WO2008092740A2 - Piezokeramischer vielschichtaktor und verfahren zu seiner herstellung - Google Patents

Piezokeramischer vielschichtaktor und verfahren zu seiner herstellung Download PDF

Info

Publication number
WO2008092740A2
WO2008092740A2 PCT/EP2008/050403 EP2008050403W WO2008092740A2 WO 2008092740 A2 WO2008092740 A2 WO 2008092740A2 EP 2008050403 W EP2008050403 W EP 2008050403W WO 2008092740 A2 WO2008092740 A2 WO 2008092740A2
Authority
WO
WIPO (PCT)
Prior art keywords
multilayer
bar
electrodes
stacking direction
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2008/050403
Other languages
German (de)
English (en)
French (fr)
Other versions
WO2008092740A3 (de
Inventor
Andreas Lenk
Carsten Schuh
Axel Ganster
Susanne Kornely
Andreas Mantovan
Jörg ZAPF
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Siemens Corp
Original Assignee
Siemens AG
Siemens Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Siemens Corp filed Critical Siemens AG
Priority to EP08707901A priority Critical patent/EP2126995B1/de
Priority to JP2009547627A priority patent/JP5167280B2/ja
Priority to US12/524,549 priority patent/US7905000B2/en
Priority to AT08707901T priority patent/ATE540434T1/de
Priority to CN200880003824.7A priority patent/CN101601147B/zh
Publication of WO2008092740A2 publication Critical patent/WO2008092740A2/de
Publication of WO2008092740A3 publication Critical patent/WO2008092740A3/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/053Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by integrally sintering piezoelectric or electrostrictive bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • H10N30/063Forming interconnections, e.g. connection electrodes of multilayered piezoelectric or electrostrictive parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49126Assembling bases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49128Assembling formed circuit to base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49163Manufacturing circuit on or in base with sintering of base

Definitions

  • the present invention relates to a piezoceramic multilayer actuator and various methods for its production.
  • piezoelectric ceramics of suitable crystal structure can expand or contract when generating an electric field in their interior. This long change takes place with almost no delay relative to the controlling electrical signal and is also precisely controllable. Therefore, piezoelectric multilayer actuators are used as adjusting elements.
  • the piezoceramic multilayer actuators are produced with layer thicknesses in the range of 100 ⁇ m. Typical manufacturing processes are slip casting or dry pressing.
  • the individual ceramic layers are metallized and stacked on top of each other so that internal electrodes of opposite polarity can produce the piezoelectric effect between two ceramic layers. Via an outer metallization parallel to the stacking direction or longitudinal axis of the piezoceramic multilayer actuator, mutually all internal electrodes of the same electrical potential are electrically driven.
  • the internal electrodes of the respectively opposite electrical potential are arranged offset in relation to the other electrodes in the area of the external metallization of the internal electrodes of the respective opposite potential.
  • This layer structure within the piezoceramic multilayer actuator results in design-induced piezoelectrically inactive zones. Since the piezoceramic multi-layer If the inner diameter of the electrodes of different polarity is arranged directly above one another in the piezoelectric active regions, mechanical stress within the multilayer actuator occurs in the transition region to piezoelectrically inactive zones. These mechanical stresses led to crack formation in the layer structure of the multilayer actuator, which can impair the electrical contact of the outer metallization to the individual electrodes or even lead to total failure of the multilayer actuator.
  • EP 1 206 804 Bl discloses a production method for piezoelectric multilayer actuators. Electrochemically electrically conductive materials are deposited on the side surfaces of the electrodes of the same polarity on the individual multilayer structures. These materials form webs, which are electrically connected to each other after isolating the side surfaces of the electrodes arranged between these webs.
  • DE 42 24 284 A1 discloses the production of a multilayer bar and its subsequent sintering as a precursor for the production of piezoceramic multilayer actuators.
  • a bar has, for example, the depth perpendicular and the length parallel to its stacking direction according to a later multilayer actuator. Its width perpendicular to the stacking direction is a multiple of a later width of a piezoceramic multilayer actuator.
  • the electrode structure of the individual piezoceramic multilayer actuators is generated jointly on the multilayer bar and subsequently this is broken down into individual multilayer actuators. sets.
  • electrochemically conductive material is deposited on the side surfaces of every second electrode.
  • the intervening areas, ie ceramic and electrode, are reset by etching or mechanical removal into the sintered multi-layer bar. This process is expensive because the sintered multi-layer bar is resistant to mechanical and chemical attack. Subsequently, an insulation layer is applied in the recessed regions and external electrodes are generated for each spatter multi-layer actuator. Finally, the sintered multilayer bar is divided into individual piezoceramic multilayer actuators.
  • US 5,568,679 and WO 2005/075113 Al also describe the production of structured external electrodes on an already sintered multilayer precursor.
  • an electrically insulating material is electrochemically deposited, so that the side surfaces of these electrodes are insulated to the outside.
  • an electrically conductive material is applied to the outer sides, which connects the still exposed side surfaces of the electrodes of the other polarity.
  • the sintered multilayer bar with structured electrode is divided into individual piezoceramic multilayer actuators.
  • Manufacturing method comprising the following steps: producing a multi-layer bar as Grunkorper consisting of an alternating arrangement of a plurality of piezoceramic layers and a plurality of electrodes in a stacking direction of the multilayer bar, while a depth of the
  • Multilayer bar perpendicular to the stacking direction of a depth of a multilayer actuator and a width of the multilayer bar perpendicular to the stacking direction of a width of a plurality of multilayer actuators corresponds and the electrodes over the entire depth of the multilayer bar and alternately on opposite end faces of the multilayer bar starting from not extending the entire width of the multilayer bar, arranging opposing auxiliary electrodes at the front sides spaced by the width of the multilayer bar, so that each second electrode is electrically controllable with the opposing auxiliary electrodes around one electrode in the stacking direction, electrochemical reset parallel to the depth of the multi-layer bar, in particular etching, of a side surface of each second electrode so that on opposite broad sides of the multilayer bar each second side surface of the electrode in the multilayer bar Latch is reset and the recessed surfaces of the electrodes on opposite broad sides of the multi-layer bar in the stacking direction around a piezoceramic layer are spaced from each other, coating the recessed surfaces of the electrodes with an
  • the majority of the production steps are carried out on a multi-layer bar in the green state.
  • This bar is due to its not yet sintered ceramic Gefuges with less effort and therefore workable at lower cost.
  • the multi-layer bar with auxiliary electrodes offers the possibility of simultaneously producing a plurality of piezoelectric multilayer actuators at its end faces which are spaced apart by the width, by separating the multilayer bar into individual multilayer actuators at the end of the production process.
  • each second electrode In order to produce structured electrodes on the outer sides of the multi-layer bar, the side surfaces of each second electrode are first reset or set into the multi-layer bar by etching.
  • the forming depressions, in which the side surfaces of each second electrode are arranged, are filled with slip of an electrically insulating material after burnout. These materials are, for example, glass or ceramic.
  • the side surfaces of each second electrode to be electrically connected are exposed outside the wells, so that they can be electrically connected to each other, for example, by printing an external metallization.
  • these depressions are filled with a slip of electrically-insulating material after burning out. Therefore, only the increased by electrochemical deposition side surfaces of the electrodes of the multilayer bar at its broad sides are free.
  • the advantages of facilitated processing of a multi-layer bar in the green state and the simultaneous production of a plurality of multilayer actuators with the aid of this multi-layer bar are utilized.
  • it has an advantageous effect that the side surfaces, arranged in depressions, of the electrodes to be electrically insulated by slips can be effectively isolated.
  • the burnout of the slurry takes place, for example, in combination with the sintering of the multilayer bar in order to achieve a further optimization of the production process.
  • a multi-layer bar as a green body consisting of an alternating arrangement of a plurality of piezoceramic
  • FIG. 1A, B show various embodiments of a multi-layer bar
  • FIG. 2 shows a schematic representation of the electrochemical treatment of a multilayer bar
  • FIG. 3 shows an enlarged detail of the multilayer bar after the step of the electrochemical deposition
  • FIG. 4 shows a section of the multi-layer bar after the process of etching
  • FIG. 5 shows an enlarged detail of the multi-layer bar to illustrate the removal by means of legend, grinding and similar methods
  • FIG. 6 shows a representation of the section along the line AA of FIG. 5
  • 7 shows an enlarged detail of the multi-layer bar to illustrate the removal not parallel to the side surface of the electrodes
  • Figure 8 is a sectional view taken along the line A-A
  • Figure 9 is a sectional view taken along the line B-B
  • Figure 10 is a sectional view taken along the line C-C
  • FIG. 11 shows a flow chart for a schematic representation of different process sequences of the production method.
  • first piezoceramic green films are cast.
  • the green sheets are printed with electrode material, which consists for example of silver-palladium alloys. These surfaces form the later internal electrodes 20.
  • the printed green films are arranged in the stacking direction S one above the other to form a stack.
  • An unprinted green film is preferably arranged between two printed green films in order to reduce the risk of electrical short circuits in the interior of the later multilayer actuator.
  • the width and depth of the block are each a multiple of the depth and width of a later multilayer actuator.
  • the block is sufficiently stable to be processed chemically, mechanically or otherwise.
  • the joint of the block is less resistant than in the sintered state, so that a processing of the block with less effort Deutschenchtbar.
  • the block (not shown) in the green state is divided into a plurality of multilayer bars 10, for example by saying.
  • the multi-layer bar 10 as a green body comprises an alternating arrangement of a plurality of piezoceramic layers 30 and a plurality of electrodes 20 in the stacking direction S.
  • a depth T of the multi-layer bar 10 perpendicular to its stacking direction S corresponds to a depth of a multi-layer actuator after manufacture and a width B of the multi-layer bar 10 perpendicular to its stacking direction S corresponds to a width of a plurality of multilayer actuators after their production (see Fig. IA, B).
  • the electrodes 20 of the multilayer bar 10 extend over the entire depth T of the multilayer bar 10.
  • the multilayer bar 10 corresponds to the height H of the multilayer bar 10 approximately to a height of a later multilayer actuator in the sintered state.
  • the multilayer bar 10 is divided into individual multilayer actuators by separating cuts parallel to its stacking direction S (compare the dashed lines in FIG.
  • the sintered multi-layer bar 10 is divided by cuts parallel and perpendicular to its stacking direction S along the dashed lines.
  • the multi-layer bar 10 in the green state comprises the already mentioned above, each alternately arranged in the stacking direction S piezoceramic layers 30 and electrodes 20.
  • the side surfaces 22, 24 of the electrodes 20 each extend to the surface of the broad sides 12 of the multi-layer bar 10.
  • Der Multi-layer bar 10 comprises at its opposite end faces 15 each have an auxiliary electrode 25.
  • Each second electrode 20 starts at an auxiliary electrode 25 and ends in front of the opposite auxiliary electrode 25.
  • the electrodes 20 therefore do not extend over the entire width B of the multi-layer latch 10.
  • Each second electrode 20 with the side surfaces 22 or 24 is thus electrically controllable based on the use of the auxiliary electrodes 25 together.
  • this construction also results in the piezoelectrically inactive regions 5 adjacent to the end faces 15 of the multi-layer bar 10. These are to be regarded as lost areas for the production of multilayer actuators since they have no further use after completion of the production process.
  • the multilayer bar 10 After the multilayer bar 10 is in the green state, i. the steps of producing the multilayer bar Sl and arranging auxiliary electrodes S2 are completed, it is preferable to insulate a broad side 12 with a passivation layer. After the application of the passivation layer, the multilayer bar 10 is treated electrochemically in an electrolyte bath (compare FIG. 2). It is also conceivable to process the multilayer bar without passivation layer. In this case, only one broad side 12 of the multi-layer bar is immersed in an electrolyte 52 (see Fig. 2) to process this broadside electrochemically.
  • the multilayer bar 10 is electrochemically processed by electrically conductive material on the side surfaces 22; 24 of the electrodes 20 is deposited.
  • the plating bath contains the electrolyte 52 and a plating electrode 54 for applying a direct electrical voltage via the voltage source 50 between the plating electrode 54 and one of the auxiliary electrodes 25
  • DC voltage source 50 is connected to only one of the auxiliary electrodes 25, so that coated on a broad side 12, only the side surfaces 22 with electrically conductive material become.
  • the metal ions from the electrolyte 52 migrate in the electric field in the direction of the electrodes 20 and deposit there on the side surfaces 22.
  • the passivation layer is removed and applied to the opposite broad side 12 or the opposite broad side 12 is immersed in the electroplatable. The fact that now the other auxiliary electrode 25 is connected to the DC voltage source 50, only the side surfaces 24 of the electrodes 20 are coated with electrically conductive material on the opposite broad side 12.
  • the coated side surfaces 22, 24 on the opposite broad sides 12 are therefore spaced from each other by a piezoceramic see layer 30, as shown in Fig. 3.
  • the electrochemically deposited electrically conductive material on the side surfaces 22 or 24 of the electrodes 20 thus includes depressions 40, in each of which an electrode 20 is arranged.
  • a similar well structure as in FIG. 3 is produced by electrolytic etching S4.
  • the multi-layer bar 10 is immersed in an etching bath only with one broad side 12 or completely with a previously passivated broadside 12.
  • the etch bath preferably comprises customary electrolyte solutions, such as, for example, aqueous sodium chloride solution or sodium nitrate solution.
  • an electrical direct voltage is applied to the electrode 20 with the side plates 22 via only one auxiliary electrode 25. Therefore, only the side surfaces 22 of the electrodes 20 are electrochemically removed.
  • the opposite broad side 12 is immersed in the etching bath and the other auxiliary electrode 25 is electrically driven. As a result, the side surfaces 24 of the electrodes 20 are removed.
  • the opposite broad side 12 with a passivation layer and to drive the other auxiliary electrode 25 electrically.
  • the side surfaces 24 are etched or returned. puts. It forms again on both broad sides 12 a plurality of depressions 40 between each non-patted side surfaces 22 or 24 of the electrodes 20. Since the side surfaces 22, 24 are smaller in comparison to the piezoceramic side surfaces of the layers 30, they can be etched with less effort and thereby reset parallel to the depth direction T in the multilayer bar 10.
  • the depressions 40 are filled with a slip.
  • the slip fills the depressions 40 (see Figures 3 and 4) to such an extent that the respective electrodes 20 arranged in the depressions 40 are covered by a layer (not shown).
  • the slurry is preferably based on a ceramic or glassy powder, so that after drying the slurry an electrically insulating layer is formed in the depressions 40 above the electrodes 20.
  • the slurry in the wells 40 is also solidified, so that a resistant layer is formed without a separate heat treatment.
  • the multilayer bar 10 electrochemically after the sintering, ie to deposit conductive materials or side surfaces 22; 24 of the electrodes 20 penetratezuatzen to produce the sink structure described above. Subsequently, the wells 40 are filled with slurry and this cured with a tuned to him thermal treatment. Then the application of the outer metallizations and the separation of the multilayer bar into individual multilayer actuators takes place.
  • outer metallizations are printed on in the areas that result in 10 individual multilayer actuators after the multi-layer bar has been cut (S7).
  • the printing of the outer metallizations takes place with, for example Screen printing or other common procedures.
  • the multi-layer bar 10 is sintered with external metallization and separated into individual multilayer actuators along the dashed lines in Figures IA, B. In the course of the separation, the inactive areas 5 with the adjacent ones become
  • the sink structure described above is obtained by removing S5 of the side surfaces 22; 24 of the electrodes 20 shown in FIG. 5 to 10 generated.
  • the production route with this method step S5 requires neither a multi-layer bar 10 / stack (see below) with auxiliary electrodes 25 and piezoelectrically inactive areas 5 nor a passivation layer. Therefore, a simplified processing compared to the previous process routes on a piezoelectric fully active layer structure is possible here.
  • the electrode surfaces 22 are removed on a broad side 12.
  • the ablation takes place by means of grinding, welding, lasering, eroding and / or pushing in the depth direction T of the multi-layer bar 10.
  • the lateral surfaces 22 of each second electrode 20 are removed parallel to their direction of progression on a broad side 12 (see Fig. 5, 6).
  • FIG. 6 shows a section along the line AA from FIG. 5. The above process is performed on both broad sides 12 of the multi-layer bar 10 to subsequently insulate the wells with slurry, apply exterior metallizations, and perform sintering S8 (see above).
  • the removal direction 60 is not parallel to the running direction of the side surfaces 22; 24 of the electrodes 20 aligned (see Fig. 7).
  • the lowering structure is again obtained by the non-parallel removal (see Fig. 8), as already described above.
  • the depressions 40 are in this case spatially on a portion of the side surfaces 22; 24, as can be seen from the sections along line B-B and C-C in Fig. 7 (see Figures 9 and 10).
  • the multilayer bar 10 it is also conceivable to first sinter the multilayer bar 10 and only then to remove it (see above) to produce the sink structure. Subsequently, the side surface 22; 24, the electrodes 20 disposed in the depressions 40 are electrically insulated and the slurry is solidified by thermal treatment. According to a further alternative, the removal is not performed on a multilayer bar, but already on a stack (not shown) of the later multilayer actuator. If the stack is in the green state, the thermal treatment of the slip in the sink structure created by the removal is linked to the sintering of the stack. If the stack is in the sintered state, a thermal treatment for curing the slurry is carried out after the removal and application of the slurry in the sink structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Fuel-Injection Apparatus (AREA)
PCT/EP2008/050403 2007-01-31 2008-01-15 Piezokeramischer vielschichtaktor und verfahren zu seiner herstellung Ceased WO2008092740A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP08707901A EP2126995B1 (de) 2007-01-31 2008-01-15 Verfahren zur Herstellung eines piezokeramischen Vielschichtaktors
JP2009547627A JP5167280B2 (ja) 2007-01-31 2008-01-15 圧電セラミック多層アクチュエータ及びその製造方法
US12/524,549 US7905000B2 (en) 2007-01-31 2008-01-15 Piezoceramic multilayer actuator and method for the production thereof
AT08707901T ATE540434T1 (de) 2007-01-31 2008-01-15 Verfahren zur herstellung eines piezokeramischen vielschichtaktors
CN200880003824.7A CN101601147B (zh) 2007-01-31 2008-01-15 压电陶瓷多层执行器的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007004813.2A DE102007004813B4 (de) 2007-01-31 2007-01-31 Verfahren zur Herstellung eines piezokeramischen Vielschichtaktors
DE102007004813.2 2007-01-31

Publications (2)

Publication Number Publication Date
WO2008092740A2 true WO2008092740A2 (de) 2008-08-07
WO2008092740A3 WO2008092740A3 (de) 2008-09-18

Family

ID=39201439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/050403 Ceased WO2008092740A2 (de) 2007-01-31 2008-01-15 Piezokeramischer vielschichtaktor und verfahren zu seiner herstellung

Country Status (7)

Country Link
US (1) US7905000B2 (enExample)
EP (1) EP2126995B1 (enExample)
JP (1) JP5167280B2 (enExample)
CN (1) CN101601147B (enExample)
AT (1) ATE540434T1 (enExample)
DE (1) DE102007004813B4 (enExample)
WO (1) WO2008092740A2 (enExample)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011154352A1 (de) 2010-06-07 2011-12-15 Continental Automotive Gmbh Verfahren zum herstellen eines piezoaktors und piezoaktor
EP2462636A1 (de) * 2009-08-05 2012-06-13 Robert Bosch GmbH Verfahren zur herstellung von piezoelektrischen werkstücken
EP2614543A1 (de) * 2010-09-08 2013-07-17 Epcos AG Verfahren zum herstellen von piezoelektrischen aktoren aus einem materialblock
WO2013124146A1 (de) * 2012-02-20 2013-08-29 Epcos Ag Vielschichtbauelement und verfahren zum herstellen eines vielschichtbauelements
WO2015028192A1 (de) * 2013-08-27 2015-03-05 Epcos Ag Verfahren zur herstellung von keramischen vielschichtbauelementen

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10090454B2 (en) 2012-02-24 2018-10-02 Epcos Ag Method for producing an electric contact connection of a multilayer component
DE102012207598A1 (de) * 2012-05-08 2013-11-14 Continental Automotive Gmbh Verfahren zum elektrischen Kontaktieren eines elektronischen Bauelements als Stapel und elektronisches Bauelement mit einer Kontaktierungsstruktur
DE102012104830A1 (de) * 2012-06-04 2013-12-05 Epcos Ag Vielschichtbauelement und Verfahren zum Herstellen eines Vielschichtbauelements
DE102012105059A1 (de) 2012-06-12 2013-12-12 Epcos Ag Verfahren zur Herstellung eines Vielschichtbauelements und Vielschichtbauelement
DE102012105287B4 (de) 2012-06-18 2020-07-02 Tdk Electronics Ag Verfahren zur Herstellung eines elektrischen Bauelements und Elektrisches Bauelement
DE102012107341B4 (de) 2012-08-09 2020-07-09 Tdk Electronics Ag Verfahren zum Befüllen von mindestens einer Kavität eines Vielschichtbauelements mit einem Füllmaterial
DE102013017350B4 (de) 2013-10-17 2020-07-09 Tdk Electronics Ag Vielschichtbauelement und Verfahren zur Herstellung eines Vielschichtbauelements
DE102015214778A1 (de) * 2015-08-03 2017-02-09 Continental Automotive Gmbh Herstellungsverfahren zum Herstellen eines elektromechanischen Aktors und elektromechanischer Aktor
DE102015217334B3 (de) 2015-09-10 2016-12-01 Continental Automotive Gmbh Verfahren zum Herstellen eines als Stapel ausgebildeten Vielschichtaktors
DE102015218701A1 (de) * 2015-09-29 2016-12-01 Continental Automotive Gmbh Elektrokeramisches Bauelement, insbesondere Vielschichtpiezoaktor
US11437560B2 (en) * 2017-06-22 2022-09-06 Taiyo Yuden Co., Ltd. Multilayer piezoelectric element, piezoelectric vibration apparatus, and electronic device
CN109994597A (zh) * 2017-12-29 2019-07-09 苏州攀特电陶科技股份有限公司 多层压电陶瓷执行器及其制备方法
EP3654355A1 (de) 2018-11-14 2020-05-20 Siemens Aktiengesellschaft Elektroblech mit strukturierter oberfläche zur domänenverfeinerung
DE102019201650A1 (de) * 2019-02-08 2020-08-13 Pi Ceramic Gmbh Verfahren zur Herstellung eines piezoelektrischen Stapelaktors und piezoelektrischer Stapelaktor, vorzugsweise hergestellt nach dem Verfahren

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184968A (ja) 1988-01-20 1989-07-24 Hitachi Chem Co Ltd 積層型圧電素子の製造法
US4988909A (en) * 1989-01-20 1991-01-29 Mitsui Toatsu Chemicals, Inc. Piezoelectric element with giant electrostrictive effect and ceramic composition for preparing same
US5191688A (en) 1989-07-27 1993-03-09 Olympus Optical Co., Ltd. Method for producing a superior longitudinal vibrator
WO1992005593A1 (fr) * 1990-09-13 1992-04-02 Hitachi Metals, Ltd. Procede de fabrication d'elements possedant un effet d'electrostriction
JPH04340778A (ja) * 1991-01-30 1992-11-27 Nec Corp 積層圧電アクチュエータ素子
JPH0529680A (ja) 1991-07-25 1993-02-05 Hitachi Metals Ltd 積層型変位素子およびその製造方法
JPH05267743A (ja) * 1992-03-23 1993-10-15 Sumitomo Metal Ind Ltd 積層型圧電アクチュエータの製造方法
JP3149611B2 (ja) 1993-03-26 2001-03-26 株式会社村田製作所 積層セラミック電子部品の製造方法
JP2830724B2 (ja) * 1993-12-20 1998-12-02 日本電気株式会社 圧電アクチュエータの製造方法
US5680685A (en) * 1995-06-07 1997-10-28 Microelectronic Packaging, Inc. Method of fabricating a multilayer ceramic capacitor
DE19615695C1 (de) * 1996-04-19 1997-07-03 Siemens Ag Verfahren zur Herstellung eines Piezoaktors monolithischer Vielschichtbauweise
DE19936713C2 (de) 1999-08-06 2001-08-23 Bosch Gmbh Robert Piezokeramischer Aktor sowie Verfahren zu seiner Herstellung
JP3397753B2 (ja) * 1999-09-30 2003-04-21 ティーディーケイ株式会社 積層型圧電素子およびその製造方法
DE10021919C2 (de) 2000-02-04 2002-03-07 Pi Ceramic Gmbh Verfahren zur Herstellung monolithischer piezokeramischer Vielschichtaktoren sowie monolithischer piezokeramischer Vielschichtaktor
DE10205928A1 (de) * 2001-02-21 2002-08-22 Ceramtec Ag Verfahren zur Herstellung piezokeramischer Vielschichtaktoren
CN2480846Y (zh) * 2001-06-22 2002-03-06 中国科学院上海硅酸盐研究所 一种具有圆环状压电陶瓷多层膜结构的加速度传感器
JP2003109839A (ja) * 2001-10-01 2003-04-11 Murata Mfg Co Ltd 積層型電子部品の製造方法
JP2004297041A (ja) * 2003-03-12 2004-10-21 Denso Corp 積層型圧電体素子
EP1653527A4 (en) * 2003-07-28 2009-12-23 Kyocera Corp ELECTRONIC COMPONENT OF THE LAMINATED TYPE, PROCESS FOR PRODUCING THE SAME, AND PIEZOELECTRIC ELEMENT OF THE LAMINATED TYPE
JP4470504B2 (ja) * 2004-02-03 2010-06-02 株式会社デンソー 積層型圧電素子及びその製造方法
WO2005075113A1 (de) 2004-02-06 2005-08-18 Siemens Aktiengesellschaft Ultraschallwandler mit einem piezoelektrischen wandlerelement, verfahren zum herstellen des wandlerelements und verwendung des ultraschallwandlers
DE102005008363B4 (de) 2005-02-23 2007-03-22 Siemens Ag Antriebseinheit mit einem eingebauten piezoelektrischen Stapelaktor mit verbesserter Wärmeableitung
DE102006001656A1 (de) * 2005-07-26 2007-02-08 Siemens Ag Piezoaktor und Verfahren zur Herstellung desselben
US20070182288A1 (en) * 2006-02-07 2007-08-09 Fujifilm Corporation Multilayered piezoelectric element and method of manufacturing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2462636A1 (de) * 2009-08-05 2012-06-13 Robert Bosch GmbH Verfahren zur herstellung von piezoelektrischen werkstücken
WO2011154352A1 (de) 2010-06-07 2011-12-15 Continental Automotive Gmbh Verfahren zum herstellen eines piezoaktors und piezoaktor
JP2013533617A (ja) * 2010-06-07 2013-08-22 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング ピエゾアクチュエーターの製造方法及びピエゾアクチュエーター
US9112152B2 (en) 2010-06-07 2015-08-18 Continental Automotive Gmbh Method for producing a piezo actuator and piezo actuator
EP2614543A1 (de) * 2010-09-08 2013-07-17 Epcos AG Verfahren zum herstellen von piezoelektrischen aktoren aus einem materialblock
WO2013124146A1 (de) * 2012-02-20 2013-08-29 Epcos Ag Vielschichtbauelement und verfahren zum herstellen eines vielschichtbauelements
JP2016178315A (ja) * 2012-02-20 2016-10-06 エプコス アクチエンゲゼルシャフトEpcos Ag 多層デバイスおよび多層デバイスの製造方法
US10217927B2 (en) 2012-02-20 2019-02-26 Epcos Ag Method for producing a multilayer component
US10608163B2 (en) 2012-02-20 2020-03-31 Epcos Ag Multilayer component having internal electrodes alternatingly connected to external electrodes
WO2015028192A1 (de) * 2013-08-27 2015-03-05 Epcos Ag Verfahren zur herstellung von keramischen vielschichtbauelementen
US10686120B2 (en) 2013-08-27 2020-06-16 Epcos Ag Method for producing ceramic multi-layer components

Also Published As

Publication number Publication date
JP2010517311A (ja) 2010-05-20
DE102007004813A1 (de) 2008-08-14
EP2126995B1 (de) 2012-01-04
JP5167280B2 (ja) 2013-03-21
EP2126995A2 (de) 2009-12-02
CN101601147A (zh) 2009-12-09
CN101601147B (zh) 2011-08-03
US20090320255A1 (en) 2009-12-31
WO2008092740A3 (de) 2008-09-18
DE102007004813B4 (de) 2016-01-14
US7905000B2 (en) 2011-03-15
ATE540434T1 (de) 2012-01-15

Similar Documents

Publication Publication Date Title
EP2126995B1 (de) Verfahren zur Herstellung eines piezokeramischen Vielschichtaktors
EP1008193B1 (de) Verfahren zur herstellung piezoelektrischer aktoren und piezoelektrischer aktor
EP2118912B1 (de) Vielschicht-bauelement und verfahren zur herstellung eines vielschicht-bauelements
EP2126993B1 (de) Piezostapel und verfahren zum herstellen eines piezostapels
DE4091418C2 (de) Verfahren zur Herstellung eines Mehrschichtkondensators
EP2859566B1 (de) Verfahren zur herstellung eines vielschichtbauelements und vielschichtbauelement
DE10147898A1 (de) Elektrochemisches Bauelement mit mehreren Kontaktflächen
EP1476907B1 (de) Piezoaktor mit strukturierter aussenelektrode
EP2577762B1 (de) Verfahren zum herstellen eines piezoaktors und piezoaktor
EP2777083B1 (de) Verfahren zum elektrischen kontaktieren eines elektronischen bauelements als stapel und elektronisches bauelement mit einer kontaktierungsstruktur
EP1997160B1 (de) Piezoaktor und verfahren zum herstellen eines piezoaktors
EP2140508B1 (de) Piezoelektrisches bauteil mit sicherheitsschicht und infiltrationsbarriere und verfahren zu dessen herstellung
EP0774765A2 (de) Verfahren zur Herstellung eines vielschichtigen keramischen Elektronikbauteils
DE4410504B4 (de) Verfahren zur Herstellung eines mehrschichtigen keramischen Elektronikbauteils
EP2817836B1 (de) Vielschichtbauelement und verfahren zum herstellen eines vielschichtbauelements
EP1949465A1 (de) Piezoaktor und verfahren zur herstellung desselben
DE102013100764B4 (de) Verfahren zur Herstellung von durch physikalische Gasphasenabscheidung erzeugten Elektroden sowie ein Verfahren zur Herstellung von Piezoelementen mit durch physikalische Gasphasenabscheidung erzeugten Elektroden
DE10041338A1 (de) Verfahren zum Herstellen eines keramischen Vielschichtbauelements sowie Grünkörper für ein keramisches Vielschichtbauelement
EP2054951A1 (de) Piezoelektrisches bauelement
DE102012110556B4 (de) Vielschichtbauelement und Verfahren zu dessen Herstellung
DE102006001656A1 (de) Piezoaktor und Verfahren zur Herstellung desselben
EP3347926B1 (de) Verfahren zum herstellen eines als stapel ausgebildeten vielschichtaktors
EP3262698B1 (de) Verfahren zur herstellung von vielschichtbauelementen und vielschichtbauelement, insbesondere piezoaktoren
WO2007009908A1 (de) Piezoaktor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880003824.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08707901

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008707901

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12524549

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2009547627

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE