing a filamentous fungal pellet including a step of germinating spores of filamentous fungi in a culture solution containing a cationic polymer, and a filamentous fungal pellet having a high mycelial density.
  • the present invention relates to providing a method for producing high-density filamentous fungal pellets.
  • a filamentous fungal pellet having a high mycelial density can be obtained by germinating filamentous fungal spores in a culture solution containing a cationic polymer to form a pellet. It was.
  • a high-density filamentous fungus pellet can be obtained.
  • the method for producing a filamentous fungus pellet of the present invention is a production method including a step of germinating spores of a filamentous fungus in a culture solution containing a cationic polymer to form a pellet.
  • filamentous fungus used in the present invention examples include microorganisms belonging to the genus Rhizopus, the genus Trichoderma, the genus Aspergillus and the genus Mucor.
  • examples of the genus Rhizopus include Rhizopus delemar, Rhizopus oryzae, Rhizopus ariz, , Rhizopus tonkinensis, Rhizopus tritici and the like.
  • Examples of the genus Trichoderma include Trichoderma atroviride, Trichoderma harzianum, Trichoderma coningi (Trichoderma coningi). Etc. Examples of Aspergillus spp.
  • Aspergillus oryzae Aspergillus niger, Aspergillus terreus, and the like.
  • Examples of the genus Mucor include Mucor mandshuricus. These filamentous fungi may be used alone, but may be used in combination of two or more. Of these, Rhizopus sp. Or Trichoderma sp. Is preferred, and Rhizopus deremer and Rhizopus oryzae are more preferred from the viewpoints of productivity and handleability of useful substances. Useful substances in this specification will be described later.
  • the filamentous fungal spore can be prepared as a spore suspension in which the filamentous fungal spore is inoculated into a medium such as potato dextrose agar medium (PDA medium) and statically cultured, and the culture is suspended in a liquid. .
  • the spore suspension can be appropriately diluted to adjust the desired spore count.
  • the culture temperature is preferably 10 ° C or higher, more preferably 25 ° C or higher, and preferably 40 ° C or lower, More preferably, it is 30 degrees C or less.
  • the culture days are preferably 7 days or more and 10 days or less. The number of spores in the spore suspension can be measured with a cell counter described later.
  • pellet refers to a mycelial mass having a size of about several hundred ⁇ m to several mm formed spontaneously by liquid culture.
  • the number of filamentous fungi inoculated into the culture solution is preferably 1 ⁇ 10 1 -spore / mL-more than the culture solution, more preferably 1 ⁇ 10 2 -spore / From the same viewpoint as above, it is preferably 1 ⁇ 10 8 cells / spore / mL or less, more preferably 1 ⁇ 10 4 cells / spore / mL / culture solution. It is as follows.
  • the culture solution may be any of a synthetic medium, a natural medium, and a semi-synthetic medium obtained by adding natural components to a synthetic medium as long as it is a liquid medium capable of growing filamentous fungi.
  • a potato dextrose medium PDB medium
  • Luria-Bertani medium LB medium
  • Nutrient Broth NB medium
  • Sabouraud medium SB medium
  • the culture solution can contain a carbon source, a nitrogen source, inorganic salts, and other necessary nutrient sources. Examples of the carbon source include saccharides.
  • saccharide examples include monosaccharides such as glucose, fructose, and xylose, and disaccharides such as sucrose, lactose, and maltose.
  • the saccharide may be an anhydride or a hydrate. These can be used alone or in combination of two or more. Among these, glucose is preferable from the viewpoint of productivity.
  • the initial carbon source concentration in the culture solution is preferably 0.1% (w / v) or more and 30% (w / v) or less.
  • nitrogen source include nitrogen-containing compounds such as urea, ammonium sulfate, ammonium nitrate, potassium nitrate, and sodium nitrate.
  • the initial nitrogen source concentration in the culture solution is preferably 0.1% (w / v) or more and 1% (w / v) or less.
  • inorganic salts include sulfates, magnesium salts, zinc salts and the like.
  • the sulfate include magnesium sulfate, zinc sulfate, potassium sulfate, sodium sulfate and the like.
  • the initial sulfate concentration in the culture solution is preferably 0.1% (w / v) or more and 1% (w / v) or less.
  • the magnesium salt include magnesium sulfate, magnesium nitrate, and magnesium chloride.
  • the initial magnesium salt concentration in the culture medium is preferably 0.0001% (w / v) or more and 0.5% (w / v) or less.
  • Examples of the zinc salt include zinc sulfate, zinc nitrate, and zinc chloride.
  • the initial zinc salt concentration in the culture solution is preferably 0.0001% (w / v) or more and 0.5% (w / v) or less.
  • spore germination and pelleting are performed in a culture solution containing a cationic polymer.
  • the “cationic polymer” used in the present invention refers to a polymer that is positively charged when mixed with water.
  • Specific examples of the cationic polymer include a monomer having a cationic group, or a polymer of a monomer having an amino group that is cationic in water, and a copolymer or condensation polymer of these monomers and other monomers. Is preferred.
  • the cationic group include a quaternary amino group and a hydrazino group.
  • Examples of the amino group exhibiting cationicity in water include a primary amino group, a secondary amino group, and a tertiary amino group. It is done.
  • the charge density of the cationic polymer is preferably 0.1 meq / g or more, more preferably 1 meq / g or more, still more preferably 2 meq / g or more, and even more preferably 10 meq / g or more. It is. Further, from the same viewpoint as above, it is preferably 100 meq / g or less, more preferably 50 meq / g or less, and more preferably 30 meq / g or less.
  • the charge density of the cationic polymer is preferably 0.1 meq / g to 100 meq / g, more preferably 1 meq / g to 50 meq / g, more preferably 2 meq / g to 30 meq / g, and even more preferably. Is 10 meq / g to 30 meq / g.
  • the cationic charge density refers to the ratio of the number of positive charges on the polymer to the molecular weight of the polymer (excluding the weight of the counter ion of the cationic group). Multiplying the cationic charge density by the polymer molecular weight gives the number of positively charged sites in a given polymer chain.
  • Cationic charge density is further defined as the number of milliequivalents (meq / g) of positive charges (cationic nitrogen atoms) per gram of polymer.
  • the value of the cation charge density can be determined according to the following formula (1), for example.
  • Cationic charge density (meq / g) 1 ⁇ (unit molecular weight including one cationic nitrogen atom in the cationic polymer) ⁇ 1000 Formula (1)
  • the weight average molecular weight (hereinafter also simply referred to as molecular weight) of the cationic polymer is preferably 1,000 or more, more preferably 1,600 or more, and preferably 1 from the viewpoint of good growth of the filamentous fungus pellet. , 000,000 or less, more preferably 500,000 or less, more preferably 300,000 or less, and even more preferably 200,000 or less.
  • the molecular weight of the cationic polymer is preferably 1,000 to 1,000,000, more preferably 1,000 to 500,000, more preferably 1,000 to 300,000, and still more preferably 1,600 to 200,000. 000.
  • the weight average molecular weight of the cationic polymer is preferably 1,000 or more, more preferably 2,000 or more, more preferably 5,000 or more, more preferably 100,000 or more, from the viewpoint of operability during culture. Moreover, Preferably it is 500,000 or less.
  • the average molecular weight is measured by a known measuring method such as gel permeation chromatography (GPC) and the measuring apparatus is not limited, but examples include HLC-8220 series manufactured by Tosoh.
  • the cationic polymer is preferably a water-soluble polymer.
  • the “water-soluble polymer” refers to a polymer whose dissolved amount exceeds 10 g when a polymer dried at 105 ° C. for 2 hours is dissolved in 100 g of water at 25 ° C.
  • the amount of the cationic polymer dissolved in 100 g of water is preferably 20 g or more, more preferably 100 g or more.
  • Examples of the cationic polymer include a polymer containing a primary amine, a polymer containing a secondary amine, a polymer containing a tertiary amine, and a polymer containing a quaternary amine.
  • Examples of the polymer containing a primary amine include polyallylamine, allylamine salt polymer, and allylamine amide salt polymer.
  • Examples of the polymer containing a secondary amine include polydiallylamine, diallylamine salt polymer, and diallylamine salt / acrylamide copolymer.
  • Examples of the polymer containing a tertiary amine include an alkyl diallylamine salt polymer and an alkyl diallylamine amide salt polymer.
  • polymer containing a quaternary amine examples include a diallyldialkylammonium salt polymer, a diallyldialkylammonium ethylsulfate polymer, and a diallyldialkylammonium salt / acrylamide copolymer.
  • polyethyleneimine, methyl glycol chitosan, amine-epichlorohydrin copolymer, cationized polyvinyl alcohol, cationized cellulose, cationized starch, cationized guar gum, and dicyandiamide-based polymer are exemplified.
  • Examples of the alkyl group include a methyl group, an ethyl group, and a propyl group.
  • Examples of the salt include sulfate, hydrochloride, and acetate.
  • Examples of the allylamine salt polymer include allylamine hydrochloride polymer.
  • Examples of the allylamine amide salt polymer include allylamine amide sulfate polymer.
  • Examples of the diallylamine salt polymer include diallylamine hydrochloride polymer.
  • Examples of the alkyl diallylamine salt polymer include methyl diallylamine hydrochloride polymer and methyl diallylamine acetate polymer.
  • alkyl diallylamine amide salt polymer examples include methyl diallylamine amide sulfate polymer.
  • diallyldialkylammonium salt polymers polydiallyldimethylammonium chloride, polydiallylmethylethylammonium chloride, polyacrylic acid-co-diallyldimethylammonium chloride, polyacrylamide-co-diallyldimethylammonium chloride, polyacrylamide-co-acrylic acid- Examples thereof include co-diallyldimethylammonium chloride, polydiallyldimethylammonium ethyl sulfate, and polydiallylmethylethylammonium ethyl sulfate.
  • diallyldialkylammonium ethyl sulfate polymer examples include diallylmethylethylammonium ethyl sulfate. Further, poly 2- (methacryloyloxy) ethyl trimethyl ammonium chloride may be mentioned.
  • a cationic polymer can also be used individually or in combination of 2 or more types. Among them, polyethyleneimine, polyallylamine, allylamine salt polymer, diallyldialkylammonium salt polymer, diallyldialkylammonium ethylsulfate polymer, methyl glycol chitosan, and cationized polyvinyl alcohol are preferable from the viewpoint of increasing the density of pellets. More preferred are polyethyleneimine, polyallylamine, allylamine salt polymer and diallyldialkylammonium salt polymer, and more preferred are polyethyleneimine, polyallylamine and diallyldialkylammonium salt polymer.
  • the content of the cationic polymer in the culture solution is preferably 0.0001% (w / v) or more, more preferably 0.001% (w / v) or more, from the viewpoint of increasing the density of the pellet. Preferably it is 0.0015% (w / v) or more. From the same viewpoint as described above, it is preferably 2% (w / v) or less, more preferably 1% (w / v) or less, still more preferably 0.5% (w / v) or less.
  • the content of the cationic polymer in the culture solution is preferably 0.0001 to 2% (w / v), more preferably 0.001 to 1% (w / v), and still more preferably 0.0015 to 0.00. 5% (w / v).
  • Culture may be performed according to a normal procedure. Culture is usually performed under aerobic conditions.
  • the culture temperature is preferably 20 ° C or higher, more preferably 25 ° C or higher, and preferably 40 ° C or lower, more preferably 30 ° C or lower.
  • the initial pH of the medium is preferably 2 or more, more preferably 3 or more, and preferably 7 or less, more preferably 5 or less, from the viewpoint of good growth of the bacterial cells.
  • the culture period is preferably 30 minutes or more, more preferably 0.5 days or more after inoculating filamentous fungal spores in the culture solution, and preferably within 7 days, more preferably within 6 days, still more preferably. Is within 5 days.
  • a conventionally well-known thing can be employ
  • a flask, an aeration stirring type culture tank, a bubble column type culture tank, etc., and a fluidized bed culture tank are mentioned.
  • the stirring condition is preferably 80 r / min or more, more preferably 100 r / min or more, and preferably 250 r / min or less, more preferably 200 r / min or less.
  • the volume average particle size of the filamentous fungus pellet is preferably 150 ⁇ m or more, more preferably 250 ⁇ m or more, and preferably 3000 ⁇ m or less, more preferably from the viewpoint of high productivity of useful substances and separability when repeatedly using the catalyst. Is 1500 ⁇ m or less.
  • the volume average particle diameter is measured by image analysis by microscopic observation described later.
  • a step of further culturing and growing the filamentous fungus pellet may be performed.
  • the culture solution used for the growth of the filamentous fungus pellet is not particularly limited, but it is preferable to use a culture solution different from the culture solution in the step of germinating the spores of the filamentous fungus.
  • the inorganic culture solution containing glucose normally used is mentioned. Specifically, glucose is 7.5 to 30% (w / v), ammonium sulfate is 0.05 to 2% (w / v), and potassium dihydrogen phosphate is 0.03 to 0.6%.
  • W / v) a medium containing 0.01 to 0.1% (w / v) magnesium sulfate, and 0.005 to 0.05% (w / v) zinc sulfate.
  • the salt may be a hydrate.
  • the culture temperature is preferably 20 ° C or higher, more preferably 25 ° C or higher, and preferably 40 ° C or lower, more preferably 30 ° C or lower.
  • the pH of the medium is preferably 2 or more, more preferably 3 or more, and preferably 7 or less, more preferably 5 or less, from the viewpoint of growth of bacterial cells and productivity of useful substances.
  • the pH of the culture solution can be controlled using a base such as calcium hydroxide, sodium hydroxide, calcium carbonate or ammonia, or an acid such as sulfuric acid or hydrochloric acid.
  • the culture period is preferably 30 minutes or longer, more preferably 6 hours or longer, more preferably 0.5 days or longer, and preferably 3 days or shorter, more preferably 2 days or shorter, more preferably 1 day or shorter. is there.
  • a conventionally well-known thing can be employ
  • the filamentous fungal pellet After culturing, the filamentous fungal pellet can be extracted from the culture tank together with the culture solution, and separated and recovered by a simple operation such as filtration or centrifugation. It is also possible to use the filamentous fungus pellet for substance production in the same culture tank while leaving the filamentous fungus pellet in the culture tank.
  • the filamentous fungal pellet thus obtained has a high mycelial density. Therefore, the filamentous fungus pellet is useful for improving the fermentation productivity of useful substances.
  • the density of the filamentous fungal pellet is 0.04 g-dry cell / cm 3 or more, more preferably 0.1 g-dry cell / cm 3 or more, and 0.5 g-dry from the viewpoint of productivity of useful substances.
  • the density is determined by the method described in Examples described later.
  • the useful substance in the present specification is a compound produced from a carbon source by the process of culturing filamentous fungi.
  • a compound include at least one selected from organic acids, enzymes, oils and fats, and alcohols.
  • Suitable useful substances that can be produced using the filamentous fungal pellets of the present invention are organic acids, ethanol or enzymes.
  • the organic acid include fumaric acid, lactic acid, itaconic acid, malic acid, and pyruvic acid. Of these, at least one selected from fumaric acid, pyruvic acid, lactic acid and malic acid is preferable, fumaric acid and lactic acid are more preferable, and fumaric acid is more preferable.
  • the enzyme include protease, oxygenase, amylase, cellulase, and isomerase.
  • the culture solution used in the production of useful substances usually contains a carbon source.
  • the culture solution may contain a nitrogen source, inorganic salts, other phosphorus sources, necessary nutrient sources such as vitamins, and the like.
  • the carbon source to be used contains the above nutrient source at a concentration suitable for culture, it is possible to use only the carbon source.
  • the carbon source, nitrogen source, and inorganic salts include the compounds described in the above [0014] paragraph.
  • a sugar solution containing a saccharide can also be used as a carbon source.
  • Examples thereof include sugar liquid obtained from starch, molasses, waste molasses, and sugar liquid obtained from lignocellulosic biomass. These can be used alone or in combination of two or more.
  • “lignocellulose-based biomass” in the present specification means biomass mainly composed of cellulose, hemicellulose, and lignin.
  • Specific examples of lignocellulosic biomass include inawara, rice husk, straw, bagasse, coconut shell, corn cob, weed, wood, and pulp and paper produced therefrom.
  • examples of starch include extracts of millet such as corn and beans such as soybean, and examples of molasses include those derived from sugar cane and sugar beet.
  • the initial carbon source concentration in the culture solution is preferably 1% (w / v) or more, more preferably 2% (w / v) or more, and further preferably 3% (w / v). In addition, it is preferably 40% (w / v) or less, more preferably 30% (w / v) or less, and still more preferably 20% (w / v) or less.
  • the initial carbon source concentration in the culture medium is preferably 1 to 40 (w / v)%, more preferably 2 to 30 (w / v)%, and further preferably 3 to 20 (w / v)%. It is.
  • the initial nitrogen source concentration in the culture solution is preferably 0.001% (w / v) or more, more preferably 0.002% (w / v) or more, more preferably 0, from the viewpoint of productivity. 0.004% (w / v) or more, preferably 0.5% (w / v) or less, more preferably 0.3% (w / v) or less, more preferably 0.1% (w / V) or less. From the viewpoint of productivity, the initial sulfate concentration in the culture solution is preferably 0.001% (w / v) or more, more preferably 0.005% (w / v) or more, more preferably 0.01.
  • the initial magnesium salt concentration in the culture solution is preferably 0.001% (w / v) or more, more preferably 0.002% (w / v) or more, and further preferably 0.003.
  • % (W / v) or more preferably 0.5% (w / v) or less, more preferably 0.2% (w / v) or less, still more preferably 0.1% (w / v).
  • the initial zinc salt concentration in the culture solution is preferably 0.00001% (w / v) or more, more preferably 0.00003% (w / v) or more, and further preferably 0.00005. % (W / v) or more, and preferably 0.1% (w / v) or less, more preferably 0.05% (w / v) or less, still more preferably 0.01% (w / v) or less. It is.
  • the culture temperature during production of the useful substance is preferably 20 ° C. or higher, more preferably 30 ° C. or higher, and preferably 40 ° C. or lower, more preferably 37 ° C. or lower.
  • the pH of the culture solution is preferably 2 or more, more preferably 3 or more, and preferably 7 or less, more preferably 5 or less, from the viewpoint of the growth of bacterial cells and the productivity of useful substances.
  • the pH can be controlled using a base such as calcium hydroxide, sodium hydroxide, calcium carbonate or ammonia, or an acid such as sulfuric acid or hydrochloric acid.
  • As the gas used for the culture air or oxygen-enriched gas can be selected.
  • the ventilation conditions are preferably 0.1 vvm or more, more preferably 0.2 vvm or more, and preferably 2 vvm or less, more preferably 1 vvm or less.
  • a conventionally known culture tank can be appropriately used as a culture tank for culturing. From the viewpoint of high fumaric acid productivity, an aeration-stirring culture tank, a bubble column culture tank, and a fluidized bed culture tank are used. Preferably used.
  • the culture may be performed in any of batch, semi-batch and continuous methods. For example, when it is carried out in a semi-batch manner, the microbial cells and the fermentation broth can be separated, and a medium can be added to the separated and recovered microbial cells for further fermentation.
  • the method of extracting the same quantity of fermented liquids is employable.
  • the liquid level may be controlled by a liquid level sensor or the like so that the liquid level in the fermenter is kept constant.
  • Separation of bacterial cells and fermentation broth after culturing may be carried out by solid-liquid separation with a filter in the fermenter, or once extracted outside the tank and subjected to solid-liquid separation such as liquid cyclone or filtration, only the bacterial cells are separated. You may return in a fermenter.
  • the fermentation broth obtained after the separation is used as it is or after concentrating the fermentation broth, by a crystallization method, an ion exchange method, a solvent extraction method, or a method in which the precipitate is acid-decomposed after precipitation as an alkaline earth metal salt.
  • the product can be separated and recovered from the fermentation broth.
  • the present invention further discloses the following manufacturing method regarding the above-described embodiment.
  • a method for producing a filamentous fungus pellet comprising a step of germinating spores of a filamentous fungus in a culture solution containing a cationic polymer.
  • the filamentous fungus is preferably one or more selected from microorganisms belonging to the genus Rhizopus, the genus Trichoderma, the genus Aspergillus and the genus Mucor, more preferably Rhizopus delemar (Rhizopus delemar), Rhizopus oryzae (Rhizopus oryzae), Rhizopus Arizusu (Rhizopus arrhizus), Rhizopus chinensis (Rhizopus chinensis), Rhizopus nigricans (Rhizopus nigricans), Rhizopus Tonkinenshisu (Rhizopus tonkinensis), Rhizopus ⁇ Rhizopus tritici, Trichoderma atrobi Ride (Trichoderma atroviride), Trichoderma harzianum (Trichoderma harzianum), Trichoderma Koningi (Trichoderma koningii), Trichoderma reesei (Trichoderma ressei), Trichoderma viride (
  • the filamentous fungus is preferably a genus Rhizopus or a genus Trichoderma, more preferably Rhizopus delemar, Rhizopus oryzae dseri
  • Spores of filamentous fungi are preferably 1 ⁇ 10 1 cells / spore / mL-culture solution or more, more preferably 1 ⁇ 10 2 cells / spore / mL-culture solution or more, preferably 1 ⁇ Inoculate a culture solution containing a cationic polymer at a number of spores of 10 8 spores / mL-culture medium or less, more preferably 1 ⁇ 10 4 spores / mL-culture solution or less to germinate spores.
  • the method for producing a filamentous fungus pellet according to any one of ⁇ 1> to ⁇ 3>.
  • the initial nitrogen source concentration in the culture solution is preferably 0.1% (w / v) or more and 1% (w / v) or less, and the initial sulfate concentration is preferably 0.1. % (W / v) or more and 1% (w / v) or less, and the initial magnesium salt concentration is preferably 0.0001% (w / v) or more and 0.5% (w / v) or less.
  • the content of the cationic polymer in the culture solution is preferably 0.0001% (w / v) or more, more preferably 0.001% (w / v) or more, and further preferably 0.0015% ( w / v) or more, preferably 2% (w / v) or less, more preferably 1% (w / v) or less, still more preferably 0.5% (w / v) or less, Preferably 0.0001 to 2% (w / v), more preferably 0.001 to 1% (w / v), and still more preferably 0.0015 to 0.5% (w / v).
  • the charge density of the cationic polymer is preferably 0.1 meq / g or more, more preferably 1 meq / g or more, further preferably 2 meq / g or more, more preferably 10 meq / g or more, and preferably 100 meq / g or less, more preferably 50 meq / g or less, still more preferably 30 meq / g or less, preferably 0.1 meq / g to 100 meq / g, more preferably 1 meq / g to 50 meq / g, more preferably Is 2 meq / g to 30 meq / g, more preferably 10 meq / g to 30 meq / g.
  • the weight average molecular weight of the cationic polymer is preferably 1,000 or more, more preferably 1,600 or more, preferably 1,000,000 or less, more preferably 500,000 or less, more preferably Is 300,000 or less, more preferably 200,000 or less, preferably 1,000 to 1,000,000, more preferably 1,000 to 500,000, more preferably 1,000 to 300,000.
  • the weight average molecular weight of the cationic polymer is preferably 1,000 or more, more preferably 2,000 or more, more preferably 5,000 or more, more preferably 100,000 or more, and preferably 500. 1,000 to 500,000, preferably 1,000 to 500,000, more preferably 2,000 to 500,000, still more preferably 5,000 to 500,000, still more preferably 100,000 to 500,000.
  • ⁇ 11> The method for producing a filamentous fungus pellet according to any one of ⁇ 1> to ⁇ 10>, wherein the cationic polymer is preferably a water-soluble cationic polymer.
  • the cationic polymer is preferably a polydiallyldialkylammonium salt or copolymer thereof, polyethyleneimine, polyallylamine or salt thereof, methyl glycol chitosan, amine-epichlorohydrin copolymer, cationized polyvinyl alcohol, cationized cellulose, One or more selected from cationized starch, cationized guar gum, dicyandiamide polymer, and poly 2- (methacryloyloxy) ethyltrimethylammonium chloride, more preferably polyallylamine or a salt thereof, methyl glycol chitosan, Any one of ⁇ 1> to ⁇ 11> selected from polydiallyldialkylammonium salt or a copolymer thereof, polyethyleneimine and cationized polyvinyl alcohol Method for producing a filamentous fungus pellets described.
  • a polydiallyldialkylammonium salt or a copolymer thereof is preferably polydiallyldimethylammonium chloride, polydiallylmethylethylammonium chloride, polyacrylic acid-co-diallyldimethylammonium chloride, polyacrylamide-co-diallyldimethylammonium chloride.
  • ⁇ 12> which is one or more selected from polyacrylamide-co-acrylic acid-co-diallyldimethylammonium chloride, polydiallyldimethylammonium ethyl sulfate, and polydiallylmethylethylammonium ethyl sulfate A method for producing filamentous fungal pellets.
  • the culture temperature is preferably 20 ° C. or higher, more preferably 25 ° C. or higher, and preferably 40 ° C. or lower, more preferably 30 ° C. or lower. Any one of ⁇ 1> to ⁇ 13>
  • the initial pH of the culture solution containing the cationic polymer is preferably 2 or more, more preferably 3 or more, and preferably 7 or less, more preferably 5 or less ⁇ 1> to ⁇ 14> The manufacturing method of the filamentous fungus pellet of any one of these.
  • the culture period is preferably 30 minutes or longer, more preferably 0.5 days or longer, preferably 7 days or less, more preferably 6 days or less, even more preferably 5 days or less ⁇ 1>
  • the volume average particle diameter of the filamentous fungus pellet is preferably 150 ⁇ m or more, more preferably 250 ⁇ m or more, and preferably 3000 ⁇ m or less, more preferably 1500 ⁇ m or less, and any one of ⁇ 1> to ⁇ 16> 2.
  • the culture solution used for the growth of the filamentous fungal pellet is preferably 7.5-30% (w / v) glucose, 0.05-2% (w / v) ammonium sulfate, potassium dihydrogen phosphate 0.03-0.6% (w / v), magnesium sulfate heptahydrate 0.01-0.1% (w / v), and zinc sulfate heptahydrate 0.005-
  • the culture temperature in the step of growing the filamentous fungal pellet is preferably 20 ° C. or higher, more preferably 25 ° C.
  • the pH of the culture solution in the step of growing the filamentous fungal pellet is preferably 2 or more, more preferably 3 or more, and preferably 7 or less, more preferably 5 or less ⁇ 18> to ⁇ 20
  • the culture period in the step of growing the filamentous fungus pellet is preferably 30 minutes or more, more preferably 6 hours or more, more preferably 0.5 days or more, and preferably 3 days or less, more preferably
  • the density of the filamentous fungal pellet is preferably 0.04 g-dry cell / cm 3 or more, more preferably 0.1 g-dry cell / cm 3 or more, and preferably 0.5 g-dry cell / cm 3.
  • the filamentous fungus pellet according to any one of ⁇ 1> to ⁇ 22> which is cm 3 or less, more preferably 0.3 g-dry cell / cm 3 or less, more preferably 0.25 g-dry cell / cm 3 or less.
  • Manufacturing method. ⁇ 24> A method for producing at least one selected from an organic acid and ethanol using a filamentous fungus pellet obtained by the production method according to any one of ⁇ 1> to ⁇ 23> in a culture solution containing a carbon source .
  • the organic acid is preferably at least one selected from fumaric acid, lactic acid, itaconic acid, malic acid and pyruvic acid, more preferably at least selected from fumaric acid, pyruvic acid, lactic acid and malic acid It is 1 type, More preferably, they are fumaric acid and lactic acid, More preferably, it is fumaric acid, The method as described in ⁇ 24>.
  • the initial carbon source concentration in the culture solution is preferably 1% (w / v) or more, more preferably 2% (w / v) or more, and further preferably 3% (w / v) or more.
  • the culture solution preferably contains a nitrogen source and inorganic salts.
  • the initial nitrogen source concentration in the culture solution is preferably 0.001% (w / v) or more, more preferably 0.002% (w / v) or more, more preferably 0.004% (w / V) or more, preferably 0.5% (w / v) or less, more preferably 0.3% (w / v) or less, more preferably 0.1% (w / v) or less.
  • the initial sulfate concentration is preferably 0.001% (w / v) or more, more preferably 0.005% (w / v) or more, more preferably 0.01% (w / v) or more.
  • the salt concentration is preferably 0.001% (w / v) or more, more preferably 0.002% (w / v) or more. More preferably, it is 0.003% (w / v) or more, preferably 0.5% (w / v) or less, more preferably 0.2% (w / v) or less, still more preferably 0.00.
  • the initial zinc salt concentration is preferably 0.00001% (w / v) or more, more preferably 0.00003% (w / v) or more, and still more preferably 0.0. 00005% (w / v) or more, preferably 0.1% (w / v) or less, more preferably 0.05% (w / v) or less, still more preferably 0.01% (w / v) ⁇ 27>
  • the culture temperature when producing at least one selected from organic acids and ethanol is preferably 20 ° C or higher, more preferably 30 ° C or higher, and preferably 40 ° C or lower, more preferably 37 ° C.
  • the pH of the culture solution is preferably 2 or more, more preferably 3 or more, and preferably 7 or less, more preferably 5 or less, according to any one of ⁇ 24> to ⁇ 29> Method.
  • the ⁇ 31> density is preferably 0.04 g-dry cell / cm 3 or more, more preferably 0.1 g-dry cell / cm 3 or more, and preferably 0.5 g-dry cell / cm 3 or less. More preferably 0.3 g-dry cell / cm 3 or less, more preferably 0.25 g-dry cell / cm 3 or less.
  • [Cationic polymer] The following polymers were used in Examples 1-16. ⁇ Polyethyleneimine (PEI, molecular weight 10,000, charge density 23.2meq / g, manufactured by Alfa Asesar) ⁇ Polyallylamine (PAA-01, molecular weight 1,600, charge density 17.5meq / g, manufactured by Nittobo Medical) ⁇ Polyallylamine (PAA-05, molecular weight 5,000, charge density 17.5meq / g, manufactured by Nittobo Medical) ⁇ Polyallylamine (PAA-15c, molecular weight 15,000, charge density 17.5meq / g, manufactured by Nittobo Medical) ⁇ Polyallylamine (PAA-25, molecular weight 25,000, charge density 17.5meq / g, manufactured by Nittobo Medical) ⁇ Polyallylamine hydrochloride (PAA-HCl-01, molecular weight 1,600, charge density 10.7meq / g, manufactured by Nittobo Medical) ⁇
  • Example 1 ⁇ Preparation of filamentous fungus pellet> (Preparation of spore suspension)
  • the strain is a filamentous fungus R. cerevisiae obtained from the National Institute of Technology and Evaluation (NITE). delmar JCM5557 was used. Filamentous fungi are streaked / applied on PDA medium (Difco Potato Dextose Agar, manufactured by Becton, Dickinson and Company) prepared in a petri dish, statically cultured at 30 ° C, and periodically subcultured. went.
  • PDA medium Difco Potato Dextose Agar, manufactured by Becton, Dickinson and Company
  • spores were collected from the petri dish, and the spores were suspended in 40 mL of a spore collection solution (NaCl 0.85%, Tween 80 0.05%). Thereafter, a spore suspension was prepared by diluting with a sterile spore collection solution (NaCl 0.85%, Tween 80 0.05%) to 1 ⁇ 10 7 spores / mL. The spore concentration was measured with a fully automatic cell counter (TC20 TM , manufactured by Bio-Rad Laboratories).
  • ⁇ Measurement of density per filamentous fungus pellet> After completion of the culture, 100 mL of the culture solution containing the cells was sampled for weight measurement, and the filamentous fungus pellet was separated by filtration using a nylon membrane filter (aperture 180 ⁇ m, manufactured by Millipore). Next, the separated filamentous fungus pellet was immersed in 200 mL of distilled water and stirred for 15 minutes at 170 r / min-27 ° C. using a shaker (PRXYg-98R, manufactured by Pris), and further the nylon membrane filter. And separated by filtration. This washing operation was performed three times.
  • the filamentous fungus pellet after washing was filtered again with a nylon membrane filter, and allowed to stand in a drier at 105 ° C. for 1 day to obtain dry cells.
  • the weight of the dry cells was measured, and the dry cell weight concentration [g-dry cell / L] was determined.
  • the pellet particle number concentration [number / L] was obtained by visually counting the number of pellets present per mL after washing.
  • the pellet volume per unit [cm 3 / piece] was determined by observing filamentous fungal pellets by image analysis (KEYENCE VHX-1000) after washing, and determining the volume average particle size for 100 pellets. The volume [cm 3 / piece] was calculated.
  • the density per filamentous fungus pellet was calculated from the following formula (1).
  • Filamentous pellet density [g-dry cell / cm 3 ] Dry cell weight concentration [g-dry cell / L] / Pellet particle number concentration [number / L] / Volume per filamentous fungal pellet [cm 3 / piece] (1)
  • Example 2 to [Example 12] Filamentous fungal pellets were obtained in the same manner as in Example 1 except that the cationic polymer shown in Table 1 was used.
  • Example 13 Example 1 except that polyallylamine hydrochloride (molecular weight: 120,000 to 200,000, charge density: 10.7, manufactured by Alfa Assar) was used as the cationic polymer, and the addition concentration was 0.5% (w / v). A filamentous fungus pellet was obtained in the same manner as described above.
  • Example 14 to [Example 15] Filamentous fungal pellets were obtained in the same manner as in Example 13 except that the addition concentration of polyallylamine hydrochloride was changed to 0.1% (w / v) or 0.01% (w / v).
  • Example 16 ⁇ Preparation of filamentous fungus pellet> [Spore recovery and preparation of frozen stock] As a strain, the filamentous fungus Trichoderma ressei was used. Filamentous fungi are streaked / coated on PDA medium (Difco Potato Dextose Agar, Becton, Dickinson and Company) prepared in a petri dish, and statically cultured at 30 ° C. for 7 days. Formed. After static culture, spores were collected from the petri dish, and the spores were suspended in a spore collection solution (NaCl 0.9%, Tween 80 0.03%).
  • PDA medium Difco Potato Dextose Agar, Becton, Dickinson and Company
  • the spore concentration was measured with a fully automatic cell counter (TC20 TM , manufactured by Bio-Rad Laboratories). After preparing a spore suspension, the suspension and an aqueous glycerol solution (40 vol%) were mixed at a volume ratio of 3: 1, and the mixture was stored at ⁇ 80 ° C. in an ultra-low temperature freezer (manufactured by Sanyo Electric Co., Ltd.). And used as a frozen stock.
  • TC20 TM fully automatic cell counter
  • Comparative Example 4 Filamentous fungus pellets were obtained in the same manner as in Comparative Example 3 except that sodium polyacrylate (0.5% (w / v)) was used as an additive.
  • Tables 1 and 2 show the results of Examples 1 to 16 and Comparative Examples 1 to 5.
  • the filamentous fungal pellets prepared in Examples 1 to 16 had higher mycelial density than the filamentous fungal pellets of Comparative Examples 1 to 5.
  • Example 17 ⁇ Preparation of filamentous fungus pellet> (Preparation of spore suspension) A spore suspension was prepared in the same manner as in Example 1 above.
  • the filamentous fungus pellet was prepared by the following two-stage culture.
  • the first stage culture is a spore germination and pelletization process
  • the second stage culture is a pellet growth process.
  • a PDB medium which is a pellet forming medium
  • a 30 L aeration / stirring tank manufactured by Mitsuwa Frontech Co., Ltd.
  • heat sterilized and then sterilized polyallylamine (molecular weight: 15,000).
  • the volume of the medium was adjusted to 15 L by adding sterilized water, and the culture was performed for 3 days under the conditions where the liquid temperature was 27 ° C., the stirring speed was 300 r / min, the pressure in the tank was 0.040 MPa, the air was supplied and the DO was controlled to 1.0 ppm. It was. Further, an antifoaming sensor (1% KM-72F (manufactured by Shin-Etsu Chemical Co.)) was controlled using an antifoaming sensor during foaming.
  • the supernatant of the culture broth was drained from the 30 L aeration and agitation tank through a 250 ⁇ m aperture metal filter. Then, after putting the sterilized growth medium in the tank, sterilized distilled water was added so that the amount of liquid in the tank was 15 L, and each compound was added so that the medium concentration was as follows.
  • Medium concentration is 6% (w / v) glucose (manufactured by Wako Pure Chemical Industries), magnesium sulfate heptahydrate 0.025% (w / v), zinc sulfate heptahydrate 0.009% (w / v) v), ammonium sulfate 0.1% (w / v), monopotassium dihydrogen phosphate 0.06% (w / v).
  • the culture was carried out for 12 hours under the conditions of 27 ° C., stirring speed 300 r / min, tank internal pressure 0.040 MPa, air was supplied and DO was controlled to 2 ppm.
  • the pH during the culture was maintained at 4 by adding 7N sodium hydroxide as appropriate. Further, as in the first-stage culture, control was performed so that an antifoaming agent (1% KM-72F) was added during foaming.
  • the filamentous fungus pellet culture obtained by the above operation was filtered with a nylon mesh filter for several tens of seconds until the filtrate drip settled to obtain a wet filamentous fungus pellet.
  • the pellets obtained in the second stage were immediately subjected to fermentability evaluation. Some were washed by the same method as in Example 1, and then the filamentous fungus pellet density [g-dry cell / cm 3 ] was calculated.
  • the medium composition at this time was 10% (w / v) glucose (manufactured by Wako Pure Chemical Industries, Ltd.), 0.025% (w / v) magnesium sulfate heptahydrate, 0.009% zinc sulfate heptahydrate (W / v), ammonium sulfate 0.1% (w / v), and the rest were water, so that the occupied volume of the filamentous fungal pellet relative to the medium was 36 vol%.
  • sampling at the 0th hour of culture was performed, and then the culture was performed under the conditions of supplying high concentration oxygen (> 90%) at 35 ° C., stirring speed 500 r / min, aeration speed 0.3 to 1.0 vvm. It was. Thereafter, the cells were cultured for 5 hours while sampling over time.
  • the pH was maintained at pH (35 ° C.) 4 by appropriately adding 7N sodium hydroxide solution.
  • HPLC analysis conditions are as follows. ⁇ Column: ICSep ICE-ION-300 Eluent: 0.0085 normal sulfuric acid, 0.4 mL / min ⁇ Detection method: RI (HITACHI, L-2490) -Column temperature: 40 ° C -Injection volume: 20 ⁇ L -Holding time: 40 min
  • the filamentous fungus pellet was prepared by the following two-stage culture. In the first stage of culture, 0.5% (w / v) sorbitan monolaurate and PDB medium and 0.5% (w / v) sorbitan monolaurate were added in a 30 L aeration and agitation tank (Mitsuwa Corporation). After sterilization by heat and sterilization, the spore suspension was inoculated to 1 ⁇ 10 4 spores / mL.
  • the volume of the medium was adjusted to 15 L by adding sterilized water, and the culture was performed for 3 days under the conditions where the liquid temperature was 27 ° C., the stirring speed was 300 r / min, the pressure in the tank was 0.040 MPa, the air was supplied and the DO was controlled to 1.0 ppm. It was. Further, an antifoaming sensor (1% KM-72F (manufactured by Shin-Etsu Chemical Co.)) was controlled using an antifoaming sensor during foaming.
  • the second stage culture was performed in the same manner as in Example 17.
  • Example 17 After completion of the culture, a wet filamentous fungal pellet was obtained by the same method as in Example 17 and immediately subjected to fermentability evaluation. For some, the filamentous fungus pellet density [g-dry cell / cm 3 ] was calculated.
  • Table 3 shows the evaluation results of Example 17 and Comparative Example 6. In addition, the result adopted the speed

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

高密度な糸状菌ペレットを製造する方法の提供。 糸状菌の胞子を、カチオン性ポリマーを含有する培養液中で発芽させる工程を含む、糸状菌ペレットの製造方法。

Description

糸状菌ペレットの製造方法
 本発明は、糸状菌ペレットの製造方法に関する。
 糸状菌は、有機酸や酵素類等の有用物質の微生物学的生産に産業上欠かせられない有用微生物である。糸状菌を液体培養すると、胞子接種量、培養液のpH、流動条件等によりその形態は繊維状、塊状又はペレット状等に変化する。糸状菌ペレットは発酵後の培地からの分離が容易等の利点を有する(例えば、特許文献1)。
 非特許文献1では、培養液に特定のノニオン界面活性剤を添加し、糸状菌ペレットを形成させることが報告されている。また、非特許文献2では、Aspergillus nigerの菌糸凝集体を形成させることが報告されている。
  (特許文献1)特開平6-253871号公報
  (非特許文献1)Journal of Industrial Microbiology、4、1989年、p.155-161
  (非特許文献2)第48回化学工学会ポスター、LQ268
 本発明は、糸状菌の胞子を、カチオン性ポリマーを含有する培養液中で発芽させる工程を含む、糸状菌ペレットの製造方法、及び、菌糸密度の高い糸状菌ペレットを提供するものである。
発明の詳細な説明
 本発明は、高密度な糸状菌ペレットを製造する方法を提供することに関する。
 本発明者は、糸状菌のペレット化について検討した結果、カチオン性ポリマーを含む培養液中で糸状菌胞子を発芽させ、ペレットを形成させると、菌糸密度の高い糸状菌ペレットが得られることを見出した。
 本発明によれば、高密度な糸状菌ペレットが得られる。
 本発明の糸状菌ペレットの製造方法は、糸状菌の胞子を、カチオン性ポリマーを含有する培養液中で発芽させ、ペレットを形成させる工程を含む、製造方法である。
(糸状菌)
 本発明に用いられる糸状菌としては、リゾプス(Rhizopus)属、トリコデルマ(Trichoderma)属、アスペルギルス(Aspergillus)属、ムコール(Mucor)属に属する微生物等が挙げられる。
 リゾプス(Rhizopus)属菌としては、例えば、リゾプス・デレマー(Rhizopus delemar)、リゾプス・オリザエ(Rhizopus oryzae)、リゾプス・アリズス(Rhizopus arrhizus)、リゾプス・キネンシス(Rhizopus chinensis)、リゾプス・ニグリカンス(Rhizopus nigricans)、リゾプス・トンキネンシス(Rhizopus tonkinensis)、リゾプス・トリチシ(Rhizopus tritici)等が挙げられる。
 トリコデルマ(Trichoderma)属菌としては、例えば、トリコデルマ・アトロビリデ(Trichoderma atroviride)、トリコデルマ・ハルジアナム(Trichoderma harzianum)、トリコデルマ・コニンギ(Trichoderma koningii)、トリコデルマ・リーセイ(Trichoderma ressei)、トリコデルマ・ビリデ(Trichoderma viride)等が挙げられる。
 アスペルギルス(Aspergillus)属菌としては、例えば、アスペルギルス・オリザエ(Aspergillus oryzae)、アスペルギルス・ニガー(Aspergillus niger)、アスペルギルス・テレウス(Aspergillus terreus)等が挙げられる。
 ムコール(Mucor)属菌としては、ムコール・マンドシュリクス(Mucor mandshuricus)等が挙げられる。
 これらの糸状菌は、単独で使用すればよいが、2種以上組み合わせて使用することもできる。
 なかでも、有用物質の生産性、取扱性の観点から、リゾプス属菌又はトリコデルマ属菌が好ましく、リゾプス・デレマー、リゾプス・オリザエがより好ましい。本明細書における有用物質については後述する。
(糸状菌の胞子と胞子懸濁液の調整)
 糸状菌の胞子は、糸状菌の胞子をポテトデキストロース寒天培地(PDA培地)等の培地に接種して静置培養を行い、培養物を液体に懸濁した胞子懸濁液として調製することができる。胞子懸濁液は、適宜希釈して所望の胞子数に調整することができる。
 胞子懸濁液を調製するための静置培養の条件としては、胞子増殖の観点から、培養温度は、好ましくは10℃以上、より好ましくは25℃以上であり、また、好ましくは40℃以下、より好ましくは30℃以下である。培養日数は、好ましくは7日以上、10日以下である。
 胞子懸濁液中の胞子数は、後述するセルカウンターにて計測することができる。
(胞子の発芽とペレット化の工程)
 胞子懸濁液を、培養液に接種して培養することで、胞子は発芽し、菌糸体へと成長して、ペレットを形成する。
 ここで、本明細書において「ペレット」とは、液体培養により菌糸が自発的に形成した数百μm~数mm程度の大きさの菌糸塊をいう。
 培養液に接種する糸状菌の胞子数は、糸状菌ペレットの良好な生育の観点から、好ましくは1×101個-胞子/mL-培養液以上、より好ましくは1×102個-胞子/mL-培養液以上であり、また、上記と同様の観点から、好ましくは1×108個-胞子/mL-培養液以下であり、より好ましくは1×104個-胞子/mL-培養液以下である。
 培養液は、糸状菌を生育可能な液体培地であれば、合成培地、天然培地及び天然成分を合成培地に添加した半合成培地のいずれでもよい。例えば、ポテトデキストロース培地(PDB培地)、Luria-Bertani培地(LB培地)、Nutrient Broth(NB培地)、Sabouraud培地(SB培)等を利用することができる。
 培養液には、炭素源、窒素源、無機塩類、その他必要な栄養源等を含有することができる。
 炭素源としては、糖類が挙げられる。糖類としては、グルコース、フルクトース、キシロース等の単糖類、スクロース、ラクトース、マルトース等の二糖類が挙げられる。糖類は無水物又は水和物であってもよい。これらは単独で又は2種以上組み合わせて使用することができる。なかでも、生産性の観点から、グルコースが好ましい。培養液中の当初の炭素源濃度は、好ましくは0.1%(w/v)以上、30%(w/v)以下である。
 窒素源としては、例えば、尿素、硫酸アンモニウム、硝酸アンモニウム、硝酸カリウム、硝酸ナトリウム等の含窒素化合物が挙げられる。培養液中の当初の窒素源濃度は、好ましくは0.1%(w/v)以上、1%(w/v)以下である。
 無機塩としては、硫酸塩、マグネシウム塩、亜鉛塩等が挙げられる。
 硫酸塩としては、例えば、硫酸マグネシウム、硫酸亜鉛、硫酸カリウム、硫酸ナトリウム等が挙げられる。培養液中の当初の硫酸塩濃度は、好ましくは0.1%(w/v)以上、1%(w/v)以下である。
 マグネシウム塩としては、例えば、硫酸マグネシウム、硝酸マグネシウム、塩化マグネシウム等が挙げられる。培養液中の当初のマグネシウム塩濃度は、好ましくは0.0001%(w/v)以上、0.5%(w/v)以下である。
 亜鉛塩としては、例えば、硫酸亜鉛、硝酸亜鉛、塩化亜鉛等が挙げられる。培養液中の当初の亜鉛塩濃度は、好ましくは0.0001%(w/v)以上、0.5%(w/v)以下である。
(カチオン性ポリマー)
 本発明では、胞子の発芽とペレット化は、カチオン性ポリマーを含有する培養液中で行われる。
 本発明に用いられる「カチオン性ポリマー」とは、水と混合された場合、正に帯電するポリマーをいう。カチオン性ポリマーの具体的な事例は、カチオン性基を有するモノマー、あるいは水中でカチオン性を示すアミノ基を有するモノマーの重合体、及び、これらのモノマーと他のモノマーの共重合体又は縮重合体が好ましい。
 カチオン性基としては、第4級アミノ基、ヒドラジノ基等が挙げられ、水中でカチオン性を示すアミノ基としては、例えば第1級アミノ基、第2級アミノ基、第3級アミノ基が挙げられる。
 カチオン性ポリマーの電荷密度は、ペレットの密度を高める観点から、好ましくは0.1meq/g以上であり、より好ましくは1meq/g以上、更に好ましくは2meq/g以上、更に好ましくは10meq/g以上である。また、上記と同様の観点から、好ましくは100meq/g以下であり、より好ましくは50meq/g以下であり、より好ましくは30meq/g以下である。
 カチオン性ポリマーの電荷密度は、好ましくは0.1meq/g~100meq/gであり、より好ましくは1meq/g~50meq/gであり、より好ましくは2meq/g~30meq/gであり、更に好ましくは10meq/g~30meq/gである。
 ここで、カチオン電荷密度とは、ポリマー上の正電荷の数と該ポリマーの分子量(カチオン基の対イオンの重量は除く)の比を指す。カチオン電荷密度にポリマー分子量を乗じると、所与のポリマー鎖における正に荷電した部位の数が求められる。カチオン電荷密度は更に、ポリマーのグラム当たりの正電荷(カチオン性を有する窒素原子)のミリ当量の数(meq/g)として定義される。
 カチオン電荷密度の値は、たとえば、以下の式(1)に従い求めることができる。
カチオン電荷密度(meq/g)=1÷(カチオンポリマー中のカチオン性を有する窒素原子を1つ含む単位分子量)×1000 ・・・ 式(1)
 カチオン性ポリマーの重量平均分子量(以下、単に分子量ともいう)は、糸状菌ペレットの良好な生育の観点から、好ましくは1,000以上、より好ましくは1,600以上であり、また、好ましくは1,000,000以下、より好ましくは500,000以下、より好ましくは300,000以下、更に好ましくは200,000以下である。カチオン性ポリマーの分子量は、好ましくは1,000~1,000,000、より好ましくは1,000~500,000、より好ましくは1,000~300,000、更に好ましくは1,600~200,000である。
 また、カチオン性ポリマーの重量平均分子量は、培養時の操作性の観点から、好ましくは1,000以上、より好ましくは2,000以上、より好ましくは5,000以上、より好ましくは100,000以上であり、また、好ましくは500,000以下である。
 なお、平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)等の公知の測定方法により測定され、測定装置は拘らないが、例としては、東ソー製HLC-8220シリーズ等が挙げられる。
 カチオン性ポリマーは、水溶性ポリマーであることが好ましい。ここで、「水溶性ポリマー」とは、105℃で2時間乾燥させたポリマーを、25℃の水100gに溶解させたときに、その溶解量が10gを超えるポリマーをいう。カチオン性ポリマーの水100gへの溶解量は、好ましくは20g以上、より好ましくは100g以上である。
 カチオン性ポリマーとしては、例えば、1級アミンを含むポリマー、2級アミンを含むポリマー、3級アミンを含むポリマー、4級アミンを含むポリマーが挙げられる。1級アミンを含むポリマーとして、ポリアリルアミン、アリルアミン塩重合体、アリルアミンアミド塩重合体が挙げられる。2級アミンを含むポリマーとして、ポリジアリルアミン、ジアリルアミン塩重合体、ジアリルアミン塩/アクリルアミド共重合体が挙げられる。3級アミンを含むポリマーとして、アルキルジアリルアミン塩重合体、アルキルジアリルアミンアミド塩重合体が挙げられる。4級アミンを含むポリマーとして、ジアリルジアルキルアンモニウム塩重合体、ジアリルジアルキルアンモニウムエチルサルフェイト重合体、ジアリルジアルキルアンモニウム塩/アクリルアミド共重合体が挙げられる。また、前記のポリマー以外にも、ポリエチレンイミン、メチルグリコールキトサン、アミン-エピクロルヒドリン共重合体、カチオン化ポリビニルアルコール、カチオン化セルロース、カチオン化澱粉、カチオン化グアーガム、ジシアンジアミド系高分子が挙げられる。上記のアルキル基としてはメチル基、エチル基、プロピル基が挙げられる。また、上記の塩としては硫酸塩、塩酸塩、酢酸塩が挙げられる。
 アリルアミン塩重合体は、アリルアミン塩酸塩重合体が挙げられる。アリルアミンアミド塩重合体はアリルアミンアミド硫酸塩重合体が挙げられる。ジアリルアミン塩重合体は、ジアリルアミン塩酸塩重合体が挙げられる。アルキルジアリルアミン塩重合体はメチルジアリルアミン塩酸塩重合体、メチルジアリルアミン酢酸塩重合体が挙げられる。アルキルジアリルアミンアミド塩重合体として、メチルジアリルアミンアミド硫酸塩重合体が挙げられる。ジアリルジアルキルアンモニウム塩重合体として、ポリジアリルジメチルアンモニウムクロライド、ポリジアリルメチルエチルアンモニウムクロライド、ポリアクリル酸-co-ジアリルジメチルアンモニウムクロライド、ポリアクリルアミド-co-ジアリルジメチルアンモニウムクロライド、ポリアクリルアミド-co-アクリル酸-co-ジアリルジメチルアンモニウムクロライド、ポリジアリルジメチルアンモニウムエチルサルフェイト、ポリジアリルメチルエチルアンモニウムエチルサルフェイトが挙げられる。
 ジアリルジアルキルアンモニウムエチルサルフェイト重合体としてジアリルメチルエチルアンモニウムエチルサルフェイトが挙げられる。また、ポリ2-(メタクリロイルオキシ)エチルトリメチルアンモニウムクロライドが挙げられる。
 カチオン性ポリマーは、単独で又は2種以上を組み合わせて使用することもできる。
 なかでも、ペレットの密度を高める観点から、好ましくはポリエチレンイミン、ポリアリルアミン、アリルアミン塩重合体、ジアリルジアルキルアンモニウム塩重合体、ジアリルジアルキルアンモニウムエチルサルフェイト重合体、メチルグリコールキトサン、カチオン化ポリビニルアルコールであり、より好ましくはポリエチレンイミン、ポリアリルアミン、アリルアミン塩重合体、ジアリルジアルキルアンモニウム塩重合体であり、より好ましくはポリエチレンイミン、ポリアリルアミン、ジアリルジアルキルアンモニウム塩重合体である。
 培養液中のカチオン性ポリマーの含有量は、ペレットの密度を高める観点から、好ましくは0.0001%(w/v)以上であり、より好ましくは0.001%(w/v)以上、更に好ましくは0.0015%(w/v)以上である。また、上記と同様の観点から、好ましくは2%(w/v)以下であり、より好ましくは1%(w/v)以下、更に好ましくは0.5%(w/v)以下である。培養液中のカチオン性ポリマーの含有量は、好ましくは0.0001~2%(w/v)、より好ましくは0.001~1%(w/v)、更に好ましくは0.0015~0.5%(w/v)である。
(胞子の発芽とペレット化時の培養方法)
 培養は、通常の手順にて行えばよい。培養は、通常、好気的条件で行われる。
 培養温度は、好ましくは20℃以上、より好ましくは25℃以上であり、また、好ましくは40℃以下、より好ましくは30℃以下である。
 培地の初発pHは、菌体の良好な生育の観点から、好ましくは2以上、より好ましくは3以上であり、また、好ましくは7以下、より好ましくは5以下である。
 培養期間は、糸状菌の胞子を培養液に植菌後、好ましくは30分以上、より好ましくは0.5日以上であり、また、好ましくは7日以内、より好ましくは6日以内、更に好ましくは5日以内である。
 培養に用いる培養槽は、従来公知のものを適宜採用することができる。例えば、フラスコ、通気撹拌型培養槽、気泡塔型培養槽等、及び流動床培養槽が挙げられる。撹拌条件は、好ましくは80r/min以上、より好ましくは100r/min以上であり、また、好ましくは250r/min以下、より好ましくは200r/min以下である。
 培養温度、培養期間、撹拌条件等を変更することにより、所望の大きさや外観のペレットを形成することができる。
 糸状菌ペレットの体積平均粒径は、有用物質の高い生産性と触媒繰返し利用時の分離性の観点から、好ましくは150μm以上、より好ましくは250μm以上であり、また、好ましくは3000μm以下、より好ましくは1500μm以下である。
 なお、体積平均粒径は後述する顕微鏡観察による画像解析で測定される。
(ペレットの増殖工程)
 本発明では、有用物質の生産性向上の観点から、糸状菌ペレットをさらに培養して増殖させる工程を行ってもよい。
 糸状菌ペレットの増殖に用いられる培養液は特に限定されないが、糸状菌の胞子を発芽させる工程の培養液とは異なる培養液を用いるのが好ましい。例えば、通常使用されるグルコースを含む無機培養液が挙げられる。具体的には、グルコースを7.5以上30%以下(w/v)、硫酸アンモニウムを0.05以上2%以下(w/v)、リン酸2水素カリウムを0.03以上0.6%以下(w/v)、硫酸マグネシウムを0.01以上0.1%以下(w/v)、及び硫酸亜鉛を0.005以上0.05%以下(w/v)含有する培地等が挙げられる。上記の塩は水和物であっても良い。
 培養条件としては、培養温度が、好ましくは20℃以上、より好ましくは25℃以上であり、また、好ましくは40℃以下、より好ましくは30℃以下である。
 また、培地のpHは、菌体の生育や、有用物質の生産性の観点から、好ましくは2以上、より好ましくは3以上であり、また、好ましくは7以下、より好ましくは5以下である。培養液のpH制御は、水酸化カルシウム、水酸化ナトリウム、炭酸カルシウム、アンモニア等の塩基、硫酸、塩酸等の酸を用いて行うことができる。
 培養期間は、好ましくは30分以上、より好ましくは6時間以上、より好ましくは0.5日以上であり、また、好ましくは3日以下、より好ましくは2日以下、より好ましくは1日以下である。
 また、培養に用いる培養槽は、従来公知のものを適宜採用することができる。具体的には、フラスコ、通気撹拌型培養槽、気泡塔型培養槽、及び流動床培養槽等が挙げられる。
 培養後、糸状菌ペレットは、培養液と共に培養槽から抜き出して、ろ過、遠心分離等の簡便な操作により分離回収することができる。培養槽に糸状菌ペレットを残したまま、同一培養槽で糸状菌ペレットを物質生産に利用することも可能である。
 かくして得られる糸状菌ペレットは、菌糸密度が高い。従って、当該糸状菌ペレットは、有用物質の発酵生産性向上に有用である。
 糸状菌ペレットの密度は、有用物質の生産性の観点から、0.04g-dry cell/cm3以上、より好ましくは0.1g-dry cell/cm3以上であり、また、0.5g-dry cell/cm3以下、より好ましくは0.3g-dry cell/cm3以下、より好ましくは0.25g-dry cell/cm3以下である。当該密度は、後述する実施例に記載の方法で求められる。
 本明細書における有用物質は、糸状菌の培養の過程により炭素源から生産される化合物である。このような化合物としては、例えば、有機酸、酵素、油脂及びアルコールから選ばれる少なくとも1種が挙げられる。本発明の糸状菌ペレットを用いて生産することができる好適な有用物質は、有機酸、エタノール又は酵素である。有機酸としては、例えば、フマル酸、乳酸、イタコン酸、リンゴ酸、ピルビン酸等が挙げられる。なかでも、好ましくは、フマル酸、ピルビン酸、乳酸及びリンゴ酸から選ばれる少なくとも1種であり、更に好ましくはフマル酸、乳酸であり、更に好ましくはフマル酸である。酵素としては、例えば、プロテアーゼ、オキシゲナーゼ、アミラーゼ、セルラーゼ、イソメラーゼが挙げられる。
(糸状菌ペレットを用いた有用物質の生産)
 有用物質の生産時に用いられる培養液は、通常、炭素源を含む。培養液には、炭素源の他、窒素源、無機塩類、その他リン源、ビタミン等の必要な栄養源等を含有することができる。使用する炭素源に培養に適切な濃度の上記栄養源が含まれている場合には、炭素源のみを用いることも可能である。炭素源、窒素源、無機塩類としては、前記[0014]段落記載の化合物が挙げられる。
 有用物質の生産時に用いられる培養液においては、炭素源として、糖類を含有する糖液を使用することもできる。例えば、でんぷんから得られる糖液、糖蜜、廃糖蜜、リグノセルロース系バイオマスから得られる糖液が挙げられる。これらは1種又は2種以上組み合わせて使用することができる。ここで、本明細書において「リグノセルロース系バイオマス」とは、セルロース、ヘミセルロース、及びリグニンを主成分とするバイオマスを意味する。リグノセルロース系バイオマスとしては、具体例には、イナワラ、籾殻、麦わら、バガス、ヤシ殻、コーンコブ、雑草、木材、及びそれらから製造されたパルプ及び紙等が挙げられる。また、でんぷんとしては、例えば、トウモロコシ等の雑穀類、大豆等の豆類の抽出物が挙げられ、糖蜜としては、例えば、サトウキビ、テンサイ等に由来するものが挙げられる。
 培養液中の当初の炭素源濃度は、生産性の観点から、好ましくは1%(w/v)以上、より好ましくは2%(w/v)以上、更に好ましくは3%(w/v)以上であって、また、好ましくは40%(w/v)以下、より好ましくは30%(w/v)以下、更に好ましくは20%(w/v)以下である。また、培養液中の当初の炭素源濃度は、好ましくは1~40(w/v)%、より好ましくは2~30(w/v)%、更に好ましくは3~20(w/v)%である。
 また、培養液中の当初の窒素源濃度は、生産性の観点から、好ましくは0.001%(w/v)以上、より好ましくは0.002%(w/v)以上、より好ましくは0.004%(w/v)以上であり、また、好ましくは0.5%(w/v)以下、より好ましくは0.3%(w/v)以下、より好ましくは0.1%(w/v)以下である。
 培養液中の当初の硫酸塩濃度は、生産性の観点から、好ましくは0.001%(w/v)以上、より好ましくは0.005%(w/v)以上、より好ましくは0.01%(w/v)以上であり、また、好ましくは0.1%(w/v)以下、より好ましくは0.08%(w/v)以下、更に好ましくは0.04%(w/v)以下である。
 培養液中の当初のマグネシウム塩濃度は、生産性の観点から、好ましくは0.001%(w/v)以上、より好ましくは0.002%(w/v)以上、更に好ましくは0.003%(w/v)以上であり、また、好ましくは0.5%(w/v)以下、より好ましくは0.2%(w/v)以下、更に好ましくは0.1%(w/v)以下である。
 培養液中の当初の亜鉛塩濃度は、生産性の観点から、好ましくは0.00001%(w/v)以上、より好ましくは0.00003%(w/v)以上、更に好ましくは0.00005%(w/v)以上、そして、好ましくは0.1%(w/v)以下、より好ましくは0.05%(w/v)以下、更に好ましくは0.01%(w/v)以下である。
 有用物質の生産時の培養温度は、好ましくは20℃以上、より好ましくは30℃以上であり、また、好ましくは40℃以下、より好ましくは37℃以下である。
 培養液のpHは、菌体の生育や、有用物質の生産性の観点から、好ましくは2以上、より好ましくは3以上であり、また、好ましくは7以下、より好ましくは5以下である。pH制御は、水酸化カルシウム、水酸化ナトリウム、炭酸カルシウム、アンモニア等の塩基、硫酸、塩酸等の酸を用いて行うことができる。
 培養に用いるガスは、空気や酸素富化されたガスを選択できる。通気条件は、好ましくは0.1vvm以上、より好ましくは0.2vvm以上であり、また、好ましくは2vvm以下、より好ましくは1vvm以下である。
 また、培養に用いる培養槽は、従来公知のものを適宜採用することができるが、フマル酸の高い生産性の観点から、通気撹拌型培養槽、気泡塔型培養槽、及び流動床培養槽が好ましく使用される。
 培養は、回分式、半回分式及び連続式のいずれで行ってもよい。例えば、半回分式で行う場合、菌体と発酵液とを分離し、分離回収した菌体に培地を加えて更に発酵を行うことができる。また、連続式で行う場合、一定量の培地を発酵槽内に一定速度で供給するとともに、同量の発酵液を抜き取るという方法を採用することができる。その場合、発酵槽内の液面高さを一定に保つように、液面高さを液面センサー等により制御してもよい。また、発酵時に炭素源のみを供給することも可能であり、炭素源の供給は、流速で制御しても、グルコース濃度で制御してもよい。
 培養後の菌体と発酵液の分離は、発酵槽内でフィルターにより固液分離してもよいし、一度槽外に抜き出して液体サイクロンやろ過等の固液分離に供した後に菌体のみを発酵槽内に戻してもよい。
(有用物資の回収)
 分離後に得られた発酵液はそのまま、或いは発酵液を濃縮した後、晶析法、イオン交換法、溶剤抽出法、あるいはアルカリ土類金属塩として析出させた後析出物を酸分解する方法等により、発酵液から生成物を分離し回収することができる。
 上述した実施形態に関し、本発明はさらに以下の製造方法を開示する。
<1>糸状菌の胞子を、カチオン性ポリマーを含有する培養液中で発芽させる工程を含む、糸状菌ペレットの製造方法。
<2>糸状菌が、好ましくはリゾプス(Rhizopus)属、トリコデルマ(Trichoderma)属、アスペルギルス(Aspergillus)属及びムコール(Mucor)属に属する微生物から選ばれる1種又は2種以上であり、より好ましくはリゾプス・デレマー(Rhizopus delemar)、リゾプス・オリザエ(Rhizopus oryzae)、リゾプス・アリズス(Rhizopus arrhizus)、リゾプス・キネンシス(Rhizopus chinensis)、リゾプス・ニグリカンス(Rhizopus nigricans)、リゾプス・トンキネンシス(Rhizopus tonkinensis)、リゾプス・トリチシ(Rhizopus tritici)、トリコデルマ・アトロビリデ(Trichoderma atroviride)、トリコデルマ・ハルジアナム(Trichoderma harzianum)、トリコデルマ・コニンギ(Trichoderma koningii)、トリコデルマ・リーセイ(Trichoderma ressei)、トリコデルマ・ビリデ(Trichoderma viride)、アスペルギルス・オリザエ(Aspergillus oryzae)、アスペルギルス・ニガー(Aspergillus niger)、アスペルギルス・テレウス(Aspergillus terreus)及びムコール・マンドシュリクス(Mucor mandshuricus)から選ばれる1種又は2種以上である<1>に記載の糸状菌ペレットの製造方法。
<3>糸状菌が、好ましくはリゾプス(Rhizopus)属菌又はトリコデルマ(Trichoderma)属菌であり、より好ましくはリゾプス・デレマー(Rhizopus delemar)、リゾプス・オリザエ(Rhizopus oryzae)又はトリコデルマ・リーセイ(Trichoderma ressei)である<1>に記載の糸状菌ペレットの製造方法。
<4>糸状菌の胞子を、好ましくは1×101個-胞子/mL-培養液以上、より好ましくは1×102個-胞子/mL-培養液以上であり、また、好ましくは1×108個-胞子/mL-培養液以下、より好ましくは1×104個-胞子/mL-培養液以下の胞子数で、カチオン性ポリマーを含有する培養液に接種して胞子を発芽させる、<1>~<3>のいずれか1に記載の糸状菌ペレットの製造方法。
<5>培養液が、好ましくは炭素源、窒素源及び無機塩類を含有する<1>~<4>のいずれか1に記載の糸状菌ペレットの製造方法。
<6>培養液中の当初の窒素源濃度が、好ましくは0.1%(w/v)以上、1%(w/v)以下であり、当初の硫酸塩濃度が、好ましくは0.1%(w/v)以上、1%(w/v)以下であり、当初のマグネシウム塩濃度が、好ましくは0.0001%(w/v)以上、0.5%(w/v)以下であり、当初の亜鉛塩濃度が、好ましくは0.0001%(w/v)以上、0.5%(w/v)以下である<5>に記載の糸状菌ペレットの製造方法。
<7>培養液中のカチオン性ポリマーの含有量が、好ましくは0.0001%(w/v)以上、より好ましくは0.001%(w/v)以上、更に好ましくは0.0015%(w/v)以上であり、また、好ましくは2%(w/v)以下、より好ましくは1%(w/v)以下、更に好ましくは0.5%(w/v)以下であり、また、好ましくは0.0001~2%(w/v)、より好ましくは0.001~1%(w/v)、更に好ましくは0.0015~0.5%(w/v)である<1>~<6>のいずれか1に記載の糸状菌ペレットの製造方法。
<8>カチオン性ポリマーの電荷密度が、好ましくは0.1meq/g以上、より好ましくは1meq/g以上、更に好ましくは2meq/g以上、更に好ましくは10meq/g以上であり、また、好ましくは100meq/g以下、より好ましくは50meq/g以下、更に好ましくは30meq/g以下であり、また、好ましくは0.1meq/g~100meq/g、より好ましくは1meq/g~50meq/g、より好ましくは2meq/g~30meq/gであり、更に好ましくは10meq/g~30meq/gである<1>~<7>のいずれか1に記載の糸状菌ペレットの製造方法。
<9>カチオン性ポリマーの重量平均分子量が、好ましくは1,000以上、より好ましくは1,600以上であり、また、好ましくは1,000,000以下、より好ましくは500,000以下、より好ましくは300,000以下、更に好ましくは200,000以下であり、また、好ましくは1,000~1,000,000、より好ましくは1,000~500,000、より好ましくは1,000~300,000、更に好ましくは1,600~200,000である<1>~<8>のいずれか1に記載の糸状菌ペレットの製造方法。
<10>カチオン性ポリマーの重量平均分子量が、好ましくは1,000以上、より好ましくは2,000以上、より好ましくは5,000以上、より好ましくは100,000以上であり、また、好ましくは500,000以下であり、また、好ましくは1,000~500,000、より好ましくは2,000~500,000、更に好ましくは5,000~500,000、更に好ましくは100,000~500,000である<1>~<8>のいずれか1に記載の糸状菌ペレットの製造方法。
<11>カチオン性ポリマーが、好ましくは水溶性カチオン性ポリマーである<1>~<10>のいずれか1に記載の糸状菌ペレットの製造方法。
<12>カチオン性ポリマーが、好ましくはポリジアリルジアルキルアンモニウム塩又はその共重合体、ポリエチレンイミン、ポリアリルアミン又はその塩、メチルグリコールキトサン、アミン-エピクロルヒドリン共重合体、カチオン化ポリビニルアルコール、カチオン化セルロース、カチオン化澱粉、カチオン化グアーガム、ジシアンジアミド系高分子、及びポリ2-(メタクリロイルオキシ)エチルトリメチルアンモニウムクロライドから選ばれる1種又は2種以上であり、より好ましくはポリアリルアミン又はその塩、メチルグリコールキトサン、ポリジアリルジアルキルアンモニウム塩又はその共重合体、ポリエチレンイミン及びカチオン化ポリビニルアルコールから選ばれる1種又は2種以上である<1>~<11>のいずれか1に記載の糸状菌ペレットの製造方法。
<13>ポリジアリルジアルキルアンモニウム塩又はその共重合体が、好ましくはポリジアリルジメチルアンモニウムクロライド、ポリジアリルメチルエチルアンモニウムクロライド、ポリアクリル酸-co-ジアリルジメチルアンモニウムクロライド、ポリアクリルアミド-co-ジアリルジメチルアンモニウムクロライド、ポリアクリルアミド-co-アクリル酸-co-ジアリルジメチルアンモニウムクロライド、ポリジアリルジメチルアンモニウムエチルサルフェイト、及びポリジアリルメチルエチルアンモニウムエチルサルフェイトから選ばれる1種又は2種以上である<12>に記載の糸状菌ペレットの製造方法。
<14>培養温度が、好ましくは20℃以上、より好ましくは25℃以上であり、また、好ましくは40℃以下、より好ましくは30℃以下である<1>~<13>のいずれか1に記載の糸状菌ペレットの製造方法。
<15>カチオン性ポリマーを含有する培養液の初発pHが、好ましくは2以上、より好ましくは3以上であり、また、好ましくは7以下、より好ましくは5以下である<1>~<14>のいずれか1に記載の糸状菌ペレットの製造方法。
<16>培養期間が、好ましくは30分以上、より好ましくは0.5日以上であり、また、好ましくは7日以内、より好ましくは6日以内、更に好ましくは5日以内である<1>~<15>のいずれか1に記載の糸状菌ペレットの製造方法。
<17>糸状菌ペレットの体積平均粒径が、好ましくは150μm以上、より好ましくは250μm以上であり、また、好ましくは3000μm以下、より好ましくは1500μm以下である<1>~<16>のいずれか1に記載の糸状菌ペレットの製造方法。
<18>糸状菌の胞子を発芽させる工程の培養液とは異なる培養液中で糸状菌ペレットを増殖させる工程を更に含む、<1>~<17>のいずれか1に記載の糸状菌ペレットの製造方法。
<19>糸状菌ペレットの増殖に用いられる培養液が、好ましくはグルコースを7.5~30%(w/v)、硫酸アンモニウムを0.05~2%(w/v)、リン酸2水素カリウムを0.03~0.6%(w/v)、硫酸マグネシウム・7水和物を0.01~0.1%(w/v)、及び硫酸亜鉛・7水和物を0.005~0.05%(w/v)を含有する培養液である<18>に記載の糸状菌ペレットの製造方法。
<20>糸状菌ペレットを増殖させる工程における培養温度が、好ましくは20℃以上、より好ましくは25℃以上であり、また、好ましくは40℃以下、より好ましくは30℃以下である<18>又は<19>に記載の糸状菌ペレットの製造方法。
<21>糸状菌ペレットを増殖させる工程における培養液のpHが、好ましくは2以上、より好ましくは3以上であり、また、好ましくは7以下、より好ましくは5以下である<18>~<20>のいずれか1に記載の糸状菌ペレットの製造方法。
<22>糸状菌ペレットを増殖させる工程における培養期間が、好ましくは30分以上、より好ましくは6時間以上、より好ましくは0.5日以上であり、また、好ましくは3日以下、より好ましくは2日以下、より好ましくは1日以下である<18>~<21>のいずれか1に記載の糸状菌ペレットの製造方法。
<23>糸状菌ペレットの密度が、好ましくは0.04g-dry cell/cm3以上、より好ましくは0.1g-dry cell/cm3以上であり、また、好ましくは0.5g-dry cell/cm3以下、より好ましくは0.3g-dry cell/cm3以下、より好ましくは0.25g-dry cell/cm3以下である<1>~<22>のいずれか1に記載の糸状菌ペレットの製造方法。
<24>炭素源を含有する培養液にて<1>~<23>のいずれか1に記載の製造方法によって得られる糸状菌ペレットを用い有機酸及びエタノールから選ばれる少なくとも1種を製造する方法。
<25>有機酸が、好ましくはフマル酸、乳酸、イタコン酸、リンゴ酸、及びピルビン酸から選ばれる少なくとも1種であり、より好ましくは、フマル酸、ピルビン酸、乳酸及びリンゴ酸から選ばれる少なくとも1種であり、更に好ましくはフマル酸、乳酸であり、更に好ましくはフマル酸である<24>に記載の方法。
<26>培養液中の当初の炭素源濃度が、好ましくは1%(w/v)以上、より好ましくは2%(w/v)以上、更に好ましくは3%(w/v)以上であって、また、好ましくは40%(w/v)以下、より好ましくは30%(w/v)以下、更に好ましくは20%(w/v)以下であり、また、好ましくは1~40(w/v)%、より好ましくは2~30(w/v)%、更に好ましくは3~20(w/v)%である<24>又は<25>に記載の方法。
<27>培養液が、好ましくは窒素源及び無機塩類を含有する<24>~<26>のいずれか1に記載の方法。
<28>培養液中の当初の窒素源濃度が、好ましくは0.001%(w/v)以上、より好ましくは0.002%(w/v)以上、より好ましくは0.004%(w/v)以上であり、また、好ましくは0.5%(w/v)以下、より好ましくは0.3%(w/v)以下、より好ましくは0.1%(w/v)以下であり、当初の硫酸塩濃度が、好ましくは0.001%(w/v)以上、より好ましくは0.005%(w/v)以上、より好ましくは0.01%(w/v)以上であり、また、好ましくは0.1%(w/v)以下、より好ましくは0.08%(w/v)以下、更に好ましくは0.04%(w/v)以下であり、当初のマグネシウム塩濃度が、好ましくは0.001%(w/v)以上、より好ましくは0.002%(w/v)以上、更に好ましくは0.003%(w/v)以上であり、また、好ましくは0.5%(w/v)以下、より好ましくは0.2%(w/v)以下、更に好ましくは0.1%(w/v)以下であり、当初の亜鉛塩濃度が、好ましくは0.00001%(w/v)以上、より好ましくは0.00003%(w/v)以上、更に好ましくは0.00005%(w/v)以上、また、好ましくは0.1%(w/v)以下、より好ましくは0.05%(w/v)以下、更に好ましくは0.01%(w/v)以下である<27>に記載の方法。
<29>有機酸及びエタノールから選ばれる少なくとも1種を製造する時の培養温度が、好ましくは20℃以上、より好ましくは30℃以上であり、また、好ましくは40℃以下、より好ましくは37℃以下である<24>~<28>のいずれか1に記載の方法。
<30>培養液のpHが、好ましくは2以上、より好ましくは3以上であり、また、好ましくは7以下、より好ましくは5以下である<24>~<29>のいずれか1に記載の方法。
<31>密度が、好ましくは0.04g-dry cell/cm3以上、より好ましくは0.1g-dry cell/cm3以上であり、また、好ましくは0.5g-dry cell/cm3以下、より好ましくは0.3g-dry cell/cm3以下、より好ましくは0.25g-dry cell/cm3以下である糸状菌ペレット。
<32>体積平均粒径が、好ましくは150μm以上、より好ましくは250μm以上であり、また、好ましくは3000μm以下、より好ましくは1500μm以下である<31>記載の糸状菌ペレット。
[カチオン性ポリマー]
 実施例1~16にて次の高分子を使用した。
・ポリエチレンイミン(PEI、分子量10,000、電荷密度23.2meq/g、Alfa Asesar製)
・ポリアリルアミン(PAA-01、分子量1,600、電荷密度17.5meq/g、ニットーボーメディカル製)
・ポリアリルアミン(PAA-05、分子量5,000、電荷密度17.5meq/g、ニットーボーメディカル製)
・ポリアリルアミン(PAA-15c、分子量15,000、電荷密度17.5meq/g、ニットーボーメディカル製)
・ポリアリルアミン(PAA-25、分子量25,000、電荷密度17.5meq/g、ニットーボーメディカル製)
・ポリアリルアミン塩酸塩(PAA-HCl-01、分子量1,600、電荷密度10.7meq/g、ニットーボーメディカル製)
・ポリアリルアミン塩酸塩(PAA-HCl-05、分子量5,000、電荷密度10.7meq/g、ニットーボーメディカル製)
・ポリアリルアミン塩酸塩(PAA-HCl-3L、分子量30,000、電荷密度10.7meq/g、ニットーボーメディカル製)
・ポリアリルアミン塩酸塩(PAA-HCl-10L、分子量150,000、電荷密度10.7meq/g、ニットーボーメディカル製)
・ポリジアリルジメチルアンモニウムクロライド(PAS-H、分子量200,000、電荷密度6.19meq/g、ニットーボーメディカル製)
・ポリジアリルメチルエチルアンモニウムエチルサルフェイト(PAS-24、分子量37,000、電荷密度3.32meq/g、ニットーボーメディカル製)
・メチルグリコールキトサン(MGch、分子量150,080、電荷密度2.67meq/g、和光純薬製)
・ポリアリルアミン塩酸塩(PAH、分子量120,000~200,000、電荷密度10.7meq/g、Alfa Asesar製)
・ポリアリルアミン(PAAm、分子量15,000、電荷密度17.5meq/g、Polysciences,Inc.製)
・カチオン化ポリビニルアルコール(ゴーセネックス K-434、C-PVA、分子量 78,000~86,000 、電荷密度 8.23meq/g、日本合成化学工業製)
[界面活性剤]
 比較例1および6にて次の界面活性剤を使用した。
(非イオン性界面活性剤)
・ソルビタンモノラウレート:レオドールSP-L10、分子量346.46、花王(株)製
[ポリマー]
 比較例3~4にて次のポリマーを使用した。
(非イオン性ポリマー)
・ポリビニルアルコール(PVA、分子量100,000、Polysciences,Inc.製)
(アニオン性ポリマー)
・ポリアクリル酸ナトリウム(SPA、分子量2,821,200~3,761,600、和光純薬製)
[実施例1]
<糸状菌ペレットの調製>
〔胞子懸濁液の調製〕
 菌株は独立行政法人 製品評価技術基盤機構(NITE)より入手した糸状菌R.delemar JCM5557を使用した。糸状菌は、シャーレ内に調製したPDA培地(Difco Potato Dextrose Agar、Becton,Dickinson and Company製)上に菌体を画線/塗布し、30℃にて静置培養し、定期的に継代を行った。菌体使用時にはシャーレから胞子を回収し、40mLの胞子回収液(NaCl 0.85%、Tween80 0.05%)に胞子を懸濁させた。その後、無菌の胞子回収液(NaCl 0.85%、Tween80 0.05%)で希釈することで1×107個-胞子/mLに調整したものを胞子懸濁液とした。胞子の濃度は全自動セルカウンター(TC20TM、バイオ・ラッド・ラボラトリーズ(株)製)にて測定した。
〔糸状菌の発芽及びペレット化〕
 熱滅菌済みのPDB培地(Difco Potato Dextrose Broth、Becton,Dickinsonand Company)を200mL仕込んだ500mL容バッフル付き三角フラスコに、熱滅菌済みのポリエチレンイミンを0.0015%(w/v)になるように含ませた。PDB培地に胞子懸濁液を2×103個-胞子/mLとなるように植菌して、振とう機(PRECI社、PRXYg-98R)にて27℃、170r/minの振盪条件で3日間培養を行い、糸状菌を発芽させ、糸状菌ペレットを得た。
<糸状菌ペレット1個当たりの密度の測定>
 培養終了後、菌体を含む培養液を重量測定用に100mLサンプリングし、ナイロンメンブレンフィルター(目開き180μm、Millipore製)を用いて糸状菌ペレットをろ過分離した。次いで、分離した糸状菌ペレットを、蒸留水200mLに浸漬し、振とう機(PRXYg-98R、プリス社製)を用いて170r/min-27℃の条件で15分撹拌し、さらに前記ナイロンメンブレンフィルターでろ過分離した。この洗浄操作を3回行った。
 洗浄後の糸状菌ペレットを、再びナイロンメンブレンフィルターでろ過し、105℃の乾燥器にて1日間静置し乾燥菌体を得た。乾燥菌体の重量を測定し、菌体乾燥重量濃度[g-dry cell/L]を求めた。
 ペレット粒子数濃度[個/L]は、洗浄後、1mLあたりに存在するペレットの個数を目視によりカウントし求めた。
 1個当りのペレット体積[cm3/個]は、洗浄後、糸状菌ペレットを画像解析(KEYENCE VHX-1000)により観察し、ペレット100個分の体積平均粒径を求め、1個当りのペレット体積[cm3/個]を算出した。
 糸状菌ペレット1個当たりの密度を以下の式(1)より算出した。
 糸状菌ペレット密度[g-dry cell/cm3
=菌体乾燥重量濃度[g-dry cell/L]/ペレット粒子数濃度[個/L]/糸状菌ペレット1個当たりの体積[cm3/個]     (1)
[実施例2]~[実施例12]
 表1に示すカチオンポリマーを使用した以外は実施例1と同様の手法で糸状菌ペレットを得た。
[実施例13]
 カチオンポリマーとしてポリアリルアミン塩酸塩(分子量120,000~200,000、電荷密度10.7、Alfa Asesar製)を使用し、添加濃度を0.5%(w/v)にした以外は実施例1と同様の手法で糸状菌ペレットを得た。
[実施例14]~[実施例15]
 ポリアリルアミン塩酸塩の添加濃度を0.1%(w/v)又は0.01%(w/v)にした以外は実施例13と同様の手法で糸状菌ペレットを得た。
[実施例16]
<糸状菌ペレットの調製>
〔胞子回収および冷凍ストックの作製〕
 菌株は糸状菌Trichoderma resseiを使用した。糸状菌は、シャーレ内に調製したPDA培地(Difco Potato Dextrose Agar、Becton,Dickinson and Company製)上に菌体を画線/塗布し、30℃にて7日間静置培養し、胞子を十分に形成させた。静置培養の後、シャーレから胞子を回収し、胞子回収液(NaCl 0.9%、Tween80 0.03%)に胞子を懸濁させた。胞子の濃度は全自動セルカウンター(TC20TM、バイオ・ラッド・ラボラトリーズ(株)製)にて測定した。胞子懸濁液を調製した後、懸濁液とグリセロール水溶液(40vol%)を体積比3:1で混合し、その混合液を超低温フリーザ(三洋電機製(株))にて-80℃で保存し、冷凍ストックとした。
〔糸状菌の発芽及びペレット化〕
 PDB培地50mLおよび0.0045%(w/v)のカチオン化ポリビニルアルコールを500mL容三角フラスコに入れた。三角フラスコを熱滅菌した後に、冷凍しておいた胞子懸濁液を解凍した後に、1×104個-胞子/mLとなるように培地に植菌して、振とう機(PRECI社、PRXYg-98R)にて28℃、220r/minの振盪条件にて2日間培養を行い、糸状菌ペレットを得た。
<糸状菌ペレット1個当たりの密度の測定>
 培養終了後、得られた菌体を含む培養液50mLについて上記実施例1と同様の手法により洗浄を行った後、糸状菌ペレット密度[g-dry cell/cm3]を算出した。
[比較例1]
<糸状菌ペレットの調製>
〔胞子懸濁液の調製〕
 上記実施例1と同様の手法により、胞子懸濁液を調製した。
〔糸状菌のペレット化〕
 PDB培地200mLおよび0.5%(w/v)のソルビタンモノラウレートを500mL容バッフル付き三角フラスコに入れた。三角フラスコを熱滅菌した後に、胞子懸濁液を2×103個-胞子/mLとなるように培地に植菌して、振とう機(PRECI社、PRXYg-98R)にて27℃、170r/minの振盪条件にて3日間培養を行い、糸状菌ペレットを得た。
<糸状菌ペレット1個当たりの密度の測定>
 培養終了後、上記実施例1と同様の手法により洗浄を行った後、糸状菌ペレット密度[g-dry cell/cm3]を算出した。
[比較例2]
 添加剤を用いずに比較例1と同様の手法で培養を行った。
[比較例3]
 添加剤としてポリビニルアルコール(0.5%(w/v))を使用した以外は比較例2と同様の手法で糸状菌ペレットを得た。
[比較例4]
 添加剤としてポリアクリル酸ナトリウム(0.5%(w/v))を使用した以外は比較3と同様の手法で糸状菌ペレットを得た。
[比較例5]
 添加剤を用いずに実施例16と同様の手法で培養を行った。
 実施例1~16及び比較例1~5の結果を表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2より明らかなように、実施例1~16で調製した糸状菌ペレットは、比較例1~5の糸状菌ペレットと比較して高い菌糸密度を有していた。
[実施例17]
<糸状菌ペレットの調製>
〔胞子懸濁液の調製〕
 上記実施例1と同様の手法により、胞子懸濁液を調製した。
〔糸状菌のペレット化〕
 糸状菌ペレットの調製は以下の2段階の培養にて行った。1段目の培養が胞子の発芽とペレット化の工程であり、2段目の培養がペレットの増殖工程である。
 1段目の培養は、ペレット形成培地であるPDB培地を30L容通気撹拌槽((株)三ツワフロンテック製)に仕込み、熱滅菌を行った後に、滅菌済みのポリアリルアミン(分子量15,000、電荷密度17.5、Polysciences,Inc.製)を0.0015%(w/v)になるように含ませ、胞子懸濁液を1×104個-胞子/mLとなるように植菌した。培地液量は滅菌水を加え15Lに調整し、液温27℃、撹拌速度300r/min、槽内圧力0.040MPa、空気を供給しDOを1.0ppmに制御した条件で3日間培養を行った。また、消泡センサーを用いて発泡時には消泡剤(1% KM-72F(信越化学製))が添加されるように制御を行った。
 2段目の培養は、まず槽内を加圧した状態で、培養液の上清を槽内に設置した250μm目開きの金属フィルターを介して、30L容通気撹拌槽から抜液した。その後、滅菌済みの増殖培地を槽内に仕込んだ後に、滅菌済みの蒸留水を槽内液量が15Lへとなるように添加し、培地濃度を下記となるよう各化合物を添加した。培地濃度は、グルコース(和光純薬工業社製) 6%(w/v)、硫酸マグネシウム七水和物 0.025%(w/v)、硫酸亜鉛七水和物 0.009%(w/v)、硫酸アンモニウム 0.1%(w/v)、リン酸二水素一カリウム 0.06%(w/v)である。培養は27℃,撹拌速度300r/min、槽内圧力0.040MPa、空気を供給しDOを2ppmに制御した条件で12時間培養を行った。培養中のpHは7N水酸化ナトリウムを適宜添加して、4を維持した。また、1段目の培養と同様に発泡時には消泡剤(1% KM-72F)が添加されるように制御を行った。
〔ペレットの回収〕
 上記の操作で得られた糸状菌ペレット培養液を、ナイロンメッシュフィルターにてろ液のドリップが落ち着くまで数十秒ろ過し、ウエット状態の糸状菌ペレットを得た。2段目で得られたペレットは速やかに発酵性の評価に供した。一部は、上記実施例1と同様の手法により洗浄を行った後、糸状菌ペレット密度[g-dry cell/cm3]を算出した。
<フマル酸及びエタノール生産性の評価>
〔培養方法〕
 滅菌済みの1L容通気撹拌槽に滅菌済みの培地と調製した糸状菌ペレット(ウエット状態)を添加した後に、滅菌済みの蒸留水を加え、液量を500mLに調整した。この際の培地組成は、グルコース(和光純薬工業社製)10%(w/v)、硫酸マグネシウム七水和物 0.025%(w/v)、硫酸亜鉛七水和物 0.009%(w/v)、硫酸アンモニウム 0.1%(w/v)、残りは水、であり、培地に対する糸状菌ペレットの占有体積が36vol%になるようにした。その直後に培養0時間目のサンプリングを行った後、35℃、撹拌速度500r/min、通気速度0.3~1.0vvmで高濃度酸素(>90%)を供給した条件にて培養を行った。その後経時的にサンプリングを行いながら、5時間培養を行った。pHは7N水酸化ナトリウム溶液を適宜添加して、pH(35℃)4を維持した。
〔高速液体クロマトグラフ(HPLC)による各種成分の測定〕
 サンプリングした発酵液を孔径が0.20μmのセルロースアセテート製メンブレンフィルタ(ADVANTEC社製)を用いて濾過した後、0.0085N硫酸水溶液で適宜希釈し、HPLC分析用サンプルとした。HPLCの分析条件は、次の通りである。
・カラム  :ICSep ICE-ION-300
・溶離液  :0.0085規定硫酸、0.4mL/min
・検出法  :RI(HITACHI、L-2490)
・カラム温度:40℃
・注入液量 :20μL
・保持時間 :40min
 この分析系における各成分の保持時間は、次の通りである。
・グルコース:16min
・フマル酸 :26min
・エタノール:34min
〔生産速度の算出〕
 発酵液の分析値から、(1)糖の消費速度(P[g/L/h])、(2)フマル酸生産速度(Q[g/L/h])及び(3)エタノール生産速度(R[g/L/h])の3項目を評価軸とした。HPLC分析結果より各成分の濃度[g/L]を求めて、以下の式(1)~(3)により速度を算出した。
糖の消費速度
  P[g/L/h]=(G0-G)/ T         (1)
フマル酸生産速度
  Q[g/L/h]=(F-F0)/ T         (2)
エタノール生産速度
  R[g/L/h]=(E-E0)/ T         (3)
(式中、G0、F0及びE0は、培養0時間のグルコース濃度、フマル酸濃度、エタノール濃度を示し、G、F及びEは、培養後のグルコース濃度、フマル酸濃度、エタノール濃度を示し、Tは発酵時間(h)を示す。)
[比較例6]
<糸状菌ペレットの調製>
〔胞子懸濁液の調製〕
 上記実施例1と同様の手法により、胞子懸濁液を調製した。
〔糸状菌のペレット化〕
 糸状菌ペレットの調製は以下の2段階の培養にて行った。
 1段目の培養は、ソルビタンモノラウレート0.5%(w/v)およびPDB培地および0.5%(w/v)のソルビタンモノラウレートを30L容通気撹拌槽((株)三ツワフロンテック製)に仕込み、熱滅菌を行った後に、胞子懸濁液を1×104個-胞子/mLとなるように植菌した。培地液量は滅菌水を加え15Lに調整し、液温27℃、撹拌速度300r/min、槽内圧力0.040MPa、空気を供給しDOを1.0ppmに制御した条件で3日間培養を行った。また、消泡センサーを用いて発泡時には消泡剤(1% KM-72F(信越化学製))が添加されるように制御を行った。
 2段目の培養は、実施例17と同様の手法で行った。
〔ペレットの回収〕
 培養終了後、上記実施例17と同様の手法によりウエット状態の糸状菌ペレットを得、速やかに発酵性の評価に供した。一部は、糸状菌ペレット密度[g-dry cell/cm3]を算出した。
<フマル酸及びエタノール生産性の評価>
 上記実施例17と同様の手法で行った。
 実施例17及び比較例6の評価結果を表3に示す。なお、結果は培養開始から培養終了5時間までの速度を採用した。
Figure JPOXMLDOC01-appb-T000003
 表3より明らかなように、本発明の菌糸密度の高い糸状菌ペレットを利用することにより、フマル酸及びエタノールの生産速度が向上することが確認された。

Claims (12)

  1.  糸状菌の胞子を、カチオン性ポリマーを含有する培養液中で発芽させる工程を含む、糸状菌ペレットの製造方法。
  2.  培養液中のカチオン性ポリマーの含有量が0.0001%(w/v)以上、2%(w/v)以下である請求項1記載の糸状菌ペレットの製造方法。
  3.  カチオン性ポリマーの電荷密度が0.1meq/g以上、100meq/g以下である請求項1又は2記載の糸状菌ペレットの製造方法。
  4.  カチオン性ポリマーの重量平均分子量が1,000以上、1,000,000以下である請求項1~3のいずれか1項記載の糸状菌ペレットの製造方法。
  5.  糸状菌の胞子を発芽させる工程の培養液とは異なる培養液中で糸状菌ペレットを増殖させる工程を更に含む、請求項1~4のいずれか1項記載の糸状菌ペレットの製造方法。
  6.  糸状菌がリゾプス属菌又はトリコデルマ属菌である請求項1~5のいずれか1項記載の糸状菌ペレットの製造方法。
  7.  カチオン性ポリマーがポリアリルアミン又はその塩、メチルグルコールキトサン、ポリジアリルジアルキルアンモニウム塩、ポリエチレンイミン及びカチオン化ポリビニルアルコールから選ばれる1種以上である請求項1~6のいずれか1項記載の糸状菌ペレットの製造方法。
  8.  カチオン性ポリマーを含有する培養液の初発pHが2以上、7以下である請求項1~7のいずれか1項記載の糸状菌ペレットの製造方法。
  9.  炭素源を含有する培養液にて請求項1~8のいずれか1項記載の製造方法によって得られる糸状菌のペレットを用い、有機酸及びエタノールから選ばれる少なくとも1種を製造する方法。
  10.  有機酸がフマル酸、乳酸、イタコン酸、リンゴ酸及びピルビン酸から選ばれる1種以上である請求項9記載の製造方法。
  11.  密度が0.04g-dry cell/cm3以上、0.5g-dry cell/cm3以下である糸状菌ペレット。
  12.  体積平均粒径が150μm以上、3000μm以下である請求項11記載の糸状菌ペレット。
PCT/JP2018/020443 2017-05-30 2018-05-29 糸状菌ペレットの製造方法 WO2018221482A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019521219A JP7295796B2 (ja) 2017-05-30 2018-05-29 糸状菌ペレットの製造方法
US16/618,075 US11220665B2 (en) 2017-05-30 2018-05-29 Production method of filamentous fungus pellet
CN201880035280.6A CN110678542A (zh) 2017-05-30 2018-05-29 丝状菌颗粒的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-106360 2017-05-30
JP2017106360 2017-05-30

Publications (1)

Publication Number Publication Date
WO2018221482A1 true WO2018221482A1 (ja) 2018-12-06

Family

ID=64456097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020443 WO2018221482A1 (ja) 2017-05-30 2018-05-29 糸状菌ペレットの製造方法

Country Status (4)

Country Link
US (1) US11220665B2 (ja)
JP (1) JP7295796B2 (ja)
CN (1) CN110678542A (ja)
WO (1) WO2018221482A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114149928A (zh) * 2021-12-06 2022-03-08 汉元清正生态科技(舟山)有限公司 一种促进丝状菌长成独立菌落的固体培养基及其使用方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4818487B1 (ja) 1968-10-25 1973-06-06
BE785810A (fr) 1971-07-09 1973-01-04 Reynolds Tobacco Co R Procede de transformation enzymatique
JPH06253871A (ja) 1993-03-02 1994-09-13 Musashino Kagaku Kenkyusho:Kk 乳酸の製造方法
US20150125915A1 (en) * 2012-04-19 2015-05-07 Kao Corporation Method for Producing Lactic Acid
JP2016202073A (ja) * 2015-04-22 2016-12-08 花王株式会社 フマル酸の製造方法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"Properties on Cellulase Productivity by Immobilized Filamentous Trichoderma reesei", J. CHEM. TECH. BIOTECHNOL., vol. 60, 1994, pages 183 - 187, ISSN: 0268-2575 *
BYRNE, GERARD S. ET AL.: "Effect of Polymers on Pelleting of Rhizopus Arrhizus", TRANS. BR. MYCOL. SOC., vol. 89, no. 3, 1987, pages 367 - 371, XP055562392, ISSN: 0007-1536 *
EI-ENSHASY, HESHAM A. ET AL.: "Production of gluconic acid by free and immobilized cells of recombinant Aspergillus niger in batch and repeated batch cultures", DEUTSCHE LEBENSMI TTEL- RUNDSCHAU, vol. 99, 2003, pages 409 - 415, ISSN: 0012-0413 *
ELMAYERGI, HASSAN: "Mechanisms of Pellet Formation of Aspergillus niger with an Additive", J. FERMENT. TECHNOL., vol. 53, no. 10, 1975, pages 722 - 729, ISSN: 0367-5963 *
FU, YONGQIAN ET AL.: "Effects of pellet characteristics on L-lactic acid fermentation by R. oryzae: pellet morphology, diameter", BIOCHEM. BIOTECHNOL., vol. 174, 2014, pages 2019 - 2030, XP055562366, ISSN: 0273-2289 *
KOKUFUTA, EISUO ET AL.: "Flocculation of Aspergillus terreus with Polyelectrolyte Complex and Production of Itaconic Acid with the Flocculated Mycelia", J. FERMENT. TECHNOL., vol. 66, no. 4, 1988, pages 433 - 439, XP023543112, ISSN: 0385-6380 *
KULKARNI, APARNA G. ET AL.: "Improved Adsorption of Aspergillus niger 589 Spores on High-Density Polyethylene for Progesterone Biotransformation", JOURNAL OF FERMENTATION AND BIOENGINEERING, vol. 86, no. 5, 1998, pages 510 - 512, XP055562360, ISSN: 0922-338X *
YAMAUCHI, FUMIO: "Bioreactors using Immobilized Mold", JOURNAL OF THE BREWING SOCIETY OF JAPAN, vol. 87, no. 2, 1992, pages 101 - 106, XP055562369, ISSN: 2186-4012 *
ZHANG, BAOHUA ET AL.: "Metabolic engineering of Rhizopus oryzae: effects of overexpressing pyc and pepc genes on fumaric acid biosynthesis from glucose", METAB. ENG., vol. 14, 2012, pages 512 - 520, XP055450601, ISSN: 1096-7176 *
ZLOCHEVSKAYA, I. V.: "Effect of polyethylenimine on some fungi, Vestnik Moskovskogo Universiteta, Seriya 6: Biologiya", POCHVOVEDENIE, vol. 30, 1975, pages 69 - 73, ISSN: 0579-9422 *

Also Published As

Publication number Publication date
JPWO2018221482A1 (ja) 2020-04-02
JP7295796B2 (ja) 2023-06-21
CN110678542A (zh) 2020-01-10
US11220665B2 (en) 2022-01-11
US20200165562A1 (en) 2020-05-28

Similar Documents

Publication Publication Date Title
Niknezhad et al. Production of xanthan gum by free and immobilized cells of Xanthomonas campestris and Xanthomonas pelargonii
CN106434421B (zh) 一株ε-聚赖氨酸高产菌株及生产ε-聚赖氨酸方法
CN110157623B (zh) 一种镰刀菌菌株及其发酵生产d-泛解酸内酯水解酶的方法
CN102796673A (zh) 一株阿魏酸酯酶生产菌株及应用该菌株生产阿魏酸酯酶的方法
CN102586151B (zh) 一株高产多糖的菌株及利用该菌株发酵生产多糖的方法
CN115873754A (zh) 一株肠源凝结魏茨曼氏菌rs804及其应用
JP5102076B2 (ja) サッカロマイセス・セレビシエ変異株、及び該変異株を用いたrna高含有酵母の製造方法。
CN107674841B (zh) 一种高产聚苹果酸的出芽短梗霉及其用途
CN103642854B (zh) 谷氨酸棒杆菌固定化反复批次发酵产丁二酸的方法
CN102220244B (zh) 一种哈茨木霉菌株及其用该菌株制备右旋糖酐酶的方法
WO2018221482A1 (ja) 糸状菌ペレットの製造方法
CN102146348A (zh) 一株产高丝氨酸内酯的乙酸钙不动杆菌及其应用
CN109136314B (zh) 利用密西根克雷伯氏菌合成2’-脱氧-2-氨基腺苷的方法
CN109136313B (zh) 利用密西根克雷伯氏菌合成2’-脱氧腺苷的方法
CN107641602A (zh) 一株产朊假丝酵母及其在发酵产蛋白中的应用
JP2016202073A (ja) フマル酸の製造方法
RU2195490C2 (ru) Штамм мицелиального гриба trichoderma longibrachiatum - продуцент комплекса карбогидраз, содержащего целлюлазы, бета-глюканазы, ксиланазы, пектиназы и маннаназы
CN108587923B (zh) 一种改善苹果酸发酵性能的方法
JP6121226B2 (ja) 乳酸の製造方法
Oyeagu et al. Amylase Production by Aspergillus niger immobi-lized in Microporous Calcium Alginate Gel Beads
US20060234361A1 (en) Method for producing L-lactic acid
RU2186850C2 (ru) Способ получения лимонной кислоты
RU2287571C2 (ru) Штамм мицелиального гриба trichoderma longibrachiatum - продуцент комплекса карбогидраз, содержащего целлюлазы, бета-глюканазы, ксиланазы, маннаназы и пектиназы
RU2001949C1 (ru) Штамм гриба TRICHODERMA REESEI - продуцент целлюлолитических ферментов
CN107022497B (zh) 产腈水解酶的酵母菌株选育及其在腈类化合物生物转化中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809949

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521219

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809949

Country of ref document: EP

Kind code of ref document: A1