WO2008126928A1 - スラブの連続鋳造装置およびその連続鋳造方法 - Google Patents

スラブの連続鋳造装置およびその連続鋳造方法 Download PDF

Info

Publication number
WO2008126928A1
WO2008126928A1 PCT/JP2008/057226 JP2008057226W WO2008126928A1 WO 2008126928 A1 WO2008126928 A1 WO 2008126928A1 JP 2008057226 W JP2008057226 W JP 2008057226W WO 2008126928 A1 WO2008126928 A1 WO 2008126928A1
Authority
WO
WIPO (PCT)
Prior art keywords
slab
shielding plate
magnetic shielding
flow
electromagnetic
Prior art date
Application number
PCT/JP2008/057226
Other languages
English (en)
French (fr)
Inventor
Ryohji Nishihara
Shintaroh Kusunoki
Junya Iwasaki
Kenichi Mori
Ken Yokota
Yasuo Maruki
Shinichi Fukunaga
Kazunori Yasumitsu
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to CN2008800116123A priority Critical patent/CN101652206B/zh
Priority to KR1020097019300A priority patent/KR101127634B1/ko
Priority to BRPI0810726A priority patent/BRPI0810726B8/pt
Publication of WO2008126928A1 publication Critical patent/WO2008126928A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock

Definitions

  • the present invention relates to a continuous forging apparatus for injecting molten metal into a continuous forging mold through an immersion nozzle to produce a slab and a continuous forging method thereof.
  • an electromagnetic stirring device when continuously producing slabs, for the purpose of improving the product quality of slabs, an electromagnetic stirring device has been installed in a continuous forging mold (hereinafter also referred to simply as a bowl), and the slab is fed through the outlet of an immersion nozzle.
  • a method has been used in which molten steel supplied into a mold is magnetically stirred to generate a swirling flow in the vertical mold.
  • an electromagnetic stirring device is installed in a bowl shape so that the position of the molten steel surface is within the range from the core center of the electromagnetic stirring device to the upper end of the core.
  • a method of forging by imparting a flow to molten steel in a mold is disclosed.
  • Japanese Patent Laid-Open No. 2004-42062 discloses that the position of the discharge port of the immersion nozzle is lower than the lower end position of the electromagnetic coil of the electromagnetic stirrer when the molten steel in the mold is flowed by the magnetic stirrer to perform forging.
  • a method for installing the projector so as to be in a low position is disclosed.
  • JP-A-7-256414 a round magnetic piece (a kind of bloom) whose produced piece is different from a slab, but a moving magnetic field type electromagnetic coil is disposed on the entire outer surface of the saddle type, Moreover, a continuous forging apparatus is disclosed in which an electromagnetic shielding material is disposed below the electromagnetic coil. Disclosure of the invention
  • JP-A-7-256414 As a means for solving the problems of the above-mentioned JP-A-7-3 14104 and JP-A-2004-42062, the continuous forging apparatus disclosed in JP-A-7-256414 can be considered.
  • the production target of the 256414 gazette is a round piece and has the following differences from the slab to be produced by the present invention.
  • the mold for manufacturing round slabs is usually a slab (for example, thickness: about 120 to 300 mm, width: about 800 to 1800 mm), whose inner diameter is about 300 mm or less. Much smaller than the mold, The relationship between the molten steel flow by electromagnetic stirring and the discharge flow from the immersion nozzle is completely different.
  • the electromagnetic stirring flow in the vertical mold for producing round rod pieces forms a swirling flow in which electromagnetic coils used for electromagnetic stirring are installed along the entire circumference of the vertical wall surface (Japanese Patent Laid-Open No. 7-256414). (See Figure 2).
  • the molten steel discharge flow from the immersion nozzle does not cause the two problems of causing interference and acceleration of the molten steel flow caused by electromagnetic stirring in the vertical mold and the flow of the discharge flow from the immersion nozzle. This is because the outlet of the immersion nozzle is arranged so as to be directly below as disclosed in JP-A-7-256414.
  • the vertical mold for manufacturing round rods has a configuration in which electromagnetic coils are arranged around the vertical axis, and it seems that the electromagnetic stirrer is placed opposite to a wide, long piece member (two vertical surfaces).
  • the construction is quite different from the equipment for manufacturing a simple slab.
  • slabs are used for thin plate materials, rolled with a large thickness reduction ratio, and high quality is required, as represented by automotive outer plates, so powders, bubbles, In addition, minute foreign matters such as inclusions lead to product defects. Therefore, the required level of product quality is much higher than that of round pieces.
  • a continuous forging apparatus for slabs capable of producing a slab of good quality with less product defects by suppressing disturbance of the flow of molten metal in the continuous forging mold and The purpose is to provide a continuous forging method.
  • the present invention has been made to achieve the above object, and is as follows.
  • (1) The slab continuous forging apparatus according to the first invention for the purpose is
  • Discharge ports are provided on both sides of the lower part of the cylinder forming the flow path of the molten metal, and the axis of the discharge port is within a range of 60 degrees from the horizontal direction to the horizontal direction.
  • a continuous forging mold provided with at least a pair of electromagnetic stirrers arranged to face the wide long piece member that has a rectangular space section and has a space section with a rectangular cross section; Molten metal is supplied into the continuous forging mold through the discharge port of the immersion nozzle, and the molten metal in the continuous forging mold is stirred and solidified by the electromagnetic stirrer.
  • the upper end position of the discharge port of the immersion nozzle is not more than the lower end position of the electromagnetic stirrer, and the lower position of each electromagnetic stirrer is generated by the electromagnetic stirrer.
  • Magnetic shielding plate that adjusts the magnetic field to be And when the thickness in the height direction of the core of the electromagnetic stirrer is h, the distance in the height direction between the magnetic shielding plate and the electromagnetic stirrer is in the range of h Z 5 or more and h or less. .
  • the upper end position of the magnetic shielding plate is set to a position below the upper end position of the discharge port of the immersion nozzle, and the lower end position of the magnetic shielding plate is Preferably, the position is equal to or lower than the lower end position of the discharge port of the immersion nozzle.
  • the length of the magnetic shielding plate in the height direction is in the range of 50 mm or more and 200 mm or less, and the thickness thereof is 10 mm or more.
  • the ratio (d ZD) between the inner width d of the discharge port of the immersion nozzle and the inner width D of the immersion nozzle is not less than 1.0. It is preferable to set within the range of 7 or less.
  • a method for continuously forging a slab according to the second invention in line with the above object is to produce the slab by using the continuous forging apparatus for slab according to the first invention. Build.
  • the forging speed of the slab is preferably 1. Om or more.
  • FIG. 1 is a side cross-sectional view of a continuous forging mold used in a slab continuous forging apparatus according to an embodiment of the present invention.
  • FIG. 2 is a plan view of a continuous slab mold for the slab of FIG.
  • FIG. 3 (A) is an explanatory diagram showing the relative positional relationship between the magnetic stirring device, the immersion nozzle, and the magnetic shielding plate, and the flow of molten steel in the bowl.
  • Fig. 3 (B) is an explanatory diagram showing the effect of the distance between the electromagnetic stirrer and the magnetic shielding plate on the molten steel flow in the vertical mold.
  • FIG. 4 (A) is an explanatory diagram showing the relative positional relationship between the magnetic stirring device, the immersion nozzle, and the magnetic shielding plate, and the flow of molten steel in the bowl.
  • Fig. 4 (B) is an explanatory diagram showing the influence of the relative position between the discharge port of the immersion nozzle and the magnetic shielding plate on the molten steel flow in the bowl.
  • FIG. 5 (A) is an explanatory diagram showing the relative positional relationship between the magnetic stirring device, the immersion nozzle, and the magnetic shielding plate, and the flow of molten steel in the bowl.
  • Fig. 5 (B) is an explanatory diagram showing the effect of the length of the magnetic shielding plate on the electromagnetic force.
  • Fig. 6 (A) is an explanatory diagram showing the flow of molten steel in the bowl.
  • FIG. 6 (B) is an explanatory diagram showing the effect on the molten steel flow in the mold by varying the distance between the magnetic stirrer and the magnetic shielding plate and the forging speed.
  • FIG. 7 is an explanatory diagram showing the flow of molten steel in a continuous forging mold according to a conventional example.
  • FIG. 1 is a side sectional view of a continuous forging mold used in a continuous slab forging apparatus according to an embodiment of the present invention
  • FIG. 2 is a plan view of the continuous forging mold for the slab. is there.
  • the continuous forging apparatus for slabs according to an embodiment of the present invention (hereinafter also simply referred to as a continuous forging apparatus) 10 includes an immersion nozzle and a continuous forging mold (hereinafter referred to as a “forging”).
  • the molten steel (an example of molten metal) 14 is supplied into the vertical mold 12 through the discharge port 13 of the immersion nozzle 11, and the molten steel 14 in the vertical mold 12 is connected to the vertical mold 12 as shown in FIG.
  • This is a device for producing a slab by solidifying while stirring with the electromagnetic stirring device 15 provided in the slab 12.
  • the vertical type 12 has a magnetic field generated by the electromagnetic stirring device 15 adjusted at a position below the electromagnetic stirring device 15.
  • a magnetic shielding plate 16 is provided. The details will be described below.
  • the immersion nozzle 11 is provided at the bottom of a tundish (not shown) for storing molten steel, and has a cylindrical body 18 that forms a flow path 17 for molten metal. Is provided with a discharge port 13.
  • the flow path has a circular cross section (may be an elliptical cross section), but the discharge port may be, for example, a circular cross section, an elliptical cross section, a rectangular cross section (square or rectangular), or a polygonal cross section.
  • One or more cylinders can be formed on one side of the cylinder.
  • the inner width is the diameter
  • the diameter is the diameter when the cross-sectional area is the area of the circle, and there are a plurality of discharge ports. In some cases, the diameter is the sum of all cross-sectional areas to make the area of a circle.
  • the direction of the axis of the discharge port 13 is horizontal, ie, 0 degrees (preferably Is set within the range of 15 degrees downward from the horizontal direction to 60 degrees downward (preferably 40 degrees) downward from the horizontal direction.
  • 0 degrees preferably Is set within the range of 15 degrees downward from the horizontal direction to 60 degrees downward (preferably 40 degrees) downward from the horizontal direction.
  • the axis of the discharge port is set in a region exceeding 60 degrees downward with respect to the horizontal direction, that is, when directed downward (including directly below), inclusions and bubbles are inside the slab. Internal defects are formed.
  • a strong upward flow is formed to promote powder entrainment.
  • the ratio (d ZD) between the inner width d of the discharge port 13 and the inner width D of the cylinder 18 of the submerged nozzle 18 forming the flow path 17 is set in the range of 1.0 to 1.7.
  • the inner width D of the cylindrical body 18 is, for example, about 50 mm to 90 mm (here, 70 mm).
  • the ratio (dZD) is less than 1.0, the inner width D of the cylindrical body 18 becomes larger than the inner width d of the discharge port 13, and the flow velocity of the discharge flow from the discharge port 13 becomes too fast.
  • the effect of stirring flow by the electromagnetic stirring device 15 is difficult to obtain. For this reason, further improvement in the product quality of the slab to be manufactured cannot be expected.
  • the ratio (d ZD) of the inner width d of the discharge port 13 to the inner width D of the cylindrical body 18 was set in the range of 1.0 to 1.7, but the upper limit was 1.5, and further 1.3. It is preferable to do.
  • the continuous forging mold 12 includes a pair of narrow short-piece members 19 and 20 arranged opposite to each other with a horizontal interval, and a pair of opposed pieces arranged so as to sandwich the short-piece members 19 and 20 It has wide long piece members 21 and 22.
  • Each of the short piece members 19 and 20 and the long piece members 21 and 22 are conventionally known, for example, a cooling made of copper or a copper alloy in contact with the molten steel. It consists of a plate and a back plate that allows cooling water to be mounted and fixed behind it.
  • a space 23 having a rectangular (rectangular) cross section in the horizontal direction is formed inside.
  • the space 23 has a short side length of, for example, about 120 to 300 mm and a long side length of, for example, about 800 to 180 Omm.
  • the short piece members 19 and 20 can be slid to change the distance between them, but they can be fixed.
  • the above-described conventionally known electromagnetic stirring device 15 is provided on the upper side of the long piece members 21 and 22 (specifically, in the back plate).
  • an electromagnetic coil 25 is wound around a core 24 in which a large number of electromagnetic steel plates are laminated, and this is disposed in a metal (for example, stainless steel) casing (not shown). Therefore, the lower end of the electromagnetic stirring device 15 means the lower end of the casing.
  • the lower end of the electromagnetic stirring device 15 is the lower end of the casing.
  • At least one electromagnetic stirrer 15 may be provided for each long piece member 21, 22 (ie, a pair).
  • the width direction of the long piece member that is, the long side direction of the long piece member, the long side in the horizontal section of the space portion
  • the thickness h in the height direction of the core 24 of the electromagnetic stirring device 15 is, for example, about 100 plates or more and 300 or less (here, 200 mm).
  • the immersion nozzle 11 is placed in the space 23 of the continuous forging mold 12 so that the discharge port 13 faces the short piece members 19 and 20 (at this time, the upper end position of the discharge port 13 of the immersion nozzle 11 is
  • the molten steel 14 is supplied into the vertical mold 12 through the discharge port 13 of the immersion nozzle 11 1 and the molten steel in the vertical mold 12 is supplied to the electromagnetic stirring apparatus 15. To stir.
  • a molten steel flow that is, a stirring flow is formed clockwise or counterclockwise around the immersion nozzle 11 in the vertical mold 12 to produce a slab while solidifying the molten steel.
  • a magnetic shielding plate 16 having the same length or more in the width direction as the electromagnetic stirring device 15 is disposed below the electromagnetic stirring device 15, and the installation position is optimized. As a result, good pieces with fewer product defects are produced.
  • the magnetic shielding plate 16 can be made of, for example, an electromagnetic steel plate that does not pass a magnetic field, but may be made of iron or general carbon steel. In the case of iron or general carbon steel, heat is generated by induction heating with a magnetic stirrer, so a water cooling structure is adopted.
  • the reason why the upper end position of the discharge port 13 of the submerged nozzle ⁇ is arranged at the position below the lower end position of the electromagnetic stirring device 15 is as follows. This is because if the upper end position of the discharge port 13 is placed above the lower end position of the electromagnetic stirring device 15, interference and acceleration that cannot be suppressed even if a magnetic shielding plate is installed occur because the range is 60 degrees downward. .
  • This magnetic shielding plate 16 has a height direction spacing 3 between the magnetic shielding plate 16 and the electromagnetic stirring device 15 when the thickness in the height direction of the core 24 of the electromagnetic stirring device 15 is h, that is, the magnetic shielding plate.
  • the magnetic shielding plate 16 has a length of 50 mm or more and 100 mm or less from the molten steel contact surfaces 26 and 27 of the long piece members 21 and 22 depending on the thickness of the cooling plate constituting the long piece members 21 and 22. Installed in the back plate within the range
  • the interval s in the height direction between the magnetic shielding plate 16 and the electromagnetic stirring device 15 is less than h / 5
  • the magnetic shielding plate 16 and the electromagnetic stirring device 15 that is, the core
  • the required stirring force in the area where agitation is necessary is reduced by the magnetic shielding plate 16 and the desired product quality cannot be ensured while the distance s exceeds h.
  • the distance in the height direction between 16 and the electromagnetic stirrer 15 is too long and the necessary stirring force described above can be ensured, the interference between the discharge flow and the stirring flow and the acceleration of the discharge flow cannot be prevented. Product quality cannot be ensured.
  • the height interval s between the magnetic shielding plate 16 and the electromagnetic stirring device 15 is set to h Z 5 or more and h or less, but the upper limit may be set to 4 h Z 5 or even 3 h / 5. preferable.
  • the magnetic shielding plate 16 preferably has a length X in the range of 50 mm or more and 200 dragons or less and a thickness of 10 or more thighs.
  • the length in the width direction of the magnetic shielding plate 16 is preferably equal to or longer than the length in the width direction of the electromagnetic stirring device 15.
  • the length X in the height direction of the magnetic shield plate is less than 50, the residual effect of the leakage magnetic field below the magnetic shield plate becomes large.
  • the length X in the height direction of the magnetic shielding plate exceeds 200 mm, the leakage magnetic field from the lower side of the magnetic shielding plate decreases, and the effect of improving the stirring flow by the magnetic shielding plate becomes low.
  • the length X in the height direction of the magnetic shielding plate is Although it is set within the range of 50 to 200 mm, the lower limit is preferably 70 mm, and the upper limit is preferably 170 mm, and more preferably 150 mm.
  • the magnetic field generated from the electromagnetic stirrer 15 can be adjusted by setting the thickness of the magnetic shielding plate to 10 mm (preferably 20 mm) or more, the upper limit value is not specified. In consideration of workability and economical efficiency when attaching to the members 21 and 22, it is preferable that the thickness is 100 mm or less.
  • the installation position of the magnetic shielding plate 16 in the height direction is such that the upper end position of the magnetic shielding plate 16 is set to a position equal to or lower than the upper end position of the discharge port 13 of the immersion nozzle 11 and the lower end position of the magnetic shielding plate 16 is It is preferable to set the position below the lower end position of the discharge port 13 of the immersion nozzle 11.
  • the length X in the height direction of the magnetic shielding plate 16 is longer than the inner width d of the discharge port 13. '
  • the magnetic shielding plate when the magnetic shielding plate is placed at the upper position of the magnetic shielding plate above the upper end position of the discharge port, that is, above the upper end of the discharge port, the flow from the discharge port of the immersion nozzle
  • the magnetic shielding plate will be installed in the area where no direct action acts, and there will be no problem of interference and acceleration with the stirring flow, but the stirring area by the electromagnetic stirring device placed at a certain distance from the upper end of the magnetic shielding plate
  • the surface quality of the slab will be deteriorated, and if the lower end position of the magnetic shielding plate is set above the lower end position of the discharge port, the discharge flow
  • it is possible to deepen the immersion depth in the vertical shape of the immersion nozzle but in this case, the length of the immersion nozzle cylinder must be excessively long There, ⁇ preparatory work on the immersion nozzle not only impractical, but also occurrence such as interference problems with other equipment.
  • the top position of the magnetic shielding plate The upper end position of the magnetic shield plate is set to a position lower than the lower end position of the discharge port, but the upper end position of the magnetic shield plate is as close as possible to the upper end position of the discharge port of the immersion nozzle. It is preferable to install it.
  • the molten steel is supplied to a tundish (not shown).
  • the molten steel is supplied from the tundish to the mold 12 for continuous forging via the immersion nozzle 11.
  • the molten steel 14 in the continuous forging mold 12 is stirred and solidified by the electromagnetic stirring device 15, and the manufactured slab is sent to the downstream side.
  • the forging speed (drawing speed) of the slab is usually 0.8 mZ or more, but in order to obtain the effect of the present invention significantly, it is 1. Om / min or more, preferably 1.2 mZ min. More preferably, it is preferably 1.4 mZ or more. This makes it possible to improve the production efficiency of slabs compared to the past.
  • the upper limit of the slab forging speed is not specified, but the upper limit that can be used at present is, for example, about 2.5 mZ.
  • FIGS. 3 (A) and 3 (B) show the influence of the height direction distance s between the magnetic stirrer and the magnetic shielding plate on the molten steel flow in the vertical mold.
  • Fig. 3 (A) shows the relative positional relationship between the magnetic stirrer, the immersion nozzle, and the magnetic shielding plate, and the flow of molten steel in the vertical mold at that time.
  • the top position of the discharge port of the immersion nozzle And the lower end position of the electromagnetic stirrer (the lower end of the casing) are aligned.
  • Fig. 3 (B) shows the cleanliness score of the slab produced at this time.
  • This cleanliness score is an assessment of the number of slab defects (for example, inclusions, powder, and bubbles) after fabrication, and more specifically, samples polished every 1 mm from the slab surface ( 30mm x 30mm), and after polishing, divided into 30 vertically and horizontally to secure 900 inspection areas of 1 mm x 1 mm, and for these 900 inspection areas, count the number of defects with an optical microscope, It is a numerical value proportional to the number of defects (pieces Z cm 2 ). That is, if the cleanliness score is high ⁇ , it means that the product quality is bad, and if it is low, the product quality is good (hereinafter the same).
  • the test conditions are immersed in the lower end position of the casing of the electromagnetic stirrer.
  • the upper end position of the nozzle outlet is located, the inner width D of the cylinder is 70mm, d / D is 1.0, the axis of the outlet is horizontal (0 degree), and the length of the magnetic shield plate in the height direction X was fixed at 100 min, the thickness was fixed at 30 mm, and the slab forging speed Vc was 1.4 m.
  • Fig. 3 (A) it can be seen that the flow of molten steel changes as the distance s between the magnetic stirrer and the magnetic shielding plate in the height direction is reduced (the magnetic shielding plate is moved upward). . It can also be seen that the change in the flow of the molten steel decreases as the distance s in the height direction is increased (moving the magnetic shielding plate downward) (relationship between the solid line and dotted line in Fig. 3 (A)). As shown in Fig. 3 (B), the distance s between the magnetic stirrer and the magnetic shielding plate in the height direction is narrowed (moving the magnetic shielding plate upward), and the core thickness h is less than 15 distance. In this case, the flow velocity on the front of the magnetic stirrer is also affected, and the necessary stirring force cannot be applied.
  • the distance s between the magnetic stirrer and the magnetic shielding plate in the height direction is set to h Z 5 or more.
  • the stirring force under the electromagnetic stirring device can be reduced while obtaining the required stirring force on the front of the electromagnetic stirring device, preventing interference and acceleration with the discharge flow from the discharge port of the immersion nozzle. it can.
  • the height interval s between the electromagnetic stirrer and the magnetic shielding plate is set to exceed the core thickness h, the stirring force below the electromagnetic stirrer cannot be reduced, and the discharge from the submerged nozzle Interference with the discharge flow and acceleration cannot be prevented.
  • FIGS. 4 (A) and 4 (B) show the relative positional relationship between the magnetic stirrer, the immersion nozzle, and the magnetic shielding plate, and the flow of the molten steel in the vertical mold at that time.
  • Fig. 4 (B) It shows the cleanliness score of the slab manufactured at this time.
  • test conditions were as follows: height s between the magnetic stirrer and the magnetic shielding plate s was 2/5 h, the inner width D of the cylinder was 70 mm, d ZD was 1.0, and the axis of the discharge port was fixed horizontally (0 degree), the length of the magnetic shield plate in the height direction was 100 mm, the thickness was fixed to 30 mm, and the slab forging speed Vc was 1.4 mZ.
  • the upper end position of the magnetic shielding plate is lower than the upper end position of the discharge port of the immersion nozzle (40 ⁇ above the upper end of the magnetic shielding plate).
  • the cleanliness score is the cleanliness score when there is no magnetic shielding plate Yes 3
  • the deposit center for example, inclusions or reaction products
  • the deposit center accumulates on the discharge port of the submerged nozzle, so that the axis of the discharge port fluctuates, and the cleanliness score is not stable.
  • Example 2 shown in FIGS. 4 (A) and 4 (B), when the upper end position of the magnetic shielding plate is arranged at the upper end position of the discharge port of the immersion nozzle, the discharge flow and the stirring flow are set. It was confirmed that the cleanliness score could be improved by preventing interference and acceleration of the discharge flow due to the stirring flow.
  • the immersion depth of the immersion nozzle is about 200 to 300 mm, but in Example 3, the immersion depth of the immersion nozzle is 400 to 500 mni or more.
  • the length is about 600-700 thighs.
  • the weight of the immersion nozzle becomes very heavy, and in order to start and end the continuous fabrication with the immersion nozzle attached to the tundish, the immersion nozzle and the peripheral device such as a vertical mold are used for In order to prevent collisions, it is necessary to make the tundish lift stroke larger and to lift the immersion nozzle to avoid it, so it is not practical in actual operation.
  • FIGS. 5 (A) and 5 (B) show the effect of the length X in the height direction of the magnetic shielding plate on the molten steel flow in the vertical mold.
  • Fig. 5 (A) shows the relative positional relationship between the magnetic stirrer, the immersion nozzle, and the magnetic shielding plate, and the flow of molten steel in the vertical mold at that time.
  • Fig. 5 (B) shows this When the electromagnetic force is shown. Note that the electromagnetic force on the vertical axis shown in Fig. 5 (B) is equivalent to the magnetic force shown in Fig. 5 (A).
  • Electromagnetic force shows the attenuation of electromagnetic force when the length X in the height direction of the magnetic shielding plate is changed.
  • the test conditions were such that the height interval s between the magnetic stirrer and the magnetic shielding plate was 2 Z 5 h, and the thickness of the magnetic shielding plate was fixed at 10 mm.
  • FIGS. 6 (A) and 6 (B) show the effect of the forging speed of the slab on the molten steel flow in the mold.
  • Fig. 6 (A) shows the flow of molten steel in the saddle mold
  • (B) shows the slab manufactured by changing the height spacing and forging speed between the magnetic stirrer and the magnetic shielding plate. It shows the cleanliness score.
  • test conditions were as follows: the top position of the discharge port of the immersion nozzle was placed at the bottom position of the electromagnetic stirrer, the inner width D of the cylinder was 70 mni, d ZD was 1.0, and the axis of the discharge port was horizontal (0 Degree) The length of the magnetic shielding plate in the height direction was fixed to 100 mm and the thickness was fixed to 30 mm.
  • the discharge flow from the discharge port on the other side of the immersion nozzle Increase with the increase.
  • the penetration depth of inclusions becomes deeper (the levitation effect cannot be obtained), resulting in an increase in product defects caused by steelmaking.
  • the ratio (d / D) between the inner width d of the submerged nozzle discharge port and the inner width D of the flow path was also tested, the ratio (d ZD) was set within the range of 1.0 to 1.7. As a result, it was confirmed that a more excellent effect was obtained by the magnetic shielding plate.
  • the present invention has been described with reference to the embodiment.
  • the present invention is not limited to the configuration described in the above-described embodiment, and the matters described in the claims are not limited.
  • Other embodiments and modifications conceivable within the scope are also included.
  • the present invention includes a case where the slab continuous forging apparatus and the continuous forging method of the present invention are configured by combining some or all of the above-described embodiments and modifications.
  • the continuous forging apparatus for slabs according to (1) to (4) of the present invention and the continuous forging method for slabs according to (5) and (6) include an electromagnetic wave provided on a long piece member of a continuous forging mold. Magnetic shields are provided below the stirrer at predetermined height intervals, so that the flow of the molten metal, that is, the interference between the stirring flow and the discharge flow from the immersion nozzle, and the flow rate of the discharge flow is reduced. The effect of acceleration can be reduced. As a result, it is possible to manufacture a slab having a good quality with less product defects by suppressing the turbulence of the flow of the molten metal in the continuous forging mold.
  • the continuous forging apparatus for slabs described in (2) includes an immersion nozzle. Since the installation position of the magnetic shielding plate with respect to the discharge outlet is regulated, the influence of the interference between the stirring flow and the discharge flow and the acceleration of the flow velocity of the discharge flow can be further reduced.
  • the continuous forging apparatus for slabs described above has an excessive discharge velocity from the outlet by defining the ratio (d ZD.) Between the inner width D of the immersion nozzle and the inner width d of the outlet. Therefore, it is possible to stably supply molten metal from the discharge port into the vertical mold while suppressing the increase in speed. As a result, the interference between the stirring flow and the discharge flow, and the acceleration of the flow velocity of the discharge flow, which have been generated in the past, can be reduced, and the turbulence of the molten metal flow in the continuous forging mold can be suppressed. Produces good quality slabs with few defects.
  • the slab forging speed is set to 1.0 mZ or more, and conventionally, the influence of the interference between the stirring flow and the discharge flow and the acceleration of the flow velocity of the discharge flow have appeared remarkably. Even at the forging speed, the turbulence of the molten metal flow in the continuous forging mold can be suppressed. This makes it possible to manufacture slabs with good quality and fewer product defects with improved production efficiency than before.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

本発明は、連続鋳造用鋳型内での溶融金属の流れの乱れを抑制し、製品疵の少ない良好な品質のスラブを製造可能なスラブの連続鋳造装置およびその連続鋳造方法を提供するものであり、筒体18の両側側方に備える吐出口13の軸心を所定範囲内に設定した浸漬ノズル11と、矩形状断面の空間部23を形成する幅広の長片部材21,22に電磁撹拌装置15が設けられた連続鋳造用鋳型12を備え、浸漬ノズル11の吐出口13を介して鋳型12内に溶融金属14を供給し、電磁撹拌装置15により撹拌し凝固させながらスラブを製造する連続鋳造装置10であり、吐出口13の上端位置を電磁撹拌装置15の下端位置以下とし、各電磁撹拌装置15の下方位置には、これにより発生する磁場を調整する磁気遮蔽板16が設けられ、電磁撹拌装置15のコア24の高さ方向の厚みをhとした場合、磁気遮蔽板16と電磁撹拌装置15との高さ方向の間隔sをh/5以上h以下の範囲内とする。

Description

明 細 書 スラブの連続铸造装置およびその連続铸造方法 技術分野
本発明は、 溶融金属を浸漬ノズルを介して連続铸造用铸型に注入 しスラブを製造する連続铸造装置およびその連続铸造方法に関する
背景技術
従来、 スラブの連続铸造に際しては、 スラブの製品品質の向上を 目的として、 連続铸造用铸型 (以下、 単に铸型ともいう) に電磁撹 拌装置を設け、 浸漬ノズルの吐出口を介して铸型内へ供給された溶 鋼を電磁撹拌し、 铸型内に旋回流を発生させる方法が使用されてき た。
例えば、 特開平 7 — 3 14104号公報には、 溶鋼湯面の位置が電磁撹 拌装置のコア中心からコア上端までの範囲内となるように、 電磁撹 拌装置を铸型に設置し、 铸型内の溶鋼に流動を付与して铸造を行う 方法が開示されている。
また、 特開 2004— 42062号公報には、 電磁撹拌装置により铸型内 の溶鋼に流動を付与して铸造を行うに際し、 浸漬ノズルの吐出口位 置が電磁撹拌装置の電磁コイルの下端位置より低い位置となるよう に設置する方法が開示されている。
なお、 特開平 7 — 256414号公報には、 製造する铸片がスラブと異 なる丸铸片 (ブルームの一種) ではあるが、 铸型の外周全面に移動 磁界方式の電磁コイルが配設され、 しかもこの電磁コイルの下方に は電磁遮蔽材が配置された連続铸造装置が開示されている。 発明の開示
しかしながら、 前記従来の技術には、 未だ解決すべき以下のよう な問題があった。
特開平 7 _ 3 14104号公報の方法では、 図 7に示すように、 電磁撹 拌装置にて形成される溶鋼流動 (以下、 撹拌流ともいう) と、 浸漬 ノズルからの吐出流の向きが逆方向の部位では、 流れの干渉が発生 し、 淀みにより気泡と介在物が铸片に取り込まれたり、 更には干渉 域における溶鋼流の乱れによる湯面変動で铸片のパウダー巻込みが 生じる。 このため、 铸片清浄性が劣化し、 製品品質の低下を招く恐 れがある。
また、 溶鋼流動と吐出流の向きが同じ順方向の部位では、 浸漬ノ ズルの吐出流の増大を招き、 気泡と介在物の侵入深さを増大させ、 その浮上阻害を招くため、 铸片の表面から奥深い位置で気泡と介在 物が凝固シェルに付着し、 製品欠陥を発生させる恐れがある。
前記逆方向、 順方向の課題が同時に铸型内で発生し、 いずれも製 品品質の低下の原因となる。 そして、 特開 2000— 42062号公報の方 法では、 電磁コイルの下方まで磁場が形成されるため、 前記した撹 拌流と吐出流の流れの干渉及び吐出流の増大を招き、 前記と同様に 気泡と介在物の浮上分離を阻害させる恐れがある。
上記した特開平 7 —3 14104号公報、 特開 2004— 42062号公報の問 題点を解決する手段として、 特開平 7 — 256414号公報に開示された 連続铸造装置が考えられるが、 特開平 7 — 256414号公報の製造対象 は丸铸片であり、 本発明が製造対象とするスラブとは以下に示す相 違点がある。
丸铸片を製造する铸型は、 通常、 铸型の内径が 300mm以下程度の 大きさであり、 スラブ (例えば、 厚み : 120〜300匪程度、 幅 : 800 〜 1800關程度) を製造する铸型と比較して大幅に小さく、 铸型内の 電磁撹拌による溶鋼流と浸漬ノズルからの吐出流の関係は全く異な る。
即ち、 丸铸片を製造する铸型内の電磁撹拌流は、 電磁撹拌に用い る電磁コイルが铸型壁面の全周囲に沿って設置され旋回流を形成す る (特開平 7— 256414号公報の図 2参照) 。 このため、 浸漬ノズル からの溶鋼吐出流には、 铸型内の電磁撹拌による溶鋼流と浸漬ノズ ルからの吐出流の流れの干渉および加速を招く という二つの問題が 発生しない。 これは、 浸漬ノズルの吐出口が、 特開平 7— 256414号 公報のように、 真下にな.るように配置されていることによる。
また、 丸铸片を製造する铸型は、 電磁コイルが铸型周囲に配設さ れた構成であり、 幅広の長片部材 (铸型 2面) に電磁撹拌装置を対 向配置させたようなスラブを製造するための設備とは、 その構成が 全く異なる。
更に、 スラブの用途は薄板材であり、 厚減比を大きく とった圧延 がなされ、 また自動車用外板に代表されるように、 高品質が必要で あるため、 铸片内のパウダー、 気泡、 および介在物等の微小な異物 が製品欠陥に結びつく。 従って、 丸铸片に比べ、 製品品質の要求レ ベルは非常に高い。
以上のことから、 特開平 7—256414号公報の連続铸造装置では、 特開平 7—314104号公報、 特開 2004— 42062号公報の課題すら発生 しないのみならず、 その解決も図れない。
本発明はかかる事情に鑑みてなされたもので、 連続铸造用铸型内 での溶融金属の流れの乱れを抑制し、 製品疵の少ない良好な品質の スラブを製造可能なスラブの連続铸造装置およびその連続铸造方法 を提供することを目的とする。
本発明は上記目的を達成するためになされたものであり、 以下の とおりである。 ( 1 ) 前記目的に沿う第 1 の発明に係るスラブの連続铸造装置は
、 溶融金属の流路を形成する筒体の下部の両側側方に吐出口が設け られ、 しかも該吐出口の軸心を水平方向から水平方向に対して下向 きに 60度の範囲内とした浸漬ノズルと、 断面矩形状の空間部を有し 、 該空間部を形成する幅広の長片部材に対向配置された少なく とも 一対の電磁撹拌装置が設けられた連続铸造用铸型を備え、 前記浸漬 ノズルの前記吐出口を介して前記連続铸造用铸型内に溶融金属を供 給し、 該連続铸造用铸型内の溶融金属を前記電磁撹拌装置によって 撹拌し凝固させながらスラブを製造する連続踌造装置において、 前 記浸漬ノズルの前記吐出口の上端位置は、 前記電磁撹拌装置の下端 位置以下の位置にあり、 前記各電磁撹拌装置の下方位置には、 該電 磁撹拌装置によって発生する磁場を調整する磁気遮蔽板が設けられ 、 しかも前記電磁撹拌装置のコアの高さ方向の厚みを h とした場合 、 前記磁気遮蔽板と前記電磁撹拌装置との高さ方向の間隔を h Z 5 以上 h以下の範囲内とする。
( 2 ) 第 1 の発明に係るスラブの連続铸造装置において、 前記磁 気遮蔽板の上端位置を、 前記浸漬ノズルの前記吐出口の上端位置以 下の位置とし、 前記磁気遮蔽板の下端位置を、 前記浸漬ノズルの前 記吐出口の下端位置以下の位置とすることが好ましい。
( 3 ) 第 1 の発明に係るスラブの連続铸造装置において、 前記磁 気遮蔽板の高さ方向の長さを 50mm以上 200mm以下の範囲内とし、 そ の厚みを 10mm以上とすることが好ましい。
( 4 ) 第 1 の発明に係るスラブの連続铸造装置において、 前記浸 漬ノズルの前記吐出口の内幅 dと該浸漬ノズルの内幅 Dとの比 ( d Z D ) を、 1. 0以上 1. 7以下の範囲内に設定することが好ましい。
( 5 ) 前記目的に沿う第 2の発明に係るスラブの連続铸造方法は 、 第 1 の発明に係るスラブの連続铸造装置を用いて前記スラブを製 造する。
( 6 ) 第 2の発明に係るスラブの連続铸造方法において、 前記ス ラブの铸造速度は 1. Om 分以上であることが好ましい。 図面の簡単な説明
図 1は、 本発明の一実施の形態に係るスラブの連続铸造装置に使 用する連続铸造用铸型の側断面図である。
図 2は、 図 1のスラブの連続铸造用铸型の平面図である。
図 3 ( A ) は、 電磁撹拌装置、 浸漬ノズル、 および磁気遮蔽板の 相対位置関係と铸型内の溶鋼の流れを示す説明図である。
図 3 ( B ) は、 電磁撹拌装置と磁気遮蔽板との距離が铸型内の溶 鋼流に及ぼす影響を示した説明図である。
図 4 ( A ) は、 電磁撹拌装置、 浸漬ノズル、 および磁気遮蔽板の 相対位置関係と铸型内の溶鋼の流れを示す説明図である。
図 4 ( B ) は、 浸漬ノズルの吐出口と磁気遮蔽板との相対位置が 铸型内の溶鋼流に及ぼす影響を示した説明図である。
図 5 ( A ) は、 電磁撹拌装置、 浸漬ノズル、 および磁気遮蔽板の 相対位置関係と铸型内の溶鋼の流れを示す説明図である。
図 5 ( B ) は、 磁気遮蔽板の長さが電磁力に及ぼす影響を示した 説明図である。
図 6 ( A ) は、 铸型内の溶鋼の流れを示す説明図である。
図 6 ( B ) は、 電磁撹拌装置と磁気遮蔽板の間隔および铸造速度 を種々変えることにより铸型内の溶鋼流に及ぼす影響を示した説明 図である。
図 7は、 従来例に係る連続铸造用铸型内での溶鋼の流れを示す説 明図である。 発明を実施するための最良の形態
以下に添付した図面を参照しつつ、 本発明を具体化した実施の形 態につき説明し、 本発明の理解に供する。
ここで、 図 1 は本発明の一実施の形態に係るスラブの連続铸造装 置に使用する連続铸造用铸型の側断面図、 図 2は同スラブの連続銬 造用铸型の平面図である。
図 1 、 図 2 に示すように、 本発明の一実施の形態に係るスラブの 連続铸造装置 (以下、 単に連続铸造装置ともいう) 10は、 浸漬ノズ ル Πと連続铸造用铸型 (以下、 単に铸型ともいう) 12とを備え、 浸 漬ノズル 11の吐出口 13を介して铸型 12内に溶鋼 (溶融金属の一例) 14を供給し、 铸型 12内の溶鋼 14を铸型 12に設けられた電磁撹拌装置 15によって撹拌させながら凝固させてスラブを製造する装置であり 、 铸型 12には、 電磁撹拌装置 15の下方位置に、 電磁撹拌装置 15によ つて発生する磁場を調整する磁気遮蔽板 16が設けられている。 以下 、 詳しく説明する。
浸漬ノズル 11は、 溶鋼を貯留するタンディ ッシュ (図示しない) の底部に設けられ、 溶融金属の流路 17を形成する筒体 18を有するも のであり、 この筒体 18の下部の両側側方には吐出口 13が設けられて いる。 ここで、 流路は、 円形断面 (楕円形断面でもよい) となって いるが、 吐出口は、 例えば、 円形断面、 楕円形断面、 矩形断面 (正 方形または長方形) 、 または多角形断面でもよく、 筒体の片側に 1 個または複数個形成することができる。 このとき、 吐出口の形状が 円形断面の場合、 その内幅は直径であり、 他の形状の場合は、 その 断面積を円の面積とした場合の直径であり、 また、 吐出口が複数個 ある場合は、 全ての断面積を合計し円の面積とした場合の直径であ る。
また、 吐出口 13の軸心の向きは、 水平方向、 即ち 0度 (好ましく は、 水平方向に対して下向き 15度) から水平方向に対して下向きに 60度 (好ましくは 40度) までの範囲内に設定する。 ここで、 吐出口 の軸心を、 水平方向に対して下向きに 60度を超える領域内に設定し た場合、 即ち、 下方 (真下も含む) へ向ける場合は、 介在物と気泡 がスラブの内部へ侵入し、 内部欠陥が形成される。 また、 吐出口の 軸心の向きを、 水平方向に対して上向きに設定した場合には、 強い 上昇流を形成させ、 パウダー巻込みを助長する。
この吐出口 13の内幅 dと流路 17を形成する浸漬ノズル Πの筒体 18 の内幅 Dとの比 ( d ZD) を、 1.0以上 1.7以下の範囲内に設定する ことが好ましい。 なお、 筒体 18の内幅 Dは、 例えば、 50mm以上 90mm 以下 (ここでは、 70mm) 程度である。 ここで、 比 ( dZD) が 1.0 未満の場合、 吐出口 13の内幅 dに対して、 筒体 18の内幅 Dが大きく なり、 吐出口 13からの吐出流の流速が速くなり過ぎるため、 電磁撹 拌装置 15による撹拌流の効果が得られにく くなる。 このため、 製造 するスラブの製品品質の更なる向上が望めない。
一方、 比 ( d ZD) が 1.7を超える場合、 吐出口 13の内幅 dに対 して、 筒体 18の内幅 Dが小さくなり、 吐出口 13からの吐出流の流速 が遅くなるため、 磁気遮蔽板 16による目立った効果が現れにく くな る。
以上のことから、 吐出口 13の内幅 dと筒体 18の内幅 Dとの比 ( d ZD) を、 1.0以上 1.7以下の範囲内としたが、 上限を 1.5、 更には 1 .3とすることが好ましい。
連続铸造用铸型 12は、 水平方向の間隔を有して対向配置される一 対の幅狭の短片部材 19, 20と、 この短片部材 19, 20を挟み込むよう にして対向配置される一対の幅広の長片部材 21, 22とを有している 。 なお、 各短片部材 19, 20と長片部材 21, 22とは、 従来公知のもの であり、 例えば、 溶鋼と接触する銅または銅合金で構成された冷却 板と、 その背後に取付け固定された冷却水を流すバックプレートで 構成されている。
これにより、 内側には、 水平方向の断面が矩形状 (長方形) の空 間部 23が形成される。 なお、 この空間部 23は、 水平断面の短辺の長 さが、 例えば、 120〜300匪程度、 長辺の長さが、 例えば、 800〜180 Omm程度であり、 長片部材 2 1, 22に対して短片部材 19, 20を摺動さ せ、 その間隔を可変にもできるが、 固定のものでもよい。
長片部材 2 1, 22の上側 (詳細には、 バックプレート内) には、 そ れぞれ前記した従来公知の電磁撹拌装置 15が設けられている。
この電磁撹拌装置 15は、 多数枚の電磁鋼板を積層したコア 24に、 電磁コイル 25を巻き、 これを金属製 (例えば、 ステンレス) のケー シング (図示しない) 内に配置したものである。 従って、 電磁撹拌 装置 15の下端とは、 ケーシングの下端を意味する。 なお、 図 1では 、 電磁撹拌装置のケーシングは示されていないため、 電磁コイルの 下端を示しているように見えるが、 上述のように、 電磁撹拌装置の 下端はケーシングの下端である。 この電磁撹拌装置 15は、 各長片部 材 2 1 , 22に少なく とも一個ずつ (即ち、 一対) 設けられていればよ い。 ここで、 各電磁撹拌装置に 2個以上ずつ (即ち、 2対以上ずつ ) 設ける場合は、 長片部材の幅方向 (すなわち、 長片部材の長辺方 向、 空間部の水平断面における長辺方向) に配置される。
なお、 電磁撹拌装置 15のコア 24の高さ方向の厚み hは、 例えば、 100皿以上 300 以下 (ここでは、 200mm) 程度である。
この連続铸造用铸型 12の空間部 23内に、 吐出口 13が短片部材 19, 20と対向するように浸漬ノズル 1 1を配置 (このとき、 浸漬ノズル 1 1 の吐出口 13の上端位置を、 電磁撹拌装置 15の下端位置以下の位置に 配置) し、 この浸漬ノズル 1 1の吐出口 13を介して铸型 12内に溶鋼 14 を供給し、 铸型 12内の溶鋼を電磁撹拌装置 15によって撹拌する。 こ れにより、 铸型 12内に、 浸漬ノズル 1 1を中心として時計回りまたは 反時計回りに溶鋼流動、 即ち撹拌流を形成し、 溶鋼を凝固させなが らスラブを製造する。
しかし、 このようにしてスラブを製造するに際しては、 図 7 に示 すように、 電磁コイル 25の下方まで磁場が形成されることによる溶 鋼流動、 即ち撹拌流と、 浸漬ノズル 1 1の吐出口 13からの吐出流との 千渉、 および撹拌流に伴う吐出流の加速の影響による問題が発生す る。 このため、 製品疵が多く、 製品品質が悪いスラブの製造を余儀 なくされる。
そこで、 この影響を積極的に軽減すべく、 電磁撹拌装置 15の下方 位置に電磁撹拌装置 15と幅方向に同じ長さ以上の磁気遮蔽板 16を配 置するとともに、 その設置位置を最適化することで、 製品疵の少な い良好な铸片を製造する。
この磁気遮蔽板 16は、 例えば、 磁場を通さない電磁鋼板で構成で きるが、 鉄もしくは一般炭素鋼で構成してもよい。 なお、 鉄もしく は一般炭素鋼で構成する場合は、 電磁撹拌装置の誘導加熱により発 熱するので、 水冷構造とする。
なお前記した、 浸漬ノズル Πの吐出口 13の上端位置を、 電磁撹拌 装置 15の下端位置以下の位置に配置とする理由は下記の通りである 吐出口軸心の向きが水平から水平に対して下向き 60度の範囲とし ているため、 吐出口 13の上端位置を電磁撹拌装置 15の下端位置より 上に配置すると、 磁気遮蔽板を設置しても、 抑制し難い干渉や加速 が起こるためである。
この磁気遮蔽板 1 6は、 電磁撹拌装置 15のコア 24の高さ方向の厚み を hとした場合、 磁気遮蔽板 16と電磁撹拌装置 15との高さ方向の間 隔 3、 すなわち、 磁気遮蔽板 16の上端と電磁撹拌装置のケーシング の下端との高さ方向の間隔 (以下、 同様) 、 を h Z 5 (以下、 1 Z 5 hとも記す) 以上 h以下の範囲内となるように、 長片部材 2 1, 22 に設置する。 このとき、 磁気遮蔽板 16は、 長片部材 2 1, 22を構成す る冷却板の厚みにもよるが、 長片部材 2 1, 22の溶鋼接触面 26 , 27か ら 50mm以上 100mm以下の範囲内にあるバックプレート内に設置する ここで、 磁気遮蔽板 16と電磁撹拌装置 15との高さ方向の間隔 sが h / 5未満の場合、 磁気遮蔽板 16と電磁撹拌装置 15、 即ちコア 24と の距離が近くなり過ぎ、 撹拌が必要な領域における必要撹拌力が、 磁気遮蔽板 16により低減して、 目的とする製品品質を確保できない 一方、 間隔 sが hを超える場合、 磁気遮蔽板 16と電磁撹拌装置 15 との高さ方向の距離が遠くなり過ぎ、 前記した必要撹拌力は確保で きるものの、 吐出流と撹拌流の干渉および吐出流の加速を防止でき ず、 やはり 目的とする製品品質を確保できない。
以上のことから、 磁気遮蔽板 16と電磁撹拌装置 15との高さ方向の 間隔 s を h Z 5以上 h以下としたが、 上限を 4 h Z 5、 更には 3 h / 5 とすることが好ましい。
磁気遮蔽板 16は、 その高さ方向の長さ Xを 50mm以上 200龍以下の 範囲内とし、 その厚みを 10腿以上とすることが好ましい。 また、 磁 気遮蔽板 16の幅方向の長さは、 電磁撹拌装置 15の幅方向長さと同等 、 もしくはそれ以上にすることが好ましい。
ここで、 磁気遮蔽板の高さ方向の長さ Xが 50 未満の場合、 磁気 遮蔽板の下方への漏洩磁場の残存影響が大きくなる。 一方、 磁気遮 蔽板の高さ方向の長さ Xが 200mmを超える場合、 磁気遮蔽板の下方 からの漏洩磁場が少なくなり、 磁気遮蔽板による撹拌流の改善効果 は低位になる。 以上のことから、 磁気遮蔽板の高さ方向の長さ Xを 50 以上 200mm以下の範囲内に設定したが、 下限を 70mmとすること が好ましく、 上限を 170mm、 更には 150mmとすることが好ましい。
また、 磁気遮蔽板の厚みを 10mm (好ましくは 20mm) 以上とするこ とで、 電磁撹拌装置 15から発生した磁場の調整ができるため、 その 上限値については規定していないが、 例えば、 長片部材 2 1 , 22への 取付け時の作業性、 および経済性を考慮すれば 100mm以下とするこ とが好ましい。
更に、 磁気遮蔽板 16の高さ方向の設置位置は、 磁気遮蔽板 16の上 端位置を、 浸漬ノズル 1 1の吐出口 13の上端位置以下の位置とし、 磁 気遮蔽板 16の下端位置を、 浸漬ノズル 1 1の吐出口 13の下端位置以下 の位置とすることが好ましい。 なお、 磁気遮蔽板 16の高さ方向の長 さ Xは、 吐出口 13の内幅 dより長く している。 '
ここで、 磁気遮蔽板の上端位置を、 吐出口の上端位置を超える上 方の位置、 即ち、 吐出口の上端より上方の位置に磁気遮蔽板を配置 した場合、 浸漬ノズルの吐出口からの流れが直接作用しない領域に 磁気遮蔽板を設置することになり、 撹拌流との干渉と加速という課 題が発生しないものの、 磁気遮蔽板の上端から一定の間隔をもって 配置される電磁撹拌装置による撹拌領域を逆に縮小してしまうこと になり、 かえってスラブの表面品質を悪化させてしまうことになる また、 磁気遮蔽板の下端位置を、 吐出口の下端位置を超える上方 の位置とする場合、 吐出流と撹拌流の悪影響を低減する方法として 、 浸漬ノズルの铸型内への浸漬深さを深くすることが考えられるが 、 この場合、 浸漬ノズルの筒体の長さを過剰に長くする必要があり 、 浸漬ノズルに関する铸造準備作業が実用的でないだけでなく、 他 の設備との干渉等の問題も発生する。
以上のことから、 磁気遮蔽板の上端位置を、 浸漬ノズルの吐出口 の上端位置以下の位置とし、 しかも磁気遮蔽板の下端位置を、 吐出 口の下端位置以下の位置とするとしたが、 磁気遮蔽板の上端位置は 、 浸漬ノズルの吐出口の上端位置に極力近づけて設置することが好 ましい。
次に、 本発明の一実施の形態に係るスラブの連続铸造方法につい て説明する。
スラブの製造に際しては、 タンディ ッシュ (図示しない) に溶鋼 を供給し、. このタンディ ッシュから浸漬ノズル 1 1を介して、 連続铸 造用铸型 12へ溶鋼が供給される。 そして、 連続铸造用銬型 12内の溶 鋼 14を、 電磁撹拌装置 15によって撹拌し凝固させながら、 製造した スラブを下流側へ送り出す。
このとき、 スラブの铸造速度 (引き抜き速度) は、 通常 0. 8m Z 分以上であるが、 本発明の効果を顕著に得るためには 1. Om /分以 上、 好ましくは 1. 2m Z分以上、 更には 1. 4m Z分以上とすることが 好ましい。 これにより、 スラブの生産効率を従来よりも向上できる なお、 スラブの铸造速度の上限値については規定していないが、 現状可能な上限値としては、 例えば、 2. 5 m Z分程度である。 実施例
次に、 本発明の作用効果を確認するために行った実施例について 説明する。
まず、 電磁撹拌装置と磁気遮蔽板との高さ方向の距離 sが、 铸型 内の溶鋼流に及ぼす影響について、 図 3 ( A ) 、 図 3 ( B ) を参照 しながら説明する。 この図 3 ( A ) は、 電磁撹拌装置、 浸漬ノズル 、 および磁気遮蔽板の相対位置関係と、 そのときの铸型内の溶鋼の 流れについて示している。 ここでは、 浸漬ノズルの吐出口の上端位 置と、 電磁撹拌装置の下端位置 (ケーシングの下端) を一致させて いる。 また、 図 3 ( B ) は、 このときに製造したスラブの清浄性評 点について示している。 この清浄性評点とは、 铸造後のスラブの欠 陥 (例えば、 介在物、 パウダー、 および気泡等) の数を評価したも のであり、 詳細には、 スラブ表面から 1 mmごとに研磨したサンプル ( 30mm X 30mm) を作製し、 研磨後縦横に 30分割して 1 mm x 1 mmの検 查領域 900箇所を確保し、 この 900箇所の検査領域について、 光学顕 微鏡で欠陥の数を数え、 欠陥個数 (個 Z cm2 ) に比例する数値を表 したものである。 即ち、 清浄性評点が高 <なれば製品品質が悪く、 逆に低ければ製品品質が良好であることを意味する (以下、 同様) なお、 試験条件は、 電磁撹拌装置のケーシングの下端位置に浸漬 ノズルの吐出口の上端位置を配置し、 筒体の内幅 Dを 70mm、 d / D を 1. 0、 吐出口の軸心を水平 ( 0度) 、 磁気遮蔽板の高さ方向の長 さ Xを 100min、 厚みを 30mmに固定し、 スラブの铸造速度 Vcを 1. 4mノ 分にした。
図 3 ( A ) から明らかなように、 電磁撹拌装置と磁気遮蔽板との 高さ方向の間隔 s を狭くする (磁気遮蔽板を上方へ動かす) に伴い 、 溶鋼の流動が変化することが分かる。 また、 高さ方向の間隔 s を 広くする (磁気遮蔽板を下方に動かす) に伴い、 溶鋼の流動の変化 が小さくなることが分かる (図 3 ( A ) 中の実線と点線との関係) 詳しくは、 図 3 ( B ) から明らかなように、 電磁撹拌装置と磁気 遮蔽板の高さ方向の間隔 s を狭く し (磁気遮蔽板を上方へ動かす) 、 コア厚み hの 1 5未満の距離にした場合、 電磁撹拌装置前面の 流速にも影響し、 必要な撹拌力を付与することができなくなる。
次に、 電磁撹拌装置と磁気遮蔽板の高さ方向の間隔 s を h Z 5以 上 h以下にした場合、 電磁撹拌装置前面に必要な撹拌力を得ながら 、 電磁撹拌装置下方の撹拌力を低減することができ、 浸漬ノズルの 吐出口からの吐出流との干渉および加速を防止できる。 最後に、 電 磁撹拌装置と磁気遮蔽板の高さ方向の間隔 s をコア厚み hを超える ようにした場合、 電磁撹拌装置下方の撹拌力を低減することができ ず、 浸漬ノズルの吐出口からの吐出流との干渉および加速を防止で きない。
即ち、 電磁撹拌装置の下方位置に磁気遮蔽板を有し、 電磁撹拌装 置と磁気遮蔽板の高さ方向の間隔 s を上記した適正範囲に設置する ことで、 製品品質に影響を及ぼすスラブ表面の清浄性を改善するに 必要な箇所を必要な撹拌力以上で、 ピンポイントに撹拌することが でき、 清浄性評点を改善できることを確認できた。
次に、 磁気遮蔽板と浸漬ノズルの吐出口との相対位置が、 铸型内 の溶鋼流に及ぼす影響について、 図 4 ( A ) 、 図 4 ( B ) を参照し ながら説明する。 ここで、 図 4 ( A ) は、 電磁撹拌 g置、 浸漬ノズ ル、 および磁気遮蔽板の相対位置関係と、 そのときの铸型内の溶鋼 の流れについて示しており、 図 4 ( B ) は、 このときに製造したス ラブの清浄性評点について示している。
なお、 試験条件は、 電磁撹拌装置と磁気遮蔽板との高さ方向の間 隔 s を 2 / 5 hとし、 筒体の内幅 Dを 70mm、 d Z Dを 1. 0、 吐出口 の軸心を水平 ( 0度) 、 磁気遮蔽板の高さ方向の長さを 100mm、 厚 みを 30mmに固定し、 スラブの铸造速度 Vcを 1. 4m Z分にした。
図 4 ( A ) 、 図 4 ( B ) に示す実施例 1から明らかなように、 磁 気遮蔽板の上端位置を浸漬ノズルの吐出口の上端位置より下方 (磁 気遮蔽板の上端の上方 40πιπιの位置に吐出口の上端) に配置した場合 、 吐出流と撹拌流の干渉、 および撹拌流による吐出流の加速が一部 発生し、 清浄性評点を磁気遮蔽板がない場合の清浄性評点である 3 未満とすることができたものの、 浸漬ノズルの吐出口に付着物 (例 えば、 介在物または反応生成物) が堆積することにより、 吐出口の 軸心が変動し、 清浄性評点が安定しない。
そして、 図 4 ( A ) 、 図 4 ( B ) に示す実施例 2から明らかなよ うに、 磁気遮蔽板の上端位置を浸漬ノズルの吐出口の上端位置に配 置した場合、 吐出流と撹拌流の干渉、 および撹拌流による吐出流の 加速を防止でき、 清浄性評点を改善できることを確認できた。
更に、 図 4 ( A ) 、 図 4 ( B ) に示す実施例 3から明らかなよう に、 磁気遮蔽板の下端位置を吐出口の下端位置の上方 40mniの位置と した場合、 吐出流と撹拌流の干渉、 および撹拌流による吐出流の加 速を防止でき、 清浄性評点を改善できることは確認できたが、 以下 の問題がある。
通常、 浸漬ノズルの浸漬深さは、 200〜 300mm程度であるが、 実施 例 3においては、 浸漬ノズルの浸漬深さが 400〜 500mni以上となり、 その結果、 铸型上端から浸漬ノズル先端までの長さが 600〜700腿程 度になる。 このため、 浸漬ノズルの重量が非常に重くなるとともに 、 浸漬ノズルをタンディ ッシュに装着した状態で、 連続铸造の開始 作業と終了作業を行うには、 浸漬ノズルと铸型等の周辺装置との衝 突防止のため、 タンディ ッシュの昇降ス トロークを大きく とり、 浸 漬ノズルを過剰に上昇させて回避させて搬送する必要が生じるので 、 実操業では実用的ではない。
次に、 磁気遮蔽板の高さ方向の長さ Xが、 铸型内の溶鋼流に及ぼ す影響について、 図 5 ( A ) 、 図 5 ( B ) を参照しながら説明する 。 ここで、 図 5 ( A ) は、 電磁撹拌装置、 浸漬ノズル、 および磁気 遮蔽板の相対位置関係と、 そのときの铸型内の溶鋼の流れについて 示しており、 図 5 ( B ) は、 このときの電磁力について示している 。 なお、 図 5 ( B ) に示す縦軸の電磁力は、 図 5 ( A ) に示す磁気 遮蔽板がない場合 (図中の点線) の浸漬ノズルの吐出口の上端位置 より深い領域に作用する電磁力を 1. 0として (図 5 ( A ) 中の斜線 部の面積の撹拌流を引き起こす電磁力) 、 磁気遮蔽板の高さ方向の 長さ Xを変化させたときの電磁力の減衰を示している。. また、 試験 条件は、 電磁撹拌装置と磁気遮蔽板との高さ方向の間隔 s を 2 Z 5 hとし、 磁気遮蔽板の厚みを 10mmに固定した。
図 5 ( B ) から明らかなように、 磁気遮蔽板の高さ方向の長さ X が長くなるに伴って、 電磁力が小さくなることが確認された。 特に 、 磁気遮蔽板の高さ方向の長さを 50mm以上 200匪以下の範囲内とす ることで、 磁気遮蔽板による効果を経済的に得ながら、 吐出流と撹 拌流の干渉、 および撹拌流による吐出流の加速を防止できることを 確認できた。
次に、 スラブの铸造速度が、 铸型内の溶鋼流に及ぼす影響につい て、 図 6 ( A ) 、 図 6 ( B ) を参照しながら説明する。 ここで、 図 6 ( A ) は、 铸型内の溶鋼の流れについて示しており、 (B ) は、 電磁撹拌装置と磁気遮蔽板の高さ方向の間隔および铸造速度を種々 変えて製造したスラブの清浄性評点について示している。
なお、 試験条件は、 電磁撹拌装置の下端位置に浸漬ノズルの吐出 口の上端位置を配置し、 筒体の内幅 Dを 70mni、 d Z Dを 1. 0、 吐出 口の軸心を水平 ( 0度) 、 磁気遮蔽板の高さ方向の長さを 100mm、 厚みを 30mmに固定した。
図 6 ( A ) に示すように、 浸漬ノズルの一方側の吐出口からの吐 出流は、 铸造速度の増加に伴って増加する。 その結果、 撹拌流と吐 出流とが干渉する領域においては、 流速のばらつきが発生し、 例え ば、 パウダーの巻き込みと湯面の乱れが助長され、 製鋼に起因した 製品欠陥が増加する結果となる。
また、 浸漬ノズルの他方側の吐出口からの吐出流も、 铸造速度の 増加に伴い増加する。 その結果、 加速領域では、 介在物の侵入深さ がー層深くなり (浮上効果が得られなくなり) 、 製鋼に起因した製 品欠陥が増加する結果となる。
上記したこと、 および図 6 (B) に示す結果から、 電磁撹拌装置 と磁気遮蔽板との高さ方向の間隔 s を 1 / 5 h以上 h以下の範囲内 とした塲合、 スラブの铸造速度を速く しても、 電磁撹拌装置による 必要な撹拌力を得ながら、 吐出流と撹拌流の干渉、 および撹拌流に よる吐出流の加速を防止でき、 清浄性評点を改善できることを確認 できた。
特に、 スラブの铸造速度を 1. Om/分、 1.4mZ分、 更には 1.6m ノ分と上昇させることで、 本発明の効果がより顕著に現れる結果が 得られた。
更に、 浸漬ノズルの吐出口の内幅 dと流路の内幅 Dとの比 ( d / D) についても試験を行ったところ、 比 ( d ZD) を 1.0以上 1.7以 下の範囲内とすることで、 磁気遮蔽板によるより優れた効果が得ら れることを確認できた。
以上のことから、 本発明により、 連続铸造用铸型内での溶鋼の流 れの乱れを抑制し、 製品疵の少ない良好な品質のスラブを製造でき ることを確認できた。
以上、 本発明を、 実施の形態を参照して説明してきたが、 本発明 は何ら上記した実施の形態に記載の構成に限定されるものではなく 、 特許請求の範囲に記載されている事項の範囲内で考えられるその 他の実施の形態や変形例も含むものである。 例えば、 前記したそれ ぞれの実施の形態や変形例の一部または全部を組合せて本発明のス ラブの連続铸造装置およびその連続铸造方法を構成する場合も本発 明の範囲に含まれる。 産業上の利用可能性
本発明の ( 1 ) 〜 (4) に記載のスラブの連続铸造装置、 および ( 5) , (6 ) に記載のスラブの連続铸造方法は、 連続铸造用铸型 の長片部材に設けた電磁撹拌装置の下方に、 磁気遮蔽板を所定の高 さ方向の間隔で設けているので、 溶融金属の流動、 即ち撹拌流と浸 漬ノズルからの吐出流との千渉、 および吐出流の流速の加速の影響 を軽減できる。 これにより、 連続铸造用铸型内での溶融金属の流れ の乱れを抑制し、 製品疵の少ない良好な品質のスラブを製造できる 特に、 ( 2 ) に記載のスラブの連続铸造装置は、 浸漬ノズルの吐 出口に対する磁気遮蔽板の設置位置を規定するので、 撹拌流と吐出 流との干渉、 および吐出流の流速の加速の影響を更に軽減できる。
( 3) 記載のスラブの連続铸造装置は、 磁気遮蔽板の高さ方向の 長さと厚みを規定するので、 磁気遮蔽板からの漏洩磁場を抑制しな がら、 磁気遮蔽板による連続铸造用铸型内での溶融金属の流れの乱 れを抑制する効果を高めることができる。
(4) 記載のスラブの連続铸造装置は、 浸漬ノズルの内幅 Dと吐 出口の内幅 dとの比 (d ZD.) を規定することで、 吐出口からの吐 出流の速度が過剰に速くなることを抑制しながら、 吐出口から铸型 内へ溶融金属を安定して供給できる。 これにより、 従来発生してい た撹拌流と吐出流との干渉、 および吐出流の流速の加速の影響を軽 減でき、 連続铸造用铸型内での溶融金属の流れの乱れを抑制し、 製 品疵の少ない良好な品質のスラブを製造できる。
(6 ) 記載のスラブの連続铸造方法は、 スラブの铸造速度を 1.0 mZ分以上とすることで、 従来、 撹拌流と吐出流との干渉、 および 吐出流の流速の加速の影響が顕著に現れていた铸造速度においても 、 連続铸造用铸型内での溶融金属の流れの乱れを抑制できる。 これ により、 製品疵の少ない良好な品質のスラブを、 従来より も生産効 率を向上させて製造できる。

Claims

1 . 溶融金属の流路を形成する筒体の下部の両側側方に吐出口が 設けられ、 しかも該吐出口の軸心を水平方向から水平方向に対して 下向きに 60度の範囲内とした浸漬ノズルと、 矩形状断面の空間部を 有し、 該空間部を形成する幅広の長片部材に対向配置された少なく 請
とも一対の電磁撹拌装置が設けられた連続铸造用铸型を備え、 前記 浸漬ノズルの前記吐出口を介して前記連続铸造用铸型内に溶融金属 を供給し、 該連続铸造用铸型内のの溶融金属を前記電磁撹拌装置によ つて撹拌し凝固させながらスラブを製範造する連続铸造装置において 、 前記浸漬ノズルの前記吐出口の上端位置画は、 前記電磁撹拌装置の 下端位置以下の位置にあり、 前記各電磁撹拌装置の下方位置には、 該電磁撹拌装置によって発生する磁場を調整する磁気遮蔽板が設け られ、 しかも前記電磁撹拌装置のコアの高さ方向の厚みを hとした 場合、 前記磁気遮蔽板と前記電磁撹拌装置との高さ方向の間隔を h 5以上 h以下の範囲内とすることを特徴とするスラブの連続铸造 装置。
2 . 前記磁気遮蔽板の上端位置を、 前記浸漬ノズルの前記吐出口 の上端位置以下の位置とし、 前記磁気遮蔽板の下端位置を、 前記浸 漬ノズルの前記吐出口の下端位置以下の位置とすることを特徴とす る請求項 1 に記載のスラブの連続铸造装置。
3 . 前記磁気遮蔽板の高さ方向の長さを 50mm以上 200mm以下の範 囲内とし、 その厚みを 10mm以上とすることを特徴とする請求項 1 ま たは 2に記載のスラブの連続铸造装置。
4 . 前記浸漬ノズルの前記吐出口の内幅 dと該浸漬ノズルの内幅 Dとの比 ( d Z D ) を、 1. 0以上 1. 7以下の範囲内に設定しているこ とを特徴とする請求項 1 〜 3のいずれか 1項に記載のスラブの連続 铸造装置。
5. 請求項 1〜4のいずれか 1項に記載のスラブの連続铸造装置 を用いて前記スラブを製造することを特徴とするスラブの連続铸造 方法。
6. 前記スラブの铸造速度は l.OmZ分以上であることを特徴と する請求項 5に記載のスラブの連続铸造方法。
PCT/JP2008/057226 2007-04-10 2008-04-08 スラブの連続鋳造装置およびその連続鋳造方法 WO2008126928A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2008800116123A CN101652206B (zh) 2007-04-10 2008-04-08 板坯的连铸装置及其连铸方法
KR1020097019300A KR101127634B1 (ko) 2007-04-10 2008-04-08 슬라브의 연속 주조 장치 및 그 연속 주조 방법
BRPI0810726A BRPI0810726B8 (pt) 2007-04-10 2008-04-08 equipamento para lingotamento contínuo de placas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007103047 2007-04-10
JP2007-103047 2007-04-10

Publications (1)

Publication Number Publication Date
WO2008126928A1 true WO2008126928A1 (ja) 2008-10-23

Family

ID=39864021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/057226 WO2008126928A1 (ja) 2007-04-10 2008-04-08 スラブの連続鋳造装置およびその連続鋳造方法

Country Status (5)

Country Link
JP (1) JP5073531B2 (ja)
KR (1) KR101127634B1 (ja)
CN (1) CN101652206B (ja)
BR (1) BRPI0810726B8 (ja)
WO (1) WO2008126928A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2686122A2 (en) * 2011-03-14 2014-01-22 Consarc Corporation Open bottom electric induction cold crucible for use in electromagnetic casting of ingots
EP3760337A4 (en) * 2018-02-26 2021-07-14 Nippon Steel Corporation EQUIPMENT FOR MOLDING

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6287901B2 (ja) * 2015-03-12 2018-03-07 Jfeスチール株式会社 鋼の連続鋳造方法
JP7389339B2 (ja) * 2020-01-09 2023-11-30 日本製鉄株式会社 電磁撹拌装置
JP7385116B2 (ja) * 2020-01-09 2023-11-22 日本製鉄株式会社 電磁撹拌装置
WO2024131103A1 (zh) * 2022-12-23 2024-06-27 浙江海亮股份有限公司 一种浸入式机械控制液面铸造炉及双工位替换阀
CN117651618A (zh) 2022-12-23 2024-03-05 浙江海亮股份有限公司 一种浸入式机械控制液面铸造炉及双工位替换阀

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07256414A (ja) * 1994-03-22 1995-10-09 Sumitomo Metal Ind Ltd 丸鋳片の連続鋳造装置
JP2000061596A (ja) * 1998-08-24 2000-02-29 Nkk Corp 鋼の連続鋳造方法
JP2001047201A (ja) * 1999-08-12 2001-02-20 Nippon Steel Corp 連続鋳造方法
JP2004042062A (ja) * 2002-07-09 2004-02-12 Nippon Steel Corp 連続鋳造装置及び連続鋳造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07314104A (ja) * 1994-05-24 1995-12-05 Nippon Steel Corp 連続鋳造における鋳型内溶鋼流動制御法
KR200197013Y1 (ko) 2000-02-11 2000-09-15 엘지전선주식회사 전자기 교반에 의한 반응고 빌렛 수직 연주장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07256414A (ja) * 1994-03-22 1995-10-09 Sumitomo Metal Ind Ltd 丸鋳片の連続鋳造装置
JP2000061596A (ja) * 1998-08-24 2000-02-29 Nkk Corp 鋼の連続鋳造方法
JP2001047201A (ja) * 1999-08-12 2001-02-20 Nippon Steel Corp 連続鋳造方法
JP2004042062A (ja) * 2002-07-09 2004-02-12 Nippon Steel Corp 連続鋳造装置及び連続鋳造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2686122A2 (en) * 2011-03-14 2014-01-22 Consarc Corporation Open bottom electric induction cold crucible for use in electromagnetic casting of ingots
EP2686122A4 (en) * 2011-03-14 2014-11-19 Consarc Corp BELOW OPEN ELECTRICALLY INDUCTIVE COLD TILT FOR USE IN THE ELECTROMAGNETIC CASTING OF RAW BLOCKS
EP3760337A4 (en) * 2018-02-26 2021-07-14 Nippon Steel Corporation EQUIPMENT FOR MOLDING

Also Published As

Publication number Publication date
KR20090121339A (ko) 2009-11-25
BRPI0810726A2 (pt) 2014-10-21
CN101652206A (zh) 2010-02-17
KR101127634B1 (ko) 2012-06-12
BRPI0810726B1 (pt) 2019-04-24
JP2008279501A (ja) 2008-11-20
CN101652206B (zh) 2013-01-23
BRPI0810726B8 (pt) 2020-03-24
JP5073531B2 (ja) 2012-11-14

Similar Documents

Publication Publication Date Title
EP2361703B1 (en) Device for continuously casting steel
WO2008126928A1 (ja) スラブの連続鋳造装置およびその連続鋳造方法
KR930002836B1 (ko) 정자장을 이용한 강철의 연속 주조방법
JP6129435B1 (ja) 連続鋳造法
EP2269750A1 (en) Method for continuous casting of steel and electromagnetic stirrer usable therefor
JP5321528B2 (ja) 鋼の連続鋳造用装置
JP2007105745A (ja) 鋼の連続鋳造方法
WO2006041203A1 (ja) 電磁攪拌コイル
CN112272593B (zh) 薄板坯铸造中的铸模内流动控制装置及铸模内流动控制方法
JP2006281218A (ja) 鋼の連続鋳造方法
EP3597328B1 (en) Continuous casting method for steel
JP2013123717A (ja) 金属の連続鋳造方法
JP3417906B2 (ja) 連続鋳造鋳型内の電磁攪拌方法
JP4714624B2 (ja) 鋳型内溶鋼の電磁撹拌方法
JP3583954B2 (ja) 連続鋳造方法
JP7200722B2 (ja) 湾曲型連続鋳造装置における鋳型内流動制御方法
JP4910357B2 (ja) 鋼の連続鋳造方法
JP6287901B2 (ja) 鋼の連続鋳造方法
JP4983320B2 (ja) 鋼の連続鋳造方法及び装置
KR102265880B1 (ko) 연속 주조 방법 및 연속 주조 장치
JP5359653B2 (ja) 鋼の連続鋳造方法
JP2019177409A (ja) 鋳塊、その製造方法および鋼板の製造方法
JP2003275849A (ja) 連続鋳造鋳片の製造方法
JP2011212718A (ja) 鋼鋳片の連続鋳造方法
JP2004042062A (ja) 連続鋳造装置及び連続鋳造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880011612.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08740314

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097019300

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 6457/DELNP/2009

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08740314

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0810726

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20091009