WO2008123084A1 - 燃料電池システム用電磁弁収納ボックス - Google Patents

燃料電池システム用電磁弁収納ボックス Download PDF

Info

Publication number
WO2008123084A1
WO2008123084A1 PCT/JP2008/055026 JP2008055026W WO2008123084A1 WO 2008123084 A1 WO2008123084 A1 WO 2008123084A1 JP 2008055026 W JP2008055026 W JP 2008055026W WO 2008123084 A1 WO2008123084 A1 WO 2008123084A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cell system
storage box
electromagnetic valve
valve
Prior art date
Application number
PCT/JP2008/055026
Other languages
English (en)
French (fr)
Inventor
Masahiro Takeshita
Shigeyuki Inoue
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007307866A external-priority patent/JP4349458B2/ja
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to DE112008000713.6T priority Critical patent/DE112008000713B4/de
Priority to US12/531,806 priority patent/US20100047665A1/en
Priority to CN2008800092256A priority patent/CN101652891B/zh
Publication of WO2008123084A1 publication Critical patent/WO2008123084A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0007Measures or means for preventing or attenuating collisions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to an electromagnetic valve storage box for a fuel cell system, and more particularly to an electromagnetic valve storage box for a fuel cell system that stores an electromagnetic valve used in the fuel cell system.
  • a fuel cell is installed in a vehicle because it has little influence on the environment.
  • a fuel cell supplies a fuel gas such as hydrogen to the anode side of the fuel cell stack, supplies an oxidizing gas containing oxygen, such as air, to the power sword side, and requires a cell chemical reaction through an electrolyte membrane. Remove power. The fuel cell generates heat due to this chemical reaction. Therefore, compressors, pumps, pumps for cooling water, etc. are used as peripheral devices for fuel cells to supply fuel gas and oxidant gas. These peripherals are called fuel cell auxiliary equipment. Therefore, the operation of the fuel cell system is performed by adjusting and controlling the pressure and flow rate of fluid such as fuel gas, oxidant gas, and cooling water in the fuel cell stack and auxiliary equipment. And fluid control valves and electromagnetic control valves are used to control the pressure and flow rate of these fluids.
  • the fluid control valve is controlled by the pressure of another fluid in order to adjust the flow rate of the target fluid.
  • a so-called shut valve that controls the opening and closing of the flow path of the target fluid by adjusting the internal pressure of the pressure chamber.
  • a shut valve used to open and close the oxidizing gas flow path opens and closes the oxidizing gas flow path by moving the cylinder according to the internal pressure of the pressure chamber.
  • supply pressurized air to the pressure chamber and move the cylinder in one direction, or open the pressure chamber to the atmosphere and move the cylinder in the other direction, thereby opening and closing the oxidizing gas flow path can do.
  • Control of whether pressurized air or atmospheric open pressure is supplied to the pressure chamber is electromagnetic This can be done with a control valve.
  • the mounting position of the fuel cell system in the vehicle is often the front part, the rear part, or the lower part of the vehicle, but these are all easily affected by the external environment, such as stone, mud, It may be affected by water, snow, etc., and is susceptible to impacts during vehicle operation. Therefore, it is also preferable to devise protection of elements such as the fuel cell stack and auxiliary equipment from the influence of these external environments.
  • Patent Document 1 in an electric vehicle equipped with a fuel cell, a radiator and an air compressor are arranged at the front of the vehicle, a high-pressure fuel tank is arranged at the rear, and the FC system box is a sealed container under the front floor in the center. It is disclosed that it is attached as.
  • This FC system box includes a first group in which fuel cell output setting means, a thermostat, and a water pump are arranged in the left-right direction from the front side to the rear side of the vehicle, fuel cell, fuel supply control means, and hydrogen
  • the pump and the humidifying means are arranged in the order of the second group arranged in the left-right direction and the exhaust means. It is said that this can prevent damage to the fuel cell and the like even if an excessive impact is applied to the vehicle from the outside, and protect it from water, mud, chipping, etc.
  • Patent Document 2 as a fuel cell system box installed under the center floor of a vehicle, a cooling system unit, an FC stack and a control system unit, and a humidification system unit are attached to the pedestal as individual units, and the whole is sealed with a canopy.
  • the structure to be disclosed is disclosed.
  • An air supply hole is provided in the front panel, and a hydrogen discharge hole is provided in the rear. This is said to protect the fuel cell system from water, mud, chipping, etc., prevent high voltage components from being touched by passengers, and prevent hydrogen from entering the passenger compartment.
  • Patent Document 3 discloses a battery pack housing structure in which a plurality of bead portions that improve rigidity against vehicle impact are arranged in the housing in the direction along the front-rear direction of the vehicle. Is disclosed. This direction is perpendicular to the stacking direction of the battery modules housed in the battery pack, and is the same as the flow direction of the cooling air in the battery pack, and does not affect the pressure loss of the cooling air. Note that The one-sided portion is a groove protruding toward the inside of the battery case.
  • Patent Document 4 discloses a check valve that prevents fuel vapor generated in a fuel tank from entering a pump, and a filter made of nonwoven fabric is used to reduce noise and vibration. It is stated that it is provided between the valve body of the check valve and the housing body.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-1 68 1 0 1
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2003-1 5 1 60 5
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-3025 90
  • Patent Document 4 Japanese Patent Laid-Open No. 2005-6 9 1 03 Disclosure of Invention
  • Patent Documents 1 and 2 a fuel cell system box is provided, and a fuel cell stack and various traps are accommodated therein.
  • storing the fuel cell system in one box increases the overall size of the box and may not fully utilize the space available for mounting in the vehicle.
  • the method of distributing the components of the fuel cell system and mounting them on the vehicle requires a device to protect the individual elements from the external environment. For example, individually protecting control devices that are easily affected by the external environment such as solenoid valves from water, mud, etc. and protecting them from impacts require individual waterproofing, special shock-resistant support, etc. Incurs increase.
  • An object of the present invention is to provide an electromagnetic valve storage box for a fuel cell system that protects a plurality of electromagnetic valves from the external environment.
  • An electromagnetic valve storage box for a fuel cell system includes a plurality of electromagnetic valves used in a fuel cell stack or an auxiliary device for a fuel cell, and a plurality of electromagnetic valves accommodated therein, and the fuel cell stack side or the fuel cell And a box housing having a connection with the auxiliary equipment side.
  • the box housing preferably has a waterproof structure that prevents moisture from entering from the outside.
  • the box housing is subject to intrusion of external electromagnetic waves, Alternatively, it is preferable to have an electromagnetic shield structure that suppresses at least one of releasing electromagnetic waves from the inside to the outside.
  • the solenoid valve is a fluid control pulp used for a fuel cell stack or an auxiliary machine for a fuel cell, and is a fluid control pulp that operates according to the pressure and the internal pressure of the chamber.
  • a solenoid valve for supplying a working fluid to the valve is preferable.
  • the fuel cell system is mounted on a vehicle, and the box housing is attached to and held by the vehicle.
  • the bot housing is attached and held under the floor of the vehicle.
  • the box housing has a protective outer shell surface that is stiffer than other outer shell surfaces, and when mounted on a vehicle, the box housing may be mounted so that the protective outer shell surface faces the front of the vehicle. preferable.
  • the box housing preferably has an inclined outer surface that is inclined so as to be lowered in the direction of gravity from the front to the rear of the vehicle when attached to the vehicle.
  • the box housing when mounted on the vehicle, is preferably arranged behind the fuel cell stack or behind the humidifier stack as an auxiliary device for the fuel cell.
  • the electromagnetic valve is connected to the connection portion by the fluid flow channel line and the fuel cell stack side or the fuel cell catcher side, and is rearward from the vehicle front side.
  • the plurality of fluid flow paths connected to the box housing connection portions are connected to the humidifier housing. It is preferably arranged along the body.
  • the plurality of fluid flow paths are each composed of a metal pipe and are fixed to the humidifier housing, and the pipe lines A plurality of flexible pipes that connect between the corresponding connecting portions of the bottas casing, and each pipe pipe has a humidifier casing. It is preferable that the length from the position fixed to the flexible pipe to the end of the connection to the flexible pipe is different from each other.
  • the solenoid valve is a fluid control pulp used for a fuel cell stack or an auxiliary machine for a fuel cell, and operates according to the internal pressure of the pressure chamber.
  • the fluid control valve has a breathing port and an input port and an output port connected to a corresponding solenoid valve, and the box housing breathes the fluid control valve.
  • a breathing port connection part that opens and connects the port to the internal space of the housing and an air release port that opens the internal space of the housing to the atmosphere.
  • the position of the respiration port connection portion is It is preferable that the air outlet port is attached so as to be disposed on the upper side with respect to the gravity direction.
  • the pot housing preferably includes a bead portion having a concave shape toward the outside of the housing and a convex shape toward the inside of the housing.
  • a filter is provided between each connection portion and each electromagnetic valve corresponding to each in the inside of the boat casing.
  • the filter is preferably composed of a nonwoven fabric.
  • the electromagnetic valve storage box for a fuel cell system accommodates therein a plurality of electromagnetic valves used in a fuel cell stack or an auxiliary machine for a fuel cell, and the fuel cell stack side or an auxiliary for a fuel cell. It has a connection with the machine side. As a result, a plurality of solenoid valves can be protected together from the external environment.
  • the box housing has a waterproof structure, the solenoid valve can be protected from water, mud, snow, and the like.
  • the box housing has an electromagnetic shield structure, the influence on external control equipment and the like can be suppressed, and malfunction of the solenoid valve due to external electromagnetic noise can be prevented.
  • the solenoid valve is a fluid control valve that operates according to the internal pressure of the pressure chamber. Used to supply Therefore, in a fuel cell system using a so-called shut valve, the solenoid valves for controlling the shut valve can be integrated and protected from the external environment.
  • the solenoid valve storage box for the fuel cell system is used in a fuel cell system mounted on a vehicle, and the box casing is attached to and held by the vehicle, so water, mud, snow, etc. during vehicle operation
  • the electromagnetic valve can be protected from the external environment.
  • the box housing has a highly rigid protective outer shell surface that is attached so that the protective outer shell surface faces the front of the vehicle, so that the electromagnetic valve can be effectively protected from impacts during vehicle operation. it can.
  • the box housing has an inclined outer surface that, when attached to the vehicle, slopes downward in the direction of gravity from the front to the rear of the vehicle. For example, during vehicle operation, water, mud, Even if snow falls on the box housing, it can flow down along the slope.
  • the box casing when mounted on a vehicle, it is disposed behind the fuel cell stack or behind the humidifier stack as an auxiliary device for the fuel cell.
  • the solenoid valve can be effectively protected from impact.
  • the solenoid valve is connected to the fuel cell stack side and the connecting part by a fluid flow path pipe, and is arranged in the order of the fuel cell stack, the humidifier, and the solenoid valve storage box from the vehicle front side to the rear side.
  • the plurality of fluid flow paths are aligned along the humidifier casing. Therefore, since the arrangement of the plurality of fluid flow channels is orderly, maintenance and the like can be easily performed.
  • each pipe line constituting a plurality of fluid flow paths differs in length from the position fixed to the humidifier housing to the connection end to the flexible pipe. Therefore, it is possible to prevent erroneous piping when connecting a plurality of fluid flow paths to the connection portion of the housing box.
  • the position of the breathing port connecting part connected to the fluid control valve is arranged so as to be located above the gravitational direction from the atmosphere opening port. Therefore, even if water or the like enters from the air release port, the fluid control valve can be connected via the suction port.
  • the box casing includes a bead portion having a concave shape toward the outside of the casing and a convex shape toward the inside of the casing, the rigidity of the box casing can be improved. In addition, it is possible to reduce the vibration and operating noises of solenoid valves, etc. in the box housing.
  • the filter is made of non-woven fabric, it is possible to reduce the operating noise by removing the dust and suppressing the propagation of the vibration of the solenoid valve.
  • FIG. 1 is a view showing a state in which the electromagnetic valve storage box of the embodiment according to the present invention is mounted on a vehicle.
  • FIG. 2 is a diagram showing an arrangement relationship of elements and the like related to the electromagnetic valve storage box in the embodiment according to the present invention.
  • FIG. 3 is a diagram illustrating a fluid flow path system of a fuel cell system in which an electromagnetic valve storage box is used in the embodiment according to the present invention.
  • FIG. 4 is a diagram illustrating the configuration of a solenoid valve that is a three-way valve in the embodiment according to the present invention.
  • FIG. 5 (A) is a diagram illustrating a state where the electromagnetic valve which is a three-way valve is not operating in the embodiment according to the present invention.
  • FIG. 5 (B) is a diagram for explaining the operating state of the electromagnetic valve which is a three-way valve in the embodiment according to the present invention.
  • FIG. 6 (A) is a diagram illustrating a state where the electromagnetic valve which is a two-way valve is not operating in the embodiment according to the present invention.
  • FIG. 6 (B) is a diagram for explaining the operating state of the electromagnetic valve which is a two-way valve in the embodiment according to the present invention.
  • FIG. 7 is a perspective view showing the appearance of the electromagnetic valve storage box in the embodiment according to the present invention.
  • FIG. 8 is a cross-sectional view of a solenoid valve storage box and a state of arrangement of fluid flow channels in the embodiment according to the present invention.
  • FIG. 9 is a diagram showing a state of planar arrangement of the electromagnetic valve storage box and the fluid flow channel and a cross section of the holding portion of the fluid flow channel in the embodiment according to the present invention.
  • FIG. 10 is a diagram showing a state of the electromagnetic valve storage box provided with a bead portion in the embodiment according to the present invention.
  • FIG. 11 is a cross-sectional view of FIG.
  • FIG. 12 is a diagram showing the internal arrangement of the electromagnetic valve storage box when a filter is provided in the embodiment according to the present invention.
  • the solenoid valve storage box for a fuel cell is mounted on a hybrid vehicle.
  • the fuel cell system may be, for example, a stationary fuel cell system other than the one mounted on the vehicle.
  • the solenoid valve storage box for the fuel cell system is mounted on the vehicle, it will be described as being placed under the floor of the passenger compartment. However, this is an example, and the fuel cell system is installed in other parts of the vehicle.
  • An electromagnetic valve storage box may be disposed.
  • the solenoid valve storage box for the fuel cell system will be described as assuming that a total of nine solenoid valves, three solenoid valves including three solenoid valves for each system, are stored. It is an example, and other numbers may be used.
  • each solenoid valve stored in the solenoid valve storage box for the fuel cell system is described as being connected to a shut valve used in the fuel cell system, but the target to be connected is other than for the shut valve.
  • the solenoid valve for the fuel cell stack or the solenoid valve for the fuel cell catcher may be stored together in the solenoid valve storage box for the fuel cell system.
  • FIG. 1 is a view showing a state of a fuel cell system 20 mounted on a vehicle 10, and a fuel cell system electromagnetic valve storage box 50 is shown as a part of the fuel cell system 20.
  • the electromagnetic valve storage box 50 for the fuel cell system is simply indicated as the electromagnetic valve storage box 50.
  • the fuel cell system 20 is disposed under the vehicle 10, that is, below the floor of the passenger compartment. Therefore, the electromagnetic valve storage box 50 is in an environment that is susceptible to the effects of water splashing from the road, snow splashing, mud splashing, etc. in the lower part of the vehicle 10.
  • FIG. 2 is a diagram showing a configuration of the fuel cell system 20, and particularly a diagram showing an arrangement relationship of elements and the like related to the electromagnetic valve storage box 50.
  • the fuel cell stack 2 2, the humidifier 2 4, the diluter 2 8, the muffler 2 9, the shut valve 3 0, and the electromagnetic valve storage box 5 0 are illustrated.
  • the shunt valve 30 three of a supply shunt valve 3 2, an exhaust shunt valve 3 4, and a humidifier bypass shunt valve 36 are shown.
  • FIG. 1 shows the under-floor members 1, 2, 14, and 16 of the vehicle. Each element of the fuel cell system 20 is attached to the underfloor member 12, 14, 16, etc. and mounted on the vehicle.
  • Fig. 2 the forward direction and the right direction of the vehicle are indicated by arrows. That is, the fuel cell stack 22, the shut valve 30, the humidifier 24, and the electromagnetic valve storage box 50 are arranged in this order from the front side to the rear side of the vehicle.
  • the shut valve 30, the humidifier 24, and the solenoid valve storage box 50 are arranged on the left side toward the front of the vehicle.
  • the shut-off valve fluid flow path 80 is arranged along the upper side surface of the humidifier 24 in a substantially parallel manner in the longitudinal direction of the vehicle.
  • FIG. 3 is a diagram illustrating the fluid flow path system of the fuel cell system 20.
  • the fuel cell system 20 includes a fuel cell main body called a fuel cell stack 22 in which a plurality of fuel cells are stacked, each element for supplying fuel gas disposed on the anode side of the fuel cell stack 22, and a cathode side. It is configured to include each element for supplying oxidizing gas.
  • the fuel cell stack 22 includes a plurality of unit cells sandwiched by arranging cenotors on both sides of a MEA (Membrane Electrode Assembly) with catalyst electrode layers on both sides of the electrolyte membrane. These are stacked in combination.
  • the fuel cell stack 22 supplies a fuel gas such as hydrogen to the anode side, supplies an oxidizing gas containing oxygen, for example, air, to the cathode side, generates electricity by a cell chemical reaction through the electrolyte membrane, and generates necessary power. Has the function of taking out.
  • the fuel gas tank 26 on the anode side is a hydrogen gas source, and is a tank that supplies hydrogen as a fuel gas.
  • the regulator 46 connected to the fuel gas tank 26 that is a hydrogen gas source has a function of adjusting the gas from the fuel gas tank 26 that is a hydrogen gas source to an appropriate pressure and flow rate.
  • the pressure gauge is a measuring device that detects the supply hydrogen pressure.
  • the output port of the regulator 4 6 is connected to the anode side inlet of the fuel cell stack 22, and fuel gas adjusted to an appropriate pressure and flow rate is supplied to the fuel cell stack 22.
  • the shunt 47 connected to the anode outlet of the fuel cell stack 2 2 is used to flow to the diluter 28 through the exhaust valve 48 when the impurity gas concentration of the exhaust gas from the anode outlet increases. belongs to.
  • a circulation booster 49 provided between the shunt 47 and the anode side inlet increases the hydrogen partial pressure of the gas returning from the anode side outlet and returns it to the anode side inlet again. This is a hydrogen pump with a function of reusing.
  • the oxidizing gas source 40 on the power sword side can actually use the atmosphere.
  • the atmospheric air as the oxidizing gas source 40 is supplied to the air compressor (A C P) 42 after passing through the filter.
  • a C P 4 2 is a gas booster that compresses the volume of oxidant gas by a motor to increase its pressure.
  • a C P 4 2 has a function of providing a predetermined amount of oxidizing gas by changing its rotational speed (the number of revolutions per minute). In other words, when the required flow rate of oxidizing gas is large, the rotational speed of the motor is increased. Conversely, when the required flow rate of oxidizing gas is small, the rotational speed of the motor is decreased.
  • the intercooler provided on the downstream side of A C P 4 2 is a heat exchanger between the refrigerant for cooling the fuel cell stack 2 2 and the oxidizing gas.
  • the cooling refrigerant when the temperature of the cooling refrigerant is low, such as when the fuel cell stack 22 is started, the cooling refrigerant is warmed by warmer oxidant gas, while the fuel cell stack 22 is in steady operation.
  • the temperature of the cooling refrigerant becomes high, the cooling refrigerant is cooled with an oxidizing gas having a lower temperature.
  • the humidifier 24 has a function of appropriately humidifying the oxidizing gas and efficiently performing the fuel cell reaction in the fuel cell stack 22, and is also referred to as a humidifier module.
  • the oxidizing gas appropriately moistened by the humidifier 24 is supplied to the power sword side inlet of the fuel cell stack 2 2 and exhausted from the power sword side outlet. At this time, the reaction product water is also discharged together with the exhaust. Since the fuel cell stack 22 is heated to a high temperature due to the reaction, the discharged water is steam, and this steam is returned to the humidifier 24 to appropriately wet the oxidizing gas.
  • the humidifier 2 4 It has a function of appropriately giving water vapor to the oxidizing gas, and a gas exchanger using a so-called hollow fiber can be used.
  • the flow path connecting the oxidizing gas source 40 and the force sword side inlet of the fuel cell stack 22 can be referred to as an inlet side flow path or a supply side flow path.
  • the flow path connected from the power sword side outlet of the fuel cell stack 22 to the exhaust side can be called an outlet side flow path or an exhaust side flow path. Therefore, the oxidizing gas path, which is the oxidizing gas path, enters the fuel cell stack 22 from the inlet side flow path through the humidifier 24 from the oxidizing gas source 40 and enters the humidifier from the outlet side flow path. 2 It extends to the outside air via 4.
  • the pressure gauge provided in front of the humidifier 24 in the inlet side channel is a side measuring device that detects the supply gas pressure
  • the pressure gauge provided after the outlet of the fuel cell stack 22 in the outlet side channel is It is a measuring instrument that detects the pressure of used gas, that is, exhaust gas pressure.
  • the pressure regulating valve 45 provided after the pressure gauge for detecting the exhaust gas pressure is also called a back pressure valve, but it adjusts the gas pressure at the outlet of the power sword and adjusts the flow rate of the oxidizing gas in the fuel cell stack 22
  • a valve that can adjust the effective opening of the flow path such as a butterfly valve, can be used. Since the output port of the pressure regulating valve 4 5 is connected to the humidifier 24 described above, the gas exiting the pressure regulating valve 4 5 supplies water vapor to the humidifier 2 4 and then returns again to the diluter 2 8 And then discharged to the outside.
  • the diluter 28 collects the hydrogen-mixed wastewater from the anode-side exhaust valve 48, and the hydrogen-mixed exhaust gas leaking through the MEA due to the water vapor on the cathode side, and outputs it to the outside as an appropriate hydrogen concentration. It is a buffer container for discharging.
  • the supply shunt valve 3 2 provided and connected between the humidifier 24 and the fuel cell stack 22 is normally open, and the fuel cell system 2 0 is an on-off valve that is closed when the operation is stopped. The reason why the supply-side flow path is closed and the supply of the oxidizing gas is stopped when the fuel cell system 20 is shut down is to suppress the oxidation of the catalyst layer and the like included in the fuel cell stack 22.
  • the exhaust shut-off valve 3 4 provided and connected between the pressure regulating valve 4 5 and the humidifier 2 4 is the same as the supply shut-off valve 3 2.
  • This is an open / close valve that is normally open and is closed when the fuel cell system 20 is shut down.
  • a humidifier bypass flow path is provided in parallel with the flow path via the supply short valve valve 32 so as to bypass the humidifier 24 in the inlet-side flow path, that is, the supply-side flow path.
  • the supply-side flow path branches at the downstream side of the intercooler (I / C) 4 4, and one side passes through the humidifier 24 and passes through the supply shut-off valve 3 2 to the fuel cell stack 2 2.
  • the other is a bypass flow path that bypasses the humidifier 24 and merges with the main supply flow path on the downstream side of the supply short valve 32.
  • the humidifier bypass shut valve 36 disposed and connected in the bypass channel is an on-off valve that is normally closed and opened when necessary.
  • the supply shunt valve 3 2, exhaust shunt valve 3 4, and humidifier bypass shunt valve 3 6 differ in that the former two are normally open and the humidifier bypass shut valve 3 6 is normally closed. However, they have almost the same structure.
  • the shunt valve 30 is a fluid control valve having a movable element such as a biston that operates according to the internal pressure of the pressure chamber.
  • a supply shut-off valve provided in the supply-side flow path, it has a pipe line inside which a movable element such as a piston advances and retreats, and the inlet side of the pipe line is the main supply side on the side of the humidifier 24
  • the outlet side of the pipe is connected to the main supply side flow path on the fuel cell stack 22 side.
  • the mover is retracted from the pipe, so that the oxidizing gas can freely flow through the pipe inside the supply short valve 32.
  • the pipe inside the supply shut valve 32 is closed, so that the flow of the oxidizing gas is blocked.
  • a diaphragm type short valve 30 is a diaphragm type short valve 30.
  • the displacement of the diaphragm can be moved to open and close the pipeline.
  • the movement of the child is linked, and two pressure chambers are provided on both sides of the diaphragm. Therefore, a first state is set in which the internal pressure of the pressure chamber on one side is high, the internal pressure of the pressure chamber on the other side is low, the internal pressure of the pressure chamber on one side is low, and the internal pressure of the pressure chamber on the other side is high. 2nd state. In the first state, the diaphragm is displaced toward the other side pressure chamber, and in the second state, the diaphragm is displaced toward the one side pressure chamber.
  • the mover can be advanced and retracted to open and close the pipeline.
  • it is necessary to supply working fluid in two pressure states, low pressure and high pressure, to each of the two pressure chambers.
  • this diaphragm type shut valve 30 is used.
  • each shut valve 30 receives supply of working fluid to each of the two pressure chambers.
  • the supplied working fluid is switched between two pressure states, high pressure and low pressure.
  • the working fluid supplied to the pressure chamber on one side is high pressure
  • the working fluid supplied to the pressure chamber on the other side is low pressure.
  • the operation fluid supplied to the pressure chamber on one side is If the fluid is low pressure, the working fluid supplied to the pressure chamber on the other side is set to have a high pressure.
  • air can be used.
  • the compressed air from the AC P 42 can be used as two pressure states, a high pressure state where the compressed air is pressurized and a low pressure state where the compressed air is released to atmospheric pressure.
  • the shut valve 30 is provided with a hole that is opened to the atmospheric pressure, and this hole is sometimes called a breathing port or a breathing hole.
  • the solenoid valve storage box 50 is composed of a solenoid valve 7 for controlling the supply of working fluid to the supply shut valve 3 2, the exhaust shut valve 3 4, and the humidifier bypass shirt valve 3 6.
  • exhaust shut-off valve 3 4 and humidifier bypass shut-off valve 3 6 one three-way solenoid valve 7 4 and two two-way valves A total of nine solenoid valves 7 4 and 7 6 are accommodated in the solenoid valve storage box 50.
  • the nine solenoid valves 7 4, 7 6 have a total of seven fluid flow paths 8 0, supply shut valve 3 2, exhaust shut valve 3 4, humidifier bypass Connected to shut valve 3 6 and ACP 4 2.
  • the total of the seven pipes is divided into six, two for the two pressure chambers in the supply short valve 3 2, the exhaust shut-off valve 3 4, and the humidifier bypass shut-off valve 3 6, and ACP 4 2 One connected to the output side.
  • each of the three-way valves is provided with a solenoid valve 7 4, one for each of the supply shut-off valve 3 2, the exhaust shut-off valve 3 4, and the humidifier bypass shunt valve 3 6.
  • the input port of valve 74 is connected to the output side of ACP 42, and the two output ports of solenoid valve 74, which are three-way valves, are connected to the two pressure chambers of the corresponding shut valve 30, respectively.
  • Figure 3 shows six connection ports corresponding to the respective output ports of solenoid valves 74, which are three-way valves, and one connection corresponding to each input port of each three-way valve, connected to ACP 42. A total of seven connected ports are shown. The seven connection ports in total are provided in the electromagnetic valve storage box 50 and are connection portions to which one ends of the seven fluid flow channel pipes 80 are connected.
  • the solenoid valve 74 which is a three-way valve, has one input port and two output ports as described above, and has the function of distributing the fluid supplied to the input port to either of the two output ports for output. Have.
  • the output port and the input port and the corresponding connection port of the solenoid valve storage box 50 are connected by appropriate piping.
  • the input port of the electromagnetic valve 76 which is a two-way valve, is connected to the pipe between each output port of the electromagnetic valve 74, which is a three-way valve, and the corresponding connection port.
  • the output port of each solenoid valve 76 which is a two-way valve, opens toward the internal space of the solenoid valve storage box 50. As will be described later, since the internal space of the electromagnetic valve storage box 50 is open to atmospheric pressure, the output port of each electromagnetic valve 76 that is a two-way valve is open to atmospheric pressure.
  • the pipe to which the electromagnetic valve 76, which has been operated, is connected is opened to atmospheric pressure.
  • the electromagnetic valve 7 6 that is a two-way valve is connected to the two output ports of the solenoid valve 7 4 that is a three-way valve.
  • the output port of the solenoid valve 74, which is the three-way valve on the operated side is opened to atmospheric pressure.
  • the solenoid valve 7 6 that is a three-way valve is a fluid supplied from the input port.
  • the solenoid valve 76 which is a two-way valve connected to the output port to which high-pressure air is supplied, is not operated, high-pressure air is supplied to the corresponding connection port.
  • the solenoid valve 76 which is a directional valve, is operated, the high-pressure air is released to atmospheric pressure, so that low-pressure air is supplied to the corresponding connection port.
  • the high pressure air from ACP 4 2 is supplied to one side of the two pressure chambers of the shut valve 30, and the low pressure air that is open to the atmospheric pressure is supplied to the other side.
  • Switching control can be performed so that high-pressure air from ACP 42 is supplied to the other side of the two pressure chambers, and low-pressure air that is open to atmospheric pressure is supplied to one side.
  • high pressure air from ACP 4 2 is supplied to the input port of electromagnetic valve 7 4 which is a three-way valve, and electromagnetic valve 7 6 which is a two-way valve connected corresponding to one side of two output ports
  • the solenoid valve 76 which is a two-way valve connected to the other side of the two output ports, is operated without being operated.
  • the operation of the solenoid valve 74 which is a three-way valve, is controlled to distribute the high-pressure air from A C P 4 2 to one side of the two output ports.
  • connection port corresponding to the output port on one side of the solenoid valve 74 which is a three-way valve
  • connection corresponding to the output port on the other side of the solenoid valve 74 which is a three-way valve
  • the port is supplied with low-pressure air at atmospheric pressure. Therefore, in the corresponding short valve 30, high-pressure air is supplied to the one-side pressure chamber connected to the connection port corresponding to the one-side output port of the solenoid valve 74, which is a three-way valve. Low pressure air that is open to atmospheric pressure is supplied to the other pressure chamber connected to the connection port corresponding to the other output port of the solenoid valve 74.
  • the reverse case is as follows. That is, the high-pressure air from ACP 4 2 is supplied to the intake valve of electromagnetic valve 7 4 that is a three-way valve, and electromagnetic valve 7 6 that is a two-way valve connected to the other side of the two output ports.
  • the solenoid valve 76 which is a two-way valve connected corresponding to one side of the two output ports, is operated without being operated.
  • the operation of the solenoid valve 74 which is a three-way valve, is controlled to distribute the high-pressure air from the ACP 42 to the other side of the two output ports.
  • solenoid valve 7 4 which is a three-way valve
  • Low-pressure air that is open to atmospheric pressure is supplied to the connection port corresponding to the output port on one side of the electromagnetic valve 74 that is a three-way valve. Therefore, in the corresponding shut-off valve 30, low-pressure air that is open to atmospheric pressure is supplied to the one-side pressure chamber connected to the connection port corresponding to the one-side output port of the electromagnetic valve 74 that is a three-way valve, High-pressure air is supplied to the other-side pressure chamber connected to the connection port corresponding to the other-side output port of the electromagnetic valve 74 that is a three-way valve.
  • FIGS. 4 is a diagram for explaining the configuration of the electromagnetic valve 74 that is a three-way valve
  • FIG. 5 is a diagram for explaining the operation of the electromagnetic valve 74 that is a three-way valve
  • FIG. 6 is an operation of the solenoid valve 76 that is a two-way valve.
  • the solenoid valve 74 which is a three-way valve, has one input port indicated as I N and two output ports indicated as OUT 1 and OUT 2.
  • a pressure chamber 77 connected to any of IN, OUT 1 and OUT 2 is provided inside.
  • an opening / closing element 78 that is movable in the vertical direction on the paper surface of FIG.
  • the switch 78 receives the drive force upward in the drawing in FIG. 4 by the magnetic field generated by the drive coil 79, and resists the bias force of the biasing means. Move away from the connection port that communicates with OUT 1, and close the connection port that communicates with OUT 2. Therefore, I N communicates with OUT 1, and the fluid supplied from I N is output to OUT 1. This is shown in Fig. 5 (B).
  • the solenoid valve 76 that is a two-way valve has a structure in which OUT 2 is omitted from the solenoid valve 74 that is a three-way valve. That is, it is a structure having only IN and OUT1. Other components are the same as those of the solenoid valve 74 which is a three-way valve. Therefore, when the drive coil is not operating, OUT 1 is blocked, and the fluid supplied from IN is shut off and not output to OUT 1. This is shown in Fig. 6 (A). When the drive coil is activated, OUT 1 opens and the fluid supplied from IN is output to OUT 1. This is shown in Fig. 6 (B).
  • the external connection 60 provided in the solenoid valve storage box 50 is connected to the drive coils of the nine solenoid valves 7 4 and 7 6 stored in the solenoid valve storage box 50. It is a connection terminal part to which an electric signal line is connected.
  • the external connection unit 60 is connected to a control unit (not shown) by a control cable, and the operation of the electromagnetic valves 7 4 and 76 is controlled under the control of the control unit.
  • the breathing port connection 70 provided in the solenoid valve storage box 50 is connected to the breathing ports of the supply shut-off valve 32, the exhaust shut-off valve 34, and the humidifier bypass shut-off valve 36. Connection port.
  • the breathing port connection part 70 is opened in the internal space of the electromagnetic valve storage box 50. That is, the respiration ports of the supply shut valve 3 2, the exhaust shut valve 3 4, and the humidifier bypass shut valve 3 6 are connected to the internal space of the solenoid valve storage box 50, and the solenoid valve storage box 5 0 Is supplied to each breathing port of the supply short valve 3 2, the exhaust short valve 3 4, and the humidifier bypass short valve 3 6.
  • an air release port 72 provided in the electromagnetic valve storage box 50 is a connection port connected to an air release pipe that extends to an appropriate part of the vehicle and opens.
  • an air release pipe For example, an engine room or the like can be used as an appropriate part of the vehicle where the air release pipe opens.
  • the air release port 72 is opened in the internal space of the electromagnetic valve storage box 50, similarly to the breathing port connection portion 70. Therefore, the internal space of the solenoid valve storage box 50 is set to atmospheric pressure through the air release pipe.
  • FIG. 7 is a perspective view showing the appearance of the electromagnetic valve storage box 50.
  • FIG. 7 shows a state in which holding members 5 7 and 5 8 for mounting and holding the solenoid valve storage box 50 on the vehicle are attached.
  • the holding members 5 7 and 5 8 are angle-shaped members that are fixedly attached to the solenoid valve storage box 50 and have attachment holes at their ends for fixed attachment to the under-floor members of the vehicle. Using this mounting hole, the solenoid valve storage box 50 is fixed to the under-floor member of the vehicle by an appropriate fastening member. Can be attached.
  • the electromagnetic valve storage box 50 is a box-shaped member having an internal space for storing the electromagnetic valve therein.
  • the box housing 5 2 is composed of a base plate 54, a seal 56, and its surroundings. It is comprised including these parts.
  • the base plate 5 4 constituting the box housing 52 is a plate-like member having an appropriate thickness and rigidity, and includes nine connection ports connected to the fluid flow channel 80 described in FIG. An external connection unit 60 connected to a control unit that is not connected is provided.
  • the nine connection ports are the two connection ports 6 2 connected to the supply shut-off valve 3 2, the two connection ports 6 4 connected to the exhaust shut-off valve 3 4, and the humidifier bypass shut-off valve 3 6 2 connection ports connected to 6 6, connection port 6 8 connected to ACP 4 2, respiration port connection 7 0 connected to the respiration port of shut valve 3 0, air release port 7 2 Has been.
  • connection ports 6 2 connected to the supply shut valve 3 2, two connection ports 6 4 connected to the exhaust shut valve 3 4, two connected to the humidifier bypass shut valve 3 6 Seven of connection port 6 6 and connection port 6 8 connected to ACP 4 2 are arranged in a line. That is, when the solenoid valve storage box 50 is mounted on a vehicle, these connection ports are arranged at substantially the same height in the direction of gravity. With respect to the height of these seven connection ports, the breathing port connection 70 is arranged at a considerably high position, and the air release port 72 is arranged at a slightly lower position.
  • Air release port 7 2 is placed in a low position. As a result, even if water or the like enters from the atmosphere opening port 72, water or the like can be prevented from entering the breathing port connection portion 70, and the shirt valve 30 can be protected.
  • FIG. 8 shows a sectional view of the electromagnetic valve storage box 50 cut along a plane parallel to the front-rear direction of the vehicle and the arrangement state of the fluid flow channel pipe 80.
  • FIG. FIG. 9 shows a plan view corresponding to FIG. 8, and a cross-sectional view of the holding portion of the fluid flow channel pipe 80 is shown on the left side of the plan view.
  • the electromagnetic valve storage box 50 is arranged behind the fuel cell stack 22 and the humidifier 24 when counted from the front side of the vehicle.
  • the box casing 52 is configured including the base plate 54 and the shell 56 as described above.
  • the box housing 52 is arranged such that the base plate 54 is on the front side of the vehicle and the shell 56 is on the rear side of the vehicle.
  • the plate surface of the base plate 54 is disposed so as to be substantially perpendicular to the traveling direction of the vehicle.
  • the base plate 5 4 acts as a protective outer shell surface as if it were a protective wall against an electromagnetic valve or the like disposed inside the shell 56.
  • the solenoid valve can be protected from obstacles from the external environment such as rain, snow, mud, stones, etc., which are received from the front as the vehicle travels.
  • the solenoid valve and the like can be protected from external forces such as impact received from the front of the vehicle.
  • the base plate 54 preferably has a structure having higher rigidity than the seal 56.
  • the shell 56 is a rectangular-shaped opening and a deep-plate shaped member having an appropriate depth, and a flange is provided around the opening.
  • This flange portion has a flatness that does not cause a large gap when it is aligned with the back side surface of the base plate 54, that is, when it is aligned with the side surface that is the rear side of the vehicle when mounted on the vehicle. It is preferable to form so that it may have.
  • the flange portion is provided with a plurality of mounting holes for mounting the shell 56 to the base plate 54. Using this mounting hole, the shell 56 and the base plate 5.4 are integrated by an appropriate fastening member, and the box housing 5 having a storage space 51 in which the solenoid valve 74 and the like are arranged. 2 is formed.
  • the integrated box housing 52 includes an external connection portion 60 provided on the front side surface of the base plate 54, that is, the side surface which is the rear side of the vehicle when mounted on the vehicle, and a fluid flow path conduit Except for a plurality of connection ports 62 connected to 80, etc., it becomes a sealed container having a waterproof structure.
  • the external ring containing water such as water, mud, and snow
  • the solenoid valve can be protected from the boundary.
  • the side surface of the shell 56 is preferably formed to have an appropriate inclination. As shown in FIG. 8, this inclination is applied to the upper side surface, which is the ceiling side, when the bot housing 52 is attached to the vehicle, and the direction of the inclination is the gravitational direction from the front to the rear of the vehicle. It is attached to go down. As a result, fluid foreign matter 8 containing moisture such as rain, snow, mud, etc. scattered on the box housing 52 flows downward or is dropped along the slope by the box. It is possible to prevent fluid foreign matter 8 containing moisture from adhering to and staying in the case 52.
  • the inclination angle 0 of the inclined surface is preferably about 5 degrees to about 30 degrees downward with respect to the horizontal plane.
  • the box casing material have electromagnetic shielding properties, it is possible to suppress at least one of intrusion of electromagnetic waves from the outside or emission of electromagnetic waves from the internal electromagnetic valve to the outside. Can do.
  • the base plate 5 4 has higher rigidity than the shell 5 6.
  • the material of the base plate 5 4 is a metal plate having a sufficient thickness
  • the material of the shell 5 6 is In consideration of formability, a metal plate having an appropriate thickness can be used.
  • the base plate 5 4 has a thickness of about 3 mm to about 7 mm, a width of about 20 O mm to about 40 O mm, and a height of about 100 mm to about 20 mm. It is possible to use a flat aluminum plate having a thickness of about 0 mm.
  • the shell 56 is made of an aluminum plate having a thickness of about 1 mm to about 3 mm.
  • the size of the opening is slightly smaller than the outer shape of the base plate 54, and the depth is about 30. What is molded from about mm to about 6 O mm can be used.
  • metal materials other than aluminum, such as iron plates and stainless steel plates, can be used.
  • the sectional view of the electromagnetic valve storage box 50 shows a state where the electromagnetic valve 74, which is a three-way valve, is arranged in the internal storage space 51 of the botter ⁇ ⁇ ? 5 ⁇ 3 ⁇ 473 ⁇ 4: 3. .
  • the solenoid valve 7 '4 is attached to and supported by the base plate 54 by an appropriate support member, as partially shown by a broken line in FIG.
  • the electric signal line from the electromagnetic valve 74 is led to the external connection 60 through an appropriate wiring through hole provided in the base plate 54.
  • Appropriate sealing members are provided in the wiring through holes and the external connection portions 60 to prevent intrusion of external moisture and the like from these.
  • the solenoid valve 74 which is a three-way valve, is provided with one input port and two output ports as described above.
  • the force S is connected to the connection port of the base plate 54, respectively.
  • the part connected to the connection port 68 from the input port is shown.
  • a suitable connecting pipe member is disposed through the base plate 54 in the thickness direction, and a solenoid valve 74, which is a three-way valve, is provided at the storage space side end of the connecting pipe member.
  • Appropriate fluid flow lines from the input port for example tubes, are connected.
  • An end portion of the connection pipe member protruding from the front side surface of the base plate 54 is shown as a connection port 68.
  • As the connecting pipe member a metal pipe embedded in an appropriate bush or the like can be used.
  • An appropriate sealing member is provided between the connecting pipe member and the base plate 54, thereby preventing external moisture from entering.
  • connection ports are provided on the front side surface of the base plate 5 4 of the box housing 52 as described above, and the fluid flow channel pipe 80 is connected to each of these connection ports.
  • the fluid flow path 80 is arranged along the pipe line 8 2 disposed on the upper surface of the humidifier 24 and the rear side surface of the humidifier 24.
  • a flexible conduit 84 One end of the pipe line 82 is connected to the shut valve 30, and the other end is connected to one end of the flexible line 84.
  • the other end of the flexible conduit 84 whose one end is connected to the other end of the pipe conduit 82 is connected to a connection port 68 provided on the base plate 54 of the box housing 52, etc. .
  • the connection between the pipe line 8 2 and the flexible line 8 4, and the connection between the flexible line 8 4 and the connection port, are connected with gas by a suitable fastener. Tighten and tighten Tied.
  • the pipe line 8 2 is a pipe made of a material having an appropriate strength and an appropriate heat conductivity, and is arranged in parallel with each other on the upper surface of the housing of the humidifier 2 4. It fixes with respect to the housing
  • a pipe line 82 a stainless steel pipe having an appropriate diameter can be used.
  • the fixtures 8 6 and 8 7 are members having a function of fixing the plurality of pipe pipes 82 to the humidifier 24 integrally.
  • the fixtures 8 6 and 8 7 are plate members made of a material having an appropriate strength and an appropriate heat conductivity, and are formed so as to be in close contact with the outer periphery of the pipe line 82. This is shown in the cross-sectional view on the left side of FIG.
  • a thin metal plate that can be deformed with a small external force is used, and the upper surface side of each pipe line 8 2 arranged in the upper surface of the humidifier 24 is covered. It is possible to use a pipe whose shape is adjusted along the outer shape of each pipe line 82 by applying an appropriate external force.
  • the pipe line 8 2 and the fixtures 8 6, 8 7 are appropriately made of a material having a good thermal conductivity, and are fixed to the housing of the humidifier 24, so that the pipe line 8
  • the temperature state of 2 can be made substantially the same as that of the humidifier 24, and the influence of the outside air temperature on the working fluid of the shirt valve 30 can be suppressed.
  • the flexible pipe 8 4 is a pipe having an appropriate flexibility and a function of giving a degree of freedom to the connection between the pipe pipe 8 2 and the connection port 6 8.
  • a plastic pipe such as a rubber pipe or a vinyl tube can be used.
  • the flexible pipe 84 is not fixed to the rear side of the humidifier 24, but can be freely limited in length between the connection position with the pipe line 82 and the connection position with the connection port. It can take a simple shape. Of course, the humidifier 24 may be appropriately fixed to the rear side surface.
  • each pipe line 82 is set so that the length from the position fixed to the housing of the humidifier 24 to the connecting part to the flexible line 84 differs between each other. .
  • the pipe pipes 82 are arranged so that the positions of the other ends of the pipe pipes 82 are different from each other, thereby making it easy to distinguish the pipe pipes 82 from each other and preventing erroneous connection to the connection port. it can.
  • the electromagnetic valve storage box 50 has been described as forming the box casing 52 by combining the shell 56 and the base plate 54.
  • the electromagnetic valves 7 4 and 7 6 are housed in the housing space 51 formed by the shell 56 and the base plate 54.
  • the shell 56 is a deep dish-shaped member, but since the casing wall surface is a simple flat plate shape, the outer shape may be distorted when formed by, for example, deep drawing.
  • the solenoid valves 7 4 and 7 6 generate vibration sound or operation sound during operation, which is amplified by the deep dish-shaped surface of the shell 56 and may generate a large radiated sound.
  • FIG. 10 is a view showing a solenoid valve storage box 100 using a box housing 10 2 having a shell 55 provided with a bead portion 104.
  • the bead portion 104 is a groove having a concave shape toward the outside of the housing and a convex shape toward the inside of the housing, with respect to the plate material constituting the shell 55.
  • the bead portion 104 is provided along a direction perpendicular to the longitudinal direction of the paper 55.
  • FIG. 10 shows that four beads are provided on the upper surface of the shell 55.
  • FIG. 11 is a cross-sectional view of the shell 55 along the longitudinal direction. In this way, the bead portion 104 is formed with a groove so that the convex portion comes to the inside of the housing when the plate material is deep-drawn.
  • the bead portion 104 is provided on the upper surface of the shell 55 in a direction perpendicular to the longitudinal direction of the shell 55, so that the deep drawing is performed as compared with the case where the bead portion 104 is not provided. It is possible to improve moldability by suppressing distortion. Also The rigidity against impacts in the direction perpendicular to the longitudinal direction of the rod 55 can be improved. In addition, this rigidity can suppress the vibration of the shell 55 due to the operating sound of the solenoid valves 74, 76. At the same time, the bead portion 104 is a convex portion toward the inside of the casing, and thus a kind of unevenness is formed on the wall surface, so that the sound absorption can be improved.
  • the bead portion 104 in addition to the bead portion 104 provided on the upper surface of the shell 55, it may be provided on the bottom surface or side surface as required. Further, instead of making the direction in which the bead portion 104 extends in the direction perpendicular to the longitudinal direction of the shell 55, it may be extended in other directions. For example, by extending in the longitudinal direction of the shell 55, the rigidity in that direction can be improved.
  • a plurality of solenoid valves are arranged in the solenoid valve storage box and connected to the external shut valve via the connection port.
  • a filter can be provided in order to prevent foreign matter from entering the solenoid valve or the like and to prevent the operating sound of the solenoid valve from propagating to the outside.
  • FIG. 12 is a view showing the internal arrangement of the electromagnetic valve storage box 50.
  • a filter 110 is disposed in a flow path connecting each connection port 6 2, 6 4, 6 6, 6 8 and each solenoid valve 7 4, 7 6.
  • a filter 110 is provided where each connection port 62, 64, 66, 68 is attached to the solenoid valve storage box 50.
  • the connection ports 6 2, 6 4, 6 6, 6 8 are attached to the solenoid valve storage box 50 with the filter 1 10 interposed therebetween.
  • a mesh-type filter such as a metal, for example, a highly flexible filter made of a nonwoven fabric is preferable.
  • the filter 110 also prevents foreign matter from entering the solenoid valves 7 4, 7 6.
  • the electromagnetic valve storage box for a fuel cell system according to the present invention can be used for a fuel cell system including a plurality of electromagnetic valves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

 燃料電池システムに用いられる複数の電磁弁を外部環境から保護することである。 燃料電池システム20において、車両の前方側から後方側に向かって、燃料電池スタック22、3つのシャット弁30、加湿器24、電磁弁収納ボックス50の順に配置される。燃料電池システムに用いられる複数の電磁弁を外部環境から保護するために、電磁弁収納ボックス50は、シャット弁30の作動に用いられる複数の電磁弁が収納され、流体流路管路80によってシャット弁30等と接続される。電磁弁収納ボックス50は、ベース板とシェルとで構成され、ベース板防水構造と電磁シールド性を有する。シェルに比べ剛性の高いベース板は、車両の前方側に向かって配置される。流体流路管路80は、加湿器24の上面部に整列配置されて固定される。

Description

燃料電池システム用電磁弁収納ボックス 技術分野
本発明は、 燃料電池システム用電磁弁収納ボックスに係り、 燃料電池システ ムに用いられる電磁弁を収納する燃料電池システム用電磁弁収納ボックスに関 する。
背景技術 田 . 環境に与える影響が少ないことから、車両に燃料電池の搭載が行われている。 燃料電池は、 例えば燃^電池スタックのァノード側に水素等の燃料ガスを供給 し、 力ソード側に酸素を含む酸化ガス、 例えば空気を供給し、 電解質膜を通し ての電池化学反応によって必要な電力を取り出す。 また、 この電池化学反応に よって燃料電池は発熱する。 したがって、 燃料電池にはその周辺機器として、 燃料ガス、 酸化ガスを供給するためコンプレッサやポンプ、 冷却水用のポンプ 等が用いられる。 これらの周辺機器は、 燃料電池量の補機と呼ばれる。 したが つて、 燃料電池システムの運転は、 燃料電池スタック及び補機において、 燃料 ガス、 酸化ガス、 冷却水等の流体の圧力や流量等を調整制御して行われる。 そ して、 これらの流体の圧力、 流量の制御のために、 流体制御弁や電磁制御弁等 が用いられる。
流体制御弁は、 対象流体の流量等を調整するために、 別の流体の圧力によつ て制御を行うものである。 代表的には、 圧力室の内圧を調整するこ で、 対象 流体の流路の開閉を制御するいわゆるシャッ ト弁がある。 例えば、 酸化ガスの 流路を開閉するために用いられるシャッ ト弁は、 圧力室の内圧に応じて、 シリ ンダを移動させ、 酸化ガスの流路を開閉する。 例えば、 圧力室に加圧空気を供 給してシリンダを一方方向に移動させ、 あるいは、 圧力室を大気開放してシリ ンダを他方方向に移動させ、 これによつて酸化ガスの流路を開閉することがで きる。 圧力室に加圧空気を供給するか大気開放圧を供給するかの制御は、 電磁 制御弁によって行うことができる。
このように、 燃料電池システムには、 燃料電池スタックの他に多くの補機等 の要素が使用されるので、 これらの効率的な配置を工夫することが好ましい。 また、 車両において燃料電池システムの搭載位置は、 車両の前方部、 あるいは 後方部、 あるいは床下部等であることが多いが、 これらはいずれも外部環境の 影響を受けやすく、 例えば、 石、 泥、 水、 雪等の影響を受けることがあり、 ま た、 車両の運行中の衝撃を受けやすい。 したがって、 これらの外部環境の影響 から、 燃料電池スタック及び補機等の要素の保護を工夫することも好ましい。 例えば、 特許文献 1には、 燃料電池搭載型電気自動車において、 車両の前方 にラジェータとエアコンプレッサを、 後方に高圧燃料タンクを配し、 略中央の フロントフロアの下に、 F Cシステムボックスが密閉容器として取り付けられ ることが開示されている。 この F Cシステムボックスは、 車両の前方側から後 方側に向かって、 燃料電池出力設定手段とサーモスタットとウォーターポンプ とが左右方向に配列された第 1の群、 燃料電池、 燃料供給制御手段と水素ボン プと加湿手段とが左右方向に配置された第 2の群、 排気手段の順に配置されて いる。 これにより外部から車両に過大な衝撃が加わっても燃料電池等の破損を 防止し、 水、 泥、 チッビング等から保護できる、 と述べられている。
特許文献 2には、 車両の中央部床下に設けられる燃料電池システムボックス として、 冷却系ユニット、 F Cスタック及び制御系ユニット、 加湿系ユニット をそれぞれ個別のュニットとして台座に取り付けられ、 天蓋で全体が密閉され る構成が開示されている。 なお、 空気供給孔がフロントパネルに設けられ、 水 素排出孔が後方に設けられる。 これにより、 燃料電池システムを水、 泥、 チッ ビング等から保護し、 高電圧部品に乗員等が触れないようにし、 車室内に水素 が入り込むことを防止できると述べられている。
なお、関連する技術として、特許文献 3には、電池パックの筐体構造として、 車両の衝撃に対して剛性を向上させる複数のビード部を車両の前後方向に沿つ た方向に筐体に配置されることが開示されている。 この方向は電池パックの内 部に収納される電池モジュールの積層方向に垂直な方向であり、 電池パック内 の冷却風の流れ方向と同じで、 冷却風の圧力損失に影響を与えない。 なお、 ビ 一ド部とは、 電池ケースの内側に向けて突設された溝である。
また、 関連する技術として、 特許文献 4には、 燃料タンクで発生した燃料蒸 気がポンプへ侵入することを防止するチェック弁において、 その騒音及び振動 を低減するため、 不織布で構成されるフィルタがチェック弁の弁ボディとハウ ジング本体との間に設けられることが述べられている。
特許文献 1 :特開 2004— 1 68 1 0 1号公報
特許文献 2 :特開 2003— 1 5 1 60 5号公報
特許文献 3 :特開 2005— 3025 90号公報
特許文献 4 :特開 2005— 6 9 1 03号公報 発明の開示
発明が解決しようとする課題
特許文献 1 , 2においては、 燃料電池システムボックスを設けて、 その中に 燃料電池スタック及び各種捕機を収容する。 反面、 燃料電池システムを 1つの ボックスに収納することで、 全体のボックスの大きさが大きくなり、 車両にお ける搭載可能空間を十分に利用しきれないことがある。 一方、 燃料電池システ ムの構成要素を分散して車両に搭載する方法では、 個別の要素を外部環境から 保護する工夫を要する。 たとえば、 電磁弁等の外部環境の影響を受けやすい制 御機器を個別に水、 泥等から保護し、 衝撃から保護するには、 個別防水、 特別 の耐衝撃支持等が必要になり、 コス ト增等を招く。
本発明の目的は、 複数の電磁弁を外部環境から保護する燃料電池システム用 電磁弁収納ボックスを提供することである。
課題を解決するための手段
本発明に係る燃料電池システム用電磁弁収納ボックスは、 燃料電池スタック または燃料電池用補機に用いられる複数の電磁弁と、 複数の電磁弁を内部に収 容し、 燃料電池スタック側または燃料電池用補機側との接続部を有するポック ス筐体と、 を含むことを特徴とする。
また、 ボックス筐体は、 外部からの水分の浸入を防止する防水構造を有する ことが好ましい。 また、 ボックス筐体は、 外部からの電磁波が侵入すること、 または内部からの電磁波を外部に放出することの少なくとも一方を抑制する電 磁シールド構造を有することが好ましい。
また、 本発明に係る燃料電池システム用電磁弁収納ボックスにおいて、 電磁 弁は、 燃料電池スタックまたは燃料電池用補機に用いられる流体制御パルプで あって圧力.室の内圧に応じて作動する流体制御バルブに作動流体を供給するた めの電磁弁であることが好ましい。
また、 本発明に係る燃料電池システム用電磁弁収納ボックスにおいて、 燃料 電池システムは車両に搭載され、 ボックス筐体は、 車両に取り付けられて保持 されることが好ましい。
また、 本発明に係る燃料電池システム用電磁弁収納ボックスにおいて、 ボッ タス筐体は、 車両の床下に取り付けられて保持されることが好ましい。
また、 ボックス筐体は、 他の外殻面よりも剛性の高い保護外殻面を有し、 車 両に搭載されるとき、 保護外殻面が車両の前方を向くように取り付けられるこ とが好ましい。
また、 ボックス筐体は、 車両に取り付けたとき、 車両の前方から後方に向か つて重力方向に下がるように傾斜する傾斜外表面を有することが好ましい。 また、 ボックス筐体は、 車両に搭載されるとき、 燃料電池スタックよりも車 両の後方側、 あるいは燃料電池用補機としての加湿器スタックよりも後方側に 配置されることが好ましい。
また、 本発明に係る燃料電池システム用電磁弁収納ボックスにおいて、 電磁 弁は、 燃料電池スタック側または燃料電池用捕機側と流体流路管路によって接 続部に接続され、車両前方側から後方側に向かつて燃料電池スタック、加湿器、 燃料電池システム角電磁弁収納ボックスの順に配置される場合に、 ボックス筐 体の接続部に接続される複数の流体流路管路は、 加湿器の筐体に沿って整列配 置されることが好ましい。
また、 本発明に係る燃料電池システム用電磁弁収納ボックスにおいて、 複数 の流体流路管路は、 それぞれ金属パイプから構成され加湿器筐体に固定される 複数のパイプ管路と、 パイプ管路とボッタス筐体の対応する各接続部との間を 接続する複数の可撓性管路とを含んで構成され、 各パイプ管路は、 加湿器筐体 に固定された位置から、 可撓性管路への接続端部までの長さが相互間で異なる ことが好ましい。
また、 本発明に係る燃料電池システム用電磁弁収納ボックスにおいて、 電磁 弁は、 燃料電池スタックまたは燃料電池用補機に用いられる流体制御パルプで あって圧力室の内圧に応じて作動する流体制御パルプに流体流路管路によって 接続部に接続され、 流体制御バルブは、 呼吸ポートと、 対応する電磁弁に接続 される入力ポート及び出力ポートとを有し、 ボックス筐体は、 流体制御バルブ の呼吸ポートを筐体内部空間に開放して接続する呼吸ポート接続部と、 筐体内 部空間を大気に開放する大気開放ポートとを有し、 車両に搭載されるとき、 呼 吸ポート接続部の位置が大気開放ポートよりも重力方向に対し上方側に配置さ れるように取り付けられることが好ましい。
また、 本発明に係る燃料電池システム用電磁弁収納ボックスにおいて、 ポッ タス筐体は、 筐体外部に向かって凹形状で筐体内部に向かって凸形状を有する ビード部を含むことが好ましい。
また、 本発明に係る燃料電池システム用電磁弁収納ボックスにおいて、 ボッ タス筐体の内部において、 各接続部とこれらにそれぞれ対応する各電磁弁との 間にフィルタが設けられることが好ましい。
また、 本発明に係る燃料電池システム用電磁弁収納ボックスにおいて、 フィ ルタは不織布で構成されることが好ましい。
発明の効果 - 上記構成により、 燃料電池システム用電磁弁収納ボックスは、 燃料電池ス タックまたは燃料電池用補機に用いられる複数の電磁弁を内部に収容し、 燃料 電池スタック側または燃料電池用補機側との接続部を有する。 これにより、 複 数の電磁弁を一まとめにして、 外部環境から保護することができる。
また、 ボックス筐体は防水構造を有するので、 水、 泥、 雪等から電磁弁を保 護することができる。 また、 ボックス筐体は電磁シールド構造を有するので、 外部の制御機器等への影響を抑制し、 また、 外部からの電磁ノイズによる電磁 弁の誤動作を防止できる。
また、 電磁弁は、 圧力室の内圧に応じて作動する流体制御バルブに作動流体 を供給するために用いられる。 したがって、 いわゆるシャット弁を用いる燃料 電池システムにおいて、 シャッ ト弁の制御用電磁バルブを一まとめにして、 外 部環境から保護することができる。
また、 燃料電池システム用電磁弁収納ボックスは、 車両に搭載される燃料電 池システムに用いられ、 ボックス筐体は、 車両に取り付けられて保持されるの で、 車両運行における水、 泥、 雪等の外部環境から電磁バルブを保護すること ができる。
また、 ボックス筐体は、 剛性の高い保護外殻面を有し、 保護外殻面が車両の 前方を向くように取り付けられるので、 車両の運行における衝撃から電磁弁を 効果的に保護することができる。
• また、 ボックス筐体は、 車両に取り付けたとき、 車両の前方から後方に向か つて重力方向に下がるように傾斜する傾斜外表面を有するので、 たとえば、 車 両運行中に、 水、 泥、 雪等がボックス筐体にかかっても、 斜面に沿って流れ落 とすことができる。
また、 ボックス筐体は、 車両に搭載されるとき、 燃料電池スタックよりも車 両の後方側、 あるいは燃料電池用補機としての加湿器スタックよりも後方側に 配置されるので、 車両の運行における衝撃から電磁弁を効果的に保護すること ができる。
また、 電磁弁が流体流路管路によつて燃料電池スタック側等と接続部に接続 され、 車両前方側から後方側に向かって燃料電池スタック、 加湿器、 電磁弁収 納ボックスの順に配置される場合に、 複数の流体流路管路は、 加湿器の筐体に 沿って整列配置される。 したがって、 複数の流体流路管路の配置が整然とする ので、 メンテナンス等を容易に行うことができる。
また、 複数の流体流路管路を構成する各パイプ管路は、 加湿器筐体に固定さ れた位置から、 可撓性管路への接続端部までの長さが相互間で異なるものとす るので、 複数の流体流路管路を筐体ボックスの接続部に接続する際の誤配管を 防止することができる。
また、 ボックス筐体において、 流体制御バルブに接続される呼吸ポート接続 部の位置が大気開放ポートよりも重力方向に対し上方側に配置されるように取 り付けられるものとするので、 仮に大気開放ポートから水等が浸入しても、 呼 吸ポートを介して流体制御バルブ
に水等が侵入することを防止できる。
また、 ボックス筐体は、 筐体外部に向かって凹形状で筐体内部に向かって凸 形状を有するビード部を含むので、 ボックス筐体の剛性を向上させることがで きる。 また、 ボックス筐体内における電磁弁等の振動音、 作動音を低減するこ とができる。
また、 ボックス筐体の内部において、 各接続部とこれらにそれぞれ対応する 各電磁弁との間にフィルタが設けられるので、 ゴミ等が電磁弁に混入すること を防止できる。
また、 フィルタは不織布で構成されるので、 ゴミ等の除去とともに、 電磁弁 の振動の伝播を抑制し、 作動音を低減することができる。
図面の簡単な説明
図 1は、 本発明に係る実施の形態の電磁弁収納ボックスが車両に搭載される 様子を示す図である。
図 2は、 本発明に係る実施の形態において、 電磁弁収納ボックスに関連する 要素等の配置関係を示す図である。
図 3は、 本発明に係る実施の形態において、 電磁弁収納ボックスが用いられ る燃料電池システムの流体流路系を説明する図である。
図 4は、 本発明に係る実施の形態において、 三方弁である電磁弁の構成を説 明する図である。
図 5 (A) は、 本発明に係る実施の形態において、 三方弁である電磁弁が作 動していない状態を説明する図である。
図 5 ( B ) は、 本発明に係る実施の形態において、 三方弁である電磁弁の作 動状態を説明する図である。
図 6 (A) は、 本発明に係る実施の形態において、 二方向弁である電磁弁が 作動していない状態を説明する図である。
図 6 ( B ) は、 本発明に係る実施の形態において、 二方向弁である電磁弁の 作動状態を説明する図である。 図 7は、 本発明に係る実施の形態において、 電磁弁収納ボックスの外観を示 す斜視図である。
図 8は、 本発明に係る実施の形態において、 電磁弁収納ボックスの断面図お ょぴ流体流路管路の配置状況を示す図である。
図 9は、 本発明に係る実施の形態において、 電磁弁収納ボックスおよび流体 流路管路の平面配置状況と、 流体流路管路の保持部分の断面を示す図である。 図 1 0は、 本発明に係る実施の形態において、 ビード部を設けた電磁弁収納 ボックスの様子を示す図である。
図 1 1は、 図 1 0の断面図である。
図 1 2は、 本発明に係る実施の形態において、 フィルタを設けたときの電磁 弁収納ボックスの内部配置を示す図である。
符号の説明
8 異物、 1 0 車両、 1 2, 1 4, 1 6 床下メンバー、 20 燃料電 池システム、 22 燃料電池スタック、 24 加湿器、 26 燃料ガスタンク、
28 希釈器、 29 マフラー、 30 シャット弁、 32 供給シャッ ト弁、
34 排気シャット弁、 36 加湿器バイパスシャット弁、 40 酸化ガス源、
4 2 AC P、 44 インタクーラ、 4 5 調圧弁、 46 レギユレータ、 4 7 分流器、 48 排気バルブ、 49 循環昇圧器、 50, 1 00 電磁弁収 納ボックス、 5 1 収納空間、 5 2, 1 02 ボックス筐体、 54 ベース板、
5 5, 56 シヱル、 57, 58 保持部材、 60 外部接続部、 6 2, 64,
6 6, 6 8 接続ポート、 70 呼吸ポート接続部、 72 大気開放ポート、
74, 76 電磁弁、 77 圧力室、 78 開閉子、 7 9 駆動コイル、 80 流体流路管路、 8 2 パイプ管路、 84 可撓性管路、 8 6, 8 7 固定具、
9 0 パイプ管路他方端の位置の配置状態、 1 04 ビード部、 1 1 0 フィ ルタ。 発明を実施するための最良の形態
以下に図面を用いて本発明に係る実施の形態につき詳細に説明する。 以下で は、 燃料電池用電磁弁収納ボックスがハイプリッド車両に搭載されるものとし て説明するが、 ハイブリッド車両以外の車両、 例えばエンジンを搭載しない電 気自動車であってもよい。 また、 燃料電池システムは、 車両に搭載されるもの 以外、 例えば、 定置型の燃料電池システムであってもよい。 また、 燃料電池シ ステム用電磁弁収納ボックスが車両に搭載される場合に、 車室の床下に配置さ れるものとして説明するが、 これは一例であって、 車両の他の部位に燃料電池 システム用電磁弁収納ボックスが配置されるものとしてもよい。 また、 以下で は、 燃料電池システム用電磁弁収納ボックスに、 各系統ごとに 3つの電磁弁を 含む 3系統の電磁弁、 合計 9個の電磁弁が収納されるものとして説明するが、 個数は例示であって、 これ以外の個数であってもよい。 また、 燃料電池システ ム用電磁弁収納ボックスに収納される各電磁弁は、 燃料電池システムにおいて 用いられるシ''ャット弁に接続されるものとして説明するが、 接続される対象は シャット弁用以外であってよく、 たとえば、 燃料電池スタック用電磁弁または 燃料電池用捕機用電磁弁をまとめて燃料電池システム用電磁弁収納ボックスに 収納するものとしてもよレ、。
図 1は、 車両 1 0に搭載された燃料電池システム 2 0の様子を示す図で、 燃 料電池システム 2 0の一部を構成するものとして、 燃料電池システム用電磁弁 収納ボックス 5 0が図示されている。 なお、 以後では、 燃料電池システム用電 磁弁収納ボックス 5 0を、 単に、 電磁弁収納ボックス 5 0として示すものとす る。 図 1に示されるように、 燃料電池システム 2 0は、 車両 1 0の下部、 すな わち車室の床下に配置される。 したがって、 電磁弁収納ボックス 5 0は、 車両 1 0の下部において、 道路からの水はね、 雪はね、 泥はね等の影響を受けやす い環境にあることになる。
図 2は、 燃料電池システム 2 0の構成を示す図で、 特に電磁弁収納ボックス 5 0に関連する要素等の配置関係を示す図である。 ここでは、 燃料電池システ ム 2 0を構成する要素のうち、 燃料電池スタック 2 2、 加湿器 2 4、 希釈器 2 8、 マフラー 2 9、 シャット弁 3 0、 電磁弁収納ボックス 5 0が図示されてい る。 ここではシャツト弁 3 0として、 供給シャツト弁 3 2、 排気シャツト弁 3 4、加湿器パイパスシャツト弁 3 6の 3つが図示されている。なお、以後では、 3つのシャツト弁の全体、 あるいは一般的にシャツト弁を示すときはシャツ ト 弁 30とし、 個別のシャット弁を示すときは、 供給シャット弁 3 2、 排気シャ ット弁 34、 加湿器バイパスシャット弁 36と明示するものとする。
これらの各要素の間は、 燃料ガス、 酸化ガス、 使用済みガス、 シャット弁 3 0の作動流体等のための各種の流体流路管路が配管されるが、 図 2では、 各要 素が分かりやすいように、 シャット弁用流体流路管路 80を除いて配管接続が 破断して示されている。 なお、 図 2には、 車両の床下メンバー 1 2、 14、 1 6が示されている。燃料電池システム 20の各要素は、この床下メンパー 1 2、 14、 1 6等に取り付けられ、 車両に搭載される。
図 2には、 車両の前方方向と右側方向が矢印で示されている。 すなわち、 車 両の前方側から後方側に向かって、 燃料電池スタック 2 2、 シャット弁 30、 加湿器 24、 電磁弁収納ボックス 50の順に配置される。 また、 シャット弁 3 0、 加湿器 24、 電磁弁収納ボックス 50は、 車両の前方に向かって左側に配 置される。 また、 シャット弁用流体流路管路 80は、 車両の前後方向にほぼ平 行に、 加湿器 24の上側面に沿って整列配置される。
図 3は、 燃料電池システム 20の流体流路系を説明する図である。 燃料電池 システム 20は、 燃料電池セルが複数積層されて燃料電池スタック 2 2と呼ば れる燃料電池本体及び、 燃料電池スタック 22のアノード側に配置される燃料 ガス供給用の各要素と、 カソード側に配置される酸化ガス供給用の各要素を含 んで構成される。
燃料電池スタック 22は、電解質膜の両側に触媒電極層を配置した ME A (M emb r a n e E l e c t r o d e A s s emb l y) の両外個 jにセノ レ ータを配置して挟持した単電池を複数個組み合わせて積層したものである。 燃 料電池スタック 22は、 ァノード側に水素等の燃料ガスを供給し、 カソード側 に酸素を含む酸化ガス、 例えば空気を供給し、 電解質膜を通しての電池化学反 応によって発電し、 必要な電力を取り出す機能を有する。
アノード側の燃料ガスタンク 26は、 水素ガス源であって.、 燃料ガスとして の水素を供給するタンクである。 水素ガス源である燃料ガスタンク 2 6に接続 されるレギュレータ 46は、 水素ガス源である燃料ガスタンク 26からのガス を適当な圧力と流量に調整する機能を有する。 レギユレータ 46の出力口に設 けられる圧力計は、 供給水素圧力を検出する測定器である。 レギユレータ 4 6 の出力口は燃料電池スタック 2 2のアノード側入口に接続され、 適当な圧力と 流量に調整された燃料ガスが燃料電池スタック 2 2に供給される。
燃料電池スタック 2 2のアノード側出口に接続される分流器 4 7は、 ァノー ド側出口からの排出ガスの不純物ガス濃度が高まってきたときに、 排気バルブ 4 8を通して希釈器 2 8に流すためのものである。 また、 分流器 4 7の後でさ らにアノード側入口との間に設けられる循環昇圧器 4 9は、 アノード側出口か ら戻ってくるガスの水素分圧を高めて再びアノード側入口に戻し再利用する機 能を有する水素ポンプである。
力ソード側の酸化ガス源 4 0は、 実際には大気を用いることができる。 酸化 ガス源 4 0である大気はフィルタを通してからエアコンプレッサ (A C P ) 4 2に供給される。 A C P 4 2は、 モータによって酸化ガスを容積圧縮してその 圧力を高める気体昇圧機である。 また A C P 4 2は、 その回転速度 (毎分当り の回転数) を可変して、所定量の酸化ガスを提供する機能を有する。すなわち、 酸化ガスの所要流量が大きいときは、 モータの回転速度を上げ、 逆に酸化ガス の所要流量が小さいときは、 モータの回転速度を下げる。
A C P 4 2の下流側に設けられるインタクーラは、 燃料電池スタック 2 2を 冷却するための冷媒と、 酸化ガスとの間の熱交換器である。 すなわち、 燃料電 池スタック 2 2の起動時等で冷却用冷媒の温度が低温のとき等には、 これより は暖かい酸化ガスによって冷却用冷媒を暖め、 一方、 燃料電池スタック 2 2が 定常運転となって冷却用冷媒の温度が高くなるとき等には、 これよりは低温の 酸化ガスによって冷却用冷媒を冷却する機能を有する。
加湿器 2 4は、 酸化ガスを適度に湿らせ、 燃料電池スタック 2 2での燃料電 池反応を効率よく行わせる機能を有するもので、 加湿器モジュールとも呼ばれ る。 加湿器 2 4により適度に湿らせられた酸化ガスは、 燃料電池スタック 2 2 の力ソード側入口に供給され、 力ソード側出口から排気される。 このときに、 排気とともに反応生成物である水も排出される。 燃料電池スタック 2 2は反応 により高温になるので、 排出される水は水蒸気となっており、 この水蒸気が加 湿器 2 4に戻されて、酸化ガスを適度に湿らせる。 このように、加湿器 2 4は、 酸化ガスに水蒸気の水分を適当に与える機能を有するもので、 いわゆる中空糸 を用いたガス交換器を用いることができる。
ここで、 上記の酸化ガス源 4 0と、 燃料電池スタック 2 2の力ソード側入口 とを接続する流路のことを入口側流路または供給側流路と呼ぶことができる。 これに対応して、 燃料電池スタック 2 2の力ソード側出口から排気側へ接続さ れる流路を出口側流路または排気側流路と呼ぶことができる。 したがって、 酸 化ガスの経路である酸化ガス経路は、 酸化ガス源 4 0から加湿器 2 4を経由し て入口側流路より燃料電池スタック 2 2の内部に入り、 出口側流路から加湿器 2 4を経由して外気へと延びる。
入口側流路において加湿器 2 4の手前に設けられる圧力計は、 供給ガス圧を 検出する側測定器であり、 出口側流路において燃料電池スタツク 2 2の出口の あとに設けられる圧力計は、 使用済みガスの圧力、 つまり排気ガス圧を検出す る測定器である。 また、 排気ガス圧検出用圧力計の後に設けられる調圧弁 4 5 は、 背圧弁とも呼ばれるが、 力ソード側出口のガス圧を調整し、 燃料電池スタ ック 2 2ベの酸化ガスの流量を調整する機能を有する弁で、 例えばバタフライ 弁のように流路の実効開口を調整できる弁を用いることができる。 調圧弁 4 5 の出力口は、 上記の加湿器 2 4に接続されるので、 調圧弁 4 5を出たガスは加 湿器 2 4に水蒸気を供給した後、 再び戻って、 希釈器 2 8に入り、 その後外部 に排出される。
希釈器 2 8は、ァノード側の排気バルブ 4 8からの水素混じりの排水、及ぴ、 カソード側の水蒸気混じりでさらに M E Aを通して漏れてくる水素混じりの排 気を集め、 適当な水素濃度として外部に排出するためのバッファ容器である。 上記入口側流路、 すなわち供給側流路において、 加湿器 2 4と燃料電池スタ ック 2 2の間に設けられ接続される供給シャツト弁 3 2は、 通常は開状態で、 燃料電池システム 2 0が運転停止したとき等に閉状態とされる開閉弁である。 燃料電池システム 2 0が運転停止したときに供給側流路を閉じて酸化ガスの供 給を止めるのは、 燃料電池スタック 2 2に含まれる触媒層等の酸化を抑制する 等のためである。
また、 上記出口側流路、 すなわち排気側流路において、 燃料電池スタック 2 2と加湿器 2 4との間、 具体的には、 調圧弁 4 5と加湿器 2 4との間に設けら れ接続される排気シャッ ト弁 3 4は、 供給シャット弁 3 2と同様に、 通常は開 状態で、 燃料電池システム 2 0が運転停止したとき等に閉状態とされる開閉弁 である。
また、 上記入口側流路、 すなわち供給側流路において、 加湿器 2 4を迂回す るように、 供給シャツトバルブ弁 3 2を経由する流路と並列に加湿器バイパス 流路が設けられる。 具体的にはインタクーラ ( I / C ) 4 4の下流側において 供給側流路が分岐し、 一方は、 加湿器 2 4を経由し、 供給シャッ ト弁 3 2を経 て燃料電池スタック 2 2に達する主供給側流路となり、 他方は、 加湿器 2 4を 迂回して、 供給シャツト弁 3 2の下流側で再ぴ主供給側流路と合流するバイパ ス流路となる。 このバイパス流路中に配置され接続される加湿器バイパスシャ ット弁 3 6は、 通常は閉状態で、 必要なときに開状態とされる開閉弁である。 供給シャツト弁 3 2、 排気シャツト弁 3 4、 加湿器バイパスシャツト弁 3 6 は、 前者 2つが通常は開状態であり、 加湿器バイパスシャット弁 3 6が通常は 閉状態であることが相違するが、 ほぼ同じ構造である。 これら 3つをまとめて シャツト弁 3 0と呼ぶことにすると、 シャツト弁 3 0は、 圧力室の内圧に応じ て作動するビストン等の可動子を有する流体制御バルブである。
例えば、 供給側流路に設けられる供給シャッ ト弁の場合、 内部でピストン等 の可動子が進退する管路を有し、 その管路の入口側が、 加湿器 2 4の側の主供 給側流路に接続され、 その管路の出口側が、 燃料電池スタック 2 2の側の主供 給側流路に接続される。 そして、 通常は可動子がその管路の中から退避してい るので、 酸化ガスは供給シャツト弁 3 2の内部の管路を自由に流れることがで きる。 そして、 圧力室の内圧を変化させて可動子をその管路の中に進入させる と、 供給シャット弁 3 2の内部の管路が閉じるので、 酸化ガスの流れが遮断さ れる。 このようにして、 圧力室の内圧を制御して可動子の進退を行わせ、 主供 給側流路における酸化ガスの流れを必要に応じて遮断、 すなわちシャツ.トする ことができる。
かかるシャツト弁 3 0の構成の 1例として、 ダイヤフラム型のシャツト弁 3 0をあげることができる。 この場合、 ダイヤフラムの変位に管路開閉用の可動 子の進退を連動させるものとし、ダイヤフラムの両側に 2つの圧力室を設ける。 そしで、 一方側の圧力室の内圧を高圧、 他方側の圧力室の内圧を低圧とする第 1状態とし、 一方側の圧力室の内圧を低圧、 他方側の圧力室の内圧を高圧とす る第 2状態とする。 第 1状態においてはダイヤフラムが他方側圧力室の方に変 位し、 第 2状態においてはダイヤフラムが一方側圧力室の方に変位する。 これ により、 可動子を進退させ、 管路を開閉することができる。 この場合において は、 2つの圧力室のそれぞれに、 低圧と高圧の 2つの圧力状態の作動流体を供 給する必要がある。 以下では、 このダイヤフラム型のシャット弁 3 0を用いる ものとして説明を続ける。
上記のように、 各シャット弁 3 0は、 2つの圧力室のそれぞれに作動流体の 供給を受ける。 そして、 供給される作動流体は、 高圧と低圧の 2つの圧力状態 の間で切換えが行われる。 この切換えは、 一方側の圧力室に供給される作動流 体が高圧であれば他方側の圧力室に供給される作動流体は低圧であり、 逆に、 一方側の圧力室に供給される作動流体が低圧であれば他方側の圧力室に供給さ れる作動流体は高圧であるように行われる。 かかる作動流体としては、 空気を 用いることができる。 この場合、 A C P 4 2からの圧縮空気を用いて、 圧縮空 気の加圧された高圧状態と、 圧縮空気を大気圧に開放した低圧状態とを 2つの 圧力状態として用いることができる。 なお、 大気圧開放を容易にするため、 シ ャット弁 3 0には、大気圧に開放される孔が設けられ、 この孔は、呼吸ポート、 または呼吸孔と呼ばれることがある。
図 3において、 電磁弁収納ボックス 5 0は、 供給シャット弁 3 2、 排気シャ ット弁 3 4、 加湿器パイパスシャツト弁 3 6に対して、 作動流体の供給を制御 するための電磁弁 7 4, 7 6をひとまとめにして収容するボックスである。 図 3に示されるように、 供給シャッ ト弁 3 2、 排気シャット弁 3 4、 加湿器パイ パスシャット弁 3 6のそれぞれに対し、 1つの三方弁である電磁弁 7 4と、 2 つの二方向弁である電磁弁 7 6とが用いられ、 合計 9つの電磁弁 7 4, 7 6が 電磁弁収納ボックス 5 0に収容される。
9つの電磁弁 7 4 , 7 6は、 図 3に示されるように、 合計 7本の流体流路管 路 8 0によって、 供給シャット弁 3 2、 排気シャット弁 3 4、 加湿器パイパス シャット弁 3 6及ぴ A C P 4 2に接続される。 合計 7本の内訳は、 供給シャツ ト弁 3 2、 排気シャット弁 3 4、 加湿器パイパスシャッ ト弁 3 6における 2つ の圧力室に対応した 2本ずつの合計 6本と、 A C P 4 2の出力側に接続される 1本である。 別の観点から説明すると、 供給シャット弁 3 2、 排気シャット弁 3 4、 加湿器バイパスシャツト弁 3 6ごとに 1つずつ三方弁である電磁弁 7 4 が設けられ、 各三方弁である電磁弁 7 4の入力口は A C P 4 2の出力側と接続 され、 各三方弁である電磁弁 7 4の 2つの出力口は、 それぞれ対応するシャッ ト弁 3 0の 2つの圧力室にそれぞれ接続される。
図 3には、 各三方弁である電磁弁 7 4のそれぞれの出力口に対応する 6つの 接続ポートと、 各三方弁のそれぞれの入力口に対応し、 A C P 4 2に接続され る 1つの接続ポートの合計 7つの接続ポートが示されている。 この合計 7つの 接続ポートは、 電磁弁収納ボックス 5 0に設けられ、 上記の 7本の流体流路管 路 8 0の一方端が接続される接続部である。
三方弁である電磁弁 7 4は上記のように 1つの入力口と 2つの出力口を有し、 入力口に供給された流体を、 2つの出力口のいずれかに振り分けて出力する機 能を有する。 そして、 この出力口及び入力口と、 電磁弁収納ボックス 5 0の対 応する接続ポートとの間は、 適当な配管で接続される。 そして、 三方弁である 電磁弁 7 4のそれぞれの出力口と対応する接続ポートとの間の配管には、 二方 向弁である電磁弁 7 6の入力口がそれぞれ接続される。 二方向弁である各電磁 弁 7 6の出力口は、 電磁弁収納ボックス 5 0の内部空間に向かって開口する。 後述するように電磁弁収納ボックス 5 0の内部空間は大気圧に開放されている ので、 二方向弁である各電磁弁 7 6の出力口は大気圧に開放されていることに なる。
すなわち、 二方向弁である電磁弁 7 6を作動させることで、 作動させた二方 向弁である電磁弁 7 6が接続された配管は大気圧に開放される。上記のように、 三方弁である電磁弁 7 4の 2つの出力口に対応してそれぞれ二方向弁である電 磁弁 7 6が接続されているので、 二方向弁である電磁弁 7 6を作動させると、 作動させた側の三方弁である電磁弁 7 4の出力口が大気圧に開放されることに なる。 三方弁である電磁弁 7 6は、 上記のように、 入力口から供給された流体 を 2つの出力口のいずれかに振り分けて出力する機能を有するので、 入力口に A C Pからの圧縮空気を供給する場合は、 2つの出力口のいずれかに高圧の空 気を供給する機能を有する。 そして、 高圧の空気が供給された側の出力口に対 応して接続される二方向弁である電磁弁 7 6を作動させないときは、 対応する 接続ポートに高圧空気が供給されるが、 二方向弁である電磁弁 7 6を作動させ ると、 高圧空気は大気圧に開放されるため、 対応する接続ポートに低圧空気が 供給されることになる。
したがって、 以下のような制御を行うことで、 シャット弁 3 0の 2つの圧力 室の一方側に A C P 4 2からの高圧空気、 他方側に大気圧開放の低圧空気を供 給し、 ついで、 2つの圧力室の他方側に A C P 4 2からの高圧空気、 一方側に 大気圧開放の低圧空気を供給するように切換制御を行うことができる。
すなわち、 三方弁である電磁弁 7 4の入力口に A C P 4 2からの高圧空気を 供給し、 2つの出力口の一方側に対応して接続されている二方向弁である電磁 弁 7 6を作動させず、 2つの出力口の他方側に対応して接続されている二方向 弁である電磁弁 7 6を作動させる。 そして三方弁である電磁弁 7 4の作動を制 御して、 2つの出力口の一方側に A C P 4 2からの高圧空気を振り分ける。 こ れによって、 三方弁である電磁弁 7 4の一方側の出力口に対応する接続ポート には高圧空気が供給され、 三方弁である電磁弁 7 4の他方側の出力口に対応す る接続ポートには大気圧開放の低圧空気が供給される。 したがって、 対応する シャツト弁 3 0において、 三方弁である電磁弁 7 4の一方側の出力口に対応す る接続ポートに接続される一方側圧力室には高圧空気が供給され、 三方弁であ る電磁弁 7 4の他方側の出力口に対応する接続ポートに接続される他方側圧力 室には大気圧開放の低圧空気が供給される。
これと逆の場合は次のようになる。 すなわち、 三方弁である電磁弁 7 4の入 カロに A C P 4 2からの高圧空気を供給し、 2つの出力口の他方側に対応して 接続されている二方向弁である電磁弁 7 6を作動させず、 2つの出力口の一方 側に対応して接続されている二方向弁である電磁弁 7 6を作動させる。 そして 三方弁である電磁弁 7 4の作動を制御して、 2つの出力口の他方側に A C P 4 2からの高圧空気を振り分ける。 これによつて、 三方弁である電磁弁 7 4の他 方側の出力口に対応する接続ポートには高圧空気が供給され、 三方弁である電 磁弁 74の一方側の出力口に対応する接続ポートには大気圧開放の低圧空気が 供給される。 したがって、 対応するシャッ ト弁 3 0において、 三方弁である電 磁弁 74の一方側の出力口に対応する接続ポートに接続される一方側圧力室に は大気圧開放の低圧空気が供給され、 三方弁である電磁弁 74の他方側の出力 口に対応する接続ポートに接続される他方側圧力室には高圧空気が供給される。 次に、 図 4から図 6を用いて、 三方弁である電磁弁 74及ぴ二方向弁である 電磁弁 76の構成と作動を説明する。 図 4は、 三方弁である電磁弁 74の構成 を説明する図であり、 図 5は三方弁である電磁弁 74の作動を説明する図、 図 6は二方向弁である電磁弁 76の作動を説明する図である。
図 4に示されるように、 三方弁である電磁弁 74は、 I Nとして示される 1 つの入力口と、 OUT l、 OUT 2として示される 2つの出力口を有する。 そ して、 内部に、 I Nと OUT 1と OUT 2のいずれにも接続されている圧力室 7 7が設けられる。 この圧力室 7 7の内部には、 駆動コイル 79によって図 4 の紙面において上下方向に移動可能な開閉子 78が配置される。 駆動コイル 7 9が作動していないとき、 開閉子 78は、 適当な付勢手段によって図 4におけ る紙面の下方向に付勢され、 OUT 1に連通している接続口を塞いでいる。 し たがって、 I Nと OUT 2とが連通し、 I Nから供給された流体は、 OUT 2 に出力される。 その様子を図 5 (A) に示す。 ここで、 図 4に示す駆動コイル 79が作動すると、 開閉子 78は、 駆動コイル 79が発生する磁界によって、 図 4における紙面の上方への駆動力を受け、 付勢手段の付勢力に抗して上方に 移動し、 OUT 1に連通する接続口から離れ、 OUT 2に連通している接続口 を塞ぐ。 したがって、 I Nと OUT 1とが連通し、 I Nから供給された流体は、 OUT 1に出力される。 その様子を図 5 (B) に示す。
二方向弁である電磁弁 76は、 三方弁である電磁弁 74において OUT 2を 省略した構造を有する。 つまり、 I Nと OUT 1のみを有する構造である。 そ の他の構成要素は、 三方弁である電磁弁 74と同様である。 したがって、 駆動 コイルが作動していないときは、 OUT 1が塞がれており、 I Nから供給され た流体は遮断されて OUT 1に出力されない。 その様子を図 6 (A) に示す。 そして駆動コイルが作動すると、 O U T 1が開き、 I Nから供給された流体は O U T 1に出力される。 その様子を図 6 ( B ) に示す。
再ぴ図 3に戻り、 電磁弁収納ボックス 5 0に設けられる外部接続部 6 0は、 電磁弁収納ボックス 5 0に収納される 9つの電磁弁 7 4 , 7 6の各駆動コイル に接続される電気信号線が接続される接続端子部である。 外部接続部 6 0は、 図示されていない制御部に制御ケ一プルで接続され、 制御部の制御の下で各電 磁弁 7 4 , 7 6の作動が制御される。
また、 図 3において、 電磁弁収納ボックス 5 0に設けられる呼吸ポート接続 部 7 0は、 供給シャット弁 3 2、 排気シャット弁 3 4、 加湿器パイパスシャッ ト弁 3 6の各呼吸ポートと接続される接続ポートである。 呼吸ポート接続部 7 0は、 電磁弁収納ボックス 5 0の内部空間に開口される。 すなわち、 供給シャ ット弁 3 2、 排気シャット弁 3 4、 加湿器バイパスシャット弁 3 6の各呼吸ポ ートは、 電磁弁収納ボックス 5 0の内部空間に接続され、 電磁弁収納ボックス 5 0の内部空間の圧力が供給シャツト弁 3 2、 排気シャツト弁 3 4、 加湿器バ ィパスシャツト弁 3 6の各呼吸ポートに供給される。
また、 図 3において、 電磁弁収納ボックス 5 0に設けられる大気開放ポート 7 2は、 車両の適当な部位に延ばされて開口する大気開放パイプに接続される 接続ポートである。 大気開放パイプが開口する車両の適当な部位としては、 例 えばエンジンルーム等とすることができる。 大気開放ポート 7 2は、 呼吸ポー ト接続部 7 0と同様に、 電磁弁収納ボックス 5 0の内部空間に開口される。 し たがって、 電磁弁収納ボックス 5 0の内部空間は、 大気開放パイプを介して、 大気圧とされる。
図 7は、 電磁弁収納ボックス 5 0の外観を示す斜視図である。 以下では、 必 要に応じ、 図 1から図 6の符号を用いて説明する。 なお、 図 7には、 電磁弁収 納ボックス 5 0を車両に搭載して保持するための保持部材 5 7 , 5 8が取り付 けられている様子が示されている。 保持部材 5 7, 5 8は、 電磁弁収納ボック ス 5 0に固定して取り付けられるアングル状部材で、 その端部に車両の床下メ ンバーとの間の固定取付のため取付穴を有する。 この取付穴を用いて、 適当な 締結部材によって、 電磁弁収納ボックス 5 0を、 車両の床下メンバーに固定し て取り付けることができる。
電磁弁収納ボックス 5 0は、 その内部に電磁弁を収納する内部空間を有する 箱状の部材で、 ベース板 5 4と、 シヱル 5 6から構成されるボック'ス筐体 5 2 と、 その周辺の部品とを含んで構成される。
ボックス筐体 5 2を構成するベース板 5 4は、 適当な厚さと剛性を有する板 状の部材で、 図 3で説明した流体流路管路 8 0に接続される 9つの接続ポート と、 図示されていない制御部と接続される外部接続部 6 0とが設けられる。 図 7において、 9つの接続ポートは、 供給シャット弁 3 2に接続される 2つの接 続ポート 6 2、 排気シャット弁 3 4に接続される 2つの接続ポート 6 4、 加湿 器バイパスシャット弁 3 6に接続される 2つの接続ポート 6 6、 A C P 4 2に 接 される接続ポート 6 8、 シャット弁 3 0の呼吸ポートに接続される呼吸ポ ート接続部 7 0、 大気開放ポート 7 2として示されている。
ここで、 供給シャット弁 3 2に接続される 2つの接続ポート 6 2、 排気シャ ット弁 3 4に接続される 2つの接続ポート 6 4、 加湿器パイパスシャット弁 3 6に接続される 2つの接続ポート 6 6、 A C P 4 2に接続される接続ポート 6 8の 7つは、 ほぼ一列に配置される。 すなわち、 電磁弁収納ボックス 5 0が車 両に搭載されたとき、 これらの接続ポートは、 重力方向についてほぼ同じ高さ に配置される。 この 7つの接続ポートの配置高さに対し、 呼吸ポート接続部 7 0はかなり高い位置に配置され、 大気開放ポート 7 2はやや低い位置に配置さ れる。 すなわち、 呼吸ポート接続部 7 0の配置位置と大気開放ポート 7 2の配 置位置との間は、 重力方向について、 高さにかなり差が設けられ、 呼吸ポート 接続部 7 0が高い位置に、 大気開放ポート 7 2が低い位置に配置される。 これ によって、 仮に、 大気開放ポート 7 2から水等が浸入しても、 呼吸ポート接続 部 7 0にまで水等が浸入することを防止でき、 シャツト弁 3 0を保護すること ができる。
次に、 電磁弁収納ボックス 5 0の詳細構造と、 流体流路管路 8 0の詳細配置 状態について、 図 8、 図 9を用いて説明する。 なお、 以下では、 図 1から図 7 の符号を用いて説明する。 図 8は、 車両の前後方向に平行な面に沿って切断し た電磁弁収納ボックス 5 0の断面図および流体流路管路 8 0の配置状況を示す 図である。 図 9には、 図 8に対応する平面図が示され、 平面図の左側に、 流体 流路管路 8 0の保持部分についての断面図が示されている。
電磁弁収納ボックス 5 0は、 図 2で説明したように、 車両の前方側から数え て、 燃料電池スタック 2 2、 加湿器 2 4の後方に配置される。 そして、 電磁弁 収納ポッタス 5 0において、 上記のようにベース板 5 4とシェル 5 6を含んで ボックス筐体 5 2が構成される。ボックス筐体 5 2は、図 9に示されるように、 ベース板 5 4が車両の前方側に、 シェル 5 6が車両の後方側になるように配置 される。 そして、 ベース板 5 4の板面が、 車両の進行方向に向かってほぼ垂直 となるように配置される。 これによつて、 ベース板 5 4は、 シェル 5 6の内部 に配置される電磁弁等に対して、 あたかも防護壁のように、 保護外殻面として 働く。 この構成によって、 例えば、 車両が走行することで前方から受ける雨、 雪、 泥、 石等の外部環境からの障害物から電磁弁を保護することができる。 ま た、 車両前方から受ける衝撃等の外力から電磁弁等を保護することができる。 このような衝撃保護の観点から、 ベース板 5 4は、 シヱル 5 6に比べ、 剛性の 高い構造とすることが好ましい。
シェル 5 6は、 矩形形状の開口部と、 適当な深さを有する深皿状形状の部材 で、 開口部の周囲にはフランジ部が設けられているものである。 このフランジ 部は、 ベース板 5 4の裏側面に合わせたときに、 すなわち、 車両に搭載された ときに車両の後方側となる側面に合わせたときに、 あまり隙間が生じないよう な平面度を有するように形成されることが好ましい。 このフランジ部には、 シ エル 5 6をベース板 5 4に取り付けるための複数の取付穴が設けられる。 この 取付穴を用いて、 適当な締結部材によって、 シェル 5 6とベース板 5 .4とが一 体化され、 内部に電磁弁 7 4等が配置される収納空間 5 1を有するボックス筐 体 5 2が形成される。 一体化の際に、 図 9に示されるように、 フランジ部とべ ース板 5 4の裏側面との間に適当なシール部材を配置することが好ましい。 一体化されたボックス筐体 5 2は、 ベース板 5 4の表側面、 すなわち、 車両 に搭載されたときに車両の後方側となる側面に設けられる外部接続部 6 0と、 流体流路管路 8 0に接続される複数の接続ポート 6 2等を除いて、 防水構造を 有する密閉された容器となる。 これにより、 水、 泥、 雪等の水分を含む外部環 境から電磁弁を保護することができる。
また、 ボックス筐体 5 2において、 シェル 5 6の側面は適当な傾斜を有する ように形成されることが好ましい。 この傾斜は、 図 8に示されるように、 ボッ タス筐体 5 2を車両に取り付けたとき、 天井側となる上側面につけられ、 傾斜 の方向は、車両の前方から後方に向かって重力方向に下がるようにつけられる。 これによつて、 ボックス筐体 5 2の上に飛散等した雨、 雪、 泥等の水分を含む 流動性の異物 8は、 この斜面に沿って重力によって下方に流れ、 あるいは落と されて、 ボックス筐体 5 2に水分を含む流動性の異物 8が付着、 滞留すること を防止できる。 この傾斜面の傾斜角度 0は、 水平面を基準にして、 下向きに約 5度から約 3 0度程度とすることが好ましい。
また、 ボックス筐体の材料を、 電磁シールド性を有するものとすることで、 外部からの電磁波が侵入すること、 または内部の電磁弁からの電磁波を外部に 放出することの少なくとも一方を抑制することができる。
かかるボックス筐体 5 2としては、 適当な金属材料を用い、 ベース板 5 4、 シェル 5 6をそれぞれ成形し、 これらを上記のように適当なシール部材と締結 部材とを用いて一体化して得ることができる。上記のように、ベース板 5 4は、 シェル 5 6よりも剛性の高いことが望ましいので、 例えば、 ベース板 5 4の材 料を十分な板厚を有する金属板とし、 シェル 5 6の材料については成形性を考 慮して適当な板厚の金属板とすることができる。
一例を上げると、 ベース板 5 4は、 板厚が約 3 mmから約 7 mm程度、 幅が 約 2 0 O mmから約 4 0 O mm程度、 高さが約 1 0 0 mmから約 2 0 0 mm程 度のアルミニウム平板に適当な加工を施したものを用いることができる。また、 シェル 5 6は、 板厚が約 l mmから約 3 mm程度のアルミニウム板を用い、 開 口部の大きさがベース板 5 4の外形形状よりも一回り小さく、 深さが約 3 0 m mから約 6 O mm程度に成形加工したものを用いることができる。 もちろん、 アルミニウム以外の金属材料、 例えば、 鉄板、 ステンレス鋼板等を用いること ができる。 また、 材料として、 適当な剛性を有するプラスチックを所望の形状 に成形し、 これに適当な電磁シールド膜をコーティングして用いることもでき る。 図 8において、 電磁弁収納ボックス 5 0の断面図には、 ボッタ 霍 ^?5^¾7¾:3 内部の収納空間 5 1に三方弁である電磁弁 7 4が配置される様子が示されてい る。 上記のように、 収納空間 5 1には合計 9個の電磁弁が配置されるが、 ここ では、 代表的に三方弁である電磁弁 7 4の 1つが図示されている。 電磁弁 7' 4 は、 図 8において破線で一部が示されているように、 適当な支持部材によって ベース板 5 4に取り付け支持される。 この電磁弁 7 4からの電気信号線は、 ベ ース板 5 4に設けられた適当な配線通し穴を経由して外部接続部 6 0に導かれ る。 配線通し穴、 外部接続部 6 0には、 適当なシール部材が設けられ、 これら から外部の水分等が侵入することが防止される。
また、 三方弁である電磁弁 7 4には上記のように 1つの入力口、 2つの出力 口が設けられ、それぞれベース板 5 4の接続ポートに接続される力 S、図 8では、 代表的に、 入力口から接続ポート 6 8に接続される部分が示されている。 すな わち、ベース板 5 4には、適当な接続管路部材が板厚方向に貫通して配置され、 その接続管路部材の収納空間側端部に三方弁である電磁弁 7 4の入力口からの 適当な流体流路管路、 例えばチューブが接続される。 そして、 その接続管路部 材がベース板 5 4の表側面に突き出した端部が、 接続ポート 6 8として示され ている。 接続管路部材としては、 適当なブッシュ等に金属管を埋め込んだもの を用いることができる。 接続管路部材とベース板 5 4との間には適当なシール 部材が設けられ、 外部の水分等が侵入することが防止される。
ボックス筐体 5 2のベース板 5 4の表側面には、 上記のように 9個の接続ポ ートが設けられるが、 これらの接続ポートにはそれぞれ流体流路管路 8 0が接 続される。 図 8、 図 9に示されるように、 流体流路管路 8 0は、 加湿器 2 4の 上面部に配置されるパイプ管路 8 2と、 加湿器 2 4の後部側面に沿って配置さ れる可撓性管路 8 4とを含んで構成される。 パイプ管路 8 2の一方端は、 シャ ット弁 3 0に接続され、 他方端は可撓性管路 8 4の一方端に接続される。 一方 端がパイプ管路 8 2の他方端に接続される可撓性管路 8 4の他方端は、 ボック ス筐体 5 2のベース板 5 4に設けられる接続ポート 6 8等に接続される。 パイ プ管路 8 2と可撓性管路 8 4との間の接続部、 可撓性管路 8 4と接続ポートと の間の接続部は、 適当な締結具によつて、 ガス漏れがないようにしつかりと締 結される。 . パイプ管路 8 2は、 適当な強度を有し適当に熱伝導性のよい材料から構成さ れるパイプで、 加湿器 2 4の筐体の上面部に互いに平行に整列配置され、 その 上から適当な固定具 8 6 , 8 7を用いて加湿器 2 4の筐体に対して固定される。 かかるパイプ管路 8 2としては、 適当な管径のステンレス鋼製パイプを用いる ことができる。
固定具 8 6 , 8 7は、 複数のパイプ管路 8 2を一体的に加湿器 2 4に固定す る機能を有する部材である。 固定具 8 6, 8 7は、 適当な強度を有し適当に熱 伝導性のよい材料で構成される板部材で、 パイプ管路 8 2の外周に密着するよ うに成形された部材である。 その様子が図 9の左側の断面図に示される。 かか る固定具 8 6, 8 7としては、 小さい外力で変形可能な金属薄板等を用い、 加 湿器 2 4の上面部に整列配置された各パイプ管路 8 2の上面側を覆って、 適当 な外力を加えて各パイプ管路 8 2の外形に沿つて形状を整えたものを用いるこ とができる。 もちろん、 整列配置された複数のパイプ管路 8 2の位置関係に合 わせて予め成形されたものを固定具 8 6 , 8 7として用いるものとしてもよレ、。 このように、 パイプ管路 8 2と固定具 8 6 , 8 7を適当に熱伝導性のよい材 料で構成し、 これらを加湿器 2 4の筐体に固定することで、 パイプ管路 8 2の 温度状態を加湿器 2 4とほぼ同じにでき、 外気温がシャツト弁 3 0の作動流体 に与える影響を抑制することができる。
可撓性管路 8 4は、 適当な柔軟性を有し、 パイプ管路 8 2と接続ポート 6 8 等との間の接続に自由度を持たせる機能を有する管路である。 かかる可撓性管 路 8 4としては、 ゴムパイプ、 ビニールチューブ等のプラスチックパイプを用 いることができる。可撓性管路 8 4は、加湿器 2 4の後部側面に固定されずに、 パイプ管路 8 2との接続位置と接続ポートとの接続位置との間の長さの制限の 中で自由な形状を取るものとできる。 もちろん、 加湿器 2 4の後部側面に適当 に固定されるものとしてもよい。
ここで、 パイプ管路 8 2の他方端の位置、 すなわち可撓性管路 8 4との接続 位置は、 各パイプ管路 8 2の間で互いに相違するように設定される。 図 9の平 面図には、 各パイプ管路 8 2の他方端の位置の配置状態 9 0が太い破線で示さ れる。 すなわち、 各パイプ管路 8 2は、 加湿器 2 4の筐体に固定された位置か ら、可撓性管路 8 4への接続部までの長さが相互間で異なるように設定される。 このように、 各パイプ管路 8 2の他方端の位置が互いに相違するように配置さ れることで、 各パイプ管路 8 2の相互の区別が容易になり、 接続ポートへの誤 接続を防止できる。
上記では、 例えば、 図 8に示したように、 電磁弁収納ボックス 5 0はシェル 5 6とベース板 5 4とを組み合わせてボックス筐体 5 2を形成するものとして 説明した。 そして、 シェル 5 6とベース板 5 4とで形成される収納空間 5 1に 電磁弁 7 4 , 7 6を収納している。シェル 5 6は、深皿状形状の部材であるが、 筐体壁面は単純な平板状となっているため、 例えば深絞り加工によつて成形す る際に、 外形がゆがむことが生じえる。 また、 電磁弁 7 4 , 7 6は作動時に振 動音または作動音を生じ、 これがシェル 5 6の深皿状の表面で増幅され、 大き な放射音となることがある。
そこで、 シェルの成形性を向上させ、 ま^:、 電磁弁の作動音が収納空間内に 放射して反響し大きな音となることを抑制するために、 シヱルの形状を工夫し た例を示す。 以下では、 図 1から図 9と同様の要素には同一の符号を付し、 詳 細な説明を省略する。また、以下では、図 1から図 9の符号を用いて説明する。 図 1 0は、 ビード部 1 0 4を設けたシェル 5 5を有するボックス筐体 1 0 2を 用いた電磁弁収納ボックス 1 0 0を示す図である。
ここで、 ビード部 1 0 4とは、 シェル 5 5を構成する板材について、 筐体外 部に向かって凹形状で筐体内部に向かって凸形状を有する溝である。 ビード部 1 0 4は、 シヱノレ 5 5の長手方向に垂直な方向に沿って設けられる。 図 1 0に おいては、 シェル 5 5の上面に 4本のビード部が設けられている様子が示され ている。図 1 1は、シェル 5 5の長手方向に沿った断面図である。 このように、 ビード部 1 0 4は、 板材を深絞りする際に、 筐体内側に凸部が来るように溝を 形成したものである。
上記のように、 ビード部 1 0 4を、 シェル 5 5の上面で、 シェル 5 5の長手 方向に垂直な方向に設けることで、 ビード部 1 0 4を設けない場合にくらべ、 深絞りの際のゆがみを抑制して成形性を向上させることができる。 また、 シェ ル 5 5の長手方向に垂直な方向の衝撃等に対する剛性を向上させることができ る。 また、 この剛性の向上によって、 電磁弁 7 4, 7 6の作動音によってシェ ル 5 5が振動することを抑制できる。 それと共に、 ビード部 1 0 4は、 筐体内 部に向かって凸部であるので、 壁面に一種の凹凸を形成したことになり、 吸音 性を向上させることができる。 これにより、 筐体内部の収納空間に配置される 電磁弁 7 4, 7 6が発する振動音、 作動音の反響を抑制し、 騒音を小さくする ことができる。 また、 図 8に関連して説明したように、 シェル 5 5の上面に傾 斜をつけて流動性の異物 8を流し、 あるいは落とすようにするときには、 この ビード部 1 0 4の溝も有効に貢献する。
勿論、 ビード部 1 0 4を、 シェル 5 5の上面に設けるものとする以外に、 必 要に応じ、 これを底面、 あるいは側面に設けるものとしてもよい。 また、 ビー ド部 1 0 4の延びる方向をシェル 5 5の長手方向に垂直方向とする代わりに、 他の方向に延びるものとしてもよい。 例えば、 シェル 5 5の長手方向に延びる ものとすることで、 その方向への剛性を向上させるものとできる。
上記では、 電磁弁収納ボックス内に複数の電磁弁を配置し、 外部のシャット 弁と接続ポートで接続するものとした。 ここで、 電磁弁等に異物が混入するこ とを抑制し、 また電磁弁の作動音が外部に伝播することを抑制するために、 フ ィルタを設けることができる。 以下では、 図 1から図 9と同様の要素には同一 の符号を付し、 詳細な説明を省略する。 また、 以下では図 1から図 9の符号を 用いて説明する。
図 1 2は、 電磁弁収納ボックス 5 0の内部配置を示す図である。 ここで、 各 接続ポート 6 2, 6 4 , 6 6 , 6 8と、 各電磁弁 7 4 , 7 6との間を接続する 流路に、 フィルタ 1 1 0が配置される。 具体的には、 電磁弁収納ボックス 5 0 に各接続ポート 6 2 , 6 4, 6 6 , 6 8が取り付けられるところにそれぞれフ ィルタ 1 1 0が設けられる。 好ましくは、 フィルタ 1 1 0を挟んで各接続ポー ト 6 2 , 6 4, 6 6 , 6 8が電磁弁収納ボックス 5 0に取り付けられるように することがよい。 このようにすることで、 電磁弁 7 4, 7 6の作動音が流路を 構成する管路を伝わって電磁弁収納ボックス 5 0を振動させることを効果的に 抑制することができる。 かかるフィルタ 1 1 0としては、 振動吸収性の観点から、 金属等のメッシュ タイプのフィルタよ.りも、 例えば、 不織布で構成される柔軟性に富むフィルタ が好ましい。 勿論、 フィルタ 1 1 0は、 電磁弁 7 4 , 7 6に異物が混入するこ とも抑制する。 産業上の利用可能性
本発明に係る燃料電池システム用電磁弁収納ボックスは、 複数の電磁弁を備 える燃料電池システムに利用することができる。

Claims

請 求 の 範 囲
1 . 燃料電池スタックまたは燃料電池用捕機に用いられる複数の電磁弁と、 複数の電磁弁を内部に収容し、 燃料電池スタック側または燃料電池用補機側 との接続部を有するポックス筐体と、
を含むことを特徴とする燃料電池システム用電磁弁収納ボックス。
2 . 請求の範囲 1に記載の燃料電池システム用電磁弁収納ボックスにおいて、 ボックス筐体は、 外部からの水分の浸入を防止する防水構造を有することを 特徴とする燃料電池システム用電磁弁収納ボックス。
3 . 請求の範囲 1に記載の燃料電池システム用電磁弁収納ボックスにおいて、 ボックス筐体は、 外部からの電磁波が侵入すること、 または内部からの電磁 波を外部に放出することの少なくとも一方を抑制する電磁シールド構造を有す ることを特徴とする燃料電池システム用電磁弁収納ボックス。
4 . 請求の範囲 1に記載の燃料電池システム用電磁弁収納ボックスにおいて、 電磁弁は、 燃料電池スタックまたは燃料電池用補機に用いられる流体制御パ ルプであって圧力室の内圧に応じて作動する流体制御バルブに作動流体を供給 するための電磁弁であることを特徴とする燃料電池システム用電磁弁収納ボッ クス。
5 . 請求の範囲 1から請求の範囲 4のいずれか 1に記載の燃料電池システム 用電磁弁収納ボックスにおいて、
燃料電池システムは車両に搭載され、
ボックス筐体は、 車両に取り付けられて保持されることを特徴とする燃料電 池システム用電磁弁収納ボックス。
6 . 請求の範囲 5に記載の燃料電池システム用電磁弁収納ボックスにおいて、 ボックス筐体は、 車両の床下に取り付けられて保持されることを特徴とする 燃料電池システム用電磁弁収納ポッタス。
7 . 請求の範囲 5に記載の燃料電池システム用電磁弁収納ボックスにおいて、 ボックス筐体は、 他の外殻面よりも剛性の高い保護外殻面を有し、 車両に搭 载されるとき、 保護外殻面が車両の前方を向くように取り付けられることを特 徴とする燃料電池システム用電磁弁収納ボックス。
8 . 請求の範囲 5に記載の燃料電池システム用電磁弁収納ボックスにおいて、 ボックス筐体は、 車両に取り付けたとき、 車両の前方から後方に向かって重 力方向に下がるように傾斜する傾斜外表面を有することを特徴とする燃料電池 システム用電磁弁収納ボックス。
9 . 請求の範囲 5に記載の燃料電池システム用電磁弁収納ボックスにおいて、 ボックス筐体は、 車両に搭載されるとき、 燃料電池スタックよりも車両の後 方側、 あるいは燃料電池用補機としての加湿器スタックよりも後方側に配置さ れることを特徴とする燃料電池システム用電磁弁収納ポックス。
1 0 . 請求の範囲 9に記載の燃料電池システム用電磁弁収納ボックスにおい て、
電磁弁は、 燃料電池スタック側または燃料電池用捕機側と流体流路管路によ つて接続部に接続され、
車両前方側から後方側に向かって燃料電池スタック、 加湿器、 燃料電池シス テム用電磁弁収納ボックスの順に配置される場合に、
ボックス筐体の接続部に接続される複数の流体流路管路は、 加湿器の筐体に 沿って整列配置されることを特徴とする燃料電池システム用電磁弁収納ボック ス。
1 1 . 請求の範囲 1 0に記載の燃料電池システム用電磁弁収納ボックスにお レヽて、
複数の流体流路管路は、 それぞれ金属パイプから構成され加湿器筐体に固定 -される複数のパイプ管路と、 各パイプ管路とボックス筐体の対応する各接続部 との間を接続する複数の可撓性管路とを含んで構成され、
各パイプ管路は、 加湿器筐体に固定された位置から、 可撓性管路への接続端 部までの長さが相互間で異なることを特徴とする燃料電池システム用電磁弁収 納ボックス。
1 2 . 請求の範囲 5に記載の燃料電池システム用電磁弁収納ボックスにおい て、
電磁弁は、 燃料電池スタックまたは燃科電池用補機に用いられる流体制御パ ルプであつて圧力室の内圧に応じて作動する流体制御バルブに流体流路管路に よって接続部に接続され、
流体制御バルブは、 呼吸ポートと、 対応する電磁弁に接続される入力ポート 及び出力ポートとを有し、
ボックス筐体は、 流体制御バルブの呼吸ポートを筐体内部空間に開放して接 続する呼吸ポート接続部と、 筐体内部空間を大気に開放する大気開放ポートと を有し、 車両に搭載されるとき、 呼吸ポート接続部の位置が大気開放ポートよ りも重力方向に対し上方側に配置されるように取り付けられることを特徴とす る燃料電池システム用電磁弁収納ボックス。
1 3 . 請求の範囲 1に記載の燃料電池システム用電磁弁収納ボックスにおい て、
ボックス筐体は、 筐体外部に向かつて凹形状で筐体内部に向かって凸形状を 有するビード部を含むことを特徴とする燃料電池システム用電磁弁収納ボック ス。
1 . 請求の範囲 1に記載の燃料電池システム用電磁弁収納ボックスにおい て、
ボックス筐体の內部において、 各接続部とこれらにそれぞれ対応する各電磁 弁との間にフィルタが設けられることを特徴とする燃料電池システム用電磁弁 収納ボックス。
1 5 . 請求の範囲 1 4に記載の燃料電池システム用電磁弁収納ボックスにお いて、
フィルタは不織布で構成されることを特徴とする燃料電池システム用電磁弁 収納ボックス。
PCT/JP2008/055026 2007-03-20 2008-03-12 燃料電池システム用電磁弁収納ボックス WO2008123084A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112008000713.6T DE112008000713B4 (de) 2007-03-20 2008-03-12 Brennstoffzellensystem umfassend ein Ventilgehäuse
US12/531,806 US20100047665A1 (en) 2007-03-20 2008-03-12 Box for receiving electromagnetic valve for fuel cell system
CN2008800092256A CN101652891B (zh) 2007-03-20 2008-03-12 燃料电池系统用电磁阀收纳箱

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007-073037 2007-03-20
JP2007073037 2007-03-20
JP2007307866A JP4349458B2 (ja) 2007-03-20 2007-11-28 燃料電池システム用電磁弁収納ボックス
JP2007-307866 2007-11-28

Publications (1)

Publication Number Publication Date
WO2008123084A1 true WO2008123084A1 (ja) 2008-10-16

Family

ID=39830586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/055026 WO2008123084A1 (ja) 2007-03-20 2008-03-12 燃料電池システム用電磁弁収納ボックス

Country Status (1)

Country Link
WO (1) WO2008123084A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126720A (ja) * 2000-10-18 2002-05-08 Japan Organo Co Ltd 水処理装置における塔装置の組立方法および構造
JP2003151605A (ja) * 2001-08-31 2003-05-23 Honda Motor Co Ltd 燃料電池システムボックス
JP2004168101A (ja) * 2002-11-18 2004-06-17 Honda Motor Co Ltd 燃料電池搭載型電気自動車
JP2004288499A (ja) * 2003-03-24 2004-10-14 Equos Research Co Ltd 燃料電池装置
JP2005047428A (ja) * 2003-07-30 2005-02-24 Advics:Kk 車両用液圧制御装置
JP2005158576A (ja) * 2003-11-27 2005-06-16 Honda Motor Co Ltd 燃料電池の排出ガス処理装置
JP2005183357A (ja) * 2003-11-28 2005-07-07 Honda Motor Co Ltd 燃料電池の反応ガス供給装置
JP2005302590A (ja) * 2004-04-14 2005-10-27 Toyota Motor Corp 電池パックの筐体構造
JP2006153222A (ja) * 2004-11-30 2006-06-15 Keihin Corp 燃料電池用電磁遮断弁
JP2006232632A (ja) * 2005-02-25 2006-09-07 Ngk Spark Plug Co Ltd 酸素濃縮装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126720A (ja) * 2000-10-18 2002-05-08 Japan Organo Co Ltd 水処理装置における塔装置の組立方法および構造
JP2003151605A (ja) * 2001-08-31 2003-05-23 Honda Motor Co Ltd 燃料電池システムボックス
JP2004168101A (ja) * 2002-11-18 2004-06-17 Honda Motor Co Ltd 燃料電池搭載型電気自動車
JP2004288499A (ja) * 2003-03-24 2004-10-14 Equos Research Co Ltd 燃料電池装置
JP2005047428A (ja) * 2003-07-30 2005-02-24 Advics:Kk 車両用液圧制御装置
JP2005158576A (ja) * 2003-11-27 2005-06-16 Honda Motor Co Ltd 燃料電池の排出ガス処理装置
JP2005183357A (ja) * 2003-11-28 2005-07-07 Honda Motor Co Ltd 燃料電池の反応ガス供給装置
JP2005302590A (ja) * 2004-04-14 2005-10-27 Toyota Motor Corp 電池パックの筐体構造
JP2006153222A (ja) * 2004-11-30 2006-06-15 Keihin Corp 燃料電池用電磁遮断弁
JP2006232632A (ja) * 2005-02-25 2006-09-07 Ngk Spark Plug Co Ltd 酸素濃縮装置

Similar Documents

Publication Publication Date Title
JP4349458B2 (ja) 燃料電池システム用電磁弁収納ボックス
JP6369217B2 (ja) 燃料電池二輪車
US7270899B2 (en) On-board fuel cell powered electric vehicle
EP2289727B1 (en) Structure for mounting fuel cell battery on vehicle
WO2006028291A1 (ja) 燃料電池システムを搭載する移動体
JP5070727B2 (ja) 燃料電池搭載型電気自動車
US20100003576A1 (en) Exhaust apparatus for fuel cell system
WO2007069459A1 (ja) 燃料電池車両
US7234551B2 (en) Fuel cell vehicle
JP5288225B2 (ja) 燃料電池システム
AU2005227459B2 (en) Humidity control system
JP6979006B2 (ja) 燃料電池システム
JP6491585B2 (ja) 燃料電池システム
JP5126572B2 (ja) 燃料電池システム
JP7326757B2 (ja) 加湿装置
WO2008069006A1 (ja) 燃料電池用弁および燃料電池車
WO2008123084A1 (ja) 燃料電池システム用電磁弁収納ボックス
JP2007042433A (ja) 配管構造及び燃料電池システム
JP2009199790A (ja) 流体管路一体化パネル
JP7440564B2 (ja) 燃料電池システムおよび燃料電池システム集合体
JP7433361B2 (ja) 燃料電池システム
JP7441884B2 (ja) 燃料電池システム
JP7441265B2 (ja) 燃料電池システム
JP2019214295A (ja) 燃料電池車両
JP7441266B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880009225.6

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08722416

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12531806

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120080007136

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112008000713

Country of ref document: DE

Date of ref document: 20100204

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08722416

Country of ref document: EP

Kind code of ref document: A1